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1 Introduction15

Below I state Malkin’s theorem, following Theorem 9.2 in Hoppensteadt & Izhikevich16

(1997) (Section 2), present two succesive simplification and one example of this17

theorem (Section 3), report a problem in Figure 10-26, panel INap + IK-model18

(Class 2), and in Figure 10-30a, of Izhikevich (2007), and verify the validity of19

Malkin’s theorem (Section 4)20

2 Malkin’s Theorem21

The following statement of Malkin’s theorem is a modification of that given in22

Theorem 9.2 of Hoppensteadt & Izhikevich (1997).23

∗rapela@ucsd.edu
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Theorem 1. Let Xi(t) ∈ ℜm, i = 1, . . . , n, be weakly-connected m-dimensional24

dynamical systems25

Ẋi = Fi(Xi) + ǫGi(X) (1)

where X(t1, . . . , tn) = (X1(t1), . . . ,Xn(tn)) ∈ ℜm×n. Assume that each uncou-26

pled system27

Ẋi = Fi(Xi)

is on a limit cycle of length T parametrized by γi : S
1 → ℜm, γi(θi) = Xi(θi).28

Define γ(θ1, . . . , θn) = (γ1(θ1), . . . , γn(θn)), and let ϕi be the phase deviation of29

Xi (i.e., θi = (t+ ϕi) mod T ). Then30

ϕ̇i = Hi(ϕ− ϕi, ǫ) (2)

with ϕ− ϕi = (ϕ1 − ϕi, . . . , ϕn − ϕi), and31

Hi(ϕ− ϕi, 0) =
1

T

∫ T

0

Qi(θ)
TGi(γ(θ +ϕ− ϕi)) dθ (3)

where Qi(θ) is the solution of32

Q̇i(θ) = (DFi(γi(θ)))
TQi(θ)

statisfying the normalization condition33

Qi(0)
TDFi(γi(0))) = 1

with DFi being the differential of Fi.34

Note 1 It is remarkable that it is possible to build an n-dimensional dynamical35

model of the phase of a system (Eq. 2) from an n ×m-dimensional dynamical36

model of the original system (Eq. 1).37

3 Two succesive simplifications and one exam-38

ple of Malkin’s theorem39

Simplification 140

Lemma 1. If in Eq. 1 the coupling term of oscillator i (Gi) is the sum of41

coupling terms with other oscillator (gij) and a self coupling term (gii):42
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Gi(X(t)) =

n
∑

j=1

gij(Xi(t), Xj(t)) (4)

then43

ϕ̇i = ωi + ǫ

n
∑

j=1

j 6=i

Hij(ϕj − ϕi, 0) (5)

with44

Hij(ϕj − ϕi, 0) =
1

T

∫ T

0

Qi(θ)
T gij(γi(θ), γj(θ + ϕj − ϕi)) dθ (6)

and45

ωi = Hii(0, 0) (7)

Proof. Using Eq. 4 in Eq. 3 we have46

Hi(ϕ− ϕi, 0) =

n
∑

j=1

1

T

∫ T

0

Qi(θ)
T gij(γi(θ), γj(θ + ϕj − ϕi)) dθ

=
n
∑

j=1

Hij(ϕj − ϕi, 0) (8)

Then47

ϕ̇i = Hi(ϕ− ϕi, ǫ) = ǫHi(ϕ− ϕi, 0) = ǫ

n
∑

j=1

Hij(ϕj − ϕi, 0)

= ǫHii(0, 0) + ǫ

n
∑

j=1

j 6=i

Hij(ϕj − ϕi, 0)

= ωi + ǫ

n
∑

j=1

j 6=i

Hij(ϕj − ϕi, 0) (9)

The first equality in Eq. 9 follows from Malkin’s theorem (Eq. 2), I cannot48

understand why the second equality holds, the third equality follows from Eq. 8,49

the right-hand side of fourth inequality separates the constant and non-constant50

terms in the left-hand side, and the last equality uses Eq. 7.51

52
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Simplification 1.153

Lemma 1. If we take n = 2 in Eq. 5 we obtain54

χ̇ = ǫω + ǫG(χ) (10)

where55

χ = ϕ2 − ϕ1 (11)

