
Programming, using and understanding

Pike
by Fredrik Hübinette

2

This book was written with the intention of making anybody with a little pro-
gramming experience able to use Pike. It should also be possible to gain a deep
understanding of how Pike works and to some extent why it works the way it
does from this book. It will teach you how to write your own extensions to Pike.
I have been trying for years to get someone else to write this book, but since it
seems impossible without paying a fortune for it I will have to do it myself. A
big thanks goes to Ian Carr-de Avelon* and Henrik Wallin ¡hedda@idonex.se¿http://www.emit.com.pl/ian

.html for helping me iron out some of the rough spots. The book assumes that you
have programmed some other programming language before and that you have
some experience of UNIX.

Contents

0.1 Overview . 4

0.2 The history of Pike . 4

0.3 A comparison with other languages 5

0.4 What is Pike . 5

0.5 How to read this manual . 6

1 Getting started 7

1.1 Your first Pike program . 7

1.2 Improving hello world.pike . 8

1.3 Further improvements . 9

1.4 Control structures . 11

1.5 Functions . 11

1.6 True and false . 12

1.7 Data Types . 12

2 A more elaborate example 15

2.1 Taking care of input . 17

2.1.1 add record() . 17

2.1.2 main() . 18

2.2 Communicating with files . 19

2.2.1 save() . 19

2.2.2 load() . 20

2.2.3 main() revisited . 21

2.3 Completing the program . 21

2.3.1 delete() . 21

2.3.2 search() . 22

3

4 CONTENTS

2.3.3 main() again . 22

2.4 Then what? . 23

2.5 Simple exercises . 23

3 Control Structures 25

3.1 Conditions . 25

3.1.1 if . 25

3.1.2 switch . 26

3.2 Loops . 27

3.2.1 while . 27

3.2.2 for . 28

3.2.3 do-while . 28

3.2.4 foreach . 29

3.3 Breaking out of loops . 29

3.3.1 break . 29

3.3.2 continue . 30

3.3.3 return . 30

3.4 Exercises . 31

4 Data types 33

4.1 Basic types . 33

4.1.1 int . 33

4.1.2 float . 34

4.1.3 string . 35

4.2 Pointer types . 38

4.2.1 array . 38

4.2.2 mapping . 40

4.2.3 multiset . 42

4.2.4 program . 43

4.2.5 object . 45

4.2.6 function . 48

4.3 Sharing data . 49

4.4 Writing data types . 50

CONTENTS 5

5 Operators 53

5.1 Arithmetic operators . 53

5.2 Comparison operators . 56

5.3 Logical operators . 56

5.4 Bitwise/set operators . 57

5.5 Indexing . 58

5.6 The assignment operators . 59

5.7 The rest of the operators . 61

5.8 Operator precedence . 62

5.9 Operator functions . 63

6 Object orientation 65

6.1 Terminology . 65

6.2 The approach . 66

6.3 How does this help? . 66

6.4 Pike and object orientation . 66

6.5 Inherit . 67

6.6 Multiple inherit . 70

6.7 Pike inherit compared to other languages 71

6.8 Modifiers . 71

6.9 Operator overloading . 72

6.10 Simple exercises . 73

7 Miscellaneous functions 75

7.1 sscanf . 75

7.2 catch &throw . 76

7.3 gauge . 77

7.4 typeof . 77

8 Modules 79

8.1 How to use modules . 81

8.2 Where do modules come from? 81

8.3 The . operator . 81

8.4 How to write a module . 82

6 CONTENTS

8.5 Simple exercises . 82

9 File I/O 83

Stdio . 83

9.1 File management - Stdio.File . 83

Stdio.File . 83

9.2 Buffered file management - Stdio.FILE 93

Stdio.FILE . 93

9.3 Standard streams - Stdio.stdin, stdout and stderr 94

9.4 Listening to sockets - Stdio.Port 94

Stdio.Port . 94

9.5 UDP socket and message management - Stdio.UDP 96

Stdio.UDP . 96

9.6 Terminal management - Stdio.Terminfo 98

Terminfo . 98

9.6.1 Stdio.Terminfo.Termcap 99

9.6.2 Stdio.Terminfo.Terminfo 100

9.7 Simple input-by-prompt - Stdio.Readline 100

Stdio.Readline . 100

9.8 Other Stdio functions . 101

9.9 A simple example . 105

9.10 A more complex example - a simple WWW server 105

10 Threads 113

10.1 Starting a thread . 113

10.2 Threads reference section . 114

Thread.Mutex . 114

Thread.Condition . 116

Thread.Fifo . 117

Thread.Queue . 118

Thread.thread local . 119

10.3 Threads example . 120

CONTENTS 7

11 Modules for specific data types 123

11.1 String . 123

String . 123

11.2 Array . 125

Array . 125

12 Image 135

Image . 135

12.1 Image.Image . 137

Image.Image . 137

12.2 Image.Colortable . 171

Image.Colortable . 171

12.3 Image.Layer . 180

Image.Layer . 180

12.4 Image.Font . 184

Image.Font . 184

12.5 Image.colortable . 186

Image.colortable . 186

12.6 Image.Poly . 186

Image.Poly . 186

12.7 Image.Color . 186

Image.Color . 186

12.7.1 Image.Color.Color . 188

12.8 Image.X . 192

Image.X . 192

12.9 Image.ANY . 193

Image.ANY . 193

12.10Image.AVS . 194

Image.AVS . 194

12.11Image.BMP . 194

Image.BMP . 194

12.12Image.GD . 196

Image.GD . 196

12.13Image.GIF . 197

8 CONTENTS

Image.GIF . 197

12.14Image.HRZ . 204

Image.HRZ . 204

12.15Image.ILBM . 205

Image.ILBM . 205

12.16Image.PCX . 207

Image.PCX . 207

12.17Image.PNG . 208

Image.PNG . 208

12.18Image.PNM . 210

Image.PNM . 210

12.19Image.PSD . 212

Image.PSD . 212

12.20Image.TGA . 212

Image.TGA . 212

12.21Image.XBM . 213

Image.XBM . 213

12.22Image.XCF . 214

Image.XCF . 214

12.23Image.XWD . 215

Image.XWD . 215

12.24Image.JPEG . 216

Image.JPEG . 216

12.25Image.TIFF . 218

Image.TIFF . 218

12.26Image.TTF . 219

Image.TTF . 219

12.26.1 Image.TTF.Face . 220

12.26.2 Image.TTF.FaceInstance 221

12.27Image.XFace . 221

Image.XFace . 221

CONTENTS 9

13 Protocols 223

Protocols . 223

13.1 Protocols.HTTP . 223

Protocols.HTTP . 223

13.1.1 Protocols.HTTP.Query 225

Protocols . 227

13.2 Protocols.LysKOM . 227

Protocols.LysKOM . 227

13.2.1 Protocols.LysKOM.Session 227

13.2.2 Protocols.LysKOM.Connection 230

13.2.3 Protocols.LysKOM.Request 230

Protocols . 231

13.3 Protocols.DNS . 232

Protocols.DNS . 232

13.3.1 Protocols.DNS.client . 232

14 Other modules 233

System . 233

14.1 System . 233

Process . 239

14.2 Process . 239

Process.create process . 239

Process.Spawn . 243

Regexp . 244

14.3 Regexp . 244

Gmp . 246

14.4 Gmp . 246

Gmp.mpz . 246

Gdbm . 248

14.5 Gdbm . 248

Getopt . 250

14.6 Getopt . 250

Gz . 254

14.7 Gz . 254

10 CONTENTS

Gz.deflate . 254

Gz.inflate . 255

Yp . 256

14.8 Yp . 256

Yp.YpDomain . 257

Yp.YpMap . 258

ADT.Table . 260

14.9 ADT.Table . 260

Yabu . 266

14.10Yabu transaction database . 266

14.10.1 The database . 267

14.10.2 Tables . 269

14.10.3 Transactions . 271

MIME . 272

14.11MIME . 272

14.11.1 Global functions . 273

14.11.2 The MIME.Message class 279

14.12Simulate . 286

Simulate . 286

Mysql . 290

14.13Mysql.mysql . 291

Mysql.mysql . 291

14.14The Pike Crypto Toolkit . 296

14.14.1 Introduction . 296

14.14.2 Block ciphers . 296

14.14.3 Stream Ciphers . 298

14.14.4 Hash Functions . 298

14.14.5 Public key algorithms . 299

14.14.6 Combining block cryptos 301

14.15Locale.Gettext . 301

Locale.Gettext . 301

14.16Calendar . 305

Calendar . 305

CONTENTS 11

14.16.1 Calendar.time unit . 305

14.16.2 Calendar.Gregorian . 306

14.17Parser . 308

14.18Math . 308

Math . 308

14.18.1 Math.Matrix . 308

Calendar . 310

14.19Calendar.time unit . 310

Calendar.time unit . 310

14.20Calendar.Gregorian . 311

Calendar.Gregorian . 311

14.20.1 Calendar.Gregorian. 311

14.20.2 Calendar.Gregorian.Year 311

14.20.3 Calendar.Gregorian.Stardate 312

Crypto . 312

14.21Crypto.randomness . 312

Crypto.randomness . 312

14.21.1 Crypto.randomness.pike random 312

14.21.2 Crypto.randomness.arcfour random 313

Geographical . 313

14.22Geographical.Position . 313

Geographical.Position . 313

14.23Geographical.Countries . 314

Geographical.Countries . 314

Image . 316

Parser . 317

14.24Parser.SGML . 317

Parser.SGML . 317

Protocols . 318

14.25Protocols.HTTP . 318

Protocols.HTTP . 318

14.25.1 Protocols.HTTP.Query 320

14.26Protocols.LysKOM . 323

12 CONTENTS

Protocols.LysKOM . 323

14.26.1 Protocols.LysKOM.Session 323

14.26.2 Protocols.LysKOM.Connection 325

14.26.3 Protocols.LysKOM.Request 326

14.27Protocols.DNS . 327

Protocols.DNS . 327

14.27.1 Protocols.DNS.client . 327

15 The preprocessor 329

16 Builtin functions 333

17 Pike internals - how to extend Pike 379

17.1 The master object . 379

17.2 Data types from the inside . 381

17.2.1 Basic data types . 381

17.2.2 struct svalue . 381

17.2.3 struct pike string . 384

17.2.4 struct array . 387

17.2.5 struct mapping . 388

17.2.6 struct object . 391

17.2.7 struct program . 391

17.3 The interpreter . 391

A Terms and jargon 393

B Register program 395

C Reserved words 401

D BNF for Pike 403

E How to install Pike 405

F How to convert from old versions of Pike 407

G Image.Layer modes 409

CONTENTS 13

H Image.Color colors 415

14 CONTENTS

This introduction will give you some background about Pike and this book and
also compare Pike with other languages. If you want to start learning Pike
immediately you can skip this chapter.

0.1 Overview

This book is designed for people who want to learn Pike fast. Since Pike is a
simple language to learn, especially if you have some prior programming expe-
rience, this should benefit most people.

Chapter one is devoted to background information about Pike and this book.
It is not really necessary to read this chapter to learn how to use and program
Pike, but it might help explain why some things work the way they do. It
might be more interesting to re-read the chapter after you have learned the
basics of Pike programming. Chapter two is where the action starts. It is a
crash course in Pike with examples and explanations of some of the basics. It
explains the fundamentals of the Pike data types and control structures. The
systematic documentation of all Pike capabilities starts in chapter three with
a description of all control structures in Pike. It then continues with all the
data types in chapter four and operators in chapter five. Chapter six deals with
object orientation in Pike, which is slightly different than what you might be
used to.

0.2 The history of Pike

In the beginning, there was Zork. Then a bunch of people decided to make
multi-player adventure games. One of those people was Lars Pensjö at the
Chalmers university in Gothenburg, Sweden. For his game he needed a simple,
memory-efficient language, and thus LPC (Lars Pensjö C) was born. About
a year later I started playing one of these games and found that the language
was the most easy-to-use language I had ever encountered. I liked the language
so much that I started improving it and before long I had made my own LPC
dialect called LPC4. LPC4 was still geared towards writing adventure games,
but was quite useful for writing other things with as well. A major problem
with LPC4 was the copyright. Since it was based on Lars Pensjö’s code, it
came with a license that did not allow it to be used for commercial gain. So, in
1994 I started writing µLPC, which was a new but similar LPC interpreter. I
got financial backing from Signum Support AB for writing µLPC. Signum is a
company dedicated to supporting GNU and GPL software and they wanted to
create more GPL software.

When µLPC became usable, InformationsVävarna AB started using it for their
web-server. Before then, Roxen (then called Spinner) was non-commercial and
written in LPC4. Then in 1996 I started working for InformationsVävarna
developing µLPC for them. We also changed the name of µLPC to Pike to get
a more commercially viable name.

0.3. A COMPARISON WITH OTHER LANGUAGES 15

0.3 A comparison with other languages

0.4 What is Pike

Pike is:

•

•

•

•

•

•

•

•

•

Pike has:

•

•

•

•

•

•

16 CONTENTS

0.5 How to read this manual

This manual uses a couple of different typefaces to describe different things:

Also, please beware that the word program is also a builtin Pike data type.

Chapter 1

Getting started

First you need to have Pike installed on your computer. See appendix D if this
is not already done. It is also vital for the first of the following examples that
the Pike binary is in your UNIX search path. If you have problems with this,
consult the manual for your shell or go buy a beginners book about UNIX.

1.1 Your first Pike program

int main()

{

write("hello world\n");

return 0;

}

Let’s call this file hello world.pike, and then we try to run it:

$ pike hello world.pike

hello world

$

Pretty simple, Let’s see what everything means:

int main()

This begins the function main. Before the function name the type of value it
returns is declared, in this case int which is the name of the integer number type
in Pike. The empty space between the parenthesis indicates that this function
takes no arguments. A Pike program has to contain at least one function, the
main function. This function is where program execution starts and thus the

17

18 CHAPTER 1. GETTING STARTED

function from which every other function is called, directly or indirectly. We
can say that this function is called by the operating system. Pike is, as many
other programming languages, built upon the concept of functions, i.e. what the
program does is separated into small portions, or functions, each performing one
(perhaps very complex) task. A function declaration consists of certain essential
components; the type of the value it will return, the name of the function, the
parameters, if any, it takes and the body of the function. A function is also a
part of something greater; an object. You can program in Pike without caring
about objects, but the programs you write will in fact be objects themselves
anyway. Now let’s examine the body of main;

{

write("hello world\n");

return 0;

}

Within the function body, programming instructions, statements, are grouped
together in blocks. A block is a series of statements placed between curly brack-
ets. Every statement has to end in a semicolon. This group of statements will
be executed every time the function is called.

write("hello world\n");

The first statement is a call to the builtin function write. This will execute the
code in the function write with the arguments as input data. In this case, the
constant string hello world\n is sent. Well, not quite. The \n combination
corresponds to the newline character. write then writes this string to stdout
when executed. Stdout is the standard Unix output channel, usually the screen.

return 0;

This statement exits the function and returns the value zero. Any statements
following the return statements will not be executed.

1.2 Improving hello world.pike

Typing pike hello world.pike to run our program may seem a bit unpracti-
cal. Fortunately, Unix provides us with a way of automating this somewhat. If
we modify hello world.pike to look like this:

#!/usr/local/bin/pike

int main()

{

1.3. FURTHER IMPROVEMENTS 19

write("hello world\n");

return 0;

}

And then we tell UNIX that hello world.pike is executable so we can run
hello world.pike without having to bother with running Pike:

$ chmod +x hello world.pike

$./hello world.pike

hello world

$

N.B.: The hash bang (#!) must be first in the file, not even whitespace is
allowed to precede it! The file name after the hash bang must also be the
complete file name to the Pike binary, and it may not exceed 30 characters.

1.3 Further improvements

Now, wouldn’t it be nice if it said Hello world! instead of hello world ?
But of course we don’t want to make our program ”incompatible” with the old
version. Someone might need the program to work like it used to. Therefore
we’ll add a command line option that will make it type the old hello world.
We also have to give the program the ability to choose what it should output
based on the command line option. This is what it could look like:

#!/usr/local/bin/pike

int main(int argc, array(string) argv)

{

if(argc > 1 && argv[1]=="--traditional")

{

write("hello world\n"); // old style

}else{

write("Hello world!\n"); // new style

}

return 0;

}

Let’s run it:

$ chmod +x hello world.pike

$./hello world.pike

Hello world!

20 CHAPTER 1. GETTING STARTED

$./hello world.pike --traditional

hello world

$

What is new in this version, then?

int main(int argc, array(string) argv)

In this version the space between the parenthesis has been filled. What it means
is that main now takes two arguments. One is called argc, and is of the type
int. The other is called argv and is a an array of strings.

The arguments to main are taken from the command line when the Pike program
is executed. The first argument, argc, is how many words were written on the
command line (including the command itself) and argv is an array formed by
these words.

if(argc > 1 && argv[1] == "--traditional")

{

write("hello world\n"); // old style

}else{

write("Hello world!\n"); // new style

}

This is an if-else statement, it will execute what’s between the first set of
brackets if the expression between the parenthesis evaluate to something other
than zero. Otherwise what’s between the second set of brackets will be executed.
Let’s look at that expression:

argc > 1 && argv[1] == "--traditional"

Loosely translated, this means: argc is greater than one, and the second element
in the array argv is equal to the string --traditional. Since argc is the number
of words on the command line the first part is true only if there was anything
after the program invocation.

Also note the comments:

write("hello world\n"); // old style

The // begins a comment which continues to the end of the line. Comments
will be ignored by the computer when it reads the code. This allows to inform
whoever might read your code (like yourself) of what the program does to make
it easier to understand. Comments are also allowed to look like C-style com-
ments, i.e. /* ... */, which can extend over several lines. The // comment
only extends to the end of the line.

1.4. CONTROL STRUCTURES 21

1.4 Control structures

The first thing to understand about Pike is that just like any other program-
ming language it executes one piece of code at a time. Most of the time it
simply executes code line by line working its way downwards. Just executing a
long list of instructions is not enough to make an interesting program however.
Therefore we have control structures to make Pike execute pieces of code in
more interesting orders than from top to bottom.

We have already seen an example of the if statement:

if(expression)

statement1 ;

else

statement2 ;

if simply evaluates the expression and if the result is true it executes state-
ment1, otherwise it executes statement2. If you have no need for statement2
you can leave out the whole else part like this:

if(expression)

statement1 ;

In this case statement1 is evaluated if expression is true, otherwise nothing is
evaluated.

Note for beginners: go back to our first example and make sure you
understand what if does.

Another very simple control structure is the while statement:

while(expression)

statement ;

This statement evaluates expression and if it is found to be true it evaluates
statement. After that it starts over and evaluates expressionagain. This contin-
ues until expression is no longer true. This type of control structure is called a
loop and is fundamental to all interesting programming.

1.5 Functions

Another control structure we have already seen is the function. A function is
simply a block of Pike code that can be executed with different arguments from
different places in the program. A function is declared like this:

modifiers type name(type varname1, type varname2, ...)

{

statements

}

22 CHAPTER 1. GETTING STARTED

The modifiers are optional. See section 6.7 for more details about modifiers.
The type specifies what kind of data the function returns. For example, the word
int would signify that the function returns an integer number. The name is
used to identify the function when calling it. The names between the parenthesis
are the arguments to the function. They will be defined as local variables inside
the function. Each variable will be declared to contain values of the preceding
type. The three dots signifies that you can have anything from zero to 256
arguments to a function. The statements between the brackets are the function
body. Those statements will be executed whenever the function is called.

Example:

int sqr(int x) { return x*x; }

This line defines a function called sqr to take one argument of the type int
and also returns an int. The code itself returns the argument multiplied by
itself. To call this function from somewhere in the code you could simply put:
sqr(17) and that would return the integer value 289.

As the example above shows, return is used to specify the return value of
a function. The value after return must be of the type specified before the
function name. If the function is specified to return void, nothing at all should
be written after return. Note that when a return statement is executed, the
function will finish immediately. Any statements following the return will be
ignored.

There are many more control structures, they will all be described in a later
chapter devoted only to control structures.

1.6 True and false

Throughout this chapter the words true and false have been used without any
explanation to what they mean. Pike has a fairly simple way of looking at this.
The number 0 is false and everything else is true. (Except when using operator
overloading as I will explain in a later chapter.)

1.7 Data Types

As you saw in our first examples we have to indicate the type of value returned by
a function or contained in a variable. We used integers (int), strings (string),
and arrays (with the * notation). The others are mapping, mixed, void, float,
multiset, function, object and program. Neither mixed nor void are really
types, void signifies that no value should be returned and mixed that the return
value can be of any type, or that the variable can contain any type of value.
Function, object and program are all types related to object orientation. We
will not discuss the last three in any great detail here,

1.7. DATA TYPES 23

24 CHAPTER 1. GETTING STARTED

Chapter 2

A more elaborate example

To illustrate several of the fundamental points of Pike we will now introduce
an example program, that will be extended as we go. We will build a database
program that keeps track of a record collection and the songs on the records. In
the first version we hard-code our ”database” into the program. The database
is a mapping where the index is the record name and the data is an array of
strings. The strings are of course the song names. The default register consists
of one record.

#!/usr/local/bin/pike

mapping (string:array(string)) records =

([

"Star Wars Trilogy" : ({

"Fox Fanfare",

"Main Title",

"Princess Leia’s Theme",

"Here They Come",

"The Asteroid Field",

"Yoda’s Theme",

"The Imperial March",

"Parade of the Ewoks",

"Luke and Leia",

"Fight with Tie Fighters",

"Jabba the Hut",

"Darth Vader’s Death",

"The Forest Battle",

"Finale"

})

]);

We want to be able to get a simple list of the records in our database. The
function list records just goes through the mapping records and puts the
indices, i.e. the record names, in an array of strings, record names. By using the
builtin function sort we put the record names into the array in alphabetical

25

26 CHAPTER 2. A MORE ELABORATE EXAMPLE

order which might be a nice touch. For the printout we just print a header,
”Records:”, followed by a newline. Then we use the loop control structure
for to traverse the array and print every item in it, including the number of
the record, by counting up from zero to the last item of the array. The builtin
function sizeof gives the number of items in an array. The printout is formatted
through the use of sprintf which works more or less like the C function of the
same name.

void list records()

{

int i;

array (string) record names=sort(indices(records));

write("Records:\n");

for(i=0;i<sizeof(record names);i++)

write(sprintf("%3d: %s\n", i+1, record names[i]));

}

If the command line contained a number our program will find the record of
that number and print its name along with the songs of this record. First we
create the same array of record names as in the previous function, then we find
the name of the record whose number (num) we gave as an argument to this
function. Next we put the songs of this record in the array songs and print the
record name followed by the songs, each song on a separate line.

void show record(int num)

{

int i;

array (string) record names = sort(indices (records));

string name=record names[num-1];

array (string) songs=records[name];

write(sprintf("Record %d, %s\n",num,name));

for(i=0;i<sizeof(songs);i++)

write(sprintf("%3d: %s\n", i+1, songs[i]));

}

The main function doesn’t do much; it checks whether there was anything
on the command line after the invocation. If this is not the case it calls the
list records function, otherwise it sends the given argument to the show record
function. When the called function is done the program just quits.

int main(int argc, array (string) argv)

{

if(argc <= 1)

{

list records();

} else {

show record((int) argv[1]);

}

}

2.1. TAKING CARE OF INPUT 27

2.1 Taking care of input

Now, it would be better and more general if we could enter more records into
our database. Let’s add such a function and modify the main() function to
accept ”commands”.

2.1.1 add record()

Using the method Stdio.Readline()->read() we wait for input which will
be put into the variable record name. The argument to ->read() is printed
as a prompt in front of the user’s input. Readline takes everything up to a
newline character. Now we use the control structure while to check whether
we should continue inputting songs. The while(1) means ”loop forever”, be-
cause 1 is always true. This program does not in fact loop forever, because it
uses returnto exit the function from within the loop when you type a pe-
riod. When something has been read into the variable song it is checked.
If it is a ”.” we return a null value that will be used in the while state-
ment to indicate that it is not ok to continue asking for song names. If it
is not a dot, the string will be added to the array of songs for this record,
unless it’s an empty string. Note the += operator. It is the same as saying
records[record name]=records[record name]+({song}).

void add record()

{

string record name=Stdio.Readline()->read("Record name: ");

records[record name]=({});

write("Input song names, one per line. End with ’.’ on its own line.\n");

while(1)

{

string song;

song=Stdio.Readline()->read(sprintf("Song %2d: ",

sizeof(records[record name])+1));

if(song==".")

return;

if (strlen(song))

records[record name]+=({song});

}

}

28 CHAPTER 2. A MORE ELABORATE EXAMPLE

2.1.2 main()

The main function now does not care about any command line arguments.
Instead we use Stdio.Readline()->read() to prompt the user for instructions
and arguments. The available instructions are ”add”, ”list” and ”quit”. What
you enter into the variables cmd and args is checked in the switch() block.
If you enter something that is not covered in any of the case statements the
program just silently ignores it and asks for a new command. In a switch()
the argument (in this case cmd) is checked in the case statements. The first case
where the expression equals cmd then executes the statement after the colon.
If no expression is equal, we just fall through without any action. The only
command that takes an argument is ”list” which works as in the first version
of the program. If ”list” receives an argument, that record is shown along with
all the songs on it. If there is no argument it shows a list of the records in the
database. When the program returns from either of the listing functions, the
break instruction tells the program to jump out of the switch() block. ”add”
of course turns control over to the function described above. If the command
given is ”quit” the exit(0) statement stops the execution of the program and
returns 0 (zero) to the operating system, telling it that everything was ok.

int main(int argc, array(string) argv)

{

string cmd;

while(cmd=Stdio.Readline()->read("Command: "))

{

string args;

sscanf(cmd,"%s %s",cmd,args);

switch(cmd)

{

case "list":

if((int)args)

{

show record((int)args);

} else {

list records();

}

break;

case "quit":

exit(0);

case "add":

add record();

break;

}

}

}

2.2. COMMUNICATING WITH FILES 29

2.2 Communicating with files

Now if we want to save the database and also be able to retrieve previously
stored data we have to communicate with the environment, i.e. with files on
disk. Now we will introduce you to programming with objects. To open a
file for reading or writing we will use one of the programs which is builtin in
Pike called Stdio.File. To Pike, a program is a data type which contains code,
functions and variables. A program can be cloned which means that Pike creates
a data area in memory for the program, places a reference to the program in
the data area, and initializes it to act on the data in question. The methods
(i.e. functions in the object) and variables in the object Stdio.File enable us to
perform actions on the associated data file. The methods we need to use are
open, read, write and close. See chapter 8.5for more details.

2.2.1 save()

First we clone a Stdio.File program to the object o. Then we use it to open
the file whose name is given in the string file name for writing. We use the fact
that if there is an error during opening, open() will return a false value which
we can detect and act upon by exiting. The arrow operator (-¿) is what you
use to access methods and variables in an object. If there is no error we use yet
another control structure, foreach, to go through the mapping records one
record at a time. We precede record names with the string ”Record: ” and song
names with ”Song: ”. We also put every entry, be it song or record, on its own
line by adding a newline to everything we write to the file.
Finally, remember to close the file.

void save(string file name)

{

string name, song;

Stdio.File o=Stdio.File();

if(!o->open(file name,"wct"))

{

write("Failed to open file.\n");

return;

}

foreach(indices(records),name)

{

o->write("Record: "+name+"\n");

foreach(records[name],song)

o->write("Song: "+song+"\n");

}

o->close();

}

30 CHAPTER 2. A MORE ELABORATE EXAMPLE

2.2.2 load()

The load function begins much the same, except we open the file named file
for reading instead. When receiving data from the file we put it in the string
file contents. The absence of arguments to the method o-¿read means that
the reading should not end until the end of the file. After having closed the
file we initialize our database, i.e. the mapping records. Then we have to
put file contents into the mapping and we do this by splitting the string on
newlines (cf. the split operator in Perl) using the division operator. Yes, that’s
right: by dividing one string with another we can obtain an array consisting of
parts from the first. And by using a foreach statement we can take the string
file contents apart piece by piece, putting each piece back in its proper place
in the mapping records.

void load(string file name)

{

string name="ERROR";

string file contents,line;

Stdio.File o=Stdio.File();

if(!o->open(file name,"r"))

{

write("Failed to open file.\n");

return;

}

file contents=o->read();

o->close();

records=([]);

foreach(file contents/"\n",line)

{

string cmd, arg;

if(sscanf(line,"%s: %s",cmd,arg))

{

switch(lower case(cmd))

{

case "record":

name=arg;

records[name]=({});

break;

case "song":

records[name]+=({arg});

break;

}

}

}

}

2.3. COMPLETING THE PROGRAM 31

2.2.3 main() revisited

main() remains almost unchanged, except for the addition of two case state-
ments with which we now can call the load and save functions. Note that you
must provide a filename to load and save, respectively, otherwise they will return
an error which will crash the program.

case "save":

save(args);

break;

case "load":

load(args);

break;

2.3 Completing the program

Now let’s add the last functions we need to make this program useful: the ability
to delete entries and search for songs.

2.3.1 delete()

If you sell one of your records it might be nice to able to delete that entry from
the database. The delete function is quite simple. First we set up an array of
record names (cf. the list records function). Then we find the name of the
record of the number num and use the builtin function m delete() to remove
that entry from records.

void delete record(int num)

{

array(string) record names=sort(indices(records));

string name=record names[num-1];

m delete(records,name);

}

32 CHAPTER 2. A MORE ELABORATE EXAMPLE

2.3.2 search()

Searching for songs is quite easy too. To count the number of hits we declare the
variable hits. Note that it’s not necessary to initialize variables, that is done
automatically when the variable is declared if you do not do it explicitly. To be
able to use the builtin function search(), which searches for the presence of a
given string inside another, we put the search string in lowercase and compare
it with the lowercase version of every song. The use of search() enables us to
search for partial song titles as well. When a match is found it is immediately
written to standard output with the record name followed by the name of the
song where the search string was found and a newline. If there were no hits at
all, the function prints out a message saying just that.

void find song(string title)

{

string name, song;

int hits;

title=lower case(title);

foreach(indices(records),name)

{

foreach(records[name],song)

{

if(search(lower case(song), title) != -1)

{

write(name+"; "+song+"\n");

hits++;

}

}

}

if(!hits) write("Not found.\n");

}

2.3.3 main() again

Once again main() is left unchanged, except for yet another two case statements
used to call the search() and delete functions, respectively. Note that you
must provide an argument to delete or it will not work properly.

case "delete":

delete record((int)args);

break;

case "search":

find song(args);

break;

2.4. THEN WHAT? 33

2.4 Then what?

Well that’s it! The example is now a complete working example of a Pike
program. But of course there are plenty of details that we haven’t attended
to. Error checking is for example extremely sparse in our program. This is left
for you to do as you continue to read this book. The complete listing of this
example can be found in appendix A. Read it, study it and enjoy!

2.5 Simple exercises

Make a program which writes hello world 10 times. Modify hello world.pike
to write the first argument to the program. Make a program that writes a
hello world program to stdout when executed. Modify the register program to
store data about programs and diskettes instead of songs and records. Add code
to the register program that checks that the user typed an argument when re-
quired. The program should notify the user and wait to receive more commands
instead of exiting with an error message. Add code to the register program to
check that the arguments to show record and delete records are numbers.
Also make sure that the number isn’t less than one or bigger than the available
number of records. Rewrite the register program and put all the code in main().

34 CHAPTER 2. A MORE ELABORATE EXAMPLE

Chapter 3

Control Structures

In this chapter all the control structures in Pike will be explained. As mentioned
earlier, control structures are used to control the flow of the program execution.
Note that functions that make the program pause and simple function calls are
not qualified as control structures.

3.1 Conditions

Pike only has two major condition control structures. We have already seen
examples of both of them in Chapter two. But for completeness they will be
described again in this chapter.

3.1.1 if

The simplest one is called the if statement. It can be written anywhere where
a statement is expected and it looks like this: if(expression) statement1; else
statement2; Please note that there is no semicolon after the parenthesis or after
the else. Step by step, if does the following:

1.

2.

3.

4.

5.

6.

This is actually more or less how the interpreter executes the if statement.
In short, statement1 is executed if expression is trueotherwise statement2 is
executed. If you are interested in having something executed if the expression
is false you can drop the whole else part like this:

35

36 CHAPTER 3. CONTROL STRUCTURES

if(expression)

statement1 ;

If on the other hand you are not interested in evaluating something if the
expression is false you should use the not operator to negate the true/false
value of the expression. See chapter 5 for more information about the not
operator. It would look like this:

if(! expression)

statement2 ;

Any of the statements here and in the rest of this chapter can also be a block
of statements. A block is a list of statements, separated by semicolons and
enclosed by brackets. Note that you should never put a semicolon after a block
of statements. The example above would look like this;

if (! expression)

{

statement ;

statement ;

statement ;

}

3.1.2 switch

A more sophisticated condition control structure is the switch statement.
A switch lets you select one of many choices depending on the value of an
expression and it can look something like this:

switch (expression)

{

case constant1 :

statement1;

break;

case constant2 :

statement2;

break;

case constant3 .. constant4 :

statement3;

break;

default:

statement5;

}

3.2. LOOPS 37

As you can see, a switch statement is a bit more complicated than an if state-
ment. It is still fairly simple however. It starts by evaluating the expression it
then searches all the case statements in the following block. If one is found to
be equal to the value returned by the expression, Pike will continue executing
the code directly following that case statement. When a break is encountered
Pike will skip the rest of the code in the switch block and continue executing
after the block. Note that it is not strictly necessary to have a break before the
next case statement. If there is no break before the next case statement Pike
will simply continue executing and execute the code after that case statement
as well.

One of the case statements in the above example differs in that it is a range. In
this case, any value between constant3 and constant4 will cause Pike to jump
to statement3. Note that the ranges are inclusive, so the values constant3 and
constant4 are also valid.

3.2 Loops

Loops are used to execute a piece of code more than once. Since this can be
done in quite a few different ways there are four different loop control structures.
They may all seem very similar, but using the right one at the right time makes
the code a lot shorter and simpler.

3.2.1 while

While is the simplest of the loop control structures. It looks just like an if
statement without the else part:

while (expression)

statement ;

The difference in how it works isn’t that big either, the statement is executed if
the expression is true. Then the expression is evaluated again, and if it is true
the statement is executed again. Then it evaluates the expression again and so
forth... Here is an example of how it could be used:

int e=1;

while(e<5)

{

show record(e);

e=e+1;

}

This would call show record with the values 1, 2, 3 and 4.

38 CHAPTER 3. CONTROL STRUCTURES

3.2.2 for

For is simply an extension of while. It provides an even shorter and more
compact way of writing loops. The syntax looks like this:

for (initializer statement ; expression ; incrementor expression)

statement ;

For does the following steps:

1.

2.

3.

4.

5.

6.

This means that the example in the while section can be written like this:

for(int e=1; e<5; e=e+1)

show record(e);

3.2.3 do-while

Sometimes it is unpractical that the expression is always evaluated before the
first time the loop is executed. Quite often you want to execute something, and
then do it over and over until some condition is satisfied. This is exactly when
you should use the do-while statement.

do

statement ;

while (expression);

As usual, the statement can also be a block of statements, and then you do not
need a semicolon after it. To clarify, this statement executes statement first,
and then evaluates the expression. If the expression is true it executes the loop
again. For instance, if you want to make a program that lets your modem dial
your Internet provider, it could look something like this:

do {

modem->write("ATDT441-9109\n"); // Dial 441-9109

} while(modem->gets()[..6]] != "CONNECT");

This example assumes you have written something that can communicate with
the modem by using the functions write and gets.

3.3. BREAKING OUT OF LOOPS 39

3.2.4 foreach

Foreach is unique in that it does not have an explicit test expression evaluated
for each iteration in the loop. Instead, foreach executes the statement once for
each element in an array. Foreach looks like this:

foreach (array expression, variable)

statement ;

We have already seen an example of foreach in the find songfunction in
chapter 2. What foreach does is:

1.

2.

3.

4.

5.

6.

Foreach is not really necessary, but it is faster and clearer than doing the same
thing with a for loop, as shown here:

array tmp1= array expression ;

for (tmp2 = 0; tmp2 < sizeof(tmp1); tmp2++)

{

variable = tmp1 [tmp2];

statement ;

}

3.3 Breaking out of loops

The loop control structures above are enough to solve any problem, but they
are not enough to provide an easy solution to all problems. One thing that is
still missing is the ability to exit a loop in the middle of it. There are three
ways to do this:

3.3.1 break

break exits a loop or switch statement immediately and continues executing
after the loop. Break can not be used outside of a loop or switch. It is quite
useful in conjunction with while(1) to construct command parsing loops for
instance:

while(1)

40 CHAPTER 3. CONTROL STRUCTURES

{

string command=Stdio.Readline()->read("> ");

if(command=="quit") break;

do command(command);

}

3.3.2 continue

Continue does almost the same thing as break, except instead of breaking out
of the loop it only breaks out of the loop body. It then continues to execute
the next iteration in the loop. For a while loop, this means it jumps up to
the top again. For a for loop, it jumps to the incrementor expression. For a
do-while loop it jumps down to the expression at the end. To continue our
example above, continue can be used like this:

while(1)

{

string command=Stdio.Readline()->read("> ");

if(strlen(command) == 0) continue;

if(command=="quit") break;

do command(command);

}

This way, do command will never be called with an empty string as argument.

3.3.3 return

Return doesn’t just exit the loop, it exits the whole function. We have seen
several examples how to use it chapter 2. None of the functions in chapter two
returned anything in particular however. To do that you just put the return
value right after return. Of course the type of the return value must match
the type in the function declaration. If your function declaration is int main()
the value after return must be an int. For instance, if we wanted to make a
program that always returns an error code to the system, just like the UNIX
command false this is how it would be done:

#!/usr/local/bin/pike

int main()

{

return 1;

}

This would return the error code 1 to the system when the program is run.

3.4. EXERCISES 41

3.4 Exercises

End all functions in the examples in chapter two with a return statement.
Change all foreach loops to for or while loops. Make the find song function
in chapter 2 return when the first matching song is found. Make the find song
function write the number of the record the song is on. If you failed to get the
program to work properly in the last exercise of chapter 2, try it again now.
Make a program that writes all the numbers from 1 to 1000. Modify the pro-
gram in the previous exercise to NOT write numbers divisible by 3, 7 or 17.
Make a program that writes all the prime numbers between 1 and 1000.

42 CHAPTER 3. CONTROL STRUCTURES

Chapter 4

Data types

In this chapter we will discuss all the different ways to store data in Pike in
detail. We have seen examples of many of these, but we haven’t really gone into
how they work. In this chapter we will also see which operators and functions
work with the different types. There are two categories of data types in Pike:
basic types, and pointer types. The difference is that basic types are copied
when assigned to a variable. With pointer types, merely the pointer is copied,
that way you get two variables pointing to the same thing.

4.1 Basic types

The basic types are int, float and string. For you who are accustomed to C
or C++, it may seem odd that a string is a basic type as opposed to an array
of char, but it is surprisingly easy to get used to.

4.1.1 int

Int is short for integer, or integer number. They are normally 32 bit integers,
which means that they are in the range -2147483648 to 2147483647. Note that
on some machines an int might be larger than 32 bits. Since they are integers,
no decimals are allowed. An integer constant can be written in several ways:

78 // decimal number

0116 // octal number

0x4e // hexadecimal number

’N’ // Ascii character

All of the above represent the number 78. Octal notation means that each digit
is worth 8 times as much as the one after. Hexadecimal notation means that
each digit is worth 16 times as much as the one after. Hexadecimal notation
uses the letters a, b, c, d, e and f to represent the numbers 10, 11, 12, 13, 14
and 15. The ASCII notation gives the ASCII value of the character between

43

44 CHAPTER 4. DATA TYPES

the single quotes. In this case the character is N which just happens to be 78 in
ASCII.

Integers are coded in 2-complement and overflows are silently ignored by Pike.
This means that if your integers are 32-bit and you add 1 to the number
2147483647 you get the number -2147483648. This works exactly as in C or
C++.

All the arithmetic, bitwise and comparison operators can be used on integers.
Also note these functions:

4.1.2 float

Although most programs only use integers, they are unpractical when doing
trigonometric calculations, transformations or anything else where you need
decimals. For this purpose you use float. Floats are normally 32 bit floating
point numbers, which means that they can represent very large and very small
numbers, but only with 9 accurate digits. To write a floating point constant,
you just put in the decimals or write it in the exponential form:

3.14159265358979323846264338327950288419716939937510 // Pi

1.0e9 // A billion

1.0e-9 // A billionth

Of course you do not need this many decimals, but it doesn’t hurt either.
Usually digits after the ninth digit are ignored, but on some architectures float
might have higher accuracy than that. In the exponential form, e means ”times
10 to the power of”, so 1.0e9 is equal to ”1.0 times 10 to the power of 9”.

All the arithmetic and comparison operators can be used on floats. Also, these
functions operates on floats:

4.1. BASIC TYPES 45

4.1.3 string

A string can be seen as an array of values from 0 to 232-1. Usually a string
contains text such as a word, a sentence, a page or even a whole book. But it
can also contain parts of a binary file, compressed data or other binary data.
Strings in Pike are shared, which means that identical strings share the same
memory space. This reduces memory usage very much for most applications
and also speeds up string comparisons. We have already seen how to write a
constant string:

"hello world" // hello world

"he" "llo" // hello

"\116" // N (116 is the octal ASCII value for N)

"\t" // A tab character

"\n" // A newline character

"\r" // A carriage return character

"\b" // A backspace character

"\0" // A null character

"\"" // A double quote character

"\\" // A singe backslash

"\x4e" // N (4e is the hexadecimal ASCII value for N)

"\d78" // N (78 is the decimal ACII value for N)

"hello world\116\t\n\r\b\0\"\\" // All of the above

"\xff" // the character 255

"\xffff" // the character 65536

"\xffffff" // the character 16777215

"\116""3" // ’N’ followed by a ’3’

46 CHAPTER 4. DATA TYPES

As you can see, any sequence of characters within double quotes is a string.
The backslash character is used to escape characters that are not allowed or
impossible to type. As you can see, \t is the sequence to produce a tab character,
\\ is used when you want one backslash and \" is used when you want a double
quote (") to be a part of the string instead of ending it. Also, \XXX where
XXX is an octal number from 0 to 37777777777 or \xXX where XX is 0 to ffffffff
lets you write any character you want in the string, even null characters. From
version 0.6.105, you may also use \dXXX where XXX is 0 to 232-1. If you write
two constant strings after each other, they will be concatenated into one string.

You might be surprised to see that individual characters can have values up to
232-1 and wonder how much memory that use. Do not worry, Pike automatically
decides the proper amount of memory for a string, so all strings with character
values in the range 0-255 will be stored with one byte per character. You should
also beware that not all functions can handle strings which are not stored as one
byte per character, so there are some limits to when this feature can be used.

Although strings are a form of arrays, they are immutable. This means that
there is no way to change an individual character within a string without cre-
ating a new string. This may seem strange, but keep in mind that strings are
shared, so if you would change a character in the string "foo", you would change
all "foo" everywhere in the program.

However, the Pike compiler will allow you to to write code like you could change
characters within strings, the following code is valid and works:

string s="hello torld";

s[6]=’w’;

However, you should be aware that this does in fact create a new string and it
may need to copy the string s to do so. This means that the above operation
can be quite slow for large strings. You have been warned. Most of the time,
you can use replace, sscanf, ‘/or some other high-level string operation to
avoid having to use the above construction too much.

All the comparison operators plus the operators listed here can be used on
strings:

4.1. BASIC TYPES 47

Also, these functions operates on strings:

48 CHAPTER 4. DATA TYPES

4.2 Pointer types

The basic types are, as the name implies, very basic. They are the founda-
tion, most of the pointer types are merely interesting ways to store the basic
types. The pointer types are array, mapping, multiset, program, object and
function. They are all pointers which means that they point to something
in memory. This ”something” is freed when there are no more pointers to it.
Assigning a variable with a value of a pointer type will not copy this ”some-
thing” instead it will only generate a new reference to it. Special care sometimes
has to be taken when giving one of these types as arguments to a function; the
function can in fact modify the ”something”. If this effect is not wanted you
have to explicitly copy the value. More about this will be explained later in this
chapter.

4.2.1 array

Arrays are the simplest of the pointer types. An array is merely a block of
memory with a fixed size containing a number of slots which can hold any type
of value. These slots are called elements and are accessible through the index
operator. To write a constant array you enclose the values you want in the array
with ({ }) like this:

({ }) // Empty array

({ 1 }) // Array containing one element of type int

({ "" }) // Array containing a string

({ "", 1, 3.0 }) // Array of three elements, each of different type

As you can see, each element in the array can contain any type of value.
Indexing and ranges on arrays works just like on strings, except with arrays you
can change values inside the array with the index operator. However, there is
no way to change the size of the array, so if you want to append values to the
end you still have to add it to another array which creates a new array. Figure
4.1 shows how the schematics of an array. As you can see, it is a very simple
memory structure.

Element 0

Element 1

Element 2

Element 3

Array

Element 4

fig 4.1

4.2. POINTER TYPES 49

Operators and functions usable with arrays:

50 CHAPTER 4. DATA TYPES

4.2.2 mapping

Mappings are are really just more generic arrays. However, they are slower
and use more memory than arrays, so they cannot replace arrays completely.
What makes mappings special is that they can be indexed on other things than
integers. We can imagine that a mapping looks like this:

Index Value

Index Value

Index Value

Index Value

Index Value

Index Value

Mapping

Lookup Function

4.2. POINTER TYPES 51

fig 4.2

Each index-value pair is floating around freely inside the mapping. There is
exactly one value for each index. We also have a (magical) lookup function.
This lookup function can find any index in the mapping very quickly. Now, if
the mapping is called m and we index it like this: m [i] the lookup function
will quickly find the index i in the mapping and return the corresponding value.
If the index is not found, zero is returned instead. If we on the other hand
assign an index in the mapping the value will instead be overwritten with the
new value. If the index is not found when assigning, a new index-value pair will
be added to the mapping. Writing a constant mapping is easy:

([]) // Empty mapping

([1:2]) // Mapping with one index-value pair, the 1 is the index

(["one":1, "two":2]) // Mapping which maps words to numbers

([1:({2.0}), "":([]),]) // Mapping with lots of different types

As with arrays, mappings can contain any type. The main difference is that the
index can be any type too. Also note that the index-value pairs in a mapping
are not stored in a specific order. You can not refer to the fourteenth key-index
pair, since there is no way of telling which one is the fourteenth. Because of
this, you cannot use the range operator on mappings.

The following operators and functions are important:

52 CHAPTER 4. DATA TYPES

4.2.3 multiset

A multiset is almost the same thing as a mapping. The difference is that there
are no values:

Lookup Function

Index

Index

Index

Index

Index

Index

Multiset

fig 4.3

Instead, the index operator will return 1 if the value was found in the multiset
and 0 if it was not. When assigning an index to a multiset like this: mset [
ind] = val the index indwill be added to the multiset mset if val is true.
Otherwise ind will be removed from the multiset instead.

Writing a constant multiset is similar to writing an array:

(< >) // Empty multiset

(< 17 >) // Multiset with one index: 17

(< "", 1, 3.0, 1 >) // Multiset with 3 indices

4.2. POINTER TYPES 53

Note that you can actually have more than one of the same index in a multiset.
This is normally not used, but can be practical at times.

4.2.4 program

Normally, when we say program we mean something we can execute from
a shell prompt. However, Pike has another meaning for the same word. In
Pike a program is the same as a class in C++. A programholds a table of what
functions and variables are defined in that program. It also holds the code itself,
debug information and references to other programs in the form of inherits. A
program does not hold space to store any data however. All the information in
a program is gathered when a file or string is run through the Pike compiler.
The variable space needed to execute the code in the program is stored in an
objectwhich is the next data type we will discuss.

Program

Identifiers

1. records

2. main

3. find_song

Code

4. list_records

5. delete_record

main

find_song

list_records

delete_records

Debug information

Line numbers

File names

Inherits

Pointers to all
inherited programs

4 bytes

fig 4.4

Writing a program is easy, in fact, every example we have tried so far has been
a program. To load such a program into memory, we can use compile file

54 CHAPTER 4. DATA TYPES

which takes a file name, compiles the file and returns the compiled program. It
could look something like this:

program p = compile file("hello world.pike");

You can also use the cast operator like this:

program p = (program) "hello world";

This will also load the program hello world.pike, the only difference is that it
will cache the result so that next time you do (program)"hello world" you will
receive the same program. If you call compile file("hello world.pike")
repeatedly you will get a new program each time.

There is also a way to write programs inside programs with the help of the
class keyword:

class class name {

inherits, variables and functions

}

The class keyword can be written as a separate entity outside of all functions,
but it is also an expression which returns the program written between the
brackets. The class name is optional. If used you can later refer to that program
by the name class name. This is very similar to how classes are written in C++
and can be used in much the same way. It can also be used to create structs(or
records if you program Pascal). Let’s look at an example:

class record {

string title;

string artist;

array(string) songs;

}

array(record) records = ({});

void add empty record()

{

records+=({ record() });

}

void show record(record rec)

{

write("Record name: "+rec->title+"\n");

write("Artist: "+rec->artist+"\n");

write("Songs:\n");

foreach(rec->songs, string song)

write(" "+song+"\n");

}

4.2. POINTER TYPES 55

This could be a small part of a better record register program. It is not a
complete executable program in itself. In this example we create a program
called record which has three identifiers. In add empty record a new object is
created by calling record. This is called cloning and it allocates space to store
the variables defined in the class record. Show record takes one of the records
created in add empty record and shows the contents of it. As you can see, the
arrow operator is used to access the data allocated in add empty record. If you
do not understand this section I suggest you go on and read the next section
about objects and then come back and read this section again.

The following operators and functions are important:

4.2.5 object

Although programs are absolutely necessary for any application you might want
to write, they are not enough. A program doesn’t have anywhere to store
data, it just merely outlines how to store data. To actually store the data you
need an object. Objects are basically a chunk of memory with a reference
to the program from which it was cloned. Many objects can be made from

56 CHAPTER 4. DATA TYPES

one program. The program outlines where in the object different variables are
stored.

Program pointer

records

Program pointer

records

Object Program

Identifiers

1. records
4 bytes

2. main

3. find_song

4. list_records

5. delete_record

Variable space

Object

Variable space

fig 4.5

Each object has its own set of variables, and when calling a function in that
object, that function will operate on those variables. If we take a look at the
short example in the section about programs, we see that it would be better to
write it like this:

class record {

string title;

string artist;

array(string) songs;

void show()

{

write("Record name: "+title+"\n");

write("Artist: "+artist+"\n");

write("Songs:\n");

foreach(songs, string song)

write(" "+song+"\n");

}

}

4.2. POINTER TYPES 57

array(record) records = ({});

void add empty record()

{

records+=({ record() });

}

void show record(object rec)

{

rec->show();

}

Here we can clearly see how the function show prints the contents of the vari-
ables in that object. In essence, instead of accessing the data in the object with
the -> operator, we call a function in the object and have it write the informa-
tion itself. This type of programming is very flexible, since we can later change
how recordstores its data, but we do not have to change anything outside of
the record program.

Functions and operators relevant to objects:

58 CHAPTER 4. DATA TYPES

4.2.6 function

When indexing an object on a string, and that string is the name of a function
in the object a function is returned. Despite its name, a function is really a
function pointer.

Program pointer

records

Object Program

Identifiers

1. records
4 bytes

2. main

3. find_song

4. list_records

5. delete_record

Variable space

Function

Identifer number

Object pointer

fig 4.6

When the function pointer is called, the interpreter sets this object() to the
object in which the function is located and proceeds to execute the function it
points to. Also note that function pointers can be passed around just like any
other data type:

int foo() { return 1; }

function bar() { return foo; }

int gazonk() { return foo(); }

int teleledningsanka() { return bar()(); }

In this example, the function bar returns a pointer to the function foo. No
indexing is necessary since the function foo is located in the same object. The
function gazonk simply calls foo. However, note that the word foo in that func-
tion is an expression returning a function pointer that is then called. To further
illustrate this, foo has been replaced by bar()in the function teleledningsanka.

For convenience, there is also a simple way to write a function inside another
function. To do this you use the lambda keyword. The syntax is the same as
for a normal function, except you write lambda instead of the function name:

lambda (types) { statements }

4.3. SHARING DATA 59

The major difference is that this is an expression that can be used inside an
other function. Example:

function bar() { return lambda() { return 1; };)

This is the same as the first two lines in the previous example, the keyword
lambda allows you to write the function inside bar.

Note that unlike C++ and Java you can not use function overloading in Pike.
This means that you cannot have one function called ’foo’ which takes an integer
argument and another function ’foo’ which takes a float argument.

This is what you can do with a function pointer.

4.3 Sharing data

As mentioned in the beginning of this chapter, the assignment operator (=) does
not copy anything when you use it on a pointer type. Instead it just creates
another reference to the memory object. In most situations this does not present
a problem, and it speeds up Pike’s performance. However, you must be aware
of this when programming. This can be illustrated with an example:

int main(int argc, array(string) argv)

{

array(string) tmp;

tmp=argv;

argv[0]="Hello world.\n";

write(tmp[0]);

}

This program will of course write Hello world.

60 CHAPTER 4. DATA TYPES

Sometimes you want to create a copy of a mapping, array or object. To do
so you simply call copy value with whatever you want to copy as argument.
Copy value is recursive, which means that if you have an array containing arrays,
copies will be made of all those arrays.

If you don’t want to copy recursively, or you know you don’t have to copy
recursively, you can use the plus operator instead. For instance, to create a
copy of an array you simply add an empty array to it, like this: copy of arr =
arr + ({}); If you need to copy a mapping you use an empty mapping, and
for a multiset you use an empty multiset.

4.4 Writing data types

When declaring a variable, you also have to specify what type of variable it
is. For most types, such as int and string this is very easy. But there are
much more interesting ways to declare variables than that, let’s look at a few
examples:

int x; // x is an integer

int|string x; // x is a string or an integer

array(string) x; // x is an array of strings

array x; // x is an array of mixed

mixed x; // x can be any type

string *x; // x is an array of strings

// x is a mapping from int to string

mapping(string:int) x;

// x implements Stdio.File

Stdio.File x;

// x implements Stdio.File

object(Stdio.File) x;

// x is a function that takes two integer

// arguments and returns a string

function(int,int:string) x;

// x is a function taking any amount of

// integer arguments and returns nothing.

function(int...:void) x;

// x is ... complicated

mapping(string:function(string|int...:mapping(string:array(string)))) x;

As you can see there are some interesting ways to specify types. Here is a list
of what is possible:

4.4. WRITING DATA TYPES 61

62 CHAPTER 4. DATA TYPES

Chapter 5

Operators

To make it easier to write Pike, and to make the code somewhat shorter, some
functions can be called with just one or two characters in the code. These
functions are called operators and we have already seen how they work in
plenty of examples. In this chapter I will describe in detail what they do. The
operators are divided into categories depending on their function, but beware
that some operators have meanings that go way beyond the scope of the category
they are in.

5.1 Arithmetic operators

The arithmetic operators are the simplest ones, since they work just like you
remember from math in school. The arithmetic operators are:

Function Syntax Identifier Returns
Addition a + b ‘+ the sum of a and b
Subtraction a - b ‘- b subtracted from a
Negation - a ‘- minus a
Multiplication a * b ‘* a multiplied by b
Division a / b ‘/ a divided by b
Modulo a % b ‘% the remainder of a division between a and b

The third column, ”Identifier” is the name of the function that actually evaluates
the operation. For instance, a + b can also be written as ‘+(a, b). I will show
you how useful this can be at the end of this chapter.

When applied to integers or floats these operators do exactly what they are
supposed to do. The only operator in the list not known from basic math is the
modulo operator. The modulo operator returns the remainder from an integer
division. It is the same as calculating a - floor(a / b) * b. floor rounds
the value down to closest lower integer value. Note that the call to floor isn’t

63

64 CHAPTER 5. OPERATORS

needed when operating on integers, since dividing two integers will return the
result as an integer and it is always rounded down. For instance, 8 / 3 would
return 2.

If all arguments to the operator are integers, the result will also be an integer.
If one is a float and the other is an integer, the result will be a float. If both
arguments are float, the result will of course be a float.

However, there are more types in Pike than integers and floats. Here is the
complete list of combinations of types you can use with these operators:

Operation Returned
type Returned value

int + int int the sum of the two values
float + int
int + float
float + float

float the sum of the two values

string + string
int + string
float + string
string + int
string + float

string

In this case, any int or float is first con-
verted to a string. Then the two strings
are concatenated and the resulting string
is returned.

array + array array The two arrays are concatenated into a
new array and that new array is returned.

mapping + mapping mapping

A mapping with all the index-value pairs
from both mappings is returned. If an in-
dex is present in both mappings the index-
value pair from the right mapping will be
used.

multiset + multiset multiset A multiset with all the indices from both
multisets is returned.

int - int int The right value subtracted from the left.
float - int
int - float
float - float

float The right value subtracted from the left.

string - string string A copy of the left string with all occur-
rences of the right string removed.

array - array array

A copy of the left array with all el-
ements present in the right array re-
moved. Example: ({2,1,4,5,3,6,7}) -
({3,5,1}) will return ({2,4,6,7}).

mapping - mapping mapping
A new mapping with all index-value pairs
from the left mapping, except those indices
that are also present in the right mapping.

multiset - multiset multiset
A copy of the left multiset without any in-
dex present in the left multiset.

- int int Same as 0 - int.
- float float Same as 0 - float.
int * int int the product of the two values
float * int
int * float
float * float

float the product of the two values

5.1. ARITHMETIC OPERATORS 65

Operation Returned
type Returned value

array(string) * string string

All the strings in the array are con-
catenated with the string on the
right in between each string. Exam-
ple: ({"foo","bar"})*"-" will return
"foo-bar".

array(array) * array array

All the arrays in the left array are con-
catenated with the array on the right
in between each array. Example: ({
({"foo"}) ,({"bar"})})*({"-"}) will
return ({ "foo","-","bar" }).

string * int string
This operation will concatenate the string
N times. Example: "foo"*3 will return
"foofoofoo".

array * int string
This operation will concatenate the array
N times. Example: ({"foo"})*3 will re-
turn ({"foo","foo","foo"}).

int / int int
The right integer divided by the left integer
rounded towards minus infinity.

float / int
int / float
float / float

float The right value divided by the left value.

string / string array(string)

In symmetry with the multiplication op-
erator, the division operator can split a
string into pieces. The right string will be
split at every occurrence of the right string
and an array containing the results will be
returned. Example: "foo-bar"/"-" will
return ({"foo","bar"})

string / int array(string)

This will split the string into pieces. The
size of the pieces is given by the inte-
ger. Only complete pieces will be in-
cluded in the result, the ’reminder’ is dis-
carded. Example: "foo-bar"/2 will re-
turn ({"fo","o-","ba"})

string / float array(string)

This is similar to dividing a string with
an integer, but it allows fraction-sized seg-
ments and the reminder will always be in-
cluded. Example: "foo-bar"/2.5 will re-
turn ({"fo","o-b","ar"})

array / int array(array)

This is similar to dividing a string with
an integer, but splits an array. Exam-
ple: ({1,2,3,4,5,6,7})/2 will return
({({1,2}),({3,4}),({5,6})})

array / float array(array)

You should be able to predict what
this does by now. :) Example:
({1,2,3,4,5,6,7,8})/2.5 will return
({({1,2}),({3,4,5}),({6,7}),({8})})

int % int int
The remainder of a division. If a and b are
integers, a%b is the same as a-(a/b)*b

float % float
int % float
float % int

float
The remainder of a division. If a and b are
floats, a%b is the same as a-floor(a/b)*b

66 CHAPTER 5. OPERATORS

Operation Returned
type Returned value

string % int string The remainder of a string division. Exam-
ple: "foo-bar"%2 will return "r"

array % int string
The remainder of an array division. Ex-
ample: ({1,2,3,4,5,6,7})%2 will return
({7})

5.2 Comparison operators

The arithmetic operators would be hard to use for anything interesting without
the ability to compare the results to each other. For this purpose there are six
comparison operators:

Function Syntax Identifier Returns

Same a == b ‘==
1 if a is the same value as b, 0 oth-
erwise

Not same a != b ‘!=
0 if a is the same value as b, 1 oth-
erwise

Greater than a > b ‘> 1 if a is greater than b, 0 otherwise

Greater than or equal to a >= b ‘>=
1 if a is greater to or equal to b, 0
otherwise

Lesser than a < b ‘< 1 if a is lesser than b, 0 otherwise

Lesser than or equal to a <= b ‘<=
1 if a is lesser than or equal to b, 0
otherwise

The == and != operators can be used on any type. For two values to be same
they must be the same type. Therefore 1 and 1.0 are not same. Also, for two
values of pointer types to be the same the two values must be pointers to the
same object. It is not enough that the two objects are of the same size and
contain the same data.

The other operators in the table above can only be used with integers, floats
and strings. If you compare an integer with a float, the int will be promoted to a
float before the comparison. When comparing strings, lexical order is used and
the values of the environment variables LC CTYPE and LC LANG are respected.

5.3 Logical operators

Logical operators are operators that operate with truth values. In Pike any
value except zero is considered true. Logical operators are a very basic part
of Pike. They can also decide which arguments to evaluate and which not to
evaluate. Because of this the logical operators do not have any identifiers and
can not be called as normal functions. There are four logical operators:

5.4. BITWISE/SET OPERATORS 67

Function Syntax Returns

And a && b
If a is false, a is returned and b is not evaluated. Otherwise,
b is returned.

Or a || b
If a is true, a is returned and b is not evaluated. Otherwise,
b is returned.

Not ! a Returns 0 if a is true, 1 otherwise.

If-else
a ? b
: c

If a is true, b is returned and c is not evaluated. Otherwise c
is returned and b is not evaluated.

5.4 Bitwise/set operators

These operators are used to manipulate bits as members in sets. They can also
manipulate arrays, multisets and mappings as sets.

Function Syntax Identifier Returns
Shift left a << b ‘<< Multiplies a by 2 b times.
Shift right a >> b ‘>> Divides a by 2 b times.
Inverse (not) ~ a ‘~ Returns -1-a.
Intersection (and) a & b ‘&

All elements present in both a and
b.

