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Abstract
In addition to teaching undergraduate technical majors about theory and
experiments, an important component of their instruction should be to develop
proficiency in using computers for simulations and data presentation. A par-
ticularly appropriate course for this purpose is classical mechanics because one
of the primary goals of that course is to simulate the motion of physical
systems, which is greatly aided by visualizations that help to build students’
intuition about expected behaviors. As a demonstration of the ease with which
this objective can be accomplished using the MATLAB software package,
fully executable scripts are presented here for three commonly studied sys-
tems: point projectiles, simple pendula, and water flowing out of a hole in a
tank. It is much easier for students to edit a functioning script than to try to
write their own from scratch. However, the present scripts are sufficiently
short and well-documented that instructors can readily ask their students to
modify and adapt them according to their local instructional environments
and purposes.
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1. Introduction

In today’s world, educators and students are aware of the needs of the science education
community regarding the use of computation in physics. There is no doubt that conventional
hand calculations are often laborious and time-consuming when the number of inputs is
increased, and/or different initial parameters are introduced in every new scenario of a
complicated problem. More importantly, computer-aided techniques are inevitable in the
analysis of many physical systems (e.g. structural mechanics, and fluid mechanics) whose
behavior must be studied both visually and practically under different dynamic conditions.
Although theoretical knowledge obtained during lectures is important and can play a sig-
nificant role in learning fundamental principles, scientific interpretation of a concept is limited
for lectures full of theory. Implementation of modern computer technologies (e.g. animation,
dynamic objects, and visualization of the studied physics phenomena) improves students’
perception of the material and help them comprehend it [1]. It is essential to teach students
about computational methods, modeling knowledge, and simulation experience to encourage
them to create robust and practical solutions to the real-world problems that they will face in
their future careers [2, 3].

The American Association of Physics Teachers recommends that computer-based
applications be incorporated into the undergraduate physics curriculum [4]. Topics in clas-
sical mechanics are particularly appropriate for this purpose because they are well-suited to
computational approaches [5]. A synthesis of curriculum development, computational phy-
sics, computer science, and physics education will be useful for scientists and students
wishing to write their own simulations and develop their own curricular material [6].
Moreover, to support the computer-based applications, inclusion of course-related experi-
ments in the curriculum will offer a remarkable opportunity for both students and discipline-
specific practitioners to comprehend the theoretical issues in a visual manner [3].

In a study performed at the International IT University in Kazakhstan, Daineko et al [1]
investigated the effect of using physics virtual laboratories (PVL) on the performance of
Physics-1 and Physics-2 courses. PVL was developed in C#(.NET) based on the XNA4.0
framework and realized with the use of 3D modeling by employing Blender and Maya 3D
software. The authors implemented a PVL software package consisting of nine physical
experiments (i.e. the Atwood machine, Maxwell pendulum, Clement–Desormes method,
Stefan–Boltzmann constant, photoconductivity properties of semiconductors, magnetic
induction, direct current laws, Ohm’s law for alternating current, and Frank–Hertz experi-
ment) from various domains of physics integrated into a single curriculum. The study con-
cluded that the introduction of innovative computer technologies, such as virtual laboratories,
could be used during lectures to enhance the teaching experience and improve education
quality, without large facilities and material costs.

Investigations on the incorporation of computational science into introductory physics
courses revealed positive results. For instance, at the University of Maryland in the USA,
Redish and Wilson [7] proposed a M.U.P.P.E.T.-based computational environment at the
beginning of an introductory physics course for student programming. The authors saw
several benefits of teaching physics in a computerized environment. The study concluded that
when the computational science tools were combined with introductory physics courses,
students were able to discuss real-world problems (e.g. projectile motion with air resistance)
without needing an intensive mathematical knowledge.
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A study based on an object-oriented programming language was performed by Lee and
Lee [8] at Soongsil University in Korea to discuss various aspects of developing interactive
physics education software using Adobe Flash and ActionScript source code for the simu-
lator. They demonstrated three examples of interactive simulations (i.e. one-dimensional
kinematics: bus simulator; Newton’s laws of motion and law of gravity: motions of two
celestial bodies interacting with gravity; and motions of eight celestial bodies in the solar
system) based on Flash software that enable students to understand basic concepts in physics.
The authors concluded that the students could grasp relevant concepts intuitively with the
help of the object-oriented nature and powerful graphics capability of the proposed
programming.

Another study reported by Sherin [9] aimed to compare the performance of two distinct
groups of students (from University of California, Berkeley, USA), an algebra pool and a
programming pool, where each group consisted of five pairs of students. In the study, the
algebraic physics group was asked to solve traditional textbook problems (e.g. shoved block,
vertical pitch, air resistance, mass on a spring, stranded skater, buoyant cube, and running in
the rain). The students in the programming physics group were asked to create a set of
simulations of physical motions (e.g. shoved block, dropped ball, tossed ball, air resistance,
and mass on a spring) in the Boxer programming environment. The author concluded that
the algebraic notation of the physics formulas did not indicate causal relations between the
parameters, and thus students were directed to discover the existence of balance between
the two sides of an equation rather than causal relations. Conversely, programming physics
students were encouraged to seek time-varying phenomena and express certain types of
causal intuitions.

