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ABSTRACT 

In this thesis, a novel idea is presented, which is to teach young children with 

Autism Spectrum Disorder (ASD) to recognize human facial expressions through the 

help of computer vision and image processing. Universally, there are seven facial 

expressions categories: angry, disgust, happy, sad, fear, surprised and neutral. To 

recognize all these facial expressions and to predict the current mood of a person is a 

difficult task for a child. For a child with ASD, this problem presents itself in a more 

complex manner due to the nature of the disorder. The main goal of the thesis was to 

develop a deep Convolutional Neural Network (DCNN) for facial expression recognition, 

which can help young children with ASD to recognize facial expressions, using mobile 

devices. Previously, different neural network models and classifiers have been presented 

to achieve state of the art accuracy in this sector. Separately, different studies have been 

performed in studying the ability and performance of children with ASD for recognizing 

facial expressions. In this thesis, additional features have been added to the DCNN model 

such that it can correctly classify facial expressions in different lighting conditions and 

from different viewpoints as the model is trained to do so. Upon developing the DCNN 

model, an iOS app has been developed implementing this deep learning model as a 

byproduct and as a medium to use this model in clinical trials for children with autism as 

a medium of enhancing their communication abilities. The implementation of this 

proposed idea started with finding datasets containing images of faces with different 

expressions from different angles.  
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Further datasets were produced from the original dataset with images of different 

contrast and brightness with the help of image processing. The performance of the DCNN 

model was evaluated using these datasets. Once an optimal accuracy is achieved with 

good generalizability, an app suitable for iOS platform was developed for running both 

the DCNN model and image processing algorithms. The function of the app is to open the 

camera of the device, detect a face, classify the facial expression, and show the 

expression with an emoticon on the screen. As a product of this work, the app can be 

used by speech-language pathologies, teacher, care-takers, and parents as a 

technological tool when working with children with ASD. The design of the model and 

application is targeted to children with ASD to recognize and identify facial expressions 

in real-time to practice social skills during everyday social interaction. 
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I. INTRODUCTION 

Strong and meaningful human interaction is necessary to convey feelings and 

communicate with another person. Human interaction is the process of exchanging 

information. Information can be conveyed as words, tone of voice, facial expressions and 

body language. Along with verbal communication, conveying communicative feelings 

can also be carried out by a person via nonverbal communication such as body language, 

facial expression, attitude, movement, etc. [1]. Words account for seven percent (7%) of 

the information communicated. Vocal tone accounts for fifty-five percent (55%) and 

body language accounts for thirty-eight percent (38%) [2]. The use and understanding of 

non-verbal communication grow naturally and many of us are unaware that we are using 

things like body language or facial expression or reading these cues to enhance words. 

Facial expressions play a significant role in interpersonal communication. In 1971, 

Ekman et al. [3] identified six facial expressions that are universal across all cultures - 

anger, disgust, fear, happiness, sadness and surprise.  

As infants, nonverbal communication is learned from social-emotional 

communication, making the face rather than voice the dominant communication channel 

[4]. Children with stronger face-reading skills may achieve more popularity at school as 

discussed in [5], and they tend to perform better academically as shown in [6]. In 

addition, experiments hint that people who are better at identifying fearful expressions 

are kinder and more generous [7]. 

On the flip side, children who have more trouble identifying emotion in faces are more 

likely to have peer problems and learning difficulties as discussed in [8]. Preschoolers 

with poor face-reading skills for their age are more likely to have externalizing 
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behavioral problems, like hyperactivity [9], or, if they tend to be shy, such children are 

also more likely to suffer from anxiety [10]. 

For children with Autism Spectrum Disorder (ASD), face processing is a 

challenging task. It has been argued that the ability of children with ASD to understand 

facial expression is impaired and this difficulty may account for other problems that they 

demonstrate during social interactions [11]. In a study discussed in [12], accuracy and 

latency of emotion recognition were evaluated in children with autism spectrum disorder 

(ASD) and typically developing children while viewing videos of faces slowly 

transitioning from a neutral expression to one of six basic emotions (e.g., anger, disgust, 

fear, happiness, sadness, and surprise). Children with ASD were slower in emotion 

recognition and selectively made more errors in detecting anger. Several other studies 

including [13] and [14] showed impairment for children with ASD in classifying and 

understanding facial expressions compared to normal children of the same age.  

Children with ASD improved their social skills by using a smartphone app – 

paired with Google Glass to help them understand the emotions conveyed in people’s 

facial expressions, according to a pilot study by researchers at the Stanford University 

School of Medicine. The therapy, described in findings published online Aug. 2, 2018, 

in the Nature Partner Journals Digital Medicine [15], uses a Stanford-designed app that 

provides real-time cues about other people’s facial expressions to a child wearing Google 

Glass. The biggest downside of this app is the price of the Google Glass which is 

currently around $1500. A cloud-based software company, Affectiva [16], gives powerful 

emotion metrics back when images, videos or audio files are fed to their service. Users 

upload digital content through the cloud-based user-interfaces and visualize the results 
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online or download the CSV or JSON files.  However, the service also comes with a cost 

of $1.00 per video-minute and $0.50 per audio-minute. Other apps exist for facial 

expression recognition, but they are not designed to focus on the utilization of children 

with ASD. Moreover, the other developed app-solutions do not consider different lighting 

conditions and viewpoints of the camera. 

In this thesis, a novel idea has been implemented of teaching young children with 

ASD to recognize human facial expressions in a friendly and practical environment. The 

main goal of this thesis was to develop a Deep Convolutional Neural Network (DCNN) 

which can recognize seven universal facial expressions. To make this deep learning 

model robust to complexities of viewpoints and lighting conditions, the model was 

trained with not only front-view facial images but also with images of faces from 

different orientation angles such as side view, top view, and bottom view. Also, the 

model is able to predict facial expressions in different lighting environments at different 

darker or lighter shades of contrast. As most children with ASD like to play with mobile 

devices such as smartphones and tablets, an iOS app was developed as a byproduct for 

this DCNN model to teach them to recognize facial expressions by using the device’s 

camera. The app can run on any Apple device running iOS version 11 and beyond. Usage 

of the app is made simple and convenient for a child with ASD. The child with ASD 

points the camera toward a person, the app then automatically detects the face and 

classifies the facial expression of the person in real-time. The facial expression is then 

shown on the gadget’s screen in the form of an emoticon. The goal of the app was to use 

these facial expressions as an emoticon to show children with ASD how the person, to 
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whom they are pointing the camera, is feeling and displaying emotional characteristics. 

Figure 1 shows a simple workflow diagram of the application. 

 

Figure 1. Workflow diagram of the iOS application 

The facial expression recognition algorithm is designed by utilizing computer 

vision and deep neural network techniques. In recent years, deep learning has made 

noticeable progress in the task of classifying facial expressions. The famous Kaggle's 

“Challenges in Representation Learning: Facial Expression Recognition Challenge” [17] 

leaderboard showed that 71.16% test accuracy was achieved in classifying seven different 

classes of facial expression with the FER2013 dataset [18].   Convolutional Neural 

Networks (CNNs) are an alternative type of neural network that can be used to classify 

objects in an image. Therefore, by utilizing CNNs, the quality of image recognition and 

object classification had been progressing at a significant pace. Not only the result of 

powerful hardware, larger databases and bigger models, but also as a consequence of new 
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ideas, algorithms and improved network architectures has encouraged advancement in this 

field [19]. 

After performing the facial expression recognition phase, the algorithm is then 

installed in an app that runs in any compatible device running on iOS 11 or higher. For 

operation, the app opens the camera of the device and, if a face is detected by the camera, 

the facial expression is shown on the display in the form of an emoticon. The overall 

effort of the app is to be used by speech-language pathologists as a technological tool 

when working with children with ASD.  In conjunction with tele-practice, the app can be 

used to teach children with ASD to recognize and identify facial expressions and receive 

therapy in real time to practice social skills during everyday social interactions. 
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II. BACKGROUND AND LITERATURE REVIEW 

Background 

In this section, how the thesis idea originated and presented itself is discussed. 

Why an engineering solution is much needed for facial expression recognition for 

children with ASD is also discussed. Finally, a preview of the completed research 

solution is presented.  

When one communicates with a child, lots of communication take place without 

any words. This type of communication is called nonverbal communication. Nonverbal 

communication includes facial expressions, body language, body contact, eye contact, 

personal space and tone of voice. Positive nonverbal communication can improve the 

relationship with the child and boost emotional connections with the other person. Most 

children love being hugged and kissed, for example. This warm and caring body 

language sends the nonverbal message that one wants to be close to their child. Negative 

nonverbal communication – for example, a grumpy tone of voice or a frown – presents 

itself as a message of disagreement, indifference, or other negative characteristic. 

Children can feel rejected or let down if this happens consistently. 

Among the nonverbal communications, facial expression is one of the most 

difficult to master because of the subtle meanings and micro-expressions. With our 80 

facial muscles, we can create more than 7,000 facial expressions. Universally, there are a 

total of six facial expressions that are found across all cultures – Angry, Disgust, Happy, 

Sad, Surprise and Fear. All the work that has been done on facial expression recognition 

use these six universal expressions. Some work also includes another category – neutral. 
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Along with the neutral expression, these seven categories of facial expressions are the 

baseline for any facial expression recognition related work.  

For children to correctly classify facial expressions is a difficult task. It is even 

more difficult for children with ASD. Children with ASD have major difficulties in 

recognizing and responding to emotional and mental states in others' facial expressions 

[20]. Babies who are later diagnosed with ASD can recognize feelings in a similar way to 

typically developing babies. However, these children are slower to develop emotional 

responses than typically developing children. By the time children reach 5-7 years old, 

they can recognize happy and sad, but they have a harder time with subtle expressions of 

fear and anger. By adolescence, teenagers with ASD still experience difficulty 

recognizing fear, anger, surprise, and disgust when compared to typically developing 

teenagers. As adults, they continue to have trouble recognizing some emotions [21]. 

In this thesis, a deep learning approach is presented to close the gap in how to 

help children with ASD accomplish this difficult task of classifying facial expressions 

correctly. The approach was to develop a DCNN (Deep Convolutional Neural Network) 

with the help of computer vision and image processing to perform the facial expression 

computation. After completing this main task, the iOS app is developed and tested with 

emotion metrics of different persons to have a better understanding of the performance of 

the model. The app, supported by any iOS device, can open the camera of that device, 

correctly classify the facial expression when the camera detects a face and show it on the 

screen with an emoticon. This app is able to perform under any lighting environment 

conditions and capture the face from many angles.  
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Literature Review 

 This thesis deals with performance of children with ASD in recognizing human 

facial expressions and the technical development of a model with DCNN to classify 

different facial expressions. The thesis idea has been achieved by studying facial 

expression recognition studies for children with ASD and also studies of deep learning 

models for classifying facial expressions. The novel idea of this thesis was inspired by 

merging these two sections from which different aspects and motivations of the thesis can 

be better understood.   

Facial Expression Recognition Studies for Children with Autism 

Many studies have been done about the impairments of children with ASD 

typically face while processing human facial expressions and different methods have 

been proposed to teach them how to learn different facial expressions. The authors in [11] 

assessed the influence of motion on facial expression recognition in young children with 

ASD. They were compared on their ability to match videotaped “still,” “dynamic,” and 

“strobe” emotional and non-emotional facial expressions with photographs. Compared to 

previous studies showing a lower performance in children with ASD than in control 

children when presented with static faces, the author’s data suggest that slow dynamic 

presentations facilitate facial expression recognition by children with ASD. Another 

paper [22] presented a detailed study of the implementation of serial and parallel 

implementation of Principal Component Analysis (PCA) to identify the most feasible 

method for realization of a portable emotion detector for children with ASD. They 

achieved 82.3% detection accuracy implementing the architecture on Field 

Programmable Gate Array (FPGA). Different experiments, surveys, and comparisons 
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have been made about the facial expression recognition difficulties and impairments of 

children with ASD, including [23], [24]. Analysis of the results suggests that impaired 

face recognition does not result from impaired attention or discrimination and indicates 

that most people with ASD have severe expression recognition deficits. 