Union (or) a | b ‘| All elements present in a or b.

Symmetric difference (xor) a ^ b ‘^
All elements present in a or b, but
not present in both.

The first three operators can only be used with integers and should be pretty
obvious. The other three, intersection, union and symmetric difference, can be
used with integers, arrays, multisets and mappings. When used with integers,
these operators considers each bit in the integer a separate element. If you do
not know about how bits in integers work I suggest you go look it up in some
other programming book or just don’t use these operators on integers.

When intersection, union or symmetric difference is used on an array each el-
ement in the array is considered by itself. So intersecting two arrays will re-
sult in an array with all elements that are present in both arrays. Example:
({7,6,4,3,2,1}) & ({1, 23, 5, 4, 7}) will return ({7,4,1}). The order
of the elements in the returned array will always be taken from the left array.
Elements in multisets are treated the same as elements in arrays. When doing
a set operation on a mapping however, only the indices are considered. The
values are just copied with the indices. If a particular index is present in both
the right and left argument to a set operator, the one from the right side will
be used. Example: ([1:2]) | ([1:3]) will return ([1:3]).

68 CHAPTER 5. OPERATORS

5.5 Indexing

The index and range operators are used to retrieve information from a complex
data type.

Function Syntax Identifier Returns
Index a [b] ‘[] Returns the index b from a.

Lookup
a
->identifier ‘->

Looks up the identifier. Same as
a[”identifier”].

Assign index a [b] = c ‘[]=; Sets the index b in a to c.

Assign index
a
->identifier
= c

‘->= Sets the index ”identifier” in a to c.

Range a [b .. c] ‘[..]
Returns a slice of a starting at the index
b and ending at c.

Range a [.. c] ‘[..]
Returns a slice of a starting at the be-
ginning of a and ending at c.

Range a [b ..] ‘[..]
Returns a slice of a from the index b to
the end of a.

The index operator can be written in two different ways. It can be written as ob
[index] or ob ->identifier . However, the latter syntax is equal to ob [
"identifier "]. You can only index strings, arrays, mapping, multisets and
objects, and some of these can only be indexed on certain things as shown in
this list:

Operation Returns

string [int]
Returns the ascii value of the Nth character in
the string.

array [int]
Return the element in the array corresponding
to the integer.

array [int]=mixed Sets the element in the array to the mixed
value.

mapping [mixed]
mapping ->identifier

Returns the value associated with the index,
0 if it is not found.

mapping [mixed]=mixed
mapping ->identifier =mixed

Associate the second mixed value with the first
mixed value.

multiset [mixed]
multiset ->identifier

Returns 1 if the index (the value between the
brackets) is present in the multiset, 0 other-
wise.

multiset [mixed]=mixed
multiset ->identifier=mixed

If the mixed value is true the index is added to
the multiset. Otherwise the index is removed
from the multiset.

object [string]
object ->identifier

Returns the value of the named identifier in
the object.

object [string]=mixed
object ->identifier =mixed

Set the given identifier in the object to the
mixed value. Only works if the identifier ref-
erences a variable in the object.

program [string]
program ->identifier

Returns the value of the named constant iden-
tifier in the program.

5.6. THE ASSIGNMENT OPERATORS 69

Operation Returns
string [int..int] Returns a piece of the string.
array [int..int] Returns a slice of the array.

When indexing an array or string it is sometimes convenient to access index
from the end instead of from the beginning. This function can be performed by
using a negative index. Thus arr[-i] is the same as arr[sizeof(arr)-i].
Note however that this behavior does not apply to the range operator. Instead
the range operator clamps it’s arguments to a suitable range. This means that
a [b..c] will be treated as follows:

•

•

•

•

•

5.6 The assignment operators

There is really only one assignment operator, but it can be combined with lots
of other operators to make the code shorter. An assignment looks like this:

variable = expression ;

The variable can be a local variable, a global variable or an index in an array,
object, multiset or mapping. This will of course set the value stored in variable
to expression. Note that the above is also an expression which returns the value
of the expression. This can be used in some interesting ways:

variable1 = variable2 = 1; // Assign 1 to both variables

variable1 =(variable2 = 1); // Same as above

// Write the value of the expression, if any

if(variable = expression)

write(variable);

Using assignments like this can however be confusing to novice users, or users
who come from a Pascal or Basic background. Especially the if statement can
be mistaken for if(variable == expression) which would mean something
completely different. As I mentioned earlier, the assignment operator can be
combined with another operator to form operators that modify the contents of
a variable instead of just assigning it. Here is a list of all the combinations:

70 CHAPTER 5. OPERATORS

Syntax Same as Function
variable +=
expression

variable = variable + expres-
sion

Add expression to variable
variable -=
expression

variable = variable - expres-
sion

Subtract expression from
variable

variable *=
expression

variable = variable * expres-
sion

Multiply variable with ex-
pression

variable /=
expression

variable = variable / expres-
sion

Divide variable by expres-
sion

variable %=
expression

variable = variable % expres-
sion

Modulo variable by expres-
sion

variable <<=
expression

variable = variable ¡¡ expres-
sion

Shift variable expression
bits left

variable >>=
expression

variable = variable ¿¿ expres-
sion

Shift variable expression
bits right

variable |=
expression

variable = variable — ex-
pression

Or variable with expres-
sion

variable &=
expression

variable = variable & expres-
sion

And variable with expres-
sion

variable ^=
expression

variable = variable ˆ expres-
sion

Xor variable with expres-
sion

In all of the above expressions variable can actually be any of type of assignable
values. Assignable values are also known as lvalues and here is a list of lvalues:

Lvalue type Syntax Valid assignment type
a local or global vari-
able

identifier same as variable
an element in an array array [int] any type

elements in elements in
an array array [string]

any type
This is like map(arr,
‘[]=,string indexing element,
assignment element)

an element in an string string [int] integer
an element in a map-
ping

mapping [mixed] or
mapping-¿identifier

any type

an element in a multiset
multiset [mixed] or
multiset-¿identifier

true / false

a variable in an object object [string] or ob-
ject-¿identifier

same type as named variable

a list of lvalues [lvalue, lvalue]

an array, first value in the array
will be assigned to the first lvalue
in the list, second value in the ar-
ray to the second value in the list
etc.

5.7. THE REST OF THE OPERATORS 71

5.7 The rest of the operators

Now there are only a couple of operators left. I have grouped them together in
this section, not because they are not important, but because they do not fit in
any particular categories.

Function Syntax Identifier Returns

splice @ a none Sends each element in the array a as an individual
argument to a function call.

Increment ++ a none Increments a and returns the new value of a.
Decrement -- a none Decrements a and returns the new value of a.
Post incre-
ment

a ++ none Increments a and returns the old value of a.
Post decre-
ment

a -- none Decrements a and returns the old value of a.

casting (type)
a

none Tries to convert a into a value of the specified type.

Null a, b none Evaluates a and b, then returns b.

The most important of these operators is the calling operator. It is used to
call functions. The operator itself is just a set of parenthesis placed after the
expression that returns the function. Any arguments to the function should be
placed between the parenthesis, separated by commas. We have already seen
many examples of this operator, although you might not have realized it was an
operator at the time. The function call operator can do more than just calling
functions though; if the ’function’ is in fact an array, the operator will loop
over the array and call each element in the array and returns an array with
the results. If on the other hand, the ’function’ is a program, the operator will
clone an object from the program and call create() in the new object with the
arguments given. In fact, the function clone is implemented like this:

object clone(mixed p, mixed ... args) { ((program)p)(@args); }

On the subject of function calls, the splice operator should also be mentioned.
The splice operator is an at sign in front of an expression. The expression should
always be an array. The splice operator sends each of the elements in the array
as a separate argument to the function call. The splice operator can only be
used in an argument list for a function call.

Then there are the increment and decrement operators. The increment and
decrement operators are somewhat limited: they can only be used on integers.
They provide a short and fast way to add or subtract one to an integer. If the
operator is written before the variable (++a) the returned value will be what the
variable is after the operator has added/subtracted one to it. If the operator is
after the variable (a ++) it will instead return the value of the variable before it
was incremented/decremented.

72 CHAPTER 5. OPERATORS

Casting is used to convert one type to another, not all casts are possible. Here
is a list of all casts that actually do anything:

casting
from

to operation

int string Convert the int to ASCII representation
float string Convert the float to ASCII representation

string int
Convert decimal, octal or hexadecimal number to an int. Note
that this will only work with decimal numbers in future versions.

string float Convert ASCII number to a float.
string program String is a filename, compile the file and return the program.

Results are cached.
string object This first casts the string to a program, (see above) and then

clones the result. Results are cached.
object type This calls the function ’cast’ with a string containing the type

as an argument.
string array Same as doing values(string)

array(int) string This does the inverse of the operation above. Ie. it constructs
a string from an array of integers.

array array(type) This recursively casts all values in the array to type.

mapping array
Same as Array.transpose(({indices(mapping),values(mapping)).
Example: (array)([1:2,3:4]) will return ({ ({1,2}),
({3,4}) })

multiset array Same as doing indices(multiset).
int float Returns a float with the same value as the integer.
float int Returns the integer closest to the float.
function object Same as function object(function).

You can also use the cast operator to tell the compiler things. If a is a variable
of type mixed containing an int, then the expression (int)a can be used instead
of a and that will tell the compiler that the type of that expression is int.

Last, and in some respect least, is the comma operator. It doesn’t do much.
In fact, it simply evaluates the two arguments and then returns the right hand
one. This operator is mostly useful to produce smaller code, or to make defines
that can be used in expressions.

5.8 Operator precedence

When evaluating an expression, you can always use parenthesis to tell the com-
piler in which order to evaluate things. Normally, the compiler will evaluate
things from left to right, but it will evaluate operators with higher priority be-
fore those with lower. The following table shows the relative priority of all the
operators in descending order:

(a) a() a[b] a->b a[b..c] ({}) ([]) (<>)
!a ~a (type)a ++a --a

a++ a--
a*b a/b a%b

5.9. OPERATOR FUNCTIONS 73

a+b a-b
a>>b a<<b

a>b a>=b a<b a<=b
a==b a!=b

a&b
a^b
a|b
&&
||

a?b:c
=

@a
,

Examples:

The expression is evaluated in this order:
1+2*2 1+(2*2)
1+2*2*4 1+((2*2)*4)
(1+2)*2*4 ((1+2)*2)*4
1+4,c=2|3+5 (1+4),(c=((2|3)+5))
1+5 & 4 == 3 (1+(5 & 4)) == 3
c=1,99 (c=1),99
!a++ + ~--a() (!(a++)) + (~((--a)()))

5.9 Operator functions

As mentioned earlier a + b can just as well be written as ‘+(a, b). Together
with the function map which calls a function for every index in an array and
the splice operator this can be used to create some very very fast and compact
code. Let’s look at some examples:

74 CHAPTER 5. OPERATORS

Chapter 6

Object orientation

As mentioned several times, Pike is object oriented. This does not mean that
it is identical to C++ in any way. Pike uses a less strict approach to object
orientation which creates a more relaxed programming style. If you have never
come in contact with object oriented programming before, be warned that the
ideas expressed in Pike and in this chapter are my own and do not necessarily
reflect what other people think about object oriented programming.

6.1 Terminology

As mentioned before, Pike uses a different terminology than C++ does. This
has historic reasons, but might be changed in the future. In the meantime,
you might benefit from this mini-dictionary which translates Pike-ish terms to
C++-ish terms:

75

76 CHAPTER 6. OBJECT ORIENTATION

6.2 The approach

Think of the data type program as an executable file. Then we clone this
program and create an object. The object is then a running program. The
object has its own data and its own functions, however, it can work together
with other programs by calling functions in those objects. The functions can
be thought of as message carriers, TCP sockets or just a way for programs to
communicate. Now we have a running system with many running programs,
each performing only the task it was designed for.

This analogy has one major flaw, when running programs in UNIX they actually
run simultaneously. UNIX is multitasking, Pike is not. When one object is
executing code, all the other objects has to wait until they are called. An
exception is if you are using threads as will be discussed in a later chapter.

6.3 How does this help?

Ok, why is it a good idea to use object oriented programming? Well if you
believe what you hear, the biggest advantage is that you can re-use your code
in several projects. In my experience this is not the case.

In my experience, the advantages of object oriented programming are:

Most of these things can be done without object orientation, but it is object
orientation that makes them easy.

6.4 Pike and object orientation

In most object oriented languages there is a way to write functions outside of
all classes. Some readers might think this is what we have been doing until
now. However, in Pike, all functions have to reside within a program. When
you write a simple script in Pike, the file is first compiled into a program then
cloned and then main() is called in that clone. All this is done by the master
object, which is compiled and cloned before before all other objects. What the
master object actually does is:

program scriptclass=compile file(argv[0]); // Load script

6.5. INHERIT 77

object script=scriptclass(); // clone script

int ret=script->main(sizeof(argv), argv); // call main()

Similarly, if you want to load another file and call functions in it, you can do
it with compile file(), or you can use the cast operator and cast the filename to
a string. You can also use the module system, which we will discuss further in
the next chapter.

If you don’t want to put each program in a separate file, you can use the class
keyword to write all your classes in one file. We have already seen an example
how this in chapter 3.4, but let’s go over it in more detail. The syntax looks
like this:

class class name {

class definition

}

This construction can be used almost anywhere within a normal program. It
can be used outside all functions, but it can also be used as an expression in
which case the defined class will be returned. In this case you may also leave
out the class name and leave the class unnamed. The class definition is simply
the functions and programs you want to add to the class.

To make it easier to program, defining a class is also to define a constant with
that name. Essentially, these two lines of code do the same thing:

class foo {};

constant foo = class {};

Because classes are defined as constants, it is possible to use a class defined
inside classes you define later, like this:

class foo

{

int test() { return 17; }

};

class bar

{

program test2() { return foo; }

};

6.5 Inherit

A big part of writing object oriented code is the ability to add functionality to
a program without changing (or even understanding) the original code. This is
what inherit is all about. Let’s say I want to change the hello world program

78 CHAPTER 6. OBJECT ORIENTATION

to write a version number before it writes hello world, using inherit I could do
this like this:

inherit "hello world";

int main(int argc, array(string) argv)

{

write("Hello world version 1.0\n");

return ::main(argc,argv);

}

What inherit does is that it copies all the variables and functions from the
inherited program into the current one. You can then re-define any function or
variable you want, and you can call the original one by using a ::in front of the
function name. The argument to inherit can be one of the following:

Let’s look at an example. We’ll split up an earlier example into three parts and
let each inherit the previous part. It would look something like this:

6.5. INHERIT 79

Identifiers Inherits

Program 2

Program 1Records

4 bytes (copied)

list_records

find_song

delete_record

Code

find_song

delete_record

Identifiers Inherits

Records

4 bytes (copied)

list_records

find_song

delete_record

Program 3

Program 2

Program 1 (copied)

main

Code

main

Identifiers Code

Records

4 bytes

list_records

list_records

Program 1

Note that the actual code is not copied, only the list of references. Also note
that the list of inherits is copied when you inherit a program. This does not
mean you can access those copied inherits with the ::operator, it is merely an
implementation detail. Although this example does not show an example of a
re-defined function, it should be easy to see how that works by just changing

80 CHAPTER 6. OBJECT ORIENTATION

what an identifier is pointing at.

6.6 Multiple inherit

You can inherit any number of programs in one program, you can even inherit
the same thing more than once. If you do this you will get a separate set of
functions and variables for each inherit. To access a specific function you need
to name your inherits. Here is an example of named inherits:

inherit Stdio.File; // This inherit is named File

inherit Stdio.FILE; // This inherit is named FILE

inherit "hello word"; // This inherit is named hello world

inherit Stdio.File : test1; // This inherit is named test1

inherit "hello world" : test2; // This inherit is named test2

void test()

{

File::read(); // Read data from the first inherit

FILE::read(); // Read data from the second inherit

hello world::main(0,({})); // Call main in the third inherit

test1::read(); // Read data from the fourth inherit

test2::main(0,({})); // Call main in the fifth inherit

::read(); // Read data from all inherits

}

As you can see it would be impossible to separate the different read and main
functions without using inherit names. If you tried calling just read without
any :: or inherit name in front of it Pike will call the last read defined, in this
case it will call read in the fourth inherit.

If you leave the inherit name blank and just call ::read Pike will call all in-
herited read() functions. If there is more than one inherited read function the
results will be returned in an array.

Let’s look at another example:

#!/usr/local/bin/pike

inherit Stdio.File : input;

inherit Stdio.File : output;

int main(int argc, array(string) argv)

{

output::create("stdout");

for(int e=1;e<sizeof(argv);e++)

{

input::open(argv[e],"r");

while(output::write(input::read(4096)) == 4096);

}

6.7. PIKE INHERIT COMPARED TO OTHER LANGUAGES 81

}

This short piece of code works a lot like the UNIX command cat. It reads all
the files given on the command line and writes them to stdout. As an example,
I have inherited Stdio.File twice to show you that both files are usable from my
program.

6.7 Pike inherit compared to other languages

Many other languages assign special meaning to inherit. Most common is the
notion that if you inherit a class, it means that your class should obey the same
rules as the inherited class. In Pike, this is not necessarily so. You may wish
to use inherit in Pike like this, but you can just as well choose not to. This
may confuse some programmers with previous experience in object oriented
programming.

6.8 Modifiers

Sometimes, you may wish to hide things from inheriting programs, or prevent
functions from being called from other objects. To do so you use modifiers. A
modifier is simply a word written before a variable definition, function definition,
class definition or an inherit that specifies how this identifier should interact with
other objects and programs. These modifiers are available:

When modifiers are used in conjunction with inherit, all the variables, functions
and classes copied from the inherited class will be modified with the keywords

82 CHAPTER 6. OBJECT ORIENTATION

used. For instance, private inherit means that the identifiers from this in-
herit will not be available to program inheriting this program. static private
inherit will also hide those identifiers from the index and arrow operators,
making the inherit available only to the code in this program.

6.9 Operator overloading

Sometimes you want an object to act as if it was a string, an integer or some
other data type. It is especially interesting to be able to use the normal operators
on objects to allow short and readable syntax. In Pike, special methods are
called when an operator is used with an object. To some extent, this is work in
progress, but what has been done so far is very useful and will not be subject
to change.

The following table assumes that a and b are objects and shows what will be
evaluated if you use that particular operation on an object. Note that some
of these operators, notably == and ! have default behavior which will be used
if the corresponding method is not defined in the object. Other operators will
simply fail if called with objects. Refer to chapter 4.4 for information on which
operators can operate on objects without operator overloading.

Operation Will call Or
a+b a-¿‘+(b) b-¿“+(a)
a+b+c+d a-¿‘+(b,c,d) (b-¿(a))+c+d
a-b a-¿‘-(b) b-¿“-(a)
a&b a-¿‘&(b) b-¿“&(a)
a—b a-¿‘—(b) b-¿“—(a)
aˆb a-¿‘ˆ(b) b-¿“ˆ(a)
a¿¿b a-¿‘¿¿(b) b-¿“¿¿(a)
a¡¡b a-¿‘¡¡(b) b-¿“¡¡(a)
a*b a-¿‘*(b) b-¿“*(a)
a*b*c*d a-¿‘*(b,c,d) b-¿‘*(a)*c*d
a/b a-¿‘/(b) b-¿“/(a)
a%b a-¿‘%(b) b-¿“%(a)
˜a a-¿‘˜()
a==b a-¿‘==(b) b-¿‘==(a)
a!=b !(a-¿‘==(b)) !(b-¿‘==(a))
a¡b a-¿‘¡(b) b-¿‘¿(a)
a¿b a-¿‘¿(b) b-¿‘¡(a)
a¡=b !(b-¿‘¿(a)) !(a-¿‘¡(b))
a¿=b !(b-¿‘¡(a)) !(a-¿‘¿(b))
(int)a a-¿cast(”int”)
!a a-¿‘!()
if(a) – ... ˝ !(a-¿‘!())
a[b] a-¿‘[](b)
a[b]=c a-¿‘[]=(b,c)
a-¿foo a-¿‘-¿(”foo”)
a-¿foo=b a-¿‘-¿=(”foo”,b)
sizeof(a) a-¿ sizeof()

6.10. SIMPLE EXERCISES 83

Operation Will call Or
indices(a) a-¿ indices()
values(a) a-¿ values()
a(b) a-¿‘()(b)

Here is a really silly example of a program that will write 10 to stdout when
executed.

#!/usr/local/bin/pike

class three {

int ‘+(int foo) { return 3+foo; }

};

int main()

{

write(sprintf("%d\n",three()+7));

}

It is important to know that some optimizations are still performed even when
operator overloading is in effect. If you define a multiplication operator and
multiply your object with one, you should not be surprised if the multiplication
operator is never called. This might not always be what you expect, in which
case you are better off not using operator overloading.

6.10 Simple exercises

Make a program that clones 10 hello world and then runs main() in each one
of them. Modify the register program to use an object for each record. Modify
the register program to use the following search function:

void find song(string title)

{

string name, song;

int hits;

title=lower case(title);

foreach(indices(records),name)

{

if(string song=records[name][title])

{

write(name+"; "+song+"\n");

hits++;

}

}

84 CHAPTER 6. OBJECT ORIENTATION

if(!hits) write("Not found.\n");

}

Chapter 7

Miscellaneous functions

There are some ’functions’ in Pike that are not really functions at all but just
as builtin as operators. These special functions can do things that no other
functions can do, but they can not be re-defined or overloaded. In this chapter I
will describe these functions and why they are implemented as special functions.

7.1 sscanf

Sscanf may look exactly like a normal function, but normal functions can not
set the variables you send to it. The purpose of sscanf is to match one string
against a format string and place the matching results into a list of variables.
The syntax looks like this:

int sscanf(string str, string fmt, lvalue ...)

The string str will be matched against the format string fmt. fmt can contain
strings separated by %d,%s,%c and %f. Every % corresponds to one lvalue.
An lvalue is the name of a variable, a name of a local variable, an index in an
array, mapping or object. It is because of these lvalues that sscanf can not be
implemented as a normal function.

Whenever a percent is found in the format string, a match is according to the
following table:

%b reads a binary integer
%d reads a decimal integer
%o reads an octal integer
%x reads a hexadecimal integer

%D
reads an integer that is either octal (leading zero), hexadecimal
(leading 0x) or decimal.

%f reads a float
%c matches one char and returns it as an integer
%2c matches two chars and returns them as an integer (short)

85

86 CHAPTER 7. MISCELLANEOUS FUNCTIONS

%4F
matches four chars and returns them as a float (IEEE single preci-
sion)

%8F
matches eigth chars and returns them as a float (IEEE double
precision)

%s

reads a string. If followed by %d, %s will read any non-numerical
characters. If followed by a %[], %s will read any characters not
present in the set. If followed by normal text, %s will match all
characters up to but not including the first occurrence of that text.

%5s gives a string of 5 characters (5 can be any number)

%[set]
matches a string containing a given set of characters (those given
inside the brackets). %[ˆset] means any character except those
inside brackets. Example: %[0-9H] means any number or ’H’.

%–format%˝
Repeatedly matches ’format’ as many times as possible and assigns
an array of arrays with the results to the lvalue.

If a * is put between the percent and the operator, the operator will only match
its argument, not assign any variables.

Sscanf does not use backtracking. Sscanf simply looks at the format string up to
the next % and tries to match that with the string. It then proceeds to look at
the next part. If a part does not match, sscanf immediately returns how many
% were matched. If this happens, the lvalues for % that were not matched will
not be changed.

Let’s look at a couple of examples:

// a will be assigned "oo" and 1 will be returned

sscanf("foo","f%s",a);

// a will be 4711 and b will be "bar", 2 will be returned

sscanf("4711bar","%d%s",a,b);

// a will become "test"

sscanf(" \t test","%*[\t]%s",a)

// Remove "the " from the beginning of a string

// If ’str’ does not begin with "the " it will not be changed

sscanf(str,"the %s",str);

SEE ALSO: sprintf

7.2 catch & throw

Catch is used to trap errors and other exceptions in Pike. It works by making
a block of code into an expression, like this:

catch { statements }

7.3. GAUGE 87

If an error occurs, catch will return a description of the error. The description
of the error has the following format:

({

"error description",

backtrace()

})

If no error occurs, catch will return zero. You may emulate your own errors
using the function throw, described in chapter 15.

Example:

int x,y;

// This might generate "division by zero"

mixed error=catch { x/=y; };

7.3 gauge

The syntax for gauge is the same as the syntax for catch:

gauge { statements }

However, gauge simply returns how many seconds the code took to execute.
This can be used to find out how fast your code actually is.. :) Only CPU time
used by the Pike process is measured. This means that if it takes two seconds
to execute but only uses 50 % CPU, this function will return 1.0.

7.4 typeof

This function returns the type of an expression as a string. It does not evaluate
the expression at all, which might be somewhat confusing. Example:

typeof(exit(1))

This will return the string "void" since exit is a function that returns void. It
will not execute the function exit and exit the process as you might expect.

If you want to know the type after evaluation, use sprintf("%t", expr).

88 CHAPTER 7. MISCELLANEOUS FUNCTIONS

Chapter 8

Modules

A module is a software package that plugs into the Pike programming environ-
ment. They provide you with simple interfaces to system routines and they also
constitute a neat way to use your own C/C++ code from within Pike. Pike
comes with a number of modules that are ready to use. In this chapter I will
explain the basics of modules and how to use them.

here is a list of the basic Pike modules:

89

90 CHAPTER 8. MODULES

* These modules might not be available depending on how Pike was compiled
and whether support for these functions exist on your system.

8.1. HOW TO USE MODULES 91

8.1 How to use modules

A module is a bunch of functions, programs or other modules collected in one
symbol. For instance, the module Stdio contains the objects stdin, stdout and
stderr. To access these objects you can write Stdio.stdin, Stdio.stdout
or Stdio.stderr anywhere in your program where an object of that type is
acceptable. If you use Stdio a lot you can put import Stdio; in the beginning
of your program. This will import all the identifiers from the module Stdio into
your program, making it possible to write just stdin instead of Stdio.stdin.
It is also possible to import all modules in a directory with importby putting
the directory name in doublequtes. So, to import all modules in the current
directory, you would use import ".";.

8.2 Where do modules come from?

Modules are not loaded until you use them, which saves memory unless you use
all the modules. However, if you want to write your own modules it is important
to know how modules are located and loaded.

When you use Stdio Pike will look for that module:

1.

2.

3.

4.

5.

For each of these directories, Pike will do the following:

1.

2.

3.

As you can see, quite a lot of work goes into finding the modules, this makes it
possible to choose the most convenient way to build your own Pike modules.

8.3 The . operator

The period operator is not really an operator, as it is always evaluated during
the compilation. It works similarly to the index and arrow operators, but can
only be used on constant values such as modules. In most cases, modules are
simply a clone of a program, in which case the identifiers in the module will be
the same as those in the program. But some modules, like those created from
directories, overload the index operator so that the identifiers in the module

92 CHAPTER 8. MODULES

can be something other than those in the program. For directory modules, the
index operator looks in the directory it was cloned for to find the identifiers.

You can also use the . operator without an identifier preceeding it to access mod-
ules in the same directory as the program itself. For instance, .my module.foo
would mean ’the identifier foo in the module my module in this directory.

8.4 How to write a module

Here is an example of a simple module:

constant PI = 3.14159265358979323846264338327950;

float cos2(float f) { return pow(cos(f),2.0); }

if we save this short file as Trig.pmod we can now use this module like this:

int main()

{

write(sprintf("%f\n",.Trig.cos2(.Trig.PI));

}

or like this:

import .Trig;

int main()

{

write(sprintf("%f\n",cos2(PI));

}

8.5 Simple exercises

Save the hello world.pike program as hello world.pike.pmod, then make a pro-
gram that loads this module and calls its main(). Make a directory called
Programs.pmod and put all the examples you have written so far in it. Make a
program that runs one of those programs. Make sure the program can be modi-
fied to run another of your examples by changing what module it loads. Copy the
file hello world.pike.pmod to programs/module.pike.pmod and then write a pro-
gram that runs hello world without actually using the identifier hello world.
Try putting Programs.pmod in another directory and then try to run the pro-
grams from the last two examples.

Chapter 9

File I/O

Programming without reading and writing data from files, sockets, keyboard
etc. would be quite pointless. Luckily enough, Pike provides you with an object
oriented interface to files, pipes and TCP sockets. All I/O functions and classes
are collected in the module Stdio.

9.1 File management - Stdio.File

Stdio.File
This is the basic I/O object, it provides socket communication as well as file
access. It does not buffer reads and writes or provide line-by-line reading, that is
done in the FILE object. Stdio.File is completely written in C. What follows
is a description of all the functions in Stdio.File.

Stdio.File.create - init file struct
object(Stdio.File) Stdio.File();
object(Stdio.File) Stdio.File(string filename);
object(Stdio.File) Stdio.File(string filename, string mode);
object(Stdio.File) Stdio.File(string filename, string mode, int
mask);
object(Stdio.File) Stdio.File(string fd);
object(Stdio.File) Stdio.File(int fd);
object(Stdio.File) Stdio.File(int fd, string mode);

Description
There are four different ways to clone a File. The first is to clone it without any
arguments, in which case the you have to call open(), connect() or some other
method which connects the File object with a stream.

However, instead of cloning and then calling open(), you can clone the File with
a filename and open mode. This is the same thing as cloning and then calling
open, except shorter and faster. Default open mode is "r" and default mask is
0666.

93

94 CHAPTER 9. FILE I/O

Alternatively, you can clone a File with ”stdin”, ”stdout” or ”stderr” as argu-
ment. This will open the specified standard stream.

For the advanced users, you can use the file descriptors of the systems (note:
emulated by pike on some systems - like NT). This is only useful for streaming
purposes on unix systems. This is not recommended at all if you don’t know
what you’re into. Default mode for this is "rw".

Note
Open mode will be filtered through the system UMASK. You might need to use
chmod later.

See Also
clone and Stdio.File->open

Stdio.File.open - open a file

int open(string filename, string how);
int open(string filename, string how, int mode);

Description
Open a file for read, write or append. The variable how should contain one or
more of the following letters:

’r’ open file for reading
’w’ open file for writing
’a’ open file for append (use with ’w’)
’t’ truncate file at open (use with ’w’)
’c’ create file if it doesn’t exist (use with ’w’)
’x’ fail if file already exist (use with ’c’)

How should always contain at least one of ’r’ or ’w’.

The third argument is protection bits if the file is created. Default is 0666 (all
read+write, in octal notation).

Returns
1 on success, 0 otherwise

See Also
Stdio.File->close

Stdio.File.close - close a file
int close(string how);
int close();

Description
Close the file. Optionally, specify ”r”, ”w” or ”rw” to close just the read, just
the write or both read and write part of the file respectively. Note that this
function will not call the close callback.

See Also
Stdio.File->open

9.1. FILE MANAGEMENT - STDIO.FILE 95

Stdio.File.read - read data from a file or stream
string read(int nbytes);
string read(int nbytes, int notall);
string read();

Description
Read tries to read nbytes bytes from the file, and return it as a string. If
something goes wrong, zero is returned.

If a one is given as second argument to read(), read will not try its best to read
as many bytes as you asked it to read, it will merely try to read as many bytes
as the system read function will return. This mainly useful with stream devices
which can return exactly one row or packet at a time.

If no arguments are given, read will read to the end of the file/stream.

See Also
Stdio.File->read oob and Stdio.File->write

Stdio.File.read oob - read out-of-band data from a stream
string read oob(int nbytes);
string read oob(int nbytes, int notall);
string read oob();

Description
Tries to read nbytes bytes of out-of-band data from the stream, and returns it
as a string. If something goes wrong, zero is returned.

If a one is given as a second argument to read oob(), only as many bytes of
out-of-band data as are currently available will be returned.

If no arguments are given, read oob will read to the end of the stream.

Note
This function is only available if the option ’–with-oob’ was specified when Pike
was compiled.

It is not guaranteed that all out-of-band data sent from the other end will be
received. Most streams only allow for a single byte of out-of-band data at a
time.

See Also
Stdio.File->read and Stdio.File->write oob

Stdio.File.write - write data to a file or stream
int write(string data);

Description
Write data to file or stream and return how many bytes that were actually
written. 0 is returned in nonblocking mode if it was not possible to write
anything without blocking. -1 is returned if something went wrong and no
bytes were written.

96 CHAPTER 9. FILE I/O

See Also
Stdio.File->read and Stdio.File->write oob

Stdio.File.write oob - write out-of-band data to a stream
int write oob(string data);

Description
Writes out-of-band data to a stream and returns how many bytes that were
actually written. -1 is returned if something went wrong and no bytes were
written.

Note
This function is only available if the option ’–with-oob’ was specified when Pike
was compiled.

It is not guaranteed that all out-of-band data will be received at the other end.
Most streams only allow for a single byte of out-of-band data at a time. Some
streams will send the rest of the data as ordinary data.

See Also
Stdio.File->read oob and Stdio.File->write

Stdio.File.seek - seek to a position in a file

int seek(int pos);

Description
Seek to a position in a file, if pos is less than zero, seek to position pos relative
end of file. Returns -1 for failure, or the new position in the file when successful.

See Also
Stdio.File->tell

Stdio.File.tell - tell where we are in a file
int tell();

Description
Returns the current position in the file.

See Also
Stdio.File->seek

Stdio.File.truncate - truncate a file
int truncate(int length);

Description
Truncates a file to that length. Returns 1 if ok, 0 if failed.

See Also
Stdio.File->open

9.1. FILE MANAGEMENT - STDIO.FILE 97

Stdio.File.stat - do file stat on an open file

array(int) stat();

Description
This function returns the same information as the function file stat, but for the
file it is called in. If file is not an open file, zero will be returned. Zero is also
returned if file is a pipe or socket.

See Also
file stat

Stdio.File.errno - what was last error?
int errno();

Description
Returns the error code for the last command on this file. Error code is normally
cleared when a command is successful.

Stdio.File.set buffer - set internal socket buffer

void set buffer(int bufsize, string mode);
void set buffer(int bufsize);

Description
This function sets the internal buffer size of a socket or stream. The second
argument allows you to set the read or write buffer by specifying ”r” or ”w”.
It is not guaranteed that this function actually does anything, but it certainly
helps to increase data transfer speed when it does.

See Also
Stdio.File->open socket and Stdio.Port->accept

Stdio.File.set nonblocking - make stream nonblocking

void set nonblocking(function(mixed, string:void) read callback,

or
void set nonblocking(function(mixed, string:void) read callback,

or
void set nonblocking();

Description
This function sets a stream to nonblocking mode. When data arrives on the

98 CHAPTER 9. FILE I/O

stream, read callback will be called with some or all of this data. When the
stream has buffer space over for writing, write callback is called so you can
write more data to it. If the stream is closed at the other end, close callback is
called.

When out-of-band data arrives on the stream, read oob callback will be called
with some or all of this data. When the stream allows out-of-band data to be
sent, write oob callback is called so that you can write out-of-band data to it.

All callbacks will have the id of file as first argument when called.

If no arguments are given, the callbacks are not changed. The stream is just set
to nonblocking mode.

Note
Out-of-band data is only supported if Pike was compiled with the option ’–with-
oob’.

See Also
Stdio.File->set blocking and Stdio.File->set id

Stdio.File.set read callback - set the read callback
void set read callback(function read callback)

Description
This function sets the read callback for the file. The read callback is called
whenever there is data to read from the file. Note that this function does not
set the file nonblocking.

See Also
Stdio.File->set nonblocking

Stdio.File.set write callback - set the write callback
void set write callback(function write callback)

Description
This function sets the write callback for the file. The write callback is called
whenever there is buffer space available to write to for the file. Note that this
function does not set the file nonblocking.

See Also
Stdio.File->set nonblocking

Stdio.File.set close callback - set the close callback
void set close callback(function close callback)

Description
This function sets the close callback for the file. The close callback is called
when the remote end of a socket or pipe is closed. Note that this function does
not set the file nonblocking.

9.1. FILE MANAGEMENT - STDIO.FILE 99

See Also
Stdio.File->set nonblocking

Stdio.File.set blocking - make stream blocking

void set blocking();

Description
This function sets a stream to blocking mode. i.e. all reads and writes will wait
until data has been written before returning.

See Also
Stdio.File->set nonblocking

Stdio.File.set id - set id of this file
void set id(mixed id);

Description
This function sets the id of this file. The id is mainly used as an identifier that is
sent as the first arguments to all callbacks. The default id is 0. Another possible
use of the id is to hold all data related to this file in a mapping or array.

See Also
Stdio.File->query id

Stdio.File.query id - get id of this file

mixed query id();

Description
This function returns the id of this file.

See Also
Stdio.File->set id

Stdio.File.query read callback - return the read callback function

function query read callback();

Description
This function returns the read callback, which is set with set nonblocking or
set read callback.

See Also
Stdio.File->set nonblocking and Stdio.File->set read callback

Stdio.File.query write callback - return the write callback function

function query write callback();

100 CHAPTER 9. FILE I/O

Description
This function returns the write callback, which is set with set nonblocking or
set write callback.

See Also
Stdio.File->set nonblocking and Stdio.File->set write callback

Stdio.File.query close callback - return the close callback function

function query close callback();

Description
This function returns the close callback, which is set with set nonblocking or
set close callback.

See Also
Stdio.File->set nonblocking and Stdio.File->set close callback

Stdio.File.dup - duplicate a file

object(Stdio.File) dup();

Description
This function returns a clone of Stdio.File with all variables copied from this
file. Note that all variables, even id, is copied.

See Also
Stdio.File->assign

Stdio.File.dup2 - duplicate a file over another

int dup2(object(Stdio.File) to);

Description
This function works similarly to Stdio.File-¿assign, but instead of making the
argument a reference to the same file, it creates a new file with the same prop-
erties and places it in the argument.

Example

/* Redirect stdin to come from the file ’foo’ */

object o=Stdio.File();

o->open("foo","r");

o->dup2(Stdio.File("stdin"));

See Also
Stdio.File->assign and Stdio.File->dup

9.1. FILE MANAGEMENT - STDIO.FILE 101

Stdio.File.assign - assign a file

void assign(object f);

Description
This function takes a clone of Stdio.File and assigns all variables of this file from
it. It can be used together with file-¿dup to move files around.

See Also
Stdio.File->dup

Stdio.File.open socket - open a socket

int open socket(int|void port, string|void address);

Description
This makes this file into a socket ready for connection. The reason for this
function is so that you can set the socket to nonblocking or blocking (default
is blocking) before you call Stdio.File-¿connect() This function returns 1 for
success, 0 otherwise.

If you give a port number to this function, the socket will be bound to this port
locally before connecting anywhere. This is only useful for some silly protocols
like FTP. You may also specify an address to bind to if your machine has many
IP numbers.

See Also
Stdio.File->connect and Stdio.File->set nonblocking

Stdio.File.connect - connect a socket to something

int connect(string IP,int port);

Description
This function connects a socket previously created with Stdio.File-¿open socket
to a remote socket. The argument is the IP name or number for he remote
machine.

This function returns 1 for success, 0 otherwise. Note that if the socket is in
nonblocking mode, you have to wait for a write or close callback before you
know if the connection failed or not.

See Also
Stdio.File->query address

Stdio.File.query address - get addresses

string query address();
string query address(1);

Description
This function returns the remote or local address of a socket on the form ”x.x.x.x
port”. Without argument, the remote address is returned, with argument the

102 CHAPTER 9. FILE I/O

local address is returned. If this file is not a socket, not connected or some other
error occurs, zero is returned.

See Also
Stdio.File->connect

Stdio.File.pipe - create a two-way pipe

object pipe();

Description
This function creates a pipe between the object it was called in and an object
that is returned. The two ends of the pipe are indistinguishable. If the File
object this function is called in was open to begin with, it is closed before the
pipe is created.

See Also
fork

Stdio.File.set close on exec - set / clear the close on exec flag

void set close on exec(int onoff);

Description
This function determines whether this file will be closed when calling exece.
Default is that the file WILL be closed on exec except for stdin, stdout and
stderr.

See Also
exece

Here is an example of how to use the TCP functions in Stdio.File in blocking
mode. This short program takes a URL as first argument, connects to the
WWW server, sends a HEAD request and writes the reply to stdout. For
clarity, all calls to Stdio.File use File:: even if that is not strictly necessary.

import Stdio;

inherit File;

int main(int argc, array(string) argv)

{

string host;

string path="";

int port=80;

sscanf(argv[1],"http://%s",argv[1]);

sscanf(argv[1],"%s/%s",host,path);

sscanf(host,"%s:%d",host,port);

if(!File::open socket())

{

perror("Open socket failed");

exit(1);

9.2. BUFFERED FILE MANAGEMENT - STDIO.FILE 103

}

if(!File::connect(host,port))

{

perror("Failed to connect to remote host");

exit(1);

}

File::write(sprintf("HEAD /%s HTTP/1.0\n",path));

stdout::write(File::read());

}

9.2 Buffered file management - Stdio.FILE

Stdio.FILE
Stdio.FILE is a buffered version of Stdio.File, it inherits Stdio.File and has most
of the functionality of Stdio.File. However, it has an input buffer that allows
line-by-line input. Note that the output part of Stdio.FILE is not buffered at
this moment. The added functionality of Stdio.FILE is described here:

Stdio.FILE.gets - get one line

string gets();

Description
This function returns one line from the FILE, it returns zero if no more lines
are available.

Stdio.FILE.printf - formatted print

string printf(string format, mixed ... data);

Description
This function does approximately the same as: write(sprintf(format,@data))

See Also
sprintf

Stdio.FILE.ungets - put a string back in the buffer

string ungets(string s);

Description
This function puts a string back in the input buffer. The string can then be
read with read, gets or getchar.

104 CHAPTER 9. FILE I/O

Stdio.FILE.getchar - get one character from the input stream

int getchar();

Description
This function returns one character from the input stream. Note that the return
value is the ascii value of the character, not a string containing one character.

9.3 Standard streams - Stdio.stdin, stdout and stderr

Any UNIX program has three files open from the beginning. These are called
standard input, standard output and standard error stream. These streams
are available from Pike as well. They are called Stdio.stdin, Stdio.stdout
and Stdio.stderr respectively. Standard input is a clone of Stdio.FILE, which
means you can use the line oriented functions. Stdio.stdout and Stdio.stderr
are simply clones of Stdio.File.

Example:

int main()

{

int line;

while(string s=Stdio.stdin.gets())

write(sprintf("%5d: %s\n",line++,s));

}

This example will read lines from standard input for as long as there are more
lines to read. Each line will then be written to stdout together with the line
number. We could use Stdio.stdout.write instead of just write because they
are the same function.

9.4 Listening to sockets - Stdio.Port

Stdio.Port
Stdio.File can handle connections to any TCP socket, but it can not listen to
a local TCP port. For this purpose there is a special class called Stdio.Port.
Stdio.Port cannot read or write any data, but it can accept connections which
will be returned as clones of Stdio.File. These are the methods available in
Stdio.Port:

Stdio.Port.bind - open socket and bind it to a port

int bind(int port);
int bind(int port,function accept callback);
int bind(int port,function accept callback, string IP);

9.4. LISTENING TO SOCKETS - STDIO.PORT 105

Description
Bind opens a sockets and binds it to port number on the local machine. If the
second argument is present, the socket is set to nonblocking and the callback
function is called whenever something connects to the socket. The callback will
receive the id for this port as argument. Bind returns 1 on success, and zero on
failure.

If the optional argument IP is given, bind will try to bind to this IP name (or
number).

See Also
Stdio.Port->accept

Stdio.Port.listen fd - listen to an already open port

int listen fd(int fd);
int listen fd(int fd,function accept callback);

Description
This function does the same as Stdio.Port-¿bind, except that instead of creating
a new socket and bind it to a port, it expects that the file descriptor fd is an
already open port.

Note
This function is only for the advanced user, and is generally used when sockets
are passed to Pike at exec time.

See Also
Stdio.Port->bind and Stdio.Port->accept

Stdio.Port.create - create and/or setup a port

object(Stdio.Port) Stdio.Port("stdin")
object(Stdio.Port) Stdio.Port("stdin",function accept callback)
object(Stdio.Port) Stdio.Port("stdin",function accept callback)
object(Stdio.Port) Stdio.Port(int port)
object(Stdio.Port) Stdio.Port(int port,function accept callback)
object(Stdio.Port) Stdio.Port(int port,function accept callback,
string ip)

Description
When create is called with "stdin" as argument, a socket is created out of the
file descriptor 0. This is only useful if that actually is a socket to begin with.
When create is called with an int as first argument, it does the same as bind()
would do with the same arguments. The second and third argument has the
same function as in the bind() call.

See Also
clone and Stdio.Port->bind

Stdio.Port.set id - set the id of a port

void set id(mixed id);

106 CHAPTER 9. FILE I/O

Description
This function sets the id used for accept callback by this port. The default id
is this object().

See Also
Stdio.Port->query id

Stdio.Port.query id - Return the id for this port.

mixed query id();

Description
This function returns the id for this port. The id is normally the first argument
to accept callback.

See Also
Stdio.Port->set id

Stdio.Port.errno - return the last error
int errno();

Description
If the last call done on this port failed, errno will return an integer describing
what went wrong. Refer to your Unix manual for further information.

See Also
Stdio.Port->errno

Stdio.Port.accept - accept a connection

object accept();

Description
This function completes a connection made from a remote machine to this port.
It returns a two-way stream in the form of a copy of Stdio.File. The new file is
by default set to blocking.

See Also
Stdio.File

9.5 UDP socket and message management - Stdio.UDP

Stdio.UDP
Stdio.UDP();

Description
Stdio.UDP is the way of transceiving UDP from Pike.

See Also
Stdio.File

9.5. UDP SOCKET AND MESSAGE MANAGEMENT - STDIO.UDP 107

Stdio.UDP.bind
bind(int port); bind(int port,string address);

Description
binds a port for recieving or transmitting UDP

Returns
the called object

Stdio.UDP.enable broadcast
enable broadcast()

Description
enable transmission of broadcasts. This is normally only avalable to root users.

Returns
1 upon success, 0 otherwise

Stdio.UDP.read
read()
read(int flags)

Description
read from the UDP socket. Flags is a bitfield, 1 for out of band data and 2 for
peek.

Returns
mapping(string:int—string) in the form

([

"data" : string recieved data

"ip" : string recieved from this ip

"port" : int ...and this port

])

See Also
Stdio.UDP.set nonblocking and Stdio.UDP.set read callback

Stdio.UDP.send
send(string to addr,int to port,string data)
send(string to addr,int to port,string data,int flags)

Description

Returns
number of bytes sent

108 CHAPTER 9. FILE I/O

Stdio.UDP.set nonblocking
set nonblocking();
set blocking();
set nonblocking(function, mixed ...);

Description
sets this object to be nonblocking or blocking. If set nonblocking is given with
argument, these are passed to set read callback().

Returns
the called object

Stdio.UDP.set read callback
set read callback(function(mapping(string:int|string), mixed...),
mixed ... extra);

Description
The called function is recieving mapping similar to the return value of read:

([

"data" : string recieved data

"ip" : string recieved from this ip

"port" : int ...and this port

])

Returns
the called object

Stdio.UDP.query address
query address()

Description

Returns
the current address in format ”¡ip¿ ¡port¿”.

See Also
Stdio.File.query address

9.6 Terminal management - Stdio.Terminfo

Stdio.Terminfo.getFallbackTerm - get fallback terminal

object(Stdio.Terminfo.Terminfo)|object(Stdio.Terminfo.Termcap)
getFallbackTerm(string term);

9.6. TERMINAL MANAGEMENT - STDIO.TERMINFO 109

Description
Returns an object describing the fallback terminal for the terminal term. This
is usually equvivalent to Stdio.Terminfo.getTerm("dumb").

See Also
Stdio.Terminfo.getTerm

Stdio.Terminfo.getTerm - get terminal description

object(Stdio.Terminfo.Terminfo)|object(Stdio.Terminfo.Termcap)
getTerm();
or
object(Stdio.Terminfo.Terminfo)|object(Stdio.Terminfo.Termcap)
getTerm(string term);

Description
Returns an object describing the terminal term. If termis not specified, it will
default to getenv("TERM") or if that fails to "dumb".

Lookup of terminal information will first be done in the systems terminfo
database, and if that fails in the termcap database. If neither database ex-
ists, a hardcoded entry for "dumb" will be used.

See Also
Stdio.Terminfo.getTerminfo, Stdio.Terminfo.getTermcap and Stdio.getFallbackTerm

Stdio.Terminfo.getTermcap - get termcap description

object(Stdio.Terminfo.Termcap) getTermcap(string term);

Description
Return the terminal description of term from the systems termcap database.
Returns 0 if not found.

See Also
Stdio.Terminfo.getTerm and Stdio.Terminfo.getTerminfo

Stdio.Terminfo.getTerminfo - get terminfo description

object(Stdio.Terminfo.Terminfo) getTerminfo(string term);

Description
Return the terminal description of term from the systems terminfo database.
Returns 0 if not found.

See Also
Stdio.Terminfo.getTerm and Stdio.Terminfo.getTermcap

9.6.1 Stdio.Terminfo.Termcap

110 CHAPTER 9. FILE I/O

Stdio.Terminfo.Termcap
Termcap terminal decription object.

Stdio.Terminfo.Termcap.create - initialize termcap object

object(Stdio.Terminfo.Termcap) Termcap(string cap);
or
object(Stdio.Terminfo.Termcap) Termcap(string cap, object tcdb);
or
object(Stdio.Terminfo.Termcap) Termcap(string cap, object tcdb,
int maxrecurse);

Stdio.Terminfo.Termcap.tputs - put termcap string

9.6.2 Stdio.Terminfo.Terminfo

Stdio.Terminfo.Terminfo
Terminfo terminal description object.

9.7 Simple input-by-prompt - Stdio.Readline

Stdio.Readline
Stdio.Readline.create - init readline
object(Stdio.Readline) Stdio.Readline();
or
object(Stdio.Readline) Stdio.Readline(object infd);
or
object(Stdio.Readline) Stdio.Readline(object infd,

or
object(Stdio.Readline) Stdio.Readline(object infd,

or
object(Stdio.Readline) Stdio.Readline(object infd,

Description
Creates a Readline object, that takes input from infd, and has output on outfd.

9.8. OTHER STDIO FUNCTIONS 111

infd defaults to Stdio.stdout.

interm defaults to Stdio.Terminfo.getTerm().

outfd defaults to infd, unless infd is 0, in which case outfd defaults to Stdio.stdout.

outterm defaults to interm.

9.8 Other Stdio functions

The Stdio module also contains a collection of high level IO functions to make
it easy to write short and readable Pike programs. Most of these functions are
implemented using Stdio.File and Stdio.FILE.

Stdio.append path - append paths in a secure way

string append path(string absolute, string ... relative);

Description
Append relative paths to an absolute path and remove any ”//”, ”../” or ”/.”
to produce a straightforward absolute path as a result. ”../” is ignorded in the
relative paths if it makes the created path begin with something else than the
absolute path (or so far created path).

Example
> Stdio.append path("/foo/bar/","..");
Result: /foo/bar/
> Stdio.append path("/foo/bar/","../apa.c");
Result: /foo/bar/apa.c
> Stdio.append path("/foo/bar","./sune.c");
Result: /foo/bar/sune.c
> Stdio.append path("/foo/bar","bertil/../../sune.c");
Result: /foo/bar/sune.c
> Stdio.append path("/foo/bar","klas","bertil/../../sune.c");
Result: /foo/bar/klas/sune.c

See Also
combine path

Stdio.file size - return the size of a file in bytes

int file size(string file);

Description
Give the size of a file. Size -1 indicates that the file either does not exist, or
that it is not readable by you. Size -2 indicates that it is a directory.

See Also
Stdio.write file and Stdio.read bytes

112 CHAPTER 9. FILE I/O

Stdio.exist - check if a path exists

int exist(string path);

Description
Returns true if the given path exists (is a directory or file), otherwise false.

See Also
Stdio.is dir, Stdio.is file and Stdio.is link

Stdio.is dir - check if a path is a directory

int is dir(string path);

Description
Returns true if the given path is a directory, otherwise false.

See Also
Stdio.exist, Stdio.is file and Stdio.is link

Stdio.is file - check if a path is a file

int is file(string path);

Description
Returns true if the given path is a file, otherwise false.

See Also
Stdio.exist, Stdio.is dir and Stdio.is link

Stdio.is link - check if a path is a symbolic link

int is link(string path);

Description
Returns true if the given path is a symbolic link, otherwise false.

See Also
Stdio.exist, Stdio.is dir and Stdio.is file

Stdio.mkdirhier - make a directory hierarchy

int mkdirhier(string pathname, void|int mode);

Description
Creates zero or more directories to ensure that the given pathname is a directory.
Returns zero if it fails and nonzero if it is successful. If a mode is given, it’s
used for the new directories after being &’ed with the current umask (on OS’es
that supports this).

See Also
mkdir

9.8. OTHER STDIO FUNCTIONS 113

Stdio.perror - print error

void perror(string s);

Description
This function prints a message to stderr along with a description of what went
wrong if available. It uses the system errno to find out what went wrong, so it
is only applicable to IO errors.

See Also
Stdio.werror

Stdio.read bytes - read a number of bytes into a string from a file

string read bytes(string file,int start,int len);
string read bytes(string file,int start);
string read bytes(string file);

Description
Read len number of bytes from file file staring at byte start and return it as
a string. If len is omitted, the rest of the file will be returned. If start is also
omitted, the entire file will be returned.

See Also
Stdio.write file

Stdio.read file - read a number of lines into a string from file

string read file(string file, int start, int len);
string read file(string file);

Description
Read len lines from the file file after skipping start lines and return those lines
as a string. If start and len are omitted the whole file is read.

See Also
Stdio.read bytes and Stdio.write file

Stdio.readline - read a line from stdin
string readline(string prompt);

Description
This function is gone. Use Stdio.Readline()-¿read instead.

See Also
Stdio.File

Stdio.recursive rm - remove a file or a directory tree recursively

int recursive rm(string path);

114 CHAPTER 9. FILE I/O

Description
Remove a file or directory a directory tree, return 0 if it fails. Nonzero otherwise.

See Also
rm

Stdio.sendfile - send contents from one file to another

object sendfile(array(string) headers,

or
object sendfile(array(string) headers,

Description
Sends headers followed by len bytes starting at offset from the file from followed
by trailers to the file to. When completed callback is called with the total
number of bytes sent as the first argument, followed by args.

Any of headers, from and trailers may be left out by setting them to 0.

Setting offset to -1 means send from the current position in from.

Setting len to -1 means send until from’s end of file is reached.

Note
The sending is performed asynchronously, and may complete before the function
returns.

For callback to be called, the backend must be active (ie main() must have
returned -1).

In some cases, the backend must also be active for any sending to be performed
at all.

See Also
Stdio.File->set nonblocking

Stdio.werror - write to stderr
void werror(string s);

Description
Writes a message to stderr. Stderr is normally the console, even if the process
output has been redirected to a file or pipe.

Stdio.write file - append a string to a file

int write file(string file, string str)

9.9. A SIMPLE EXAMPLE 115

Description
Append the string str onto the file file. Returns number of bytes written.

See Also
Stdio.read bytes

9.9 A simple example

Here is a simple example of how to use the Stdio-functions.

string grep(string indata, string needle)

{

object out=Stdio.File(),in=Stdio.File();

object process=

Process.create process(({"/bin/grep",needle}),

(["stdin":out->pipe(),

"stdout":in->pipe()]));

out->write(indata);

out->close();

process->wait();

return in->read();

}

This function filters the indata through the UNIX-command /bin/grep and
return the result.

9.10 A more complex example - a simple WWW server

As most of you know, WWW WWW (World Wide Web), works by using a
client program which will fetch files from remote servers when asked. Usually
by clicking a picture or text. This example is a program for the server which
will send files to any computer that requests them. The protocol used to send
the file is called HTTP. (Hyper-Text Transfer Protocol)

Usually WWW involves HTML. HTML (Hyper-Text Markup Language) is a
way to write documents with embedded pictures and links to other pages. These
links are normally displayed underlined and if you click them your WWW-
browser will load whatever document that link leads to.

#!/usr/local/bin/pike

/* A very small httpd capable of fetching files only.

* Written by Fredrik Hübinette as a demonstration of Pike.

*/

116 CHAPTER 9. FILE I/O

inherit Stdio.Port;

We inherit Stdio.Port into this program so we can bind a TCP socket to accept
incoming connection. A socket is simply a number to separate communications
to and from different programs on the same computer.

Next are some constants that will affect how uHTTPD will operate. This uses
the preprocessor directive #define. The preprocessor is the first stage in the
compiling process and can make textual processing of the code before it is com-
piled. As an example, after the first define below, all occurrences of ’BLOCK’
will be replaced with 16060.

/* Amount of data moved in one operation */

#define BLOCK 16060

/* Where do we have the html files ? */

#define BASE "/usr/local/html/"

/* File to return when we can’t find the file requested */

#define NOFILE "/user/local/html/nofile.html"

/* Port to open */

#define PORT 1905

A port is a destination for a TCP connection. It is simply a number on the
local computer. 1905 is not the standard port for HTTP connections though,
which means that if you want to access this WWW server from a browser you
need to specify the port like this: http://my.host.my.domain:1905/

Next we declare a class called output class. Later we will clone one instance of
this class for each incoming HTTP connection.

class output class

{

inherit Stdio.File : socket;

inherit Stdio.File : file;

Our new class inherits Stdio.File twice. To be able to separate them they are
then named ’socket’ and ’file’.

int offset=0;

Then there is a global variable called offset which is initialized to zero. (Each
instance of this class will have its own instance of this variable, so it is not truly
global, but...) Note that the initialization is done when the class is cloned (or
instantiated if you prefer C++ terminology).

Next we define the function write callback(). Later the program will go into a
’waiting’ state, until something is received to process, or until there is buffer

9.10. A MORE COMPLEX EXAMPLE - A SIMPLE WWW SERVER 117

space available to write output to. When that happens a callback will be called
to do this. The write callback() is called when there is buffer space available. In
the following lines ’void’ means that it does not return a value. Write callback
will be used further down as a callback and will be called whenever there is
room in the socket output buffer.

void write callback()

{

int written;

string data;

The following line means: call seek in the inherited program ’file’.

file::seek(offset);

Move the file pointer to the where we want to the position we want to read
from. The file pointer is simply a location in the file, usually it is where the last
read() ended and the next will begin. seek() can move this pointer to where we
want it though.

data=file::read(BLOCK);

Read BLOCK (16060) bytes from the file. If there are less that that left to
read only that many bytes will be returned.

if(strlen(data))

{

If we managed to read something...

written=socket::write(data);

... we try to write it to the socket.

if(written >= 0)

{

offset+=written;

return;

}

Update offset if we managed to write to the socket without errors.

werror("Error: "+socket::errno()+".\n");

}

118 CHAPTER 9. FILE I/O

If something went wrong during writing, or there was nothing left to read we
destruct this instance of this class.

destruct(this object());

}

That was the end of write callback()

Next we need a variable to buffer the input received in. We initialize it to an
empty string.

string input="";

And then we define the function that will be called when there is something
in the socket input buffer. The first argument ’id’ is declared as mixed, which
means that it can contain any type of value. The second argument is the contents
of the input buffer.

void read callback(mixed id,string data)

{

string cmd;

input+=data;

Append data to the string input. Then we check if we have received a a
complete line yet. If so we parse this and start outputting the file.

if(sscanf(input,"%s %s%*[\012\015 \t]",cmd,input)>2)

{

This sscanf is pretty complicated, but in essence it means: put the first word in
’input’ in ’cmd’ and the second in ’input’ and return 2 if successful, 0 otherwise.

if(cmd!="GET")

{

werror("Only method GET is supported.\n");

destruct(this object());

return;

}

If the first word isn’t GET print an error message and terminate this instance
of the program. (and thus the connection)

sscanf(input,"%*[/]%s",input);

9.10. A MORE COMPLEX EXAMPLE - A SIMPLE WWW SERVER 119

Remove the leading slash.

input=BASE+combine path("/",input);

Combine the requested file with the base of the HTML tree, this gives us a full
filename beginning with a slash. The HTML tree is the directory on the server in
which the HTML files are located. Normally all files in this directory can be ac-
cessed by anybody by using a WWW browser. So if a user requests ’index.html’
then that file name is first added to BASE (/home/hubbe/www/html/ in this
case) and if that file exists it will be returned to the browser.

if(!file::open(input,"r"))

{

Try opening the file in read-only mode. If this fails, try opening NOFILE
instead. Opening the file will enable us to read it later.

if(!file::open(NOFILE,"r"))

{

If this fails too. Write an error message and destruct this object.

werror("Couldn’t find default file.\n");

destruct(this object());

return;

}

}

Ok, now we set up the socket so we can write the data back.

socket::set buffer(65536,"w");

Set the buffer size to 64 kilobytes.

socket::set nonblocking(0,write callback,0);

Make it so that write callback is called when it is time to write more data to
the socket.

write callback();

Jump-start the writing.

}

}

120 CHAPTER 9. FILE I/O

That was the end of read callback().

This function is called if the connection is closed while we are reading from the
socket.

void selfdestruct() { destruct(this object()); }

This function is called when the program is instantiated. It is used to set
up data the way we want it. Extra arguments to clone() will be sent to this
function. In this case it is the object representing the new connection.

void create(object f)

{

socket::assign(f);

We insert the data from the file f into ’socket’.

socket::set nonblocking(read callback,0,selfdestruct);

Then we set up the callback functions and sets the file nonblocking. Nonblock-
ing mode means that read() and write() will rather return that wait for I/O to
finish. Then we sit back and wait for read callback to be called.

}

End of create()

};

End of the new class.

Next we define the function called when someone connects.

void accept callback()

{

object tmp output;

This creates a local variable of type ’object’. An object variable can contain
a clone of any program. Pike does not consider clones of different programs
different types. This also means that function calls to objects have to be resolved
at run time.

9.10. A MORE COMPLEX EXAMPLE - A SIMPLE WWW SERVER 121

tmp output=accept();

The function accept clones a Stdio.File and makes this equal to the newly
connected socket.

if(!tmp output) return;

If it failed we just return.

output class(tmp output);

Otherwise we clone an instance of ’output class’ and let it take care of the
connection. Each clone of output class will have its own set of global variables,
which will enable many connections to be active at the same time without data
being mixed up. Note that the programs will not actually run simultaneously
though.

destruct(tmp output);

Destruct the object returned by accept(), output class has already copied the
contents of this object.