In a computer-aided physical multidomain modeling study conducted at the University of
Ljubljana in Slovenia, Zupančič and Sodja [10] modeled two mechanical systems (an inverted
pendulum and a laboratory helicopter) using MATLAB-Simulink and Dymola-Modelica
environments within the framework of an educational application project. For their industrial
application project, the authors described the modeling and control of thermal and radiation
flows in buildings, and two applications from mineral–wool production: modeling of a
mechanical pendulum system, and a recuperator process. The study concluded that
MATLAB-Simulink is a very usable environment for the design of control systems based on
linearized models. Likewise, Modelica-based environments with inverse models can be
usable in the control of mechanical systems.

Another study was undertaken by Bozkurt and Ilik [11] at Selcuk University in Turkey to
explore the impact of teaching supported by interactive computer simulations on students’
beliefs about physics and physics achievements. In the study, simulations (the moving man
and energy skate park) benefited from Java and Flash programming resources. According to
the authors’ analysis, the study concluded that the groups who used computer simulations
were more successful than those who worked with traditional methods, and the courses with
interactive simulations had a positive effect on students’ beliefs about physics and physics
achievements.

In another study that was conducted by Taub et al [12], at the Weizmann Institute of
Science in Israel, the research objective was to explore the effect of computer science on the
students’ conceptual understanding of the physics behind formulas. The programming tools
used in the study were Easy Java Simulations and Maxima. To assess the learning effects of
computer simulations in physics education, the students were subjected to three different
disciplines of physics: (i) kinematics (simulation of launching a rocket and intercepting an
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enemy rocket); (ii) dynamics (simulation of a car driving on a circular road); and (iii) optics
(simulation of an object located in front of a lens positioned in front of a mirror). With the
help of object-oriented programming of a physical system, the analysis of the authors indi-
cated that each of the implemented domains contributed to the emergence of knowledge
integration processes, and promoted conceptual understanding of the physics concepts.

Finally, Sarabonda et al [13] investigated the contribution of a computer simulation to
students’ learning of physics concepts (weight and mass) by implementing simulations based
on Modellus software. In the analysis, students from four schools in northern Portugal were
subjected to three different scenarios: (i) using only ‘hands-on’ activities, (ii) using only a
computer simulation, and (iii) using both. The study concluded that the use of the computer
simulation improved students’ learning of the physics concepts, when either used alone or
together with ‘hands-on’ activities. Additionally, the authors emphasized that the total gains
attained were linked to the teachers’ pedagogy/mediating role when using the computer
simulation to teach the concepts of weight and mass.

The present study aims to expand the positive findings reported in these studies based on
the use of computation in physics. The main intention of the authors is not on the theoretical
analysis of the problems, but on the computer-aided programming approach. For this purpose,
in the present paper, three introductory problems are considered: (i) projectile motion of
several simultaneously launched point particles, (ii) the oscillational period of a simple
pendulum at large amplitudes, and (iii) the gravity-driven discharge of water through a
circular hole at the bottom of a cylindrical tank whose axis of symmetry is vertical. The
motions are simulated using scripts written in MATLAB. The concise description of
MATLAB functions will make this research of pedagogic interest to a wide range of readers,
including those with no experience in MATLAB. Before the concluding remarks, the
advantages of using MATLAB over other programming languages are provided for the
readers. Detailed explanations of the steps needed to write the algorithms are presented, and
fully operational codes are included in the appendix. Furthermore, the computational outputs
are compared to experimental results in the cases of the pendulum and water discharge
problems, using latitude-corrected values of the acceleration g due to gravity. Excellent
agreements are found.

2. Kinematics of projectile motion

Imagine that a group of students are discussing the motion of n balls projected with different
initial speeds , , , n1 2u u u¼ and launch angles , , , n1 2q q q¼ above the horizontal. They would
like to simulate the resulting trajectories on a single graph and determine the flight time,
range, and maximum height attained by each ball. Laborious hand calculations of the sort
performed in [14] can be avoided using computer software to animate the motion.

The position of the i th ball (where i is an index running from 1 to n) at time t after being
launched from the origin is

x t cos 1i i iu q= ( )

for the horizontal position in the direction of motion, and

y t gtsin 2i i i
1
2

2u q= - ( )

for the upward vertical position, where g is the acceleration due to gravity. Equation (1) uses
the fact that the horizontal component of a ball’s velocity is constant during the motion with a
value cosi iu q , whereas the vertical component varies in time as
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gtsin . 3yi i iu u q= - ( )

By setting equation (2) to zero, the flight time of the i th ball is found to be

T
g

2 sin
4i

i iu q
= ( )

and that time can be substituted into equation (1) to find the range Ri. Likewise, half of this
flight time can be substituted into equation (2) to find the maximum height Hi attained by the i
th ball.