CNN Models for Facial Expression Recognition 

In the past few years, deep learning in DCNN has made considerable progress in 

the task of recognizing human facial expressions. In the work found in [25], the authors 

reviewed the state of the art in image-based facial expression recognition using CNNs 

and highlighted algorithmic differences and their performance impact. They 

demonstrated that overcoming one of these bottlenecks – the comparatively basic 

architectures of the CNNs utilized in this field – leads to a substantial performance 

increase in identifying expressions. By forming an ensemble of modern deep CNNs, the 

authors reached a FER2013 test accuracy of 75.2%, outperforming previous works 

without requiring auxiliary training data or face registration. 

As part of another project such in [26], the authors applied various deep learning 

CNN methods to identify the key seven human emotions: angry, disgust, fear, happy, sad, 

surprise and neutral. Using the FER2013 dataset, they leveraged ensemble and transfer 

learning techniques to achieve optimal results. The authors achieved an accuracy of 

67.2% using ensemble learning and 78.3% with transfer learning. Solid results are given 

by the winner of the Kaggle Facial Expression Recognition Challenge, who had an 

accuracy of 71.2%. Those who ranked in the top 10 of the same competition only 

achieved accuracies averaging around 60%. Using visual saliency and deep learning on 

Compound Facial Expressions of Emotion Dataset (CFEE) and Radbound Faces 
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Database (RaFD) datasets, the authors from [27] achieved test accuracies of respectively 

74.79% and 95.71%. In the work described in [28], the authors proposed methods of 

refining individual models and combining different CNNs which achieved significant end 

results, with high test accuracy of 87.4% from their Linear SVM approach. Using a 

combination of algorithms for face detection, feature extraction, and classification, in 

[29], authors achieved average expression recognition accuracy of 97.71% and 95.72% 

respectively for the Japanese Female Facial Expression (JAFFE) and the Extended Cohn-

Kanada (CK+) datasets. 

All these papers discuss different methods and techniques for facial expression 

recognition. For this thesis, a DCNN is developed and experimented with using different 

techniques to obtain a better generalized performance of recognizing facial expressions. 

Then with this model an iOS app is developed which can open the camera of the device 

in which it is installed and recognize facial expressions correctly. This thesis combines 

the two main approaches of facial expression recognition with CNN and using it for the 

study of facial expression recognition with children with ASD. 

Thesis Contributions to the Advancements of Facial Expression Recognition 

All the research papers discussed in the previous sections deal with front facial 

images for facial expression recognition. In this thesis, the developed deep learning CNN 

model can classify facial expression from seven different viewpoints (front, 45-degree 

left, 45-degree right, 90-degree left, 90-degree right, 45-degree up, 45-degree down). It 

can also classify facial expressions in different lighting contrasts including dark and 

bright conditions. This has been achieved through preprocessing techniques before 

feeding the images to the model. The iOS app is also a new addition to the research 
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which can show the performance of the model in real time. The app has been tested in 

different conditions to effectively evaluate performance of the CNN model.  
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III. DEEP LEARNING 

Deep learning is a subfield of Machine Learning and Machine Learning is a 

subfield of Artificial Intelligence (AI). This relationship can be best described by a 

graphical representation shown in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

For a computer, translating and recognizing the contents of an image has proven 

to be a very difficult task. The same task can be performed by humans very easily and 

with minimal effort. The primary goal of AI is to provide a set of algorithms that can be 

used to solve problems that humans can perform instinctively and automatically but are 

otherwise very challenging for computers [30]. 

Machine Learning can be defined as a large sub-field of AI dealing with the field 

of study that gives computers the ability to learn without being explicitly programmed 

[31]. This means a single program, once developed, will be able to learn by itself how to 

do some intelligent activities outside the notion of programming. Therefore, it can be said 

Artificial Intelligence 

Machine Learning 

Deep Learning 

Figure 2. A Venn diagram describing relationship 
between Deep Learning, Machine Learning and 

Artificial Intelligence 



 

 13 

that Machine Learning is an approach to achieve AI. This is exactly the form humans 

learn as well. The human brain automatically learns features of an object and when seen 

later, that object can be recognized by a human through memory and experience. 

 The human brain is undoubtably one of the best machines we know for learning 

and solving problems. The neuron is said to be the main computational element of the 

human brain. Neurons communicate with each other through the basic working unit of 

the brain, a specialized cell designed to transmit information to other nerve cells, muscle, 

or gland cells. The complex connected network of neurons forms the basis of all the 

decisions made based on the various information gathered as shown in Figure 3. Artificial 

Neural Networks (ANNs) are a simplified representation of the human brain neural 

system and work in the same way as a human brain does. A simple ANN has an input 

layer, a hidden layer, and an output layer as shown in Figure 4.  

Within the domain of neural networks, there is an area called Deep Learning (DL) 

in which neural networks have more than three layers, i.e. more than one hidden layer. 

These neural networks used in DL are called Deep Neural Networks (DNNs) [32]. In the 

remainder of this chapter, details will be reviewed about when a neural network can be 

called “deep”, concept of “hierarchical learning” and when to use deep learning networks 

for classification problems.  

 

Figure 3. Complex connected network of neurons of a human brain 
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Figure 4. An Artificial Neural Network. Here, each circular node is an artificial neuron an arrow is a 
connection between nodes 

Hierarchical Learning 

 Machine Learning algorithms (generally) can be divided into four categories – 

supervised, unsupervised, semi-supervised learning, and reinforcement learning. The 

Machine Learning algorithm developed in this thesis falls into the category of supervised 

learning. Hence, supervised learning will be discussed here in a nutshell.  

Supervised learning is the Machine Learning task of learning a function that maps 

an input to an output based on example input-output pairs [33]. It infers a function 

from labeled training data consisting of a set of training example [34]. In supervised 

learning, a Machine Learning algorithm is given labeled training data consisting of both a 

set of inputs and target outputs. The algorithm then tries to learn patterns that can be used 

to automatically map input data points to their correct target output. For example, given a 

dataset of labeled pictures of human facial expressions, the algorithm can learn to predict 

and classify unseen pictures of human facial expression to its corresponding classes 

(labels). This is exactly what has been done in this thesis. Another example can be having 
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a bunch of molecules and information about which are drugs and training a model to 

answer whether a new molecule is also a drug. Figure 5 shows another example of 

supervised learning where a deep neural network is trained to classify beagles in images.  

 

Figure 5. Result of a supervised learning algorithm using DNN classifying beagles in images 

 Previously, hand-engineered features were used to quantify the contents of an 

image. Raw pixel intensities were rarely used as inputs to Machine Learning models, 

which is now common with DL [30]. First, the feature extraction was performed which is 

known as the process of taking an input image. The features extracted were quantified 

according to some algorithm. This type of algorithm was called a feature extractor or 

image descriptor. Finally, the feature extraction algorithm returned a vector, list of 

numbers, that aimed to quantify the contents of an image. These featured vectors were 

then used as the input of a Machine Learning algorithm. 

 DL does not use any hand-defined algorithm to extract features from an image, 

instead these features are learned automatically by the DL model itself through the 

training process. As previously discussed, a DL model has more than one hidden layer. A 

simple feedforward neural network with two hidden layers is shown in Figure 6. The 
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learning process of a DL model can be described in terms of hierarchy. A series of hidden 

layers are used to extract features from an image. From the input layer to the output layer, 

these hidden layers build upon each other in a hierarchical way. The lower level of the 

hidden layers usually learns to detect edges, shapes, regions, and combine those to form 

contours and corners. In the next layer, these contours and corners in turn form abstract 

object parts of the image. This learning process is completed by filters which are learnt 

automatically by the model. Finally, the output layer, a classification algorithm, is used to 

categorize the image and obtain the output class label. 

Each layer in the DL network utilizes the output of the previous layers to 

construct more conceptual features of an image and these features and layers are learned 

automatically. For this reason, the learning process is called hierarchical learning. A 

comparison between classic image classification algorithms using Machine Learning and 

current DL algorithm is shown in Figure 7.  

 

 

Figure 6. A feedforward neural network with two hidden layers of a DL model 



 

 17 

 

Figure 7. Comparisons between traditional Machine Learning Algorithm and DL algorithm [30] 

Using Deep Learning 

 The “deep” term depends on the type and depth of the network. The CNN, 

Recurrent Neural Network, Long-Short Term Memory (LSTM) network are considered 

to be DNNs for their specialized type. Normally, the depth of a neural network is greater 

than two, and it is considered a DNN. Here, the depth refers to the number of hidden 

layers in the network. If depth is greater than ten, the network can be called very deep.  

 As the depth of a DNN increases, classification accuracy also increases opposed 

to the case for traditional Machine Learning algorithms. This behavior can be better show 

by a plot inspired by Andrew Ng’s 2015 talk, what data scientists should know about DL 

[35] shown in Figure 8. From the plot, it can be seen that when amount of training data 
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increases, accuracy also increases for DNN whereas it comes to a standstill for traditional 

Machine Learning algorithms. This is the reason to associate large datasets with DL. For 

image classification, it is said that if the dataset contains more than 1000 images, then DL 

will surely achieve better results compared to other Machine Learning algorithms such as 

logistic regression, SVMs, decision trees, etc.  

 

Figure 8. Relationship between performance and training data for different neural networks 

In this chapter, fundamentals of DL are discussed. It belongs to the family of 

Artificial Neural Networks (ANNs). Hierarchical learning of DL networks and usage of 

DL are also discussed compared to traditional Machine Learning algorithms.  
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IV. CONVOLUTIONAL NEURAL NETWORK 

Computer vision is a field of Artificial Intelligence which enables machines to see 

and perceive objects as humans do. The advancement and popularity of computer vision 

with Deep Learning is driven upon the Convolutional Neural Network (CNN) algorithm. 

A CNN is a Deep Learning algorithm which can take in input images, train itself by 

learning filters to distinguish individual features between images and be able to 

differentiate one image from the other [36]. Figure 9 shows a CNN that can distinguish 

and recognize different type of automobiles.  

 

Figure 9. A CNN to classify different type of vehicles [36] 

 Traditional feed-forward Machine Learning algorithms use Fully- Connected 

layers with each neuron of one layer connected to every output neuron of the next layer. 

CNNs use a Convolution layer to begin the network with and use Fully-Connected 

networking at the end of the architecture. Each layer of a CNN applies a different set of 

filters, typically hundreds or thousands, and combines the results by feeding the output 

into the next layer in the network [30]. During the training of a model, the CNN 

automatically learns the values for these filters. “In the context of image classification, a 

CNN may learn to: 
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• Detect edges from raw pixel data in the first layer. 

• Use these edges to detect shapes (i.e., “blobs”) in the second layer. 

• Use these shapes to detect higher-level features such as facial structures, parts of a 

car, etc. in the highest layers of the network.” [30] 

Why CNN for Image Recognition 

 Traditional Machine Learning algorithms were used for image classification 

before CNN became successful for computer vision applications. However, there was no 

direct way to input images directly to the algorithm. First, a separate feature extraction 

algorithm was used to extract features from an image. Then these features were fed into a 

classification algorithm like Support Vector Machine (SVM), k-Nearest Neighbor, 

Logistic Regression, and others. Some algorithms also used the pixel level values of 

images as a feature vector too. In the case of SVM, the training of the model with 2,304 

features would require each feature to be each pixel-value for a 48×48 image. 

A preferred component of a CNN over other algorithms for image recognition is 

that no feature development is required for the network. This provides the CNN 

algorithm with feature extraction capacity in its design. The CNN learns those extracted 

features through the training process of the model. Thus, CNNs can be thought of an 

automatic feature extractor from images.  

This concept of CNN was first presented by Yann LeCun [37] in 1998, in where 

the author reviewed various methods applied to handwritten character recognition and 

compares them on a standard handwritten digit recognition task. In this paper, the author 

used a single Convolution layer. It was later popularized by AlexNet [38] in 2012, which 
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used multiple Convolution layers to achieve high performance on the ImageNet dataset, 

which is the largest dataset used for object detection.  