}

Then there is main, the function that gets it all started.

int main(int argc, array(string) argv)

{

werror("Starting minimal httpd\n");

Write an encouraging message to stderr.

if(!bind(PORT, accept callback))

{

werror("Failed to open socket (already bound?)\n");

return 17;

}

Bind PORT and set it up to call accept callback as soon as someone connects
to it. If the bind() fails we write an error message and return the 17 to indicate
failure.

return - 17; /* Keep going */

122 CHAPTER 9. FILE I/O

If everything went ok, we return -17, any negative value returned by main()
means that the program WON’T exit, it will hang around waiting for events
instead. (like someone connecting)

}

That’s it, this simple program can be used as the basis for a simple WWW-
server. Note that today most WWW servers are very complicated programs,
and the above program can never replace a modern WWW server. However,
it is very fast if you only want a couple of web pages and have a slow machine
available for the server.

Chapter 10

Threads

Threads are used to run several Pike functions at the same time without hav-
ing to start several Pike processes. Using threads often simplifies coding and
because the threads are within the same process, data can be shared or sent
to other threads very fast. Threads are not supported on all systems, you
may test if you have thread support with the preprocessor construction #if
constant(thread create). Pike needs POSIX or UNIX thread support when
compiled to support threads.

10.1 Starting a thread

Starting a thread is very easy. You simply call thread create with a func-
tion pointer and any arguments it needs and that function will be executed in
a separate thread. The function thread create will return immediately and
both the calling function and the called function will execute at the same time.
Example:

void foo(int x)

{

for(int e=0;e<5;e++)

{

sleep(1);

write("Hello from thread "+x+".\n");

}

}

int main()

{

thread create(foo, 2);

thread create(foo, 3);

foo(1);

}

123

124 CHAPTER 10. THREADS

This may all seem very simple, but there are a few complications to watch out
for:

10.2 Threads reference section

This section describes all thread-related functions and classes.

Thread.thread create - create a thread
object thread create(function f, mixed ... args);

Description
This function creates a new thread which will run simultaneously to the rest of
the program. The new thread will call the function f with the arguments args.
When f returns the thread will cease to exist. All Pike functions are ’thread
safe’ meaning that running a function at the same time from different threads
will not corrupt any internal data in the Pike process. The returned value will
be the same as the return value of this thread() for the new thread.

Note
This function is only available on systems with POSIX or UNIX threads support.

See Also
Thread.Mutex, Thread.Condition and Thread.this thread

Thread.this thread - return thread id
object this thread();

Description
This function returns the object that identifies this thread.

See Also
Thread.thread create

Thread.all threads - return all thread ids
array(object) all threads();

Description
This function returns an array with the thread ids of all threads.

See Also
Thread.thread create

10.2. THREADS REFERENCE SECTION 125

Thread.Mutex - mutex locks

Description
Thread.Mutex is a pre-compiled Pike program that implements mutual exclu-
sion locks. Mutex locks are used to prevent multiple threads from simultane-
ously execute sections of code which access or change shared data. The basic
operations for a mutex is locking and unlocking, if a thread attempts to lock an
already locked mutex the thread will sleep until the mutex is unlocked.

Note
Mutex locks are only available on systems with POSIX or UNIX threads sup-
port.

In POSIX threads, mutex locks can only be unlocked by the same thread that
locked them. In Pike any thread can unlock a locked mutex.

Example

/* This simple program can be used to exchange data between two

* programs. It is similar to Thread.Fifo, but can only hold one

* element of data.

*/

inherit Thread.Mutex : r mutex;

inherit Thread.Mutex : w mutex;

object r lock=r mutex::lock();

object w lock;

mixed storage;

void write(mixed data)

{

w lock=w mutex::lock();

storage=data;

destruct(r lock);

}

mixed read()

{

mixed tmp;

r lock=r mutex::lock();

tmp=storage;

storage=0;

destruct(w lock);

return tmp;

}

126 CHAPTER 10. THREADS

Thread.Mutex.lock - lock the mutex
object lock();

Description
This function attempts to lock the mutex, if the mutex is already locked the
current thread will sleep until the lock is unlocked by some other thread. The
value returned is the ’key’ to the lock. When the key is destructed or has no
more references the lock will automatically be unlocked. The key will also be
destructed if the lock is destructed.

Thread.Mutex.trylock - try to lock the mutex

object trylock();

Description
This function performs the same operation as lock(), but if the mutex is already
locked zero will be returned instead of sleeping until the lock is unlocked.

Thread.Condition - condition variables
Description
Thread.Condition is a pre-compiled Pike program that implements condition
variables. Condition variables are used by threaded programs to wait for events
happening in other threads.

Note
Condition variables are only available on systems with POSIX or UNIX threads
support.

Example

// This program implements a fifo that can be used to send

// data between two threads.

inherit Thread.Condition : r cond;

inherit Thread.Condition: w cond;

inherit Thread.Mutex: lock;

array buffer = allocate(128);

int r ptr, w ptr;

int query messages() { return w ptr - r ptr; }

// This function reads one mixed value from the fifo.

// If no values are available it blocks until a write has been done.

mixed read()

{

mixed tmp;

// We use this mutex lock to make sure no write() is executed

// between the query messages and the wait() call. If it did

// we would wind up in a deadlock.

object key=lock::lock();

10.2. THREADS REFERENCE SECTION 127

while(!query messages()) r cond::wait(key);

tmp=buffer[r ptr++ % sizeof(buffer)];

w cond::signal();

return tmp;

}

// This function pushes one mixed value on the fifo.

// If the fifo is full it blocks until a value has been read.

void write(mixed v)

{

object key=lock::lock();

while(query messages() == sizeof(buffer)) w cond::wait(key);

buffer[w ptr++ % sizeof(buffer)]=v;

r cond::signal();

}

See Also
Thread.Mutex

Thread.Condition.wait - wait for condition
void wait();
void wait(object mutex key);

Description
This function makes the current thread sleep until the condition variable is
signalled. The optional argument should be the ’key’ to a mutex lock. If present
the mutex lock will be unlocked before waiting for the condition in one atomic
operation. After waiting for the condition the mutex referenced by mutex key
will be re-locked.

See Also
Thread.Mutex->lock

Thread.Condition.signal - signal a condition variable

void signal();

Description
Signal wakes up one of the threads currently waiting for the condition.

Bugs
It sometimes wakes up more than one thread.

Thread.Condition.broadcast - signal all waiting threads

void broadcast();

Description
This function wakes up all threads currently waiting for this condition.

Thread.Fifo - first in, first out object

128 CHAPTER 10. THREADS

Description
Thread.Fifo implements a fixed length fifo. A fifo is a queue of values and is
often used as a stream of data between two threads.

Note
Fifos are only available on systems with POSIX threads support.

See Also
Thread.Queue

Thread.Fifo.create - initialize the fifo

void create(int size);
object(Thread.Fifo) Thread.Fifo();
object(Thread.Fifo) Thread.Fifo(int size);

Description
The function create() is called when the fifo is cloned, if the optional size ar-
gument is present it sets how many values can be written to the fifo without
blocking. The default size is 128.

Thread.Fifo.write - queue a value

void write(mixed value);

Description
This function puts a value last in the fifo. If there is no more room in the fifo
the current thread will sleep until space is available.

Thread.Fifo.read - read a value from the fifo

mixed read();

Description
This function retrieves a value from the fifo. Values will be returned in the order
they were written. If there are no values present in the fifo the current thread
will sleep until some other thread writes a value to the fifo.

Thread.Fifo.size - return number of values in fifo

int size();

Description
This function returns how many values are currently in the fifo.

Thread.Queue - a queue of values

Description
Thread.Queue implements a queue, or a pipeline. The main difference between
Thread.Queue and Thread.Fifo is that queues will never block in write(), only
allocate more memory.

Note
Queues are only available on systems with POSIX or UNIX threads support.

10.2. THREADS REFERENCE SECTION 129

See Also
Thread.Fifo

Thread.Queue.write - queue a value

void write(mixed value);

Description
This function puts a value last in the queue. If the queue is too small to hold
the value the queue will be expanded to make room for it.

Thread.Queue.read - read a value from the queue

mixed read();

Description
This function retrieves a value from the queue. Values will be returned in the
order they were written. If there are no values present in the queue the current
thread will sleep until some other thread writes a value to the queue.

Thread.Queue.size - return number of values in queue

int queue->size();

Description
This function returns how many values are currently in the queue.

Thread.thread local - Thread local variable class

Description
This class allows you to have variables which are separate for each thread that
uses it. It has two methods: get and set. A value stored in an instance of
thread local can only be retreived by that same thread.

Thread.thread local.thread local.set - Set the thread local value

mixed set(mixed value);

Description
This sets the value returned by the get method. Note that this value can only
be retreived by the same thread. Calling this method does not affect the value
returned by get when called by another thread.

Thread.thread local.thread local.get - Get the thread local value

mixed set(mixed value);

Description
This returns the value prevoiusly stored in the thread local by the set method
by this thread.

130 CHAPTER 10. THREADS

10.3 Threads example

Let’s look at an example of how to work with threads. This program is the
same minimal WWW server as in chapter 8.5 but it has been re-written to use
threads, as you can see it is a lot smaller this way. This is because we can use
blocking I/O operations instead of non-blocking and callbacks. This also makes
the program much easier to follow:

#!/usr/local/bin/pike

/* A very small threaded httpd capable of fetching files only.

* Written by Fredrik Hübinette as a demonstration of Pike

*/

import Thread;

inherit Stdio.Port;

/* number of bytes to read for each write */

#define BLOCK 16384

/* Where do we have the html files ? */

#define BASE "/home/hubbe/pike/src/"

/* File to return when we can’t find the file requested */

#define NOFILE "/home/hubbe/www/html/nofile.html"

/* Port to open */

#define PORT 1905

/* Number of threads to start */

#define THREADS 5

// There will be one of these for each thread

class worker

{

inherit Stdio.FILE : socket; // For communication with the browser

inherit Stdio.File : file; // For reading the file from disc

void create(function accept)

{

string cmd, input, tmp;

while(1)

{

socket::close(); // Close previous connection

file::close();

object o=accept(); // Accept a connection

if(!o) continue;

socket::assign(o);

10.3. THREADS EXAMPLE 131

destruct(o);

// Read request

sscanf(socket::gets(),"%s %s%*[\012\015 \t]",cmd, input);

if(cmd!="GET")

{

werror("Only method GET is supported.\n");

continue;

}

// Open the requested file

sscanf(input,"%*[/]%s",input);

input=BASE+combine path("/",input);

if(!file::open(input,"r"))

{

if(!file::open(NOFILE,"r"))

{

werror("Couldn’t find default file.\n");

continue;

}

}

// Copy data to socket

while(socket::write(file::read(BLOCK))==BLOCK);

}

}

};

int main(int argc, array(string) argv)

{

werror("Starting minimal threaded httpd\n");

// Bind the port, don’t set it nonblocking

if(!bind(PORT))

{

werror("Failed to open socket (already bound?)\n");

return 17;

}

// Start worker threads

for(int e=1;e<THREADS;e++) thread create(worker,accept);

worker(accept);

}

As stated in the beginning of this chapter; Pike threads are only available on
some UNIX systems. The above example does not work if your system does not
have threads.

132 CHAPTER 10. THREADS

Chapter 11

Modules for specific data types

There are a few modules that provide extra functions that operate specifically
on one data type. These modules have the same name as the data type, but
are capitalized so you can tell the difference. At the time of writing, the only
such modules are String and Array, but more are expected to show up in the
future.

11.1 String

The module String contains some extra string functionality which is not always
used. These functions are mostly implemented in Pike as a complement to those
written in C.

String.fuzzymatch - make a fuzzy compare of two strings

int fuzzymatch(string word1, string word2);

Description
This function compares two strings using a fuzzy matching routine. The higher
the resulting value, the better the strings match.

Example
> fuzzymatch("cat", "hat");
Result: 66
> fuzzymatch("cat", "dog");
Result: 0
> fuzzymatch("United States", "United Nations");
Result: 70

See Also
Array.diff, Array.diff compare table and Array.diff longest sequence

String.implode nicely - make an English comma separated list

string implode nicely(array(string|float|int) words, string|void
separator);

133

134 CHAPTER 11. MODULES FOR SPECIFIC DATA TYPES

Description
This function implodes a list of words to a readable string. If the separator is
omitted, the default is "and". If the words are numbers they are converet to
strings first.

Example
> implode nicely(({"green"}));
Result: green
> implode nicely(({"green","blue"}));
Result: green and blue
> implode nicely(({"green","blue","white"}));
Result: green, blue and white
> implode nicely(({"green","blue","white"}),"or");
Result: green, blue or white
> implode nicely(({1,2,3}),"or even");
Result: 1, 2 or even 3

See Also
‘*

String.capitalize - capitalize a string

string capitalize(string str);

Description
Convert the first character in str to upper case, and return the new string.

See Also
lower case and upper case

String.common prefix - find the longest common beginning

string common prefix(array(string) strs);

Description
Find the longest common beginning from an array of strings.

Example
> String.common prefix(({ "muzzle", "muzzy" }));
Result: "muzz"
> String.common prefix(({ "labyrinth", "diatom" }));
Result: ""
> String.common prefix(({}));
Result: ""

String.sillycaps - Sillycaps A String

string sillycaps(string str);

11.2. ARRAY 135

Description
Convert the first character in each word (separated by spaces) in str to upper
case, and return the new string.

String.strmult - multiply strings

string strmult(string s, int num);

Description
This function multiplies ’s’ by ’num’. The return value is the same as appending
’s’ to an empty string ’num’ times.

String.count - count needles in a haystack string

string count(string haystack, string needle);

Description
This function counts the number of times the needle can be found in haystack.
Intersections between needles are not counted, ie count(”....”,”..”) is 2.

String.width - return width of string

int width(string s);

Description
Returns the width in bits (8, 16 or 32) of the widest character in s.

String.trim whites - trim spaces and tabs from a string

string trim whites(string s);

Description
Trim leading and trailing spaces and tabs from the string s.

String.trim all whites - trim all white spaces from a string

string trim all whites(string s);

Description
Trim leading and trailing white space characters (” “t“r“n”) from the string s.

11.2 Array

As with String these functions are mostly Pike functions written to supplement
those written in C.

Array.diff - gives the difference of two arrays

array(array(array)) diff(array a, array b);

136 CHAPTER 11. MODULES FOR SPECIFIC DATA TYPES

Description
Calculates which parts of the arrays that are common to both, and which parts
that are not. Returns an array with two elements, the first is an array of parts
in array a, and the second is an array of parts in array b.

Example

> Array.diff("Hello world!"/"","Help!"/"");

Result: ({ /* 2 elements */

({ /* 3 elements */

({ /* 3 elements */

"H",

"e",

"l"

}),

({ /* 8 elements */

"l",

"o",

" ",

"w",

"o",

"r",

"l",

"d"

}),

({ /* 1 elements */

"!"

})

}),

({ /* 3 elements */

({ /* 3 elements */

"H",

"e",

"l"

}),

({ /* 1 elements */

"p"

}),

({ /* 1 elements */

"!"

})

})

})

See Also
Array.diff compare table, Array.diff longest sequence and String.fuzzymatch

11.2. ARRAY 137

Array.diff compare table - gives the comparison-table used by Array.diff()

array(array(int)) diff compare table(array a, array b);

Description
Returns an array which maps from index in a to corresponding indices in b.

Example

> Array.diff compare table("Hello world!"/"","Help!"/"");

Result: ({ /* 12 elements */

({ /* 1 elements */

0

}),

({ /* 1 elements */

1

}),

({ /* 1 elements */

2

}),

({ /* 1 elements */

2

}),

({ }),

({ }),

({ }),

({ }),

({ }),

({ /* 1 elements */

2

}),

({ }),

({ /* 1 elements */

4

})

})

See Also
Array.diff, Array.diff longest sequence and String.fuzzymatch

Array.diff longest sequence - gives the longest common sequence of
two arrays

array(int) diff longest sequence(array a, array b);

Description
Gives the longest sequence of indices in b that have corresponding values in the

138 CHAPTER 11. MODULES FOR SPECIFIC DATA TYPES

same order in a.

Example

> Array.diff longest sequence("Hello world!"/"","Help!"/"");

Result: ({ /* 4 elements */

0,

1,

2,

4

})

See Also
Array.diff, Array.diff compare table and String.fuzzymatch

Array.everynth - return every n:th element of an array

array(mixed) Array.everynth(array(mixed) arr1, void|int nth,
void|int start);

Description
This function returns an array with every n:th element of an other array. If nth
is zero, every second element is returned.

Example
> Array.everynth(({"1","2","3","4","5","6"}),2,1);

Result: ({ /* 3 elements */

"2",

"4",

"6"

})

See Also
Array.splice and ‘/

Array.filter - filter an array or mapping through a function

array filter(array arr,function fun,mixed ... args);
array filter(array(object) arr,string fun,mixed ... args);
array filter(array(function) arr,-1,mixed ... args);

Description
First syntax:
Filter array returns an array holding the items of arr for which fun returns true.

11.2. ARRAY 139

Second syntax:
Filter array calls fun in all the objects in the array arr, and return all objects
that returned true.

Third syntax:
Filter array calls all function pointers in the array arr, and return all that
returned true.

See Also
Array.sum arrays and Array.map

Array.longest ordered sequence - find the longest ordered sequence
of elements
array(int) longest ordered sequence(array a);

Description
This function returns an array of the indices in the longest ordered sequence of
elements in the array.

Example

> array a = ({ 1,2,3,4,2,3,5,6 });

Result: ({ /* 8 elements */

1,

2,

3,

4,

2,

3,

5,

6

})

> array seq = Array.longest ordered sequence(a);

Result: ({ /* 6 elements */

0,

1,

4,

5,

6,

7

})

> rows(a,seq);

Result: ({ /* 6 elements */

1,

2,

2,

3,

5,

6

140 CHAPTER 11. MODULES FOR SPECIFIC DATA TYPES

})

See Also
Array.diff

Array.map - map an array or mapping over a function

array map(array arr,function fun,mixed ... args);
array map(array(object) arr,string fun,mixed ... args);
array map(array(function) arr,-1,mixed ... arg);

Description
First syntax:
Map array returns an array holding the items of arr mapped through the func-
tion fun. i.e. arr[x]=fun(arr[x], @args) for all x.

Second syntax:
Map array calls function fun in all objects in the array arr. i.e. arr[x]=arr[x]-
¿fun(@ args);

Third syntax:
Map array calls the functions in the array arr: arr[x]=arr[x]-¿fun(@ args);

See Also
Array.sum arrays and Array.filter

Array.permute - Give a specified permutation of an array

array permute(array in,int number);

Description
permute gives you a selected permutation of an array. The numbers of permu-
tations equal sizeof(in)! (the factorial of the size of the given array).

Example
Array.permute(({ 1,2,3 }), 0) -> ({1,2,3})
Array.permute(({ 1,2,3 }), 3) -> ({1,3,2})

See Also
Array.shuffle

Array.reduce - Iterativily apply a function on an array

mixed reduce(function f, array arr, void|mixed zero);

Description
reduce sends the first two elements in arr to f, then the result and the next
element in arr to f and so on. Then it returns the result. The function will
return zero if arr is the empty array. If arr has size 1 it will return the element
in arr.

Example

11.2. ARRAY 141

Array.reduce(aggregate, indices(allocate(4))) ->

({ ({ ({ 0, 1 }), 2 }), 3 })

Array.reduce(‘+, ({}), "FOO?") ->

"FOO?"

Array.reduce(lambda(int a, int b) {

while(b) { int t=b; b=a%b; a=t; }

return a;

}, ({7191,21573,64719,33694}))

-> 17

See Also
Array.rreduce

Array.rreduce - Iterativily apply a function on an array backwards

mixed rreduce(function f, array arr, void|mixed zero);

Description
reduce sends the last two elements in arr to f, then the third last element in
arr and the result to f and so on. Then it returns the result. The function will
return zero if arr is the empty array. If arr has size 1 it will return the element
in arr.

Example

Array.rreduce(aggregate, indices(allocate(4))) ->

({ 0, ({ 1, ({ 2, 3 }) }) })

See Also
Array.reduce

Array.search array - search for something in an array

int search array(array arr,function fun,mixed arg, ...);
int search array(array(object) arr,string fun,mixed arg, ...);
int search array(array(function) arr,-1,mixed arg, ...);

Description
search array works like map array, only it returns the index of the first call that
returned true instead or returning an array of the returned values. If no call
returns true, -1 is returned.

See Also
Array.sum arrays and Array.filter

142 CHAPTER 11. MODULES FOR SPECIFIC DATA TYPES

Array.shuffle - Random-shuffle an array

array shuffle(array in);

Description
shuffle gives back the same elements, but by random order.

Example
Array.shuffle(({"this","is","an","ordered","array"})) -> ({"is","ordered","array","this","an"})

See Also
Array.permute

Array.sort array - sort an array

array sort array(array arr,function fun,mixed ... args);

Description
This function sorts an array after a compare-function funwhich takes two argu-
ments and should return 1 if the first argument is larger then the second. The
rest of the arguments args will be sent as 3rd, 4th etc. argument to fun. If fun
is omitted, ‘¿ is used instead.

See Also
Array.map and sort

Array.splice - splice two or more arrays

array(mixed) Array.splice(array(mixed) arr1, array(mixed) arr2,
array(mixed) ...);

Description
This function splice two or more arrays together. This means that the the array
becomes an array of the first element in the first given array, the first argument
in next array and so on for all arrays. Then the second elements are added.

Example
> Array.splice(({1,2,3}),({"1","2","3"}),({"a","b","c"}));

Result: ({ /* 9 elements */

1,

"1",

"a",

2,

"2",

"b",

3,

"3",

"c"

})

11.2. ARRAY 143

> Array.splice(({1,2,3}),({"1","2","3"}),({"a","b"}));

Result: ({ /* 9 elements */

1,

"1",

"a",

2,

"2",

"b",

})

See Also
‘/, ‘*, ‘+, ‘- and Array.everynth

Array.sum arrays - map any number of arrays over a function

array sum arrays(function fun,array arr1,...);

Description
Works like this:

array sum arrays(function fun,array arr1,...)

{

int e;

array res=allocate(sizeof(arr1));

for(e=0;e<sizeof(arr1);e++)

{

res[e]=fun(arr1[e],arr2[e],...);

}

return res;

}

Simple ehh?

See Also
Array.map, Array.filter and Array.search array

Array.uniq - remove elements that are duplicates

array uniq(array a);

Description
This function returns an copy of the array a with all duplicate values removed.
The order of the values in the result is undefined.

144 CHAPTER 11. MODULES FOR SPECIFIC DATA TYPES

Chapter 12

Image

The Image module is used to manipulate bit-mapped color images. It can
read PPM images and do various manipulations, or it can be used to create
completely new images. The created images can be saved as PPM or converted
to GIF.

All images handled by this module are stored as 24-bit RGB images. This means
that a 1024 pixel wide and 1024 pixel high image will use 1024*1024*3 bytes =
3 megabytes. It is quite easy to mess up and use up all the memory by giving
the wrong argument to one of the scaling functions.

Most functions in this module work by creating a new Image and then returning
that instead of changing the Image you are working with. This makes it possible
to share the same image between many variables without having to worry that
it will be changed by accident. This can reduce the amount of memory used.

Many functions in this module work with the ’current color’, this can be thought
of as the background color if you wish. To change the current color you use
’setcolor’.

Let’s look at an example of how this can be used:

#!/usr/local/bin/pike

int main()

{

write("Content-type: image/gif\n\n");

object font=Image.font();

font->load("testfont");

object image=font->write(ctime(time));

write(Image.GIF.encode(image));

}

This very simple example can be used as a CGI script to produce a gif image
which says what time it is in white text on a black background.

Description

145

146 CHAPTER 12. IMAGE

This module adds image-drawing and -manipulating capabilities to pike.

Image.Image Basic image manipulation
Image.Font Creating images from text
Image.Colortable Color reduction, quantisation and dither
Image.Color Color names, objects and conversion

encoding/decoding image files
Image.GIF GIF encoding/decoding capabilities
Image.JPEG JPEG encoding/decoding capabilities (needs libjpeg)
Image.PNG PNG encoding/decoding capabilities (needs libz)
Image.PNM PNM (PBM/PGM/PPM) encoding/decoding capabilities
Image.XFace XFace encoding/decoding capabilities (needs libgmp)
Image.XWD XWD (X-windows dump) decoding capabilities

advanced

Image.X module for supporting X-windows low-level formats, keeping
a lot of bit-mending stuff.

$Id: module.pmod,v 1.8 2000/03/22 18:12:19 peter Exp $

Note

Image module documentation is based on these file versions:

Image.lay

Image.Layer lay(array(Image.Layer|mapping))
Image.Layer lay(array(Image.Layer|mapping), int xoffset,
int yoffset, int xsize, int ysize)

Description
Combine layers.

Returns
a new layer object.

See Also
Image.Layer

Image.load ,
Image.load layer ,

12.1. IMAGE.IMAGE 147

Image. load
object(Image.Image) load()
object(Image.Image) load(object file)
object(Image.Image) load(string filename)
object(Image.Layer) load layer()
object(Image.Layer) load layer(object file)
object(Image.Layer) load layer(string filename)
mapping load()
mapping load(object file)
mapping load(string filename)

Description
Helper function to load an image from a file. If no filename is given, Stdio.stdin
is used. The result is the same as from the decode functions in Image.ANY.

Note
All data is read, ie nothing happens until the file is closed. Throws upon error.

12.1 Image.Image

Image.Image
Description
The main object of the Image module, this object is used as drawing area, mask
or result of operations.

basic:
clear, clone, create, xsize, ysize

plain drawing:
box, circle, getpixel, line, setcolor, setpixel, threshold, polyfill

operators:
‘&, ‘*, ‘+, ‘-, ‘==, ‘¿, ‘¡, ‘—

pasting images:
paste, paste alpha, paste alpha color, paste mask

getting subimages, scaling, rotating:
autocrop, clone, copy, dct, mirrorx, rotate, rotate ccw, rotate cw, rotate expand,
scale, skewx, skewx expand, skewy, skewy expand

calculation by pixels:
apply matrix, change color, color, distancesq, grey, invert, modify by intensity,
outline select from, rgb to hsv, hsv to rgb,

average, max, min, sum, sumf, find min, find max

special pattern drawing:
noise, turbulence, test, tuned box, gradients, random

148 CHAPTER 12. IMAGE

See Also
Image, Image.Font, Image.Colortable and Image.X

Image.Image.apply matrix
object apply matrix(array(array(int|array(int))) matrix)
object apply matrix(array(array(int|array(int))) matrix, int r,
int g, int b)
object apply matrix(array(array(int|array(int))) matrix, int r,
int g, int b, int|float div)

Description
Applies a pixel-transform matrix, or filter, to the image.

2 2

pixel(x,y)= base+ k (sum sum pixel(x+k-1,y+l-1)*matrix(k,l))

k=0 l=0

1/k is sum of matrix, or sum of matrix multiplied with div. base is given by
r,g,b and is normally black.

blur (ie a
2d gauss
func-
tion):

({({1,2,1}),

({2,5,2}),

({1,2,1})})

original

This function is not very fast.

Arguments

Returns
the new image object

Image.Image.apply max
object apply max(array(array(int|array(int))) matrix)
object apply max(array(array(int|array(int))) matrix, int r,
int g, int b)
object apply max(array(array(int|array(int))) matrix, int r,
int g, int b, int|float div)

12.1. IMAGE.IMAGE 149

Description
This is the same as apply matrix, but it uses the maximum instead.

This function is not very fast.

Arguments

Returns
the new image object

Note
experimental status; may not be exact the same output in later versions

Image.Image.autocrop ,
Image.Image.find autocrop

object autocrop()
object autocrop(int border)
object autocrop(int border, Color color)
object autocrop(int border, int left, int right, int top,
int bottom)
object autocrop(int border, int left, int right, int top,
int bottom, Color color)
array(int) find autocrop()
array(int) find autocrop(int border)
array(int) find autocrop(int border, int left, int right,
int top, int bottom)

Description
Removes ”unneccesary” borders around the image, adds one of its own if wanted
to, in selected directions.

”Unneccesary” is all pixels that are equal – ie if all the same pixels to the left
are the same color, that column of pixels are removed.

The find autocrop() function simply returns x1,y1,x2,y2 for the kept area. (This
can be used with copy later.)

Arguments

Returns
the new image object

See Also
copy

Image.Image.max ,
Image.Image.min ,
Image.Image.sumf ,
Image.Image.sum ,

150 CHAPTER 12. IMAGE

Image.Image.average

array(float) average()
array(int) min()
array(int) max()
array(int) sum()
array(float) sumf()

Description
Gives back the average, minimum, maximum color value, and the sum of all
pixel’s color value.

Note
sum() values can wrap! Most systems only have 31 bits available for positive
integers. (Meaning, be careful with images that have more than 8425104 pixels.)

average() and sumf() may also wrap, but on a line basis. (Meaning, be careful
with images that are wider than 8425104 pixels.) These functions may have a
precision problem instead, during to limits in the ’double’ C type and/or ’float’
Pike type.

Image.Image.bitscale

object bitscale(float factor)
object bitscale(float xfactor, float yfactor)

Description
scales the image with a factor, without smoothing. This routine is faster than
scale, but gives less correct results

Arguments

Returns
the new image object

Image.Image.bitscale

object bitscale(int newxsize, int newysize)
object bitscale(0, int newysize)
object bitscale(int newxsize, 0)

Description
scales the image to a specified new size, if one of newxsize or newysize is 0, the
image aspect ratio is preserved.

Arguments

Returns
the new image object

Note
resulting image will be 1x1 pixels, at least

12.1. IMAGE.IMAGE 151

Image.Image.box
object box(int x1, int y1, int x2, int y2)
object box(int x1, int y1, int x2, int y2, int r, int g, int b)
object box(int x1, int y1, int x2, int y2, int r, int g, int b,
int alpha)

Description
Draws a filled rectangle on the image.

original -¿box-(40,10,-10,80,-0,255,0)

Arguments

Returns
the object called

Image.Image.cast
string cast(string type)

Description
Cast the image to another datatype. Currently supported are string (”rgbrg-
brgb...”) and array (double array of Image.Color objects).

See Also
Image.Color and Image.X

Image.Image.change color
object change color(int tor, int tog, int tob)
object change color(int fromr, int fromg, int fromb, int tor,
int tog, int tob)

Description
Changes one color (exakt match) to another. If non-exakt-match is preferred,
check distancesqand paste alpha color.

Arguments

Returns
a new (the destination) image object

152 CHAPTER 12. IMAGE

Image.Image.circle
object circle(int x, int y, int rx, int ry)
object circle(int x, int y, int rx, int ry, int r, int g, int b)
object circle(int x, int y, int rx, int ry, int r, int g, int b,
int alpha)

Description
Draws a circle on the image. The circle is not antialiased.

original -¿circle-(50,50,-30,50,-0,255,255)

Arguments

Returns
the object called

Image.Image.clear
void clear()
void clear(int r, int g, int b)
void clear(int r, int g, int b, int alpha)

Description
gives a new, cleared image with the same size of drawing area

original -¿clear-(0,128,255)

Arguments

See Also

12.1. IMAGE.IMAGE 153

copy and clone

Image.Image.clone
object clone()
object clone(int xsize, int ysize)
object clone(int xsize, int ysize, int r, int g, int b)
object clone(int xsize, int ysize, int r, int g, int b,
int alpha)

Description
Copies to or initialize a new image object.

original clone clone(50,50)

Arguments

Returns
the new object

See Also
copy and create

Image.Image.color
object color()
object color(int value)
object color(int r, int g, int b)

Description
Colorize an image.

The red, green and blue values of the pixels are multiplied with the given
value(s). This works best on a grey image...

The result is divided by 255, giving correct pixel values.

If no arguments are given, the current color is used as factors.

154 CHAPTER 12. IMAGE

original -¿color(128,128,255);

Arguments

Returns
the new image object

See Also
grey, ‘* and modify by intensity

Image.Image.copy
object copy()
object copy(int x1, int y1, int x2, int y2)
object copy(int x1, int y1, int x2, int y2, int r, int g, int b)
object copy(int x1, int y1, int x2, int y2, int r, int g, int b,
int alpha)

Description
Copies this part of the image. The requested area can be smaller, giving a
cropped image, or bigger - the new area will be filled with the given or current
color.

original -¿copy-(5,5,-XSIZE-
6,YSIZE-6)

-¿copy-(-5,-5,-XSIZE+4,YSIZE+4,-
10,75,10)

Arguments

Returns
a new image object

12.1. IMAGE.IMAGE 155

Note
clone(void) and copy(void) does the same operation

See Also
clone and autocrop

Image.Image.create
void create()
void create(int xsize, int ysize)
void create(int xsize, int ysize, Color color)
void create(int xsize, int ysize, int r, int g, int b)
void create(int xsize, int ysize, int r, int g, int b, int alpha)
void create(int xsize, int ysize, string method, method ...)

Description
Initializes a new image object.

Image.Image-(XSIZE,YSIZE) Image.Image-(XSIZE,YSIZE,255,128,0)

The image can also be calculated from some special methods, for convinience:

channel modes; followed by a number of 1-char-per-pixel strings

or image objects (where red channel will be used),

or an integer value:

"grey" : make a grey image (needs 1 source: grey)

"rgb" : make an rgb image (needs 3 sources: red, green and blue)

"cmyk" : make a rgb image from cmyk (cyan, magenta, yellow, black)

Arguments

Bugs
SIGSEGVS can be caused if the size is too big, due to unchecked overflow -
(xsize*ysize)&MAXINT is small enough to allocate.

See Also
copy, clone and Image.Image

156 CHAPTER 12. IMAGE

Image.Image.dct
object dct(int newx, int newy)

Description
Scales the image to a new size.

Method for scaling is rather complex; the image is transformed via a cosine
transform, and then resampled back.

This gives a quality-conserving upscale, but the algorithm used is n*n+n*m,
where n and m is pixels in the original and new image.

Recommended wrapping algorithm is to scale overlapping parts of the image-
to-be-scaled.

This functionality is actually added as an true experiment, but works...

Arguments

Returns
the new image object

Note
Do NOT use this function if you don’t know what you’re dealing with! Read
some signal theory first...

It write’s dots on stderr, to indicate some sort of progress. It doesn’t use any
fct (compare: fft) algorithms.

Image.Image.distancesq
object distancesq()
object distancesq(int r, int g, int b)

Description
Makes an grey-scale image, for alpha-channel use.

The given value (or current color) are used for coordinates in the color cube.
Each resulting pixel is the distance from this point to the source pixel color, in
the color cube, squared, rightshifted 8 steps:

p = pixel color

o = given color

d = destination pixel

d.red=d.blue=d.green=

((o.red-p.red)2+(o.green-p.green)2+(o.blue-p.blue)2)>>8

12.1. IMAGE.IMAGE 157

original distance2 to cyan ...to purple ...to yellow

Arguments

Returns
the new image object

See Also
select from

Image.Image.find min ,
Image.Image.find max
array(int) find min()
array(int) find max()
array(int) find min(int r, int g, int b)
array(int) find max(int r, int g, int b)

Description
Gives back the position of the minimum or maximum pixel value, weighted to
grey.

Arguments

Image.Image.gamma
object gamma(float g)
object gamma(float gred, ggreen, gblue)

Description
Calculate pixels in image by gamma curve.

Intensity of new pixels are calculated by:
i ’ = iˆg

For example, you are viewing your image on a screen with gamma 2.2. To
correct your image to the correct gamma value, do something like:

my display image(my image()->gamma(1/2.2);

Arguments

158 CHAPTER 12. IMAGE

Returns
a new image object

See Also
grey, ‘* and color

Image.Image.getpixel
array(int) getpixel(int x, int y)

Description

Arguments

Returns
color of the requested pixel – (–int red,int green,int blue˝)

Image.Image.gradients
int gradients(array(int) point, ...)
int gradients(array(int) point, ..., float grad)

Description

original 2 color
gradient

10 color
gradient

3 colors,
grad=4.0

3 colors,
grad=1.0

3 colors,
grad=0.25

Returns
the new image

Image.Image.grey
object grey()
object grey(int r, int g, int b)

Description
Makes a grey-scale image (with weighted values).

12.1. IMAGE.IMAGE 159

original -¿grey(); -¿grey(0,0,255);

Arguments

Returns
the new image object

See Also
color, ‘* and modify by intensity

Image.Image.rgb to hsv ,
Image.Image.hsv to rgb
object rgb to hsv()
object hsv to rgb()

Description
Converts RGB data to HSV data, or the other way around. When converting
to HSV, the resulting data is stored like this: pixel.r = h; pixel.g = s; pixel.b =
v;

When converting to RGB, the input data is asumed to be placed in the pixels
as above.

original -¿hsv to rgb(); -¿rgb to hsv();

tuned box (below) the rainbow (below) same, but rgb to hsv()

160 CHAPTER 12. IMAGE

HSV to RGB calculation:

in = input pixel

out = destination pixel

h=-pos*c angle*3.1415/(float)NUM SQUARES;

out.r=(in.b+in.g*cos(in.r));

out.g=(in.b+in.g*cos(in.r + pi*2/3));

out.b=(in.b+in.g*cos(in.r + pi*4/3));

RGB to HSV calculation: Hmm.

Example: Nice rainbow.

object i = Image.Image(200,200);

i = i->tuned box(0,0, 200,200,

({ ({ 255,255,128 }), ({ 0,255,128 }),

({ 255,255,255 }), ({ 0,255,255 })}))

->hsv to rgb();

Returns
the new image object

Image.Image.invert
object invert()

Description
Invert an image. Each pixel value gets to be 255-x, where x is the old value.

original -¿invert(); -¿rgb to hsv()-¿invert()-¿hsv to rgb();

Returns

12.1. IMAGE.IMAGE 161

the new image object

Image.Image.line
object line(int x1, int y1, int x2, int y2)
object line(int x1, int y1, int x2, int y2, int r, int g, int b)
object line(int x1, int y1, int x2, int y2, int r, int g, int b,
int alpha)

Description
Draws a line on the image. The line is not antialiased.

original -¿line-(50,10,-10,50,-255,0,0)

Arguments

Returns
the object called

Image.Image.make ascii
string make ascii(object orient1, object orient2,
 object orient3, object orient4, int|void xsize,
 int|void ysize)

Description
This method creates a string that looks like the image. Example:

//Stina is an image with a cat.

array(object) Stina4=Stina->orient4();

Stina4[1]*=215;

Stina4[3]*=215;

string foo=Stina->make ascii(@Stina4,40,4,8);

Returns
some nice acsii-art.

Note
experimental status; may not be exact the same output in later versions

162 CHAPTER 12. IMAGE

| / - \

hue= 0 64 128 192 (=red in an hsv image)

See Also
orient and orient4

Image.Image.map closest ,
Image.Image.select colors ,
Image.Image.map fast ,
Image.Image.map fs
object map closest(array(array(int)) colors)
object map fast(array(array(int)) colors)
object map fs(array(array(int)) colors)
array select colors(int num)

Description
Compatibility functions. Do not use!

Replacement examples:

Old code:

img=map fs(img->select colors(200));

New code:

img=Image.Colortable(img,200)->floyd steinberg()->map(img);

Old code:

img=map closest(img->select colors(17)+({({255,255,255}),({0,0,0})}));

New code:

img=Image.Colortable(img,19,({({255,255,255}),({0,0,0})}))->map(img);

Image.Image.match
object match(int|float scale, object needle)
object match(int|float scale, object needle,
 object haystack cert, object needle cert)
object match(int|float scale, object needle,
 object haystack avoid, int foo)
object match(int|float scale, object needle,
 object haystack cert, object needle cert,
 object haystack avoid, int foo)

Description
This method creates an image that describes the match in every pixel in the
image and the needle-Image.

12.1. IMAGE.IMAGE 163

new pixel value =

sum(my abs(needle pixel-haystack pixel))

The new image only have the red rgb-part set.

Arguments

Returns
the new image object

Note
experimental status; may not be exact the same output in later versions

See Also
phasev and phaseh

Image.Image.mirrorx
object mirrorx()

Description
mirrors an image:

original -¿mirrorx();

Returns
the new image object

Image.Image.mirrory
object mirrory()

Description
mirrors an image:

164 CHAPTER 12. IMAGE

original -¿mirrory();

Image.Image.modify by intensity
object modify by intensity(int r, int g, int b, int|array(int) v1,
..., int|array(int) vn)

Description
Recolor an image from intensity values.

For each color an intensity is calculated, from r, g and b factors (see grey), this
gives a value between 0 and max.

The color is then calculated from the values given, v1 representing the intensity
value of 0, vn representing max, and colors between representing intensity values
between, linear.

original -¿grey()-¿modify by intensity(1,0,0, 0,(–255,0,0˝),(–0,255,0˝));

Arguments

Returns
the new image object

See Also
grey, ‘* and color

Image.Image.noise
void noise(array(float|int|array(int)) colorrange)
void noise(array(float|int|array(int)) colorrange, float scale,
float xdiff, float ydiff, float cscale)

12.1. IMAGE.IMAGE 165

Description
Gives a new image with the old image’s size, filled width a ’noise’ pattern.

The random seed may be different with each instance of pike.

Example: ->noise(({0,({255,0,0}), 0.3,({0,255,0}), 0.6,({0,0,255}),
0.8,({255,255,0})}), 0.2,0.0,0.0,1.0);

Arguments

See Also
turbulence

Image.Image.orient ,
Image.Image.orient4

object orient(void|array(object))
array(object) orient4()

Description
Draws images describing the orientation of the current image.

orient gives an HSV image (run a hsv to rgb pass on it to get a viewable
image). corresponding to the angle of the orientation:

| / - \

hue= 0 64 128 192 (=red in an hsv image)

purple cyan green red

Red, green and blue channels are added and not compared separately.

If you first use orient4 you can give its output as input to this function.

The orient4 function gives back 4 image objects, corresponding to the amount
of different directions, see above.

Returns
an image or an array of the four new image objects

Note
experimental status; may not be exact the same output in later versions

Image.Image.outline ,

166 CHAPTER 12. IMAGE

Image.Image.outline mask
object outline()
object outline(int olr, int olg, int olb)
object outline(int olr, int olg, int olb, int bkgr, int bkgg,
int bkgb)
object outline(array(array(int)) mask)
object outline(array(array(int)) mask, int olr, int olg, int olb)
object outline(array(array(int)) mask, int olr, int olg, int olb,
int bkgr, int bkgg, int bkgb)
object outline mask()
object outline mask(int bkgr, int bkgg, int bkgb)
object outline mask(array(array(int)) mask)
object outline mask(array(array(int)) mask, int bkgr, int bkgg,
int bkgb)

Description
Makes an outline of this image, ie paints with the given color around the non-
background pixels.

Default is to paint above, below, to the left and the right of these pixels.

You can also run your own outline mask.

The outline mask function gives the calculated outline as an alpha channel image
of white and black instead.

original
masked
through
threshold

...and
outlined
with red

Arguments

Returns
the new image object

Note
no antialias!

Image.Image.paste
object paste(object image)
object paste(object image, int x, int y)

12.1. IMAGE.IMAGE 167

Description
Pastes a given image over the current image.

Arguments

Returns
the object called

See Also
paste mask, paste alpha and paste alpha color

Image.Image.paste alpha
object paste alpha(object image, int alpha)
object paste alpha(object image, int alpha, int x, int y)

Description
Pastes a given image over the current image, with the specified alpha channel
value.

An alpha channel value of 0 leaves nothing of the original image in the paste
area, 255 is meaningless and makes the given image invisible.

Arguments

Returns
the object called

See Also
paste mask, paste and paste alpha color

Image.Image.paste alpha color
object paste alpha color(object mask)
object paste alpha color(object mask, int x, int y)
object paste alpha color(object mask, int r, int g, int b)
object paste alpha color(object mask, int r, int g, int b, int x,
int y)
object paste alpha color(object mask, Color color)
object paste alpha color(object mask, Color color, int x, int y)

Description
Pastes a given color over the current image, using the given mask as opaque
channel.

A pixel value of 255 makes the result become the color given, 0 doesn’t change
anything.

The masks red, green and blue values are used separately. If no color are given,
the current is used.

Arguments

168 CHAPTER 12. IMAGE

Returns
the object called

See Also
paste mask, paste alpha and paste alpha color

Image.Image.paste mask
object paste mask(object image, object mask)
object paste mask(object image, object mask, int x, int y)

Description
Pastes a given image over the current image, using the given mask as opaque
channel.

A pixel value of 255 makes the result become a pixel from the given image, 0
doesn’t change anything.

The masks red, green and blue values are used separately.

Arguments

Returns
the object called

See Also
paste, paste alpha and paste alpha color

Image.Image.phasev ,
Image.Image.phaseh ,
Image.Image.phasehv ,
Image.Image.phasevh
object phaseh()
object phasev()
object phasevh()
object phasehv()

Description
Draws images describing the phase of the current image. phaseh gives the
horizontal phase and phasev the vertical phase.

phaseh gives an image where

max falling min rising

value= 0 64 128 192

0 is set if there is no way to determine if it is rising or falling. This is done for
the every red, green and blue part of the image.

Phase images can be used to create ugly effects or to find meta-information in
the orginal image.

12.1. IMAGE.IMAGE 169

original phaseh() phasev() phasevh() phasehv()

Returns
the new image object

Note
experimental status; may not be exact the same output in later versions

Bugs
0 should not be set as explained above.

Image.Image.polyfill
object polyfill(array(int|float) ... curve)

Description
fills an area with the current color

Arguments

Returns
the current object

Note
Lines in the polygon may not be crossed without the crossing coordinate spec-
ified in both lines.

Bugs
Inverted lines reported on Intel and Alpha processors.

See Also
setcolor

Image.Image.random ,
Image.Image.randomgrey
object random()
object random(int seed)
object randomgrey()
object random(greyint seed)

Description
Gives a randomized image;

170 CHAPTER 12. IMAGE

original -¿random() -¿random(17)
greyed
(same again)

color(red)
(same again)

...red channel

Use with -¿grey() or -¿color() for one-color-results.

Returns
a new image

See Also
test and noise

Image.Image.write lsb rgb ,
Image.Image.read lsb grey ,
Image.Image.write lsb grey ,
Image.Image.read lsb rgb
object write lsb rgb(string what)
object write lsb grey(string what)
string read lsb rgb()
string read lsb grey()

Description
These functions read/write in the least significant bit of the image pixel values.
The rgb() functions read/write on each of the red, green and blue values, and
the grey keeps the same lsb on all three.

The string is nullpadded or cut to fit.

Arguments

Returns
the current object or the read string

Image.Image.rotate ,
Image.Image.rotate expand
object rotate(int|float angle)
object rotate(int|float angle, int r, int g, int b)
object rotate expand(int|float angle)
object rotate expand(int|float angle, int r, int g, int b)

Description
Rotates an image a certain amount of degrees (360? is a complete rotation)

12.1. IMAGE.IMAGE 171

counter-clockwise:

original -¿rotate(15,255,0,0); -¿rotate expand(15);

The ”expand” variant of functions stretches the image border pixels rather then
filling with the given or current color.

This rotate uses the skewx() and skewy() functions.

Arguments

Returns
the new image object

Image.Image.rotate ccw
object rotate ccw()

Description
rotates an image counter-clockwise, 90 degrees.

original -¿rotate ccw();

Returns
the new image object

Image.Image.rotate cw
object rotate cw()

172 CHAPTER 12. IMAGE

Description
rotates an image clockwise, 90 degrees.

original -¿rotate cw();

Returns
the new image object

Image.Image.scale
object scale(float factor)
object scale(0.5)
object scale(float xfactor, float yfactor)

Description
scales the image with a factor, 0.5 is an optimized case.

Arguments

Returns
the new image object

Image.Image.scale
object scale(int newxsize, int newysize)
object scale(0, int newysize)
object scale(int newxsize, 0)

Description
scales the image to a specified new size, if one of newxsize or newysize is 0, the
image aspect ratio is preserved.

Arguments

Returns
the new image object

Note
resulting image will be 1x1 pixels, at least

Image.Image.select from
object select from(int x, int y)
object select from(int x, int y, int edge value)

12.1. IMAGE.IMAGE 173

Description
Makes an grey-scale image, for alpha-channel use.

This is very close to a floodfill.

The image is scanned from the given pixel, filled with 255 if the color is the
same, or 255 minus distance in the colorcube, squared, rightshifted 8 steps (see
distancesq).

When the edge distance is reached, the scan is stopped. Default edge value is
30. This value is squared and compared with the square of the distance above.

Arguments

Returns
the new image object

See Also
distancesq

Image.Image.setcolor
object setcolor(int r, int g, int b)
object setcolor(int r, int g, int b, int alpha)

Description
set the current color

Arguments

Returns
the object called

Image.Image.setpixel
object setpixel(int x, int y)
object setpixel(int x, int y, int r, int g, int b)
object setpixel(int x, int y, int r, int g, int b, int alpha)

Description

original -¿setpixel-(10,10,-255,0,0)

174 CHAPTER 12. IMAGE

Arguments

Returns
the object called

Image.Image.skewx ,
Image.Image.skewx expand
object skewx(int x)
object skewx(int yfactor)
object skewx(int x, int r, int g, int b)
object skewx(int yfactor, int r, int g, int b)
object skewx expand(int x)
object skewx expand(int yfactor)
object skewx expand(int x, int r, int g, int b)
object skewx expand(int yfactor, int r, int g, int b)

Description
Skews an image an amount of pixels or a factor; a skew-x is a transformation:

original -¿skewx(15,255,0,0); -¿skewx expand(15);

Arguments

Returns
the new image object

Image.Image.skewy ,
Image.Image.skewy expand
object skewy(int y)
object skewy(int xfactor)
object skewy(int y, int r, int g, int b)
object skewy(int xfactor, int r, int g, int b)
object skewy expand(int y)
object skewy expand(int xfactor)
object skewy expand(int y, int r, int g, int b)
object skewy expand(int xfactor, int r, int g, int b)

Description
Skews an image an amount of pixels or a factor; a skew-y is a transformation:

12.1. IMAGE.IMAGE 175

original -¿skewy(15,255,0,0); -¿skewy expand(15);

The ”expand” variant of functions stretches the image border pixels rather then
filling with the given or current color.

Arguments

Returns
the new image object

Image.Image.test
object test()
object test(int seed)

Description
Generates a test image, currently random gradients.

original -¿test() ...and again

Returns
the new image

Note
May be subject to change or cease without prior warning.

See Also
gradients and tuned box

176 CHAPTER 12. IMAGE

Image.Image.threshold
object threshold()
object threshold(int level)
object threshold(int r, int g, int b)
object threshold(Color color)

Description
Makes a black-white image.

If any of red, green, blue parts of a pixel is larger then the given value, the pixel
will become white, else black.

This method works fine with the grey method.

If no arguments are given, it will paint all non-black pixels white. (Ie, default
is 0,0,0.)

original -¿threshold(100); -¿threshold(0,100,0);

Returns
the new image object

Note
The above statement ”any ...” was changed from ”all ...” in Pike 0.7 (9906). It
also uses 0,0,0 as default input, instead of current color. This is more useful.

See Also
grey

Image.Image.tuned box
object tuned box(int x1, int y1, int x2, int y2,
array(array(int)) corner color)

Description
Draws a filled rectangle with colors (and alpha values) tuned between the cor-
ners.

Tuning function is (1.0-x/xw)*(1.0-y/yw) where x and y is the distance to the
corner and xw and yw are the sides of the rectangle.

12.1. IMAGE.IMAGE 177

original tuned box
solid tuning
(blue,red,green,yellow)

tuning transparency
(as left + 255,128,128,0)

Arguments

Returns
the object called

Image.Image.turbulence
void turbulence(array(float|int|array(int)) colorrange)
void turbulence(array(float|int|array(int)) colorrange,
int octaves, float scale, float xdiff, float ydiff, float cscale)

Description
gives a new image with the old image’s size, filled width a ’turbulence’ pattern

The random seed may be different with each instance of pike.

Example:
->turbulence(({0,({229,204,204}), 0.9,({229,20,20}), 0.9,Color.black})
);

Arguments

See Also
noise and Image.Color

Image.Image.xsize
int xsize()

Returns
the width of the image

178 CHAPTER 12. IMAGE

Image.Image.ysize

int ysize()

Returns
the height of the image

Image.Image.‘/ ,

Image.Image.‘%

object ‘/(object operand)
object ‘/(Color color)
object ‘/(int value)
object ‘%(object operand)
object ‘%(Color color)
object ‘%(int value)

Description
Divides pixel values and creates a new image from the result or the rest.

Arguments

Returns
the new image object

Note
It isn’t possible to do a modulo 256 either. (why?)

See Also
‘-, ‘+, ‘|, ‘&, ‘* and Image.Layer

Image.Image.‘&

object ‘&(object operand)
object ‘&(array(int) color)
object ‘&(int value)

Description
makes a new image out of the minimum pixels values

Arguments

Returns
the new image object

See Also
‘-, ‘+, ‘|, ‘* and Image.Layer

Image.Image.‘== ,
Image.Image.‘¡ ,

12.1. IMAGE.IMAGE 179

Image.Image.‘¡

int ‘==(object operand)
int ‘==(array(int) color)
int ‘==(int value)
int ‘<(object operand)
int ‘<(array(int) color)
int ‘<(int value)
int ‘>(object operand)
int ‘>(array(int) color)
int ‘>(int value)

Description
Compares an image with another image or a color.

Comparision is strict and on pixel-by-pixel basis. (Means if not all pixel r,g,b
values are correct compared with the corresponding pixel values, 0 is returned.)

Arguments

Returns
true (1) or false (0).

Note
‘¡ or ‘¿ on empty (”no image”) image objects or images with different size will
result in an error. ‘== is always true on two empty image objects and always
false if one and only one of the image objects is empty or the images differs in
size.

a¿=b and a¡=b between objects is equal to !(a¡b) and !(a¿b), which may not
be what you want (since both ¡ and ¿ can return false, comparing the same
images).

See Also
‘-, ‘+, ‘|, ‘* and ‘&

Image.Image.‘*

object ‘*(object operand)
object ‘*(array(int) color)
object ‘*(int value)

Description
Multiplies pixel values and creates a new image.

This can be useful to lower the values of an image, making it greyer, for instance:

image=image*128+64;

Arguments

180 CHAPTER 12. IMAGE

Returns
the new image object

See Also
‘-, ‘+, ‘|, ‘& and Image.Layer

Image.Image.‘+
object ‘+(object operand)
object ‘+(array(int) color)
object ‘+(int value)

Description
adds two images; values are truncated at 255.

Arguments

Returns
the new image object

See Also
‘-, ‘|, ‘&, ‘* and Image.Layer

Image.Image.‘-
object ‘-(object operand)
object ‘-(array(int) color)
object ‘-(int value)

Description
makes a new image out of the difference

Arguments

Returns
the new image object

See Also
‘+, ‘|, ‘&, ‘*, Image.Layer, min, max and ‘==

Image.Image.‘—
object ‘|(object operand)
object ‘|(array(int) color)
object ‘|(int value)

Description
makes a new image out of the maximum pixels values

Arguments

Returns
the new image object

12.2. IMAGE.COLORTABLE 181

See Also
‘-, ‘+, ‘&, ‘* and Image.Layer

12.2 Image.Colortable

Image.Colortable
Description
This object keeps colortable information, mostly for image re-coloring (quanti-
zation).

The object has color reduction, quantisation, mapping and dithering capabili-
ties.

See Also
Image, Image.Image, Image.Font and Image.GIF

Image.Colortable.create ,
Image.Colortable.add
void create()
void create(array(array(int)) colors)
void create(object(Image.Image) image, int number)
void create(object(Image.Image) image, int number,
array(array(int)) needed)
void create(int r, int g, int b)
void create(int r, int g, int b, array(int) from1,
array(int) to1, int steps1, ..., array(int) fromn,
array(int) ton, int stepsn)
object add(array(array(int)) colors)
object add(object(Image.Image) image, int number)
object add(object(Image.Image) image, int number,
array(array(int)) needed)
object add(int r, int g, int b)
object add(int r, int g, int b, array(int) from1,
array(int) to1, int steps1, ..., array(int) fromn,
array(int) ton, int stepsn)

Description
create initiates a colortable object. Default is that no colors are in the colortable.

add takes the same argument(s) as create, thus adding colors to the colortable.

The colortable is mostly a list of colors, or more advanced, colors and weight.

The colortable could also be a colorcube, with or without additional scales. A
colorcube is the by-far fastest way to find colors.

Example:

ct=colortable(my image,256); // the best 256 colors

ct=colortable(my image,256,({0,0,0})); // black and the best other 255

182 CHAPTER 12. IMAGE

Arguments

Note
max hash size is (probably, set by a #define) 32768 entries, giving maybe half
that number of colors as maximum.

Image.Colortable.cast
object cast(string to)

Description
cast the colortable to an array or mapping, the array consists of Image.Color
objects and are not in index order. The mapping consists of index:Image.Color
pairs, where index is the index (int) of that color.

example: (mapping)Image.Colortable(img)

Arguments

Image.Colortable.corners
array(object) corners()

Description
Gives the eight corners in rgb colorspace as an array. The ”black” and ”white”
corners are the first two.

Image.Colortable.cubicles
object cubicles()
object cubicles(int r, int g, int b)
object cubicles(int r, int g, int b, int accuracy)

Description
Set the colortable to use the cubicles algorithm to lookup the closest color. This
is a mostly very fast and very accurate way to find the correct color, and the
default algorithm.

The colorspace is divided in small cubes, each cube containing the colors in that
cube. Each cube then gets a list of the colors in the cube, and the closest from
the corners and midpoints between corners.

When a color is needed, the algorithm first finds the correct cube and then
compares with all the colors in the list for that cube.

example: colors=Image.Colortable(img)->cubicles();

algorithm time: between O[m] and O[m * n], where n is numbers of colors and
m is number of pixels

12.2. IMAGE.COLORTABLE 183

The arguments can be heavy trimmed for the usage of your colortable; a large
number (10×10×10 or bigger) of cubicles is recommended when you use the
colortable repeatedly, since the calculation takes much more time than usage.

recommended values:

image size setup

100×100 cubicles(4,5,4) (default)

1000×1000 cubicles(12,12,12) (factor 2 faster than default)

In some cases, the full method is faster.

original default cubicles,
16 colors

accuracy=200

Arguments

Returns
the called object

Note
this method doesn’t figure out the cubicles, this is done on the first use of the
colortable.

Not applicable to colorcube types of colortable.

Image.Colortable.floyd steinberg
object floyd steinberg()
object floyd steinberg(int bidir, int|float forward,
int|float downforward, int|float down, int|float downback,
int|float factor)

Description
Set dithering method to floyd steinberg.

The arguments to this method is for fine-tuning of the algorithm (for computer
graphics wizards).

184 CHAPTER 12. IMAGE

original floyd steinberg to a 4×4×4 color-
cube

floyd steinberg to 16 chosen col-
ors

Arguments

Returns
the called object

Image.Colortable.full
object full()

Description
Set the colortable to use full scan to lookup the closest color.

example: colors=Image.Colortable(img)->full();

algorithm time: O[n*m], where n is numbers of colors and m is number of pixels

Returns
the called object

Note
Not applicable to colorcube types of colortable.

See Also
cubicles and map

Image.Colortable.image
object image()

Description
cast the colortable to an image object

each pixel in the image object is an entry in the colortable

Returns
the resulting image object

Image.Colortable.‘* ,
Image.Colortable.“* ,

12.2. IMAGE.COLORTABLE 185

Image.Colortable.map
object map(object image)
object ‘*(object image)
object ‘‘*(object image)
object map(string data, int xsize, int ysize)
object ‘*(string data, int xsize, int ysize)
object ‘‘*(string data, int xsize, int ysize)

Description
Map colors in an image object to the colors in the colortable, and creates a new
image with the closest colors.

no dither

floyd steinberg
dither

ordered dither

186 CHAPTER 12. IMAGE

randomcube
dither

original 2 4 8 16 32 colors

Returns
a new image object

Note
Flat (not cube) colortable and not ’full’ method: this method does figure out
the data needed for the lookup method, which may take time the first use of
the colortable - the second use is quicker.

See Also
cubicles and full

Image.Colortable.nodither
object nodither()

Description
Set no dithering (default).

Returns
the called object

Image.Colortable.ordered
object ordered()
object ordered(int r, int g, int b)
object ordered(int r, int g, int b, int xsize, int ysize)
object ordered(int r, int g, int b, int xsize, int ysize, int x,
int y)
object ordered(int r, int g, int b, int xsize, int ysize, int rx,
int ry, int gx, int gy, int bx, int by)

Description
Set ordered dithering, which gives a position-dependent error added to the pixel
values.

12.2. IMAGE.COLORTABLE 187

original
mapped to
Image.Colortable(6,6,6)->

ordered
(42,42,42,2,2)

ordered()
ordered
(42,42,42, 8,8,
0,0, 0,1, 1,0)

Arguments

Returns
the called object

See Also
randomcube, nodither, floyd steinberg and create

Image.Colortable.randomcube ,
Image.Colortable.randomgrey
object randomcube()
object randomcube(int r, int g, int b)
object randomgrey()
object randomgrey(int err)

Description
Set random cube dithering. Color choosen is the closest one to color in picture
plus (flat) random error; color±random(error).

The randomgrey method uses the same random error on red, green and blue
and the randomcube method has three random errors.

188 CHAPTER 12. IMAGE

original
mapped to
Image.Colortable(4,4,4)->
randomcube() randomgrey()

Arguments

Returns
the called object

Note
randomgrey method needs colorcube size to be the same on red, green and blue
sides to work properly. It uses the red colorcube value as default.

See Also
ordered, nodither, floyd steinberg and create

Image.Colortable.reduce ,
Image.Colortable.reduce fs
object reduce(int colors)
object reduce fs(int colors)

Description
reduces the number of colors

All needed (see create) colors are kept.

reduce fs creates and keeps the outmost corners of the color space, to improve
floyd-steinberg dithering result. (It doesn’t work very well, though.)

Arguments

12.2. IMAGE.COLORTABLE 189

Returns
the new Colortable object

Note
this algorithm assumes all colors are different to begin with (!)

reduce fs keeps the ”corners” as ”needed colors”.