ω = ω2 − ω1 (12)

G(χ) = H21(−χ)−H12(χ) (13)

Proof. Taking i = 1 and i = 2 in Eq. 5 we obtain56

ϕ1(t) = ǫω1 + ǫH12(ϕ2(t)− ϕ1(t), 0) (14)

ϕ2(t) = ǫω2 + ǫH21(ϕ1(t)− ϕ2(t), 0) (15)

Subtracting Eq. 14 from Eq. 15 and using Eqs. 11-13 we obtain Eq. 10.57

58

Note 1 χ is a fixed point of Eq. 10 if and only if G(χ) = −ω (Figure 4).59

Note 2 If oscillators are not self coupled (i.e., gii(γi(θ), γi(θ)) = 0 ∀i), then60

(from Eq. 6) Hii = 0 ∀i, then (from Eq. 7) ωi = 0 ∀i, and then the fixed points61

of Eq 10 are the zero crossings of G(χ).62

Example63

This example attempts to replicate that in Figure 10.26 of Izhikevich (2007). I64

simulated two two-dimensional low-threshold INap+IK models of neurons (Izhikevich,65

2007) (Figure 1) with the same parameters used in Figure 10.26 of Izhikevich66

(2007). The two models shared the same parameters (as given in Figure 4.1b of67

Izhikevich (2007) and repeated for reproducibility in Table 1), but had differ-68

ent initial conditions (Tables 2 and 3). The input current to both models was69

such that when uncoupled these models were on a stable limit cycle (I0 = 35,70

INap+IK (Class 2) model on Figure 10.3 of Izhikevich (2007) and red traces71

in Figure 2). These models were weakly coulpled with gap junctions (Eq. 16),72

and the coupling strength was weak enough (ǫ = 0.003 in Eq. 1) so that the73

coupled models remained close to the uncoupled stable limit cylce (blue traces74

in Figure 2). The model of neuron 1 (Eq. 17), but not that of neuron 2 (Eq. 18),75

was self coupled, and below we vary the self-coupling strength of neuron 1 (s in76

Eq. 17) to obtain different synchronized phase differences between the models77

of neurons 1 and 2.78
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Figure 1: Schema of simulated weakly coupled oscillators. Models 1 and 2
are two-dimensional low-threshold INap+IK models of neurons (Izhikevich,
2007) simulated with the same parameters used in Figure 10.26 of Izhikevich
(2007). The two models shared the same parameters (as given in Figure 4.1b of
Izhikevich (2007) and repeated for reproducibility in Table 1), but had differ-
ent initial conditions (Tables 2 and 3). The input current to both models was
such that when uncoupled these models were on a stable limit cycle (I0 = 35,
INap+IK (Class 2) model on Figure 10.3 of Izhikevich (2007) and red traces in
Figure 2). These models were weakly coulpled with gap junctions (Eq. 16), and
the coupling strength was weak enough (ǫ = 0.003 in Eq. 1) so that the cou-
pled models remained close to the uncoupled stable limit cylce (blue traces in
Figure 2). The model of neuron 1 (Eq. 17), but not that of neuron 2 (Eq. 18),
was self coupled. Below we vary the self-coupling strength of neuron 1 (s in
Eq. 17) to obtain different synchronized phase differences between the models
of neurons 1 and 2.
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gij(γi(θ), γj(θ)) =

[

γj(θ)[0]− γi(θ)[0]
0

]

, i 6= j (16)

g11(γ1(θ), γ1(θ)) =

[

s× γ1(θ)[0]
0

]

(17)

g11(γ2(θ), γ2(θ)) = 0 (18)

Name Value

C 1.0
gL 8.0
eL -78.0
gNa 20.0
eNa 60.0
gK 10.0
eK -90.0
mV1/2 -90.0
mk 15.0
nV1/2 -45.0
nk 5.0
τ 1.0

Table 1: Parameters for the the two INap+IK models of neurons, repeated from
Figure 4.1b in Izhikevich (2007).