CNN Implementation for Facial Expression Recognition 

For the development of the facial recognition model, the purpose is to classify 

seven different facial expressions from input images. For image classification, the CNN 

is the best option for computer vision applications, and it has been used as the Deep 

Learning algorithm for the development of the model. Without the utilization of CNN, 

filters for various image processing operations such as smoothing, sharpening, and edge 

detection will require further development increasing the complexity of the process.  

CNNs are able to learn filters that can detect edges and blob-like structures in 

lower-level layers of the network by applying convolutional filters, nonlinear activation 

functions, pooling, and backpropagation.  Also, CNNs are capable of using the edges and 

structures as “building blocks” that eventually detect high-level objects, similar to facial 

expressions, in the deeper layers of the network. The process of using the lower-level 

layers to learn high-level features is achieved by stacking specific set of layers in a 

purposeful manner. In the next section, these different types of layers will be discussed 

which are also known as the building blocks of a CNN.  

Building Blocks of a CNN 

 A feedforward neural network does not scale well as the image size increases and 

also leaves much accuracy to be desired as every layer in this network is a Fully- 

Connected network. On the other hand, a CNN define a network architecture in a more 

sensible way. Unlike a standard neural network, the layers of a CNN are arranged in a 3D 

volume in width, height, and depth where depth refers to the third dimension of the 
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volume, such as the number of channels in an image or the number of filters in a layer 

[30]. The volume concept can be explained with a feedforward neural network is taking a 

color image of size 24×24 pixels as its input. The total inputs to the network will be 

24×24×3 = 1,728, in where the value of 3 denotes the RGB channels for a color image. 

This amount is not that much for a neural network, but if images of 500×500 pixels are 

used, then the total inputs to the network will be 500×500×3 = 4,50,000. These values do 

not include the other connecting lines in the network’s hidden layers and output layer. 

Therefore, these parameters can quickly add up and a poor performance is evident.  

 On the other hand, for a CNN the input volume will have dimensions 24×24×3 

(width, height, and depth, respectively). Neurons in subsequent layers will only be 

connected to a small region of the layer before it (rather than the fully-connected 

structure of a standard neural network) – this is called local connectivity which enables to 

save a huge number of parameters in the network. Finally, the output layer will be a 

1×1×N volume which represents the image distilled into a single vector of class scores. In 

the case of this thesis which classifies seven different emotions, N = 7, yielding a 1×1×7 

volume. 

 There are different types of layers in a CNN. The most common layers of a CNN 

are as follows. 

• Convolutional Layer 

• Activation Layer 

• Pooling Layer 

• Fully-Connected Layer 

• Batch Normalization Layer 
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• Dropout Layer 

A CNN architecture is nothing but a stack of these layers in a specific manner. 

Often, A CNN architecture can be described as a collection of input layer, Convolution 

layer, Activation layer, and Fully-Connected layer respectively. Here a simple CNN is 

defined that accepts an input, applies a convolution layer, then an activation layer, then a 

Fully-Connected layer. Convolutional, Fully-Connected and Batch Normalization layers 

contain parameters that are learned during the training process. Among these layers, 

Convolutional, Fully-Connected, Activation and Pooling layers are the most important 

ones to define the actual network architecture.  

Convolutional Layers 

The first layer of a CNN is a Convolutional layer as the core building block of a 

CNN. It consists of a set of learnable filters or kernels. These kernels are usually of small 

size such as 3×3 or other squared-dimension sizes. These filters slide across the input 

image. A filter/kernel is also an array of numbers which are called weights or parameters. 

A very important note is that the depth of this filter has to be the same as the depth of the 

input. In Figure 10, it can be seen in the top left corner that as the filter is sliding, 

or convolving, around the input image, it is multiplying the values in the filter with the 

original pixel values of the image (aka computing element wise multiplications). These 

multiplications are all summed up and a single number is the final output of the 

convolution operation. The number is a representative of when the filter is at the top left 

of the image. The process is repeated for every location on the input volume. The next 

step would be moving the filter to the right by 1 or 2 unit, known as a stride, then right 

again by 1 or 2 units, and continues.  
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Figure 10. Convolution operation of a CNN [39] 

 After applying all N-filters to the input volume, there are N, 2-dimensional 

activation maps. These N activation maps are then stacked together along the depth 

dimension of our array to form the final output volume as shown in Figure 11. 

 

Figure 11. After obtaining the N activation maps, they are stacked together to form the input to the 

next layer [30] 

 “Every entry in the output volume is thus an output of a neuron that ‘looks’ at 

only a small region of the input. In this manner, the network ‘learns’ filters that activate 

when they see a specific type of feature at a given spatial location in the input volume. In 

lower layers of the network, filters may activate when they see edge-like or corner-like 

regions. Then, in the deeper layers of the network, filters may activate in the presence of 

high-level features, such as parts of the face, the paw of a dog, the hood of a car, etc.” 

[30] 
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Activation Layers 

After each Convolutional layer, an Activation layer is placed in the CNN. The 

Activation layers are nonlinear functions such as Sigmoid, Rectified Linear Unit (ReLU) 

[40], Exponential Linear Unit (ELU) [41], and others. For the model development, ReLU 

and ELU were used for the design of the facial expression recognition model. Plots of 

different activation functions with their corresponding mathematical function are shown 

in Figure 12.  

 

Figure 12. Plots of different activation functions 

“An activation layer accepts an input volume of size Winput×Hinput×Dinput and then 

applies the given activation function as shown in Figure 13. The activation function is 

applied in an element-wise manner, and the output of an activation layer is always the 

same as the input dimension, Winput = Woutput, Hinput = Houtput, Dinput = Doutput.” [30] 
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Figure 13. An example of an input volume going through a ReLU activation, max (0, x) [30] 

Pooling Layers 

Pooling layers are primarily used to reduce the spatial size of an input volume and 

are placed in-between consecutive Convolutional layers. Pooling allows to reduce the 

number of parameters and computation in the network and helps to control overfitting. 

Pooling layers operate on each of the depth slices of an input independently using either 

the max or average function. Max Pooling is typically done in the middle of the CNN 

architecture to reduce spatial size, whereas average Pooling is normally used as the final 

layer of the network, like GoogLeNet, SqueezeNet, ResNet where it is wished to avoid 

using FC layers entirely. A pooling operation is shown in Figure 14. As seen from the 

figure, decrease in input size depends on the size of pooling layer and stride.  

 

Figure 14. An example of a Pooling operation with different strides [42] 
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Fully-Connected Layers 

As the name suggests, in a Fully-Connected layer, neurons are fully connected to 

all activations in the previous layer. Fully-Connected layers are always placed at the end 

of the network. This layer basically takes an input volume (whatever the output is of the 

conv or ReLU or pool layer preceding it) and outputs an N dimensional vector; where N 

is the number of classes that the program must realize. The development of the model 

will use classes denoted by numerical order representing Angry = 0, Disgust = 1, Happy 

= 2, Sad = 3, Fear = 4, Surprise = 5, Neutral = 6. The output vector can be represented as 

a vector of probability values, such as [0 .1 .1 .75 0 0 .05], representing a 10% probability 

that the image detects a Disgust expression, a 10% probability that the image detects 

Happy expression, a 75% probability that the image contains Sad expression, and a 5% 

probability that the image displays a Neutral expression.  

Batch Normalization  

Batch Normalization layers [43] are used to normalize the activations of a given 

input volume before passing it into the next layer in the network. If 𝑥𝑥 is considered as the 

mini-batch of activations, then the normalized 𝒙𝒙� can be computed using the following 

equation, 

 
𝒙𝒙� =

𝑥𝑥𝑖𝑖 −  𝜇𝜇𝛽𝛽

�𝜎𝜎𝛽𝛽2 + ε
 

(1) 

 Here, 𝜇𝜇𝛽𝛽 and 𝜎𝜎𝛽𝛽2 are respectively mean and variance over each mini-batch of 

training images, 𝛽𝛽. The error 𝜀𝜀 is set equal to a small positive value in the range of 1e-7 

to avoid dividing by zero. Applying (1) implies that the activations leaving a Batch 

Normalization layer will have approximately zero mean and unit variance (i.e., zero-
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centered). At testing time, the mini-batch 𝜇𝜇𝛽𝛽  and  𝜎𝜎𝛽𝛽2 are replaced with running averages 

of 𝜇𝜇𝛽𝛽  and  𝜎𝜎𝛽𝛽2 computed during the training process. This ensures that images through the 

network can be passed and obtain an accurate prediction without being biased by the 𝜇𝜇𝛽𝛽  

and  𝜎𝜎𝛽𝛽2 from the final mini-batch passed through the network during the training phase 

[30].  

Batch Normalization has been shown to be extremely useful for the following 

effects in the network. 

• It reduces the number of epochs a NN takes to train itself. 

• It stabilizes training by allowing for a wide variety of learning rate and 

regularization techniques.  

• It provides stable loss curve as it helps to minimize loss.  

Dropout  

Dropout is actually a form of regularization that aims to help prevent overfitting 

by increasing the testing accuracy, and possibly at the expense of training accuracy. For 

each mini-batch in the training set, Dropout layers, with probability p, randomly 

disconnect inputs from the preceding layer to the next layer in the network architecture 

[30]. Figure 15 shows dropout operation with a value of 0.5 where 50% connections from 

previous layer are dropped. 

 

Figure 15. Effect of no Dropout (left) and Dropout with a value of 0.5 (right) 
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The Dropout method helps the model to generalize by reducing overfitting 

because dropping some connections to the previous layer ensures there are multiple nodes 

instead of one when presented with a given pattern i.e. filter.  

In this chapter, the role of a CNN in image recognition is discussed, and why it is 

the best path for facial expression recognition. Finally, the building blocks of a CNN are 

discussed in detail.  
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V. METHODOLOGY FOR DETECTING FACIAL EXPRESSIONS 

In this chapter, the four main components of a CNN are discussed pertaining of its 

datasets, loss function, model Architecture, and optimization approach. These 

components will be discussed as in how these components have a significant role in the 

outcome of facial expression recognition. Training and testing the model along with some 

preprocessing, hyperparameter tuning and regularization will also be discussed in detail. 

The work flow of the methodology starts with collecting and labeling datasets followed 

by specifying the CNN model architecture. Next step is to specify the loss function then 

apply preprocessing techniques. To better understand the methodology of each layer of 

CNN, mathematical explanation of how each layer of the model works is also added. 

Finally, training of the model with specified optimization method and tuning of the 

hyperparameters are discussed.  

Datasets 

 The problem of finding a facial expression recognition model is a supervised 

learning problem in which the CNN model is trained with examples or data so that it can 

teach itself to perform the classification when unobserved data is given. For this thesis, 

facial expressions were needed to be classified by a CNN model and for that it was 

essential to have datasets which contain images of seven different facial expressions. 

Two datasets were used for training the facial expression recognition CNN model. The 

dataset is the first component in training a neural network – the data itself along with the 

problem we are trying to solve define our end goals. 

The first dataset that was used in this thesis is the dataset used in the Kaggle's 

“Challenges in Representation Learning: Facial Expression Recognition Challenge” [17]. 
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It is known as the FER2013 dataset and can be found in [18]. The dataset consists of 

48x48 pixel grayscale images of faces with seven categories (0=Angry, 1=Disgust, 

2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral). The training set consists of 28,709 

unique examples of the seven categories. The public test set used for the leaderboard 

consists of 3,589 examples. The final test set, which was used to determine the winner of 

the competition, consists of another 3,589 examples. A preview of images of the 

FER2013 dataset is shown in Figure 16. 

 

Figure 16. Image contents of FER2013 dataset showing different emotions 

 The Karolinska Directed Emotional Faces (KDEF) dataset was used to address 

the problem of recognizing facial expressions from different viewpoints, different angles. 

The KDEF dataset provides images to address the different angles for training and testing 

of the model. The KDEF dataset contains 4,900 pictures of human facial expressions with 

indicated emotions. The dataset contains 70 individuals, each displaying seven different 

emotional expressions, and photographed twice from five different angles. An example of 

the KDEF dataset can be better seen in Figure 17.  

 

 

 

 Figure 17. Image contents of KDEF dataset showing image of surprise expression from 

five different angles 
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 It was also considered to develop the DCNN model in such a way that will enable 

children with ASD to use the app while lying on bed and for this reason upward and 

downward viewpoints were also necessary. Unfortunately, no dataset was found that have 

these types of images containing the seven different expressions. For this reason, images 

showing different expressions from upward and downward angles were collected from 

different sources, and they were stacked together to form a dataset of nearly 500 images. 