See Also
corners

Image.Colortable.rigid
object rigid()
object rigid(int r, int g, int b)

Description
Set the colortable to use the ”rigid” method of looking up colors.

This is a very simple way of finding the correct color. The algorithm initializes
a cube with r x g x b colors, where every color is chosen by closest match to
the corresponding coordinate.

This format is not recommended for exact match, but may be usable when it
comes to quickly view pictures on-screen.

It has a high init-cost and low use-cost. The structure is initiated at first usage.

Returns
the called object

Note
Not applicable to colorcube types of colortable.

See Also
cubicles, map and full

Image.Colortable.spacefactors
object spacefactors(int r, int g, int b)

Description
Colortable tuning option, this sets the color space distance factors. This is used
when comparing distances in the colorspace and comparing grey levels.

Default factors are 3, 4 and 1; blue is much darker than green. Compare with
Image.Image-¿grey().

Returns
the called object

Note
This has no sanity check. Some functions may bug if the factors are to high -
color reduction functions sums grey levels in the image, this could exceed maxint
in the case of high factors. Negative values may also cause strange effects. *grin*

190 CHAPTER 12. IMAGE

Image.Colortable.‘+
object ‘+(object with, ...)

Description
sums colortables

Arguments

Returns
the resulting new Colortable object

Image.Colortable.‘-
object ‘-(object with, ...)

Description
subtracts colortables

Arguments

Returns
the resulting new Colortable object

12.3 Image.Layer

Image.Layer
Description

See Also
layers

Image.Layer.alpha ,
Image.Layer.image ,
Image.Layer.set image
object set image(object(Image.Image) image)
object set image(object(Image.Image) image,
object(Image.Image) alpha channel)
object|int(0) image()
object|int(0) alpha()

Description
Set/change/get image and alpha channel for the layer. You could also cancel
the channels giving 0 instead of an image object.

Note
image and alpha channel must be of the same size, or canceled.

12.3. IMAGE.LAYER 191

Image.Layer.alpha value ,
Image.Layer.set alpha value
object set alpha value(float value)
double alpha value()

Description
Set/get the general alpha value of this layer. This is a float value between 0 and
1, and is multiplied with the alpha channel.

Image.Layer.autocrop ,
Image.Layer.find autocrop
object autocrop()
object autocrop(int(0..1) left, int(0..1) right, int(0..1) top,
int(0..1) bottom)
array(int) find autocrop()
array(int) find autocrop(int(0..1) left, int(0..1) right,
int(0..1) top, int(0..1) bottom)

Description
This crops (of finds) a suitable crop, non-destructive crop. The layer alpha
channel is checked, and edges that is transparent is removed.

(What really happens is that the image and alpha channel is checked, and edges
equal the fill setup is cropped away.)

find autocrop() returns an array of xoff,yoff,xsize,ysize, which can be fed to
crop().

Note
A tiled image will not be cropped at all.

left...bottom arguments can be used to tell what sides cropping are ok on.

See Also
crop and Image.Image->autocrop

Image.Layer.mode ,
Image.Layer.set mode ,
Image.Layer.available modes
object set mode(string mode)
string mode()
array(string) available modes()

Description
Set/get layer mode. Mode is one of these:

”normal”, ”add”, ”subtract”, ”multiply”, ”divide”, ”modulo”, ”invsubtract”,
”invdivide”, ”invmodulo”, ”difference”, ”max”, ”min”, ”bitwise and”, ”bit-
wise or”, ”bitwise xor”,

”replace”, ”red”, ”green”, ”blue”,

”replace hsv”, ”hue”, ”saturation”, ”value”, ”color”,

192 CHAPTER 12. IMAGE

”darken”, ”lighten”,

”dissolve”, ”behind”, ”erase”,

available modes() simply gives an array containing the names of these modes.

Note
image and alpha channel must be of the same size, or canceled.

Image.Layer.clone
object clone()

Description
Creates a copy of the called object.

Returns
the copy

Image.Layer.create
void create(object image, object alpha, string mode)
void create(mapping info)
void create()
void create(int xsize, int ysize, object color)
void create(object color)

Description
The Layer construct either three arguments, the image object, alpha channel
and mode, or a mapping with optional elements:

"image":image,

// default: black

The layer can also be created ”empty”, either giving a size and color - this will
give a filled opaque square, or a color, which will set the ”fill” values and fill the
whole layer with an opaque color.

All values can be modified after object creation.

Note
image and alpha channel must be of the same size.

Image.Layer.crop
object crop(int xoff, int yoff, int xsize, int ysize)

Description
Crops this layer at this offset and size. Offset is not relative the layer offset, so
this can be used to crop a number of layers simuntaneously.

The fill values are used if the layer is enlarged.

12.3. IMAGE.LAYER 193

Returns
a new layer object

Note
The new layer object may have the same image object, if there was no cropping
to be done.

Image.Layer.fill ,
Image.Layer.fill alpha ,
Image.Layer.set fill

object set fill(Color color)
object set fill(Color color, Color alpha)
object fill()
object fill alpha()

Description
Set/query fill color and alpha, ie the color used ”outside” the image. This is
mostly useful if you want to ”frame” a layer.

Image.Layer.set misc value ,
Image.Layer.get misc value

mixed set misc value(mixed what, mixed to)
mixed get misc value(mixed what)

Description
Set or query misc. attributes for the layer.

As an example, the XCF and PSD image decoders set the ’name’ attribute to
the name the layer had in the source file.

Image.Layer.xoffset ,
Image.Layer.yoffset ,
Image.Layer.set offset

object set offset(int x, int y)
int xoffset()
int yoffset()

Description
Set/query layer offset.

Image.Layer.tiled ,
Image.Layer.set tiled

object set tiled(int yes)
int tiled()

Description
Set/query tiled flag. If set, the image and alpha channel will be tiled rather
then framed by the fill values.

194 CHAPTER 12. IMAGE

Image.Layer.ysize ,
Image.Layer.xsize
int xsize()
int ysize()

Description
Query layer offset. This is the same as layer image/alpha image size.

12.4 Image.Font

Image.Font
Description

Note
Short technical documentation on a font file: This object adds the text-drawing
and -creation capabilities of the Image module.

For simple usage, see write and load.

other methods: baseline, height, set xspacing scale, set yspacing scale, text extents

struct file head

{

unsigned INT32 cookie; - 0x464f4e54

unsigned INT32 version; - 1

unsigned INT32 chars; - number of chars

unsigned INT32 height; - height of font

unsigned INT32 baseline; - font baseline

unsigned INT32 o[1]; - position of char head’s

} *fh;

struct char head

{

unsigned INT32 width; - width of this character

unsigned INT32 spacing; - spacing to next character

unsigned char data[1]; - pixmap data (1byte/pixel)

} *ch;

See Also
Image and Image.Image

Image.Font.baseline
int baseline()

12.4. IMAGE.FONT 195

Returns
font baseline (pixels from top)

See Also
height and text extents

Image.Font.create

void create(string filename)

Description
Loads a font file to this font object. Similar to load().

Image.Font.height ,
Image.Font.text extents

int height()
array(int) text extents(string text, ...)

Description
Calculate extents of a text-image, that would be created by calling writewith
the same arguments.

Arguments

Returns
an array of width and height

See Also
write, height and baseline

Image.Font.load

object|int load(string filename)

Description
Loads a font file to this font object.

Arguments

Returns
zero upon failure, font object upon success

See Also
write

Image.Font.set xspacing scale ,
Image.Font.set yspacing scale

void set xspacing scale(float scale)
void set yspacing scale(float scale)

196 CHAPTER 12. IMAGE

Description
Set spacing scale to write characters closer or more far away. This does not
change scale of character, only the space between them.

Arguments

Image.Font.write
object write(string text, ...)

Description
Writes some text; thus creating an image object that can be used as mask or as
a complete picture.

Arguments

Returns
an Image.Image object

See Also
text extents, load, Image.Image->paste mask and Image.Image->paste alpha color

12.5 Image.colortable

Image.colortable

12.6 Image.Poly

Image.Poly
Description

12.7 Image.Color

Description
This module keeps names and easy handling for easy color support. It gives you
an easy way to get colors from names.

A color is here an object, containing color information and methods for conver-
sion, see below.

Image.Color can be called to make a color object. Image.Color() takes the
following arguments:

12.7. IMAGE.COLOR 197

Image.Color(string name) // "red"

Image.Color(string prefix string) // "lightblue"

Image.Color(string hex name) // "#ff00ff"

Image.Color(string cmyk string) // "%17,42,0,19.4"

Image.Color(string hsv string) // "%@327,90,32"

Image.Color(int red, int green, int blue)

The color names available can be listed by using indices on Image.Color. The
colors are available by name directly as Image.Color.name, too:

...Image.Color.red...

...Image.Color.green...

or, maybe

import Image.Color;

...red...

...green...

...lightgreen...

Giving red, green and blue values is equal to calling Image.Color.rgb().

The prefix string method is a form for getting modified colors, it understands all
modifiers (light, dark, bright, dull and neon). Simply use ”method”+”color”;
(as in lightgreen, dullmagenta, lightdullorange).

The hex name form is a simple #rrggbb form, as in HTML or X-program ar-
gument. A shorter form (#rgb) is also accepted. This is the inverse to the
Image.Color.Color-¿hex() method.

The cmyk string is a string form of giving cmyk (cyan, magenta, yellow, black)
color. These values are floats representing percent.

The hsv string is another hue, saturation, value representation, but in floats;
hue is in degree range (0..360), and saturation and value is given in percent.
This is not the same as returned or given to the hsv() methods!

Note
Image.Color["something"] will never(!) generate an error, but a zero type
0, if the color is unknown. This is enough to give the error ”not present in
module”, if used as Image.Color.something, though.

If you are using colors from for instance a webpage, you might want to create the
color from Image.Color.guess(), since that method is more tolerant for mistakes
and errors.

Image.Color() is case- and space-sensitive. Use Image.Color.guess() to catch
all variants.

and subtract with a space (lower case(x)-” ”) to make sure you get all variants.

198 CHAPTER 12. IMAGE

See Also
Image.Color.Color, Image.Color.guess, Image and Image.Colortable

Image.Color.greylevel ,
Image.Color.hsv ,
Image.Color.rgb ,
Image.Color.html ,
Image.Color.cmyk
object rgb(int red, int green, int blue)
object hsv(int hue, int saturation, int value)
object cmyk(float c, float m, float y, float k)
object greylevel(int level)
object html(string html color)

Description
Creates a new color object from given red, green and blue, hue, saturation and
value, or greylevel, in color value range. It could also be created from cmyk
values in percent.

The html() method only understands the HTML color names, or the #rrggbb
form. It is case insensitive.

Returns
the created object.

Image.Color.guess
object guess(string)

Description
This is equivalent to Image.Color(lower case(str)-" "), and tries the color
with a prepending ’#’ if no corresponding color is found.

Returns
a color object or zero type

Image.Color. indices ,
Image.Color. values
array(string) indices()
array(object) values()

Description
(ie as indices(Image.Color) or values(Image.Color)) indices gives a list
of all the known color names, values gives there corresponding objects.

See Also
Image.Color

12.7.1 Image.Color.Color

Image.Color.Color

12.7. IMAGE.COLOR 199

Description
This is the color object. It has six readable variables, r, g, b, for the red, green
and blue values, and h, s, v, for the hue, saturation anv value values.

Image.Color.Color.neon ,
Image.Color.Color.dull ,
Image.Color.Color.dark ,
Image.Color.Color.light ,
Image.Color.Color.bright
object light()
object dark()
object neon()
object bright()
object dull()

Description
Color modification methods. These returns a new color.

method effect h s v as

light raise light level ±0 ±0 +50

light and dark lower/highers saturation when value is min-/maximised respec-
tive.

Returns
the new color object

Note
The opposites may not always take each other out. The color is maximised
at white and black levels, so, for instance Image.Color.white-¿light()-¿dark()
doesn’t give the white color back, but the equal to Image.Color.white-¿dark(),
since white can’t get any lighter.

Image.Color.Color.cast
array|string cast()

Description
cast the object to an array, representing red, green and blue (equal to ->rgb()),
or to a string, giving the name (equal to ->name()).

Returns
the name as string or rgb as array

See Also
rgb and name

Image.Color.Color.greylevel ,
Image.Color.Color.hsv ,

200 CHAPTER 12. IMAGE

Image.Color.Color.rgb ,
Image.Color.Color.cmyk
array(int) rgb()
array(int) hsv()
array(int) cmyk()
int greylevel()
int greylevel(int r, int g, int b)

Description
This is methods of getting information from an Image.Color.Color object.

They give an array of red, green and blue (rgb) values (color value),
hue, saturation and value (hsv) values (range as color value),
cyan, magenta, yellow, black (cmyk) values (in percent)
or the greylevel value (range as color value).

The greylevel is calculated by weighting red, green and blue. Default weights
are 87, 127 and 41, respective, and could be given by argument.

Returns
array(int) respective int

See Also
Image.Color.Color and grey

Image.Color.Color.create
void create(int r, int g, int b)

Description
This is the main Image.Color.Color creation method, mostly for internal use.

Image.Color.Color.grey
object grey()
object grey(int red, int green, int blue)

Description
Gives a new color, containing a grey color, which is calculated by the greylevel
method.

Returns
a new Image.Color.Color object

See Also
greylevel

Image.Color.Color.name ,
Image.Color.Color.hex ,
Image.Color.Color.html
string hex()
string hex(int n)
string name()
string html()

12.7. IMAGE.COLOR 201

Description
Information methods.

hex() simply gives a string on the #rrggbbformat. If n is given, the number of
significant digits is set to this number. (Ie, n=3 gives #rrrgggbbb.)

name() is a simplified method; if the color exists in the database, the name is
returned, per default is the hex() method use.

html() gives the HTML name of the color, or the hex(2) if it isn’t one of the 16
HTML colors.

Returns
a new Image.Color.Color object

See Also
rgb, hsv and Image.Color

Image.Color.Color.s ,
Image.Color.Color.

sprintf(string s, mapping flags)

Description

Image.Color.Color.‘==

int ‘==(object other color)
int ‘==(array(int) rgb)
int ‘==(int greylevel)
int ‘==(string name)

Description
Compares this object to another color, or color name. Example:

object red=Image.Color.red;

object other=Image.Color. ...;

object black=Image.Color.black;

Returns
1 or 0

Note
The other datatype (not color object) must be to the right!

See Also
rgb, grey and name

202 CHAPTER 12. IMAGE

12.8 Image.X

Description
This submodule handles encoding and decoding of the binary formats of X11.

See Also
Image, Image.Image and Image.Colortable

Image.X.decode pseudocolor

object decode pseudocolor(string data, int width, int height,
int bpp, int alignbits, int swapbytes, object colortable)

Description
lazy support for pseudocolor ZPixmaps

Note
currently, only byte-aligned pixmaps are supported

Image.X.decode truecolor masks ,
Image.X.decode truecolor

object decode truecolor(string data, int width, int height,
int bpp, int alignbits, int swapbytes, int rbits, int rshift,
int gbits, int gshift, int bbits, int bshift)
object decode truecolor masks(string data, int width, int height,
int bpp, int alignbits, int swapbytes, int rmask, int gmask,
int bmask)

Description
lazy support for truecolor ZPixmaps

Note
currently, only byte-aligned masks are supported

Image.X.encode pseudocolor

string encode pseudocolor(object image, int bpp, int alignbits,
int vbpp, object colortable)
string encode pseudocolor(object image, int bpp, int alignbits,
int vbpp, object colortable, string translate)

Description

Arguments

Note
currently, only upto 16 bits pseudocolor are supported.

Image.X.encode truecolor ,

12.9. IMAGE.ANY 203

Image.X.encode truecolor masks
string encode truecolor(object image, int bpp, int alignbits,
int swapbytes, int rbits, int rshift, int gbits, int gshift,
int bbits, int bshift)
string encode truecolor masks(object image, int bpp,
int alignbits, int swapbytes, int rmask, int gmask, int bmask)
string encode truecolor(object image, int bpp, int alignbits,
int swapbytes, int rbits, int rshift, int gbits, int gshift,
int bbits, int bshift, object ct)
string encode truecolor masks(object image, int bpp,
int alignbits, int swapbytes, int rmask, int gmask, int bmask,
object ct)

Description
Pack an image into a truecolor string. You will get a string of packed red, green
and blue bits; ie:

encode truecolor(img, 12,32, 0, 3,5, 4,0, 3,8)will give (aligned to even
32 bits for each row):
0bbbrrr0 gggg0bbb rrr0gggg 0bbb...
<--pixel 1--><--pixel 2--> <--3-->
10987654 32101098 76543210 1098... ¡- bit position <-><-> <--> | | +---
4,0: 4 bits green shifted 0 bits | +-------- 3,5: 3 bits red shifted 5 bits
+----------- 3,8: 3 bits blue shifted 8 bits

The above call is equal to
encode truecolor masks(img, 12,32, 0, 224, 15, 768)and
encode truecolor(img, 12,32, 0, 3,5,4,0,3,8, colortable(1<<3,1<<4,1<<3)).
The latter gives possibility to use dither algorithms, but is slightly slower.

Arguments

12.9 Image.ANY

Description
This method calls the other decoding methods and has some heuristics for what
type of image this is.

Methods: decode, decode alpha, decode

See Also
Image

Image.ANY. decode ,
Image.ANY.decode ,
Image.ANY.decode alpha
mapping decode(string data)
object decode(string data)
object decode alpha(string data)

204 CHAPTER 12. IMAGE

Description
Tries heuristics to find the correct method of decoding the data, then calls that
method.

The result of decode() is a mapping that contains

"type":image data type (ie, "image/jpeg" or similar)

"image":the image object,

"alpha":the alpha channel or 0 if N/A

Note
Throws upon failure.

12.10 Image.AVS

Description

Image.AVS. decode ,
Image.AVS.encode ,
Image.AVS.decode
object decode(string data)
mapping decode(string data)
string encode(object image)

Description
Handle encoding and decoding of AVS-X images. AVS is rather trivial, and not
really useful, but:

An AVS file is a raw (uncompressed) 24 bit image file with alpha. The alpha
channel is 8 bit, and there is no separate alpha for r, g and b.

12.11 Image.BMP

Description
This submodule keeps the BMP (Windows Bitmap) encode/decode capabilities
of the Image module.

BMP is common in the Windows environment.

Simple encoding:
encode

See Also
Image, Image.Image and Image.Colortable

12.11. IMAGE.BMP 205

Image.BMP. decode ,
Image.BMP.decode ,
Image.BMP.decode header
object decode(string data)
mapping decode(string data)
mapping decode header(string data)
object decode(string data, mapping options)
mapping decode(string data, mapping options)
mapping decode header(string data, mapping options)

Description
Decode a BMP.

decode gives an image object, decode gives a mapping in the format

"type":"image/bmp",

"image":image object,

"colortable":colortable object (if applicable)

Returns
the encoded image as a string

Bugs
Doesn’t support all BMP modes. At all.

See Also
encode

Image.BMP.encode
string encode(object image)
string encode(object image, mapping options)
string encode(object image, object colortable)
string encode(object image, int bpp)

Description
Make a BMP. It default to a 24 bpp BMP file, but if a colortable is given, it
will be 8bpp with a palette entry.

option is a mapping that may contain:

"colortable": Image.Colortable - palette

"bpp": 1|4|8|24 - force this many bits per pixel

"rle": 0|1 - run-length encode (default is 0)

206 CHAPTER 12. IMAGE

Arguments

Returns
the encoded image as a string

Bugs
Doesn’t support old BMP mode, only ”windows” mode.

See Also
decode

12.12 Image.GD

Description
Handle encoding and decoding of GD images.

GD is the internal format of libgd by Thomas Boutell, http://www.boutell.com/gd/*
It is a rather simple, uncompressed, palette format.http://www.boutell.com/gd/

Image.GD. decode ,
Image.GD.decode ,
Image.GD.decode alpha ,
Image.GD.decode header
object decode(string data)
object decode alpha(string data)
mapping decode header(string data)
mapping decode(string data)

Description
decodes a GD image

The decode header and decodehas these elements:

"image":object - image object \

"alpha":object - decoded alpha |- not decode header

"colortable":object - decoded palette /

Image.GD.encode
string encode(object image)
string encode(object image, mapping options)

Description
encode a GD image

options is a mapping with optional values:

12.13. IMAGE.GIF 207

"colortable":object - palette to use (max 256 colors)

"alpha":object - alpha channel (truncated to 1 bit)

"alpha index":int - index to transparancy in palette

12.13 Image.GIF

Description
This submodule keep the GIF encode/decode capabilities of the Image module.

GIF is a common image storage format, usable for a limited color palette - a
GIF image can only contain as most 256 colors - and animations.

Simple encoding: encode, encode trans

Advanced stuff: render block, header block, end block, netscape loop block

Very advanced stuff: render block, gce block

See Also
Image, Image.Image and Image.Colortable

Image.GIF.decode
object decode(string data)
object decode(array decoded)
object decode(array decoded)

Description
Decodes GIF data and creates an image object.

Returns
the decoded image as an image object

Note
This function may throw errors upon illegal GIF data. This function uses

decode, decode, Image.Image-¿paste and Image.Image-¿paste alpha internally.

See Also
encode

Image.GIF.decode layers ,
Image.GIF.decode layer
object decode layers(string data)
object decode layers(array decoded)
object decode layer(string data)
object decode layer(array decoded)

Description
Decodes GIF data and creates an array of layers or the resulting layer.

208 CHAPTER 12. IMAGE

Note
The resulting layer may not have the same size as the gif image, but the resulting
bounding box of all render chunks in the gif file. The offset should be correct,
though.

See Also
encode and decode map

Image.GIF.decode map
mapping decode map(INT32 args)

Description
Returns a mapping similar to other decoders decode function.

"image":the image

"alpha":the alpha channel

Note
The wierd name of this function (not decodeas the other decoders) is because
gif was the first decoder and was written before the API was finally defined.
Sorry about that. /Mirar

Image.GIF.encode ,
Image.GIF.encode trans
string encode(object img);
string encode(object img, int colors);
string encode(object img, object colortable);
string encode trans(object img, object alpha);
string encode trans(object img, int tr r, int tr g, int tr b);
string encode trans(object img, int colors, object alpha);
string encode trans(object img, int colors, int tr r, int tr g,
int tr b);
string encode trans(object img, int colors, object alpha,
int tr r, int tr g, int tr b);
string encode trans(object img, object colortable, object alpha);
string encode trans(object img, object colortable, int tr r,
int tr g, int tr b);
string encode trans(object img, object colortable, object alpha,
int a r, int a g, int a b);
string encode trans(object img, object colortable,
int transp index);

Description
Create a complete GIF file.

The latter (encode trans) functions add transparency capabilities.

12.13. IMAGE.GIF 209

Example:

img=Image.Image([...]);

[...] // make your very-nice image

write(Image.GIF.encode(img)); // write it as GIF on stdout

Arguments

Note
For advanced users:

Image.GIF.encode trans(img,colortable,alpha);

is equivalent of using

Image.GIF.header block(img->xsize(),img->ysize(),colortable)+

Image.GIF.render block(img,colortable,0,0,0,alpha)+

Image.GIF.end block();

and is actually implemented that way.

Image.GIF.end block
string end block();

Description
This function gives back a GIF end (trailer) block.

Returns
the end block as a string.

Note
This is in the advanced sector of the GIF support; please read some about how
GIFs are packed.

The result of this function is always ”;” or ”“x3b”, but I recommend using this
function anyway for code clearity.

See Also
header block and end block

Image.GIF.header block
string header block(int xsize, int ysize, int numcolors);
string header block(int xsize, int ysize, object colortable);
string header block(int xsize, int ysize, object colortable,
int background color index, int gif87a, int aspectx, int aspecty);
string header block(int xsize, int ysize, object colortable,
int background color index, int gif87a, int aspectx, int aspecty,
int r, int g, int b);

Description
This function gives back a GIF header block.

210 CHAPTER 12. IMAGE

Giving a colortable to this function includes a global palette in the header block.

Arguments

Returns
the created header block as a string

Note
This is in the advanced sector of the GIF support; please read some about how
GIFs are packed.

This GIF encoder doesn’t support different size of colors in global palette and
color resolution.

See Also
header block and end block

Image.GIF.netscape loop block
string netscape loop block();
string netscape loop block(int number of loops);

Description
Creates a application-specific extention block; this block makes netscape and
compatible browsers loop the animation a certain amount of times.

Arguments

Image.GIF.render block
string render block(object img, object colortable, int x, int y,
int localpalette);
string render block(object img, object colortable, int x, int y,
int localpalette, object alpha);
string render block(object img, object colortable, int x, int y,
int localpalette, object alpha, int r, int g, int b);
string render block(object img, object colortable, int x, int y,
int localpalette, int delay, int transp index, int interlace,
int user input, int disposal);
string render block(object img, object colortable, int x, int y,
int localpalette, object alpha, int r, int g, int b, int delay,
int interlace, int user input, int disposal);

Description
This function gives a image block for placement in a GIF file, with or without
transparency. The some options actually gives two blocks, the first with graphic
control extensions for such things as delay or transparency.

Example:

img1=Image.Image([...]);

img2=Image.Image([...]);

[...] // make your very-nice images

12.13. IMAGE.GIF 211

nct=Image.Colortable([...]); // make a nice colortable

write(Image.GIF.header block(xsize,ysize,nct)); // write a GIF header

write(Image.GIF.render block(img1,nct,0,0,0,10)); // write a render block

write(Image.GIF.render block(img2,nct,0,0,0,10)); // write a render block

[...]

write(Image.GIF.end block()); // write end block

// voila! A GIF animation on stdout.

ErrorThe above animation is thus created:

object nct=colortable(lena,32,({({0,0,0})}));

string s=GIF.header block(lena->xsize(),lena->ysize(),nct);

foreach (({lena->xsize(),

(int)(lena->xsize()*0.75),

(int)(lena->xsize()*0.5),

(int)(lena->xsize()*0.25),

(int)(1),

(int)(lena->xsize()*0.25),

(int)(lena->xsize()*0.5),

(int)(lena->xsize()*0.75)}),int xsize)

{

object o=lena->scale(xsize,lena->ysize());

object p=lena->clear(0,0,0);

p->paste(o,(lena->xsize()-o->xsize())/2,0);

s+=GIF.render block(p,nct,0,0,0,25);

}

s+=GIF.netscape loop block(200);

s+=GIF.end block();

write(s);

Arguments

Note
This is in the advanced sector of the GIF support; please read some about how
GIFs are packed.

The user input and disposal method are unsupported in most decoders.

See Also
encode, header block and end block

Image.GIF. decode
array decode(string gifdata);
array decode(array decoded);

212 CHAPTER 12. IMAGE

Description
Decodes a GIF image structure down to chunks, and also decode the images in
the render chunks.

({int xsize,int ysize, // 0: size of image drawing area

void|object colortable, // 2: opt. global colortable

({ int aspx, int aspy, // 3 0: aspect ratio or 0, 0 if not set

int background }), // 2: index of background color

followed by any number these blocks in any order (gce chunks are decoded and
incorporated in the render chunks):

({ GIF.RENDER, // 0: block identifier

int x, int y, // 1: position of render

object image, // 3: render image

void|object alpha, // 4: 0 or render alpha channel

object colortable, // 5: colortable (may be same as global)

and possibly ended with one of these:

({ GIF.ERROR PREMATURE EOD }) // premature end-of-data

The decode method uses this data in a way similar to this program:

import Image;

Arguments

Returns
the above array

Note
May throw errors if the GIF header is incomplete or illegal.

This is in the very advanced sector of the GIF support; please read about how
GIF files works.

12.13. IMAGE.GIF 213

Image.GIF. encode

string encode(array data)

Description
Encodes GIF data; reverses decode.

Arguments

Note
Some given values in the array are ignored. This function does not give the
exact data back!

Image.GIF. gce block

string gce block(int transparency, int transparency index,
int delay, int user input, int disposal);

Description
This function gives back a Graphic Control Extension block. A GCE block has
the scope of the following render block.

Arguments

Note
This is in the very advanced sector of the GIF support; please read about how
GIF files works.

Most decoders just ignore some or all of these parameters.

See Also
render block and render block

Image.GIF. render block

string render block(int x, int y, int xsize, int ysize, int bpp,
string indices, 0|string colortable, int interlace);

Description
Advanced (!) method for writing renderblocks for placement in a GIF file.
This method only applies LZW encoding on the indices and makes the correct
headers.

Arguments

Note
This is in the very advanced sector of the GIF support; please read about how
GIF files works.

See Also
encode, encode, header block and end block

214 CHAPTER 12. IMAGE

Image.GIF. decode

array decode();

Description
Decodes a GIF image structure down to chunks and

({int xsize,int ysize, // 0: size of image drawing area

int numcol, // 2: suggested number of colors

void|string colortable, // 3: opt. global colortable

({ int aspx, int aspy, // 4,0: aspect ratio or 0, 0 if not set

int background }), // 1: index of background color

followed by any number these blocks in any order:

({ GIF.EXTENSION, // 0: block identifier

int extension, // 1: extension number

string data }) // 2: extension data

and possibly ended with one of these:

({ GIF.ERROR PREMATURE EOD }) // premature end-of-data

Returns
the above array

Note
May throw errors if the GIF header is incomplete or illegal.

This is in the very advanced sector of the GIF support; please read about how
GIF files works.

12.14 Image.HRZ

Description

Image.HRZ. decode ,
Image.HRZ.encode ,

12.15. IMAGE.ILBM 215

Image.HRZ.decode
object decode(string data)
mapping decode(string data)
string encode(object image)

Description
Handle encoding and decoding of HRZ images. HRZ is rather trivial, and not
really useful, but:

The HRZ file is always 256x240 with RGB values from 0 to 63. No compression,
no header, just the raw RGB data. HRZ is (was?) used for amatuer radio slow-
scan TV.

12.15 Image.ILBM

Description
This submodule keep the ILBM encode/decode capabilities of the Image module.

See Also
Image, Image.Image and Image.Colortable

Image.ILBM.decode
object decode(string data)
object decode(array decoded)
object decode(array decoded)

Description
Decodes ILBM data and creates an image object.

Returns
the decoded image as an image object

Note
This function may throw errors upon illegal ILBM data. This function uses

decode and decode internally.

See Also
encode

Image.ILBM.encode
string encode(object image)
string encode(object image, mapping options)

Description
Encodes an ILBM image.

The options argument may be a mapping containing zero or more encoding
options:

216 CHAPTER 12. IMAGE

normal options:

"alpha":image object

Use this image as mask

(Note: ILBM mask is boolean.

The values are calculated by (r+2g+b)/4>=128.)

Image.ILBM. decode
array decode(string|array data)

Description
Decode an ILBM image file.

Result is a mapping,

([

"image": object image,

image is the stored image.

Image.ILBM. decode
array decode();

Description
Decodes an ILBM image structure down to chunks and

({int xsize,int ysize, // 0: size of image drawing area

string bitmapheader, // 2: BMHD chunk

void|string colortable, // 3: opt. colortable chunk (CMAP)

void|string colortable, // 4: opt. colormode chunk (CAMG)

string body, // 5: BODY chunk

mapping more chunks}) // 6: mapping with other chunks

Returns
the above array

Note
May throw errors if the ILBM header is incomplete or illegal.

12.16. IMAGE.PCX 217

12.16 Image.PCX

Description

Image.PCX.decode
object decode(string data)

Description
Decodes a PCX image.

Note
Throws upon error in data.

Image.PCX.encode ,
Image.PCX. encode
string encode(object image)
string encode(object image, mapping options)
string encode(object image)
string encode(object image, mapping options)

Description
Encodes a PCX image. The encode and the encode functions are identical

The options argument may be a mapping containing zero or more encoding
options:

normal options:

"raw":1

Do not RLE encode the image

"dpy":int

"xdpy":int

"ydpy":int

Image resolution (in pixels/inch, integer numbers)

"xoffset":int

"yoffset":int

Image offset (not used by most programs, but gimp uses it)

Image.PCX. decode
mapping decode(string data)

Description
Decodes a PCX image to a mapping.

Note
Throws upon error in data.

218 CHAPTER 12. IMAGE

12.17 Image.PNG

Description

Note
This module uses zlib.

Image.PNG.decode
object decode(string data)
object decode(string data, mapping options)

Description
Decodes a PNG image.

The options argument may be a mapping containing zero or more encoding
options:

Note
Throws upon error in data.

Image.PNG.encode
string encode(object image)
string encode(object image, mapping options)

Description
Encodes a PNG image.

The options argument may be a mapping containing zero or more encoding
options:

normal options:

"alpha":image object

Use this image as alpha channel

(Note: PNG alpha channel is grey.

The values are calculated by (r+2g+b)/4.)

Note
Please read some about PNG files.

Image.PNG. chunk
string chunk(string type, string data)

12.17. IMAGE.PNG 219

Description
Encodes a PNG chunk.

Note
Please read about the PNG file format.

Image.PNG. decode

array decode(string|array data)
array decode(string|array data, mapping options)

Description
Decode a PNG image file.

Result is a mapping,

([

"image": object image,

image is the stored image.

Valid entries in options is a superset of the one given to encode:

basic options:

This method can also take options, as a mapping:

advanced options:

"palette": colortable object

- replace the decoded palette with this when

unpacking the image data, if applicable

Note
Please read about the PNG file format. This function ignores any checksum
errors in the file. A PNG of higher color resolution than the Image module
supports (8 bit) will lose that information in the conversion. It throws an error
if the image data is erroneous.

220 CHAPTER 12. IMAGE

Image.PNG. decode
array decode(string data)
array decode(string data, int dontcheckcrc)

Description
Splits a PNG file into chunks.

Result is an array of arrays, ({ ({ string chunk type, string data, int
crc ok }), ({ string chunk type, string data, int crc ok }) ... })

chunk type is the type of the chunk, like "IHDR" or "IDAT".

data is the actual chunk data.

crcok is set to 1 if the checksum is ok and dontcheckcrc parameter isn’t set.

Returns 0 if it isn’t a PNG file.

Note
Please read about the PNG file format.

12.18 Image.PNM

Description
This submodule keeps the PNM encode/decode capabilities of the Image mod-
ule.

PNM is a common image storage format on unix systems, and is a very simple
format.

This format doesn’t use any color palette.

The format is divided into seven subformats;

P1(PBM) - ascii bitmap (only two colors)

P2(PGM) - ascii greymap (only grey levels)

P3(PPM) - ascii truecolor

P4(PBM) - binary bitmap

P5(PGM) - binary greymap

P6(PPM) - binary truecolor

Simple encoding:
encode,
encode binary,
encode ascii

Simple decoding:
decode

12.18. IMAGE.PNM 221

Advanced encoding:
encode P1,
encode P2,
encode P3,
encode P4,
encode P5,
encode P6

See Also
Image, Image.Image and Image.GIF

Image.PNM.decode
object decode(string data)

Description
Decodes PNM (PBM/PGM/PPM) data and creates an image object.

Returns
the decoded image as an image object

Note
This function may throw errors upon illegal PNM data.

See Also
encode

Image.PNM.encode ,
Image.PNM.encode P1 ,
Image.PNM.encode P5 ,
Image.PNM.encode ascii ,
Image.PNM.encode P6 ,
Image.PNM.encode P2 ,
Image.PNM.encode binary ,
Image.PNM.encode P3 ,
Image.PNM.encode P4
string encode(object image)
string encode binary(object image)
string encode ascii(object image)
string encode P1(object image)
string encode P2(object image)
string encode P3(object image)
string encode P4(object image)
string encode P5(object image)
string encode P6(object image)

Description
Make a complete PNM file from an image.

encode binary() and encode ascii() uses the most optimized encoding for this
image (bitmap, grey or truecolor) - P4, P5 or P6 respective P1, P2 or P3.

222 CHAPTER 12. IMAGE

encode P1/encode P4assumes the image is black and white. Use Image.Image-
¿threshold() or something like Image.Colortable(({({0,0,0}),({255,255,255})})
)-->floyd steinberg()-->map(my image)to get a black and white image.

encode P2/encode P5 assumes the image is greyscale. Use Image.Image-¿grey()
to get a greyscale image.

Returns
the encoded image as a string

Note
encode() is equal to encode binary(), but may change in a future release.

See Also
decode

12.19 Image.PSD

Description

12.20 Image.TGA

Description

Image.TGA.decode
object decode(string data)

Description
Decodes a Targa image.

Note
Throws upon error in data.

Image.TGA.encode
string encode(object image)
string encode(object image, mapping options)

Description
Encodes a Targa image.

The options argument may be a mapping containing zero or more encoding
options:

normal options:

"alpha":image object

12.21. IMAGE.XBM 223

Use this image as alpha channel

(Note: Targa alpha channel is grey.

The values are calculated by (r+2g+b)/4.)

Image.TGA. decode
object decode(string data)

Description
Decodes a Targa image to a mapping. The mapping follows this format: ([
”image”:img object, ”alpha”:alpha channel])

Note
Throws upon error in data.

12.21 Image.XBM

Description

Image.XBM.decode
object decode(string data)

Description
Decodes a XBM image.

Note
Throws upon error in data.

Image.XBM.encode
string encode(object image)
string encode(object image, mapping options)

Description
Encodes a XBM image.

The options argument may be a mapping containing zero or more encoding
options.

normal options:

"name":"xbm image name"

The name of the XBM. Defaults to ’image’

224 CHAPTER 12. IMAGE

Image.XBM. decode

object decode(string data)
object decode(string data, mapping options)

Description
Decodes a XBM image to a mapping.

Supported options:

([

"fg":({fgcolor}), // Foreground color. Default black

"bg":({bgcolor}), // Background color. Default white

"invert":1, // Invert the mask

])

Note
Throws upon error in data.

12.22 Image.XCF

Description

Image.XCF.decode

object decode(string data)

Description
Decodes a XCF image to a single image object.

Note
Throws upon error in data, you will loose quite a lot of information by doing
this. See Image.XCF. decode and Image.XCF. decode

Image.XCF.decode layers

array(object) decode layers(string data)

Description
Decodes a XCF image to an array of Image.Layer objects

The layer object have the following extra variables (to be queried using get misc value):

image xres, image yres, image colormap, image guides, image parasites, name,
parasites, visible, active

12.23. IMAGE.XWD 225

Image.XCF. decode
mapping decode(string|object data, mapping|void options)

Description
Decodes a XCF image to a mapping, with at least an ’image’ and possibly
an ’alpha’ object. Data is either a XCF image, or a XCF.GimpImage object
structure (as received from decode)

Supported options

([

"background":({r,g,b})||Image.Color object

"draw all layers":1,

Draw invisible layers as well

Note
Throws upon error in data. For more information, see Image.XCF. decode

Image.XCF. decode
object decode(string|mapping data, mapping|void options)

Description
Decodes a XCF image to a Image.XCF.GimpImage object.

Returned structure reference

Image.XCF. decode
object decode(string|mapping data)

Description
Decodes a XCF image to a mapping.

Structure reference

12.23 Image.XWD

226 CHAPTER 12. IMAGE

Description
This submodule keeps the XWD (X Windows Dump) decode capabilities of the
Image module.

XWD is the output format for the xwd program.

Simple decoding:
decode

Advanced decoding:
decode

See Also
Image, Image.Image, Image.PNM and Image.X

Image.XWD.decode
object decode(string data)

Description
Simple decodes a XWD image file.

Image.XWD. decode ,
Image.XWD.decode header
mapping decode(string data)
mapping decode header(string data)

Description
Decodes XWD data and returns the result.

Supported XWD visual classes and encoding formats are TrueColor / ZPixmap
DirectColor / ZPixmap PseudoColor / ZPixmap

If someone sends me files of other formats, these formats may be implemented.
:) /mirar@idonex.se

Returns
the decoded image as an image object

Note
This function may throw errors upon illegal or unknown XWD data.

See Also
decode

12.24 Image.JPEG

Description

Note
This module uses libjpeg, a software from Independent JPEG Group.

12.24. IMAGE.JPEG 227

Image.JPEG. decode ,
Image.JPEG.decode ,
Image.JPEG.decode header

object decode(string data)
object decode(string data, mapping options)
mapping decode(string data)
mapping decode(string data, mapping options)
mapping decode header(string data)

Description
Decodes a JPEG image. The simple decode function simply gives the image
object, the other functions gives a mapping of information (see below)

The options argument may be a mapping containing zero or more encoding
options:

advanced options:

"block smoothing":0|1

Do interblock smoothing. Default is on (1).

"fancy upsampling":0|1

Do fancy upsampling of chroma components.

Default is on (1).

"method":JPEG.IFAST|JPEG.ISLOW|JPEG.FLOAT|JPEG.DEFAULT|JPEG.FASTEST

DCT method to use.

DEFAULT and FASTEST is from the jpeg library,

probably ISLOW and IFAST respective.

decode and decode header gives a mapping as result, with this content:

"xsize":int

"ysize":int

size of image

"xdpi":float

"ydpi":float

image dpi, if known

"type":"image/jpeg"

file type information as MIME type

Note
Please read some about JPEG files.

228 CHAPTER 12. IMAGE

Image.JPEG.encode
string encode(object image)
string encode(object image, mapping options)

Description
Encodes a JPEG image.

The options argument may be a mapping containing zero or more encoding
options:

normal options:

"quality":0..100

Set quality of result. Default is 75.

"optimize":0|1

Optimize Huffman table. Default is on (1) for

images smaller than 50kpixels.

"progressive":0|1

Make a progressive JPEG. Default is off.

Note
Please read some about JPEG files. A quality setting of 100 does not mean the
result is lossless.

12.25 Image.TIFF

Description

Image.TIFF.decode
object decode(string data)

Description
Decodes a TIFF image.

Note
Throws upon error in data.

Image.TIFF.encode ,
Image.TIFF. encode
string encode(object image)
string encode(object image, mapping options)
string encode(object image)
string encode(object image, mapping options)

12.26. IMAGE.TTF 229

Description
encode and encode are identical.

The options argument may be a mapping containing zero or more encoding
options:

normal options:

"compression":Image.TIFF.COMPRESSION *,

"name":"an image name",

"comment":"an image comment",

"alpha":An alpha channel,

"dpy":Dots per inch (as a float),

"xdpy":Horizontal dots per inch (as a float),

"ydpy":Vertical dots per inch (as a float),

Image.TIFF. decode
mapping decode(string data)

Description
Decodes a TIFF image to a mapping with at least the members image and
alpha.

Note
Throws upon error in data.

12.26 Image.TTF

Description
This module adds TTF (Truetype font) capability to the Image module.

Note
This module needs the libttf ”Freetype” library

Image.TTF.‘
object ‘()(string filename)
object ‘()(string filename, mapping options)

Description
Makes a new TTF Face object.

Arguments

Returns
0 if failed.

230 CHAPTER 12. IMAGE

12.26.1 Image.TTF.Face

Image.TTF.Face
Description
This represents instances of TTF Faces.

Image.TTF.Face.flush
object flush()

Description
This flushes all cached information. Might be used to save memory - the face
information is read back from disk upon need.

Returns
the called object

Image.TTF.Face.names ,
Image.TTF.Face. names
mapping names()
array(array) names()

Description
Gives back the names or the complete name-list of this face.

The result from names() is a mapping, which has any or all of these indices:

"copyright": ("Copyright the Foo Corporation...bla bla")

"family": ("My Little Font")

"style": ("Bold")

"full": ("Foo: My Little Font: 1998")

"expose": ("My Little Font Bold")

"version": ("June 1, 1998; 1.00, ...")

"postscript": ("MyLittleFont-Bold")

"trademark": ("MyLittleFont is a registered...bla bla")

This is extracted from the information from names(), and fit into pike-strings
using unicode or iso-8859-1, if possible.

The result from names() is a matrix, on this form:

({ ({ int platform, encoding, language, id, string name }),

({ int platform, encoding, language, id, string name }),

...

})

12.27. IMAGE.XFACE 231

Returns
the name as a mapping to string or the names as a matrix

Note
To use the values from names(), check the TrueType standard documentation.

Image.TTF.Face.properties
mapping properties()

Description
This gives back a structure of the face’s properties. Most of this stuff is infor-
mation you can skip.

The most interesting item to look at may be ->num Faces, which describes the
number of faces in a .TTC font collection.

Returns
a mapping of a lot of properties

Image.TTF.Face.‘
object ‘()()

Description
This instantiates the face for normal usage - to convert font data to images.

Returns
a Image.TTF.FaceInstance object.

12.26.2 Image.TTF.FaceInstance

Image.TTF.FaceInstance
Description
This is the instance of a face, with geometrics, encodings and stuff.

Image.TTF.FaceInstance.create
void create(object face)

Description
creates a new Instance from a face.

12.27 Image.XFace

Description

Note
This module uses libgmp.

232 CHAPTER 12. IMAGE

Image.XFace.decode
object decode(string data)
object decode(string data, mapping options)

Description
Decodes an X-Face image.

The options argument may be a mapping containing zero options.

Image.XFace.decode header
object decode header(string data)
object decode header(string data, mapping options)

Description
Decodes an X-Face image header.

"xsize":int

"ysize":int

size of image

"type":"image/x-xface"

file type information

The options argument may be a mapping containing zero options.

Note
There aint no such thing as a X-Face image header. This stuff tells the charac-
teristics of an X-Face image.

Image.XFace.encode
string encode(object img)
string encode(object img, mapping options)

Description
Encodes an X-Face image.

The img argument must be an image of the dimensions 48 by 48 pixels. All
non-black pixels will be considered white.

The options argument may be a mapping containing zero options.

Chapter 13

Protocols

The Protocol modules is some helper modules that makes it easier for the pike
programmer to use some of the protocols used on the internet.

13.1 Protocols.HTTP

Protocols.HTTP.delete url
object(Protocols.HTTP.Query) delete url(string url)
object(Protocols.HTTP.Query) delete url(string url,
mapping query variables)
object(Protocols.HTTP.Query) delete url(string url,
mapping query variables, mapping request headers)

Description
Sends a HTTP DELETE request to the server in the URL and returns the
created and initialized Query object. 0 is returned upon failure.

Protocols.HTTP.get url

object(Protocols.HTTP.Query) get url(string url)
object(Protocols.HTTP.Query) get url(string url,
mapping query variables)
object(Protocols.HTTP.Query) get url(string url,
mapping query variables, mapping request headers)

Description
Sends a HTTP GET request to the server in the URL and returns the created
and initialized Query object. 0 is returned upon failure.

Protocols.HTTP.get url nice ,

233

234 CHAPTER 13. PROTOCOLS

Protocols.HTTP.get url data
array(string) get url nice(string url)
array(string) get url nice(string url, mapping query variables)
array(string) get url nice(string url, mapping query variables,
 mapping request headers)
string get url data(string url)
string get url data(string url, mapping query variables)
string get url data(string url, mapping query variables,
 mapping request headers)

Description
Returns an array of (–content type,data˝) and just the data string respective,
after calling the requested server for the information. 0 is returned upon failure.

Protocols.HTTP.post url nice ,
Protocols.HTTP.post url data ,
Protocols.HTTP.post url
array(string) post url nice(string url, mapping query variables)
array(string) post url nice(string url, mapping query variables,
 mapping request headers)
string post url data(string url, mapping query variables)
string post url data(string url, mapping query variables,
 mapping request headers)
object(Protocols.HTTP.Query) post url(string url,
mapping query variables)
object(Protocols.HTTP.Query) post url(string url,
mapping query variables, mapping request headers)

Description
Similar to the get url class of functions, except that the query variables is sent
as a post request instead of a get.

Protocols.HTTP.put url
object(Protocols.HTTP.Query) put url(string url)
object(Protocols.HTTP.Query) put url(string url, string file)
object(Protocols.HTTP.Query) put url(string url, string file,
mapping query variables)
object(Protocols.HTTP.Query) put url(string url, string file,
mapping query variables, mapping request headers)

Description
Sends a HTTP PUT request to the server in the URL and returns the created
and initialized Query object. 0 is returned upon failure.

Protocols.HTTP.unentity
string unentity(string s)

Description
Helper function for replacing HTML entities with the corresponding iso-8859-1

13.1. PROTOCOLS.HTTP 235

characters.

Note
All characters isn’t replaced, only those with corresponding iso-8859-1 charac-
ters.

13.1.1 Protocols.HTTP.Query

Protocols.HTTP.Query
Description
Open and execute a HTTP query.

Protocols.HTTP.Query.set callbacks ,
Protocols.HTTP.Query.async request
object set callbacks(function request ok, function request fail,
mixed ...extra)
object async request(string server, int port, string query);
object async request(string server, int port, string query,
mapping headers, void|string data);

Description
Setup and run an asynchronous request, otherwise similar to thread request.

request ok(object httpquery,...extra args) will be called when connection is com-
plete, and headers are parsed.

request fail(object httpquery,...extra args) is called if the connection fails.

variable int ok Tells if the connection is successfull. variable int errno Errno
copied from the connection.

variable mapping headers Headers as a mapping. All header names are in lower
case, for convinience.

variable string protocol Protocol string, ie ”HTTP/1.0”.

variable int status variable string status desc Status number and description (ie,
200 and ”ok”).

variable mapping hostname cache Set this to a global mapping if you want to
use a cache, prior of calling *request().

variable mapping async dns Set this to an array of Protocols.DNS.async clients,
if you wish to limit the number of outstanding DNS requests. Example: async dns=allocate(20,Protocols.DNS.async client)();

Returns
the called object

Protocols.HTTP.Query.cast
array cast("array")

236 CHAPTER 13. PROTOCOLS

Description
Gives back (–mapping headers,string data, string protocol,int status,string sta-
tus desc˝);

Protocols.HTTP.Query.cast
mapping cast("mapping")

Description
Gives back headers — ([”protocol”:protocol, ”status”:status number, ”status desc”:status
description, ”data”:data]);

Protocols.HTTP.Query.cast
string cast("string")

Description
Gives back the answer as a string.

Protocols.HTTP.Query.data
string data()

Description
Gives back the data as a string.

Protocols.HTTP.Query.downloaded bytes
int downloaded bytes()

Description
Gives back the number of downloaded bytes.

Protocols.HTTP.Query.thread request
object thread request(string server, int port, string query);
object thread request(string server, int port, string query,
mapping headers, void|string data);

Description
Create a new query object and begin the query.

The query is executed in a background thread; call ’() in this object to wait for
the request to complete.

’query’ is the first line sent to the HTTP server; for instance ”GET /index.html
HTTP/1.1”.

headers will be encoded and sent after the first line, and data will be sent after
the headers.

Returns
the called object

13.2. PROTOCOLS.LYSKOM 237

Protocols.HTTP.Query.total bytes
int total bytes()

Description
Gives back the size of a file if a content-length header is present and parsed at
the time of evaluation. Otherwise returns -1.

object(pseudofile) file() object(pseudofile) file(mapping newheaders,void—mapping
removeheaders) object(pseudofile) datafile(); Gives back a pseudo-file object,
with the method read() and close(). This could be used to copy the file to disc
at a proper tempo.

datafile() doesn’t give the complete request, just the data.

newheaders, removeheaders is applied as: (oldheaders|newheaders))-removeheadersMake
sure all new and remove-header indices are lower case.

void async fetch(function done callback); Fetch all data in background.

Protocols.HTTP.Query.‘
int ‘()()

Description
Wait for connection to complete.

Returns
1 on successfull connection, 0 if failed

13.2 Protocols.LysKOM

13.2.1 Protocols.LysKOM.Session

Protocols.LysKOM.Session
Description
variable user This variable contains the personthat are logged in.

Protocols.LysKOM.Session.create
void create(string server)
void create(string server, mapping options)

Description
Initializes the session object, and opens a connection to that server.

options is a mapping of options,

([

"login" : int|string login as this person number

(get number from name)

"create" : string

238 CHAPTER 13. PROTOCOLS

create a new person and login with it

"password" : string send this login password

"invisible" : int(0..1) if set, login invisible

advanced

"port" : int(0..65535) server port (default is 4894)

"whoami" : string present as this user

(default is from uid/getpwent and hostname)

])

See Also
Connection

Protocols.LysKOM.Session.create person
object create person(string name, string password)

Description
Create a person, which will be logged in.

Returns
the new person object

Protocols.LysKOM.Session.create text
object create text(string subject, string body, mapping options)
object create text(string subject, string body, mapping options,
function callback, mixed ...extra)

Description
Creates a new text.

if ”callback” are given, this function will be called when the text is created, with
the text as first argument. Otherwise, the new text is returned.

options is a mapping that may contain:

([

"recpt" : Conference|array(Conference)

recipient conferences

"cc" : Conference|array(Conference)

cc-recipient conferences

"bcc" : Conference|array(Conference)

bcc-recipient conferences *

"comm to" : Text|array(Text)

what text(s) is commented

"foot to" : Text|array(Text)

what text(s) is footnoted

"anonymous" : int(0..1)

send text anonymously

])

13.2. PROTOCOLS.LYSKOM 239

Note
The above marked with a ’*’ is only available on a protocol 10 server. A
LysKOM error will be thrown if the call fails.

See Also
Conference.create text, Text.comment and Text.footnote

Protocols.LysKOM.Session.login
object login(int user no, string password)
object login(int user no, string password, int invisible)

Description
Performs a login. Returns 1 on success or throws a lyskom error.

Returns
the called object

Protocols.LysKOM.Session.logout
object logout()

Description
Logouts from the server.

Returns
the called object

Protocols.LysKOM.Session.send message
object send message(string message, mapping options)

Description
Sends a message.

options is a mapping that may contain:

([

"recpt" : Conference recipient conference

])

Protocols.LysKOM.Session.try complete person
array(object) try complete person(string orig)

Description
Runs a LysKOM completion on the given string, returning an array of confzinfos
of the match.

240 CHAPTER 13. PROTOCOLS

13.2.2 Protocols.LysKOM.Connection

Protocols.LysKOM.Connection
Description
This class contains nice abstraction for calls into the server. They are named
”call”, ”async call” or ”async cb call”, depending on how you want the call
to be done.

Protocols.LysKOM.Connection./call/ ,

Protocols.LysKOM.Connection.async /call/ ,

Protocols.LysKOM.Connection.async cb /call/
mixed /call/(mixed ...args)
object async /call/(mixed ...args)
object async cb /call/(function callback, mixed ...args)

Description
Do a call to the server. This really clones a request object, and initialises it.
/call/ is to be read as one of the calls in the lyskom protocol. (’-’ is replaced
with ’ ’.) (ie, logout, async login or async cb get conf stat.)

The first method is a synchronous call. This will send the command, wait for
the server to execute it, and then return the result.

The last two is asynchronous calls, returning the initialised request object.

variable int protocol level variable string session software variable string soft-
ware version Description of the connected server.

Protocols.LysKOM.Connection.create
void create(string server)
void create(string server, mapping options)

Description

([

"login" : int|string login as this person number

(get number from name)

"password" : string send this login password

"invisible" : int(0..1) if set, login invisible

advanced

"port" : int(0..65535) server port (default is 4894)

"whoami" : string present as this user

(default is from uid/getpwent and hostname)

])

13.2.3 Protocols.LysKOM.Request

13.2. PROTOCOLS.LYSKOM 241

Description
This class contains nice abstraction for calls into the server. They are named
”call”, ”async call” or ”async cb call”, depending on how you want the call
to be done.

Protocols.LysKOM.Request. Request

Protocols.LysKOM.Request. Request
Description
This is the main request class. All lyskom request classes inherits this class.

Protocols.LysKOM.Request. Request.async ,
Protocols.LysKOM.Request. Request.sync
void async(mixed ...args)
mixed sync(mixed ...args)

Description
initialise an asynchronous or a synchronous call, the latter is also evaluating the
result. This calls ’indata’ in itself, to get the correct arguments to the lyskom
protocol call.

Protocols.LysKOM.Request. Request. reply ,
Protocols.LysKOM.Request. Request.reply
mixed reply(object|array what)
mixed reply(object|array what)

Description
reply is called as callback to evaluate the result, and calls reply in itself to do

the real work.

Protocols.LysKOM.Request. Request.‘
mixed ‘()()

Description
wait for the call to finish.

variable int ok tells if the call is executed ok variable object error how the call
failed The call is completed if (ok——error).

Protocols.LysKOM.Request. Request. async ,
Protocols.LysKOM.Request. Request. sync
void async(int call, mixed data)
mixed sync(int call, mixed data)

Description
initialise an asynchronous or a synchronous call, the latter is also evaluating the
result. These are called by async and sync respectively.

242 CHAPTER 13. PROTOCOLS

13.3 Protocols.DNS

Description

13.3.1 Protocols.DNS.client

Protocols.DNS.client
Description
Synchronous DNS client.

Protocols.DNS.client.create
void create()
void create(void|string|array server, void|int|array domain)

Description

Protocols.DNS.client.gethostbyname ,
Protocols.DNS.client.gethostbyaddr
array gethostbyname(string hostname)
array gethostbyaddr(string hostip)

Description
Querys the host name or ip from the default or given DNS server. The result is
a mapping with three elements,

({

string hostname [0] hostname

array(string) ip [1] ip number(s)

array(string) ip [2] dns name(s)

})

Protocols.DNS.client.get primary mx
string get primary mx(string hostname)

Description
Querys the primary mx for the host.

Returns
the hostname of the primary mail exchanger

Chapter 14

Other modules

Pike also include a number of smaller modules. These modules implement sup-
port for various algorithms, data structures and system routines.

14.1 System

The system module contains some system-specific functions that may or may not
be available on your system. Most of these functions do exactly the same thing
as their UNIX counterpart. See the UNIX man pages for detailed information
about what these functions do on your system.

Please note that these functions are available globally, you do not need to import
System to use these functions.

chroot - change the root directory

int chroot(string newroot);
int chroot(object(File) obj);

Description
Changes the root directory for this process to the indicated directory.

Note
Since this function modifies the directory structure as seen from Pike, you have
to modify the environment variables PIKE MODULE PATH and PIKE INCLUDE PATH
to compensate for the new root-directory.

This function only exists on systems that have the chroot(2) system call. The
second variant only works on systems that also have the fchroot(2) system call.

getegid - get the effective group ID

int getegid();

243

244 CHAPTER 14. OTHER MODULES

Description
Get the effective group ID.

See Also
setuid, getuid, setgid, getgid, seteuid, geteuid and setegid

geteuid - get the effective user ID

int geteuid();

Description
Get the effective user ID.

See Also
setuid, getuid, setgid, getgid, seteuid, setegid and getegid

getgid - get the group ID

int getgid();

Description
Get the real group ID.

See Also
setuid, getuid, setgid, seteuid, geteuid, setegid and getegid

getgroups - get the supplemental group access list

array(int) getgroups();

Description
Get the current supplemental group access list for this process.

See Also
initgroups, setgroups, getgid, setgid, getegid and setegid

gethostbyaddr - gets information about a host given its address

array gethostbyaddr(string addr);

Description
Returns an array with information about the specified IP address.

The returned array contains the same information as that returned by gethost-
byname().

Note
This function only exists on systems that have the gethostbyaddr(2) or similar
system call.

See Also
gethostbyname

14.1. SYSTEM 245

gethostbyname - gets information about a host given its name

array gethostbyname(string hostname);

Description
Returns an array with information about the specified host.

The array contains three elements:

The first element is the hostname.

The second element is an array(string) of IP numbers for the host.

The third element is an array(string) of aliases for the host.

Note
This function only exists on systems that have the gethostbyname(2) or similar
system call.

See Also
gethostbyaddr

gethostname - get the name of this host

string gethostname();

Description
Returns a string with the name of the host.

Note
This function only exists on systems that have the gethostname(2) or uname(2)
system calls.

getpgrp - get the process group ID

int getpgrp();
int getpgrp(int pid);

Description
With no arguments or with pid equal to zero, returns the process group ID of
this process.

If pid is specified, returns the process group ID of that process.

See Also
getpid and getppid

getpid - get the process ID

int getpid();

Description
Returns the process ID of this process.

246 CHAPTER 14. OTHER MODULES

See Also
getppid and getpgrp

getppid - get the parent process ID

int getppid();

Description
Returns the process ID of the parent process.

See Also
getpid and getpgrp

getuid - get the user ID

int getuid();

Description
Get the real user ID.

See Also
setuid, setgid, getgid, seteuid, geteuid, setegid and getegid

hardlink - create a hardlink
void hardlink(string from, string to);

Description
Creates a hardlink named to from the file from.

See Also
symlink, mv and rm

initgroups - initialize the group access list

void initgroups(string username, int base gid);

Description
Initializes the group access list according to the system group database. base gid
is also added to the group access list.

See Also
setuid, getuid, setgid, getgid, seteuid, geteuid, setegid, getegid, getgroups
and setgroups

openlog - initializes the connection to syslogd

void openlog(string ident, int options, facility);

Description
Initializes the connection to syslogd.

The ident argument specifies an identifier to tag all log entries with.

14.1. SYSTEM 247

options is a bit field specifying the behavior of the message logging. Valid
options are:

facility specifies what subsystem you want to log as. Valid facilities are:

Note
Only available on systems with syslog(3).

Bugs
LOG NOWAIT should probably always be specified.

See Also
syslog, closelog and setlogmask

readlink - read a symbolic link

string readlink(string linkname);

Description
Returns what the symbolic link linkname points to.

See Also
symlink

setegid - set the effective group ID

void setegid(int uid);

Description
Sets the effective group ID to gid.

See Also
setuid, getuid, setgid, getgid, seteuid, geteuid and getegid

seteuid - set the effective user ID
void seteuid(int uid);

Description
Sets the effective user ID to uid.

See Also
setuid, getuid, setgid, getgid, geteuid, setegid and getegid

248 CHAPTER 14. OTHER MODULES

setgid - set the group ID

void setgid(int gid);

Description
Sets the real group ID, effective group ID and saved group ID to gid.

See Also
setuid, getuid, getgid, seteuid, geteuid, setegid and getegid

setgroups - set the supplemental group access list

void getgroups(array(int) gids);

Description
Set the supplemental group access list for this process.

See Also
initgroups, getgroups, getgid, setgid, getegid and setegid

setuid - set the user ID
void setuid(int uid);

Description
Sets the real user ID, effective user ID and saved user ID to uid.

See Also
getuid, setgid, getgid, seteuid, geteuid, setegid and getegid

symlink - create a symbolic link

void symlink(string from, string to);

Description
Creates a symbolic link for an original file from with the new name to.

See Also
hardlink, readlink, mv and rm

uname - get operating system information

mapping(string:string) uname ();

Description
Returns a mapping describing the operating system.