3. Oscillation period of a simple pendulum

A simple pendulum is an idealized model [15] consisting of a point particle of mass m
attached to the end of a massless inextensible string of length L. When displaced from its
vertical equilibrium position, the bob swings back and forth. Newton’s second law gives rise
to the differential equation of motion [16]:

t

g

L

d

d
sin 0. 5

2

2

q
q+ = ( )

This expression can also be obtained from conservation of mechanical energy. If it is assumed
that the angle is less than 0.1 rad (or about 6°) so that θ=1, then sin θ≈θ in radians. In that
case,

t

d

d
0 6

2

2
2q

w q+ = ( )

where g Lw = / is the angular frequency of oscillation (to be carefully distinguished from
the angular velocity td dq/ of the bob). The error in this small-angle approximation is of order

3q (from the Taylor series for sin θ). If the initial angular displacement is θ0 and the bob is
released from rest, then the solution to equation (6) is

t tcos provided that 1. 7g

L0 0q q q= ( )( ) ( )

The motion is simple harmonic with a period of

T 2 provided that 1. 8L

g0 0p q=  ( )

This period is independent of the amplitude θ0, a property known as isochronism, as
discovered by Galileo [17, 18].

However, for larger amplitudes the period T is bigger than T0. In that case, the period can
be expanded in a Legendre series [18] as

T
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An excellent approximation is provided by the arithmetic–geometric mean method [19],
which predicts

T 8 1 cos 10L

g 2

2
0p» + q

-( ) ( )

with a relative error of less than 1% for angles up to 163°.
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4. Water discharging from a vertical cylindrical tank

Water flowing out of a circular hole in a tank is an example of unsteady flow because the fluid
mass inside a control volume (CV) varies with time. That is, dm 0CV ¹ where dmCV is the rate
of change of the mass within the CV [3, 20]. Using Torricelli’s law, the volumetric flow rate is

Q C gz d2 4 11d o
2p= ( )/

where Cd is the coefficient of discharge ranging in value from 0 to 1, z is the time-varying
distance from the free surface of the water in the tank to the hole, do is the diameter of the
hole, and g is the gravitational acceleration. In the absence of viscous losses and the vena
contracta [21], Cd would be equal to 1.

Using the continuity equation, equation (11) can be integrated for a vertical tank of inner
diameter D to find the time T required for the surface of the water to drain down to a height h
above the hole as

t
D

C gz
zd

4

2 d 4
d 12

T

h

h

0

2

d o
2

0
ò ò

p
p

= - ( )/

/

starting with the water at rest at an initial height of h0. Performing the integrals gives

T h
C

D

d g
h h

1 2
. 13

d o

2 0.5

0= -
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

5. Computational procedure

Computer-based simulations were conducted by writing scripts in MATLAB R2018a on a 64-bit
Windows 10 system. The step-by-step computational procedure is summarized as follows.

Step 1. Free up system memory and set the output format. The ‘Editor Window’ (for a
new M-File) is opened in MATLAB. All of the current contents of system memory and all
variables in the ‘Command Window’ are erased, and the visual ‘Command Window’ and
command output are customized using the built-in functions clear (which releases all variables
from the current ‘Workspace’ and from system memory), clc (which clears all input and output
commands from the display and homes the cursor), and format short (which sets the output
display format to a scaled fixed-decimal format with four digits after the decimal point).

Step 2. Set the input parameters. In the ‘Editor Window’, an assignment is made for each
input variable using the built-in function input: (a) for projectile motion—launch angles
( , , , n1 2q q q¼ ), initial speeds ( , , , n1 2u u u¼ ), number n of balls projected, and gravitational accel-
eration g; (b) for pendulum oscillation—length L of the string, angular amplitude θ0, and grav-
itational acceleration g; and (c) for water discharge—initial height h0, final height h, diameter D of
the water tank, diameter d0 of the hole, coefficient of discharge Cd, and gravitational acceleration g.

Step 3. Define the formulas. The equations are coded using different built-in functions
according to the symbolic and numerical methods used: (a) for projectile motion—the hor-
izontal and vertical components of the initial velocities υ0x and υ0y, total flight time T, range
R, and maximum height H of each ball are computed using the built-in functions cosd (cosine
of the argument in degrees), sind (sine of the argument in degrees), and max (returns the
largest element in an array); (b) for pendulum oscillation—the small-angle approximation,
Legendre series, and arithmetic–geometric mean method are implemented using the built-in
functions pi (value of π), syms (shortcut for symbolic variables), gamma (gamma function),
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sin (sine of the argument in radians), symsum (symbolic summation of a series), double
(convert the value to double precision), and sqrt (square root); and (c) for water discharge—
the time T for the surface of the water to drain down to a height h above the hole is determined
using the built-in functions syms, pi, sqrt, int (symbolic integration), double, @ (function
handle), quad (numeric integration based on adaptive Simpson quadrature), and fix (round a
scalar to the integer nearest to zero). In addition, the stopwatch timer codes tic and toc are
used to measure the CPU time or time elapsed for an analysis in seconds.