The dataset was used on top of the FER2013 and KDEF datasets while training the 

model. However, only the happy and sad expressions were found in these images. A 

sample of images from this dataset is shown in Figure 18. In proof of usability, having 

top and bottom viewpoints is not that much necessary as the child can easily move the 

gadget and tilt it in order to recognize a facial expression. Also, as the FER2013 dataset 

contains nearly 30,000 images and they vary slightly in angles, the model was trained to 

deal with some variations in upward and downward direction. Therefore, the model is 

capable of handling upward and downward viewpoints variations through tilting the 

device towards the face and is able to recognize the expressions. 

 

Figure 18. Images captured from upward direction showing happy expression 

 The other aspect to overcome in the model design is to recognize the face and 

associated expressions in darker and brighter lighting conditions. For this component, the 

datasets were modified by changing their brightness using OpenCV in Python and train 

the model including with those datasets. An example of the modified datasets with 
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different lighting contrasts are shown in Figure 19. All of these datasets were included to 

make the dataset more robust and flexible when dealing with different lighting 

conditions.  

 

Figure 19. Original picture from the FER2013 dataset (middle), darker versions of the picture are on 

the left and brighter versions of the picture are on the right. Each image represents a dataset 

containing images of same brightness 

DCNN Model Architecture 

The deep convolutional neural network (DCNN) used for this model design is 

inspired by the family of VGGNet networks [44], specially the VGG16 architecture 

design. The design idea is also heavily inspired by [30] in terms of layers formation and 

their output size. As the model was first trained with the FER2013 dataset, the output size 

of different layers of the model are consistent with the FER2013 dataset and those were 

modified later when other datasets came into play. The initial DCNN model architecture 

is shown below in Figure 20. The initial model takes an input image of 48 × 48 pixel and 

processes it through several Convolution, Max-Pooling, and Fully- Connected layer 

providing the final output of the either seven classes: Anger, Disgust, Fear, Happiness, 

Sadness, Surprise, and Neutral. The initial DCNN model is also tabulated in Table 1. 

All the convolution layers have a filter size of 3×3 and all the Pooling layers have 

a pool size of 2×2. These are part of hyperparameters and were tuned into other values 

during training process to find the optimized model. Neither in the diagram in Figure 20 

nor in the Table 1, the Activation, Batch Normalization or the Dropout layers are 

included. Every Convolution layer is followed by an Activation layer, and the Batch 
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Normalization is also included after every activation layer to gain higher accuracy. The 

Pooling and Dropout layer values are also hyperparameters and were tuned throughout 

the whole training process. The Dropout layer is normally used after Fully-Connected 

layers, but after performing run trials, it has been seen that using the Dropout after each 

Pooling layer helps reducing overfitting of the model. This idea was also taken from [30]. 

Therefore, the convolution-pooling group consists of Convolution, Activation, Batch 

Normalization, Pooling, and Dropout layers respectively. The Fully-Connected layers 

consists of similar architecture such as Fully-Connected, Activation, Batch 

Normalization, Pooling, and Dropout layers respectively. A Softmax classifier is used to 

categorize the image into the seven distinct facial expressions categories. For all the 

datasets, the same architecture was used by only updating the output value, 

hyperparameters values, and finally coming up with the final model. The initial model is 

shown to specify the starting point of optimization and understanding all the consecutive 

training process of the evolved model. The final model architecture with output values 

used for the app will be discussed during the training and optimization process section. 

Table 1. DCNN Architecture 

Type of Layer Output Size Filter / Pool 
Size 

Input Layer 48 × 48 × 1 3 × 3 
Convolution 48 × 48 × 32 3 × 3 
Convolution 48 × 48 × 32 3 × 3 
Max-Pooling 24 × 24 × 32 2 × 2 
Convolution 24 × 24 × 64 3 × 3 
Convolution 24 × 24 × 64 3 × 3 
Max-Pooling 12 × 12 × 64 2 × 2 
Convolution 12 × 12 × 128 3 × 3 
Convolution 12 × 12 × 128 3 × 3 
Convolution 12 × 12 × 128 3 × 3 
Max-Pooling 6 × 6 × 128 2 × 2 

Fully Connected 64  
Fully Connected 64  
Fully Connected 7  

Softmax 7  



 

 

 

 

 

 

Figure 20. Architecture of the implemented DCNN (Figure is generated by adapting the code from https://github.com/gwding/draw_convnet) 
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The Loss Function  

 A loss function is needed to be defined for a neural network to find the optimal 

solution through gradient descent. For nearly all image classification problem, and 

specially for a CNN, Softmax classifier is the most popular loss function which is a 

categorical cross-entropy loss function. The Softmax classifier is a generalization of the 

binary form of Logistic Regression. The mapping function 𝑓𝑓 is defined by the set of input 

data 𝑥𝑥𝑖𝑖 and weight matrix 𝑊𝑊 such as, 

 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑊𝑊) =  𝑊𝑊𝑥𝑥𝑖𝑖 (2) 
  

This is also known as the scoring function and denoted by 𝑆𝑆. The function can be 

used to derive normalized probability for each class label, and the loss function for a 

single data point, 𝐿𝐿𝑖𝑖 can be found as,  

 𝐿𝐿𝑖𝑖 =  −log (
𝑒𝑒𝑆𝑆𝑦𝑦𝑖𝑖
∑ 𝑒𝑒𝑆𝑆𝑗𝑗𝑗𝑗

) (3) 

 

 Therefore, the loss function for the whole dataset, 𝐿𝐿 can be found by taking the 

average: 

 𝐿𝐿 =
1
𝑁𝑁

 �𝐿𝐿𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (4) 

 

For facial expression recognition DCNN model, other loss functions were also considered 

and tested during the training process of the model. But it was found that Softmax 

classifier performed better which is usually the case for CNNs. It is also useful in the 

sense that it provides percentage probability as an output for each class label which 

makes it easier to extract the model output results effectively. 
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Preprocessing 

As a preprocessing tool, histogram equalization has been used in this thesis. It is 

done to all the images in a dataset before feeding it into the CNN model. It helps to 

correctly classify darker images as well as brighter images. After applying histogram 

equalization, each image from different lighting conditions looks similar. As a result, it is 

easy for the CNN model to recognize and classify different expressions and the 

performance of CNN increases significantly.  

The histogram equalization can be better explained if the term ‘Histogram’ is well 

known. Histogram can be defined as a graphical representation of the intensity 

distribution of an image. In other words, it represents the number of pixels for each 

intensity value considered. Figure 21 shows the histogram value mapping (right) of an 

image (left) with poor feature contrast and with high concentrated color values. From 

Figure 21, the x-axis represents the tonal scale (black at the left and white at the right), 

and the y-axis represents the number of pixels in an image. Here, the histogram shows the 

number of pixels for each brightness level (from black to white), and when there are more 

pixels, the peak at the certain brightness level is higher. 

 

Figure 21. Histogram of an image [45] 
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 The histogram equalization method is a computer image processing technique 

used to improve contrast in images. It accomplishes the transformation by effectively 

spreading out the most frequent intensity values of the image throughout the color 

spectrum. This method usually increases the global contrast of images when its usable 

data is represented by close contrast values. This allows for areas of lower local contrast 

to gain a higher contrast [45]. Result of the histogram equalization is shown in Figure 22. 

 

Figure 22. Result of histogram equalization 

The effect of the histogram equalization transforms images with low and high 

contrasts to a sharper image with enhanced identifiable outlines. The preprocessing phase 

to the model improves the recognition of faces and expression in very dark and very 

bright lighting contrasts. A sample image from the KDEF dataset showing the conversion 

of the dark and bright images to the histogram equalized image before feeding the 

transformed image to the CNN is shown in Figure 23. 

 

Figure 23. Effect histogram equalization in this thesis. Dark image(left), histogram equalized 

image(middle) and bright image(right) 
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The CNN Model Mathematical Representation 

Histogram equalization 

Let, 𝑥𝑥 [𝑖𝑖, 𝑗𝑗] be the input image of size 48 × 48 pixels. Number of possible 

intensity values can be from 0 to 255, total of 256, 0 means full black and 255 means full 

white. If this is denoted by 𝑙𝑙, then 𝑙𝑙 = 256. Now, normalized histogram of x can be 

defined as, 

 𝑃𝑃𝑛𝑛 =  
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁 𝑜𝑜𝑓𝑓 𝑝𝑝𝑖𝑖𝑥𝑥𝑒𝑒𝑙𝑙𝑠𝑠 𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑖𝑖𝑖𝑖𝑤𝑤𝑒𝑒𝑖𝑖𝑠𝑠𝑖𝑖𝑤𝑤𝑖𝑖 𝑖𝑖

𝑇𝑇𝑜𝑜𝑤𝑤𝑇𝑇𝑙𝑙 𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁 𝑜𝑜𝑓𝑓 𝑝𝑝𝑖𝑖𝑥𝑥𝑒𝑒𝑙𝑙𝑠𝑠
 (5) 

  

Here, 𝑖𝑖 = 0, 1, 2, ……………, 𝑙𝑙 − 1. If this histogram equalized image is denoted 

as 𝐴𝐴[𝑖𝑖, 𝑗𝑗], then it can be expressed as, 

 𝐴𝐴[𝑖𝑖, 𝑗𝑗] =  �(𝑙𝑙 − 1) � 𝑃𝑃𝑛𝑛

𝑥𝑥[𝑖𝑖,𝑗𝑗]

𝑛𝑛=0

� (6) 

 

Here, ⌊. ⌋ denotes the floor operation. The floor operation returns the largest 

integer that is equal or smaller to the input. For example, 𝑓𝑓𝑙𝑙𝑜𝑜𝑜𝑜𝑁𝑁(2.56) =  ⌊2.56⌋ = 2. 

The image 𝐴𝐴[𝑖𝑖, 𝑗𝑗] is fed into the Convolution layer outputting an image 𝐵𝐵[𝑖𝑖, 𝑗𝑗]. 

 𝐴𝐴[𝑖𝑖, 𝑗𝑗]
𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝐶𝐶𝑛𝑛
�⎯⎯⎯⎯⎯⎯⎯⎯�  𝐵𝐵[𝑖𝑖, 𝑗𝑗] (7) 

 

Model Layers 

(1) First Set of Convolutional Layers 

Next, the math will be broken down for each set of convolutions, activations, 

Batch Normalization and Pooling layer. From the model architecture discussed 

previously and also from Table 1, first set of such pair can be written as CONV followed 

by ELU, and then BN and after that again CONV followed by ELU, BN and POOL 
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respectively. The CONV denotes a Convolution layer, ELU is the Activation function, 

BN refers to Batch Normalization and POOL refers to a Pooling layer. The model was 

trained with both the ReLU and ELU Activation functions but better result, discussed in 

the next chapter, were obtained by utilizing ELU Activation function. Therefore, the 

mathematical expression associated with the ELU function are described here.  

For the first CONV layer, (7) can be rewritten as, 

 𝐵𝐵[𝑖𝑖, 𝑗𝑗] =  � � 𝐴𝐴[𝑖𝑖 + 𝑘𝑘1, 𝑗𝑗 + 𝑘𝑘2] 𝑊𝑊1[𝑘𝑘1,𝑘𝑘2]
2

𝑘𝑘2=0

2

𝑘𝑘1=0

 (8) 

 

Here, 𝑊𝑊1 is the kernel, or filter, of size  3 ×  3. Due to the filter size, 𝑘𝑘1 =

0: 2,𝑘𝑘2 = 0: 2. It is to denote that all the Convolution layer used in this model have the 

same zero padding at 𝑝𝑝 = 1 and stride 𝑠𝑠 = 1. There are three types of zero padding – full, 

same, and valid. For the CNN model, the same padding configuration is used due to its 

preservation of the height and width of the input images, or tensors, which makes the 

design of the network architecture more efficient. For this model design, the spatial size 

was preserved in the Convolution layer using the same padding and spatial size and 

decreased via the Pooling layers. The padding is shown in Figure 24. 