The mapping contains the following fields:

”sysname”: Operating system name
”nodename”: ”release”:
”version”: ”machine”:

Host name Release of this OS Version number of
this OS Machine architecture

14.2. PROCESS 249

Note
This function only exists on systems that have the uname(2) system call.

14.2 Process

The Process module contains functions to start and control other programs from
Pike.

Process.create process - Create a new process

Process.create process Process.create process(array(string)
command, void | mapping(string:mixed) modifiers);

Description
This is the recommended and most portable way to start processes in Pike. The
command name and arguments are sent as an array of strings so that you do
not have to worry about qouting them. The optional mapping modifiers can
can contain zero or more of the following parameters:

The following options are only available on some systems.

250 CHAPTER 14. OTHER MODULES

These parameter limits the new process in certain ways, they are not available on
all systems. Each of these can either be given as a mapping (["soft":soft limit,"hard":hard limit])or
as an integer. If an integer is given both the hard limit and the soft limit will
be changed. The new process may change the soft limit, but may not change it
any higher than the hard limit.

See Also
Process.popen and Process.system

14.2. PROCESS 251

Process.create process.set priority - Set the priority of this process

int set priority(string pri);

Description
This function sets the priority of this process, the string prishould be one of:

"realtime"
or
"highest"

This gives the process realtime priority, this basically gives the
process access to the cpu whenever it wants.

"higher"
This gives the process higher priority than most other processes on
your system.

"high" This gives your proces a little bit higher priority than what is ’nor-
mal’.

"normal"
This sets the process’ priority to whatever is ’normal’ for new pro-
cesses on your system.

"low"
This will give the process a lower priority than what is normal on
your system.

"lowest"
This will give the process a lower priority than most processes on
your system.

Process.create process.wait - Wait for this process to finish

int wait();

Description
This function makes the calling thread wait for the process to finish. It returns
the exit code of that process.

Process.create process.status - Check if process is still running

int status();

Description
This function returns zero if the process is still running. If the process has
exited, it will return one.

Process.create process.pid - Get the process id of this process

int pid();

Description
This function returns the process identifier for the process.

Process.create process.kill - Kill this process

int kill(int signal);

Description
This function sends the given signal to the process, it returns one if the operation
succeded, zero otherwise.

See Also
signum

252 CHAPTER 14. OTHER MODULES

Process.popen - pipe open

string popen(string cmd);

Description
This function runs the command cmd as in a shell and returns the output. See
your Unix/C manual for details on popen.

Process.system - run an external program

void system(string cmd);

Description
This function runs the external program cmd and waits until it is finished.
Standard /bin/sh completions/redirections/etc. can be used.

See Also
Process.create process, Process.popen, Process.exec and Process.spawn

Process.spawn - spawn a process

int spawn(string cmd);
int spawn(string cmd, object stdin);
int spawn(string cmd, object stdin, object stdout);
int spawn(string cmd, object stdin, object stdout, object
stderr);

Description
This function spawns a process but does not wait for it to finish. Optionally,
clones of Stdio.File can be sent to it to specify where stdin, stdout and stderr
of the spawned processes should go.

See Also
Process.popen, fork, Process.exec, Stdio.File->pipe and Stdio.File->dup2

Process.exece - execute a program

int exece(string file, array(string) args);
int exece(string file, array(string) args, mapping(string:string)
env);

Description
This function transforms the Pike process into a process running the program
specified in the argument file with the argument args. If the mapping env
is present, it will completely replace all environment variables before the new
program is executed. This function only returns if something went wrong during
exece(), and in that case it returns zero.

Note
The Pike driver dies when this function is called. You must use fork() if you

14.2. PROCESS 253

wish to execute a program and still run the Pike driver.

Example
exece("/bin/ls", ({"-l"}));
exece("/bin/sh", ({"-c", "echo $HOME"}), (["HOME":"/not/home"]));

See Also
fork and Stdio.File->pipe

Process.exec - simple way to use exece()

int exec(string file, string ... args);

Description
This function destroys the Pike parser and runs the program file instead with
the arguments. If no there are no ’/’ in the filename, the variable PATH will be
consulted when looking for the program. This function does not return except
when the exec fails for some reason.

Example
exec("/bin/echo","hello","world");

Process.Spawn - spawn off another program with control structure

object Process.Spawn(string program, void|array(string) args,
void|mapping(string:string) env, void|string cwd);
or object Process.Spawn(string program, void|array(string)
args, void|mapping(string:string) env, void|string cwd,
array(void|object(Stdio.file)) fds, void|array(void|object(Stdio.file))
fds to close);

Description
Spawn off another program (program) and creates the control structure. This
does not spawn off a shell to find the program, therefore must program be the
full path the the program.

args is per default no argument(s),

env is reset to the given mapping, or kept if the argument is 0. fds is your stdin,
stdout and stderr. Default is local pipes (see stdin et al). fds to close is file
descriptors that are closed in the forked branch when the program is executed
(ie, the other end of the pipes).

Process.Spawn.stdin ,
Process.Spawn.stdout ,
Process.Spawn.stderr ,
Process.Spawn.fd - pipes to the program

object(Stdio.File) stdin;
object(Stdio.File) stdout;
object(Stdio.File) stderr;
array(void|object(Stdio.File)) fd;

254 CHAPTER 14. OTHER MODULES

Description
Pipes to the spawned program (if set). fd[0]==stdin, etc.

Process.Spawn.pid - spawned program pid

int pid;

Description
pid of the spawned program.

Process.Spawn.wait - wait for the spawned program to finish

void wait();

Description
Returns when the program has exited.

Process.Spawn.kill - send a signal to the program

int kill(int signal);

Description
Sends a signal to the program.

14.3 Regexp

Regexp is short for Regular Expression. A regular expression is a standard-
ized way to make pattern that match certain strings. In Pike you can often use
the sscanf, range and index operators to match strings, but sometimes a regexp
is both faster and easier.

A regular expression is actually a string, then compiled into an object. The
string contains characters that make up a pattern for other strings to match.
Normal characters, such as A through Z only match themselves, but some char-
acters have special meaning.

pattern Matches
. any one character
[abc] a, b or c
[a-z] any character a to z inclusive
[ˆac] any character except a and c

(x) x (x might be any regexp) If used with split, this also puts the string
matching x into the result array.

x* zero or more occurrences of ’x’ (x may be any regexp)
x+ one or more occurrences of ’x’ (x may be any regexp)
x—y x or y. (x or y may be any regexp)
xy xy (x and y may be any regexp)
ˆ beginning of string (but no characters)
$ end of string (but no characters)

14.3. REGEXP 255

pattern Matches
“¡ the beginning of a word (but no characters)
“¿ the end of a word (but no characters)

Let’s look at a few examples:

Regexp Matches
[0-9]+ one or more digits
[ˆ “t“n] exactly one non-whitespace character
(foo)—(bar) either ’foo’ or ’bar’
“.html$ any string ending in ’.html’
ˆ“. any string starting with a period

Note that “ can be used to quote these characters in which case they match
themselves, nothing else. Also note that when quoting these something in Pike
you need two “ because Pike also uses this character for quoting.

To make make regexps fast, they are compiled in a similar way that Pike is,
they can then be used over and over again without needing to be recompiled.
To give the user full control over the compilations and use of regexp an object
oriented interface is provided.

You might wonder what regexps are good for, hopefully it should be more clear
when you read about the following functions:

Regexp.create - compile regexp

void create();
void create(string regexp);
object(Regexp) Regexp();
object(Regexp) Regexp(string regexp);

Description
When create is called, the current regexp bound to this object is cleared. If a
string is sent to create(), this string will be compiled to an internal represen-
tation of the regexp and bound to this object for later calls to match or split.
Calling create() without an argument can be used to free up a little memory
after the regexp has been used.

See Also
clone and Regexp->match

Regexp.match - match a regexp

int match(string s)

Description
Return 1 if s matches the regexp bound to the object regexp, zero otherwise.

See Also
Regexp->create and Regexp->split

256 CHAPTER 14. OTHER MODULES

Regexp.split - split a string according to a pattern

array(string) split(string s)

Description
Works as regexp-¿match, but returns an array of the strings that matched the
sub-regexps. Sub-regexps are those contained in () in the regexp. Sub-regexps
that were not matched will contain zero. If the total regexp didn’t match, zero
is returned.

Bugs
You can only have 40 sub-regexps.

See Also
Regexp->create and Regexp->match

14.4 Gmp

Gmp is short for GNU Multi-Precision library. It is a set of routines that can
manipulate very large numbers. Although much slower than regular integers
they are very useful when you need to handle extremely large numbers. Billions
and billions as Mr Attenborough would have said..

The Gmp library can handle large integers, floats and rational numbers, but
currently Pike only has support for large integers. The others will be added
later or when demand arises. Large integers are implemented as objects cloned
from Gmp.Mpz.

Gmp.mpz - bignum program

Description
Gmp.mpz is a builtin program written in C. It implements large, very large
integers. In fact, the only limitation on these integers is the available memory.

The mpz object implements all the normal integer operations. (except xor)
There are also some extra operators:

Note
This module is only available if libgmp.a was available and found when Pike
was compiled.

Gmp.mpz.create - initialize a bignum

object Mpz();
object Mpz(int|object|float i);
object Mpz(string digits, int base);

Description
When cloning an mpz it is by default initialized to zero. However, you can
give a second argument to clone to initialize the new object to that value. The
argument can be an int, float another mpz object, or a string containing an

14.4. GMP 257

ascii number. You can also give the number in the string in another base by
specifying the base as a second argument. Valid bases are 2-36 and 256.

See Also
clone

Gmp.mpz.powm - raise and modulo

object powm(int|string|float|object a,int|string|float|object b);

Description
This function returns (mpz ** a) % b. For example, Mpz(2)->powm(10,42);
would return 16since 2 to the power of 10 is 1024 and 1024 modulo 42 is 16.

Gmp.mpz.sqrt - square root

object sqrt();

Description
This function returns the truncated integer part of the square root of the value
of mpz.

Gmp.mpz.probably prime p - is this number a prime?

int probably prime p();

Description
This function returns 1 if mpz is a prime, and 0 most of the time if it is not.

Gmp.mpz.gcd - greatest common divisor

object gcd(object|int|float|string arg)

Description
This function returns the greatest common divisor for arg and mpz.

Gmp.mpz.cast - cast to other type

object cast("string" | "int" | "float");
(string) mpz
(int) mpz
(float) mpz

Description
This function converts an mpz to a string, int or float. This is necessary when
you want to view, store or use the result of an mpz calculation.

See Also
cast

258 CHAPTER 14. OTHER MODULES

Gmp.mpz.digits - convert mpz to a string

string digits();
string digits(int|void base);

Description
This function converts an mpz to a string. If a base is given the number will be
represented in that base. Valid bases are 2-36 and 256. The default base is 10.

See Also
Gmp.mpz->cast

Gmp.mpz.size - how long is a number

string size();
string size(int|void base);

Description
This function returns how long the mpz would be represented in the specified
base. The default base is 2.

See Also
Gmp.mpz->digits

14.5 Gdbm

Gdbm is short for GNU Data Base Manager. It provides a simple data base
similar to a file system. The functionality is similar to a mapping, but the
data is located on disk, not in memory. Each gdbm database is one file which
contains a key-pair values, both keys and values have to be strings. All keys are
always unique, just as with a mapping.

This is the an interface to the gdbm library. This module might or might not
be available in your Pike depending on whether the gdbm library was available
on your system when Pike was compiled.

Gdbm.gdbm.create - open database

int create();
int create(string file);
int create(string file, string mode);
object(Gdbm) Gdbm(); object(Gdbm) Gdbm(string file); object(Gdbm)
Gdbm(string file, string mode);

Description
Without arguments, this function does nothing. With one argument it opens
the given file as a gdbm database, if this fails for some reason, an error will be
generated. If a second argument is present, it specifies how to open the database
using one or more of the follow flags in a string:

14.5. GDBM 259

r open database for reading
w open database for writing
c create database if it does not exist
t overwrite existing database
f fast mode

The fast mode prevents the database from synchronizing each change in the
database immediately. This is dangerous because the database can be left in an
unusable state if Pike is terminated abnormally.

The default mode is ”rwc”.

Gdbm.gdbm.close - close database

void close();

Description
This closes the database.

Gdbm.gdbm.store - store a value in the database

int store(string key, string data);

Description
Associate the contents of data with the key key. If the key keyalready exists in
the database the data for that key will be replaced. If it does not exist it will
be added. An error will be generated if the database was not open for writing.

Gdbm.gdbm.fetch - fetch a value from the database

string fetch(string key);

Description
Returns the data associated with the key key in the database. If there was no
such key in the database, zero is returned.

Gdbm.gdbm.delete - delete a value from the database

int delete(string key);

Description
Remove a key from the database. Note that no error will be generated if the
key does not exist.

Gdbm.gdbm.firstkey - get first key in database

string firstkey();

Description
Returns the first key in the database, this can be any key in the database.

260 CHAPTER 14. OTHER MODULES

Gdbm.gdbm.nextkey - get next key in database

string nextkey(string key);

Description
This returns the key in database that follows the key key. This is of course used
to iterate over all keys in the database.

Example
/* Write the contents of the database */
for(key=gdbm->firstkey(); k; k=gdbm->nextkey(k))

Gdbm.gdbm.reorganize - reorganize database

int reorganize();

Description
Deletions and insertions into the database can cause fragmentation which will
make the database bigger. This routine reorganizes the contents to get rid of
fragmentation. Note however that this function can take a LOT of time to run.

Gdbm.gdbm.sync - synchronize database

void sync();

Description
When opening the database with the ’f’ flag writings to the database can be
cached in memory for a long time. Calling sync will write all such caches to
disk and not return until everything is stored on the disk.

14.6 Getopt

Getopt is a group of function which can be used to find command line options.
Command line options come in two flavors: long and short. The short ones
consists of a dash followed by a character (-t), the long ones consist of two
dashes followed by a string of text (--test). The short options can also be
combined, which means that you can write -tda instead of -t -d -a. Op-
tions can also require arguments, in which case they cannot be combined. To
write an option with an argument you write -t argument or -targument or
--test=argument .

14.6. GETOPT 261

Getopt.find option - find command line options

mixed find option(array(string) argv,

Description
This is a generic function to parse command line options of the type ’-f’, ’–
foo’ or ’–foo=bar’. The first argument should be the array of strings that is
sent as second argument to your main() function, the second is a string with
the short form of your option. The short form must be only one character
long. The ’longform’ is an alternative and maybe more readable way to give
the same option. If you give ”foo” as longform your program will accept ’–foo’
as argument. The envvar argument specifies what environment variable can be
used to specify the same option. The envvar option exists to make it easier
to customize program usage. The ’def’ has two functions: It specifies that the
option takes an argument and it tells find option what to return if the option
is not present. If ’def’ is given and the option does not have an argument
find option will print an error message and exit the program.

Also, as an extra bonus: shortform, longform and envvar can all be arrays, in
which case either of the options in the array will be accpted.

Note
find option modifies argv.
This function reads options even if they are written after the first non-option
on the line.

Example

/* This program tests two different options. One is called -f or

* --foo and the other is called -b or --bar and can also be given

* by using the BAR OPTION environment variable.

*/

int main(int argc, array(string) argv)

{

if(find option(argv,"f","foo"))

werror("The FOO option was given.\n");

werror("The BAR option got the "+

find option(argv,"b","bar","BAR OPTION","default")+

" argument.\n");

}

See Also
Getopt.get args

262 CHAPTER 14. OTHER MODULES

Getopt.find all options - find command line options

array find all options(array(string) argv, array option, int|void
posix me harder, int|void throw errors);

Description
This function does the job of several calls to find option. The main advantage
of this is that it allows it to handle the POSIX ME HARDER environment vari-
able better. When the either the argument posix me harder or the environment
variable POSIX ME HARDER is true, no arguments will be parsed after the
first non-option on the command line.

Each element in the array options should be an array on the following form:

Only the first three elements has to be included.

The good news is that the output from this function is a lot simpler. Find all options
returns an array where each element is an array on this form:

14.6. GETOPT 263

The name is the identifier from the input and value is the value given to it from
the argument, environment variable or default. If no default is given, value will
be 1.

Note
find all options modifies argv.

Example
First let’s take a look at input and output:

> Getopt.find all options(({"test","-dd"}),

>> ({ ({ "debug", Getopt.NO ARG, ({"-d","--debug"}), "DEBUG", 1}) }));

Result: ({

({ "debug", 1 }),

({ "debug", 1 })

})

This is what it would look like in real code:

import Getopt;

int debug=0;

int main(int argc, array(string) argv

{

foreach(find all options(argv, ({

({ "debug", MAY HAVE ARG, ({"-d","--debug"}), "DEBUG", 1}),

({ "version", NO ARG, ({"-v","--version" }) }) })),

mixed option)

{

switch(option[0])

{

case "debug": debug+=option[1]; break;

case "version":

write("Test program version 1.0\n");

exit(1);

}

}

argv=Getopt.get args(argv);

}

See Also

264 CHAPTER 14. OTHER MODULES

Getopt.get args

Getopt.get args - get the non-option arguments

array(string) get args(array(string) argv,void|int throw errors);

Description
This function returns the remaining command line arguments after you have
run find options to find all the options in the argument list. If there are any
options left not handled by find options an error message will be written and
the program will exit. Otherwise a new ’argv’ array without the parsed options
is returned.

Example

int main(int argc, array(string) argv)

{

if(find option(argv,"f","foo"))

werror("The FOO option was given.\n");

argv=get args(argv);

werror("The arguments are: "+(argv*" ")+".\n");

}

See Also
Getopt.find option

14.7 Gz

The Gz module contains functions to compress and uncompress strings using
the same algorithm as the program gzip. Packing can be done in streaming
mode or all at once. Note that this module is only available if the gzip library
was available when Pike was compiled. The Gz module consists of two classes;
Gz.deflate and Gz.inflate. Gz.deflate is used to pack data and Gz.inflate is used
to unpack data. (Think ”inflatable boat”) Note that these functions use the
same algorithm as gzip, they do not use the exact same format however, so you
cannot directly unzip gzipped files with these routines. Support for this will be
added in the future.

Gz.deflate - string packer

Description
Gz.inflate is a builtin program written in C. It interfaces the packing routines
in the libz library.

Note
This program is only available if libz was available and found when Pike was
compiled.

14.7. GZ 265

See Also
Gz.inflate

Gz.deflate.create - initialize packer

void create(int X)
object(Gz.deflate) Gz.deflate(int X)

Description
This function is called when a new Gz.deflate is created. If given, X should
be a number from 0 to 9 indicating the packing / CPU ratio. Zero means no
packing, 2-3 is considered ’fast’, 6 is default and higher is considered ’slow’ but
gives better packing.

This function can also be used to re-initialize a Gz.deflate object so it can be
re-used.

Gz.deflate.deflate - pack data

string deflate(string data, int flush);

Description
This function performs gzip style compression on a string and returns the packed
data. Streaming can be done by calling this function several times and concate-
nating the returned data. The optional ’flush’ argument should be one f the
following:

Gz.NO FLUSH Only data that doesn’t fit in the internal buffers is re-
turned.

Gz.PARTIAL FLUSH All input is packed and returned.
Gz.SYNC FLUSH All input is packed and returned.

Gz.FINISH
All input is packed and an ’end of data’ marker is ap-
pended.

Using flushing will degrade packing. Normally NO FLUSH should be used until
the end of the data when FINISH should be used. For interactive data PAR-
TIAL FLUSH should be used.

See Also
Gz.inflate->inflate

Gz.inflate - string unpacker

Description
Gz.inflate is a builtin program written in C. It interfaces the packing routines
in the libz library.

Note
This program is only available if libz was available and found when Pike was
compiled.

See Also
Gz.deflate

266 CHAPTER 14. OTHER MODULES

Gz.inflate.create - initialize unpacker

void create()
object(Gz.inflate) Gz.inflate()

Description
This function is called when a new Gz.inflate is created. It can also be called
after the object has been used to re-initialize it.

Gz.inflate.inflate - unpack data

string inflate(string data);

Description
This function performs gzip style decompression. It can inflate a whole file at
once or in blocks.

Example
import Stdio;
// whole file
write(Gz.inflate()->inflate(stdin->read());

// streaming (blocks)
function inflate=Gz.inflate()->inflate;
while(string s=stdin->read(8192))

See Also
Gz.deflate->deflate

Gz.crc32 - calculate checksum
string crc32(string data,void|int start value);

Description
This method is usable for calculating checksums, and presents the standard
ISO3309 Cyclic Redundancy Check.

See Also
Gz

14.8 Yp

This module is an interface to the Yellow Pages functions. Yp is also known
as NIS (Network Information System) and is most commonly used to distribute

14.8. YP 267

passwords and similar information within a network.

Yp.default yp domain - get the default Yp domain

string default yp domain();

Description
Returns the default yp-domain.

Yp.YpDomain - class representing an Yp domain

object(Yp.YpDomain) Yp.YpDomain(string|void domain);

Description
This creates a new YpDomain object.

If there is no YP server available for the domain, this function call will block
until there is one. If no server appears in about ten minutes or so, an error will
be returned. The timeout is not configurable from the C interface to Yp either.

If no domain is given, the default domain will be used. (As returned by
Yp.default yp domain)

Yp.YpDomain.bind - bind this object to another domain

void bind(string|void domain);

Description
Re-bind the object to another (or the same) domain. If no domain is given, the
default domain will be used.

Yp.YpDomain.match - match a key in a map

string match(string map, string key);

Description
If ’map’ does not exist, an error will be generated. Otherwise the string matching
the key will be returned. If there is no such key in the map, 0 will be returned.

arguments is the map Yp-map to search in. This must be a full map name, for
example, you should use passwd.byname instead of just passwd. key is the key
to search for. The key must match exactly, no pattern matching of any kind is
done.

Example

object dom = Yp.YpDomain();

write(dom->match("passwd.byname", "root"));

268 CHAPTER 14. OTHER MODULES

Yp.YpDomain.all - return the whole map

mapping(string:string) all(string map);

Description
Returns the whole map as a mapping. map is the YP-map to search in. This
must be the full map name, you have to use passwd.bynameinstead of just
passwd.

Yp.YpDomain.map - call a function for each entry in an Yp map

void map(string map, function(string,string:void) over);

Description
For each entry in ’map’, call the function(s) specified by ’over’. Over will get two
arguments, the first being the key, and the second the value. map is the YP-map
to search in. This must be the full map name, as an example, passwd.byname
instead of just passwd.

Yp.YpDomain.server - find an Yp server

string server(string map);

Description
Returns the hostname of the server serving the map map. mapis the YP-map
to search in. This must be the full map name, as an example, passwd.byname
instead of just passwd.

Yp.YpDomain.order - get the ’order’ for specified map

int order(string map);

Description
Returns the ’order’ number for the map map. This is usually a time t (see the
global function time()). When the map is changed, this number will change as
well. map is the YP-map to search in. This must be the full map name, as an
example, passwd.byname instead of just passwd.

Yp.YpMap - class representing one Yp map

object(Yp.YpMap) Yp.Ypmap(string map, string|void domain);

Description
This creates a new YpMap object.

If there is no YP server available for the domain, this function call will block
until there is one. If no server appears in about ten minutes or so, an error will
be returned. The timeout is not configurable from the C-yp interface either.
map is the YP-map to bind to. This must be the full map name, as an example,
passwd.byname instead of just passwd. If no domain is specified, the default
domain will be used. This is usually best.

14.8. YP 269

Yp.YpMap.match - find key in map

string match(string key)
; string Yp.YpMap [string key];

Description
Search for the key key. If there is no key in the map, 0 will be returned, otherwise
the string matching the key will be returned. key must match exactly, no pattern
matching of any kind is done.

Yp.YpMap.all - return the whole map as a mapping

mapping(string:string) all();
(mapping) Yp.YpMap ;

Description
Returns the whole map as a mapping.

Yp.YpMap.map - call a function for each entry in the map

void map(function(string,string:void) over);

Description
For each entry in the map, call the function(s) specified by ’over’. The function
will be called like ’void over(string key, string value)’.

Yp.YpMap.server - find what server servers this map

string server();

Description
Returns the hostname of the server serving this map.

Yp.YpMap.order - find the ’order’ of this map

int order();

Description
Returns the ’order’ number for this map. This is usually a time t (see the global
function time())

Yp.YpMap. sizeof - return the number of entries in the map

int sizeof(Yp.YpMap);

Description
Returns the number of entries in the map. This is equivalent to sizeof((mapping)map);

Yp.YpMap. indices - return the indices from the map

array(string) indices(Yp.YpMap)

270 CHAPTER 14. OTHER MODULES

Description
Returns the indices of the map. If indices is called first, values must be called
immediately after. If values is called first, it is the other way around.

See Also
Yp.YpMap-> values

Yp.YpMap. values - return the values from the map

array(string) values(Yp.Ypmap)

Description
Returns the values of the map. If values is called first, indices must be called
immediately after. If indices is called first, it is the other way around.

See Also
Yp.YpMap-> indices Here is an example program using the Yp module, it lists
users and their GECOS field from the Yp map ”passwd.byname” if your system
uses Yp.

import Yp;

void print entry(string key, string val)

{

val = (val/":")[4];

if(strlen(val))

{

string q = ".......... ";

werror(key+q[strlen(key)..]+val+"\n");

}

}

void main(int argc, array(string) argv)

{

object (YpMap) o = YpMap("passwd.byname");

werror("server.... "+ o->server() + "\n"

"age....... "+ (-o->order()+time()) + "\n"

"per....... "+ o["per"] + "\n"

"size...... "+ sizeof(o) + "\n");

o->map(print entry); // Print username/GECOS pairs

}

14.9 ADT.Table

ADT.Table is a generic module for manipulating tables. Each table contains
one or several columns. Each column is associated with a name, the column

14.9. ADT.TABLE 271

name. Optionally, one can provide a column type. The Table module can do
a number of operations on a given table, like computing the sum of a column,
grouping, sorting etc.

All column references are case insensitive. A column can be referred to by its
position (starting from zero). All operations are non-destructive. That means
that a new table object will be returned after, for example, a sort.

An example is available at the end of this section.

ADT.Table.table.create - create a table object

void create(array(array) table, array(string) column names,
array(mapping)|void column types);

Description
The table class takes two or three arguments:

1.

2.

3.

Example

object t = ADT.Table.table(({ ({ "Blixt", "Gordon" }),

({ "Buck", "Rogers" }) }),

({ "First name", "Last name" }));

See Also
ADT.Table.ASCII.encode

ADT.Table.table. indices - gives the column names

array(string) indices();

Description
This method returns the column names for the table. The case used when the
table was created will be returned.

ADT.Table.table. values - gives the table contents

array(array) values();

Description
This method returns the contents of a table as a two dimensional array. The
format is an array of rows. Each row is an array of columns.

272 CHAPTER 14. OTHER MODULES

ADT.Table.table. sizeof - gives the number of table rows

int sizeof();

Description
This method returns the number of rows in the table.

ADT.Table.table.reverse - reverses the table rows
object reverse();

Description
This method reverses the rows of the table and returns a new table object.

ADT.Table.table.rename - rename a column
object rename(string|int from, string to);

Description
This method renames the column named from to to and returns a new table
object. Note that from can be the column position.

ADT.Table.table.type - fetch or set the type for a column

mapping type(string|int column, mapping|void type);

Description
This method gives the type for the given column. If a second argument is given,
the old type will be replaced with type. The column type is only used when the
table is displayed. The format is as specified in create.

ADT.Table.table.limit - truncate the table
object limit(int n);

Description
This method truncates the table to the first n rows and returns a new object.

ADT.Table.table.sort - sort the table on one or several columns
object sort(string|int column1, string|int column2, ...);

Description
This method sorts the table in ascendent order on one or several columns and
returns a new table object. The left most column is sorted last. Note that the
sort is stable.

ADT.Table.table.rsort - sort the table in reversed order on one or sev-
eral columns
object rsort(string|int column1, string|int column2, ...);

14.9. ADT.TABLE 273

Description
Like sort, but the order is descendent.

ADT.Table.table.distinct - keep unique rows only

object distinct(string|int column1, string|int column2, ...);

Description
This method groups by the given columns and returns a table with only unique
rows. When no columns are given, all rows will be unique. A new table object
will be returned.

ADT.Table.Table.table.sum - computes the sum of equal rows

object sum(string|int column1, string|int column2, ...);

Description
This method sums all equal rows. The table will be grouped by the columns
not listed. The result will be returned as a new table object.

ADT.Table.table.group - group the table using functions

object group(mapping(string|int:funcion) fus, mixed ... arg);
object group(funcion f, array(string|int)|string|int columns,
mixed ... arg);

Description
This method calls the function for each column each time a non uniqe row will
be joined. The table will be grouped by the columns not listed. The result will
be returned as a new table object.

ADT.Table.table.map - map columns over a function

object map(funcion fu, string|int|array(int|string) columns,
mixed ... arg);

Description
This method calls the function for all rows in the table. The value returned will
replace the values in the columns given as argument to map. If the function
returns an array, several columns will be replaced. Otherwise the first column
will be replaced. The result will be returned as a new table object.

ADT.Table.table.where - filter the table through a function

object where(array(string|int)|string|int column1, funcion fu,
mixed ... arg);

Description
This method calls the function for each row. If the function returns zero, the
row will be thrown away. If the function returns something non-zero, the row
will be kept. The result will be returned as a new table object.

274 CHAPTER 14. OTHER MODULES

ADT.Table.table.select - keep only the given columns

object select(string|int column1, string|int column2, ...);

Description
This method returns a new table object with the selected columns only.

ADT.Table.table.remove - remove columns
object remove(string|int column1, string|int column2, ...);

Description
Like select, but the given columns will not be in the resulting table.

ADT.Table.table.encode - represent the table as a binary string

string encode();

Description
This method returns a binary string representation of the table. It is useful
when one wants to store a table, for example in a file.

ADT.Table.table.decode - decode an encoded table
string decode(string table string);

Description
This method returns a table object from a binary string representation of a
table.

ADT.Table.table.col - fetch a column
array col(string|int column);

Description
This method returns the contents of a given column as an array.

ADT.Table.table.‘[] - fetch a column

array ‘[](string|int column);

Description
Same as col.

ADT.Table.table.row - fetch a row
array row(int row number);

Description
This method returns the contents of a given row as an array.

14.9. ADT.TABLE 275

ADT.Table.table.‘== - compare two tables

int ‘==(object table);

Description
This method compares two tables. They are equal if the contents of the ta-
bles and the column names are equal. The column name comparison is case
insensitive.

ADT.Table.table.append bottom - concatenate two tables

object append bottom(object table);

Description
This method appends two tables. The table given as an argument will be added
at the bottom of the current table. Note, the column names must be equal. The
column name comparison is case insensitive.

ADT.Table.table.append right - concatenate two tables

object append right(object table);

Description
This method appends two tables. The table given as an argument will be added
on the right side of the current table. Note that the number of rows in both
tables must be equal.

ADT.Table.ASCII.encode - produces an ASCII formated table

string encode(object table, mapping|void options);

Description
This method returns a table represented in ASCII suitable for human eyes.
options is an optional mapping. If the keyword ”indent” is used with a number,
the table will be indented with that number of space characters.

Example

array(string) cols = ({ "Fruit", "Provider", "Quantity" });

array(mapping) types = ({ 0, 0, (["type":"num"]) });

array(array) table = ({ ({ "Avocado", "Frukt AB", 314 }),

({ "Banana", "Banankompaniet", 4276 }),

({ "Orange", "Frukt AB", 81 }),

({ "Banana", "Frukt AB", 1174 }),

({ "Orange", "General Food", 523 }) });

object t = ADT.Table.table(table, cols, types);

write("FRUITS\n\n");

write(ADT.Table.ASCII.encode(t, (["indent":4])));

276 CHAPTER 14. OTHER MODULES

write("\nPROVIDERS\n\n");

write(ADT.Table.ASCII.encode(t->select("provider", "quantity")->

sum("quantity")->rsort("quantity")));

write("\nBIG PROVIDERS\n\n"+

ADT.Table.ASCII.encode(t->select("provider", "quantity")->

sum("quantity")->

where("quantity", ‘>, 1000)->

rsort("quantity")));

write("\nASSORTMENT\n\n");

write(ADT.Table.ASCII.encode(t->select("fruit")->distinct("fruit")->

sort("fruit"), (["indent":4])));

14.10 Yabu transaction database

Yabu is a all purpose database, used to store data records associated with a
unique key. Yabu is very similar to mappings, however, records are stored in
files and not in memory. Also, Yabu features tables, which is a way to handle
several mapping-like structures in the same database. A characteristic feature of
Yabu is that it allows for transactions. A transaction is a sequence of database
commands that will be accepted in whole, or not at all.

Some effort has been made to make sure that Yabu is crash safe. This means
that the database should survive process kills, core dumps and such – although
this is not something that can be absolutely guaranteed. Also, all non-commited
and pending transactions will be cancelled in case of a crash.

Yabu uses three types of objects, listed below:

•

•

•

A simple example is illustrated below.

Example

// Create a database called "my.database" in write/create mode.

object db = Yabu.db("my.database", "wc");

// Create a table called "fruit".

object table = db["fruit"];

14.10. YABU TRANSACTION DATABASE 277

// Store a record called "orange" with the value "yummy".

table["orange"] = "yummy";

// Store a record called "apple" with the value 42.

table["apple"] = 42;

Transactions are slightly more complex, but not much so. See example below.

Example

// Create a database called "my.database"

// in write/create/transaction mode.

object db = Yabu.db("my.database", "wct");

// Create a table called "fruit".

object table = db["fruit"];

// Create a transaction object for table "fruit".

object transaction = table->transaction();

// Store a record called "orange" with

// the value "yummy". Note that this record

// is only visible through the transaction object.

transaction["orange"] = "yummy";

// Store a record called "apple" with the value 42.

// As with "orange", this record is invisible

// for all objects except this transaction object.

transaction["apple"] = 42;

// Commit the records "orange" and "apple".

// These records are now a part of the database.

transaction->commit();

14.10.1 The database

The db object is the main Yabu database object. It is used to open the database
and it can create table objects.

A Yabu database can operate in two basic modes:

•

•

278 CHAPTER 14. OTHER MODULES

Compressed databases opened without compress mode enabled will be handled
correctly in both modes, provided that the Gz module is available. However,
new records will no longer be compressed in write mode.

Yabu.db.create - Open a Yabu database

void create(string directory, string mode);

Description
Create takes two arguments:

1.

2.

Note
It is very important not to open the same a database more than once at a
time. Otherwise there will be conflicts and most likely strange failures and
unpredictable behaviours. Yabu does not check weather a database is already
open or not.

Example

// Open a database in create/write/transaction mode.

object db = Yabu.db("my.database", "cwt");

// Open a database in read mode.

object db = Yabu.db("my.database", "r");

// Open a database in create/write/compress mode.

object db = Yabu.db("my.database", "cwC");

See Also
Yabu.db->table, Yabu.db->list tables, Yabu.db->sync and Yabu.db->purge

Yabu.db.table - Open a table

object(table) table(string table name);
object(table) ‘[](string table name);

Description
This method opens a table with table name. If the table does not exist, it will
be created. A table object will be returned.

See Also
Yabu.db->list tables, Yabu.db->sync and Yabu.db->purge

14.10. YABU TRANSACTION DATABASE 279

Yabu.db.list tables - List all tables
array(string) list tables();
array(string) indices();

Description
This method lists all available tables.

See Also
Yabu.db->table, Yabu.db->sync, Yabu.db->purge and Yabu.db-> values

Yabu.db. values - Get all tables
array(Yabu.table) values();

Description
This method returns all available tables.

See Also
Yabu.db->table, Yabu.db->sync, Yabu.db->purge and Yabu.db-> indices

Yabu.db.sync - Synchronize database

void sync();

Description
This method synchronizes the database on disk. Yabu stores some informa-
tion about the database in memory for performance reasons. Syncing is recom-
mended when one wants the information on disk to be updated with the current
information in memory.

See Also
Yabu.db->table, Yabu.db->list tables and Yabu.db->purge

Yabu.db.purge - Delete database

void purge();

Description
This method deletes the whole database and all database files stored on disk.

See Also
Yabu.db->table, Yabu.db->list tables and Yabu.db->sync

14.10.2 Tables

The table object is used to store and retrieve information from a table. Table
objects are created by the db class. A table object can create a transaction
object.

280 CHAPTER 14. OTHER MODULES

Yabu.table.set - Store a record in a table
mixed set(string key, mixed data);
mixed ‘[]=(string key, mixed data);

Description
This method stores the contents of data as a record with the name key. If a
record with that name already exists, it will be replaced. Records can only be
added to the database in write mode.

See Also
Yabu.table->get, Yabu.table->delete, Yabu.table->list keys and Yabu.table->purge

Yabu.table.get - Fetch a record from a table

mixed get(string key);
mixed ‘[](string key);

Description
This method fetches the data associated with the record name key. If a record
does not exist, zero is returned.

See Also
Yabu.table->set, Yabu.table->delete, Yabu.table->list keys and Yabu.table->purge

Yabu.table.list keys - List the records in a table

array(string) list keys();
array(string) indices();

Description
This method lists all record names in the table.

See Also
Yabu.table->set, Yabu.table->get, Yabu.table->delete, Yabu.table->purge
and Yabu.table-> values

Yabu.table. values - Get all the records in a table
array(mixed) values();

Description
This method returns all record names in the table.

See Also
Yabu.table->set, Yabu.table->get, Yabu.table->delete, Yabu.table->purge
and Yabu.table-> indices

Yabu.table.delete - Delete a record in a table
void delete(string key);

14.10. YABU TRANSACTION DATABASE 281

Description
This method deletes the record with the name key.

See Also
Yabu.table->set, Yabu.table->get, Yabu.table->list keys and Yabu.table->purge

Yabu.table.purge - Delete a table

void purge();

Description
This method deletes the whole table and the table files on disk.

See Also
Yabu.table->set, Yabu.table->get, Yabu.table->list keys and Yabu.table->delete

Yabu.table.transaction - Begin a transaction

object(transaction) transaction();

Description
A transaction is a sequence of table commands that will be accepted in whole,
or not at all. If the program for some reason crashes or makes an abrupt exit
during a transaction, the transaction is cancelled.

This method returns a transaction object.

See Also
Yabu.transaction->commit and Yabu.transaction->rollback

14.10.3 Transactions

Transactions make it possible to alter, add or delete several database records
and guarantee that all changes, or no changes, will be accepted by the database.
A transaction object is basically a table object with a few restrictions and
additions, listed below:

•

•

•

Rollbacks always succeeds. However, with commit that is not always the case.
A commit will fail if:

•

Yabu.transaction.commit - Commit a transaction
void commit();

282 CHAPTER 14. OTHER MODULES

Description
This method commits the changes made in a transaction. If a record affected
by the transaction is altered during the transaction, a conflict will arise and an
error is thrown.

See Also
Yabu.table->transaction and Yabu.transaction->rollback

Yabu.transaction.rollback - Rollback a transaction
void rollback();

Description
This method cancels a transaction. All changes made in the transaction are
lost.

See Also
Yabu.table->transaction and Yabu.transaction->commit

14.11 MIME

RFC1521* , the Multipurpose Internet Mail Extensions memo, defines ahttp://www.roxen.com/rfc
/rfc1521.txt structure which is the base for all messages read and written by modern mail

and news programs. It is also partly the base for the HTTP protocol. Just like
RFC822* , MIME declares that a message should consist of two entities, thehttp://www.roxen.com/rfc

/rfc822.txt headers and the body. In addition, the following properties are given to these
two entities:

The MIME module can extract and analyze these two entities from a stream of
bytes. It can also recreate such a stream from these entities. To encapsulate
the headers and body entities, the class MIME.Message is used. An object of
this class holds all the headers as a mapping from string to string, and it is
possible to obtain the body data in either raw or encoded form as a string.
Common attributes such as message type and text char set are also extracted
into separate variables for easy access.

The Message class does not make any interpretation of the body data, un-
less the content type is multipart. A multipart message contains several in-
dividual messages separated by boundary strings. The createmethod of the
Message class will divide a multipart body on these boundaries, and then
create individual Message objects for each part. These objects will be col-
lected in the array body parts within the original Message object. If any
of the new Message objects have a body of type multipart, the process is

14.11. MIME 283

of course repeated recursively. The following figure illustrates a multipart
message containing three parts, one of which contains plain text, one con-
taining a graphical image, and the third containing raw uninterpreted data:

14.11.1 Global functions

MIME.decode - Remove transfer encoding

string decode(string data, string encoding);

Description
Extract raw data from an encoded string suitable for transport between systems.
The encoding can be any of

•

•

•

•

•

•

284 CHAPTER 14. OTHER MODULES

•

The encoding string is not case sensitive.

See Also
MIME.encode

MIME.decode base64 - Decode ¡tt¿base64¡/tt¿ transfer encoding

string decode base64(string encoded data);

Description
This function decodes data encoded using the base64 transfer encoding.

See Also
MIME.encode base64

MIME.decode qp - Decode ¡tt¿quoted-printable¡/tt¿ transfer encoding

string decode qp(string encoded data);

Description
This function decodes data encoded using the quoted-printable(a.k.a. quoted-
unreadable) transfer encoding.

See Also
MIME.encode qp

MIME.decode uue - Decode ¡tt¿x-uue¡/tt¿ transfer encoding

string decode uue(string encoded data);

Description
This function decodes data encoded using the x-uue transfer encoding. It can
also be used to decode generic UUEncoded files.

See Also
MIME.encode uue

MIME.decode word - De-scramble RFC1522 encoding

array(string) decode word(string word);

Description
Extracts the textual content and character set from an encoded wordas specified
by RFC1522. The result is an array where the first element is the raw text, and
the second element the name of the character set. If the input string is not an
encoded word, the result is still an array, but the char set element will be set to
0. Note that this function can only be applied to individual encoded words.

Example

> Array.map("=?iso-8859-1?b?S2lscm95?= was =?us-ascii?q?h=65re?="/" ",

MIME.decode word);

14.11. MIME 285

Result: ({ /* 3 elements */

({ /* 2 elements */

"Kilroy",

"iso-8859-1"

}),

({ /* 2 elements */

"was",

0

}),

({ /* 2 elements */

"here",

"us-ascii"

})

})

See Also
MIME.encode word

MIME.encode - Apply transfer encoding

string encode(string data, string encoding,

Description
Encode raw data into something suitable for transport to other systems. The
encoding can be any of

•

•

•

•

•

•

•

The encoding string is not case sensitive. For the x-uue encoding, an optional
filename string may be supplied. If a nonzero value is passed as no linebreaks,
the result string will not contain any linebreaks (base64 and quoted-printable
only).

See Also
MIME.decode

286 CHAPTER 14. OTHER MODULES

MIME.encode base64 - Encode string using ¡tt¿base64¡/tt¿ transfer en-
coding

string encode base64(string data, void|int no linebreaks);

Description
This function encodes data using the base64 transfer encoding. If a nonzero
value is passed as no linebreaks, the result string will not contain any linebreaks.

See Also
MIME.decode base64

MIME.encode qp - Encode string using ¡tt¿quoted-printable¡/tt¿ transfer
encoding

string encode qp(string data, void|int no linebreaks);

Description
This function encodes data using the quoted-printable(a.k.a. quoted-unreadable)
transfer encoding. If a nonzero value is passed as no linebreaks, the result string
will not contain any linebreaks.

Note
Please do not use this function. QP is evil, and there’s no excuse for using it.

See Also
MIME.decode qp

MIME.encode uue - Encode string using ¡tt¿x-uue¡/tt¿ transfer encoding

string encode uue(string encoded data, void|string filename);

Description
This function encodes data using the x-uue transfer encoding. The optional
argument filename specifies an advisory filename to include in the encoded data,
for extraction purposes. This function can also be used to produce generic
UUEncoded files.

See Also
MIME.decode uue

MIME.encode word - Encode word according to RFC1522

string encode word(array(string) word, string encoding);

Description
Create an encoded word as specified in RFC1522 from an array containing a raw
text string and a char set name. The text will be transfer encoded according to
the encoding argument, which can be either "base64" or "quoted-printable"
(or either "b" or "q" for short). If either the second element of the array (the
char set name), or the encoding argument is 0, the raw text is returned as is.

Example

14.11. MIME 287

> MIME.encode word(({ "Quetzalcoatl", "iso-8859-1" }), "base64");

Result: =?iso-8859-1?b?UXVldHphbGNvYXRs?=

> MIME.encode word(({ "Foo", 0 }), "base64");

Result: Foo

See Also
MIME.decode word

MIME.generate boundary - Create a suitable boundary string for mul-
tiparts

string generate boundary();

Description
This function will create a string that can be used as a separator string for
multipart messages. The generated string is guaranteed not to appear in base64,
quoted-printable, or x-uue encoded data. It is also unlikely to appear in
normal text. This function is used by the cast method of the Message class if
no boundary string is specified.

MIME.guess subtype - Provide a reasonable default for the subtype field

string guess subtype(string type);

Description
Some pre-RFC1521 mailers provide only a type and no subtype in the Content-
Type header field. This function can be used to obtain a reasonable default
subtype given the type of a message. (This is done automatically by the
MIME.Message class.) Currently, the function uses the following guesses:

type subtype
text plain
message rfc822
multipart mixed

MIME.parse headers - Separate a bytestream into headers and body

array(mapping(string:string)|string) parse headers(string
message);

Description
This is a low level function that will separate the headers from the body of
an encoded message. It will also translate the headers into a mapping. It will
however not try to analyze the meaning of any particular header, This also
means that the body is returned as is, with any transfer-encoding intact. It is
possible to call this function with just the header part of a message, in which
case an empty body will be returned.

288 CHAPTER 14. OTHER MODULES

The result is returned in the form of an array containing two elements. The
first element is a mapping containing the headers found. The second element is
a string containing the body.

MIME.quote - Create an RFC822 header field from lexical elements

string quote(array(string|int) lexical elements);

Description
This function is the inverse of the tokenize function. A header field value is
constructed from a sequence of lexical elements. Characters (ints) are taken to
be special-characters, whereas strings are encoded as atoms or quoted-strings,
depending on whether they contain any special characters.

Example

> MIME.quote(({ "attachment", ’;’, "filename", ’=’, "/usr/dict/words" }));

Result: attachment;filename="/usr/dict/words"

Note
There is no way to construct a domain-literal using this function. Neither can
it be used to produce comments.

See Also
MIME.tokenize

MIME.reconstruct partial - Join a fragmented message to its original
form
int|object reconstruct partial(array(object) collection);

Description
This function will attempt to reassemble a fragmented message from its parts.
The array collection should contain MIME.Messageobjects forming a complete
set of parts for a single fragmented message. The order of the messages in this
array is not important, but every part must exist at least once.

Should the function succeed in reconstructing the original message, a new MIME.Message
object is returned. Note that this message may in turn be a part of another,
larger, fragmented message. If the function fails to reconstruct an original mes-
sage, it returns an integer indicating the reason for its failure:

•

•

•

See Also
MIME.Message->is partial

14.11. MIME 289

MIME.tokenize - Separate an RFC822 header field into lexical elements

array(string|int) tokenize(string header);

Description
A structured header field, as specified by RFC822, is constructed from a se-
quence of lexical elements. These are:

•

•

•

•

•

This function will analyze a string containing the header value, and produce
an array containing the lexical elements. Individual special characters will be
returned as characters (i.e. ints). Quoted-strings, domain-literals and atoms
will be decoded and returned as strings. Comments are not returned in the
array at all.

Example

> MIME.tokenize("multipart/mixed; boundary=\"foo/bar\" (Kilroy was here)");

Result: ({ /* 7 elements */

"multipart",

47,

"mixed",

59,

"boundary",

61,

"foo/bar"

})

Note
As domain-literals are returned as strings, there is no way to tell the domain-
literal [127.0.0.1] from the quoted-string "[127.0.0.1]". Hopefully this
won’t cause any problems. Domain-literals are used seldom, if at all, anyway...

The set of special-characters is the one specified in RFC1521 (i.e. "<", ">",
"@", ",", ";", ":", "\", "/", "?", "="), and not the one specified in RFC822.

See Also
MIME.quote

14.11.2 The MIME.Message class

290 CHAPTER 14. OTHER MODULES

MIME.Message - The MIME.Message class

This class is used to hold a decoded MIME message.

Public fields

MIME.Message.body parts - Multipart sub-messages

array(object) msg->body parts;

Description
If the message is of type multipart, this is an array containing one Message
object for each part of the message. If the message is not a multipart, this field
is 0.

See Also
MIME.Message->type and MIME.Message->boundary

MIME.Message.boundary - Boundary string for multipart messages

string msg->boundary;

Description
For multipart messages, this Content-Type parameter gives a delimiter string
for separating the individual messages. As multiparts are handled internally by
the module, you should not need to access this field.

See Also
MIME.Message->setboundary

MIME.Message.charset - Character encoding for text bodies

string msg->charset;

Description
One of the possible parameters of the Content-Type header is the charset at-
tribute. It determines the character encoding used in bodies of type text. If
there is no Content-Type header, the value of this field is "us-ascii".

See Also
MIME.Message->type

MIME.Message.disposition - Multipart subpart disposition

string msg->disposition;

Description
The first part of the Content-Disposition header, hinting on how this part of
a multipart message should be presented in an interactive application. If there
is no Content-Disposition header, this field is 0.

14.11. MIME 291

MIME.Message.disp params - Content-Disposition parameters

mapping(string:string) msg->disp params;

Description
A mapping containing all the additional parameters to the Content-Disposition
header.

See Also
MIME.Message->setdisp param and MIME.Message->get filename

MIME.Message.headers - All header fields of the message

mapping(string:string) msg->headers;

Description
This mapping contains all the headers of the message. The key is the header
name (in lower case) and the value is the header value. Although the map-
ping contains all headers, some particular headers get special treatment by the
module and should not be accessed through this mapping. These fields are
currently:

•

•

•

•

The contents of these fields can be accessed and/or modified through a set of
variables and methods available for this purpose.

See Also
MIME.Message->type, MIME.Message->subtype, MIME.Message->charset, MIME.Message->boundary,
MIME.Message->transfer encoding, MIME.Message->params, MIME.Message->disposition,
MIME.Message->disp params, MIME.Message->setencoding, MIME.Message->setparam,
MIME.Message->setdisp param, MIME.Message->setcharset and MIME.Message->setboundary

MIME.Message.params - Content-Type parameters

mapping(string:string) msg->params;

Description
A mapping containing all the additional parameters to the Content-Type header.
Some of these parameters have fields of their own, which should be accessed in-
stead of this mapping wherever applicable.

See Also
MIME.Message->charset, MIME.Message->boundary and MIME.Message->setparam

292 CHAPTER 14. OTHER MODULES

MIME.Message.subtype - The subtype attribute of the Content-Type
header
string msg->subtype;

Description
The Content-Type header contains a type, a subtype, and optionally some
parameters. This field contains the subtype attribute extracted from the header.
If there is no Content-Type header, the value of this field is "plain".

See Also
MIME.Message->type and MIME.Message->params

MIME.Message.transfer encoding - Body encoding method

string msg->transfer encoding;

Description
The contents of the Content-Transfer-Encoding header. If no Content-Transfer-Encoding
header is given, this field is 0. Transfer encoding and decoding is done trans-
parently by the module, so this field should be interesting only to applications
wishing to do auto conversion of certain transfer encodings.

See Also
MIME.Message->setencoding

MIME.Message.type - The type attribute of the Content-Type header

string msg->type;

Description
The Content-Type header contains a type, a subtype, and optionally some
parameters. This field contains the type attribute extracted from the header.
If there is no Content-Type header, the value of this field is "text".

See Also
MIME.Message->subtype and MIME.Message->params

Public methods

MIME.Message.cast - Encode message into byte stream

string (string)MIME.Message ;

Description
Casting the message object to a string will yield a byte stream suitable for
transmitting the message over protocols such as ESMTP and NNTP. The body
will be encoded using the current transfer encoding, and subparts of a multipart
will be collected recursively. If the message is a multipart and no boundary
string has been set, one is generated using generate boundary.

Example

14.11. MIME 293

> object msg = MIME.Message("Hello, world!",

(["MIME-Version" : "1.0",

"Content-Type":"text/plain",

"Content-Transfer-Encoding":"base64"]));

Result: object

> (string)msg;

Result: Content-Type: text/plain

Content-Length: 20

Content-Transfer-Encoding: base64

MIME-Version: 1.0

SGVsbG8sIHdvcmxkIQ==

See Also
MIME.Message->create

MIME.Message.create - Create a Message object

object MIME.Message(void | string message,

Description
There are several ways to call the constructor of the Message class;

•

•

•

Example
> object msg = MIME.Message("Hello, world!", (["MIME-Version" : "1.0",
"Content-Type" : "text/plain; charset=iso-8859-1"])); Result: object
> msg->charset; Result: iso-8859-1

See Also
MIME.Message->cast

MIME.Message.getdata - Obtain raw body data

string getdata();

Description
This method returns the raw data of the message body entity. The type and
subtype attributes indicate how this data should be interpreted.

See Also
MIME.Message->getencoded

294 CHAPTER 14. OTHER MODULES

MIME.Message.getencoded - Obtain encoded body data

string getencoded();

Description
This method returns the data of the message body entity, encoded using the
current transfer encoding. You should never have to call this function.

See Also
MIME.Message->getdata

MIME.Message.get filename - Get supplied filename for body data

string get filename();

Description
This method tries to find a suitable filename should you want to save the body
data to disk. It will examine the filename attribute of the Content-Disposition
header, and failing that the nameattribute of the Content-Type header. If nei-
ther attribute is set, the method returns 0.

Note
An interactive application should always query the user for the actual filename
to use. This method may provide a reasonable default though.

MIME.Message.is partial - Identify ¡tt¿message/partial¡/tt¿ message

array(string|int) is partial();

Description
If this message is a part of a fragmented message (i.e. has a Content-Type of
message/partial), an array with three elements is returned. The first element
is an identifier string. This string should be used to group this message with
the other fragments of the message (which will have the same id string). The
second element is the sequence number of this fragment. The first part will have
number 1, the next number 2 etc. The third element of the array is either the
total number of fragments that the original message has been split into, or 0 of
this information was not available. If this method is called in a message that is
not a part of a fragmented message, it will return 0.

See Also
MIME.reconstruct partial

MIME.Message.setboundary - Set boundary parameter

void setboundary(string boundary);

Description
Sets the boundary parameter of the Content-Type header. This is equivalent
of calling msg->setparam("boundary", boundary).

See Also
MIME.Message->setparam

14.11. MIME 295

MIME.Message.setcharset - Set charset parameter

void setcharset(string charset);

Description
Sets the charset parameter of the Content-Type header. This is equivalent of
calling msg->setparam("charset", charset).

See Also
MIME.Message->setparam

MIME.Message.setdata - Replace body data

void setdata(string data);

Description
Replaces the body entity of the data with a new piece of raw data. The new
data should comply to the format indicated by the type and subtype attributes.
Do not use this method unless you know what you are doing.

See Also
MIME.Message->getdata

MIME.Message.setdisp param - Set Content-Disposition parame-
ters
void setdisp param(string param, string value);

Description
Set or modify the named parameter of the Content-Disposition header. A
common parameters is e.g. filename. It is not allowed to modify the Content-Disposition
header directly, please use this function instead.

See Also
MIME.Message->setparam and MIME.Message->get filename

MIME.Message.setencoding - Set transfer encoding for message body

void setencoding(string encoding);

Description
Select a new transfer encoding for this message. The Content-Transfer-Encoding
header will be modified accordingly, and subsequent calls to getencoded will
produce data encoded using the new encoding. See encode for a list of valid
encodings.

See Also
MIME.Message->getencoded

MIME.Message.setparam - Set Content-Type parameters

void setparam(string param, string value);

296 CHAPTER 14. OTHER MODULES

Description
Set or modify the named parameter of the Content-Type header. Common pa-
rameters include charset for text messages, and boundary for multipart mes-
sages. It is not allowed to modify the Content-Type header directly, please use
this function instead.

See Also
MIME.Message->setcharset, MIME.Message->setboundary and MIME.Message->setdisp param

14.12 Simulate

This module is used to achieve better compatibility with older versions of Pike.
It can also be used for convenience, but I would advice against it since some
functions defined here are much slower than using similar functions in other
modules. The purpose of this section in the manual is to make it easier for the
reader to understand code that uses the Simulate module, not to encourage the
use of the Simulate module.

Simulate inherits the Array, Stdio, String and Process modules, so importing he
Simulate module also imports all identifiers from these modules. In addition,
these functions are available:

Simulate.member array - find first occurrence of a value in an array

int member array(mixed item, array arr);

Description
Returns the index of the first occurrence of item in array arr. If not found, then
-1 is returned. This is the same as search(arr, item).

Simulate.previous object - return the calling object

object previous object();

Description
Returns an object pointer to the object that called current function, if any.

See Also
backtrace

Simulate.this function - return a function pointer to the current func-
tion
function this function();

Description
Returns a function pointer to the current function, useful for making recursive
lambda-functions.

See Also
backtrace

14.12. SIMULATE 297

Simulate.get function - fetch a function from an object

function get function(object o, string name);

Description
Defined as: return o[name];

Simulate.map regexp - filter an array through a regexp

array(string) map regexp(array(string) arr, string reg);

Description
Returns those strings in arr that matches the regexp in reg.

See Also
Regexp

Simulate.PI - pi
PI;

Description
This is not a function, it is a constant roughly equal to the mathematical con-
stant Pi.

Simulate.all efuns - return all ’efuns’

mapping all efuns();

Description
This function is the same as all constants.

See Also
all constants

Simulate.explode - explode a string on a delimeter

string explode(string s, string delimiter);

Description
This function is really the same as the division operator. It simly divides the
string s into an array by splitting s at every occurance of delimeter.

See Also
Simulate.implode

Simulate.filter array - filter an array through a function

array filter array(array arr,function fun,mixed ... args);
array filter array(array(object) arr,string fun,mixed ... args);
array filter array(array(function) arr,-1,mixed ... args);

Description
Filter array is the same function as Array.filter.

298 CHAPTER 14. OTHER MODULES

See Also
Array.filter

Simulate.implode - implode an array of strings

string implode(array(string) a, string delimiter);

Description
This function is the inverse of explode. It concatenates all the strings in a with
a delimiter in between each.

This function is the same as multiplication.

Example
> implode(({ "foo","bar","gazonk"}), "-");
Result: foo-bar-gazonk
> ({ "a","b","c" })*" and ";
Result: a and b and c
>

See Also
Simulate.explode

Simulate.m indices - return all indices from a mapping

array m indices(mapping m);

Description
This function is equal to indices.

See Also
indices

Simulate.m sizeof - return the size of a mapping

int m sizeof(mapping m);

Description
This function is equal to sizeof.

See Also
sizeof

Simulate.m values - return all values from a mapping

array m values(mapping m);

Description
This function is equal to values.

See Also
values

14.12. SIMULATE 299

Simulate.map array - map an array over a function

array map array(array arr,function fun,mixed ... args);
array map array(array(object) arr,string fun,mixed ... args);
array map array(array(function) arr,-1,mixed ... arg);

Description
This function is the same as Array.map.

See Also
Array.map

Simulate.strstr - find a string inside a string

int strstr(string str1,string str2);

Description
Returns the position of str2 in str1, if str2 can’t be found in str1 -1 is returned.

See Also
sscanf, Simulate.explode and search

Simulate.sum - add values together

int sum(int ... i);
float sum(float ... f);
string sum(string|float|int ... p);
array sum(array ... a);
mapping sum(mapping ... m);
list sum(multiset ... l);

Description
This function does exactly the same thing as adding all the arguments together
with +. It’s just here so you can get a function pointer to the summation
operator.

Simulate.add efun - add an efun or constant

void add efun(string func name, mixed function)
void add efun(string func name)

Description
This function is the same as add constant.

See Also
Simulate.add constant

Simulate.l sizeof - return the size of a multiset

int l sizeof(multiset m);

Description
This function is equal to sizeof.

300 CHAPTER 14. OTHER MODULES

See Also
sizeof

Simulate.listp - is the argument a list? (multiset)

int listp(mixed l);

Description
This function is the same as multisetp.

See Also
Simulate.multisetp

Simulate.mklist - make a multiset
multiset mklist(array a);

Description
This function creates a multiset from an array.

Example
> mklist(({1,2,3})); Result: (< /* 3 elements */ 1, 2, 3 >)

See Also
aggregate multiset

Simulate.aggregate list - aggregate a multiset

multiset aggregate list(mixed ... args);

Description
This function is exactly the same as aggregate multiset.

See Also
aggregate multiset

Simulate.query host name - return the name of the host we are run-
ning on

string query host name();

Description
This function returns the name of the machine the interpreter is running on.
This is the same thing that the command ’hostname’ prints.

Description
This module enables access to the Mysql database from within Pike.

Mysql is available from www.tcx.se.

Note
$Id: mysql.c,v 1.33 2000/01/03 19:02:00 grubba Exp $

See Also
Mysql.mysql, Mysql.result and Sql.sql

14.13. MYSQL.MYSQL 301

14.13 Mysql.mysql

Mysql.mysql
Description
Mysql.mysql is a pre-compiled Pike program. It enables access to the Mysql
database from within Pike. Mysql.mysql is a part of the Mysql module.

Mysql is available from www.tcx.se.

See Also
Mysql.result and Sql.sql

Mysql.mysql.affected rows
int affected rows()

Description
Returns the number of rows affected by the last query.

Mysql.mysql.big query
object(Mysql.mysql result) big query(string q)

Description
Make an SQL query

Arguments

See Also
mysql result

Mysql.mysql.binary data
int binary data()

Description
Inform if this version of mysql supports binary data

This function returns non-zero if binary data can be reliably stored and retreived
with this version of the mysql-module.

Usually, there is no problem storing binary data in mysql-tables, but data con-
taining ’“0’ (NUL) couldn’t be fetched with old versions (prior to 3.20.5) of the
mysql-library.

Mysql.mysql.create
void create()
void create(string host)
void create(string host, string database)
void create(string host, string database, string user)
void create(string host, string database, string user,
 string password)

302 CHAPTER 14. OTHER MODULES

Description
Connects to a Mysql database.

To access the Mysql database, you must first connect to it. This is done with
the function mysql().