Neuron Name Value

1 V0 -67.42
1 n0 0.20
2 V0 -65.01
2 n0 0.16

Table 2: Similar set of initial conditions for the two simulated INap+IK models
of neurons for voltages, V , and activation gates, n.
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Neuron Name Value

1 V0 -26.30
1 n0 0.50
2 V0 -65.01
2 n0 0.16

Table 3: Disimilar set of initial conditions for the two simulated INap+IK mod-
els of neurons for voltages, V , and activation gates, n.

4 Problem in Figure 10-26, Panel INap+IK-model79

(Class 2), and in Figure 10-30a, of Izhikevich80

(2007), and Verification of Malkin’s Theorem81

I argue that the plots in Figure 10-26, Panel INap + IK-model (Class 2), and82

in Figure 10-30a, of Izhikevich (2007) are inverted and that the correct figures83

should be Fig. 3 and Fig. 4.84

To support this argument I simulated the two weakly-coupled oscillators85

described in the example of Section 3 with different values of the self-coupling86

strength of neuron 1, s in Equation 17.87

A change in s in Equation 17 changes g11 in the same equation, which in88

turn changes H11 in Equation 6, which changes ω1 in Equation 7 and w in89

Equation 12, which, by Note 1 in Section 3, changes the synchronized phase dif-90

ference, χ in Equation 11. Thus, according to Malkin’s theorem, simulating the91

two weakly-coupled oscillators with different values of the self-coupling strength92

of neuron 1, s in Equation 17, should synchronize these oscillators with different93

phase differences, χ.94

The phase difference at which the simulated oscillators synchronize should95

be at the intercept between G(χ) and the −w horizontal line (which, as noted96

above, is a function of the self-coupling strength of neuron 1, s in Equation 17),97

with G′(χ) < 0 to ensure stability, as shown in Figure 4. Thus, to check if98

Figures 3 and 4 are correct, I simulated the weakly-coupled oscillators in the99

Example of Section 3 with different values of self coupling, s in Equation 17,100

and compared the phase difference at which these simulators syncrhonized with101

the intercept of G(χ) and the −ω horizontal line in Figure 4.102

Figure 5 shows results of the simulation of the coupled oscillators in the103

Example of Section 3 with a self-coupling strenght for oscillator 1 of s = −3.0104

(Equation 17). Initial conditions for both oscillators are shown in Table 2 and105

were set in such a way that before coupling the phase difference of the oscillators106

was small (χ = 0.3) and fell in the basin of attraction of the leftmost fixed point107

in Figure 4. The phase difference of the simulated oscillators in Figure 5 (bottom108

panel) converged to the leftmost fixed point in Figure 4, suggesting that this109