Step 4. Output the results. Output formats are created using the built-in function fprintf.
This function specifies a floating-point number %d1.d2 with a width of d1 digits having d2
digits after the decimal point. It can also include the control character /n to start a new line.
After running the scripts in the ‘Editor Window’, the resulting numeric and character arrays
are sent to the ‘Command Window’ and stored in the ‘Workspace’.

Step 5. Construct the animations. Primitive line objects, in terms of which time-based
motions are animated, are created using the built-in function line using data stored in vectors
x and y. As options in the line command, ‘LineStyle’ such as ‘-’, ‘LineWidth’ such as ‘2’,
‘Color’ such as ‘r’, ‘Marker’ such as ‘.’, and ‘MarkerSize’ such as ‘40’ are defined to control
the appearance and behavior of the lines and markers.

Additionally, the following built-in functions are introduced to enhance the simulation
environment: axis (which sets the axis limits and aspect ratios), axis equal (which uses the same
length for the data units along each axis), title (which adds a specified title to the axes or chart),
xlabel (which labels the x-axis of the current axes or chart), ylabel (which labels the y-axis of the
current axes or chart), box on (which displays a box around the current axes), grid on (which
displays major grid lines for the current axes or chart), set (which specifies a value for the property
name of the identified object), gca (which returns the current axes or chart for the current figure),
findall (which finds a text object for the x-axis label), gcf (which returns the current figure handle),
hold on (which holds the current plot in memory while adding new curves to it), sprintf (which
formats a data string), and pause (which temporarily stops execution).

Step 6. Animate the motions. In the final step, ‘for index=values, statements, end’ loops
are constructed to execute a group of statements a specified number of times. For the present
problems, values are created as time vectors by using the built-in function linspace (which returns
a row vector of n evenly spaced points in the interval [0, T] for projectile motion, [θ0, −θ0] for
pendulum oscillation, and [0, T] for water discharge). The set function is used to display the
property names and values of the line objects created in Step 5. For the projectile motion and
pendulum oscillation, the function plot creates a two-dimensional (2D) line graph of the y data
versus the corresponding x values. To simulate the projectile motion and water discharge, the
sprintf function is used to format the time data as a string. For the water discharge problem, the
animation of the free surface of the water draining down is colored using the function fill (which
creates 2D polygons specified by x and y with the color of ‘ColorSpec’) or patch (which creates a
solid patch having its shape specified by the coordinate vectors x and y). In all scripts, the built-in
functionM(r)=getframe is implemented to capture the current axes as it appears on the screen as
a movie frame. Here M is a structure containing the image data, and r denotes its index. For the
pendulum oscillation, the function movie is used to play the recorded movie defined by a matrix
whose columns are frames produced by getframe, using the current axes as the default target. The
code movie(M, n<0) plays the movie |n| times. The negative value of n means that each cycle is
played forward and then backward.
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6. MATLAB-based simulations

Calculations are conducted for each problem by running the MATLAB scripts presented in
tables A1–A5 of the appendix. The scripts are evaluated in the ‘Editor Window’ and the
outputs for various input variables are shown in figures 1–3.

Consideration of the ‘Elapsed time isK seconds’ outputs of the Stopwatch Timer code in
the ‘Command Window’ demonstrates that time-consuming calculations can be avoided with
the help of computational software. MATLAB provides an excellent educational platform for
observing the results both numerically and visually. This savings enables students to spend
more time learning and practicing problems for different inputs. Even though the computation
time required for the pendulum oscillation problem is higher than that for the other problems
owing to the symbolic solution applied to sum the Legendre series, a MATLAB-based
approach remains satisfactory in terms of speed of execution.

The maximum CPU usages recorded in the Task Manager are 17%, 4%, and 18% when
simulating projectile motion, pendulum oscillation, and water discharge problems, respec-
tively, in MATLAB. These differences in CPU demand result from the size of the time
vectors involved and the number of captured movie frames. Additional MATLAB scripts are
presented in tables A4 and A5 of the appendix for the pendulum oscillation, and the com-
putational outputs obtained from these codes are presented in figures 4 and 5.

7. Comparison with experimental studies

To validate the computational analysis, the predictions were experimentally tested in the
2017–2018 Spring Term with active participation of 60 undergraduate students at Yildiz Tech-
nical University in Istanbul, Turkey, in the undergraduate course CEV2232 ‘Fluid Mechanics for

Figure 1. Projectile motion problem: (a) a screenshot taken at an intermediate point
during the animation; (b) a screenshot at the end of the animation; and (c) the contents
of the ‘Workspace’ window after completion of the script.
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Figure 2. Pendulum oscillation problem: (a) a screenshot during the animation; (b) a
screenshot at the end of the animation; and (c) the contents of the ‘Workspace’ window
after completion of the script.

Figure 3. Water discharge problem: (a) a screenshot during the animation; (b) a
screenshot at the end of the animation; and (c) the contents of the ‘Workspace’ window
after completion of the script.
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Figure 4. Output obtained by running the script in table A4.