 

Figure 24. An example of same padding 
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 In Figure 24 with same padding at 𝑝𝑝 = 1, it refers to an extra layer of zeros all 

around the input matrix, and the output of the same size is preserved. In the Pooling 

operation, it is observed how this spatial size is decreased using valid padding at 𝑝𝑝 = 0 

and stride at 𝑠𝑠 = 2.  The layers output size can be computed as, 

 𝑜𝑜 =  �
𝑖𝑖 + 2𝑝𝑝 −𝑁𝑁

𝑠𝑠
� + 1 (9) 

 

 Here, the 𝑖𝑖 term refers to the input pixel size of the image, 𝑝𝑝 is the padding used, 

𝑁𝑁 is the filter size, and 𝑠𝑠 is the stride value. Therefore, the input image is a size of 48, 

𝑖𝑖 = 48, and the output size = 48 as required for the design. The size operation is shown 

in (10). 

 𝑜𝑜 =  �
48 + 2 × 1 − 3

1
� + 1 =  48  (10) 

 

For the ELU layer, it takes the convoluted image 𝐵𝐵[𝑖𝑖, 𝑗𝑗] as its input and outputs a 

𝐶𝐶[𝑖𝑖, 𝑗𝑗] image such that 

 𝐶𝐶[𝑖𝑖, 𝑗𝑗] =  𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸(𝐵𝐵[𝑖𝑖, 𝑗𝑗]) =  �
𝐵𝐵[𝑖𝑖, 𝑗𝑗] ;  𝑖𝑖𝑓𝑓 𝐵𝐵[𝑖𝑖, 𝑗𝑗]  ≥ 0
𝑒𝑒𝐵𝐵[𝑖𝑖,𝑗𝑗] − 1;  𝑂𝑂𝑤𝑤ℎ𝑒𝑒𝑁𝑁𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒

 (11) 

 

 The image 𝐶𝐶[𝑖𝑖, 𝑗𝑗] is batch normalized and the BN layer comes into effect. The 

output from the Batch Normalization is a 𝐷𝐷[𝑖𝑖, 𝑗𝑗] image. For the transformation, the mean 

and variance are calculated first as shown below in (12) and (13). If the mini-batch mean 

and variance are denoted by 𝜇𝜇𝐵𝐵, 𝜎𝜎𝐵𝐵2 respectively, then, 

 𝜇𝜇𝐵𝐵 =
1

48 × 48
 ��𝐶𝐶[𝑖𝑖, 𝑗𝑗]

48

𝑗𝑗=1

48

𝑖𝑖=1

 (12) 
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The input image of size 48 × 48 pixels is fed as an input, that’s why it has been 

used in this equation. One point to be noted here that, the math formulas shown here in 

this chapter will remain same throughout the thesis except the only change will occur is 

in the size of the image such that 48 × 48 may become 100 × 100 after training and 

optimization if the model is tuned. The formulas for computation of different layers will 

remain same, just the values will change. So, for the final model used in the app that will 

be discussed later in the results chapter will contain no more mathematical explanation.  

The variance 𝜎𝜎𝐵𝐵2 is obtained as, 

 𝜎𝜎𝐵𝐵2 =  
1

48 × 48
 ��(𝐶𝐶[𝑖𝑖, 𝑗𝑗] −  𝜇𝜇𝐵𝐵)2

48

𝑗𝑗=1

48

𝑖𝑖=1

  (13) 

 

The normalized image of 𝐶𝐶 [𝑖𝑖, 𝑗𝑗] can be written as the output 𝐷𝐷 [𝑖𝑖, 𝑗𝑗] as, 

 𝐷𝐷[𝑖𝑖, 𝑗𝑗] =  �̂�𝐶[𝑖𝑖, 𝑗𝑗] =  
𝐶𝐶[𝑖𝑖, 𝑗𝑗]−  𝜇𝜇𝐵𝐵

�𝜎𝜎𝐵𝐵2
  (14) 

 

During the training of the model, 𝐷𝐷[𝑖𝑖, 𝑗𝑗] can be written in terms of the learnable 

parameters that are learned and updated by the CNN itself. This equation is shown below 

 𝐷𝐷[𝑖𝑖, 𝑗𝑗] =  𝛾𝛾�̂�𝐶[𝑖𝑖, 𝑗𝑗] + 𝛽𝛽 (15) 
 

Here, 𝛾𝛾 and 𝛽𝛽 are learnable parameters which are functions of 𝜇𝜇𝐵𝐵 and 𝜎𝜎𝐵𝐵2. 

The three layers of CONV, ELU and BN again repeats for the model design. 

Using of two Convolution layers consecutively is necessary with a large number of 

pictures, supports the learning convergence, and performance of the CNN model. The 

mathematical representation is same for these three layers as shown in (8), (11), (12), 
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(13), and (14). Therefore, after performing computation in these three layers, an output 

image of 𝐺𝐺[𝑖𝑖, 𝑗𝑗] will be available as the input to the POOL layer in (16). 

 𝐷𝐷[𝑖𝑖, 𝑗𝑗]
𝐶𝐶𝐶𝐶𝑁𝑁𝐶𝐶
�⎯⎯� 𝐸𝐸[𝑖𝑖, 𝑗𝑗]

𝐸𝐸𝐸𝐸𝐸𝐸
�⎯� 𝐹𝐹[𝑖𝑖, 𝑗𝑗]

𝐵𝐵𝑁𝑁
�� 𝐺𝐺[𝑖𝑖, 𝑗𝑗] (16) 

 

After the Batch Normalization layer, a Pooling layer is applied and, the spatial 

size of 𝐺𝐺[𝑖𝑖, 𝑗𝑗] is decreased to a 24 × 24 by applying a 2 × 2 filter, a padding at 𝑝𝑝 = 0, 

and stride 𝑠𝑠 = 2. The effect of applying such parameters can be seen through the example 

in Figure 25. 

 

Figure 25. Effect of using a filter of size 𝟐𝟐 × 𝟐𝟐 with zero padding with a stride, s=2 on an input image 

of size 𝟒𝟒 × 𝟒𝟒.The resultant image is of size 𝟐𝟐 × 𝟐𝟐. 

  The mathematical equation representing the POOL operation is given below 

 𝐻𝐻[𝑖𝑖, 𝑗𝑗] = 𝑁𝑁𝑇𝑇𝑥𝑥(𝐺𝐺[𝑖𝑖 + 𝑁𝑁, 𝑗𝑗 + 𝑖𝑖]) (17) 
 

 Here, 𝑖𝑖 = 𝑗𝑗 = 0: 23 as the output size is 24, and 𝑁𝑁 = 𝑖𝑖 = 0: 1, and using a 2 × 2 

filter. Verification of the output size is shown by using (9) as, 

 𝑜𝑜 =  �
48 + 2 × 0 − 2

2
� + 1 =  24 (18) 

 

 Throughout these set of layers shown above, number of filters used in each 

convolution layer and Pooling layer were 32. In the next set of layers, this number will be 
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doubled to 64 to better learn the low-level features of the images showing different 

expressions. 

(2) Second Set of Convolutional Layers  

These set of layers work exactly the same way as shown for the previous set of layers 

with the exception of input size and number of filters used. Throughout these set of 

layers, 64 filters have been used for each layer. However, the filter size, padding and 

stride value remained same for the corresponding layers. For the first CONV layer, the 

input image will be the output from the previous POOL layer denoted as 𝐻𝐻[𝑖𝑖, 𝑗𝑗] and the 

output of this layer is 𝐼𝐼[𝑖𝑖, 𝑗𝑗] as shown in (19). This output image is the input of the ELU 

layer and output of ELU layer is 𝐽𝐽[𝑖𝑖, 𝑗𝑗] as shown in (20). Batch Normalization is then 

applied to 𝐽𝐽[𝑖𝑖, 𝑗𝑗] and output of this layer is 𝐾𝐾[𝑖𝑖, 𝑗𝑗] as shown in (21). 

 𝐼𝐼[𝑖𝑖, 𝑗𝑗] =  � �𝐻𝐻[𝑖𝑖 + 𝑙𝑙1, 𝑗𝑗 + 𝑙𝑙2] 𝑊𝑊3[𝑙𝑙1, 𝑙𝑙2]; 𝑖𝑖 = 𝑗𝑗 = 0: 23
2

𝐶𝐶2=0

2

𝐶𝐶1=0

 (19) 

 

 𝐽𝐽[𝑖𝑖, 𝑗𝑗] =  𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸(𝐼𝐼[𝑖𝑖, 𝑗𝑗]) =  �
𝐼𝐼[𝑖𝑖, 𝑗𝑗] ;  𝑖𝑖𝑓𝑓 𝐼𝐼[𝑖𝑖, 𝑗𝑗]  ≥ 0
𝑒𝑒𝐼𝐼[𝑖𝑖,𝑗𝑗] − 1;  𝑂𝑂𝑤𝑤ℎ𝑒𝑒𝑁𝑁𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒

 (20) 

 

 𝐾𝐾[𝑖𝑖, 𝑗𝑗] =
𝐽𝐽[𝑖𝑖, 𝑗𝑗] − 1

24 × 24 ∑ ∑ 𝐽𝐽[𝑖𝑖, 𝑗𝑗]24
𝑗𝑗=1

24
𝑖𝑖=1

 � 1
24 × 24 ∑ ∑ (𝐶𝐶[𝑖𝑖, 𝑗𝑗] −  1

24 × 24 ∑ ∑ 𝐽𝐽[𝑖𝑖, 𝑗𝑗]24
𝑗𝑗=1

24
𝑖𝑖=1 )224

𝑗𝑗=1
24
𝑖𝑖=1

 (21) 

 

Keeping 𝑖𝑖 = 𝑗𝑗 = 0: 23 and same number of filters these three steps repeats again 

such that 

 𝐾𝐾[𝑖𝑖, 𝑗𝑗]
𝐶𝐶𝐶𝐶𝑁𝑁𝐶𝐶
�⎯⎯� 𝐿𝐿[𝑖𝑖, 𝑗𝑗]

𝐸𝐸𝐸𝐸𝐸𝐸
�⎯�𝑀𝑀[𝑖𝑖, 𝑗𝑗]

𝐵𝐵𝑁𝑁
�� 𝑁𝑁[𝑖𝑖, 𝑗𝑗] (22) 
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Output size of 𝑁𝑁[𝑖𝑖, 𝑗𝑗] is 24 × 24 × 64, where 64 is the number of kernels, which 

is also known as the depth of the image. This output will be the input of the next max-

pooling layer, in where the spatial size is reduced to 12 × 12, and number of filters will 

be doubled to 128 after this Pooling layer. For this phase, the height and width of the 

image will be reduced, and depth will be increased in order to learn the high-level 

features of the image in the next set of Convolution layers. The Pooling operation at this 

stage is expressed by,  

 𝑂𝑂[𝑖𝑖, 𝑗𝑗] = 𝑁𝑁𝑇𝑇𝑥𝑥(𝑁𝑁[𝑖𝑖 + 𝑁𝑁, 𝑗𝑗 + 𝑖𝑖]) (23) 
 

Here,  𝑖𝑖 = 𝑗𝑗 = 0: 11 as the output size is 12 and 𝑁𝑁 = 𝑖𝑖 = 0: 1 as the filter size is 

2 × 2. The output size can again be verified by equation (9). 

 𝑜𝑜 =  �
24 + 2 × 0 − 2

2
� + 1 =  12 (24) 

 

(3) Third Set of Convolutional Layers 

The set of layers work exactly the same way as shown for the previous set of 

layers with the exception of input size and number of filters used. Also, here, there is an 

extra set of CONV, ELU, and BN layers compared to previous layers. Throughout these 

set of layers, 128 filters have been used for each layer. But, the filter size, padding and 

stride value remained same for the corresponding layers. For the first CONV layer, the 

input image will be the output from the previous POOL layer indicated by 𝑂𝑂[𝑖𝑖, 𝑗𝑗] and the 

output of this layer 𝑃𝑃[𝑖𝑖, 𝑗𝑗] is shown in (25). Output of ELU is 𝑄𝑄[𝑖𝑖, 𝑗𝑗] as shown in (26) and 

output of BN is 𝑅𝑅[𝑖𝑖, 𝑗𝑗] as shown in (27). 