figure is correct and that Figure 10.30a of Izhikevich (2007) is not.110
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Figure 2: Phase space of the two simulated INap + IK neurons with parameters
in Table 1 and the similar initial conditions in Table 2. Top: phase space for
neuron 1. Bottom: phase space for neuron 2. Red traces: phase space for
uncoupled neuron. Blue traces: phase space for coupled neurons.
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Figure 3: Correct values for the function G(χ) (Equation 13) and Hij(χ) (Equa-
tion 6) in Figure 10-26 of Izhikevich (2007). Note the change in sign between
this figure and Figure 10-26 of Izhikevich (2007). Below we provide evidence
suggesting that this figure is correct and Figure 10.26 in Izhikevich (2007) is
not.
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Figure 4: Function G(χ) (Equation 13), constant −ω (Equation 12) and fixed
points of the phase model in Equation 10 for the coupled oscillators in the
Example of Section 3. The self coupling strength for oscillator 1 is s = −3.0
(Equation 17). If this figure is correct (and Figure 10.30a of (Izhikevich, 2007)
is not) the phase difference of simulated oscillators should converge to the first
estable fix point χSTABLE 1 = 1.1 for initial phase differences larger than the
second unstable fix point χUNSTABLE 2 = 3.2 and smaller than the first unstable
fix point χUNSTABLE 1 = 1.6 (see Figure 5). Also, if this figure is correct the
phase difference of the oscillators should converge to the second estable fix point
χSTABLE 2 = 2.7 for initial phase differences larger than the first unstable fix point
χUNSTABLE 1 = 1.6 and smaller than the second second fix point χUNSTABLE 2 = 3.2
(see Figure 6).
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Figure 5: Simulation of the coupled oscillators in the Example of Section 3
with a self-coupling strenght for oscillator 1 of s = −3.0 (Equation 17) and
with a small initial phase difference (similar initial conditions, Table 2). The
oscillators become coupled at time 100.44 sec (red vertical line). The top panel
plots the simulated membrane potential of oscillators zero (blue lines) and one
(green lines). Solid and dashed lines plot membrane potentials of coupled and
uncoupled oscillators, respectively. The second panel from the top plots the
phase of the coupled oscillators and that of uncoupled oscillator zero. The third
panel plots the deviation of the phase of a coupled oscillator with respect to
the phase of the same oscillator when uncoupled. The bottom panel shows the
difference of the phase deviation of oscillator one minus that of oscillator zero.
This simulation corresponds to the phase model depicted in Figure 4. Initial
conditions for both oscillators were set in such a way that before the coupling the
phase of the oscillators were similar (χ = 0.3). After coupling the phase of the
oscillators start to diverge and the oscillators become synchronized at a phase
difference χ = 1.1 around 150 sec. This simulation supports the correctness
of Figure 4 (and suggest an error in Figure 10.30a of Izhikevich (2007)). The
initial phase difference of the oscillators χ = 0.3 was on the basin of attaction
of the stable fixed point at phase difference χ = 1.1 in Figure 4, and the phase
difference of the simulated oscillators converged to this value.
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Figure 6: Simulation of the coupled oscillators in the Example of Section 3 with
a self-coupling strenght for oscillator 1 of s = −3.0 (Equation 17) and with a
large initial phase difference (disimilar initial conditions, Table 3). This sim-
ulation corresponds to the phase model depicted in Figure 4. Same format as
in Figure 5. Initial conditions for both oscillators were set in such a way that
before the coupling the phase of the oscillators were different (χ = 1.7). After
coupling the phase of the oscillators start to diverge more and the oscillators
become synchronized at a phase difference χ = 2.7 around 180 sec. This simu-
lation supports the correctness of Figure 4. The initial phase difference of the
oscillators χ = 1.7 was on the basin of attaction of the stable fixed point at
phase difference χ = 2.7 in Figure 4, and the phase difference of the simulated
oscillators converged to this value.
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Figure 7: Phase model (top panel) and simulation (bottom panel) of the cou-
pled oscillators in the Example of Section 3 with a self-coupling strenght for
oscillator 1 of s = −5.5 (Equation 17). Same format as in Figure 5. Top panel:
the self-coupling strength of oscillator 1 yields a small value of −w and the
horizontal line at −w intercepts the G(χ) curve at only one pair of points corre-
sponding to stable and un unstable fixed points. Bottom panel: after coupling
the oscillators their phase difference almost gets trapped by the gost of the of
the saddle noise bifurcation at χ = 2.9 and later converge to the stable fixed
point at χ = 1.2. Table 3 gives the initial conditions used for this simulation.
This simulation supports the correctness of Figure 4.
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Figure 8: Phase model (top panel) and simulation (bottom panel) of the cou-
pled oscillators in the Example of Section 3 with a self-coupling strenght for
oscillator 1 of s = −7.5 (Equation 17). Same format as in Figure 5. Top panel:
the self-coupling strength of oscillator 1 yields a very small value of −w, the hor-
izontal line at −w does not intercept the G(χ) curve, and there are not stable
fixe points. Bottom panel: after coupling the phase difference of the simulated
oscillators keeps fluctuating and does reach a stable value. Table 3 gives the
initial conditions used for this simulation. This simulation supports the correct-
ness of Figure 4 and the incorrectness of Figure 10-26, panel INap + IK-model
(Class 2) and of Figure 10-30a, of Izhikevich (2007).
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