Figure 5. Output of the script in table A5: (a) numerical results (based on input variables,
energy values, and elapsed time) in the ‘Command Window’ and (b) graph of the potential
and kinetic energies during a half-cycle of oscillation.
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Engineers’. Pendulum oscillation and water discharge measurements were conducted. Each stu-
dent was asked to measure the oscillation period and discharge time using a watch or mobile
phone. Each experiment was repeated three times to determine its reproducibility.

A 1 L polypropylene graduated cylinder (Isolab product #025.01.600) and stainless
steel pendulum (Isolab product #S.049.01.200.001) are used in the experimental setup, as
photographed in figure 6. First, the value of the gravitational acceleration g at the location of
the laboratory is numerically calculated [22], and then verified using a simple pendulum.
Its theoretical value as a function of latitude j is

g g g g cos 2 14theor 45
1
2 poles equator j= - -( ) ( )

while its experimental value is (from equation (10))

g
L

T
64 1 cos . 15exp

2

exp
2 2

4
0p= + q

-( ) ( )

Here, g45, gpoles, and gequator are, respectively, 9.806 m s−2 at 45° latitude, 9.832 m s−2 at the
poles, and 9.780 m s−2 at the equator. The latitude for the lab is 41°02′36.60′ N so that
j=41.0435°. The length of the string is L=0.99 m, and the initial angular displacement is
θ0=10°.

Figure 6. Experimental setups for (a) the pendulum experiment and (b) the tank
discharge experiment.

Eur. J. Phys. 39 (2018) 065803 K Yetilmezsoy and C E Mungan

11



Equation (14) predicts gtheor=9.802 m s−2. Pendulum experiments performed for ten
oscillations result in an average oscillation period of Texp=1.999±0.036 s, so that
gexp=9.819 m s−2 from equation (15). Experimentally, the average discharge time is found
to be 355±1 s, which agrees well with the value computed using equation (13).

At the end of the experiment, the students were asked to provide anonymous comments
about it. Some of them are reproduced below (where M denotes a male student and F a
female student).

• M: ‘Experiments were very useful and encouraging for me because of the visualization of
a theoretical field in real life, thanks to this educational activity.’

• F: ‘I believe that this application was an unforgettable, attractive, and remarkable attempt that
has made both theoretical calculation and computer-based analysis more permanent in mind.’

• M: ‘I think that experiencing the validation of the computational analysis in a visual way
increased the understanding of the principal concepts for the respective problems.’

• F: ‘I have experienced a comprehensible and target-based lecture with the help of the
experimental studies.’

8. Benefits of MATLAB over other programming languages

MATLAB (derived from MATrix LABoratory) is a sophisticated software package that covers
built-in functions to achieve a wide range of tasks, from mathematical operations to three-
dimensional image processing. MATLAB provides a full set of programming tools that allows
users to customize programs to their own specifications. Beginning students who learn the built-
in functions will be well-prepared to use MATLAB. Then, the best approach is to teach them
both the programming concepts and advanced function features for their future careers [23].
Because MATLAB is straightforward to use, it is a perfect computational environment for this
task in teaching programming and problem-solving techniques [2, 3, 23–28].

Several mathematical variables can be easily entered into MATLAB’s computing
environment as matrices (r×c, where r>1 and c>1), scalars (r×c, where r=c=1),
row arrays or horizontal vectors (1×c, where c>1), and column arrays or vertical vectors
(r×1, where r>1) [3]. This approach enables complex calculations to be efficiently solved
using various built-in functions and/or user-defined functions in M-files [3, 24]. Thus, if a
problem can be formulated with a matrix-based solution, MATLAB executes substantially
faster than a similar program in a high-level language. While MATLAB provides the user
ease of creating a matrix, the matrix must be defined in C programming using looping such as
a ‘for/end loop’. Additionally, the main advantage of MATLAB over C programming when
doing numerical calculations is that MATLAB is interpreted. That is, you can see the result of
one command before you continue to the next one, unlike C programming where you must
compile the source each time you make a change [29].

A ‘number-crunching’ program (i.e. large-scale processing of numerical data) is generally
easier to write in MATLAB compared to other programs [24]. For instance, Python is a general-
purpose programming language requiring add-on libraries for performing even basic mathe-
matics. Matrix and array mathematics in Python requires function calls, not natural operators,
and you must keep track of the differences between scalars, one-dimensional (1D) arrays, and
2D arrays. MATLAB, on the other hand, makes no artificial distinction between scalar, 1D, 2D,
and multidimensional arrays. Unlike Python, MATLAB toolboxes offer professionally
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developed, rigorously tested, field-hardened, and fully documented functionality for scientific
and engineering applications [30]. Likewise, in contrast to R programming, MATLAB provides
(i) a high-productivity development environment, (ii) extensive toolboxes and apps, (iii) faster
performance and easy deployment, and (iv) assurance of quality and reliability [31].

Furthermore, MATLAB has the additional following advantages over other methods or
languages [32]: (i) someone can perform operations from the command line as a sophisticated
calculator and develop programs and functions that implement repetitive tasks; (ii) adding two
arrays together needs only one single-line command instead of a for or while loop; (iii) it is
easy to plot data and then specify color, line styles, and markers by using the graphical
interactive tools; and (iv) its functionality can be greatly expanded by the addition of tool-
boxes (sets of specific functions that provide more specialized functionality).