 𝑃𝑃[𝑖𝑖, 𝑗𝑗] = � � 𝑂𝑂[𝑖𝑖 + 𝑁𝑁1, 𝑗𝑗 + 𝑁𝑁2] 𝑊𝑊5[𝑁𝑁1,𝑁𝑁2]; 𝑖𝑖 = 𝑗𝑗 = 0: 11
2

𝑚𝑚2=0

2

𝑚𝑚1=0

 (25) 



 

 46 

 

 𝑄𝑄[𝑖𝑖, 𝑗𝑗] =  𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸(𝑃𝑃[𝑖𝑖, 𝑗𝑗]) =  �
𝑃𝑃[𝑖𝑖, 𝑗𝑗] ;  𝑖𝑖𝑓𝑓 𝑃𝑃[𝑖𝑖, 𝑗𝑗]  ≥ 0
𝑒𝑒𝑃𝑃[𝑖𝑖,𝑗𝑗] − 1;  𝑂𝑂𝑤𝑤ℎ𝑒𝑒𝑁𝑁𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒

 (26) 

 

 𝑅𝑅[𝑖𝑖, 𝑗𝑗] =
𝑄𝑄[𝑖𝑖, 𝑗𝑗] − 1

12 × 12 ∑ ∑ 𝑄𝑄[𝑖𝑖, 𝑗𝑗]12
𝑗𝑗=1

12
𝑖𝑖=1

 � 1
12 × 12 ∑ ∑ (𝑄𝑄[𝑖𝑖, 𝑗𝑗] −  1

12 × 12 ∑ ∑ 𝑄𝑄[𝑖𝑖, 𝑗𝑗]12
𝑗𝑗=1

12
𝑖𝑖=1 )212

𝑗𝑗=1
12
𝑖𝑖=1

 (27) 

 

Keeping 𝑖𝑖 = 𝑗𝑗 = 0: 11 and same number of filters these three steps repeat twice 

such that 

 𝑅𝑅[𝑖𝑖, 𝑗𝑗]
𝐶𝐶𝐶𝐶𝑁𝑁𝐶𝐶
�⎯⎯� 𝑆𝑆[𝑖𝑖, 𝑗𝑗]

𝐸𝐸𝐸𝐸𝐸𝐸
�⎯� 𝑇𝑇[𝑖𝑖, 𝑗𝑗]

𝐵𝐵𝑁𝑁
�� 𝑈𝑈[𝑖𝑖, 𝑗𝑗]

𝐶𝐶𝐶𝐶𝑁𝑁𝐶𝐶
�⎯⎯� 𝑉𝑉[𝑖𝑖, 𝑗𝑗]

𝐸𝐸𝐸𝐸𝐸𝐸
�⎯�𝑊𝑊[𝑖𝑖, 𝑗𝑗]

𝐵𝐵𝑁𝑁
�� 𝑋𝑋[𝑖𝑖, 𝑗𝑗] (28) 

 

The output of 𝑋𝑋[𝑖𝑖, 𝑗𝑗] is fed to the Pooling layer where spatial size is decreased to a 

6 × 6 using a 2 × 2 filter with a padding at 𝑝𝑝 = 0 and stride 𝑠𝑠 = 2. The POOL operation 

is given by:  

 𝑌𝑌[𝑖𝑖, 𝑗𝑗] = 𝑁𝑁𝑇𝑇𝑥𝑥(𝑋𝑋[𝑖𝑖 + 𝑁𝑁, 𝑗𝑗 + 𝑖𝑖]) (29) 
 

Here,  𝑖𝑖 = 𝑗𝑗 = 0: 5 as the output size is 12 and 𝑁𝑁 = 𝑖𝑖 = 0: 1. The output size is 

verified by (9). 

 𝑜𝑜 =  �
12 + 2 × 0 − 2

2
� + 1 =  6 (30) 

 

(4) Fully-Connected Layer (Dense) 

Fully-Connected layers work in the similar way as a Convolution layer works. 

After performing Dense operation, ELU and BN are applied. Also, the same workflow 

repeats again as seen from the model architecture in Table 1. However, before applying 

the dense layer, output from the POOL layer 𝑌𝑌[𝑖𝑖, 𝑗𝑗] is flattened to convert it from 2D to 
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1D. This is needed to predict the probability of each class in the Softmax layer. Because 

Fully-Connected layer takes input as a one-dimensional vector; it can’t process 2D 

images as a Convolutional layer operates. Therefore, after performing a Flatten operation, 

the total data points remaining is 6 × 6 × 128 = 4608. This Flatten operation is shown 

in (31). 

 𝑍𝑍[𝑝𝑝] × 128 = 𝑌𝑌[𝑖𝑖, 𝑗𝑗] × 128 (31) 
 

 Here, 𝑝𝑝 = 𝑖𝑖 × 𝑗𝑗 = 6 × 6 = 36. The Flatten operation can be visualized as shown 

in Figure 26. 

 

Figure 26. An example of Flatten operation 

Now, the first set of Dense, ELU, and BN layers can be described mathematically 

as in (32), (33), and (34) respectively.  

 𝑇𝑇[𝑞𝑞] = 𝑍𝑍[𝑝𝑝] ∙ 𝑾𝑾 (32) 
 

Here, 𝑞𝑞 = 0: 63 and 𝑾𝑾 is a learnable kernel/filter during training which is knows 

as weight matrix. The size of this matrix is learnt by CNN itself as the output size of 

Dense layer is given by the user. Now, this output is the input to the ELU layer. 
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 𝑁𝑁[𝑞𝑞] =  𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸(𝑇𝑇[𝑞𝑞]) =  �
𝑇𝑇[𝑞𝑞] ;  𝑖𝑖𝑓𝑓 𝑇𝑇[𝑞𝑞]  ≥ 0
𝑒𝑒𝑎𝑎[𝑞𝑞] − 1;  𝑂𝑂𝑤𝑤ℎ𝑒𝑒𝑁𝑁𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒

 (33) 

 

 𝑐𝑐[𝑞𝑞] =
𝑁𝑁[𝑞𝑞] − 1

64 ∑ 𝑁𝑁[𝑞𝑞]63
𝑞𝑞=1

 � 1
64 ∑ (𝑁𝑁[𝑞𝑞] − 1

64 ∑ 𝑁𝑁[𝑞𝑞]63
𝑞𝑞=1 )263

𝑞𝑞=1

 (34) 

 

After the Batch Normalization, the second set of Dense, ELU, and BN is applied 

containing the same output of 64 vectors.  

 𝑐𝑐[𝑞𝑞]
𝐷𝐷𝐷𝐷𝑛𝑛𝐷𝐷𝐷𝐷
�⎯⎯�𝑑𝑑[𝑞𝑞]

𝐸𝐸𝐸𝐸𝐸𝐸
�⎯�𝑒𝑒[𝑞𝑞]

𝐵𝐵𝑁𝑁
��𝑓𝑓[𝑞𝑞] (35) 

 

The final dense layer is used to provide the scoring function for each class, in this 

case seven, and the scoring function is determined as, 

 𝑔𝑔[𝑁𝑁] =  𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸(𝑓𝑓[𝑞𝑞] ∙ 𝑲𝑲) (36) 
 

Here, 𝑁𝑁 = 0: 6 (total seven classes) and 𝑲𝑲 is learnable filter which is learnt and 

updated by the CNN itself during the training process. Finally, the probability of each 

class and training loss is calculated by the Softmax layer. The probability of each class 𝑃𝑃𝑐𝑐 

can be found by the scoring function 𝑔𝑔[𝑁𝑁], 

 𝑃𝑃𝑐𝑐 =
𝑒𝑒𝑔𝑔[𝑟𝑟]

∑ 𝑒𝑒𝑔𝑔[𝑖𝑖]7
𝑖𝑖=1

 (37) 

 

Loss of each class, 𝐿𝐿𝑐𝑐  can be computed as, 

  𝐿𝐿𝑐𝑐 = −log (𝑃𝑃𝑐𝑐) (38) 
 

Total gross-entropy loss, 𝐿𝐿𝑇𝑇𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶 is the average of total seven classes, 
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 𝐿𝐿𝑇𝑇𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶 =
1
7
�𝐿𝐿𝑖𝑖

7

𝑖𝑖=1

 (39) 

 

Training the CNN model 

All the to train the CNN model such as datasets, preprocessing, working principal 

of CNN layers, and their mathematical expressions have been discussed. The parameters 

needed to tune a CNN model during training, known as hyperparameters, and the 

optimizer and regularization techniques that were used for the model design are 

discussed.  

Optimization Method 

Before the discussion of hyperparameter tuning, it is essential to cover the final 

component of any neural network architecture – the optimization method. The literature 

review reveals there are several optimization methods available for deep learning training 

such as the Stochastic Gradient Descent (SGD) [46], RMSprop [47], Adagrad [48], 

Adadelta [49], and Adam [50] techniques. The SGD continues to be one of the most 

utilized in model design as the main optimization method. For the model approach, The 

SGD and Adam optimizers were tested against the datasets and with the model. During 

experimentation, the SGD outperforms the Adam optimizer in performance and accuracy. 

In common initial steps, the CNN is designed with the SGD optimization method. The 

Adam method is used for the CNN model design for image recognition problems and 

found to provide optimized parameters for the model. The optimizer choice depends on 

the datasets and their size, image quality and also on the model architecture.  

The standard gradient descent algorithm updates weight matrix on the entire 

training set, and it finds the approximation of the gradient. As a result, this algorithm 
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increased the training time and computationally wasteful for large datasets. Instead, the 

SGD is a simple modification to the standard gradient descent algorithm that computes 

the gradient and updates the weight matrix on small batches of the training data, rather 

than the entire training set [30]. For training a deep neural network, the SGD is 

considered to be the most important algorithm. The batch gradient descent performs 

redundant computations for large datasets, as it recomputes gradients for similar 

examples before each parameter update. The SGD method removes redundancy by 

performing one update at a time. Therefore, it is faster to converge with no negative 

effects to loss and classification accuracy.  

For the model to learn faster and reduce the training time, an extension to the 

SGD was used for the model, which is known as Nesterov Acceleration [51]. Momentum 

methods are normally used to accelerate learning in order to fast convergence. But what 

if momentum is uniform and unintelligent such that it overshoots a local minimum. In 

order to avoid such scenario, Nesterov acceleration is used which is intelligent enough to 

know when to slow down its momentum. A visual representation can better explain this 

method which is shown below in Figure 27. 

 

Figure 27. Graphical representation of the Nesterov Acceleration [52] 

In Figure 27, the blue vectors represent the standard momentum. First, the 

Nesterov acceleration makes a big jump in the direction of the previous accumulated 

gradient. Then, it measures the end point value of the gradient where it ends up and make 
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a correction. This jump is shown by the brown vector, correction is shown by the red 

vector, and the green vector represents the accumulated gradient [52].  

Regularization 

Regularization helps to reduce overfitting and provides the model the ability to 

better generalize the model. During experimentation and optimization of the model, the 

L1 and L2 regularization is added to the model to see if the model reduces overfitting and 

be able to better generalize. However, no improvement of generalizability for the final 

model were observed; therefore, no regularization was used except the inclusion of the 

Dropout layer. Additionally, some data augmentation techniques were used that 

essentially provides the model more flexibility to unobserved data, reduce overfitting, 

and enhance the ability to generalize. These techniques will be discussed in the next 

chapter while discussing result of training.  

Hyperparameter Tuning 

Tuning the hyperparameters in the training process is essential to accelerate the 

execution time of the training and efficiency of the model. In this section, different 

hyperparameters are discussed starting with the most impactful parameters and effects 

that each present to the design of the model.  