If you give no argument, or give ”” as hostname it will connect with a UNIX-
domain socket, which is a big performance gain.

Mysql.mysql.create db

void create db(string database)

Description
Create a new database

Arguments

See Also
select db and drop db

Mysql.mysql.drop db

void drop db(string database)

Description
Drop a database

Arguments

See Also
create db and select db

Mysql.mysql.error

string error()

Description
Returns a string describing the last error from the Mysql-server.

Mysql.mysql.host info

string host info()

Description
Give information about the Mysql-server connection

This function returns a string describing the connection to the Mysql-server.

See Also
statistics, server info and protocol info

14.13. MYSQL.MYSQL 303

Mysql.mysql.insert id
int insert id()

Description
Returns the id of the last INSERT query into a table with an AUTO INCRE-
MENT field.

Mysql.mysql.list dbs
object(Mysql.mysql result) list dbs()
object(Mysql.mysql result) list dbs(string wild)

Description
List databases

Returns a table containing the names of all databases in the Mysql-server. If
an argument is specified, only those matching wild are returned.

See Also
list tables, list fields, list processes and Mysql.mysql result

Mysql.mysql.list fields
array(int|mapping(string:mixed)) list fields(string table)
array(int|mapping(string:mixed)) list fields(string table,
 string wild)

Description
List all fields.

Returns an array of mappings with information about the fields in the specified
table.

The mappings contain the following entries:

"name": string The name of the field.

"table": string The name of the table.

"default": string The default value for the field.

"type": string The type of the field.

"length": int The length of the field.

"max length": int The length of the longest element in this field.

"flags": multiset(string) Some flags.

"decimals": int The number of decimalplaces.

The type of the field can be any of: ”decimal”, ”char”, ”short”, ”long”, ”float”,
”double”, ”null”, ”time”, ”longlong”, ”int24”, ”tiny blob”, ”medium blob”,
”long blob”, ”var string”, ”string” or ”unknown”.

The flags multiset can contain any of ”primary key”: This field is part of the
primary key for this table. ”not null”: This field may not be NULL. ”blob”:
This field is a blob field.

304 CHAPTER 14. OTHER MODULES

Arguments

Note
Michael Widenius recomends usage of the following query instead:

show fields in ’table’ like "wild"

See Also
list dbs, list tables, list processes and fetch fields

Mysql.mysql.list processes
object(Mysql.mysql result) list processes()

Description
List all processes in the Mysql-server

Returns a table containing the names of all processes in the Mysql-server.

See Also
list dbs, list tables, list fields and Mysql.mysql result

Mysql.mysql.list tables
object(Mysql.mysql result) list tables()
object(Mysql.mysql result) list tables(string wild)

Description
List tables in the current database

Arguments

See Also
list dbs, list fields, list processes and Mysql.mysql result

Mysql.mysql.protocol info
int protocol info()

Description
Give the Mysql protocol version

This function returns the version number of the protocol the Mysql-server uses.

See Also
statistics, server info and host info

Mysql.mysql.reload
void reload()

14.13. MYSQL.MYSQL 305

Description
Reload security tables

This function causes the Mysql-server to reload its access tables.

See Also
shutdown

Mysql.mysql.select db
void select db(string database)

Description
The Mysql-server can hold several databases. You select which one you want to
access with this function.

See Also
create, create db and drop db

Mysql.mysql.server info
string server info()

Description
Give the version number of the Mysql-server

This function returns the version number of the Mysql-server.

See Also
statistics, host info and protocol info

Mysql.mysql.shutdown
void shutdown()

Description
Shutdown the Mysql-server

This function shuts down a running Mysql-server.

reload

Mysql.mysql.statistics
string statistics()

Description
Some Mysql-server statistics

This function returns some server statistics.

Example:

int main()

{

write(mysql()->statistics());

306 CHAPTER 14. OTHER MODULES

return(0);

}

See Also
server info, host info and protocol info

14.14 The Pike Crypto Toolkit

14.14.1 Introduction

The Crypto module provides an object-oriented framwork for encryption and
related functionality. More specifically, its objects han be classified as follows:

14.14.2 Block ciphers

The block ciphers included in the current version are DES, IDEA and CAST128
(note that IDEA is patented, see Ascom Tech* for details). All block ciphershttp://www.ascom.ch/systec

have a common set of methods.

crypt block
string o->crypt block(string blocks);

14.14. THE PIKE CRYPTO TOOLKIT 307

Description
Encrypts or decrypts an even number of block, using the current key. If more
than one block is given, they are encrypted/decrypted independently, i.e. in
Electronic Code Book (ECB) mode.

query block size
int o->query block size();

Description
Returns the block size of the cipher, in octets. A typical block size is 8 octets.
A string passed to crypt block() must have a length that is a multiple of the
block size.

query key length
int o->query key length();

Description
Returns the key size of the cipher, in octets. Note that some block ciphers,
e.g. CAST128, have a variable key size. In this case, query key length returns
the recommended key size, although keys of other lengths are accepted by the
set encrypt key and set decrypt key methods. For DES, the real key length is
seven octets (56 bits), but the DES standard mandates the use of parity bits.
The query key length method lies about DES, and says that the key size is eight
octets (64 bits). See also des parity.

set encrypt key
object o->set encrypt key(string key);

Description
Installs a key, and configures the object for doing encryption. For convenience,
this method returns the object itself.

set decrypt key
object o->set decrypt key(string key);

Description
Installs a key, and configures the object for doing decryption. For convenience,
this method returns the object itself. The classes are

Crypto.des
Crypto.des

Crypto.idea
Crypto.idea and

Crypto.cast
Crypto.cast. To encrypt the block ”Pike des” using the DES-key ’0123456789abcdef’
(in hex), use

308 CHAPTER 14. OTHER MODULES

Crypto.des()->set encrypt key(Crypto.hex to string("0123456789abcdef"))

->crypt block("Pike DES")

although most applications will not use the Crypto.des class directly.

14.14.3 Stream Ciphers

Currently the only stream cipher in the toolkit is the RC4 cipher (also known
as ”arcfour”).

Crypto.rc4

Crypto.rc4.crypt
string Crypto.rc4->crypt(string data);

Description
Encrypts or decrypts a string of data.

Crypto.rc4.set encrypt key
object Crypto.rc4->set encrypt key(string key);

Description
Installs a key, and configures the object for doing encryption. For convenience,
this method returns the object itself.

Crypto.rc4.set decrypt key
object Crypto.rc4->set decrypt key(string key);

Description
Installs a key, and configures the object for doing decryption. For conve-
nience, this method returns the object itself. Because of the way RC4 works,
set encrypt key and set decrypt key are actually equivalent.

14.14.4 Hash Functions

Cryptographic hash functions are essential for many cryptographic applications,
and are also useful in other contexts. The Toolkit includes the two most com-
mon, MD5 and SHA1. They have the same methods.

update
object o->update(string data);

Description
Processes some more data. For convenience, this method returns the object
itself.

14.14. THE PIKE CRYPTO TOOLKIT 309

digest
string o->digest();

Description
Returns the hash value, or message digest, corresponding to all the data that
was previously passed to the update method. Also resets the hash object, so
that it can be used to process a new message.

query digest size
int o->query digest size();

Description
Returns the size, in octets, of the digests produced by this hash function. To
get the md5 hash of a string s, you would use

Crypto.md5()->update(s)->digest()

14.14.5 Public key algorithms

The only public key algorithm currently in the toolkit is RSA. As the algorithm
uses arithmetic on huge numbers, you must also have the GMP library and the
corresponding Pike module installed in order to use RSA.

Crypto.rsa

Crypto.rsa.set public key
object rsa->set public key(object(Gmp.mpz) modulo, object(Gmp.mpz)
e)

Description
Sets the modulo and the public exponent. For convenience, returns the object
itself.

Crypto.rsa.set private key
object rsa->set public key(object(Gmp.mpz) d)

Description
Sets the private exponent. For convenience, returns the object itself.

Crypto.rsa.generate key
object rsa->generate key(int bits, function|void random)

Description
Generates a new rsa key pair, with a modulo of the given bitsize. random should
be a function that takes one integer argument n and returns a string of n random

310 CHAPTER 14. OTHER MODULES

octets. The default function is Crypto.randomness.really random()-¿read. For
convenience, this method returns the object itself.

Crypto.rsa.query blocksize
int rsa->query block size()

Description
Returns the length of the largest string that can be encrypted in one RSA-
operation using the current key.

Crypto.rsa.encrypt
string rsa->encrypt(string message, function|void random)

Description
Encrypts message using PKCS#1-style RSA encryption. The function random
is used to generate random message padding. Padding does not require a strong
random number generator. The default random function is derived from Pike’s
builting pseudorandom generator predef::random.

Crypto.rsa.decrypt
string rsa->decrypt(string gibberish)

Description
Decrypts a PKCS#1-style RSA-encrypted message. This operation requires
knowledge of the private key. Decryption may fail if the input is not a prop-
erly encrypted message for this key. In this case, the method returns zero.
The PKCS#1 padding method used is vulnerable to a chosen-ciphertext attack
discovered by Daniel Bleichenbacher. There are several methods for signature
creation and verification. I don’t quite like the interface, so it may very well
change in some future version of the Toolkit.

Crypto.rsa.sign
object(Gmp.mpz) rsa->sign(string message, program hash)

Description
Creates a PKCS#1-style signature. This operation requires knowledge of the
private key. hash should be a hash algorithm with an -¿identifier method which
returns a DER-encoded ASN.1 Object Identifier for the hash algorithm. Cur-
rently, this is supported only by Crypto.md5. The function returns the signature
as a bignum; applications can use

Standards.ASN1.Types.asn1 bit string(rsa->sign(...))->get der()

to convert it a DER-encoded ASN.1 bitstring.

Crypto.rsa.verify
int verify(string message, program hash, object(Gmp.mpz)
signature)

14.15. LOCALE.GETTEXT 311

Description
Verifies a PKCS#1-style RSA signature. Returns 1 if the signature is valid, 0
if not.

Crypto.rsa.sha sign
string rsa->sha sign(string message)

Description
Creates an RSA signature using a simpler but non-standard convention.

Crypto.rsa.sha verify
int sha verify(string message, string signature)

Description
Verifies signatures created by sha sign. Returns 1 if the signature is valid, 0 if
not.

14.14.6 Combining block cryptos

14.15 Locale.Gettext

Description
This module enables access to localization functions from within Pike.

Note
$Id: gettext.c,v 1.3 2000/02/29 20:41:13 neotron Exp $

Locale.Gettext.bindtextdomain
string bindtextdomain(string|void domainname,
 string|void dirname)

Description
The bindtextdomain() function binds the path predicate for a message domain
domainname to the value contained in dirname. If domainname is a non-empty
string and has not been bound previously, bindtextdomain() binds domainname
with dirname.

If domainname is a non-empty string and has been bound previously, bind-
textdomain() replaces the old binding with dirname. The dirname argument
can be an absolute or relative pathname being resolved when gettext(), dget-
text(), or dcgettext() are called. If domainname is null pointer or an empty
string, bindtextdomain() returns 0. User defined domain names cannot begin
with the string SYS . Domain names beginning with this string are reserved for
system use.

The return value from bindtextdomain() is a string containing dirname or the
directory binding associated with domainname if dirname is void. If no binding
is found, the default locale path is returned. If domainname is void or an empty
string, bindtextdomain() takes no action and returns a 0.

312 CHAPTER 14. OTHER MODULES

Arguments

See Also
textdomain, gettext, dgettext, dcgettext, setlocale and localeconv

Locale.Gettext.dcgettext

string dcgettext(string domain, string msg, int category)

Description
Return a translated version of msg within the context of the specified domain
and current locale for the specified category. Calling dcgettext with category
Locale.Gettext.LC MESSAGES gives the same result as dgettext.

If there is not translation available, msg is returned.

Arguments

See Also
bindtextdomain, textdomain, gettext, dgettext, setlocale and localeconv

Locale.Gettext.dgettext

string dgettext(string domain, string msg)

Description
Return a translated version of msg within the context of the specified domain
and current locale.

If there is not translation available, msg is returned.

Arguments

See Also
bindtextdomain, textdomain, gettext, dcgettext, setlocale and localeconv

Locale.Gettext.gettext

string gettext(string msg)

Description
Return a translated version of msg within the context of the current domain
and locale.

If there is not translation available, msg is returned.

Arguments

14.15. LOCALE.GETTEXT 313

See Also
bindtextdomain, textdomain, dgettext, dcgettext, setlocale and localeconv

Locale.Gettext.localeconv
mapping localeconv()

Description
The localeconv() function returns a mapping with settings for the current lo-
cale. This mapping contains all values associated with the locale categories
LC NUMERIC and LC MONETARY.

string decimal point:The decimal-point character used to format non-monetary
quantities.

string thousands sep:The character used to separate groups of digits to the
left of the decimal-point character in formatted non-monetary quantities.

string int curr symbol:The international currency symbol applicable to the
current locale, left-justified within a four-character space-padded field. The
character sequences should match with those specified in ISO 4217 Codes for
the Representation of Currency and Funds.

string currency symbol:The local currency symbol applicable to the current
locale.

string mon decimal point:The decimal point used to format monetary quan-
tities.

string mon thousands sep:The separator for groups of digits to the left of
the decimal point in formatted monetary quantities.

string positive sign:The string used to indicate a non-negative-valued for-
matted monetary quantity.

string negative sign:The string used to indicate a negative-valued formatted
monetary quantity.

int int frac digits:The number of fractional digits (those to the right of the
decimal point) to be displayed in an internationally formatted monetary quan-
tity.

int frac digits:The number of fractional digits (those to the right of the decimal
point) to be displayed in a formatted monetary quantity.

int p cs precedes:Set to 1 or 0 if the currency symbol respectively precedes
or succeeds the value for a non-negative formatted monetary quantity.

int p sep by space:Set to 1 or 0 if the currency symbol respectively is or is
not separated by a space from the value for a non-negative formatted monetary
quantity.

int n cs precedes:Set to 1 or 0 if the currency symbol respectively precedes
or succeeds the value for a negative formatted monetary quantity.

314 CHAPTER 14. OTHER MODULES

int n sep by space:Set to 1 or 0 if the currency symbol respectively is or is
not separated by a space from the value for a negative formatted monetary
quantity.

int p sign posn:Set to a value indicating the positioning of the positive sign
for a non-negative formatted monetary quantity. The value of p sign posn is
interpreted according to the following:

0 - Parentheses surround the quantity and currency symbol.

1 - The sign string precedes the quantity and currency symbol.

2 - The sign string succeeds the quantity and currency symbol.

3 - The sign string immediately precedes the currency symbol.

4 - The sign string immediately succeeds the currency symbol.

int n sign posn:Set to a value indicating the positioning of the negative sign
for a negative formatted monetary quantity. The value of n sign posn is inter-
preted according to the rules described under p sign posn.

See Also
bindtextdomain, textdomain, gettext, dgettext, dcgettext and setlocale

Locale.Gettext.setlocale
int setlocale(int category, string locale)

Description
The setlocale() function is used to set the program’s current locale. If locale is
”C” or ”POSIX”, the current locale is set to the portable locale.

If locale is ””, the locale is set to the default locale which is selected from the
environment variable LANG.

The argument category determines which functions are influenced by the new
locale:

Locale.Gettext.LC ALL for all of the locale.

Locale.Gettext.LC COLLATE for the functions strcoll() and strxfrm() (used
by pike, but not directly accessible).

Locale.Gettext.LC CTYPE for the character classification and conversion
routines.

Locale.Gettext.LC MONETARY for localeconv().

Locale.Gettext.LC NUMERIC for the decimal character.

Locale.Gettext.LC TIME for strftime() (currently not accessible from Pike).

Arguments

Returns
1 if the locale setting successed, 0 for failure

14.16. CALENDAR 315

See Also
bindtextdomain, textdomain, gettext, dgettext, dcgettext and localeconv

Locale.Gettext.textdomain
string textdomain(string domain|void)
string textdomain(void)

Description
The textdomain() function sets or queries the name of the current domain of the
active LC MESSAGES locale category. The domainname argument is a string
that can contain only the characters allowed in legal filenames.

The domainname argument is the unique name of a domain on the system.
If there are multiple versions of the same domain on one system, namespace
collisions can be avoided by using bindtextdomain(). If textdomain() is not
called, a default domain is selected. The setting of domain made by the last
valid call to textdomain() remains valid across subsequent calls to setlocale, and
gettext().

The normal return value from textdomain() is a string containing the current
setting of the domain. If domainname is void, textdomain() returns a string
containing the current domain. If textdomain() was not previously called and
domainname is void, the name of the default domain is returned.

Arguments

See Also
bindtextdomain, gettext, dgettext, dcgettext, setlocale and localeconv

14.16 Calendar

Description
This module implements calendar calculations, and base classes for time units.

14.16.1 Calendar.time unit

Calendar.time unit
Description

Calendar.time unit.greater
array(string) greater()

Description
Gives a list of methods to get greater (longer) time units from this object. For

316 CHAPTER 14. OTHER MODULES

a month, this gives back ({"year"}), thus the method month->year() gives
the year object.

Calendar.time unit.lesser
array(string) lesser()

Description
Gives a list of methods to get lesser (shorter) time units. ie, for a month, this
gives back ({"day"})and the method day(mixed n) gives back that day object.
The method days() gives back a list of possible argument values to the method
day. Concurrently, Array.map(o->days(),o->day) gives a list of day objects
in the object o.

Ie:

array(string) lesser() - gives back a list of possible xxx’s.

object xxxs() - gives back a list of possible n’s.

object xxx(mixed n) - gives back xxx n

object xxx(object(Xxx) o) - gives back the corresponing xxx

The list of n’s (as returned from xxxs) are always in order.

There are two n’s with special meaning, 0 and -1. 0 always gives the first
xxx, equal to my obj-¿xxx(my obj-¿xxxs()[0]), and -1 gives the last, equal to
my obj-¿xxx(my obj-¿xxxs()[-1]).

To get all xxxs in the object, do something like Array.map(my obj->xxxs(),my obj->xxx).

xxx(object) may return zero, if there was no correspondning xxx.

Calendar.time unit.‘+ ,
Calendar.time unit.‘- ,
Calendar.time unit.next ,
Calendar.time unit.prev
object next()
object prev()
object ‘+(int n)
object ‘-(int n)
object ‘-(object x)

Description
next and prev gives the logical next and previous object. The + operator gives
that logical relative object, ie my day+14 gives 14 days ahead. - works the same
way, but can also take an object of the same type and give the difference as an
integer.

14.16.2 Calendar.Gregorian

14.16. CALENDAR 317

Description
time units: Year, Month, Week, Day

Calendar.Gregorian.

Calendar.Gregorian.

Calendar.Gregorian.Year

Calendar.Gregorian.Year

Description
A Calendar.time unit.

Lesser units: Month, Week, DayGreater units: none

Calendar.Gregorian.Year.parse

object parse(string fmt, string arg)

Description
parse a date, create relevant object fmt is in the format ”abc%xdef...” where
abc and def is matched, and %x is one of those time units: %Y absolute year
%y year (70-99 is 1970-1999, 0-69 is 2000-2069) %M month (number, name or
short name) (needs %y) %W week (needs %y) %D date (needs %y, %m) %a
day (needs %y) %e weekday (needs %y, %w) %h hour (needs %d, %D or %W)
%m minute (needs %h) %s second (needs %s)

function datetime(int—void unix time) Replacement for localtime.

function datetime name(int—void unix time) Replacement for ctime.

function datetime short name(int—void unix time) Replacement for ctime.

Calendar.Gregorian.Stardate

Description
time unit: TNGDate

Calendar.Gregorian.Stardate.TNGDate

Calendar.Gregorian.Stardate.TNGDate

Description
implements ST:TNG stardates can be used as create argument to Day

318 CHAPTER 14. OTHER MODULES

14.17 Parser

14.18 Math

14.18.1 Math.Matrix

Math.Matrix
Description
This class hold Matrix capabilites, and support a range of matrix operations.

It can only - for speed and simplicity - hold floating point numbers and are only
in 2 dimensions.

Math.Matrix.‘+ ,
Math.Matrix.“+ ,
Math.Matrix.add
object ‘+(object with)
object ‘‘+(object with)
object add(object with)

Description
Add this matrix to another matrix. A new matrix is returned. The matrices
must have the same size.

Math.Matrix.cast
array(array(float)) cast(string to what)
array(array(float)) cast(string to what)

Description
This is to be able to get the matrix values. (array) gives back a double array
of floats. m->vect() gives back an array of floats.

Math.Matrix.cast
array(array(float)) cast(string to what)

Description
This is to be able to get the matrix values. This gives back a double array of
floats.

Math.Matrix.create
void create(array(array(int|float)))
void create(array(int|float))
void create(int n, int m)
void create(int n, int m, string type)
void create(int n, int m, float|int init)
void create("identity", int size)
void create("rotate", int size, float rads, Matrix axis)
void create("rotate", int size, float rads, float x, float y,
float z)

14.18. MATH 319

Description
This method initializes the matrix. It is illegal to create and hold an empty
matrix.

The normal operation is to create the matrix object with a double array, like
Math.Matrix(({({1,2}),({3,4})})).

Another use is to create a special type of matrix, and this is told as third
argument.

Currently there are only the ”identity” type, which gives a matrix of zeroes
except in the diagonal, where the number one (1.0) is. This is the default, too.

The third use is to give all indices in the matrix the same value, for instance
zero or 42.

The forth use is some special matrixes. First the square identity matrix again,
then the rotation matrix.

Math.Matrix.cross ,
Math.Matrix.“× ,
Math.Matrix.‘×
object ‘×(object with)
object ‘‘×(object with)
object cross(object with)

Description
Matrix cross-multiplication.

Math.Matrix.‘* ,
Math.Matrix.“* ,
Math.Matrix.mult
object ‘*(object with)
object ‘‘*(object with)
object mult(object with)

Description
Matrix multiplication.

Math.Matrix.norm2 ,
Math.Matrix.norm ,
Math.Matrix.normv
float norm()
float norm2()
object normv()

Description
Norm of the matrix, and the square of the norm of the matrix. (The later
method is because you may skip a square root sometimes.)

This equals —A— or sqrt(A0
2 + A1

2 + ... + An
2).

It is only usable with 1xn or nx1 matrices.

320 CHAPTER 14. OTHER MODULES

m-¿normv() is equal to m*(1.0/m-¿norm()), with the exception that the zero
vector will still be the zero vector (no error).

Math.Matrix.‘- ,
Math.Matrix.“- ,
Math.Matrix.sub
object ‘-()
object ‘-(object with)
object ‘‘-(object with)
object sub(object with)

Description
Subtracts this matrix from another. A new matrix is returned. -m is equal to
-1*m.

Math.Matrix.transpose
object transpose()

Description
Transpose of the matrix as a new object.

Description
This module implements calendar calculations, and base classes for time units.

14.19 Calendar.time unit

Calendar.time unit
Description

Calendar.time unit.greater
array(string) greater()

Description
Gives a list of methods to get greater (longer) time units from this object. For
a month, this gives back ({"year"}), thus the method month->year() gives
the year object.

Calendar.time unit.lesser
array(string) lesser()

Description
Gives a list of methods to get lesser (shorter) time units. ie, for a month, this
gives back ({"day"})and the method day(mixed n) gives back that day object.
The method days() gives back a list of possible argument values to the method
day. Concurrently, Array.map(o->days(),o->day) gives a list of day objects
in the object o.

14.20. CALENDAR.GREGORIAN 321

Ie:

array(string) lesser() - gives back a list of possible xxx’s.

object xxxs() - gives back a list of possible n’s.

object xxx(mixed n) - gives back xxx n

object xxx(object(Xxx) o) - gives back the corresponing xxx

The list of n’s (as returned from xxxs) are always in order.

There are two n’s with special meaning, 0 and -1. 0 always gives the first
xxx, equal to my obj-¿xxx(my obj-¿xxxs()[0]), and -1 gives the last, equal to
my obj-¿xxx(my obj-¿xxxs()[-1]).

To get all xxxs in the object, do something like Array.map(my obj->xxxs(),my obj->xxx).

xxx(object) may return zero, if there was no correspondning xxx.

Calendar.time unit.‘+ ,
Calendar.time unit.‘- ,
Calendar.time unit.next ,
Calendar.time unit.prev
object next()
object prev()
object ‘+(int n)
object ‘-(int n)
object ‘-(object x)

Description
next and prev gives the logical next and previous object. The + operator gives
that logical relative object, ie my day+14 gives 14 days ahead. - works the same
way, but can also take an object of the same type and give the difference as an
integer.

14.20 Calendar.Gregorian

Description
time units: Year, Month, Week, Day

14.20.1 Calendar.Gregorian.

Calendar.Gregorian.

14.20.2 Calendar.Gregorian.Year

Calendar.Gregorian.Year

322 CHAPTER 14. OTHER MODULES

Description
A Calendar.time unit.

Lesser units: Month, Week, DayGreater units: none

Calendar.Gregorian.Year.parse
object parse(string fmt, string arg)

Description
parse a date, create relevant object fmt is in the format ”abc%xdef...” where
abc and def is matched, and %x is one of those time units: %Y absolute year
%y year (70-99 is 1970-1999, 0-69 is 2000-2069) %M month (number, name or
short name) (needs %y) %W week (needs %y) %D date (needs %y, %m) %a
day (needs %y) %e weekday (needs %y, %w) %h hour (needs %d, %D or %W)
%m minute (needs %h) %s second (needs %s)

function datetime(int—void unix time) Replacement for localtime.

function datetime name(int—void unix time) Replacement for ctime.

function datetime short name(int—void unix time) Replacement for ctime.

14.20.3 Calendar.Gregorian.Stardate

Description
time unit: TNGDate

Calendar.Gregorian.Stardate.TNGDate

Calendar.Gregorian.Stardate.TNGDate
Description
implements ST:TNG stardates can be used as create argument to Day

14.21 Crypto.randomness

Description
Assorted stronger or weaker randomnumber generators.

14.21.1 Crypto.randomness.pike random

Crypto.randomness.pike random
Description
A pseudo random generator based on the ordinary random() function.

Crypto.randomness.pike random.read
string read(int len)

14.22. GEOGRAPHICAL.POSITION 323

Description
Returns a string of length len with pseudo random values.

14.21.2 Crypto.randomness.arcfour random

Crypto.randomness.arcfour random
Description
A pseudo random generator based on the arcfour crypto.

Crypto.randomness.arcfour random.create
void create(string secret)

Description
Initialize and seed the arcfour random generator.

Crypto.randomness.arcfour random.read
string read(int len)

Description
Return a string of the next len random characters from the arcfour random
generator.

14.22 Geographical.Position

Geographical.Position
Description
This class contains a geographical position, ie a point on the earths surface.

variable float lat variable float long Longitude (W–E) and latitude (N–S) of the
position, float value in degrees. Positive number is north and east, respectively.
Negative number is south and west, respectively.

Geographical.Position.cast
array cast("array")

Description
It is possible to cast the position to an array, ({float lat,float long}).

Geographical.Position.create
void create(float lat, float long)
void create(string lat, string long)
void create(string both)

Description
Constructor for this class. If feeded with strings, it will perform a dwim scan
on the strings. If they fails to be understood, there will be an exception.

324 CHAPTER 14. OTHER MODULES

Geographical.Position.latitude ,
Geographical.Position.longitude

string latitude(void|int n)
string longitude(void|int n)

Description
Returns the nicely formatted latitude or longitude.

n format

- 17?42.19’N 42?22.2’W

1 17.703?N 42.37?W

2 17?42.18’N 42?22.2’W

3 17?42’10.4"N 42?22’12"W

-1 17.703 -42.37

Geographical.Position.‘== ,
Geographical.Position.‘¿ ,
Geographical.Position.‘¿‘¡ ,
Geographical.Position.‘¿ hash

int hash()
int ‘==(Position pos)
int ‘(Position pos)
int ‘>(Position pos)

Description
These exist solely for purpose of detecting equal positions, for instance when
used as keys in mappings.

14.23 Geographical.Countries

Description
subclass Country variable string iso2 ISO 2-character code aka domain name
variable string name variable array(string) aka Country name and as-known-as,
if any variable int former Flag that is set if this isn’t a country anymore (Like
USSR.) constant array(Country) countries All known countries.

Geographical.Countries.cast

string cast("string")

Description
It is possible to cast a country to a string, which will be the same as performing
country->name;.

14.23. GEOGRAPHICAL.COUNTRIES 325

Geographical.Countries.from domain
Country from domain(string domain)

Description
Look up a country from a domain name. Returns zero if the domain doesn’t
map to a country. Note that there are some valid domains that doesn’t:

And that USA has three domains, Great Britain two:

Geographical.Countries.from domain
Country from domain(string name)

326 CHAPTER 14. OTHER MODULES

Description
Look up a country from its name or aka. The search is case-insensitive but
regards whitespace and interpunctation.

Geographical.Countries.‘[] ,
Geographical.Countries.‘.
mixed ‘[](string what)
mixed ‘->(string what)

Description
Convenience function for getting a country the name-space way; it looks up
whatever it is in the name- and domain-space and

> Geographical.Countries.se;

Result: Country(Sweden)

> Geographical.Countries.djibouti;

Result: Country(Djibouti)

> Geographical.Countries.com;

Result: Country(United States)

> Geographical.Countries.wallis and futuna islands->iso2;

Result: "WF"

Returns
that country if possible:

Description
$Id: module.pmod,v 1.8 2000/03/22 18:12:19 peter Exp $

Image.load layer ,
Image. load ,
Image.load
object(Image.Image) load()
object(Image.Image) load(object file)
object(Image.Image) load(string filename)
object(Image.Layer) load layer()
object(Image.Layer) load layer(object file)
object(Image.Layer) load layer(string filename)
mapping load()
mapping load(object file)
mapping load(string filename)

Description
Helper function to load an image from a file. If no filename is given, Stdio.stdin
is used. The result is the same as from the decode functions in Image.ANY.

Note
All data is read, ie nothing happens until the file is closed. Throws upon error.

14.24. PARSER.SGML 327

14.24 Parser.SGML

Parser.SGML
Description
This is a handy simple parser of SGML-like syntax like HTML. It doesn’t do
anything advanced, but finding the corresponding end-tags.

It’s used like this:

array res=Parser.SGML()->feed(string)->finish()->result();

The resulting structure is an array of atoms, where the atom can be a string or
a tag. A tag contains a similar array, as data.

Example: A string "<gat> <gurka> </gurka> <banan> <kiwi> </gat>"results
in

({

tag "gat" object with data:

({

tag "gurka" object with data:

({

" "

})

tag "banan" object with data:

({

" "

tag "kiwi" object with data:

({

" "

})

})

})

})

ie, simple ”tags” (not containers) are not detected, but containers are ended
implicitely by a surrounding container with an end tag.

The ’tag’ is an object with the following variables:

string name; - name of tag

mapping args; - argument to tag

int line,char,column; - position of tag

328 CHAPTER 14. OTHER MODULES

string file; - filename (see create)

array(SGMLatom) data; - contained data

Parser.SGML.create
void create()
void create(string filename)

Description
This object is created with this filename. It’s passed to all created tags, for
debug and trace purposes.

Note
No, it doesn’t read the file itself. See feed.

Parser.SGML.result ,
Parser.SGML.finish ,
Parser.SGML.feed
object feed(string s)
array finish()
array result(string s)

Description
Feed new data to the object, or finish the stream. No result can be used until
finish() is called.

Both finish() and result() returns the computed data.

feed() returns the called object.

14.25 Protocols.HTTP

Protocols.HTTP.delete url
object(Protocols.HTTP.Query) delete url(string url)
object(Protocols.HTTP.Query) delete url(string url,
mapping query variables)
object(Protocols.HTTP.Query) delete url(string url,
mapping query variables, mapping request headers)

Description
Sends a HTTP DELETE request to the server in the URL and returns the
created and initialized Query object. 0 is returned upon failure.

Protocols.HTTP.get url
object(Protocols.HTTP.Query) get url(string url)
object(Protocols.HTTP.Query) get url(string url,
mapping query variables)
object(Protocols.HTTP.Query) get url(string url,
mapping query variables, mapping request headers)

14.25. PROTOCOLS.HTTP 329

Description
Sends a HTTP GET request to the server in the URL and returns the created
and initialized Query object. 0 is returned upon failure.

Protocols.HTTP.get url nice ,
Protocols.HTTP.get url data
array(string) get url nice(string url)
array(string) get url nice(string url, mapping query variables)
array(string) get url nice(string url, mapping query variables,
 mapping request headers)
string get url data(string url)
string get url data(string url, mapping query variables)
string get url data(string url, mapping query variables,
 mapping request headers)

Description
Returns an array of (–content type,data˝) and just the data string respective,
after calling the requested server for the information. 0 is returned upon failure.

Protocols.HTTP.http encode query
string http encode query(mapping variables)

Description
Encodes a query mapping to a string; this protects odd - in http perspective -
characters like ’&’ and ’#’ and control characters, and packs the result together
in a HTTP query string.

Example:

> Protocols.HTTP.http encode query((["anna":"eva","lilith":"blue"]));

Result: "lilith=blue&anna=eva"

> Protocols.HTTP.http encode query((["&":"&","’=\"":"\0\0\0"]));

Result: "%26amp%3b=%26&%27%3d%22=%00%00%00"

Protocols.HTTP.http encode string
string http encode string(string in)

Description
This protects all odd - see http encode query - characters for transfer in HTTP.

Do not use this function to protect URLs, since it will protect URL characters
like ’/’ and ’?’.

Protocols.HTTP.post url data ,
Protocols.HTTP.post url ,

330 CHAPTER 14. OTHER MODULES

Protocols.HTTP.post url nice

array(string) post url nice(string url, mapping query variables)
array(string) post url nice(string url, mapping query variables,
 mapping request headers)
string post url data(string url, mapping query variables)
string post url data(string url, mapping query variables,
 mapping request headers)
object(Protocols.HTTP.Query) post url(string url,
mapping query variables)
object(Protocols.HTTP.Query) post url(string url,
mapping query variables, mapping request headers)

Description
Similar to the get url class of functions, except that the query variables is sent
as a post request instead of a get.

Protocols.HTTP.put url

object(Protocols.HTTP.Query) put url(string url)
object(Protocols.HTTP.Query) put url(string url, string file)
object(Protocols.HTTP.Query) put url(string url, string file,
mapping query variables)
object(Protocols.HTTP.Query) put url(string url, string file,
mapping query variables, mapping request headers)

Description
Sends a HTTP PUT request to the server in the URL and returns the created
and initialized Query object. 0 is returned upon failure.

Protocols.HTTP.unentity

string unentity(string s)

Description
Helper function for replacing HTML entities with the corresponding iso-8859-1
characters.

Note
All characters isn’t replaced, only those with corresponding iso-8859-1 charac-
ters.

14.25.1 Protocols.HTTP.Query

Protocols.HTTP.Query

Description
Open and execute a HTTP query.

Protocols.HTTP.Query.set callbacks ,

14.25. PROTOCOLS.HTTP 331

Protocols.HTTP.Query.async request
object set callbacks(function request ok, function request fail,
mixed ...extra)
object async request(string server, int port, string query);
object async request(string server, int port, string query,
mapping headers, void|string data);

Description
Setup and run an asynchronous request, otherwise similar to thread request.

request ok(object httpquery,...extra args) will be called when connection is com-
plete, and headers are parsed.

request fail(object httpquery,...extra args) is called if the connection fails.

variable int ok Tells if the connection is successfull. variable int errno Errno
copied from the connection.

variable mapping headers Headers as a mapping. All header names are in lower
case, for convinience.

variable string protocol Protocol string, ie ”HTTP/1.0”.

variable int status variable string status desc Status number and description (ie,
200 and ”ok”).

variable mapping hostname cache Set this to a global mapping if you want to
use a cache, prior of calling *request().

variable mapping async dns Set this to an array of Protocols.DNS.async clients,
if you wish to limit the number of outstanding DNS requests. Example: async dns=allocate(20,Protocols.DNS.async client)();

Returns
the called object

Protocols.HTTP.Query.cast
array cast("array")

Description
Gives back (–mapping headers,string data, string protocol,int status,string sta-
tus desc˝);

Protocols.HTTP.Query.cast
mapping cast("mapping")

Description
Gives back headers — ([”protocol”:protocol, ”status”:status number, ”status desc”:status
description, ”data”:data]);

Protocols.HTTP.Query.cast
string cast("string")

332 CHAPTER 14. OTHER MODULES

Description
Gives back the answer as a string.

Protocols.HTTP.Query.data
string data()

Description
Gives back the data as a string.

Protocols.HTTP.Query.downloaded bytes
int downloaded bytes()

Description
Gives back the number of downloaded bytes.

Protocols.HTTP.Query.thread request
object thread request(string server, int port, string query);
object thread request(string server, int port, string query,
mapping headers, void|string data);

Description
Create a new query object and begin the query.

The query is executed in a background thread; call ’() in this object to wait for
the request to complete.

’query’ is the first line sent to the HTTP server; for instance ”GET /index.html
HTTP/1.1”.

headers will be encoded and sent after the first line, and data will be sent after
the headers.

Returns
the called object

Protocols.HTTP.Query.total bytes
int total bytes()

Description
Gives back the size of a file if a content-length header is present and parsed at
the time of evaluation. Otherwise returns -1.

object(pseudofile) file() object(pseudofile) file(mapping newheaders,void—mapping
removeheaders) object(pseudofile) datafile(); Gives back a pseudo-file object,
with the method read() and close(). This could be used to copy the file to disc
at a proper tempo.

datafile() doesn’t give the complete request, just the data.

newheaders, removeheaders is applied as: (oldheaders|newheaders))-removeheadersMake
sure all new and remove-header indices are lower case.

void async fetch(function done callback); Fetch all data in background.

14.26. PROTOCOLS.LYSKOM 333

Protocols.HTTP.Query.‘
int ‘()()

Description
Wait for connection to complete.

Returns
1 on successfull connection, 0 if failed

14.26 Protocols.LysKOM

14.26.1 Protocols.LysKOM.Session

Protocols.LysKOM.Session
Description
variable user This variable contains the personthat are logged in.

Protocols.LysKOM.Session.create
void create(string server)
void create(string server, mapping options)

Description
Initializes the session object, and opens a connection to that server.

options is a mapping of options,

([

"login" : int|string login as this person number

(get number from name)

"create" : string

create a new person and login with it

"password" : string send this login password

"invisible" : int(0..1) if set, login invisible

advanced

"port" : int(0..65535) server port (default is 4894)

"whoami" : string present as this user

(default is from uid/getpwent and hostname)

])

See Also
Connection

Protocols.LysKOM.Session.create person
object create person(string name, string password)

334 CHAPTER 14. OTHER MODULES

Description
Create a person, which will be logged in.

Returns
the new person object

Protocols.LysKOM.Session.create text

object create text(string subject, string body, mapping options)
object create text(string subject, string body, mapping options,
function callback, mixed ...extra)

Description
Creates a new text.

if ”callback” are given, this function will be called when the text is created, with
the text as first argument. Otherwise, the new text is returned.

options is a mapping that may contain:

([

"recpt" : Conference|array(Conference)

recipient conferences

"cc" : Conference|array(Conference)

cc-recipient conferences

"bcc" : Conference|array(Conference)

bcc-recipient conferences *

"comm to" : Text|array(Text)

what text(s) is commented

"foot to" : Text|array(Text)

what text(s) is footnoted

"anonymous" : int(0..1)

send text anonymously

])

Note
The above marked with a ’*’ is only available on a protocol 10 server. A
LysKOM error will be thrown if the call fails.

See Also
Conference.create text, Text.comment and Text.footnote

Protocols.LysKOM.Session.login

object login(int user no, string password)
object login(int user no, string password, int invisible)

Description
Performs a login. Returns 1 on success or throws a lyskom error.

14.26. PROTOCOLS.LYSKOM 335

Returns
the called object

Protocols.LysKOM.Session.logout
object logout()

Description
Logouts from the server.

Returns
the called object

Protocols.LysKOM.Session.send message
object send message(string message, mapping options)

Description
Sends a message.

options is a mapping that may contain:

([

"recpt" : Conference recipient conference

])

Protocols.LysKOM.Session.try complete person
array(object) try complete person(string orig)

Description
Runs a LysKOM completion on the given string, returning an array of confzinfos
of the match.

14.26.2 Protocols.LysKOM.Connection

Protocols.LysKOM.Connection
Description
This class contains nice abstraction for calls into the server. They are named
”call”, ”async call” or ”async cb call”, depending on how you want the call
to be done.

Protocols.LysKOM.Connection./call/ ,

Protocols.LysKOM.Connection.async /call/ ,

Protocols.LysKOM.Connection.async cb /call/
mixed /call/(mixed ...args)
object async /call/(mixed ...args)
object async cb /call/(function callback, mixed ...args)

336 CHAPTER 14. OTHER MODULES

Description
Do a call to the server. This really clones a request object, and initialises it.
/call/ is to be read as one of the calls in the lyskom protocol. (’-’ is replaced
with ’ ’.) (ie, logout, async login or async cb get conf stat.)

The first method is a synchronous call. This will send the command, wait for
the server to execute it, and then return the result.

The last two is asynchronous calls, returning the initialised request object.

variable int protocol level variable string session software variable string soft-
ware version Description of the connected server.

Protocols.LysKOM.Connection.create
void create(string server)
void create(string server, mapping options)

Description

([

"login" : int|string login as this person number

(get number from name)

"password" : string send this login password

"invisible" : int(0..1) if set, login invisible

advanced

"port" : int(0..65535) server port (default is 4894)

"whoami" : string present as this user

(default is from uid/getpwent and hostname)

])

14.26.3 Protocols.LysKOM.Request

Description
This class contains nice abstraction for calls into the server. They are named
”call”, ”async call” or ”async cb call”, depending on how you want the call
to be done.

Protocols.LysKOM.Request. Request

Protocols.LysKOM.Request. Request
Description
This is the main request class. All lyskom request classes inherits this class.

Protocols.LysKOM.Request. Request.sync ,
Protocols.LysKOM.Request. Request.async
void async(mixed ...args)
mixed sync(mixed ...args)

14.27. PROTOCOLS.DNS 337

Description
initialise an asynchronous or a synchronous call, the latter is also evaluating the
result. This calls ’indata’ in itself, to get the correct arguments to the lyskom
protocol call.

Protocols.LysKOM.Request. Request. reply ,
Protocols.LysKOM.Request. Request.reply

mixed reply(object|array what)
mixed reply(object|array what)

Description
reply is called as callback to evaluate the result, and calls reply in itself to do

the real work.

Protocols.LysKOM.Request. Request.‘

mixed ‘()()

Description
wait for the call to finish.

variable int ok tells if the call is executed ok variable object error how the call
failed The call is completed if (ok——error).

Protocols.LysKOM.Request. Request. async ,
Protocols.LysKOM.Request. Request. sync

void async(int call, mixed data)
mixed sync(int call, mixed data)

Description
initialise an asynchronous or a synchronous call, the latter is also evaluating the
result. These are called by async and sync respectively.

14.27 Protocols.DNS

Description

14.27.1 Protocols.DNS.client

Protocols.DNS.client
Description
Synchronous DNS client.

338 CHAPTER 14. OTHER MODULES

Protocols.DNS.client.create
void create()
void create(void|string|array server, void|int|array domain)

Description

Protocols.DNS.client.gethostbyname ,
Protocols.DNS.client.gethostbyaddr
array gethostbyname(string hostname)
array gethostbyaddr(string hostip)

Description
Querys the host name or ip from the default or given DNS server. The result is
a mapping with three elements,

({

string hostname [0] hostname

array(string) ip [1] ip number(s)

array(string) ip [2] dns name(s)

})

Protocols.DNS.client.get primary mx
string get primary mx(string hostname)

Description
Querys the primary mx for the host.

Returns
the hostname of the primary mail exchanger

Chapter 15

The preprocessor

Pike has a builtin C-style preprocessor. The preprocessor reads the source before
it is compiled and removes comments and expands macros. The preprocessor can
also remove code depending on an expression that is evaluated when you compile
the program. The preprocessor helps to keep your programming abstract by
using defines instead of writing the same constant everywhere.

It currently works similar to old C preprocessors but has a few extra features.
This chapter describes the different preprocessor directives. This is what it can
do:

339

340 CHAPTER 15. THE PREPROCESSOR

341

342 CHAPTER 15. THE PREPROCESSOR

Chapter 16

Builtin functions

This chapter is a reference for all the builtin functions in Pike. They are listed
in alphabetical order.

disable threads - temporarily disable threads

object disable threads();

Description
This function first posts a notice to all threads that it is time to stop. It
then waits until all threads actually *have* stopped, and then then returns an
object. All other threads will be blocked from running until that object has been
freed/destroyed. This function can completely block Pike if used incorrectly.
Use with extreme caution.

do call outs - do all pending call outs

void do call out();

Description
This function runs all pending call outs that should have been run if Pike re-
turned to the backend. It should not be used in normal operation.

As a side-effect, this function sets the value returned by time(1) to the current
time.

See Also
call out, find call out and remove call out

exit - Really exit

void exit(int returncode);

Description
This function does the same as exit, but doesn’t bother to clean up the Pike
interpreter before exiting. This means that no destructors will be called, caches

343

344 CHAPTER 16. BUILTIN FUNCTIONS

will not be flushed, file locks might not be released, and databases might not be
closed properly. Use with extreme caution.

See Also
exit

locate references - locate where an object is referenced from

mapping(string:int) locate references(string|array|mapping|multiset|function|object|program
o);

Description
This function is mostly intended for debugging. It will search through all data
structures in Pike looking for o and print the locations on stderr. o can be
anything but int or float.

memory usage - check memory usage

mapping(string:int) memory usage();

Description
This function is mostly intended for debugging. It delivers a mapping with
information about how many arrays/mappings/strings etc. there are currently
allocated and how much memory they use. Try evaluating the function in hilfe
to see precisely what it returns.

See Also
verify internals

next - find the next object/array/whatever

mixed next(mixed p);

Description
All objects, arrays, mappings, multisets, programs and strings are stored in
linked lists inside Pike. This function returns the next object/array/mapping/string/etc
in the linked list. It is mainly meant for debugging Pike but can also be used
to control memory usage.

See Also
next object and prev

prev - find the previous object/array/whatever

mixed next(mixed p);

Description
This function returns the ’previous’ object/array/mapping/etc in the linked list.
It is mainly meant for debugging Pike but can also be used to control memory
usage. Note that this function does not work on strings.

See Also
next

345

refs - find out how many references a pointer type value has

int refs(string|array|mapping|multiset|function|object|program
o);

Description
This function checks how many references the value o has. Note that the number
of references will always be at least one since the value is located on the stack
when this function is executed. refs() is mainly meant for debugging Pike but
can also be used to control memory usage.

See Also
next and prev

verify internals - check Pike internals

void verify internals();

Description
This function goes through most of the internal Pike structures and generates
a fatal error if one of them is found to be out of order. It is only used for
debugging.

abs - absolute value
float abs(float f); int abs(int f); object abs(object f);

Description
Return the absolute value for f. f can be a Gmp-object.

acos - trigonometrical inverse cosine

float acos(float f);

Description
Return the arcus cosine value for f. The result will be in radians.

See Also
cos and asin

add constant - add new predefined functions or constants

void add constant(string name, mixed value);
void add constant(string name);

Description
This function adds a new constant to Pike, it is often used to add builtin func-
tions. All programs compiled after add constant function is called can access
’value’ by the name given by ’name’. If there is a constant called ’name’ al-
ready, it will be replaced by by the new definition. This will not affect already
compiled programs.

Calling add constant without a value will remove that name from the list of
constants. As with replacing, this will not affect already compiled programs.

346 CHAPTER 16. BUILTIN FUNCTIONS

Example
add constant("true",1);
add constant("false",0);
add constant("PI",4.0);
add constant("sqr",lambda(mixed x) { return x * x; });
add constant("add constant");

See Also
all constants

add include path - add a directory to search for include files

void add include path(string path);

Description
This function adds another directory to the search for include files. This is the
same as the command line option -I. Note that the added directory will only
be searched when using ¡ ¿ to quote the included file.

See Also
remove include path and #include

add module path - add a directory to search for modules

void add module path(string path);

Description
This function adds another directory to the search for modules. This is the
same as the command line option -M. For more information about modules, see
chapter 7.4.

See Also
remove module path

add program path - add a directory to search for modules

void add program path(string path);

Description
This function adds another directory to the search for programs. This is the
same as the command line option -P. For more information about programs,
see section 4.2.3.

See Also
remove program path

aggregate - construct an array

array aggregate(mixed ... elems);
({ elem1, elem2, ... });

Description
Construct an array with the arguments as indices. This function could be

347

written in Pike as:

array aggregate(mixed ... elems) – return elems; ˝

Note
Arrays are dynamically allocated there is no need to declare them like int
a[10]=allocate(10); (and it isn’t possible either) like in C, just array(int) a=allocate(10);
will do.

See Also
sizeof, arrayp and allocate

aggregate mapping - construct a mapping

mapping aggregate mapping(mixed ... elems);
([key1:val1, key2:val2, ...]);

Description
Groups the arguments together two and two to key-index pairs and creates a
mapping of those pairs. The second syntax is always preferable.

See Also
sizeof, mappingp and mkmapping

aggregate multiset - construct a multiset

multiset aggregate multiset(mixed ... elems);
(< elem1, elem2, ... >);

Description
Construct a multiset with the arguments as indices. This function could be
written in Pike as:

multiset aggregate(mixed ... elems) – return mkmultiset(elems); ˝

The only problem is that mkmultiset is implemented using aggregate multiset...

See Also
sizeof, multisetp and mkmultiset

alarm - set an alarm clock for delivery of a signal

int alarm(int seconds);

Description
alarm arranges for a SIGALRM signal to be delivered to the process in seconds
seconds.

If seconds is zero, no new alarm is scheduled.

In any event any previously set alarm is canceled.

Returns
alarm returns the number of seconds remaining until any previously scheduled
alarm was due to be delivered, or zero if there was no previously scheduled
alarm.

348 CHAPTER 16. BUILTIN FUNCTIONS

See Also
signal

all constants - return all predefined constants

mapping (string:mixed) all constant ();

Description
Returns a mapping containing all constants, indexed on the names of the con-
stant, and with the value of the efun as argument.

See Also
add constant

allocate - allocate an array

array allocate(int size);

Description
Allocate an array of size elements and initialize them to zero.

Example
array a=allocate(17);

Note
Arrays are dynamically allocated there is no need to declare them like int
a[10]=allocate(10); (and it is not possible either) like in C, just array(int)
a=allocate(10); will do.

See Also
sizeof, aggregate and arrayp

arrayp - is the argument an array?

int arrayp(mixed arg);

Description
Returns 1 if arg is an array, zero otherwise.

See Also
allocate, intp, programp, floatp, stringp, objectp, mappingp, multisetp
and functionp

array sscanf - sscanf to an array

array array sscanf(string data, string format);

Description
This function works just like sscanf, but returns the matched results in an
array instead of assigning them to lvalues. This is often useful for user-defined
sscanf strings.

See Also
sscanf and ‘/

349

asin - trigonometrical inverse sine

float asin(float f);

Description
Returns the arcus sinus value for f.

See Also
sin and acos

atan - trigonometrical inverse tangent

float atan(float f);

Description
Returns the arcus tangent value for f.

See Also
atan2, tan, asin and acos

atan2 - trigonometrical inverse tangent

float atan2(float f1, float f2);

Description
Returns the arcus tangent value for f1 /f2.

See Also
atan, tan, asin and acos

atexit - schedule a callback for when pike exits

void atexit(function callback);

Description
This function puts the callback in a queue of callbacks to call when pike exits.
Please note that atexit callbacks are not called if pike exits abnormally.

See Also
exit

backtrace - get a description of the call stack

array(array) backtrace();

Description
This function returns a description of the call stack at this moment. The de-
scription is returned in an array with one entry for each call in the stack. Each
entry has this format:

(–

file, /* a string with the filename if known, else zero */
line, /* an integer containing the line if known, else zero */
function, /* The function pointer to the called function */
mixed—void ..., /* The arguments the function was called with */

350 CHAPTER 16. BUILTIN FUNCTIONS

˝)

The current call frame will be last in the array, and the one above that the last
but one and so on.

See Also
catch and throw

basename - get the base of a filename

string basename(string filename);

Description
This function returns the base of a filename, for instance the base of "/home/hubbe/bin/pike"
would be "pike".

See Also
dirname and explode path

call function - call a function with arguments

mixed call function(function fun,mixed ... args);
mixed fun (mixed ... args);

Description
This function takes a function pointer as first argument and calls this function
with the rest of the arguments as arguments. Normally, you will never have to
write call function(), because you will use the second syntax instead.

See Also
backtrace and Simulate.get function

call out - make a delayed call to a function

mixed call out(function f, float|int delay, mixed ... args);

Description
Call out places a call to the function f with the argument argsin a queue to
be called in about delay seconds. The return value identifies this call out. The
return value can be sent to find call out or remove call out to remove the call
out again.

See Also
remove call out, find call out and call out info

call out info - get info about all call outs

array(array) call out info();

Description
This function returns an array with one entry for each entry in the call out
queue. The first in the queue will be in index 0. Each index contains an array
that looks like this:

(–

351

˝)

See Also
call out, find call out and remove call out

catch
catch { commands };
catch (expression);

Description
catch traps exceptions such as run time errors or calls to throw() and returns the
argument given to throw. For a run time error, this value is (– ”error message”,
backtrace ˝)

See Also
throw

cd - change directory

int cd(string s);

Description
Change the current directory for the whole Pike process, return 1 for success, 0
otherwise.

See Also
getcwd

ceil - truncate a number upward

float ceil(float f);

Description
Return the closest integer value higher or equal to f.

Note
ceil() does not return an int, merely an integer value stored in a float.

See Also
floor and round

chmod - change mode of a file in the filesystem

void chmod(string filename,int mode);

Description
Sets the protection mode of the given file. It will throw if it fails.

352 CHAPTER 16. BUILTIN FUNCTIONS

See Also
Stdio.File->open and errno

clone - clone an object from a program

object clone(program p,mixed ... args);

Description
clone() creates an object from the program p. Or in C++ terms: It creates an
instance of the class p. This clone will first have all global variables initialized,
and then create() will be called with args as arguments.

See Also
new, destruct, compile string and compile file

column - extract a column
array column(array data,mixed index)

Description
This function is exactly equivalent to:

map array(data, lambda(mixed x,mixed y) { return x[y]; }, index)

Except of course it is a lot shorter and faster. That is, it indices every index
in the array data on the value of the argument index and returns an array with
the results.

Example

> column(({ ({1,2}), ({3,4}), ({5,6}) }), 1)

Result: ({2, 4, 6})

See Also
rows

combine path - concatenate paths

string combine path(string absolute, string relative);

Description
Concatenate a relative path to an absolute path and remove any ”//”, ”/..” or
”/.” to produce a straightforward absolute path as a result.

Example
> combine path("/foo/bar/","..");
Result: /foo
> combine path("/foo/bar/","../apa.c");
Result: /foo/apa.c
> combine path("/foo/bar","./sune.c");

353

Result: /foo/bar/sune.c

See Also
getcwd and Stdio.append path

compile - compile a string to a program

program compile(string program);

Description
compile takes a piece of Pike code as a string and compiles it into a clon-
able program. Note that prog must contain the complete source for a pro-
gram. You can not compile a single expression or statement. Also note that
compile does not preprocess the program. To preprocess the program you can
use compile string or call the preprocessor manually by calling cpp.

See Also
clone, compile string, compile file and cpp

compile file - compile a file to a program

program compile file(string filename);

Description
This function will compile the file filename to a Pike program that can later be
used for cloning. It is the same as doing compile string(Stdio.read file(filename),filename).

See Also
clone and compile string

compile string - compile a string to a program

program compile string(string prog, string name);

Description
Equal to compile(cpp(prog, name));

See Also
compile string and clone

copy value - copy a value recursively

mixed copy value(mixed value);

Description
Copy value will copy the value given to it recursively. If the result value is
changed destructively (only possible for multisets, arrays and mappings) the
copied value will not be changed. The resulting value will always be equal to
the copied (tested with the efun equal), but they may not the the same value.
(tested with ==)

See Also
equal

354 CHAPTER 16. BUILTIN FUNCTIONS

cos - trigonometrical cosine

float cos(float f);

Description
Returns the cosine value for f.

See Also
acos and sin

cpp - run the preprocessor on a string

string cpp (string source, string filename);

Description
This function runs the Pike preprocessor on a string. The second argument
filename will be used for inserting #line statements into the result.

See Also
compile, compile string and compile file

crypt - crypt a password

string crypt(string password);
int crypt(string typed password, string crypted password);

Description
This function crypts and verifies a short string. (normally only the first 8 char-
acters are significant) The first syntax crypts the string password into something
that is hopefully hard to decrypt, and the second function crypts the first string
and verifies that the crypted result matches the second argument and returns 1
if they matched, 0 otherwise.

Example
To crypt a password use:

To see if the same password was used again use:

ctime - convert time int to readable date string

string ctime(int current time);

355

Description
Convert the output from a previous call to time() into a readable string con-
taining the current year, month, day and time.

Example
> ctime(time());
Result: Wed Jan 14 03:36:08 1970

See Also
time, localtime, mktime and gmtime

decode value - decode a value from a string

mixed decode value(string coded value);

Description
This function takes a string created with encode value() or encode value canonic()
and converts it back to the value that was coded.

See Also
encode value and encode value canonic

describe backtrace - make a backtrace readable
string describe backtrace(array(array) backtrace);

Description
Returns a string containing a readable message that describes where the back-
trace was made. The argument ’backtrace’ should normally be the return value
from a call to backtrace()

See Also
backtrace and describe error

describe error - get the error message from a backtrace

string describe error(array(array) backtrace);

Description
Returns only the error message in a backtrace. If there is no message in it, a
fallback message is returned.

See Also
backtrace and describe backtrace

destruct - destruct an object

void destruct(object o);

Description
Destruct marks an object as destructed, all pointers and function pointers to
this object will become zero. The destructed object will be freed from memory
as soon as possible. This will also call o-¿destroy.

356 CHAPTER 16. BUILTIN FUNCTIONS

See Also
clone

dirname - find the directory part of a path

string dirname(string path);

Description
This function returns the directory part of a path. For example, the directory
part of "/home/hubbe/bin/pike" would be "/home/hubbe/bin".

See Also
basename and explode path

encode value - code a value into a string

string encode value(mixed value);

Description
This function takes a value, and converts it to a string. This string can then be
saved, sent to another Pike process, packed or used in any way you like. When
you want your value back you simply send this string to decode value() and it
will return the value you encoded.

Almost any value can be coded, mappings, floats, arrays, circular structures etc.
At present, objects, programs and functions cannot be saved in this way. This
is being worked on.

See Also
decode value, sprintf and encode value canonic

encode value canonic - code a value into a string on canonical form

string encode value canonic(mixed value)

Description
Takes a value and converts it to a string on canonical form, much like en-
code value(). The canonical form means that if an identical value is encoded,
it will produce exactly the same string again, even if it’s done at a later time
and/or in another Pike process. The produced string is compatible with de-
code value().

Note that this function is more restrictive than encode value() with respect to
the types of values it can encode. It will throw an error if it can’t encode to a
canonical form.

See Also
encode value and decode value

enumerate - create an array with an enumeration

array(int) enumerate(int n);
array enumerate(int n,void|mixed step,void|mixed
start,void|function operator);

357

Description
Create an enumeration, useful for initializing arrays or as first argument to map
or foreach.

For instance, enumerate(4) gives ({0,1,2,3}).

Advanced use: the resulting array is caluculated like this:

array enumerate(int n,mixed step,mixed start,function operator)

{

array res=({});

for (int i=0; i<n; i++)

{

res+=({start});

start=operator(start,step);

}

return res;

}

The default values is step=1, start=0, operator=add.

See Also
map and foreach

equal - check if two values are equal or not

int equal(mixed a, mixed b);

Description
This function checks if the values a and b are equal. For all types but arrays,
multisets and mappings, this operation is the same as doing a == b. For arrays,
mappings and multisets however, their contents are checked recursively, and if
all their contents are the same and in the same place, they are considered equal.

Example
> ({ 1 }) == ({ 1 });
Result: 0
> equal(({ 1 }), ({ 1 }));
Result: 1
>

See Also
copy value

errno - return system error number

int errno();

Description
This function returns the system error from the last file operation. Note that

358 CHAPTER 16. BUILTIN FUNCTIONS

you should normally use the function errno in the file object instead.

See Also
Stdio.File->errno and strerror

exece
int exece(string file, array(string) args);
int exece(string file, array(string) args, mapping(string:string)
env);

Description
This function transforms the Pike process into a process running the program
specified in the argument ’file’ with the argument ’args’. If the mapping ’env’
is present, it will completely replace all environment variables before the new
program is executed. This function only returns if something went wrong during
exece(), and in that case it returns zero.

Note
The Pike driver dies when this function is called. You must use fork() if you
wish to execute a program and still run the Pike driver.

Example
exece("/bin/ls", ({"-l"}));
exece("/bin/sh", ({"-c", "echo $HOME"}), (["HOME":"/not/home"]));

See Also
fork and Stdio.File->pipe

explode path - Split a path into components

array(string) explode path(string path);

Description
This function divides a path into its components. This might seem like it could
be done by dividing the string on "/", but that would not work on other oper-
ating systems.

Example
> explode path("/home/hubbe/bin/pike"); Result: ({ "home", "hubbe",
"bin", "pike" })

exit - exit Pike interpreter

void exit(int returncode);

Description
This function exits the whole Pike program with the return code given. Using
exit() with any other value than 0 indicates that something went wrong during
execution. See your system manuals for more information about return codes.

exp - natural exponent

float exp(float f);

359

Description
Return the natural exponent of f.

See Also
pow and log

file stat - stat a file

array(int) file stat(string file);
array(int) file stat(string file, 1);
array(int) file->stat();

Description
file stat returns an array of integers describing some properties
about the file. Currently file stat returns 7 entries:

({

int mode [0] file mode, protection bits etc. etc.

int size [1] file size for regular files,

-2 for dirs,

-3 for links,

-4 for otherwise

int atime [2] last access time

int mtime [3] last modify time

int ctime [4] last status time change

int uid [5] The user who owns this file

int gid [6] The group this file belongs to

})

If you give 1 as a second argument, file stat does not follow links.
You can never get -3 as size if you don’t give a second argument.