9. Concluding remarks

The present computational analysis meets important instructional and research-based objec-
tives. Fundamental principles of kinematics and mechanics from introductory physics and
engineering are simulated for three different problems. The detailed codes are provided
(as appendices) and are written using MATLAB. The main points of the codes are concisely
explained, the results of the codes are compared with relevant experiments, and the educa-
tional impact of the whole experience is evidenced by a selection of student comments from a
class of 60. Using the powerful and flexible properties of MATLAB, notably including its
numerical and graphical tools, many challenging aspects of these extended scenarios can be
investigated by students. Only a few previous papers [33] have presented complete MATLAB
code, a comparison of simulated and experimental results at the introductory physics level,
and field testing of the computer and lab work in an actual course with collection of anon-
ymous student evaluations of the projects. In light of the positive findings of this work, future
work will extend these simulations to other theoretical and experimental topics.

Appendix

Fully executable MATLAB codes of the three time-based problems from the main text are
presented in the following five tables.

Table A1. Script for the projectile motion problem of 3 balls having different initial
speeds and launch angles.

%Ball motion problem (simulation of n balls) disp(' theta2 v02 vx2 vy2 tf2 xmax2 hmax2');
fprintf('%10.0f %6.0f %9.4f %9.4f %9.4f %9.4f %9.4f/n',table2);

%STEP 1 disp('————————————————————————');
clear, clc table3=[theta3;v03;vx3;vy3;tf3;xmax3;hmax3];
format short disp(' theta3 v03 vx3 vy3 tf3 xmax3 hmax3');
disp(datestr(now,0)) fprintf('%10.0f %6.0f %9.4f %9.4f %9.4f %9.4f %9.4f n',table3);

toc
%STEP 2
theta1=input('Enter the angle (deg) between velocity vector
and ground=');

%STEP 5

v01=input('Enter initial velocity (m/s)='); xmax=max([xmax1,xmax2,xmax3]);
theta2=input('Enter the angle (deg) between velocity vector
and ground=');

hmax=max([hmax1,hmax2,hmax3]);
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Table A1. (Continued.)
v02=input('Enter initial velocity (m/s)='); f1=line([0 xmax],[0 0],'linestyle','-','color','b','linewidth',4);
theta3=input('Enter the angle (deg) between velocity vector
and ground=');

f11=line(0,0,'linestyle','none','marker','.','markersize',70,'color','b');

v03=input('Enter initial velocity (m/s)='); f12=line(0,0,'linestyle','none','marker','.','markersize',60,'color','r');
tic f13=line(0,0,'linestyle','none','marker','.','markersize',40,'color','k');

axis([0 xmax 0 hmax]);
%STEP 3 %title('Projectile Motion')
%Horizontal and vertical components of the velocity vectors xlabel('itHorizontal range (m)','FontSize',14,'FontWeight','Bold')
vx1=v01*cosd(theta1); ylabel('itVertical range (m)','FontSize',14,'FontWeight','Bold')
vy1=v01*sind(theta1); box on
vx2=v02*cosd(theta2); grid on
vy2=v02*sind(theta2); set(gca,'FontSize',14,'FontWeight','Bold')
vx3=v03*cosd(theta3); set(findall(gcf,'type','text'),'FontSize',14,'FontWeight','Bold')
vy3=v03*sind(theta3); hold on

tt=title(sprintf('Maximum flight time: %0.4f sec', 0),'FontSize',14);
%Total flight times (sec) for the motion pause(5)
g=9.807; %Gravitational acceleration (m/s2)
tf1=2*vy1/g; %STEP 6
tf2=2*vy2/g; tmax=max([tf1,tf2,tf3]);
tf3=2*vy3/g; t=linspace(0,tmax,200);

for r=1:length(t)
%Maximum horizontal and vertical ranges (meters) for the
motion

x1(r)=vx1*t(r);

xmax1=vx1*tf1; h1(r)=vy1*t(r)-0.5*g*t(r)^2;
hmax1=vy1*(tf1/2)-0.5*g*(tf1/2)^2; x2(r)=vx2*t(r);
xmax2=vx2*tf2; h2(r)=vy2*t(r)-0.5*g*t(r)^2;
hmax2=vy2*(tf2/2)-0.5*g*(tf2/2)^2; x3(r)=vx3*t(r);
xmax3=vx3*tf3; h3(r)=vy3*t(r)-0.5*g*t(r)^2;
hmax3=vy3*(tf3/2)-0.5*g*(tf3/2)^2; plot(x1(r),h1(r),'.b',x2(r),h2(r),'.r',x3(r),h3(r),'.k','LineWidth',1)

set(f1,'xdata',[0 xmax],'ydata',[0 0]);
%STEP 4 set(f11,'xdata',x1(r),'ydata',h1(r));
table1=[theta1;v01;vx1;vy1;tf1;xmax1;hmax1]; set(f12,'xdata',x2(r),'ydata',h2(r));
disp(' theta1 v01 vx1 vy1 tf1 xmax1 hmax1'); set(f13,'xdata',x3(r),'ydata',h3(r));
fprintf('%10.0f %6.0f %9.4f %9.4f %9.4f %9.4f %9.4f
n',table1);

set(tt, 'String', sprintf('Maximum flight time: %0.4f sec', t(r)));

disp('—————————————————————'); M(r)=getframe;
table2=[theta2;v02;vx2;vy2;tf2;xmax2;hmax2]; end

Table A2. Script for the oscillation period of a simple pendulum.