Learning rate 

The learning rate is an impactful hyperparameter in a neural network training. It 

controls by how much to update the weight in the optimization algorithm. The design 

approach is to use a fixed learning rate, a gradually decreasing learning rate, a momentum-

based methods or adaptive learning rates, and it varies on the choice of an optimizer such 

as SGD, Adam, Adagrad, AdaDelta or RMSProp.  
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For the model design and to alleviate the overfitting problem, a learning rate 

scheduler is used with the SGD optimizer. The large consideration of the learning rate 

schedulers is to increase the model’s accuracy, and its standard weight update formula is 

described as, 

 𝑊𝑊 =  −𝛼𝛼 × 𝑔𝑔𝑁𝑁𝑇𝑇𝑑𝑑𝑖𝑖𝑒𝑒𝑖𝑖𝑤𝑤 (40) 
 

Larger values of the learning rate 𝛼𝛼 such as 0.01, 0.1,0.5 represent the model is taking big 

steps towards minimum loss. Small values of 𝛼𝛼 such as 0.001, 0.0005, 0.0001 represent 

the model is taking small steps towards convergence. The learning rate schedules decay 

the initial learning rate by some decay parameter. It is necessary because if the learning 

rate is constant and high then it can overshoot some local minima and again if the 

learning rate is low initially, then the training time will be much higher. So, it is a good 

practice to initially start with a reasonable learning rate and then decay it throughout the 

training process. This decreased rate enables the network to descend into areas of the loss 

landscape that are "more optimal" and would have otherwise been missed entirely by 

larger learning rate.  

For all the experiments for the model, an initial learning rate of 0.01 was selected 

after trying out other rates such as 0.1, 0.001, and 0.0001. The best result was achieved 

with the learning rate of 0.01. The default Keras learning rate schedulers was used with a 

decay parameter of respectively 0.01/10, 0.01/20, 0.01/30, 0.01/40, and 0.01/50 with an 

optimal result achieved with a decay value at 0.01/20. The SGD optimizer was initialized 

with a momentum value of 0.9, and the Nesterov accelerated gradient was used. Keras 

applies the following formula for adjusting learning rate after every batch update. 

 𝑙𝑙𝑁𝑁 =  𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑇𝑇𝑙𝑙_𝑙𝑙𝑁𝑁 ×  (1 / (1 +  𝑑𝑑𝑒𝑒𝑐𝑐𝑇𝑇𝑖𝑖 ×  𝑖𝑖𝑤𝑤𝑒𝑒𝑁𝑁𝑇𝑇𝑤𝑤𝑖𝑖𝑜𝑜𝑖𝑖𝑠𝑠)) (41) 
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Here, the term 𝑙𝑙𝑁𝑁 refers to the learning rate, and 𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑇𝑇𝑙𝑙_𝑙𝑙𝑁𝑁 rate is 0.01. Iterations 

can be calculated as total number of training images in the dataset divided by the batch 

size. 

Number of epochs 

The number of epochs is the number of times the entire training set pass through 

the neural network. Number of epochs should be increased until a small gap between the 

test error and the training error is achieved. Initially, training of the model started with 70 

epochs and gradually increased up to 200 epochs as the dataset increased. 

Batch size 

The mini-batch is usually preferable in the learning process of a CNN because it 

reduces the training time and makes convergence faster. A range of batch sizes from 16 to 

128, by log Base-2 numbers, were utilized for experimentation steps. The model was 

tested with batch sizes of 32, 64, and 128. The best result was achieved with a batch size 

of 64. It should be noted that a CNN is sensitive to batch size as in the performance and 

accuracy depends on the batch size. 

Activation function 

The activation function introduces non-linearity to the model by mathematical 

conversion which is necessary for any machine learning algorithm as it should have the 

ability to process any function universally. As previously discussed, both ReLU and ELU 

functions have been tested on the model, and the optimal result was achieved with the 

ELU function. 
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Number of hidden layers and units 

It is usually a good practice to add more hidden layers until the test error no longer 

improves. The trade-off of adding more hidden layers is that it is computationally 

expensive to train the network. The final DCNN model has three CONV-POOL layers 

with two Fully-Connected layers at the end of the network. Having a small number of 

hidden units may lead to underfitting but having more units are usually not harmful with 

appropriate regularization. 

Weight initialization 

 The process of initializing weight matrices and bias vectors are known as weight 

initialization. There are different types of weight initialization such as constant 

initialization with zeros, or ones, uniform and normal, LeCun uniform and normal [53], 

Glorot/Xavier uniform [54] and normal, He et al./Kaiming/MSRA uniform and normal 

[55]. Keras default uniform initializer is used for the final model. But to test for better 

performance of the model, MSRA initialization was also used. The MSRA initialization 

is typically used when very deep neural networks are trained that use a ReLU-like 

activation function. To initialize the weights in a layer using He et al./MSRA 

initialization with a uniform distribution the limit is set to be,  

 𝑙𝑙𝑖𝑖𝑁𝑁𝑖𝑖𝑤𝑤 =  �6
𝐹𝐹𝑖𝑖𝑛𝑛�  (42) 

where 𝐹𝐹𝑖𝑖𝑛𝑛 is the number of input units in the layer. MSRA initialization couldn’t provide 

better results than Keras default initializer.  

Dropout for regularization 

Dropout is a preferable regularization technique to avoid overfitting in deep neural 

networks. The method applies a dropout of units in neural network according to the 
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desired probability. Dropout values were also tuned after each Convolution and Fully-

Connected layer in order to improve the performance of the model. It has been found that, 

the best accuracy was achieved with a dropout value of 0.25 after the Convolutional layers 

and a 0.5 dropout value after the Fully-Connected layers.  

 As a summary, the components needed for to train a DCNN has been discussed 

such as datasets, model architecture, loss function, preprocessing, and optimization 

methods along with mathematical explanation of each layer of the model architecture. The 

training results and experimentation methods are denoted in the following chapter. The 

algorithm development for the facial expression recognition and the methodology 

discussed in this chapter are discussed with obtained results. Further, the import of the 

model and development of the iOS app will be discussed in the later chapter.  
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VI. RESULTS AND DISCUSSION 

In this section, the training and test results with different datasets are discussed 

starting with the FER2013 dataset and its corresponding brighter and darker datasets. The 

KDEF dataset is discussed for its side angle images, as well as, its modified versions for 

different lighting conditions. Different experiments were performed by changing the 

hyperparameters which are shown via plots and tables for both of the datasets to 

understand the accuracy effects of the model. Also, the computational resources used in 

this thesis for training the CNN are discussed here. 

Computational Resources 

 For training the DCNN model used in this thesis, the LEAP (Learning, 

Exploration, Analysis, and Processing) next-generation High-Performance Computing 

(HPC) Cluster [56] of Texas State University was used. The cluster’s head-node and 120 

compute-nodes are configured with the Dell PowerEdge C6320 each with 28 CPU cores 

via two (14-core) 2.4 GHz E5-2680v4 Intel Xeon (Broadwell) processors. With 128GB 

of memory and 400GB of SSD storage per node, the compute-nodes provide an aggregate 

of 15TB of memory and 48TB of local storage. Additionally, the LEAP cluster features 

two large memory (1.5TB of RAM) nodes with 64 CPU cores via four (16-core) 2.5 GHz 

E7-8867v3 Intel Xeon (Haswell) processors. Figure 28 shows the features and 

components of the LEAP cluster. 

 All scripts used in this research were written in Python 3.5.7 programming 

language. Conventional and popular deep learning libraries such as Keras (TensorFlow 

backend), Numpy, Scikit-learn, pandas, Matplotlib are used. For image processing, 

OpenCV for python was utilized. 
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Figure 28. Features and components of LEAP cluster 

Training and Testing Results 

The initial experimentations will be discussed done with the FER2013 dataset and 

its modified version for different lighting conditions to get the best initial model for facial 

expression recognition. The model was then optimized for better results utilizing 

sideview images from the KDEF dataset and their corresponding brighter and darker 

versions. Finally, the best model will be discussed that has been imported into the iOS 

application.  

Combination of experimentation were performed to get a reliable test accuracy for 

different version of the FER2013 dataset. Different parameters of the model stated in 

previous chapter are changed in each experiment and the corresponding result is then 

compared to get the best result. Initially, the standard SGD optimizer with the ReLU 

activation function was utilized. This model had a batch size of 128 and Keras default 

kernel initializer. The model was trained with different learning rates of 0.01, 0.005, 

0.001, 0.0005, and 0.0001. However, it was seen from the loss/accuracy curves that for 
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all the above learning rates was causing the model to overfit. It is worth mentioning here 

that all these models had no Dropout layer before the Fully-Connected layers. Only after 

the Fully-Connected layers a Dropout layer with a value of 0.5 was utilized for the initial 

experiments. The best validation accuracy achieved was 60.23% with a learning rate of 

0.01.  

The next experiment was of the same configuration from the initial experiment 

but including a Dropout layer with a value of 0.25 after every Pooling layer. This 

exception made a significant increase in the validation accuracy up to 65.24% was 

achieved with a learning rate of 0.01. However, it was seen from the loss/accuracy plot 

that the model was continuing to overfit. All these models were run for 70 epochs. The 

loss/accuracy plot for this model with a learning rate of 0.01 is given in Figure 29. The 

Matplotlib library was used to generate these loss/accuracy plots. 

 

Figure 29. Loss/ Accuracy plot for the model with a learning rate of 0.01 for 70 epochs 

The learning rate schedulers, which was discussed in the previous chapter, were 

established to solve this overfitting problem in the next batch of experiments. For this 

batch of the experiment, an initial learning rate of 0.01 was selected as the best result so 
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far was achieved with this learning rate. The default Keras learning rate schedulers was 

used with a decay parameter of respectively 0.01/10, 0.01/20, 0.01/30, 0.01/40, and 

0.01/50. The SGD optimizer was initialized with a momentum value of 0.9 and Nesterov 

accelerated gradient was used. Nesterov accelerated gradient was described in the 

previous chapter. 

From this batch of the experiment, the overfitting problem is removed in expense 

of validation accuracy. The best result from this experiment was with a decay parameter 

of 0.01/20 and the validation accuracy was 63.77%. The loss/accuracy plot for this model 

is given in Figure 30. From the loss/accuracy plot it is seen that both loss and accuracy of 

the model do not actually stagnate after epoch 70. For the next experiment the approach 

was to increase the number of epochs from 70 to 100.  

 

Figure 30. Loss/ Accuracy plot for the model of the third experiment with a starting learning rate of 

0.01 and a decay parameter of 0.01/20. 

For the next experiment, the number of epochs were increased to 100, and the 

activation function was also changed from the ReLU to the ELU function. This yielded a 
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validation accuracy of 62.50%. However, changing the batch size from 128 to 64, and the 

initializer to MSRA initialization from Keras default yielded a validation accuracy of 

63.26% and a test accuracy of 62.20%. The plot/accuracy plot for this model is given in 

Figure 31.  

 

Figure 31. Loss/ Accuracy plot for the model with a starting learning rate of 0.01and a decay 

parameter of 0.01/20. 

For the next experiment, the Adam optimizer was initially considered over the 

SGD. Though this optimizer provided the best validation accuracy achieved so far which 

is 66.81%, the model was overfitting due to these changes. Therefore, sticking with SGD, 

the change to the Keras default initializer was made and a validation accuracy of 64.88% 

was achieved without overfitting. The loss/accuracy plot for this model is shown in 

Figure 32. It should be mentioned that some data augmentation techniques were applied 

to this model such as rotation, changes in scale and horizontal flip. These data 

augmentation techniques help to obtain more training data by changing geometric 

features of the original images. As a result, data augmentation can increase 
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generalizability of the model and test accuracy. For this reason, the validation accuracy is 

slightly improved with the training accuracy of 63.74%. Also, the use of Dropout layers 

after every Pooling layers while training the dataset, as well as, the batch size can be a 

reason for the improvement of accuracy. The test accuracy achieved from this model was 

63.11%. 

 

Figure 32. Loss/Accuracy plot for the model with Adam optimizer 

Next, the same model obtained from the last experiment was used to train four 

different modified FER2013 dataset containing images of different lighting (darkest, 

darker, brighter, brightest) as discussed in the previous chapter. The modified datasets 

were produced by utilizing Python and OpenCV. For the datasets with brighter and 

brightest images, test accuracies of 59.65% and 58.37% were achieved respectively, 

which are close to the test accuracy from the original FER2013 dataset of 63.11%. For 

the datasets with darker and darkest images, test accuracies achieved were 53.10% and 

46.46% respectively and performed worse compared to the brighter contrast images. 
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Therefore, it is concluded that the model was having some difficulties recognizing dark 

contrast facial images. Figure 33, Figure 34, Figure 35, and Figure 36 show the 

loss/accuracy plots for these four different datasets - darkest, darker, brighter, brightest 

respectively using the final model. A comparison for test accuracies with all the different 

datasets is shown in Figure 37. The chart indicates that this model outperforms in 

accuracy with the bright contrast images than the dark contrast images.  