If there is no such file or directory, zero is returned.

See Also
get dir

file truncate - truncate a file

int file truncate(string file,int length);

Description
Truncates a file to that length. Returns 1 if ok, 0 if failed.

filter - map a function over elements and filter

array filter(array arr,function fun,mixed ...extra);
mixed filter(mixed arr,void|mixed fun,void|mixed ...extra);

Description

360 CHAPTER 16. BUILTIN FUNCTIONS

Calls the given function for all elements in arr, and keeps the elements in arr
that resulted in a non-zero value from the function.

arr result
array keep=map(arr,fun,@extra); for (i=0; i¡sizeof(arr); i++) if

(keep[i]) res+=(–arr[i]˝);
multiset (multiset)filter((array)arr,fun,@extra);

mapping —
program —
function

ind=indices(arr),val=values(arr);
keep=map(val,fun,@extra);
for (i=0; i¡sizeof(keep); i++)
 if (keep[i]) res[ind[i]]=val[i];

string (string)filter((array)arr,fun,@extra);

object

if arr-¿cast :
 try filter((array)arr,fun,@extra);
 try filter((mapping)arr,fun,@extra);
 try filter((multiset)arr,fun,@extra);

Returns
the same datatype as given, the exception are program and function that gives
a mapping back

See Also
map and foreach

find call out - find a call out in the queue

int find call out(function f);
int find call out(mixed id);

Description
This function searches the call out queue. If given a function as argument, it
looks for the first call out scheduled to that function. The argument can also
be a call out id as returned by call out, in which case that call out will be
found. (Unless it has already been called.) find call out will then return how
many seconds remains before that call will be executed. If no call is found,
zero type(find call out(f)) will return 1.

See Also
call out, remove call out and call out info

floatp - is the argument a float?

int floatp(mixed arg);

Description
Returns 1 if arg is a float, zero otherwise.

See Also
intp, programp, arrayp, stringp, objectp, mappingp, multisetp and functionp

361

floor - truncate a number downward

float floor(float f);

Description
Return the closest integer value lower or equal to f.

Note
floor() does not return an int, merely an integer value stored in a float.

See Also
ceil and round

fork - fork the process in two

int fork();

Description
Fork splits the process in two, and for the parent it returns the pid of the child.
Refer to your Unix manual for further details.

Note
This function cause endless bugs if used without proper care.

Some operating systems have problems if this function is used together with
threads.

See Also
Process.exec and Stdio.File->pipe

function name - return the name of a function, if known

string function name(function f);

Description
This function returns the name of the function f. If the function is a pre-defined
function in the driver, zero will be returned.

See Also
function object and Simulate.get function

function object - return what object a function is in

object function object(function f);

Description
Function object will return the object the function f is in. If the function is a
predefined function from the driver, zero will be returned.

See Also
function name and Simulate.get function

functionp - is the argument a function?

int functionp(mixed arg);

362 CHAPTER 16. BUILTIN FUNCTIONS

Description
Returns 1 if arg is a function, zero otherwise.

See Also
intp, programp, arrayp, stringp, objectp, mappingp, multisetp and floatp

gc - do garbage collection

int gc();

Description
This function checks all the memory for cyclic structures such as arrays con-
taining themselves and frees them if appropriate. It also frees up destructed
objects. It then returns how many arrays/objects/programs/etc. it managed
to free by doing this. Normally there is no need to call this function since Pike
will call it by itself every now and then. (Pike will try to predict when 20% of
all arrays/object/programs in memory is ’garbage’ and call this routine then.)

get dir - read a directory

array(string) get dir(string dirname);

Description
Returns an array of all filenames in the directory dirname, or zero if no such
directory exists.

See Also
mkdir and cd

get profiling info - get profiling information

array(int|mapping(string:array(int))) get profiling info(program
prog);

Description
Returns an array with two elements, the first of which is the number of times
the program prog has been cloned.
The second element is a mapping(string:array(int)) from function name to
an array(int) with two elements. The first element of this array is the number
of times the function has been called, while the second element is the total time
(in milliseconds) spent in the function so far.

Note
This function is only available if Pike was compiled with the option ’–with-
profiling’.

getcwd - return current working directory

string getcwd();

Description
getcwd returns the current working directory.

363

See Also
cd

getenv - get an environment variable

string getenv(string varname);

Description
Returns the value of the environment variable with the name varname, if no
such environment variable exists, zero is returned.

Note
This function is provided by master.pike.

getpid - get the process id of this process

int getpid();

Description
This returns the pid of this process. Useful for sending signals to yourself.

See Also
kill, fork and signal

glob - match strings against globs

int glob(string glob, string str); or
array(string) glob(string glob, array(string) arr);

Description
This function matches ”globs”. In a glob string a question sign matches any
character and an asterisk matches any string. When given two strings as argu-
ment a true/false value is returned which reflects if the str matches glob. When
given an array as second argument, an array containing all matching strings is
returned.

See Also
sscanf and Regexp

gmtime - break down time() into intelligible components

mapping(string:int) gmtime(int time);

Description
This function works like localtime but the result is not adjusted for the local
time zone.

See Also
localtime, time, ctime and mktime

has index - does the index exist?
int has index(string haystack, int index);
int has index(array haystack, int index);
int has index(mapping haystack, mixed index);

364 CHAPTER 16. BUILTIN FUNCTIONS

Description
Search for index in haystack. Returns 1 if index is in the index domain of
haystack, or 0 if not found. The has index function is equivalent (but sometimes
faster) to:

search(indices(haystack), index) != -1

Note
A negative index in strings and arrays as recognized by the index operators ‘[]
and ‘[]= is not considered a proper index by has index.

See Also
has value, indices, search, values and zero type

has value - does the value exist?
int has value(string haystack, int value);
int has value(array haystack, int value);
int has value(mapping haystack, mixed value);

Description
Search for value in haystack. Returns 1 if value is in the value domain of
haystack, or 0 if not found. The has value function is in all cases except for
strings equivalent (but sometimes faster) to:

search(values(haystack), value) != -1

For strings, has value is equivalent to:

search(haystack, value) != -1

See Also
has index, indices, search, values and zero type

hash - hash a string

int hash(string s);
int hash(string s, int max);

Description
This function will return an int derived from the string s. The same string will
always hash to the same value. If a second argument is given, the result will be
¿= 0 and lesser than that argument.

indices - return an array of all index possible for a value

array indices(string|array|mapping|multiset|object foo);

Description
indices returns an array of all values you can use as index when indexing foo.
For strings and arrays this is simply an array of the ascending numbers. For
mappings and multisets, the array may contain any kind of value. For objects,
the result is an array of strings.

365

See Also
values

is absolute path - Is the given pathname relative or not?

int is absolute path(string path);

Description
Returns 1 if path is an absolute path, 0 otherwise.

intp - is the argument an int?

array intp(mixed arg);

Description
Returns 1 if arg is an int, zero otherwise.

See Also
arrayp, programp, floatp, stringp, objectp, mappingp, multisetp and functionp

kill - send signal to other process

int kill(int pid, int signal);

Description
Kill sends a signal to another process. If something goes wrong -1 is returned,
0 otherwise.

Some signals and their supposed purpose:

SIGHUP Hang-up, sent to process when user logs out
SIGINT Interrupt, normally sent by ctrl-c
SIGQUIT Quit, sent by ctrl-“
SIGILL Illegal instruction
SIGTRAP Trap, mostly used by debuggers

SIGABRT
Aborts process, can be caught, used by Pike whenever something
goes seriously wrong.

SIGBUS Bus error
SIGFPE Floating point error (such as division by zero)
SIGKILL Really kill a process, cannot be caught
SIGUSR1 Signal reserved for whatever you want to use it for.

SIGSEGV
Segmentation fault, caused by accessing memory where you
shouldn’t. Should never happen to Pike.

SIGUSR2 Signal reserved for whatever you want to use it for.
SIGALRM Signal used for timer interrupts.
SIGTERM Termination signal
SIGSTKFLT Stack fault
SIGCHLD Child process died
SIGCONT Continue suspended
SIGSTOP Stop process
SIGSTP Suspend process
SIGTTIN tty input for background process

366 CHAPTER 16. BUILTIN FUNCTIONS

SIGTTOU tty output for background process
SIGXCPU Out of CPU
SIGXFSZ File size limit exceeded
SIGPROF Profile trap
SIGWINCH Window change signal

Note that you have to use signame to translate the name of a signal to its
number.

See Also
signal, signum, signame and fork

load module - load a binary module

int load module(string module name);

Description
This function loads a module written in C or some other language into Pike. The
module is initialized and any programs or constants defined will immediately
be available.

When a module is loaded the functions init module efuns and init module programs
are called to initialize it. When Pike exits exit module is called in all dynami-
cally loaded modules. These functions must be available in the module.

Please see the source and any examples available at ftp://www.idonex.se/pub/pike
for more information on how to write modules for Pike in C.

Bugs
Please use ”./name.so” instead of just ”foo.so” for the module name. If you use
just ”foo.se” the module will not be found.

localtime - break down time() into intelligible components

mapping(string:int) localtime(int time);

Description
Given a time represented as second since 1970, as returned by the function
time(), this function returns a mapping with the following components:

([

"sec" : int(0..59) seconds over the minute

"min" : int(0..59) minutes over the hour

"hour" : int(0..59) what hour in the day

"mday" : int(1..31) day of the month

"mon" : int(0..11) what month

"year" : int(0..) years since 1900

"wday" : int(0..6) day of week (0=Sunday)

"yday" : int(0..365) day of year

"isdst" : int(0..1) is daylight saving time

"timezone" : int difference between local time and UTC

])

367

Note
The ’timezone’ might not be available on all platforms.

See Also
Calendar, gmtime, time, ctime and mktime

log - natural logarithm

float log(float f);

Description
Return the natural logarithm of f.

See Also
pow and exp

lower case - convert a string to lower case

string lower case(string s);

Description
Returns a string with all capital letters converted to lower case.

See Also
upper case

map - map a function over elements

array map(array arr,function fun,mixed ...extra);
mixed map(mixed arr,void|mixed fun,void|mixed ...extra);

Description
simple use: map() loops over all elements in arr and call the function fun with
the element as first argument, with all ”extra” arguments following. The result
is the same datatype as ”arr”, but all elements is the result from the function
call of the corresponding element.

advanced use is a wide combination of types given as ”arr” or ”fun”.

arr fun result

array

function —
program —
object —
array

array ret; ret[i]=fun(arr[i],@extra);

array multiset —
mapping ret = rows(fun,arr)

array string array ret; ret[i]=arr[i][fun](@extra);
array void—int(0) array ret; ret=arr(@extra)
mapping
— *

mapping ret = mkmapping(indices(arr),
map(values(arr),fun,@extra));

multiset * multiset ret = (multiset)(map(indices(arr),fun,@extra));
string * string ret = (string)map((array)arr,fun,@extra);

368 CHAPTER 16. BUILTIN FUNCTIONS

arr fun result

object *

if arr-¿cast :
 try map((array)arr,fun,@extra);
 try map((mapping)arr,fun,@extra);
 try map((multiset)arr,fun,@extra);
if arr-¿ sizeof && arr-¿‘[]
 array ret; ret[i]=arr[i];
 ret=map(ret,fun,@extra);

Returns
the same datatype as given, but with the subtype set to the return value of the
function; the exception are program and function that gives a mapping back

See Also
filter, enumerate and foreach

Note
You may get unexpected errors if you feed the function with illegal values; for
instance if fun is an array of non-callables.

m delete - remove an index from a mapping

mixed m delete(mapping map, mixed index);

Description
Removes the entry with index index from mapping map destructively. If the
mapping does not have an entry with index index, nothing is done. Note that
m delete changes map destructively and only returns the mapping for compat-
ibility reasons.

This function returns the value from the key-value pair that was removed from
the mapping.

See Also
mappingp

mappingp - is the argument a mapping?

int mappingp(mixed arg);

Description
Returns 1 if arg is a mapping, zero otherwise.

See Also
intp, programp, arrayp, stringp, objectp, multisetp, floatp and functionp

master - return the master object

object master();

Description
Master is added by the master object to make it easier to access it.

369

max - return the greatest value

mixed max(mixed ...arg)

Description
Returns the greatest value of its args.

Example

> man(1,2,3);

Result: 3

See Also
min

min - return the smallest value
mixed min(mixed ...arg)

Description
Returns the smallest value of its args.

Example

> min(1,2,3);

Result: 1

See Also
max

mkdir - make directory

int mkdir(string dirname, void|int mode);

Description
Create a directory, return zero if it fails and nonzero if it successful. If a mode
is given, it’s used for the new directory after being &’ed with the current umask
(on OS’es that supports this).

See Also
rm, cd and Stdio.mkdirhier

mkmapping - make a mapping from two arrays

mapping mkmapping(array ind, array val);

Description
Makes a mapping ind[x]:val[x], 0¡=x¡sizeof(ind). ind and val must have the
same size. This is the inverse operation of indices and values.

370 CHAPTER 16. BUILTIN FUNCTIONS

See Also
indices and values

mkmultiset - make a multiset
multiset mkmultiset(array a);

Description
This function creates a multiset from an array.

Example

> mkmultiset(({1,2,3}));

Result: (< /* 3 elements */

1,

2,

3

>)

See Also
aggregate multiset

mktime - convert date and time to seconds
int mktime(mapping tm)
int mktime(int sec, int min, int hour, int mday, int mon, int
year, int isdst, int tz)

Description
This function converts information about date and time into an integer which
contains the number of seconds since the beginning of 1970. You can either call
this function with a mapping containing the following elements:

year The number of years since 1900
mon The month
mday The day of the month.
hour The number of hours past midnight
min The number of minutes after the hour
sec The number of seconds after the minute
isdst If this is 1, daylight savings time is assumed
tm The timezone (-12 ¡= tz ¡= 12)

Or you can just send them all on one line as the second syntax suggests.

See Also
time, ctime, localtime and gmtime

multisetp - is the argument a multiset?

int multisetp(mixed arg);

371

Description
Returns 1 if arg is a multiset, zero otherwise.

See Also
intp, programp, arrayp, stringp, objectp, mappingp, floatp and functionp

mv - move a file (may handle directories as well)

int mv(string from,string to);

Description
Rename or move a file between directories. If the destination file already exists,
it will be overwritten. Returns 1 on success, 0 otherwise.

See Also
rm

new - clone an object from a program

object new(program p,mixed ... args);

Description
new() creates an object from the program p. Or in C++ terms: It creates an
instance of the class p. This clone will first have all global variables initialized,
and then create() will be called with args as arguments.

See Also
clone, destruct, compile string and compile file

next object - get next object

object next object(object o);
object next object();

Description
All objects are stored in a linked list, next object() returns the first object in
this list, and next object(o) the next object in the list after o.

Example

/* This example calls shutting down() in all cloned objects */

object o;

for(o=next object();o;o=next object(o))

o->shutting down();

See Also
clone and destruct

Note

372 CHAPTER 16. BUILTIN FUNCTIONS

This function is not recommended to use.

object program - get the program associated with the object

program object program(object o);

Description
This function returns the program from which o was cloned. If o is not an
object or has been destructed o zero is returned.

See Also
clone and new

object variablep - find out if an object identifier is a variable

int object variablep(object o, string var);

Description
This function return 1 if var exists is a non-static variable in o, zero otherwise.

See Also
indices and values

objectp - the argument an object?

int objectp(mixed arg);

Description
Returns 1 if arg is an object, zero otherwise.

See Also
intp, programp, floatp, stringp, arrayp, mappingp, multisetp and functionp

pow - raise a number to the power of another

float pow(float|int n, float|int x);

Description
Return n raised to the power of x.

See Also
exp and log

programp - is the argument a program?

int programp(mixed arg);

Description
Returns 1 if arg is a program, zero otherwise.

See Also
intp, multisetp, arrayp, stringp, objectp, mappingp, floatp and functionp

373

putenv - put environment variable

void putenv(string varname, string value);

Description
This function sets the environment variable varname to value.

See Also
getenv and exece

query host name - return the name of the host we are running on

string query host name();

Description
This function returns the name of the machine the interpreter is running on.
This is the same thing that the command hostnameprints.

query num arg - find out how many arguments were given

int query num arg();

Description
query num arg returns the number of arguments given when this function was
called. This is only useful for varargs functions.

See Also
call function

random - return a random number
int random(int max);

Description
This function returns a random number in the range 0 - max-1.

See Also
random seed

random seed - seed random generator

void random seed(int seed);

Description
This function sets the initial value for the random generator.

Example
Pike v1.0E-13 Running Hilfe v1.2 (Hubbe’s Incremental Pike Front-End)
> random seed(17);
Result: 0
> random(1000);
Result: 732
> random(1000);
Result: 178

374 CHAPTER 16. BUILTIN FUNCTIONS

> random(1000);
Result: 94
> random seed(17);
Result: 0
> random(1000);
Result: 732
> random(1000);
Result: 178
> random(1000);
Result: 94
>

See Also
random

remove call out - remove a call out from the call out queue

int remove call out(function f);
int remove call out(function id);

Description
This function finds the first call to the function f in the call out queue and
removes it. The time left to that call out will be returned. If no call out was
found, zero type(remove call out(f)) will return 1. You can also give a call out
id as argument. (as returned by call out)

See Also
call out info, call out and find call out

remove include path - remove a directory to search for include files

void remove include path(string path);

Description
This function removes a directory from the list of directories to search for include
files. It is the opposite of add include path.

See Also
add include path and #include

remove module path - remove a directory to search for modules

void remove module path(string path);

Description
This function removes a directory from the list of directories to search for mod-
ules. It is the opposite of add module path. For more information about mod-
ules, see chapter 7.4.

See Also
add module path

375

remove program path - remove a directory to search for modules

void remove program path(string path);

Description
This function removes a directory from the list of directories to search for pro-
gram. It is the opposite of add program path. For more information about
programs, see section 4.2.3.

See Also
add program path

replace - generic replace function

string replace(string s, string from, string to);
string replace(string s, array(string) from, array(string) to);
array replace(array a, mixed from, mixed to);
mapping replace(mapping a, mixed from, mixed to);

Description
This function can do several kinds replacement operations, the different syntaxes
do different things as follow:

replace master - replace the master object

void replace master(object o);

Description
This function replaces the master object with the argument you specify. This
will let you control many aspects of how Pike works, but beware that master.pike
may be required to fill certain functions, so it is probably a good idea to have
your master inherit the original master and only re-define certain functions.

reverse - reverse a string, array or int

string reverse(string s);
array reverse(array a);
int reverse(int i);

Description
This function reverses a string, char by char, an array, value by value or an int,

376 CHAPTER 16. BUILTIN FUNCTIONS

bit by bit and returns the result. Reversing strings can be particularly useful
for parsing difficult syntaxes which require scanning backwards.

See Also
sscanf

rint - round a number
float rint(float f);

Description
This function is named round in Pike.

Note
This function does not exist! Use round!

See Also
round

rm - remove file or directory

int rm(string f);

Description
Remove a file or directory, return 0 if it fails. Nonzero otherwise.

See Also
mkdir and recursive rm

round - round a number
float round(float f);

Description
Return the closest integer value to f.

Note
round() does not return an int, merely an integer value stored in a float.

See Also
floor and ceil

rows - select a set of rows from an array

array rows(mixed data, array index);

Description
This function is exactly equivalent to:

map array(index,lambda(mixed x,mixed y) – return y[x]; ˝,data)

Except of course it is a lot shorter and faster. That is, it indices data on every
index in the array index and returns an array with the results.

See Also
column

377

rusage - return resource usage

array(int) rusage();

Description
This function returns an array of ints describing how much resources the in-
terpreter process has used so far. This array will have at least 29 elements, of
which those values not available on this system will be zero. The elements are
as follows:

0: user time 1: system time 2: maxrss 3: idrss 4: isrss 5: minflt 6: minor page
faults 7: major page faults 8: swaps 9: block input op. 10: block output op. 11:
messages sent 12: messages received 13: signals received 14: voluntary context
switches 15: involuntary context switches 16: sysc 17: ioch 18: rtime 19: ttime
20: tftime 21: dftime 22: kftime 23: ltime 24: slptime 25: wtime 26: stoptime
27: brksize 28: stksize

Don’t ask me to explain these values, read your system manuals for more infor-
mation. (Note that all values may not be present though)

See Also
time

search - search for a value in a string, array or mapping

int search(string haystack, string needle, [int start]);
int search(array haystack, mixed needle, [int start]);
mixed search(mapping haystack, mixed needle, [mixed start]);

Description
Search for needle in haystack. Return the position of needle in haystack or -1
if not found. If the optional argument start is present search is started at this
position. Note that when haystack is a string needle must be a string, and the
first occurrence of this string is returned. However, when haystack is an array,
needle is compared only to one value at a time in haystack.

When the haystack is a mapping, search tries to find the index connected to
the data needle. That is, it tries to lookup the mapping backwards. If needle
isn’t present in the mapping, zero is returned, and zero type() will return 1 for
this zero.

See Also
indices, values and zero type

sgn - check the sign of a value

int sgn(mixed value);
int sgn(mixed value, mixed base);

Description
This function returns -1 if value is less than zero, 1 if value is greater than zero
and 0 otherwise. If base is given, -1 is returned if value is lesser than base, 1 if
value is greater than base and 0 otherwise.

378 CHAPTER 16. BUILTIN FUNCTIONS

See Also
abs

signal - trap signals

void signal(int sig, function(int:void) callback);
void signal(int sig);

Description
This function allows you to trap a signal and have a function called when the
process receives a signal. Although it IS possible to trap SIGBUS, SIGSEGV
etc. I advice you not to. Pike should not receive any such signals and if it does
it is because of bugs in the Pike interpreter. And all bugs should be reported,
no matter how trifle.

The callback will receive the signal number as the only argument. See the
document for the function ’kill’ for a list of signals.

If no second argument is given, the signal handler for that signal is restored to
the default handler.

If the second argument is zero, the signal will be completely ignored.

See Also
kill, signame and signum

signame - get the name of a signal

string signame(int sig);

Description
Returns a string describing the signal.

Example
> signame(9);
Result: SIGKILL

See Also
kill, signum and signal

signum - get a signal number given a descriptive string

int signum(string sig);

Description
This function is the opposite of signame.

Example
> signum("SIGKILL");
Result: 9

See Also
signame, kill and signal

379

sin - trigonometrical sine

float sin(float f);

Description
Returns the sinus value for f.

See Also
asin and cos

sizeof - return the size of an array, string, multiset or mapping

int sizeof(string|multiset|mapping|array|object a);

Description
This function returns the number of indices available in the argument given to
it. It replaces older functions like strlen, m sizeof and size.

sleep - let interpreter doze off for a while

void sleep(float|int s, int|void foo);

Description
This function makes the program stop for s seconds. Only signal handlers can
interrupt the sleep. Other callbacks are not called during sleep.

See Also
signal

sort - sort an array destructively

array sort(array(mixed) index, array(mixed) ... data);

Description
This function sorts the array ’index’ destructively. That means that the array
itself is changed and returned, no copy is created. If extra arguments are given,
they are supposed to be arrays of the same size. Each of these arrays will be
modified in the same way as ’index’. I.e. if index 3 is moved to position 0 in
’index’ index 3 will be moved to position 0 in all the other arrays as well.

Sort can sort strings, integers and floats in ascending order. Arrays will be
sorted first on the first element of each array.

Sort returns its first argument.

See Also
reverse

sprintf - print the result from sprintf

string sprintf(string format,mixed arg,....);

Description
The format string is a string containing a description of how to output the
data in the rest of the arguments. This string should generally speaking have

380 CHAPTER 16. BUILTIN FUNCTIONS

one %¡modifiers¿¡operator¿ (examples: %s, %0d, %-=20s) for each of the rest
arguments.

Modifiers:

0 Zero pad numbers (implies right justification)
! Toggle truncation
’ ’
(space) pad positive integers with a space

+ pad positive integers with a plus sign
- left adjusted within field size (default is right)
— centered within field size
= column mode if strings are greater than field size
/ Rough line break (break at exactly field size instead of between words)
table mode, print a list of ’“n’ separated word (top-to-bottom order)
$ Inverse table mode (left-to-right order)
n (where n is a number or *) a number specifies field size
.n set precision
:n set field size & precision
;n Set column width
* if n is a * then next argument is used for precision/field size
’X’ Set a pad string. ’ cannot be a part of the pad string (yet)
˜ Get pad string from argument list.
¡ Use same arg again
ˆ repeat this on every line produced
@ do this format for each entry in argument array
¿ Put the string at the bottom end of column instead of top

Set width to the length of data

Operators:

%% percent
%b signed binary int
%d signed decimal int
%o signed octal int
%x lowercase signed hexadecimal int
%X uppercase signed hexadecimal int
%c char (or short with %2c, %3c gives 3 bytes etc.)
%f float
%g heuristically chosen representation of float
%G like %g, but uses uppercase E for exponent
%e exponential notation float
%E like %e, but uses uppercase E for exponent

%F
binary IEEE representation of float (%4F gives single
precision, %8F gives double precision.)

%s string
%O any type (debug style)
%n nop
%t type of argument
%¡modifiers¿–format%˝ do a format for every index in an array.

381

Example

Pike v0.7 release 1 running Hilfe v2.0 (Incremental Pike Frontend)

> int screen width=70;

Result: 70

> mixed sample;

> write(sprintf("fish: %c\n", 65));

fish: A

Result: 8

> write(sprintf("num: %d\n", 10));

num: 10

Result: 8

> write(sprintf("num: %+10d\n", 10));

num: +10

Result: 16

> write(sprintf("num: %010d\n", 5*2));

num: 0000000010

Result: 16

> write(sprintf("num: %|10d\n", 20/2));

num: 10

Result: 16

> write(sprintf("%|*s\n",screen width,"THE NOT END"));

THE NOT END

Result: 71

> write(sprintf("%|=*s\n",screen width, "fun with penguins\n"));

fun with penguins

Result: 71

> write(sprintf("%-=*O\n",screen width,({ "fish", 9, "gumbies", 2 })));

({ /* 4 elements */

"fish",

9,

"gumbies",

2

})

Result: 426

> write(sprintf("%-=*s\n", screen width,

"This will wordwrap the specified string within the "+

"specified field size, this is useful say, if you let "+

"users specify their screen size, then the room "+

"descriptions will automagically word-wrap as appropriate.\n"+

"slosh-n’s will of course force a new-line when needed.\n"));

This will wordwrap the specified string within the specified field

size, this is useful say, if you let users specify their screen size,

then the room descriptions will automagically word-wrap as

appropriate.

slosh-n’s will of course force a new-line when needed.

Result: 355

> write(sprintf("%-=*s %-=*s\n", screen width/2,

382 CHAPTER 16. BUILTIN FUNCTIONS

"Two columns next to each other (any number of columns will "+

"of course work) independently word-wrapped, can be useful.",

screen width/2-1,

"The - is to specify justification, this is in adherence "+

"to std sprintf which defaults to right-justification, "+

"this version also supports center and right justification."));

Two columns next to each other (any The - is to specify justification,

number of columns will of course this is in adherence to std

work) independently word-wrapped, sprintf which defaults to

can be useful. right-justification, this version

also supports center and right

justification.

Result: 426

> write(sprintf("%-$*s\n", screen width,

"Given a\nlist of\nslosh-n\nseparated\n’words’,\nthis option\n"+

"creates a\ntable out\nof them\nthe number of\ncolumns\n"+

"be forced\nby specifying a\nprecision.\nThe most obvious\n"+

"use is for\nformatted\nls output."));

Given a list of slosh-n

separated ’words’, this option

creates a table out of them

the number of columns be forced

by specifying a precision. The most obvious

use is for formatted ls output.

Result: 312

> sample = ({"bing","womble","wuff","gul"});

Result: ({ /* 4 elements */

"bing",

"womble",

"wuff",

"gul"

})

> write(sprintf("This will apply the format strings between the\n"

"procent-braces to all elements in the array:\n"

"%{gurksallad: %s\n%}",

sample));

This will apply the format strings between the

procent-braces to all elements in the array:

gurksallad: bing

gurksallad: womble

gurksallad: wuff

gurksallad: gul

Result: 162

> write(sprintf("Of course all the simple printf options "+

"are supported:\n %s: %d %x %o %c\n",

"65 as decimal, hex, octal and a char",

65, 65, 65, 65));

Of course all the simple printf options are supported:

65 as decimal, hex, octal and a char: 65 41 101 A

Result: 106

383

> write(sprintf("%|*s\n",screen width, "THE END"));

THE END

Result: 71

> quit

Exiting.

See Also
sscanf

sqrt - square root

float sqrt(float f);
int sqrt(int i);

Description
Returns the square root of f, or in the second case, the square root truncated
to the closest lower integer.

See Also
pow, log, exp and floor

strerror - return a string describing an error

string strerror(int errno);

Description
This function returns a description of an error code. The error code is usually
obtained from the file-¿errno() call.

Note
This function may not be available on all platforms.

stringp - is the argument a string?

int stringp(mixed arg);

Description
Returns 1 if arg is a string, zero otherwise.

See Also
intp, multisetp, arrayp, programp, objectp, mappingp, floatp and functionp

string to unicode - convert a string to an UTF16 stream

string string to unicode(string s);

Description
Converts a string into an UTF16 compiant byte-stream.

Throws an error if characters not legal in an UTF16 stream are encountered.
Valid characters are in the range 0x00000 - 0x10ffff, except for characters 0xfffe
and 0xffff.

384 CHAPTER 16. BUILTIN FUNCTIONS

Characters in range 0x010000 - 0x10ffff are encoded using surrogates.

See Also
Locale.Charset.decode, string to utf8, unicode to string and utf8 to string

string to utf8 - convert a string to an UTF8 stream

string string to utf8(string s); string string to utf8(string s,
int extended);

Description
Converts a string into an UTF8 compilant byte-stream.

Throws an error if characters not valid in an UTF8 stream are encountered.
Valid characters are in the range 0x00000000 - 0x7fffffff.

If extended is 1, characters in the range 0x80000000-0xfffffffff will also be ac-
cepted, and encoded using a non-standard UTF8 extension.

See Also
Locale.Charset.decode, string to unicode, unicode to string and utf8 to string

strlen - return the length of a string

int strlen(string s);

Description
This function is equal to sizeof.

See Also
sizeof

tan - trigonometrical tangent

float tan(float f);

Description
Returns the tangent value for f.

See Also
atan, sin and cos

this object - return the object we are evaluating in currently

object this object();

Description
This function returns the object we are currently evaluating in.

throw - throw a value to catch or global error handling

void throw(mixed value);

385

Description
This function throws a value to a waiting catch. If no catch is waiting global
error handling will send the value to handle error in the master object. If you
throw an array with where the first index contains an error message and the
second index is a backtrace, (the output from backtrace() that is) then it will
be treated exactly like a real error by overlying functions.

See Also
catch

time - return the current time
int time();
int time(1);
float time(int t);

Description
This function returns the number of seconds since 1 Jan 1970. The function
ctime() converts this integer to a readable string.

The second syntax does not call the system call time() as often, but is only
updated in the backed. (when Pike code isn’t running)

The third syntax can be used to measure time more preciely than one second.
It return how many seconds has passed since t. The precision of this function
varies from system to system.

See Also
ctime, localtime, mktime and gmtime

trace - change debug trace level

int trace(int t);

Description
This function affects the debug trace level. (also set by the -t command line
option) The old level is returned. Trace level 1 or higher means that calls to Pike
functions are printed to stderr, level 2 or higher means calls to builtin functions
are printed, 3 means every opcode interpreted is printed, 4 means arguments
to these opcodes are printed as well. See the command lines options for more
information

typeof - check return type of expression

typeof (expression);

Description
This is a not really a function even if it looks like it, it returns a human readable
(almost) representation of the type that the expression would return without
actually evaluating it. The representation is in the form of a string.

Example
> typeof(‘sizeof);
Result: function(object | mapping | array | multiset | string : int)

386 CHAPTER 16. BUILTIN FUNCTIONS

> typeof(sizeof(({})));
Result: int
>

ualarm - set an alarm clock for delivery of a signal

int ualarm(int useconds);

Description
ualarm arranges for a SIGALRM signal to be delivered to the process in useconds
micro seconds.

If useconds is zero, no new alarm is scheduled.

In any event any previously set alarm is canceled.

Returns
ualarm returns the number of microseconds seconds remaining until any previ-
ously scheduled alarm was due to be delivered, or zero if there was no previously
scheduled alarm.

See Also
signal

unicode to string - convert an UTF16 stream to a string

string unicode to string(string s);

Description
Converts an UTF16 byte-stream into a string.

Note
This function does not decode surrogates.

See Also
Locale.Charset.decode, string to unicode, string to utf8 and utf8 to string

upper case - convert a string to upper case

string upper case(string s);

Description
Returns a copy of the string s with all lower case character converted to upper
case character.

See Also
lower case

utf8 to string - convert an UTF8 stream to a string

string utf8 to string(string s); string utf8 to string(string s,
int extended);

387

Description
Converts an UTF8 byte-stream into a string.

Throws an error if the stream is not a legal UFT8 byte-stream.

Accepts and decodes the extension used by string to utf8(), if extended is 1.

See Also
Locale.Charset.decode, string to unicode, string to utf8 and unicode to string

values - return an array of all possible values from indexing

array values(string|multiset|mapping|array|object foo);

Description
Values return an array of all values you can get when indexing the value foo.
For strings, an array of int with the ascii values of the characters in the string
is returned. For a multiset, an array filled with ones is return. For mappings,
objects and arrays, the returned array may contain any kind of value.

See Also
indices

version - return version info
string version();

Description
This function returns a brief information about the Pike version.

Example

> version();

Result: "Pike v0.7 release 1"

write - write text to stdout
int write(string text);

Description
Added by the master, it directly calls write in a Stdio.stdout.

See Also
Stdio.werror

zero type - return the type of zero

int zero type(mixed a);

Description
There are many types of zeros out there, or at least there are two. One
is returned by normal functions, and one returned by mapping lookups and

388 CHAPTER 16. BUILTIN FUNCTIONS

find call out() when what you looked for wasn’t there. The only way to sepa-
rate these two kinds of zeros is zero type. When doing a find call out or mapping
lookup, zero type on this value will return 1 if there was no such thing present
in the mapping, or no such call out could be found. If the argument to zero type
is a destructed object or a function in a destructed object, 2 will be returned.
Otherwise zero type will return zero.

If the argument is not an int, zero will be returned.

See Also
find call out

Chapter 17

Pike internals - how to extend
Pike

The rest of this book describes how Pike works and how to extend it with your
own functions written in C or C++. Even if you are not interested in extending
Pike, the information in this section can make you understand Pike better and
thus make you a better Pike programmer. From this point on I will assume that
the reader knows C or C++.

17.1 The master object

Pike is a very dynamic language. Sometimes that is not enough, sometimes you
want to change the way Pike handles errors, loads modules or start scripts. All
this and much more can be changed by modifying the master object. The
master object is a Pike object like any other object, but it is loaded before
anything else and is expected to perform certain things for the Pike executable.
The Pike executable cannot function without a master object to take care of
these things. Here is a list of the methods needed in the master object:

389

390 CHAPTER 17. PIKE INTERNALS - HOW TO EXTEND PIKE

Aside from the above functions, which are expected from the Pike binary, the
master object is also expected to provide functions used by Pike scripts. The
current master object adds the following global functions:

There are at least two ways to change the behavior of the master object. (Except
for editing it directly, which would cause other Pike scripts not to run in most
cases.) You can either copy the master object, modify it and use the command
line option -m to load your file instead of the default master object. However,
since there might be more functionality added to the master object in the future
I do not recommend this.

A better way is to write an object that inherits the master and then calls
replace master with the new object as argument. This should be far more
future-safe. Although I can not guarantee that the interface between Pike and
the master object will not change in the future, so be careful if you do this.

Let’s look an example:

#!/usr/local/bin/pike

class new master {

inherit "/master";

void create()

{

/* You need to copy the values from the old master to the new */

/* NOTE: At this point we are still using the old master */

object old master = master();

object new master = this object();

foreach(indices(old master), string varname)

{

/* The catch is needed since we can’t assign constants */

catch { new master[varname] = old master[varname]; };

}

}

17.2. DATA TYPES FROM THE INSIDE 391

void handle error(array trace)

{

Stdio.write file("error log",describe backtrace(trace));

}

};

int main(int argc, array(string) argv)

{

replace master(new master());

/* Run rest of program */

exit(0);

}

This example installs a master object which logs run time errors to file instead
of writing them to stderr.

17.2 Data types from the inside

This section describes the different data types used inside the Pike interpreter.
It is nessesary to have at least a basic understanding of these before you write
Pike extentions.

17.2.1 Basic data types

First, we must come to know the basic data types pike uses.

17.2.2 struct svalue

An svalue is the most central data structure in the Pike interpreter. It is used
to hold values on the stack, local variables, items in arrays and mappings and
a lot more. Any of the data types described in chapter 3.4can be stored in an
svalue.

392 CHAPTER 17. PIKE INTERNALS - HOW TO EXTEND PIKE

A struct svalue has three members:

Of course there are a whole bunch of functions for operating on svalues:

free svalue - free the contents of an svalue

void free svalue(struct svalue *s);

Description
This function is actually a macro, it will the contents of s. It does not however
free s itself. After calling free svalue, the contents of s is undefined, and you
should not be surprised if your computer blows up if you try to access the it’s
contents. Also note that this doesn’t nessecarily free whatever the svalue is
pointing to, it only frees one reference. If that reference is the last one, the
object/array/mapping/whatever will indeed be freed.

Note
This function will *not* call Pike code or error().

free svalues - free many svalues

void free svalues(struct svalue *s, INT32 howmany, TYPE FIELD
type hint);

Description
This function does the same as free svalue but operates on several svalues.
The type hint is used for optimization and should be set to BIT MIXED if you
don’t know exactly what types are beeing freed.

Note
This function will *not* call Pike code or error().

See Also
free svalue and TYPE FIELD

assign svalue - copy an svalue to another svalue

void assign svalue(struct svalue *to, sstruct svalue *from);

Description
This function frees the contents of to and then copies the contents of from into
to. If the value in from uses refcounts, they will be increased to reflect this copy.

Note
This function will *not* call Pike code or error().

17.2. DATA TYPES FROM THE INSIDE 393

See Also
free svalue and assign svalue no free

assign svalue no free - copy an svalue to another svalue

void assign svalue no free(struct svalue *to, sstruct svalue
*from);

Description
This function does the same as assign svalue() but does not free the contents of
to before overwriting it. This should be used when to has not been initialized
yet. If this funcion is incorrectly, memory leaks will occur. On the other hand,
if you call assign svalue on an uninitialized svalue, a core dump or bus error will
most likely occur.

Note
This function will *not* call Pike code or error().

See Also
assign svalue and free svalue

IS ZERO - check if an svalue is true or false
int IS ZERO(struct svalue *s);

Description
This macro returns 1 if s is false and 0 if s is true.

Note
This macro will evaluate s several times.
This macro may call Pike code and/or error().

See Also
is eq

is eq - check if two svalues contains the same value

int is eq(struct svalue *a, struct svalue *b);

Description
This function returns 1 if a and b contain the same value. This is the same as
the ‘== operator in pike.

Note
This function may call Pike code and/or error().

See Also
IS ZERO, is lt, is gt, is le, is ge and is equal

is equal - check if two svalues are equal

int is equal(struct svalue *a, struct svalue *b);

Description
This function returns 1 if a and b contains equal values. This is the same as
the function equal in pike.

394 CHAPTER 17. PIKE INTERNALS - HOW TO EXTEND PIKE

Note
This function may call Pike code and/or error().

See Also
equal and is eq

is lt - compare the contents of two svalues

int is lt(struct svalue *a, struct svalue *b);
int is le(struct svalue *a, struct svalue *b);
int is gt(struct svalue *a, struct svalue *b);
int is ge(struct svalue *a, struct svalue *b);

Description
These functions are equal to the pike operators ‘<, ‘<=, ‘>, ‘>= respectively.
For instance is lt will return 1 if the contents of a is lesser than the contents
of b.

Note
This function may call Pike code and/or error(). For instance, it will call error()
if you try to compare values which cannot be compared such as comparing an
integer to an array.

See Also
IS ZERO and is eq

17.2.3 struct pike string

A struct pike string is the internal representation of a string. Since Pike
relies heavily on string manipulation, there are quite a few features and quirks
to using this data structure. The most important part is that strings are shared.
This means that after a string has been entered into the shared string table it
must never be modified. Since some other thread might be using the very same
string, it is not even permitted to change a shared string temporarily and then
change it back.

A struct pike string has these members:

17.2. DATA TYPES FROM THE INSIDE 395

General string managementSince pike strings are shared, you can
compare them by using ==. FIXME – add more here.

STR0 - Get a pointer to a ’char’

p wchar0 *STR0(struct pike string *s);
p wchar1 *STR1(struct pike string *s);
p wchar2 *STR2(struct pike string *s);

Description
These macros return raw C pointers to the data in the string s. Note that
you may only use STR0 on strings where size shift is 0, STR1 on strings where
size shiftis 1 and STR2on strings where size shift is 2. When compiled with
DEBUG these macros will call fatal if used on strings with the wrong size shift.

Note
All pike strings have been zero-terminated for your convenience.
The zero-termination is not included in the length of the string.

free string - Free a reference to a pike string

void free string(struct pike string *s);

Description
This function frees one reference to a pike string and if that is the last reference,
it will free the string itself. As with all refcounting functions you should be
careful about how you use it. If you forget to call this when you should, a
memory leak will occur. If you call this function when you shouldn’t Pike will
most likely crash.

make shared string - Make a new shared string

struct pike string *make shared string(char *str);

Description
This function takes a null terminated C string as argument and returns a
pike string with the same contents. It does not free or change str. The
returned string will have a reference which will be up to you to free with
free string unless you send the string to a function such as push string
which eats the reference for you.

See Also
free string, push string, begin shared string, make shared binary string,
make shared string1 and make shared string2

make shared binary string - Make a new binary shared string

struct pike string *make shared binary string(char *str, INT32
len);

396 CHAPTER 17. PIKE INTERNALS - HOW TO EXTEND PIKE

Description
This function does essentially the same thing as make shared string, but you
give it the length of the string str as a second argument. This allows for strings
with zeros in them. It is also more efficient to call this routine if you already
know the length of the string str.

See Also
free string, push string, begin shared string, make shared string, make shared binary string1
and make shared binary string2

begin shared string - Start building a shared string

struct pike string *begin shared string(INT32 len);

Description
This function is used to allocate a new shared string with a specified length
which has not been created yet. The returned string is not yet shared and
should be initialized with data before calling end shared stringon it.

If after calling this function you decide that you do not need this string after all,
you can simply call free on the returned string to free it. It is also possible to call
free string(end shared string(s)) but that would be much less efficient.

Example
// This is in effect equal to s=make shared string("test") struct pike string
*s=begin shared string(4); STR0(s)[0]=’t’; STR0(s)[1]=’e’; STR0(s)[2]=’s’;
STR0(s)[3]=’t’; s=end shared string(s);

See Also
begin wide shared string, free string, push string, make shared string
and end shared string

end shared string - Insert a pre-allocated string into the shared string
table
struct pike string *end shared string(struct pike string *s);

Description
This function is used to finish constructing a pike string previously allocated
with begin shared string or begin wide shared string. It will insert the
string into the shared string table. If there already is such a string in the
shared string table then s will be freed and that string will be returned instead.
After calling this function, you may not modify the string any more. As with
make shared string this function returns a string with a reference which it is
your responsibility to free.

See Also
begin shared string and begin wide shared string

begin wide shared string - Start building a wide shared string

struct pike string *begin wide shared string(INT32 len, int
size shift);

17.2. DATA TYPES FROM THE INSIDE 397

Description
This function is a more generic version of begin shared string. It allocates
space for a string of length len where each character is 1 << size shift bytes.
As with begin shared stringit is your responsibility to initialize the string and
to call end shared string on it.

Example
struct pike string *s=begin wide shared string(1,2); STR2(s)[0]=4711;
s=end shared string(s);

See Also
begin shared string, end shared string, make shared string, make shared string1
and make shared string2

make shared string1 - Make a wide shared string

struct pike string *make shared string1(p whcar1 *str);
struct pike string *make shared binary string1(p whcar1 *str,INT32
len);
struct pike string *make shared string2(p whcar2 *str);
struct pike string *make shared binary string2(p whcar2 *str,INT32
len);

Description
These functions are the wide string equivialents of make shared string and
make shared binary string. The functions ending in 1 use 2-byte characters
and the ones ending in 2 use 4-byte characters.

See Also
make shared string, make shared binary string and begin wide shared string

17.2.4 struct array

Internally Pike uses a struct array to represent the type array. As with
strings, arrays are used in many different ways, so they have many supporting
functions for making them easier to manipulate. Usually you will not have to
construct array structures yourself, but it is often nessecary to read data from
arrays.

A struct array has these members:

398 CHAPTER 17. PIKE INTERNALS - HOW TO EXTEND PIKE

Here is an example function which will print the type of each value in an array:

void prtypes(struct array *a)

{

INT e;

for(e=0;e<a->size;e++)

printf("Element %d is of type %d\n",e,a->item[e].type);

}

allocate array

free array

array index

array index no free

simple array index no free

array set index

push array items

aggregate array

f aggregate array

append array

explode

slice array

add arrays
copy array

17.2.5 struct mapping

struct mapping is used to represent a mapping, for the most part you should be
able to write modules and understand Pike internals without actually touching
the internals of a mapping. It also helps that mappings are very well abstracted,
so you can almost always use the supporting functions instead of fiddling around
with the contents of a struct mapping directly.

This is the contents of a struct mapping:

17.2. DATA TYPES FROM THE INSIDE 399

Mappings are allocated as two separate blocks of memory. One is the struct
mapping which holds pointers into the second memory block. The second mem-
ory block contains the hash table and all key-value pairs. A key-value pair is
represented as a struct keypair which has the following members:

Please note that the free list is separate for each mapping. Also, when there
are no more free key-value pairs the whole memory block is re-allocated and the
mapping is re-hashed with a larger hash table.

Below is an illustration which shows an example of a small mapping with hash
table, free list and key-index pairs.

400 CHAPTER 17. PIKE INTERNALS - HOW TO EXTEND PIKE

struct
svalue

Key

struct
svalue

Value

Next

struct
svalue

Key

struct
svalue

Value

Next

struct
svalue

Key

struct
svalue

Value

Next

struct
svalue

Key

struct
svalue

Value

Next

struct mapping

Reallocatable memory block

Hash table

Key-value pairs

struct keypair **hash;

struct keypair *free_list

As you can see, mappings uses a linked list for each bucket in the hash table.
Also, the current implementation moves key-value pairs to the top of the hash
chain everytime a match is found, this can greately increase performance in
some situations. However, because of this the order of elements in a mapping
can change every time you access it. Also, since mappings can be re-allocated
any time you add an element to it you can never trust a pointer to a pointer to
a struct keypairif any Pike cod has a chance to execute.

m sizeof

m ind types

m val types

MAPPING LOOP
free mapping

allocate mapping

mapping insert

mapping get item ptr

17.3. THE INTERPRETER 401

map delete

low mapping lookup

low mapping string lookup

simple mapping string lookup

mapping string insert

mapping indices

mapping values

mapping to array

mapping replace

mkmapping

copy mapping

17.2.6 struct object

17.2.7 struct program

17.3 The interpreter

•

•

•

Functional overview Overview of the Pike source

402 CHAPTER 17. PIKE INTERNALS - HOW TO EXTEND PIKE

•

•

•

•

•

•

Appendix A

Terms and jargon

403

404 APPENDIX A. TERMS AND JARGON

Appendix B

Register program

Here is a complete listing of the example program from chapter 2.

#!/usr/local/bin/pike

mapping records(string:array(string)) = ([

"Star Wars Trilogy" : ({

"Fox Fanfare",

"Main Title",

"Princess Leia’s Theme",

"Here They Come",

"The Asteroid Field",

"Yoda’s Theme",

"The Imperial March",

"Parade of th Ewoks",

"Luke and Leia",

"Fight with Tie Fighters",

"Jabba the Hut",

"Darth Vader’s Death",

"The Forest Battle",

"Finale",

})

]);

void list records()

{

int i;

array(string) record names=sort(indices(records));

write("Records:\n");

for(i=0;i<sizeof(record names);i++)

write(sprintf("%3d: %s\n", i+1, record names[i]));

}

405

406 APPENDIX B. REGISTER PROGRAM

void show record(int num)

{

int i;

array(string) record names=sort(indices(records));

string name=record names[num-1];

array(string) songs=records[name];

write(sprintf("Record %d, %s\n",num,name));

for(i=0;i<sizeof(songs);i++)

write(sprintf("%3d: %s\n", i+1, songs[i]));

}

void add record()

{

string record name=Stdio.Readline()->read("Record name: ");

records[record name]=({});

write("Input song names, one per line. End with ’.’ on its own line.\n");

while(1)

{

string song;

song=Stdio.Readline()->read(sprintf("Song %2d: ",

sizeof(records[record name])+1));

if(song==".") return;

records[record name]+=({song});

}

}

void save(string file name)

{

string name, song;

Stdio.File o=Stdio.File();

if(!o->open(file name,"wct"))

{

write("Failed to open file.\n");

return;

}

foreach(indices(records),name)

{

o->write("Record: "+name+"\n");

foreach(records[name],song)

o->write("Song: "+song+"\n");

}

o->close();

}

void load(string file name)

{

407

string name="ERROR";

string file contents,line;

Stdio.File o=Stdio.File();

if(!o->open(file name,"r"))

{

write("Failed to open file.\n");

return;

}

file contents=o->read();

o->close();

records=([]);

foreach(file contents/"\n",line)

{

string cmd, arg;

if(sscanf(line,"%s: %s",cmd,arg))

{

switch(lower case(cmd))

{

case "record":

name=arg;

records[name]=({});

break;

case "song":

records[name]+=({arg});

break;

}

}

}

}

void delete record(int num)

{

array(string) record names=sort(indices(records));

string name=record names[num-1];

m delete(records,name);

}

void find song(string title)

{

string name, song;

int hits;

title=lower case(title);

408 APPENDIX B. REGISTER PROGRAM

foreach(indices(records),name)

{

foreach(records[name],song)

{

if(search(lower case(song), title) != -1)

{

write(name+"; "+song+"\n");

hits++;

}

}

}

if(!hits) write("Not found.\n");

}

int main(int argc, array(string) argv)

{

string cmd;

while(cmd=Stdio.Readline()->read("Command: "))

{

string args;

sscanf(cmd,"%s %s",cmd,args);

switch(cmd)

{

case "list":

if((int)args)

{

show record((int)args);

}else{

list records();

}

break;

case "quit":

exit(0);

case "add":

add record();

break;

case "save":

save(args);

break;

case "load":

load(args);

break;

case "delete":

409

delete record((int)args);

break;

case "search":

find song(args);

break;

}

}

}

410 APPENDIX B. REGISTER PROGRAM

Appendix C

Reserved words

These are words that have special meaning in Pike and can not be used as
variable or function names.

array break case catch continue default do else float for foreach function gauge if
inherit inline int lambda mapping mixed multiset nomask object predef private
program protected public return sscanf static string switch typeof varargs void
while

411

412 APPENDIX C. RESERVED WORDS

Appendix D

BNF for Pike

BNF is short for ”Backus Naur Form”. It is a precise way of describing syntax.
This is the BNF for Pike:

program ::= – definition ˝

definition ::= import — inheritance — function declaration — func-
tion definition — variables — constant — class def

import ::= modifiers import (constant identifier — string) ”;”
inheritance ::= modifiers inherit program specifier [”:” identifier] ”;”
function declaration ::= modifiers type identifier ”(” arguments ”)” ”;”
function definition ::= modifiers type identifier ”(” arguments ”)” block
variables ::= modifiers type variable names ”;”
variable names ::= variable name – ”,” variable name ˝
variable name ::= – ”*” ˝ identifier [”=” expression2]
constant ::= modifiers constant constant names ”;”
constant names ::= constant name – ”,” constant name ˝
constant name ::= identifier ”=” expression2
class def ::= modifiers class [”;”]
class ::= class [identifier] ”–” program ”˝”

modifiers ::= – static — private — nomask — public — pro-
tected — inline ˝

block ::= ”–” – statement ˝ ”˝”

statement ::=
expression2 ”;” — cond — while — do while — for —
switch — case — default — return — block — foreach
— break — continue — ”;”

cond ::= if statement [else statement]
while ::= while ”(” expression ”)” statement
do while ::= do statement while ”(” expression ”)” ”;”

for ::= for ”(” [expression] ”;” [expression] ”;” [expression
] ”)” statement

switch ::= switch ”(” expression ”)” block
case ::= case expression [”..” expression] ”:”
default ::= default ”:”
foreach ::= foreach ”(” expression ”:” expression6 ”)” statement
break ::= break ”;”
continue ::= continue ”;”

413

414 APPENDIX D. BNF FOR PIKE

expression ::= expression2 – ”,” expression2 ˝

expression2 ::=
– lvalue (”=” — ”+=” — ”*=” — ”/=” — ”&=”
— ”—=” — ”ˆ=” — ”¡¡=” — ”¿¿=” — ”%=”) ˝
expression3

expression3 ::= expression4 ’?’ expression3 ”:” expression3

expression4 ::=
– expression5 (”——” — ”&&” — ”—” — ”ˆ” — ”&”
— ”==” — ”!=” — ”¿” — ”¡” — ”¿=” — ”¡=” — ”¡¡”
— ”¿¿” — ”+” — ”*” — ”/” — ”%”) ˝ expression5

expression5 ::=
expression6 — ”(” type ”)” expression5 — ”–” expres-
sion6 — ”++” expression6 — expression6 ”–” — ex-
pression6 ”++” — ”˜” expression5 — ”-” expression5

expression6 ::=

string — number — float — catch — gauge — typeof
— sscanf — lambda — class — constant identifier —
call — index — mapping — multiset — array — paren-
thesis — arrow

number ::= digit – digit ˝ — ”0x” – digits ˝ — ”’” character ”’”
float ::= digit – digit ˝ ”.” – digit ˝
catch ::= catch (”(” expression ”)” — block)
gauge ::= gauge (”(” expression ”)” — block)

sscanf ::= sscanf ”(” expression2 ”,” expression2 – ”,” lvalue ˝
”)”

lvalue ::= expression6 — type identifier — ”[” [lvalue – ”,” lvalue
˝ [”,”]] ”]”

lambda ::= lambda ”(” arguments ”)” block
constant identifier ::= [”.”] identifier – ”.” identifier ˝
call ::= expression6 ”(” expression list ”)”
index ::= expression6 ”[” expression [”..” expression] ”]”
array ::= ”(–” expression list ”˝)”
multiset ::= ”(¡” expression list ”¿)”

mapping ::= ”([” [expression : expression – ”,” expression ”:” ex-
pression ˝] [”,”] ”])”

arrow ::= expression6 ”-¿” identifier
parenthesis ::= ”(” expression ”)”
expression list ::= [splice expression – ”,” splice expression ˝] [”,”]
splice expression ::= [”@”] expression2

type ::=

(int — string — float — program — object [”(”
program specifier ”)”] — mapping [”(” type ”:” type
”)” — array [”(” type ”)”] — multiset [”(” type
”)”] — function [function type]) – ”*” ˝

function type ::= ”(” [type – ”,” type ˝ [”...”] ”)”
arguments ::= [argument – ”,” argument ˝] [”,”]
argument ::= type [”...”] [identifier]
program specifier ::= string constant — constant identifier
string ::= string literal – string literal ˝

identifier ::=

letter – letter — digit ˝ — ”‘+” — ”‘/” — ”‘%” —
”‘*” — ”‘&” — ”‘—” — ”‘ˆ” — ”‘˜” — ”‘¡” — ”‘¡¡”
— ”‘¡=” — ”‘¿” — ”‘¿¿” — ”‘¿=” — ”‘==” — ”‘!=”
— ”‘!” — ”‘()” — ”‘-” — ”‘-¿” — ”‘-¿=” — ”‘[]” —
”‘[]=”

letter ::= ”a”-”z” — ”A”-”Z” — ” ”
digit ::= ”0”-”9”

Appendix E

How to install Pike

To install Pike, you need a C compiler, a couple of Mb of disk space, the source
for Pike, and a bit of patience. The latest version of Pike is always available
from the Pike home page* . Lists of mirror sites and binary releases should also http://pike.idonex.se

be available there. Pike should compile and install nicely on almost any UNIX
platform. It has been tested on the following:

•

•

•

•

•

•

•

•

•

•
After obtaining the Pike source you need to unpack it. To unpack Pike you need
gzip, which is available from any GNU mirror site. You also need tar, which is
a part of UNIX. If you got Pike-v0.7.1.tar.gz, simply unpack it by typing:

$ gunzip -d Pike-v0.7.1.tar.gz

$ tar xvf Pike-v0.7.1.tar

Now you have a directory called Pike-v0.7.1. Please read the README file in
the new directory since newer versions can contain information not available at
the time this book was written.

Now, to compile Pike, the following three commands should be enough.

415

416 APPENDIX E. HOW TO INSTALL PIKE

$ cd Pike-v0.7.1/src

$./configure --prefix=/dir/to/install/pike

$ make

They will (in order) change directory to the source directory. Configure will
then find out what features are available on your system and construct makefiles.
You will see a lot of output after you run configure. Do not worry, that is normal.
It is usually not a good idea to install Pike anywhere but in /usr/local (the
default) since Pike scripts written by other people will usually assume that’s
where Pike is. However, if you do not have write access to /usr/local you will
have to install Pike somewhere else on your system.

After that make will actually compile the program. After compilation it is a
good idea to do make verify to make sure that Pike is 100% compatible with
your system. Make verify will take a while to run and use a lot of CPU, but
it is worth it to see that your compilation was successful. After doing that you
should run make install to install the Pike binaries, libraries and include files
in the directory you selected earlier.

You are now ready to use Pike.

Appendix F

How to convert from old
versions of Pike

This appendix contains some information about keywords, functions and old
behavior. But there are only information about migration from old an old Pike
to a new one, not the other way around.