%Pendulum oscillation #1 (periods, deviations, and
simulation)

disp('Computed periods (sec) and deviations from small-angle
approximation:');
disp(' T1(sec) T2(sec) T3(sec) ');

%STEP 1 disp('Simple harmonic Legendre Deviation(%) Aritmetico
Deviation(%)');

clear, clc fprintf('%10.4f %14.4f %10.4f %13.4f %11.4f n',table);
format short toc
disp(datestr(now,0))

%STEP 5
%STEP 2 f1=line([-L L],[L L],'linestyle','-','color','k','linewidth',6);
L=input('Enter the length (m) of the pendulum='); f2=line([0 0],[L 0],'linestyle','-','color','k','linewidth',2);
tic f3=line(0,0,'linestyle','none','marker','.','markersize',100,'color','b');
g=9.807; %Gravitational acceleration (m/s2) axis([-L L -L L])
theta=input('Enter the angular
displacement (deg)=');

axis equal

theta1=theta*pi/180; %Conversion to radian title('itSimple Pendulum Motion','FontSize',14)
xlabel('itHorizontal Range (m)','FontSize',14)
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Table A2. (Continued.)

%STEP 3 ylabel('itVertical Range (m)','FontSize',14)
%Period for the small-angle approximation: box on
T1=(2*pi)*((L/g)^0.5); grid on

set(gca,'FontSize',14,'FontWeight','Bold')
%Legendre series: set(findall(gcf,'type','text'),'FontSize',14,'FontWeight','Bold')
syms n hold on
M1=gamma(2*n+1); pause(5)
M2=2^(2*n);
M3=(gamma(n+1))^2; %STEP 6
M4=(M1/(M2*M3))^2; theta2=linspace(theta,-theta,10);
M5=(sin(theta1/2))^(2*n); for r=1:length(theta2)
M6=M4*M5; x(r)=L*sind(theta2(r));
M7=symsum(M6,0,inf); y(r)=L-L*cosd(theta2(r));
T21=T1*M7; set(f1,'xdata',[-L L],'ydata',[L L]);
T2=double(T21); set(f2,'xdata',[0 -x(r)],'ydata',[L y(r)]);
%Deviation from the small-angle approximation: set(f3,'xdata',[-x(r)],'ydata',[y(r)]);
D2=((T2-T1)/T2)*100; plot(-x(r),y(r),'.r')

M(r)=getframe;
%Arithmetic-geometric mean method: end
T3=(4*T1)*((1+sqrt(cos(theta1/2)))^-2); xmax=max(x);
%Deviation from the small-angle approximation: ymax=max(y);
D3=((T3-T1)/T3)*100; disp(['Maximum horizontal displacement=' num2str(xmax) ' m']);

disp(['Maximum vertical displacement=' num2str(ymax) ' m']);
%STEP 4 movie(M,-10)
table=[T1;T2;D2;T3;D3]; 

Table A3. Script for water flowing out of a circular hole in a vertical cylindrical tank.

%Discharge of water from a vertical cylindrical tank (simulation) %STEP 5
f1=line([-do/2 -d/2],[0 0],'linestyle','-','color','k','linewidth',4);

%STEP 1 f2=line([-d/2 -d/2],[0 h],'linestyle','-','color','k','linewidth',4);
clear, clc f3=line([do/2 d/2],[0 0],'linestyle','-','color','k','linewidth',4);
format short f4=line([d/2 d/2],[0 h],'linestyle','-','color','k','linewidth',4);
disp(datestr(now,0)) f5=line([-d/2 d/2],[h h],'linestyle','-','color','b','linewidth',4);

%axis([-2*d 2*d 0 h]);
%STEP 2 xlabel('itHorizontal range (m)','FontSize',14,'FontWeight','Bold')
h=input('Enter the height (m) of the water tank, h='); ylabel('itHeight (m)','FontSize',14,'FontWeight','Bold')
hf=input('Enter the final height (m) of the water, hf='); axis equal
d=input('Enter the diameter (m) of the water tank, d='); box on
do=input('Enter the orifice diameter (m), do='); grid on
Cd=input('Enter the discharge factor, Cd='); set(gca,'FontSize',14,'FontWeight','Bold')
g=9.807; %Gravitational acceleration (m/s2) set(findall(gcf,'type','text'),'FontSize',14,'FontWeight','Bold')
tic hold on

tt=title(sprintf('Time: %0.4f sec', 0),'FontSize',14);
%STEPS 3-4 patch([-d/2 d/2 d/2 -d/2],[0 0 h h],'blue')
%Hand calculation pause(5)
time=(1/Cd)*((d/do)^2)*((2/g)^0.5)*(sqrt(h)-sqrt(hf))
minute=fix(time/60) %STEP 6
second=(time/60 - minute)*60 t1=linspace(0,time,1000);
toc for r=1:length(t1)

