STA1001 Final Exam Review

Please note that this is a final exam review and is provided to you to give an idea of the scope of the exam; it is not simply the final exam with numbers changed. Questions may appear on the final exam that are not on this review and vice versa.

1.	A number that is calculated from all of the elements of a population is called a				
2.	Observations, measurements, and responses to a survey are called				
	(a) symmetric	(b) means	(c) data	(d) frequency	(e) not given
3.	A quantitative variable is also known as avariable.				
	(a) nominal	(b) numerical	(c) categorical	(d) qualitative	(e) Not given
4.	Select the correct le The height of a palr (a) nominal		ment for the follow	wing variable. (d) ratio	(e) rational
5.	A neutral treatment that has no "real" effect on the dependent variable is called a A sugar pill is an example of this.				
6. Use the z-score formula, $z=\frac{x-\mu}{\sigma}$, given that $x=16$, $\sigma=2$, and $z=1$.					
	Use the following for A sample of test gra 72, 90, 99, 95, 6	ades for a class 60, 52, 84, 7	were as follows:		
7.	Find the mean test grade.				
8.	Find the median test grade.				
9.	Find the mode(s), if there are any.				
10.	Find the range for these grades?				
11.	Find the standard deviation for these grades.				
12.	Construct a boxplot for the test grades.				
13.	Construct a relative frequency table for the test grades. Let the lowest class (grouping or bin) be $50 - 59$.				
14.	Construct a relative frequency histogram for the test grades using the table you constructed in 12.				
15.	To find the		subtract Q_1 from	Q_3 .	
	(a) outlier (b) min	imum (c) ma	ximum	(d) IQR	(e) Not given

- 16. Match each dotplot with the best description of the data.
 - (a) skewed left (b) skewed right (c) bimodal (d) approximately normal (e) uniform

Use the following for numbers 17 - 18. The number of hours that students spent on homework in one week was recorded down in the frequency table below.

Hours of Homework	Frequency
1	3
2	4
3	7
4	7
5	5
6	3
7	2

- 17. What was the sample size?
- 18. What percentage of students spent at least 5 hours on HW?

19. For the following boxplot, approximately _____percent of the data lies between 4.0 and 4.5?

- 20. What percent of the area under the normal curve lies to the left of the mean?
- 21. On a psychology exam, the grades were normally distributed and the middle 95% of the grades fell between 29 and 85. What was the mean grade?
- 22. Grades on a test were normally distributed with a mean of 72 and a standard deviation of 7. If 500 students took this test, how many scored above 79?
- 23. The weight of cats is normally distributed with a mean of 11.2lb and a standard deviation of 1.3lb. What percent of cats weigh between 8.6lb and 12.5lb?

Use the following for numbers 21 - 22. Let $M = \{a,b,c,d,e,f\}$, $N = \{a,c,e,g,h\}$

- 24. Find $M \cap N$.
- 25. Find $M \cup N$.
- 26. Translate the following comparison into an inequality. Let *x* represent the weight of a hamburger. A hamburger that weighs no more than 8 ounces.
- 27. The set of elements that represents all possible outcomes of a particular experiment is called the of the experiment.
- 28. When a coin is flipped, there are two possible outcomes. When one, six-sided die is rolled, there are six possible outcomes. If a coin is flipped, and then a six-sided die is rolled, how many outcomes are possible?
- 29. If the probability that Shanae will respond favorably to Chad's marriage proposal is 0.963, what is the probability that Shanae will *not* respond favorably?
- 30. A coin is tossed 800 times and the coin comes up heads 524 times. Find the relative frequency probability of the coin coming up heads.
- 31. A six sided die is rolled, find P(even number or multiple of 3).
- 32. A bag contains 12 gold coins and 10 silver coins. Two coins are randomly selected without replacement. Find P(first is gold and second is silver).
- 33. The boss invited eighty employees to a party at his home. Nobody really wanted to attend, and only thirty showed up. What percent of employees invited actually showed up at the party?

Answer numbers 34 - 35 from the following two-way table.

	Male	Female
Pizza	23	18
Chicken Wings	34	19

- 34. How many males responded to the survey?
- 35. If one person is randomly selected, what is the probability that it is a female who prefers chicken wings?

MATCHING: Next to each word description, fill-in the symbol that best matches that word description.

Symbols: $n \ N \ \bar{x} \ \mu \ \sigma \ s \ r \ Q_1 \ Q_2 \ Q_3 \ IQR$

- 36. _____Correlation coefficient for a linear regression
- 37. _____The mean of a population
- 38. ____The mean of a sample
- 39. ____The lower quartile
- 40. ____The upper quartile
- 41. _____The number of data items in a sample
- 42. _____The number of data items in a population
- 43. ____The interquartile range
- 44. _____The standard deviation of a population
- 45. _____The standard deviation of a sample
- 46. What is the best description of the pattern in the following scatterplot.

- (a) strong positive linear relationship
- (b) weak negative linear relationship
- (c) positive exponential relationship
- (d) Negative exponential relationship
- (e) strong negative linear relationship

47. Match the following graphs with their corresponding correlation coefficient value:

Graph has a correlation coefficient of -0.728 between the two variables.

Graph has a correlation coefficient of -0.015 between the two variables.

Graph has a correlation coefficient of -0.996 between the two variables.

Graph has a correlation coefficient of 0.778 between the two variables.

48. Find the slope for the line that models the following data for a woman's weight.

Age	Weight	
23	145	
30	180	
37	215	

Use the following for numbers 49 and 50. For the equation v = -3,000y + 25,000, v represents the value of a car and y represents the age of a car in years.

- 49. Find the slope of the line.
- 50. How much is the car worth (cost) when it is brand new?

Answers

- 1. Parameter
- 2. Data
- 3. Numerical
- 4. Ratio
- 5. Placebo
- 6. 14
- 7. 77.8
- 8. 80
- 9. No mode
- 10. 47
- 11. 17.0
- 12. Five number summary: 52, 60, 80, 93, 99

13.

Grade	Frequency
90 – 99	4
80 – 89	1
70 – 79	2
60 – 69	1
50 – 59	2

- 15. IQR
- Approximately normal, skewed right Skewed left, bimodal, Uniform
- 17. 31
- 18. 0.323
- 19. 25%
- 20.50%
- 21. 57
- 22. 80
- 23. 81.5%
- 25: {a; 6; €} d, e, f, g, h}
- 26. $x \le 8$
- 27. Sample space
- 28. 12
- 29. 0.037
- 30. 0.655

- 31. 2/3
- 32. 0.260
- 33. 0.375
- 34. 57 males
- 35. 0.202
- 36. *r*
- 37. *μ*
- 38. *x*
- 39. *Q*₁
- 40. Q_3
- 41. n
- 42. N
- 43. IQR
- 44. σ
- 45. s
- 46. strong negative linear relationship 47. 2, 4, 1, 3 $\,$
- 48. 5
- 49. -3,000
- 50. \$25,000