417

418APPENDIX F. HOW TO CONVERT FROM OLD VERSIONS OF PIKE

Appendix G

Image.Layer modes

All channels are calculated separately, if nothing else is specified.

top layer

bottom layer

normal
D=(L*aL+S*(1-aL)*aS) / (aL+(1-aL)*aS),
aD=(aL+(1-aL)*aS)

419

420 APPENDIX G. IMAGE.LAYER MODES

add D=L+S, apply alpha as ”normal” mode

subtract D=L-S, apply alpha as ”normal” mode

multiply D=L*S, apply alpha as ”normal” mode

divide D=L/S, apply alpha as ”normal” mode

modulo D=L%S, apply alpha as ”normal” mode

invsubtract D=S-L, apply alpha as ”normal” mode

invdivide D=S/L, apply alpha as ”normal” mode

invmodulo D=S%L, apply alpha as ”normal” mode

difference D=abs(L-S), apply alpha as ”normal” mode

max D=max(L,S), apply alpha as ”normal” mode

min D=min(L,S), apply alpha as ”normal” mode

bitwise and D=L&S, apply alpha as ”normal” mode

bitwise or D=L—S, apply alpha as ”normal” mode

bitwise xor D=LˆS, apply alpha as ”normal” mode

421

replace D=(L*aL+S*(1-aL)*aS) / (aL+(1-aL)*aS),
aD=aS

red
Dr=(Lr*aLr+Sr*(1-aLr)*aSr) / (aLr+(1-
aLr)*aSr), Dgb=Sgb, aD=aS

green Dg=(Lg*aLg+Sg*(1-aLg)*aSg) / (aLg+(1-
aLg)*aSg), Drb=Srb, aD=aS

blue
Db=(Lb*aLb+Sb*(1-aLb)*aSb) / (aLb+(1-
aLb)*aSb), Drg=Srg, aD=aS

replace hsv
Dhsv=(Lhsv*aLrgb+Shsv*(1-aLrgb)*aSrgb)
/ (aLrgb+(1-aLrgb)*aSrgb), aD=aS

hue
Dh=(Lh*aLr+Sh*(1-aLr)*aSr) / (aLr+(1-
aLr)*aSr), Dsv=Lsv, aD=aS

saturation
Ds=(Ls*aLg+Ss*(1-aLg)*aSg) / (aLg+(1-
aLg)*aSg), Dhv=Lhv, aD=aS

value
Dv=(Lv*aLb+Sv*(1-aLb)*aSb) / (aLb+(1-
aLb)*aSb), Dhs=Lhs, aD=aS

color
Dhs=(Lhs*aLrg+Shs*(1-aLrg)*aSrg) /
(aLrg+(1-aLrg)*aSrg), Dv=Lv, aD=aS

darken Dv=min(Lv,Sv), Dhs=Lhs, aD=aS

lighten Dv=max(Lv,Sv), Dhs=Lhs, aD=aS

saturate Ds=max(Ls,Ss), Dhv=Lhv, aD=aS

desaturate Ds=min(Ls,Ss), Dhv=Lhv, aD=aS

dissolve i=random 0 or 1, D=i?L:S, aD=i+aS

422 APPENDIX G. IMAGE.LAYER MODES

behind
D=(S*aS+L*(1-aS)*aL) / (aS+(1-aS)*aL),
aD=(aS+(1-aS)*aL); simply swap S and L

erase D=S, aD=aS*(1-aL)

screen 1-(1-S)*(1-L), apply alpha as ”normal”

overlay (1-(1-a)*(1-b)-a*b)*a+a*b, apply alpha as
”normal”

burn alpha
aD=aL+aS, D=L+S; experimental, may
change or be removed

equal
each channel D=max if L==S, 0 otherwise,
apply with alpha

not equal
each channel D=max if L!=S, 0 otherwise,
apply with alpha

less
each channel D=max if L¡S, 0 otherwise, ap-
ply with alpha

more each channel D=max if L¿S, 0 otherwise, ap-
ply with alpha

less or equal
each channel D=max if L¡=S, 0 otherwise,
apply with alpha

more or equal
each channel D=max if L¿=S, 0 otherwise,
apply with alpha

logic equal
logic: D=white and opaque if L==S, black
and transparent otherwise

logic not equal
logic: D=white and opaque if any L!=S, black
and transparent otherwise

logic strict less
logic: D=white and opaque if all L¡S, black
and transparent otherwise

423

logic strict more
logic: D=white and opaque if all L¿S, black
and transparent otherwise

logic strict less equal
logic: D=white and opaque if all L¡=L, black
and transparent otherwise

logic strict more equal
logic: D=white and opaque if all L¿=L, black
and transparent otherwise

424 APPENDIX G. IMAGE.LAYER MODES

Appendix H

Image.Color colors

425

426 APPENDIX H. IMAGE.COLOR COLORS

427

428 APPENDIX H. IMAGE.COLOR COLORS

429

430 APPENDIX H. IMAGE.COLOR COLORS

431

432 APPENDIX H. IMAGE.COLOR COLORS

433

434 APPENDIX H. IMAGE.COLOR COLORS

435

436 APPENDIX H. IMAGE.COLOR COLORS

Index

Calendar.Gregorian., 307

Geographical.Countries.‘., 316

Image.Color.Color., 191

/
/call/

Protocols.LysKOM.Connection
./call/, 230

#
#string, 331

1
1, 6

1.1, 7

10.1, 113

11.1, 123

12.1, 137

12.26.1, 219

12.7.1, 188

13.1, 223

13.1.1, 225

13.2.1, 227

13.2.3.1, 231

13.3.1, 232

14.1, 233

14.10.1, 267

14.11.1, 273

14.11.2.1, 280

14.14.1, 296

14.16.1, 305

14.16.2.1, 307

14.16.2.3.1, 307

14.18.1, 308

14.20.1, 311

14.20.3.1, 312

14.21.1, 312

14.25.1, 320

14.26.1, 323

14.26.3.1, 326

14.27.1, 327

17.1, 379

17.2.1, 381

2.1, 17

2.1.1, 17

2.2.1, 19

2.3.1, 21

3.1, 25

3.1.1, 25

3.2.1, 27

3.3.1, 29

4.1, 33

4.1.1, 33

4.2.1, 38

5.1, 53

6.1, 65

7.1, 75

8.1, 80

9.1, 83

9.6.1, 99

introduction.1, 4

1, 7

2, 8

3, 9

4, 10

5, 11

6, 12

7, 12

437

438 APPENDIX H. IMAGE.COLOR COLORS

10, 112

12.10, 194

14.10, 266

6.10, 73

9.10, 105

1, 113

2, 114

3, 119

11, 121

12.11, 194

14.11, 272

1, 123

2, 125

12, 133

12.12, 196

14.12, 286

1, 137

10, 194

11, 194

12, 196

13, 197

14, 204

15, 205

16, 206

17, 207

18, 210

19, 212

2, 171

20, 212

21, 213

22, 214

23, 215

24, 216

25, 218

26, 219

1, 219

2, 221

27, 221

3, 180

4, 184

5, 186

6, 186

7, 186

1, 188

8, 191

9, 193

13, 222

12.13, 197

14.13, 290

1, 223

1, 225

2, 227

1, 227

2, 229

3, 230

1, 231

3, 231

1, 232

14, 232

12.14, 204

14.14, 296

1, 233

10, 266

1, 267

2, 269

3, 271

11, 272

1, 273

2, 279

1, 280

2, 282

12, 286

13, 290

14, 296

1, 296

2, 296

3, 298

4, 298

5, 299

6, 301

15, 301

16, 305

439

1, 305

2, 306

1, 307

2, 307

3, 307

1, 307

17, 307

18, 308

1, 308

19, 310

2, 239

20, 311

1, 311

2, 311

3, 312

1, 312

21, 312

1, 312

2, 313

22, 313

23, 314

24, 317

25, 318

1, 320

26, 323

1, 323

2, 325

3, 326

1, 326

27, 327

1, 327

3, 244

4, 246

5, 248

6, 250

7, 254

8, 256

9, 260

15, 328

12.15, 205

14.15, 301

16, 331

12.16, 206

14.16, 305

17, 378

12.17, 207

14.17, 307

1, 379

2, 381

1, 381

2, 381

3, 384

4, 387

5, 388

6, 391

7, 391

3, 391

18

12.18, 210

14.18, 308

19

12.19, 212

14.19, 310

2
2, 13

1.2, 8

10.2, 114

11.2, 125

12.2, 171

12.26.2, 221

13.2, 227

13.2.2, 229

14.10.2, 269

14.11.2, 279

14.11.2.2, 282

14.14.2, 296

14.16.2, 306

14.16.2.2, 307

14.2, 239

14.20.2, 311

14.21.2, 313

14.26.2, 325

440 APPENDIX H. IMAGE.COLOR COLORS

17.2, 381

17.2.2, 381

2.1.2, 17

2.2, 18

2.2.2, 19

2.3.2, 21

3.1.2, 26

3.2, 27

3.2.2, 27

3.3.2, 30

4.1.2, 34

4.2, 37

4.2.2, 40

5.2, 56

6.2, 65

7.2, 76

8.2, 81

9.2, 93

9.6.2, 100

introduction.2, 4

1, 17

1, 17

2, 17

2, 18

1, 19

2, 19

3, 21

3, 21

1, 21

2, 21

3, 22

4, 23

5, 23

20

12.20, 212

14.20, 311

21

12.21, 213

14.21, 312

22

12.22, 214

14.22, 313

23

12.23, 215

14.23, 314

24

12.24, 216

14.24, 317

25

12.25, 218

14.25, 318

26

12.26, 219

14.26, 323

27

12.27, 221

14.27, 327

3
3, 23

1.3, 9

10.3, 119

12.3, 180

13.2.3, 230

13.3, 231

14.10.3, 271

14.14.3, 298

14.16.2.3, 307

14.20.3, 312

14.26.3, 326

14.3, 244

17.2.3, 384

17.3, 391

2.2.3, 21

2.3, 21

2.3.3, 22

3.2.3, 28

3.3, 29

3.3.3, 30

4.1.3, 35

4.2.3, 42

4.3, 49

5.3, 56

441

6.3, 66

7.3, 77

8.3, 81

9.3, 94

introduction.3, 4

1, 25

1, 25

2, 26

2, 27

1, 27

2, 27

3, 28

4, 28

3, 29

1, 29

2, 30

3, 30

4, 30

4
4, 31

1.4, 10

12.4, 184

14.14.4, 298

14.4, 246

17.2.4, 387

2.4, 23

3.2.4, 28

3.4, 30

4.2.4, 43

4.4, 50

5.4, 57

6.4, 66

7.4, 77

8.4, 82

9.4, 94

introduction.4, 5

1, 33

1, 33

2, 34

3, 35

2, 37

1, 38

2, 40

3, 42

4, 43

5, 45

6, 47

3, 49

4, 50

5
5, 51

1.5, 11

12.5, 186

14.14.5, 299

14.5, 248

17.2.5, 388

2.5, 23

4.2.5, 45

5.5, 57

6.5, 67

8.5, 82

9.5, 96

introduction.5, 5

1, 53

2, 56

3, 56

4, 57

5, 57

6, 59

7, 60

8, 62

9, 63

6
6, 63

1.6, 12

12.6, 186

14.14.6, 301

14.6, 250

17.2.6, 391

4.2.6, 47

5.6, 59

6.6, 70

442 APPENDIX H. IMAGE.COLOR COLORS

9.6, 98

1, 65

10, 73

2, 65

3, 66

4, 66

5, 67

6, 70

7, 71

8, 71

9, 72

7
7, 74

1.7, 12

12.7, 186

14.7, 254

17.2.7, 391

5.7, 60

6.7, 71

9.7, 100

1, 75

2, 76

3, 77

4, 77

8
8, 77

12.8, 191

14.8, 256

5.8, 62

6.8, 71

9.8, 101

1, 80

2, 81

3, 81

4, 82

5, 82

9
9, 82

12.9, 193

14.9, 260

5.9, 63

6.9, 72

9.9, 105

1, 83

10, 105

2, 93

3, 94

4, 94

5, 96

6, 98

1, 99

2, 100

7, 100

8, 101

9, 105

]
]

‘[..], 58

‘
‘

Image.TTF.‘, 219

Image.TTF.Face.‘, 221

Protocols.HTTP.Query.‘, 227

Protocols.LysKOM.Request
. Request.‘, 231

‘!=, 56

‘%, 53

Image.Image.‘%, 168

‘&, 57

Image.Image.‘&, 168

‘(), ??

‘*, 53

Image.Colortable.‘*, 174

Image.Image.‘*, 169

Math.Matrix.‘*, 309

‘+, 53

Calendar.time unit.‘+, 306

Image.Colortable.‘+, 179

Image.Image.‘+, 170

Math.Matrix.‘+, 308

‘-, 53

Calendar.time unit.‘-, 306

443

Image.Colortable.‘-, 180

Image.Image.‘-, 170

Math.Matrix.‘-, 310

‘-¿, 58

‘-¿=, 58

‘/, 53

Image.Image.‘/, 168

‘¡, 56

Image.Image.‘¡, 168

‘¡¡, 57

‘¡=, 56

‘==, 56

ADT.Table.table.‘==, 264

Geographical.Position.‘==, 314

Image.Color.Color.‘==, 191

Image.Image.‘==, 168

‘¿, 56

Geographical.Position.‘¿, 314

‘¿=, 56

‘¿¿, 57

‘¿ hash

Geographical.Position.‘¿ hash,
314

‘¿‘¡

Geographical.Position.‘¿‘¡, 314

‘[

], 58

‘[], 58

ADT.Table.table.‘[], 264

Geographical.Countries.‘[], 316

‘[]=, 58

‘ˆ, 57

“*

Image.Colortable.“*, 174

Math.Matrix.“*, 309

“+

Math.Matrix.“+, 308

“-

Math.Matrix.“-, 310

“×

Math.Matrix.“×, 309

‘—, 57

Image.Image.‘—, 170

‘˜, 57

‘×
Math.Matrix.‘×, 309

A
A, 392

abs, 335

accept

Stdio.Port.accept, 96

acos, 335

add

Image.Colortable.add, 171

Math.Matrix.add, 308

add arrays, 388

add constant, 335

add efun

Simulate.add efun, 289

add include path, 336

add module path, 336

add program path, 336

ADT

Table, 260

ASCII

encode, 265

table

‘==, 264

‘[], 264

append bottom, 265

append right, 265

col, 264

create, 261

decode, 264

distinct, 263

encode, 264

group, 263

indices, 261

limit, 262

map, 263

remove, 264

444 APPENDIX H. IMAGE.COLOR COLORS

rename, 262

reverse, 262

row, 264

rsort, 262

select, 263

sizeof, 261

sort, 262

type, 262

values, 261

where, 263

Table

table

sum, 263

affected rows

Mysql.mysql.affected rows, 291

aggregate, 336

aggregate array, 388

aggregate list

Simulate.aggregate list, 290

aggregate mapping, 337

aggregate multiset, 337

alarm, 337

all

Yp.YpDomain.all, 257

Yp.YpMap.all, 259

all constants, 338

all efuns

Simulate.all efuns, 287

all threads

Thread.all threads, 114

allocate, 338

allocate array, 388

allocate mapping, 390

alpha

Image.Layer.alpha, 180

alpha value

Image.Layer.alpha value, 180

ANY

Image.ANY, 193

append array, 388

append bottom

ADT.Table.table.append bottom,
265

append path

Stdio.append path, 101

append right

ADT.Table.table.append right,
265

apply matrix

Image.Image.apply matrix, 138

apply max

Image.Image.apply max, 138

arcfour random

Crypto.randomness.arcfour random,
313

Array, 125

diff, 125

diff compare table, 126

diff longest sequence, 127

everynth, 128

filter, 128

longest ordered sequence, 129

map, 130

permute, 130

reduce, 130

rreduce, 131

search array, 131

shuffle, 131

sort array, 132

splice, 132

sum arrays, 133

uniq, 133

array index, 388

array index no free, 388

array set index, 388

array sscanf, 338

arrayp, 338

asin, 338

assign

Stdio.File.assign, 90

assign svalue, 382

assign svalue no free, 383

445

async

Protocols.LysKOM.Request
. Request.async, 231

async

Protocols.LysKOM.Request
. Request. async, 231

async /call/

Protocols.LysKOM.Connection
.async /call/, 230

async cb /call/

Protocols.LysKOM.Connection
.async cb /call/, 230

async request

Protocols.HTTP.Query.async request,
225

atan, 339

atan2, 339

atexit, 339

autocrop

Image.Image.autocrop, 139

Image.Layer.autocrop, 181

available modes

Image.Layer.available modes,
181

average

Image.Image.average, 139

AVS

Image.AVS, 194

B
B, 394

backtrace, 339

baseline

Image.Font.baseline, 184

basename, 340

begin shared string, 386

begin wide shared string, 386

big query

Mysql.mysql.big query, 291

binary data

Mysql.mysql.binary data, 291

bind

Stdio.Port.bind, 94

Stdio.UDP.bind, 96

Yp.YpDomain.bind, 257

bindtextdomain

Locale.Gettext.bindtextdomain,
301

bitscale

Image.Image.bitscale, 140

BMP

Image.BMP, 194

body parts

MIME.Message.body parts,
280

boundary

MIME.Message.boundary, 280

box

Image.Image.box, 140

bright

Image.Color.Color.bright, 189

broadcast

Thread.Condition.broadcast,
117

C
C, 399

Calendar, 305

Gregorian, 306

, 307

Stardate, 307

TNGDate, 307

Year, 307

parse, 307

time unit, 305

‘+, 306

‘-, 306

greater, 305

lesser, 306

next, 306

prev, 306

call function, 340

call out, 340

call out info, 340

capitalize

446 APPENDIX H. IMAGE.COLOR COLORS

String.capitalize, 124

cast, 61

Crypto.cast, 297

Geographical.Countries.cast,
314

Geographical.Position.cast, 313

Gmp.mpz.cast, 247

Image.Color.Color.cast, 189

Image.Colortable.cast, 172

Image.Image.cast, 141

Math.Matrix.cast, 308

MIME.Message.cast, 282

Protocols.HTTP.Query.cast,
225

catch, 76

cd, 341

ceil, 341

change color

Image.Image.change color, 141

charset

MIME.Message.charset, 280

chmod, 341

chroot, 233

chunk

Image.PNG. chunk, 208

circle

Image.Image.circle, 141

clear

Image.Image.clear, 142

client

Protocols.DNS.client, 232

clone, 342

Image.Image.clone, 143

Image.Layer.clone, 182

close

Gdbm.gdbm.close, 249

Stdio.File.close, 84

cmyk

Image.Color.cmyk, 188

Image.Color.Color.cmyk, 189

col

ADT.Table.table.col, 264

Color

Image.Color, 186

Image.Color.Color, 188

color

Image.Image.color, 143

colors, 413

Colortable

Image.Colortable, 171

colortable

Image.colortable, 186

column, 342

combine path, 342

commit

Yabu.transaction.commit, 271

common prefix

String.common prefix, 124

compile, 343

compile file, 343

compile string, 343

Condition

Thread.Condition, 116

connect

Stdio.File.connect, 91

Connection

Protocols.LysKOM.Connection,
230

copy

Image.Image.copy, 144

copy array, 388

copy mapping, 391

copy value, 343

corners

Image.Colortable.corners, 172

cos, 343

count

String.count, 125

Countries

Geographical.Countries, 314

cpp, 344

crc32

447

Gz.crc32, 256

create

ADT.Table.table.create, 261

Crypto.randomness.arcfour random
.create, 313

Gdbm.gdbm.create, 248

Geographical.Position.create,
313

Gmp.mpz.create, 246

Gz.deflate.create, 255

Gz.inflate.create, 255

Image.Color.Color.create, 190

Image.Colortable.create, 171

Image.Font.create, 185

Image.Image.create, 145

Image.Layer.create, 182

Image.TTF.FaceInstance.create,
221

Math.Matrix.create, 308

MIME.Message.create, 283

Mysql.mysql.create, 291

Parser.SGML.create, 318

Protocols.DNS.client.create,
232

Protocols.LysKOM.Connection
.create, 230

Protocols.LysKOM.Session
.create, 227

Regexp.create, 245

Stdio.File.create, 83

Stdio.Port.create, 95

Stdio.Readline.create, 100

Stdio.Terminfo.Termcap.create,
100

Thread.Fifo.create, 118

Yabu.db.create, 268

create db

Mysql.mysql.create db, 292

create person

Protocols.LysKOM.Session
.create person, 228

create process

Process.create process, 239

create text

Protocols.LysKOM.Session
.create text, 228

crop

Image.Layer.crop, 182

cross

Math.Matrix.cross, 309

crypt, 344

Crypto.rc4.crypt, 298

crypt block, 296

Crypto, 312

cast, 297

des, 297

idea, 297

randomness, 312

arcfour random, 313

create, 313

read, 313

pike random, 312

read, 312

rc4, 298

crypt, 298

set decrypt key, 298

set encrypt key, 298

rsa, 299

decrypt, 300

encrypt, 300

generate key, 299

query blocksize, 300

set private key, 299

set public key, 299

sha sign, 301

sha verify, 301

sign, 300

verify, 300

crypto, 296

ctime, 344

cubicles

Image.Colortable.cubicles, 172

D
D, 401

448 APPENDIX H. IMAGE.COLOR COLORS

dark

Image.Color.Color.dark, 189

data

Protocols.HTTP.Query.data,
226

dcgettext

Locale.Gettext.dcgettext, 302

dct

Image.Image.dct, 145

decode

Image.GIF. decode, 203

Image.ILBM. decode, 206

Image.PNG. decode, 209

Image.XCF. decode, 215

decode

Image.XCF. decode, 215

decode

Image.ANY. decode, 193

Image.AVS. decode, 194

Image.BMP. decode, 194

Image.GD. decode, 196

Image.GIF. decode, 201

Image.HRZ. decode, 204

Image.ILBM. decode, 206

Image.JPEG. decode, 216

Image.PCX. decode, 207

Image.PNG. decode, 209

Image.TGA. decode, 213

Image.TIFF. decode, 219

Image.XBM. decode, 213

Image.XCF. decode, 214

Image.XWD. decode, 216

decode

ADT.Table.table.decode, 264

Image.ANY.decode, 193

Image.AVS.decode, 194

Image.BMP.decode, 194

Image.GD.decode, 196

Image.GIF.decode, 197

Image.HRZ.decode, 204

Image.ILBM.decode, 205

Image.JPEG.decode, 216

Image.PCX.decode, 207

Image.PNG.decode, 208

Image.PNM.decode, 211

Image.TGA.decode, 212

Image.TIFF.decode, 218

Image.XBM.decode, 213

Image.XCF.decode, 214

Image.XFace.decode, 221

Image.XWD.decode, 216

MIME.decode, 273

decode alpha

Image.ANY.decode alpha, 193

Image.GD.decode alpha, 196

decode base64

MIME.decode base64, 274

decode header

Image.BMP.decode header,
194

Image.GD.decode header, 196

Image.JPEG.decode header,
216

Image.XFace.decode header,
222

Image.XWD.decode header,
216

decode layer

Image.GIF.decode layer, 197

decode layers

Image.GIF.decode layers, 197

Image.XCF.decode layers, 214

decode map

Image.GIF.decode map, 198

decode pseudocolor

Image.X.decode pseudocolor,
192

decode qp

MIME.decode qp, 274

decode truecolor

Image.X.decode truecolor, 192

decode truecolor masks

449

Image.X.decode truecolor masks,
192

decode uue

MIME.decode uue, 274

decode value, 345

decode word

MIME.decode word, 274

decrypt

Crypto.rsa.decrypt, 300

default yp domain

Yp.default yp domain, 257

define, 329

deflate

Gz.deflate, 254

Gz.deflate.deflate, 255

delete

Gdbm.gdbm.delete, 249

Yabu.table.delete, 270

delete url

Protocols.HTTP.delete url, 223

des

Crypto.des, 297

describe backtrace, 345

describe error, 345

destruct, 345

dgettext

Locale.Gettext.dgettext, 302

diff

Array.diff, 125

diff compare table

Array.diff compare table, 126

diff longest sequence

Array.diff longest sequence,
127

digest, 298

digits

Gmp.mpz.digits, 247

dirname, 346

disable threads, 333

disp params

MIME.Message.disp params,
280

disposition

MIME.Message.disposition,
280

distancesq

Image.Image.distancesq, 146

distinct

ADT.Table.table.distinct, 263

DNS

Protocols.DNS, 232

do call outs, 333

downloaded bytes

Protocols.HTTP.Query.downloaded bytes,
226

drop db

Mysql.mysql.drop db, 292

dull

Image.Color.Color.dull, 189

dup

Stdio.File.dup, 90

dup2

Stdio.File.dup2, 90

E
E, 405

else, 330

elseif, 330

enable broadcast

Stdio.UDP.enable broadcast,
97

encode

Image.GIF. encode, 202

Image.PCX. encode, 207

Image.TIFF. encode, 218

encode

ADT.Table.ASCII.encode, 265

ADT.Table.table.encode, 264

Image.AVS.encode, 194

Image.BMP.encode, 195

Image.GD.encode, 196

Image.GIF.encode, 198

Image.HRZ.encode, 204

450 APPENDIX H. IMAGE.COLOR COLORS

Image.ILBM.encode, 205

Image.JPEG.encode, 217

Image.PCX.encode, 207

Image.PNG.encode, 208

Image.PNM.encode, 211

Image.TGA.encode, 212

Image.TIFF.encode, 218

Image.XBM.encode, 213

Image.XFace.encode, 222

MIME.encode, 275

encode ascii

Image.PNM.encode ascii, 211

encode base64

MIME.encode base64, 275

encode binary

Image.PNM.encode binary, 211

encode P1

Image.PNM.encode P1, 211

encode P2

Image.PNM.encode P2, 211

encode P3

Image.PNM.encode P3, 211

encode P4

Image.PNM.encode P4, 211

encode P5

Image.PNM.encode P5, 211

encode P6

Image.PNM.encode P6, 211

encode pseudocolor

Image.X.encode pseudocolor,
192

encode qp

MIME.encode qp, 276

encode trans

Image.GIF.encode trans, 198

encode truecolor

Image.X.encode truecolor, 192

encode truecolor masks

Image.X.encode truecolor masks,
192

encode uue

MIME.encode uue, 276

encode value, 346

encode value canonic, 346

encode word

MIME.encode word, 276

encrypt

Crypto.rsa.encrypt, 300

end block

Image.GIF.end block, 199

end shared string, 386

endif, 330

enumerate, 346

equal, 347

errno, 347

Stdio.File.errno, 87

Stdio.Port.errno, 96

error, 330

Mysql.mysql.error, 292

everynth

Array.everynth, 128

exceptions, 76

exec

Process.exec, 243

exece, 348

Process.exece, 242

exist

Stdio.exist, 101

exit, 333

exit, 348

exp, 348

explode, 388

Simulate.explode, 287

explode path, 348

F
F, 406

f aggregate array, 388

Face

Image.TTF.Face, 220

FaceInstance

Image.TTF.FaceInstance, 221

fd

451

Process.Spawn.fd, 243

feed

Parser.SGML.feed, 318

fetch

Gdbm.gdbm.fetch, 249

Fifo

Thread.Fifo, 117

FILE

Stdio.FILE, 93

File

Stdio.File, 83

file size

Stdio.file size, 101

file stat, 349

file truncate, 349

fill

Image.Layer.fill, 183

fill alpha

Image.Layer.fill alpha, 183

filter, 349

Array.filter, 128

filter array

Simulate.filter array, 287

find all options

Getopt.find all options, 251

find autocrop

Image.Image.find autocrop,
139

Image.Layer.find autocrop, 181

find call out, 350

find max

Image.Image.find max, 147

find min

Image.Image.find min, 147

find option

Getopt.find option, 250

finish

Parser.SGML.finish, 318

firstkey

Gdbm.gdbm.firstkey, 249

FLOAT TYPE, ??

floatp, 350

floor, 350

floyd steinberg

Image.Colortable.floyd steinberg,
173

flush

Image.TTF.Face.flush, 220

Font

Image.Font, 184

foreach, 28

fork, 351

free array, 388

free mapping, 390

free string, 385

free svalue, 382

free svalues, 382

from domain

Geographical.Countries.from domain,
314

full

Image.Colortable.full, 174

function name, 351

function object, 351

functionp, 351

functions, 331

fuzzymatch

String.fuzzymatch, 123

G
G, 408

gamma

Image.Image.gamma, 147

gauge, 77

gc, 352

gcd

Gmp.mpz.gcd, 247

gce block

Image.GIF. gce block, 203

GD

Image.GD, 196

Gdbm, 248

gdbm

452 APPENDIX H. IMAGE.COLOR COLORS

close, 249

create, 248

delete, 249

fetch, 249

firstkey, 249

nextkey, 249

reorganize, 250

store, 249

sync, 250

generate boundary

MIME.generate boundary, 277

generate key

Crypto.rsa.generate key, 299

Geographical, 313

Countries, 314

‘

, 316

‘[], 316

cast, 314

from domain, 314

Position, 313

‘==, 314

‘¿, 314

‘¿ hash, 314

‘¿‘¡, 314

cast, 313

create, 313

latitude, 313

longitude, 313

get

Thread.thread local.thread local
.get, 119

Yabu.table.get, 270

get args

Getopt.get args, 254

get dir, 352

get filename

MIME.Message.get filename,
284

get function

Simulate.get function, 286

get misc value

Image.Layer.get misc value,
183

get primary mx

Protocols.DNS.client.get primary mx,
232

get profiling info, 352

get url

Protocols.HTTP.get url, 223

get url data

Protocols.HTTP.get url data,
223

get url nice

Protocols.HTTP.get url nice,
223

getchar

Stdio.FILE.getchar, 93

getcwd, 352

getdata

MIME.Message.getdata, 283

getegid, 233

getencoded

MIME.Message.getencoded,
283

getenv, 353

geteuid, 234

getFallbackTerm

Stdio.Terminfo.getFallbackTerm,
98

getgid, 234

getgroups, 234

gethostbyaddr, 234

Protocols.DNS.client.gethostbyaddr,
232

gethostbyname, 234

Protocols.DNS.client.gethostbyname,
232

gethostname, 235

Getopt, 250

find all options, 251

find option, 250

get args, 254

getpgrp, 235

453

getpid, 235

getpixel

Image.Image.getpixel, 148

getppid, 236

gets

Stdio.FILE.gets, 93

getTerm

Stdio.Terminfo.getTerm, 99

getTermcap

Stdio.Terminfo.getTermcap, 99

getTerminfo

Stdio.Terminfo.getTerminfo, 99

Gettext

Locale.Gettext, 301

gettext

Locale.Gettext.gettext, 302

getuid, 236

GIF

Image.GIF, 197

glob, 353

Gmp, 246

mpz, 246

cast, 247

create, 246

digits, 247

gcd, 247

powm, 247

probably prime p, 247

size, 248

sqrt, 247

gmtime, 353

gradients

Image.Image.gradients, 148

greater

Calendar.time unit.greater, 305

Gregorian

Calendar.Gregorian, 306

grey

Image.Color.Color.grey, 190

Image.Image.grey, 148

greylevel

Image.Color.Color.greylevel,
189

Image.Color.greylevel, 188

group

ADT.Table.table.group, 263

guess

Image.Color.guess, 188

guess subtype

MIME.guess subtype, 277

Gz, 254

crc32, 256

deflate, 254

create, 255

deflate, 255

inflate, 255

create, 255

inflate, 256

H
H, 413

hardlink, 236

has index, 353

has value, 354

hash, 354

header block

Image.GIF.header block, 199

headers

MIME.Message.headers, 281

height

Image.Font.height, 185

hex

Image.Color.Color.hex, 190

host info

Mysql.mysql.host info, 292

HRZ

Image.HRZ, 204

hsv

Image.Color.Color.hsv, 189

Image.Color.hsv, 188

hsv to rgb

Image.Image.hsv to rgb, 149

html

454 APPENDIX H. IMAGE.COLOR COLORS

Image.Color.Color.html, 190

Image.Color.html, 188

HTTP

Protocols.HTTP, 223

http encode query

Protocols.HTTP.http encode query,
319

http encode string

Protocols.HTTP.http encode string,
319

I
idea

Crypto.idea, 297

if, 330

ILBM

Image.ILBM, 205

Image, 133

Image.Image, 137

ANY, 193

decode, 193

decode, 193

decode alpha, 193

AVS, 194

decode, 194

decode, 194

encode, 194

BMP, 194

decode, 194

decode, 194

decode header, 194

encode, 195

Color, 186

cmyk, 188

Color, 188

, 191

‘==, 191

bright, 189

cast, 189

cmyk, 189

create, 190

dark, 189

dull, 189

grey, 190

greylevel, 189

hex, 190

hsv, 189

html, 190

light, 189

name, 190

neon, 189

rgb, 189

s, 191

greylevel, 188

guess, 188

hsv, 188

html, 188

indices, 188

rgb, 188

values, 188

Colortable, 171

‘*, 174

‘+, 179

‘-, 180

“*, 174

add, 171

cast, 172

corners, 172

create, 171

cubicles, 172

floyd steinberg, 173

full, 174

image, 174

map, 174

nodither, 176

ordered, 176

randomcube, 177

randomgrey, 177

reduce, 178

reduce fs, 178

rigid, 179

spacefactors, 179

colortable, 186

455

Font, 184

baseline, 184

create, 185

height, 185

load, 185

set xspacing scale, 185

set yspacing scale, 185

text extents, 185

write, 186

GD, 196

decode, 196

decode, 196

decode alpha, 196

decode header, 196

encode, 196

GIF, 197

decode, 201

decode, 203

decode, 197

decode layer, 197

decode layers, 197

decode map, 198

encode, 202

encode, 198

encode trans, 198

end block, 199

gce block, 203

header block, 199

netscape loop block, 200

render block, 200

render block, 203

HRZ, 204

decode, 204

decode, 204

encode, 204

ILBM, 205

decode, 205

decode, 206

decode, 206

encode, 205

Image, 137

‘%, 168

‘&, 168

‘*, 169

‘+, 170

‘-, 170

‘/, 168

‘¡, 168

‘==, 168

‘—, 170

apply matrix, 138

apply max, 138

autocrop, 139

average, 139

bitscale, 140

box, 140

cast, 141

change color, 141

circle, 141

clear, 142

clone, 143

color, 143

copy, 144

create, 145

dct, 145

distancesq, 146

find autocrop, 139

find max, 147

find min, 147

gamma, 147

getpixel, 148

gradients, 148

grey, 148

hsv to rgb, 149

invert, 150

line, 151

make ascii, 151

map closest, 152

map fast, 152

map fs, 152

match, 152

max, 139

456 APPENDIX H. IMAGE.COLOR COLORS

min, 139

mirrorx, 153

mirrory, 153

modify by intensity, 154

noise, 154

orient, 155

orient4, 155

outline, 155

outline mask, 155

paste, 156

paste alpha, 157

paste alpha color, 157

paste mask, 158

phaseh, 158

phasehv, 158

phasev, 158

phasevh, 158

polyfill, 159

random, 159

randomgrey, 159

read lsb grey, 160

read lsb rgb, 160

rgb to hsv, 149

rotate, 160

rotate ccw, 161

rotate cw, 161

rotate expand, 160

scale, 162

select colors, 152

select from, 162

setcolor, 163

setpixel, 163

skewx, 164

skewx expand, 164

skewy, 164

skewy expand, 164

sum, 139

sumf, 139

test, 165

threshold, 165

tuned box, 166

turbulence, 167

write lsb grey, 160

write lsb rgb, 160

xsize, 167

ysize, 167

JPEG, 216

decode, 216

decode, 216

decode header, 216

encode, 217

lay, 136

Layer, 180

alpha, 180

alpha value, 180

autocrop, 181

available modes, 181

clone, 182

create, 182

crop, 182

fill, 183

fill alpha, 183

find autocrop, 181

get misc value, 183

image, 180

mode, 181

set alpha value, 180

set fill, 183

set image, 180

set misc value, 183

set mode, 181

set offset, 183

set tiled, 183

tiled, 183

xoffset, 183

xsize, 183

yoffset, 183

ysize, 183

load, 136

load, 136

load layer, 136

PCX, 207

457

decode, 207

decode, 207

encode, 207

encode, 207

PNG, 208

chunk, 208

decode, 209

decode, 209

decode, 208

encode, 208

PNM, 210

decode, 211

encode, 211

encode ascii, 211

encode binary, 211

encode P1, 211

encode P2, 211

encode P3, 211

encode P4, 211

encode P5, 211

encode P6, 211

Poly, 186

PSD, 212

TGA, 212

decode, 213

decode, 212

encode, 212

TIFF, 218

decode, 218

decode, 219

encode, 218

encode, 218

TTF, 219

‘, 219

Face, 220

‘, 221

flush, 220

names, 220

names, 220

properties, 221

FaceInstance, 221

create, 221

X, 192

decode pseudocolor, 192

decode truecolor, 192

decode truecolor masks, 192

encode pseudocolor, 192

encode truecolor, 192

encode truecolor masks, 192

XBM, 213

decode, 213

decode, 213

encode, 213

XCF, 214

decode, 214

decode, 215

decode, 215

decode, 214

decode layers, 214

XFace, 221

decode, 221

decode header, 222

encode, 222

XWD, 215

decode, 216

decode, 216

decode header, 216

image

Image.Colortable.image, 174

Image.Layer.image, 180

implode

Simulate.implode, 288

implode nicely

String.implode nicely, 123

include, 330

index, 426

indices

ADT.Table.table. indices, 261

Image.Color. indices, 188

Yp.YpMap. indices, 259

indices, 354

inflate

458 APPENDIX H. IMAGE.COLOR COLORS

Gz.inflate, 255

Gz.inflate.inflate, 256

initgroups, 236

insert id

Mysql.mysql.insert id, 292

install, 405

INT16, ??

INT32, ??

INT64, ??

INT8, ??

INT TYPE, ??

intp, 355

introduction, 4

1, 4

2, 4

3, 4

4, 5

5, 5

invert

Image.Image.invert, 150

io, 82

is absolute path, 355

is dir

Stdio.is dir, 102

is eq, 383

is equal, 383

is file

Stdio.is file, 102

is ge, 384

is gt, 384

is le, 384

is link

Stdio.is link, 102

is lt, 384

is partial

MIME.Message.is partial, 284

IS ZERO, 383

J
JPEG

Image.JPEG, 216

K

kill, 355

Process.create process.kill, 241

Process.Spawn.kill, 244

L
l sizeof

Simulate.l sizeof, 289

latitude

Geographical.Position.latitude,
313

lay

Image.lay, 136

Layer

Image.Layer, 180

layers, 408

lesser

Calendar.time unit.lesser, 306

light

Image.Color.Color.light, 189

limit

ADT.Table.table.limit, 262

line, 330

Image.Image.line, 151

list dbs

Mysql.mysql.list dbs, 293

list fields

Mysql.mysql.list fields, 293

list keys

Yabu.table.list keys, 270

list processes

Mysql.mysql.list processes, 294

list tables

Mysql.mysql.list tables, 294

Yabu.db.list tables, 268

listen fd

Stdio.Port.listen fd, 95

listp

Simulate.listp, 290

load

Image. load, 136

load

Image.Font.load, 185

459

Image.load, 136

load layer

Image.load layer, 136

load module, 356

Locale

Gettext, 301

bindtextdomain, 301

dcgettext, 302

dgettext, 302

gettext, 302

localeconv, 303

setlocale, 304

textdomain, 305

localeconv

Locale.Gettext.localeconv, 303

localtime, 356

locate references, 334

lock

Thread.Mutex.lock, 115

log, 357

login

Protocols.LysKOM.Session
.login, 229

logout

Protocols.LysKOM.Session
.logout, 229

longest ordered sequence

Array.longest ordered sequence,
129

longitude

Geographical.Position.longitude,
313

low mapping lookup, 391

low mapping string lookup, 391

lower case, 357

lvalues, 60

LysKOM

Protocols.LysKOM, 227

M
m delete, 358

m ind types, 390

m indices

Simulate.m indices, 288

m sizeof, 390

Simulate.m sizeof, 288

m val types, 390

m values

Simulate.m values, 288

make ascii

Image.Image.make ascii, 151

make shared binary string, 385

make shared binary string1, 387

make shared binary string2, 387

make shared string, 385

make shared string1, 387

make shared string2, 387

map, 357

ADT.Table.table.map, 263

Array.map, 130

Image.Colortable.map, 174

Yp.YpDomain.map, 258

Yp.YpMap.map, 259

map array

Simulate.map array, 288

map closest

Image.Image.map closest, 152

map delete, 390

map fast

Image.Image.map fast, 152

map fs

Image.Image.map fs, 152

map regexp

Simulate.map regexp, 287

mapping get item ptr, 390

mapping indices, 391

mapping insert, 390

MAPPING LOOP, 390

mapping replace, 391

mapping string insert, 391

mapping to array, 391

mapping values, 391

mappingp, 358

master, 358

460 APPENDIX H. IMAGE.COLOR COLORS

pike, 379

match

Image.Image.match, 152

Regexp.match, 245

Yp.YpDomain.match, 257

Yp.YpMap.match, 258

Math, 308

Matrix, 308

‘*, 309

‘+, 308

‘-, 310

“*, 309

“+, 308

“-, 310

“×, 309

‘×, 309

add, 308

cast, 308

create, 308

cross, 309

mult, 309

norm, 309

norm2, 309

normv, 309

sub, 310

transpose, 310

Matrix

Math.Matrix, 308

max, 358

Image.Image.max, 139

member array

Simulate.member array, 286

memory usage, 334

Message

MIME.Message, 279

MIME, 272

decode, 273

decode base64, 274

decode qp, 274

decode uue, 274

decode word, 274

encode, 275

encode base64, 275

encode qp, 276

encode uue, 276

encode word, 276

generate boundary, 277

guess subtype, 277

Message, 279

body parts, 280

boundary, 280

cast, 282

charset, 280

create, 283

disp params, 280

disposition, 280

get filename, 284

getdata, 283

getencoded, 283

headers, 281

is partial, 284

params, 281

setboundary, 284

setcharset, 284

setdata, 285

setdisp param, 285

setencoding, 285

setparam, 285

subtype, 281

transfer encoding, 282

type, 282

parse headers, 277

quote, 278

reconstruct partial, 278

tokenize, 278

min, 359

Image.Image.min, 139

mirrorx

Image.Image.mirrorx, 153

mirrory

Image.Image.mirrory, 153

misc, 74

461

mkdir, 359

mkdirhier

Stdio.mkdirhier, 102

mklist

Simulate.mklist, 290

mkmapping, 359

mkmultiset, 360

mktime, 360

mode

Image.Layer.mode, 181

modifiers, 71

modify by intensity

Image.Image.modify by intensity,
154

modules, 77

mpz

Gmp.mpz, 246

mult

Math.Matrix.mult, 309

multisetp, 360

Mutex

Thread.Mutex, 114

mv, 361

mysql

Mysql.mysql, 291

Mysql, 290

mysql, 291

affected rows, 291

big query, 291

binary data, 291

create, 291

create db, 292

drop db, 292

error, 292

host info, 292

insert id, 292

list dbs, 293

list fields, 293

list processes, 294

list tables, 294

protocol info, 294

reload, 294

select db, 295

server info, 295

shutdown, 295

statistics, 295

N
name

Image.Color.Color.name, 190

names

Image.TTF.Face. names, 220

names

Image.TTF.Face.names, 220

neon

Image.Color.Color.neon, 189

netscape loop block

Image.GIF.netscape loop block,
200

new, 361

next, 334

next

Calendar.time unit.next, 306

next object, 361

nextkey

Gdbm.gdbm.nextkey, 249

nodither

Image.Colortable.nodither, 176

noise

Image.Image.noise, 154

norm

Math.Matrix.norm, 309

norm2

Math.Matrix.norm2, 309

normv

Math.Matrix.normv, 309

O
object program, 362

object variablep, 362

objectp, 362

oldpike info, 406

open

Stdio.File.open, 84

462 APPENDIX H. IMAGE.COLOR COLORS

open socket

Stdio.File.open socket, 91

openlog, 236

operators, 51

order

Yp.YpDomain.order, 258

Yp.YpMap.order, 259

ordered

Image.Colortable.ordered, 176

orient

Image.Image.orient, 155

orient4

Image.Image.orient4, 155

outline

Image.Image.outline, 155

outline mask

Image.Image.outline mask, 155

P
params

MIME.Message.params, 281

parse

Calendar.Gregorian.Year.parse,
307

parse headers

MIME.parse headers, 277

Parser, 317

SGML, 317

create, 318

feed, 318

finish, 318

result, 318

paste

Image.Image.paste, 156

paste alpha

Image.Image.paste alpha, 157

paste alpha color

Image.Image.paste alpha color,
157

paste mask

Image.Image.paste mask, 158

PCX

Image.PCX, 207

permute

Array.permute, 130

perror

Stdio.perror, 102

phaseh

Image.Image.phaseh, 158

phasehv

Image.Image.phasehv, 158

phasev

Image.Image.phasev, 158

phasevh

Image.Image.phasevh, 158

PI

Simulate.PI, 287

pid

Process.create process.pid, 241

Process.Spawn.pid, 244

pike

master.pike, 379

pike random

Crypto.randomness.pike random,
312

pipe

Stdio.File.pipe, 92

PNG

Image.PNG, 208

PNM

Image.PNM, 210

Poly

Image.Poly, 186

polyfill

Image.Image.polyfill, 159

popen

Process.popen, 241

Port

Stdio.Port, 94

Position

Geographical.Position, 313

post url

Protocols.HTTP.post url, 224

463

post url data

Protocols.HTTP.post url data,
224

post url nice

Protocols.HTTP.post url nice,
224

pow, 362

powm

Gmp.mpz.powm, 247

pragma, 331

preface, 2

preprocessor, 329

prev

Calendar.time unit.prev, 306

prev, 334

previous object

Simulate.previous object, 286

printf

Stdio.FILE.printf, 93

probably prime p

Gmp.mpz.probably prime p,
247

Process, 239

create process, 239

kill, 241

pid, 241

set priority, 240

status, 241

wait, 241

exec, 243

exece, 242

popen, 241

spawn, 242

Spawn, 243

fd, 243

kill, 244

pid, 244

stderr, 243

stdin, 243

stdout, 243

wait, 244

system, 242

programp, 362

programs, 43

properties

Image.TTF.Face.properties,
221

protocol info

Mysql.mysql.protocol info, 294

Protocols, 222

DNS, 232

client, 232

create, 232

get primary mx, 232

gethostbyaddr, 232

gethostbyname, 232

HTTP, 223

delete url, 223

get url, 223

get url data, 223

get url nice, 223

http encode query, 319

http encode string, 319

post url, 224

post url data, 224

post url nice, 224

put url, 224

Query, 225

‘, 227

async request, 225

cast, 225

data, 226

downloaded bytes, 226

set callbacks, 225

thread request, 226

total bytes, 226

unentity, 224

LysKOM, 227

Connection, 230

async /call/, 230

async cb /call/, 230

/call/, 230

464 APPENDIX H. IMAGE.COLOR COLORS

create, 230

Request, 230

Request, 231

‘, 231

async, 231

async, 231

reply, 231

reply, 231

sync, 231

sync, 231

Session, 227

create, 227

create person, 228

create text, 228

login, 229

logout, 229

send message, 229

try complete person, 229

PSD

Image.PSD, 212

purge

Yabu.db.purge, 269

Yabu.table.purge, 271

push array items, 388

put url

Protocols.HTTP.put url, 224

putenv, 362

Q
Query

Protocols.HTTP.Query, 225

query address

Stdio.File.query address, 91

Stdio.UDP.query address, 98

query block size, 297

query blocksize

Crypto.rsa.query blocksize, 300

query close callback

Stdio.File.query close callback,
90

query digest size, 299

query host name, 363

Simulate.query host name, 290

query id

Stdio.File.query id, 89

Stdio.Port.query id, 96

query key length, 297

query num arg, 363

query read callback

Stdio.File.query read callback,
89

query write callback

Stdio.File.query write callback,
89

Queue

Thread.Queue, 118

quote

MIME.quote, 278

R
random, 363

Image.Image.random, 159

random seed, 363

randomcube

Image.Colortable.randomcube,
177

randomgrey

Image.Colortable.randomgrey,
177

Image.Image.randomgrey, 159

randomness

Crypto.randomness, 312

rc4

Crypto.rc4, 298

read

Crypto.randomness.arcfour random
.read, 313

Crypto.randomness.pike random
.read, 312

Stdio.File.read, 84

Stdio.UDP.read, 97

Thread.Fifo.read, 118

Thread.Queue.read, 119

read bytes

Stdio.read bytes, 103

465

read file

Stdio.read file, 103

read lsb grey

Image.Image.read lsb grey, 160

read lsb rgb

Image.Image.read lsb rgb, 160

read oob

Stdio.File.read oob, 85

Readline

Stdio.Readline, 100

readline

Stdio.readline, 103

readlink, 237

reconstruct partial

MIME.reconstruct partial, 278

recursive rm

Stdio.recursive rm, 103

reduce

Array.reduce, 130

Image.Colortable.reduce, 178

reduce fs

Image.Colortable.reduce fs, 178

refs, 334

Regexp, 244

create, 245

match, 245

split, 245

register program, 394

reload

Mysql.mysql.reload, 294

remove

ADT.Table.table.remove, 264

remove call out, 364

remove include path, 364

remove module path, 364

remove program path, 364

rename

ADT.Table.table.rename, 262

render block

Image.GIF. render block, 203

render block

Image.GIF.render block, 200

reorganize

Gdbm.gdbm.reorganize, 250

replace, 365

replace master, 365

reply

Protocols.LysKOM.Request
. Request.reply, 231

reply

Protocols.LysKOM.Request
. Request. reply, 231

Request

Protocols.LysKOM.Request
. Request, 231

Request

Protocols.LysKOM.Request,
230

result

Parser.SGML.result, 318

reverse, 365

ADT.Table.table.reverse, 262

rgb

Image.Color.Color.rgb, 189

Image.Color.rgb, 188

rgb to hsv

Image.Image.rgb to hsv, 149

rigid

Image.Colortable.rigid, 179

rint, 366

rm, 366

rollback

Yabu.transaction.rollback, 272

rotate

Image.Image.rotate, 160

rotate ccw

Image.Image.rotate ccw, 161

rotate cw

Image.Image.rotate cw, 161

rotate expand

Image.Image.rotate expand,
160

round, 366

466 APPENDIX H. IMAGE.COLOR COLORS

row

ADT.Table.table.row, 264

rows, 366

rreduce

Array.rreduce, 131

rsa

Crypto.rsa, 299

rsort

ADT.Table.table.rsort, 262

rusage, 366

S
s

Image.Color.Color.s, 191

scale

Image.Image.scale, 162

search, 367

search array

Array.search array, 131

seek

Stdio.File.seek, 86

select

ADT.Table.table.select, 263

select colors

Image.Image.select colors, 152

select db

Mysql.mysql.select db, 295

select from

Image.Image.select from, 162

send

Stdio.UDP.send, 97

send message

Protocols.LysKOM.Session
.send message, 229

sendfile

Stdio.sendfile, 104

server

Yp.YpDomain.server, 258

Yp.YpMap.server, 259

server info

Mysql.mysql.server info, 295

Session

Protocols.LysKOM.Session,
227

set

Thread.thread local.thread local
.set, 119

Yabu.table.set, 269

set alpha value

Image.Layer.set alpha value,
180

set blocking

Stdio.File.set blocking, 89

set buffer

Stdio.File.set buffer, 87

set callbacks

Protocols.HTTP.Query.set callbacks,
225

set close callback

Stdio.File.set close callback, 88

set close on exec

Stdio.File.set close on exec, 92

set decrypt key, 297

Crypto.rc4.set decrypt key, 298

set encrypt key, 297

Crypto.rc4.set encrypt key, 298

set fill

Image.Layer.set fill, 183

set id

Stdio.File.set id, 89

Stdio.Port.set id, 95

set image

Image.Layer.set image, 180

set misc value

Image.Layer.set misc value,
183

set mode

Image.Layer.set mode, 181

set nonblocking

Stdio.File.set nonblocking, 87

Stdio.UDP.set nonblocking, 97

set offset

Image.Layer.set offset, 183

set priority

467

Process.create process.set priority,
240

set private key

Crypto.rsa.set private key, 299

set public key

Crypto.rsa.set public key, 299

set read callback

Stdio.File.set read callback, 88

Stdio.UDP.set read callback,
98

set tiled

Image.Layer.set tiled, 183

set write callback

Stdio.File.set write callback, 88

set xspacing scale

Image.Font.set xspacing scale,
185

set yspacing scale

Image.Font.set yspacing scale,
185

setboundary

MIME.Message.setboundary,
284

setcharset

MIME.Message.setcharset, 284

setcolor

Image.Image.setcolor, 163

setdata

MIME.Message.setdata, 285

setdisp param

MIME.Message.setdisp param,
285

setegid, 237

setencoding

MIME.Message.setencoding,
285

seteuid, 237

setgid, 237

setgroups, 238

setlocale

Locale.Gettext.setlocale, 304

setparam

MIME.Message.setparam, 285

setpixel

Image.Image.setpixel, 163

setuid, 238

SGML

Parser.SGML, 317

sgn, 367

sha sign

Crypto.rsa.sha sign, 301

sha verify

Crypto.rsa.sha verify, 301

shuffle

Array.shuffle, 131

shutdown

Mysql.mysql.shutdown, 295

sign

Crypto.rsa.sign, 300

signal, 368

Thread.Condition.signal, 117

signame, 368

signum, 368

sillycaps

String.sillycaps, 124

simple array index no free, 388

simple mapping string lookup, 391

Simulate, 286

add efun, 289

aggregate list, 290

all efuns, 287

explode, 287

filter array, 287

get function, 286

implode, 288

l sizeof, 289

listp, 290

m indices, 288

m sizeof, 288

m values, 288

map array, 288

map regexp, 287

member array, 286

468 APPENDIX H. IMAGE.COLOR COLORS

mklist, 290

PI, 287

previous object, 286

query host name, 290

strstr, 289

sum, 289

this function, 286

sin, 368

size

Gmp.mpz.size, 248

Thread.Fifo.size, 118

Thread.Queue.size, 119

sizeof, 369

sizeof

ADT.Table.table. sizeof, 261

Yp.YpMap. sizeof, 259

skewx

Image.Image.skewx, 164

skewx expand

Image.Image.skewx expand,
164

skewy

Image.Image.skewy, 164

skewy expand

Image.Image.skewy expand,
164

sleep, 369

slice array, 388

sort, 369

ADT.Table.table.sort, 262

sort array

Array.sort array, 132

spacefactors

Image.Colortable.spacefactors,
179

spawn

Process.spawn, 242

Spawn

Process.Spawn, 243

splice

Array.splice, 132

split

Regexp.split, 245

sprintf, 369

sqrt, 373

Gmp.mpz.sqrt, 247

sscanf, 75

Stardate

Calendar.Gregorian.Stardate,
307

stat

Stdio.File.stat, 86

statistics

Mysql.mysql.statistics, 295

status

Process.create process.status,
241

stderr

Process.Spawn.stderr, 243

Stdio.stderr, 94

stdin

Process.Spawn.stdin, 243

Stdio.stdin, 94

Stdio, 83

append path, 101

exist, 101

File, 83

assign, 90

close, 84

connect, 91

create, 83

dup, 90

dup2, 90

errno, 87

open, 84

open socket, 91

pipe, 92

query address, 91

query close callback, 90

query id, 89

query read callback, 89

query write callback, 89

469

read, 84

read oob, 85

seek, 86

set blocking, 89

set buffer, 87

set close callback, 88

set close on exec, 92

set id, 89

set nonblocking, 87

set read callback, 88

set write callback, 88

stat, 86

tell, 86

truncate, 86

write, 85

write oob, 86

FILE, 93

getchar, 93

gets, 93

printf, 93

ungets, 93

file size, 101

is dir, 102

is file, 102

is link, 102

mkdirhier, 102

perror, 102

Port, 94

accept, 96

bind, 94

create, 95

errno, 96

listen fd, 95

query id, 96

set id, 95

read bytes, 103

read file, 103

Readline, 100

create, 100

readline, 103

recursive rm, 103

sendfile, 104

stderr, 94

stdin, 94

stdout, 94

Terminfo, 98

getFallbackTerm, 98

getTerm, 99

getTermcap, 99

getTerminfo, 99

Termcap, 99

create, 100

tputs, 100

Terminfo, 100

UDP, 96

bind, 96

enable broadcast, 97

query address, 98

read, 97

send, 97

set nonblocking, 97

set read callback, 98

werror, 104

write file, 104

stdout

Process.Spawn.stdout, 243

Stdio.stdout, 94

store

Gdbm.gdbm.store, 249

STR0, 385

STR1, 385

STR2, 385

strerror, 373

String, 123

capitalize, 124

common prefix, 124

count, 125

fuzzymatch, 123

implode nicely, 123

sillycaps, 124

strmult, 125

trim all whites, 125

470 APPENDIX H. IMAGE.COLOR COLORS

trim whites, 125

width, 125

string to unicode, 373

string to utf8, 374

stringp, 373

strlen, 374

strmult

String.strmult, 125

strstr

Simulate.strstr, 289

sub

Math.Matrix.sub, 310

subtype

MIME.Message.subtype, 281

sum

ADT.Table.Table.table.sum,
263

Image.Image.sum, 139

Simulate.sum, 289

sum arrays

Array.sum arrays, 133

sumf

Image.Image.sumf, 139

symlink, 238

sync

Gdbm.gdbm.sync, 250

Protocols.LysKOM.Request
. Request.sync, 231

Yabu.db.sync, 269

sync

Protocols.LysKOM.Request
. Request. sync, 231

System, 233

system

Process.system, 242

T
table

Yabu.db.table, 268

Table

ADT.Table, 260

table-of-contents, 2

tan, 374

tell

Stdio.File.tell, 86

Termcap

Stdio.Terminfo.Termcap, 99

Terminfo

Stdio.Terminfo, 98

Stdio.Terminfo.Terminfo, 100

test

Image.Image.test, 165

text extents

Image.Font.text extents, 185

textdomain

Locale.Gettext.textdomain,
305

TGA

Image.TGA, 212

this function

Simulate.this function, 286

this object, 374

this thread

Thread.this thread, 114

Thread, 112

all threads, 114

Condition, 116

broadcast, 117

signal, 117

wait, 117

Fifo, 117

create, 118

read, 118

size, 118

write, 118

Mutex, 114

lock, 115

trylock, 116

Queue, 118

read, 119

size, 119

write, 119

this thread, 114

471

thread create, 114

thread local, 119

thread local

get, 119

set, 119

thread create

Thread.thread create, 114

thread local

Thread.thread local, 119

thread request

Protocols.HTTP.Query.thread request,
226

threshold

Image.Image.threshold, 165

throw, 374

TIFF

Image.TIFF, 218

tiled

Image.Layer.tiled, 183

time, 375

time unit

Calendar.time unit, 305

TNGDate

Calendar.Gregorian.Stardate
.TNGDate, 307

tokenize

MIME.tokenize, 278

total bytes

Protocols.HTTP.Query.total bytes,
226

tputs

Stdio.Terminfo.Termcap.tputs,
100

trace, 375

transaction

Yabu.table.transaction, 271

transfer encoding

MIME.Message.transfer encoding,
282

transpose

Math.Matrix.transpose, 310

trim all whites

String.trim all whites, 125

trim whites

String.trim whites, 125

truncate

Stdio.File.truncate, 86

try complete person

Protocols.LysKOM.Session
.try complete person, 229

trylock

Thread.Mutex.trylock, 116

TTF

Image.TTF, 219

tuned box

Image.Image.tuned box, 166

turbulence

Image.Image.turbulence, 167

type

ADT.Table.table.type, 262

MIME.Message.type, 282

TYPE FIELD, ??

typeof, 77

types, 31

U
ualarm, 376

UDP

Stdio.UDP, 96

uLPC, 4

uname, 238

undef, 330

unentity

Protocols.HTTP.unentity, 224

ungets

Stdio.FILE.ungets, 93

unicode to string, 376

uniq

Array.uniq, 133

update, 298

upper case, 376

utf8 to string, 376

V
values

472 APPENDIX H. IMAGE.COLOR COLORS

ADT.Table.table. values, 261

Image.Color. values, 188

Yabu.db. values, 269

Yabu.table. values, 270

Yp.YpMap. values, 260

values, 377

verify

Crypto.rsa.verify, 300

verify internals, 335

version, 377

W
wait

Process.create process.wait,
241

Process.Spawn.wait, 244

Thread.Condition.wait, 117

werror

Stdio.werror, 104

where

ADT.Table.table.where, 263

width

String.width, 125

write, 377

Image.Font.write, 186

Stdio.File.write, 85

Thread.Fifo.write, 118

Thread.Queue.write, 119

write file

Stdio.write file, 104

write lsb grey

Image.Image.write lsb grey,
160

write lsb rgb

Image.Image.write lsb rgb, 160

write oob

Stdio.File.write oob, 86

X
X

Image.X, 192

XBM

Image.XBM, 213

XCF

Image.XCF, 214

XFace

Image.XFace, 221

xoffset

Image.Layer.xoffset, 183

xsize

Image.Image.xsize, 167

Image.Layer.xsize, 183

XWD

Image.XWD, 215

Y
Yabu, 266

db

create, 268

list tables, 268

purge, 269

sync, 269

table, 268

values, 269

table

delete, 270

get, 270

list keys, 270

purge, 271

set, 269

transaction, 271

values, 270

transaction

commit, 271

rollback, 272

Year

Calendar.Gregorian.Year, 307

yoffset

Image.Layer.yoffset, 183

Yp, 256

default yp domain, 257

YpDomain, 257

all, 257

bind, 257

map, 258

473

match, 257

order, 258

server, 258

YpMap, 258

all, 259

indices, 259

map, 259

match, 258

order, 259

server, 259

sizeof, 259

values, 260

YpDomain

Yp.YpDomain, 257

YpMap

Yp.YpMap, 258

ysize

Image.Image.ysize, 167

Image.Layer.ysize, 183

Z
zero type, 377

	Overview
	The history of Pike
	A comparison with other languages
	What is Pike
	How to read this manual
	Getting started
	Your first Pike program
	Improving hello_world.pike
	Further improvements
	Control structures
	Functions
	True and false
	Data Types

	A more elaborate example
	Taking care of input
	add_record()
	main()

	Communicating with files
	save()
	load()
	main() revisited

	Completing the program
	delete()
	search()
	main() again

	Then what?
	Simple exercises

	Control Structures
	Conditions
	if
	switch

	Loops
	while
	for
	do-while
	foreach

	Breaking out of loops
	break
	continue
	return

	Exercises

	Data types
	Basic types
	int
	float
	string

	Pointer types
	array
	mapping
	multiset
	program
	object
	function

	Sharing data
	Writing data types

	Operators
	Arithmetic operators
	Comparison operators
	Logical operators
	Bitwise/set operators
	Indexing
	The assignment operators
	The rest of the operators
	Operator precedence
	Operator functions

	Object orientation
	Terminology
	The approach
	How does this help?
	Pike and object orientation
	Inherit
	Multiple inherit
	Pike inherit compared to other languages
	Modifiers
	Operator overloading
	Simple exercises

	Miscellaneous functions
	sscanf
	catch 38 throw
	gauge
	typeof

	Modules
	How to use modules
	Where do modules come from?
	The . operator
	How to write a module
	Simple exercises

	File I/O
	File management - Stdio.File
	Buffered file management - Stdio.FILE
	Standard streams - Stdio.stdin, stdout and stderr
	Listening to sockets - Stdio.Port
	UDP socket and message management - Stdio.UDP
	Terminal management - Stdio.Terminfo
	Stdio.Terminfo.Termcap
	Stdio.Terminfo.Terminfo

	Simple input-by-prompt - Stdio.Readline
	Other Stdio functions
	A simple example
	A more complex example - a simple WWW server

	Threads
	Starting a thread
	Threads reference section
	Threads example

	Modules for specific data types
	String
	Array

	Image
	Image.Image
	Image.Colortable
	Image.Layer
	Image.Font
	Image.colortable
	Image.Poly
	Image.Color
	Image.Color.Color

	Image.X
	Image.ANY
	Image.AVS
	Image.BMP
	Image.GD
	Image.GIF
	Image.HRZ
	Image.ILBM
	Image.PCX
	Image.PNG
	Image.PNM
	Image.PSD
	Image.TGA
	Image.XBM
	Image.XCF
	Image.XWD
	Image.JPEG
	Image.TIFF
	Image.TTF
	Image.TTF.Face
	Image.TTF.FaceInstance

	Image.XFace

	Protocols
	Protocols.HTTP
	Protocols.HTTP.Query

	Protocols.LysKOM
	Protocols.LysKOM.Session
	Protocols.LysKOM.Connection
	Protocols.LysKOM.Request

	Protocols.DNS
	Protocols.DNS.client

	Other modules
	System
	Process
	Regexp
	Gmp
	Gdbm
	Getopt
	Gz
	Yp
	ADT.Table
	Yabu transaction database
	The database
	Tables
	Transactions

	MIME
	Global functions
	The MIME.Message class

	Simulate
	Mysql.mysql
	The Pike Crypto Toolkit
	Introduction
	Block ciphers
	Stream Ciphers
	Hash Functions
	Public key algorithms
	Combining block cryptos

	Locale.Gettext
	Calendar
	Calendar.time_unit
	Calendar.Gregorian

	Parser
	Math
	Math.Matrix

	Calendar.time_unit
	Calendar.Gregorian
	Calendar.Gregorian.
	Calendar.Gregorian.Year
	Calendar.Gregorian.Stardate

	Crypto.randomness
	Crypto.randomness.pike_random
	Crypto.randomness.arcfour_random

	Geographical.Position
	Geographical.Countries
	Parser.SGML
	Protocols.HTTP
	Protocols.HTTP.Query

	Protocols.LysKOM
	Protocols.LysKOM.Session
	Protocols.LysKOM.Connection
	Protocols.LysKOM.Request

	Protocols.DNS
	Protocols.DNS.client

	The preprocessor
	Builtin functions
	Pike internals - how to extend Pike
	The master object
	Data types from the inside
	Basic data types
	struct svalue
	struct pike_string
	struct array
	struct mapping
	struct object
	struct program

	The interpreter

	Terms and jargon
	Register program
	Reserved words
	BNF for Pike
	How to install Pike
	How to convert from old versions of Pike
	Image.Layer modes
	Image.Color colors