K=(1/Cd)*((d/do)^2)*((2/g)^0.5);
%Symbolic-based solution h1(r)=(sqrt(h)-((t1(r)/K)))^2;
%syms z set(f1,'xdata',[-do/2 -d/2],'ydata',[0 0]);
%A=pi*(d^2)/4; set(f2,'xdata',[-d/2 -d/2],'ydata',[0 h]);
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Table A3. (Continued.)
%ao=pi*(do^2)/4; set(f3,'xdata',[do/2 d/2],'ydata',[0 0]);
%Eq=-(A/(ao*Cd))*1/(sqrt(2*g*z)); set(f4,'xdata',[d/2 d/2],'ydata',[0 h]);
%I1=int(Eq,h,hf); %1000 mL filled set(f5,'xdata',[-d/2 d/2],'ydata',[h1(r) h1(r)]);
%time=double(I1) fill([-d/2 d/2 d/2 -d/2],[0 0 h h],'w')

%patch([-d/2 d/2 d/2 -d/2],[0 0 h h],'white')
%Numeric integration-based solution fill([-d/2 d/2 d/2 -d/2],[0 0 h1(r) h1(r)],'b')
%A=pi*(d^2)/4; %patch([-d/2 d/2 d/2 -d/2],[0 0 h1(r) h1(r)],'blue')
%ao=pi*(do^2)/4; %patch('Faces',[1 2 3 4],'Vertices',[-d/2 0; d/2 0; d/2 h1(r);...
%Eq=@(z) -(A./(ao.*Cd)).*1./(sqrt(2.*g.*z)); %-d/2 h1(r)],'FaceColor','blue');
%time=quad(Eq,h,hf) set(tt, 'String', sprintf('Time: %0.4f sec', t1(r)));
%minute=fix(time/60) M(r)=getframe;
%second=(time/60 - minute)*60 end

Table A4. Script that accepts the length of a massless inextensible string as an input and
returns three figures displaying the oscillation period, percent deviation, and horizontal
displacement.

%Pendulum oscillation #2 (amplitude-related graphs) subplot(3,1,1)
clear, clc plot(theta,T2,'-r','Linewidth',2)
format short hold on
disp(datestr(now,0)) plot(theta,T3,'-b','Linewidth',2)
L=input('Enter the length (m) of the pendulum='); legend('Legendre series','Arithmetic-geometric mean','Location','NorthWest')
tic xlabel('theta_{0}: Amplitude (deg)')
g=9.807; %Gravitational acceleration (m/s2)) ylabel('T: Period (sec)')
%Period for the small-angle approximation: title(['Length: L=' num2str(L) ' m, Period: T_{1}=' num2str(T1) ' sec '])
T1=(2*pi)*((L/g)^0.5); box on

grid on
theta=1:1:90; set(gca,'FontSize',12,'FontWeight','Bold')
for r=1:length(theta)
theta1(r)=theta(r)*pi/180; %Conversion to radian %Amplitude versus period deviation from the small-angle approximation
%Horizontal distance from equilibrium position subplot(3,1,2)
x(r)=sind(theta(r))*L; plot(theta,D2,'-r','Linewidth',2)

hold on
%Legendre series: plot(theta,D3,'-b','Linewidth',2)
syms n legend('Legendre series','Arithmetic-geometric mean','Location','NorthWest')
M1=gamma(2*n+1); xlabel('theta_{0}: Amplitude (deg)')
M2=2^(2*n); ylabel('Deviation percentage (%)')
M3=(gamma(n+1))^2; title('Deviations from T_{1} (small-angle approximation period)')
M4=(M1/(M2*M3))^2; box on
M5(r)=(sin(theta1(r)/2))^(2*n); grid on
M6(r)=M4*M5(r); set(gca,'FontSize',12,'FontWeight','Bold')
M7(r)=symsum(M6(r),0,inf);
T21(r)=T1*M7(r); %Amplitude versus horizontal displacement
T2(r)=double(T21(r)); subplot(3,1,3)
%Deviation from the small-angle approximation: plot(theta,x,'-k','Linewidth',2)
D2(r)=((T2(r)-T1)/T2(r))*100; legend('Amplitude vs. Horizontal displacement','Location','NorthWest')

xlabel('theta_{0}: Amplitude (deg)')
%Arithmetic-geometric mean method: ylabel('x distance from equilibrium (m)')
T3(r)=(4*T1)*((1+sqrt(cos(theta1(r)/2)))^-2); title('Horizontal displacement')
%Deviation from the small-angle approximation: box on
D3(r)=((T3(r)-T1)/T3(r))*100; grid on
end set(gca,'FontSize',12,'FontWeight','Bold')

set(findall(gcf,'type','text'),'FontSize',12,'FontWeight','Bold')
%Amplitude versus period toc
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