 
Figure 33. Loss/Accuracy plot for modified FER2013 dataset with darkest images 
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Figure 34. Loss/Accuracy plot for modified FER2013 dataset with darker images 

 
Figure 35. Loss/Accuracy plot for modified FER2013 dataset with brighter images 



 

 64 

 
Figure 36. Loss/Accuracy plot for modified FER2013 dataset with brightest images 

 

Figure 37. Comparison of test accuracies with different FER2013 datasets 

The inclusion of the sideview images form the KDEF dataset to the model are 

essential to recognize facial expressions from different viewpoints and increase the 

accuracy and performance of the model for darker images. The same model 

hyperparameters values are used from the last experiment with the FER2013 dataset.. 

These set of experiments are described below. 
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The learning rate was set at 0.001, and the default Keras learning rate scheduler 

was used with a decay parameter of 0.001/20. The SGD optimizer was initialized with a 

momentum value of 0.9, and the Nesterov accelerated gradient was used. A training 

accuracy of 53.30% was achieved after training the DCNN model with the KDEF dataset, 

and the validation accuracy was 62.50%. This experiment was run for a total of 100 

epochs with a batch size of 64. The loss and accuracy plot shown in Figure 38 indicates 

that the model is still learning which means the training loss is still decreasing and 

training accuracy is still increasing. The experimentation included data augmentation 

techniques using the Keras library to the dataset at the preprocessing stage of the DCNN. 

These data augmentation techniques include rotation, changes in scale and 

horizontal flip which are done automatically by the Keras library. These techniques help 

to obtain more training data by changing the geometric features of the original images. 

As a result, the data augmentation can increase the generalizability of the model and 

improve the test accuracy. For this reason, the validation accuracy is greater than the 

training accuracy. Also, the train-test split is done per emotion category such that there 

are only 500 images for training, 100 images for validation and 100 images for testing. 

Due to the spilt, the model obtains a low training accuracy and a high validation 

accuracy. The learning rate is also a factor to this discrepancy between accuracies. 
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Figure 38. Loss/ Accuracy plot for the model with a starting learning rate of 0.001and a decay 

parameter of 0.001/20 

A starting learning rate of 0.01 is used with a learning rate schedule of 0.01/20 to 

alleviate this problem of discrepancy between accuracies. Everything else was the same 

with the exception the fact that this experiment was run for a total of 200 epochs with a 

batch size of 64. This experiment boosted the training accuracy to 89.76%, and the 

validation accuracy reached 80.82%. The test accuracy was found to be 78.32%. From 

the performance plot in Figure 39, it is seen that both validation loss and accuracy 

converge to an average steady state condition which concludes small to neglectable 

change to the test accuracy if this experiment is continued to run for more epochs. The 

peaks seen in the validation loss and validation accuracy curve are due to a higher 

learning rate at the start and nature of the dataset, which includes images from five 

different angles. 

 The results achieved show that the model is capable of handling images from 

different angles with high accuracy. Also, the reason that the model is performing better 
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with the KDEF dataset compared to the FER2013 dataset is that the KDEF dataset 

contains RGB images with a resolution of 562×762 pixels. In contrast, the FER2013 

dataset contains grayscale images of only 48×48 pixels. Here, the model takes the input 

image of higher resolution, preprocess it, and converts it to a 48×48-pixel image while 

keeping the aspect ratio the same. Due to the higher resolution of the original image in 

the data, the model can recognize features with higher accuracy and performance with the 

KDEF dataset than the FER2013 dataset. As a result, the development of the overall 

application required for the model to continue training that would resemble the high-

resolution images of the KDEF dataset in order to increase accuracy and performance. 

 

Figure 39. Loss/ Accuracy plot for the model of the first experiment with a starting learning rate of 

0.01and a decay parameter of 0.01/20 

 As 78.32% test accuracy was achieved with this model. At this level of accuracy 

can be classified as a satisfactory result of its generalization and higher accuracy levels 

might overfit the model. From this point, the model was then tested with different values 

of hyperparameters to see if there was any considerable change in test accuracy. First, the 



 

 68 

input image resolution size was changed and increased to different pixel values such as 

90×90, 100×100, 128×128, 150×150, 400×400, and 512×512. Among all of these input 

resolutions, the model performed with the highest accuracies using the 100×100 pixel 

size. For the mini-batch size, the values of 32, 64, and 128 were tested among, which 

value of 64 gave the best result as expected from the experiments done already 

performed. The activation function, optimizer, learning rate, and number of epochs are 

the hyperparameters that were tuned and selected in previous experiments. The ELU 

activation function was used with the SGD optimizer. An initial learning rate of 0.01 was 

used with the default Keras learning rate scheduler with a decay parameter of 0.01/20. 

The Dropout values were also tuned after every Pooling layer with values of 0.25 and 0.5. 

The Pooling layers are divided into two categories, such that after convolution Pooling 

and after Fully-Connected Pooling, four combinations of Dropout values for these two 

types of Pooling layers were considered – 0.25:0.25, 0.5:0.5, 0.25:0.5, and 0.5:0.25. Here, 

the 0.25:0.25 means the Pooling layer after the convolution layers have a 0.25 (or 25%) 

value of Dropout connections, and the Pooling layers after Fully-Connected layers have 

0.25 value of Dropout. It was found through experiments that the best accuracy was 

achieved by configuring the Dropout layers with the 0.25:0.5 combination. The final 

DCNN model was trained for 200 epochs, and the best result obtained was with a test 

accuracy of 86.44%. The loss/accuracy plot for this result of the final DCNN model, 

which can recognize facial expressions from different angles is shown in Figure 40. 
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Figure 40. Loss/Accuracy curve for the final DCNN model 

  The final DCNN model for different lighting condition was trained and 

tested with modified versions of the KDEF dataset for darker and brighter images, as 

shown in the previous chapter. The hyperparameters were again tuned to observe any 

changes for these modified datasets if for brighter images with a batch size 32 of is 

performing better or if the Adam optimizer provides higher accuracies. The same 

conditions and observations apply for the darker versions of the dataset. However, after 

tuning and experimentation, it was found as expected that the model performs best when 

trained with the modified datasets with the same hyperparameter values as of the final 

model discussed above. The final DCNN model gave a test accuracy of 75.27%, 78.55%, 

76.82%, and 80.75% respectively for darkest, darker, brightest and brighter versions of 

KDEF dataset and respective loss/accuracy plots are given in Figure 41, Figure 42, 

Figure 43 and Figure 44. The comparison of these results is shown in Figure 45.  
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Figure 41. Loss/Accuracy plot for darkest version of KDEF dataset 

 

Figure 42. Loss/Accuracy plot for darker version of KDEF dataset 
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Figure 43. Loss/Accuracy plot for brighter version of KDEF dataset 

 

Figure 44. Loss/Accuracy plot for brightest version of KDEF dataset 
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Figure 45. Comparison of test accuracies for different versions of KDEF dataset 

 Comparing this final result with the previous one shown in Figure 37, it can be 

stated that the model is able to recognize facial expressions in every lighting condition 

that includes dark condition as the accuracy improved from 46.46% to 75.27%. Also, the 

model can recognize images from five different angles due to the KDEF dataset on top of 

FER2013 dataset and obtaining a test accuracy of 86.44%. The top and bottom-view 

angles can also be tracked by the algorithm for happy and sad faces. The model was 

trained with the third dataset built with top and bottom-view images as discussed in the 

previous chapter. In terms of execution time, the latency of the overall algorithm from 

taking an input image to label the correct class was measured at .0028 seconds, which 

includes the preprocessing time of 0.0005 seconds. At this current performance of the 

model, the utilization and test of the app for clinical trials of children with ASD can be 

used for evaluation and effectiveness by users. The next chapter discusses the 

development of the iOS application. 
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VII. iOS APPLICATION 

In this chapter, the iOS app development will be discussed using the final DCNN 

trained model that has been discussed in the previous chapter. This chapter will be 

divided into several sections including the app idea and documentation used to develop 

the app, platform and the programming language used, the machine learning framework, 

and the computer vision framework for Apple iOS app development and finally the app 

results.  

App Idea and Documentation 

 The app was designed to be a very straightforward app that executes in real-time 

and approximating the DCNN model latency of 0.0028 seconds. The app was designed 

considering it should work in real-time, classifying the facial expression, and showing the 

corresponding emoticon at minimal execution time. The app idea can again be referred to 

in Figure 1. The design idea had three steps. 

• Once the app is opened, it will directly open the camera and look for human faces. 

• The second step is the face detection algorithm. If the algorithm detects a human 

face, it will go to the next step and feed this face image to the pre-trained DCNN 

model. If no face is detected, it will show on screen – “No face detected.” 

• Once a face image is fed into the DCNN model, it will classify the expression of 

the face and associate it with the correct emoticon for that class. Finally, this 

emoticon will be shown on the screen. 

Apple developer documentation [57] has been extensively used to develop the app. 

This document contains all the information necessary to develop an iOS app for MacOS, 

iOS, watchOS, tvOS and beyond, including API references, articles and sample code. 
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This documentation is divided into several categories including app frameworks, graphics 

and games, app services, media, web, developer tools, system, etc. The key frameworks 

used in this thesis for the app development were vision and CoreML which will be 

discussed later. Xcode was utilized as integrated development environment (IDE) for the 

development of the app. The app will execute and be compatible for iOS version 11 and 

beyond. 

 Xcode is an IDE for macOS containing a suite of software development tools 

developed by Apple for developing software for macOS, iOS, iPadOS, watchOS, 

and tvOS. The latest version, Xcode11, was used in this thesis. Using Xcode, the app was 

developed for universal platforms on iPads and iPhones. It also provides iPhone and iPad 

simulators, which makes it easy to debug and optimize the app before installing it into a 

mobile device. A preview of the Xcode is shown below in Figure 46. 

 

Figure 46. A preview of Xcode IDE 
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The Swift programming language was used to develop the app. Swift is a useful language 

to write software, whether it is for phones, desktops, servers, or anything else that runs 

code. It is a safe, fast, and interactive programming language that combines the best in 

modern language thinking with wisdom from the broader Apple engineering culture and 

the diverse contributions from its open-source community. The compiler is optimized for 

performance, and the language is optimized for development, without compromising on 

either. Swift code is compiled and optimized to get the most out of modern hardware. 

The syntax and standard library have been designed based on the guiding principle of 

logical order to write code and provide execution performance. For this app to work, 

image processing and computer vision were needed to deal with and the framework that 

does this for iOS development is known as Vision for iOS. Vision framework is 

discussed in the next section. 

Vision for iOS 

 The second step for the app is to detect human faces, and this face detection is 

done by Apple algorithms, which are a part of the Vision framework [58]. Though the 

algorithm from Apple was used for face detection, some changes were made to the 

algorithm in order to correctly specify and detect the face contours for this specific case 

of facial expression detection. 

 The vision framework applies computer vision algorithms to perform a variety of 

tasks on input images and video including face and face landmark detection, text 

detection, barcode recognition, image registration, general feature tracking, and other 

image-based applications etc. An object detection algorithm from this framework, which 

deals with real-time face detection, was used in this thesis for the app development. 
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Although the DCNN model can recognize facial expressions in different lighting 

condition, this face detection algorithm cannot detect faces in the dark. As a result, the 

full capacity of the DCNN model cannot be displayed in the app when dealing with dark 

conditions. Future work of this thesis can reach to develop a detection algorithm that can 

distinguish the human faces in different lighting conditions.  

CoreML for iOS 

 The final step for the app development was to integrate the pre-trained DCNN 

model to classify and label the seven different facial expressions with the appropriate 

emoticon for each class. In order to import the pre-trained model to the iOS app, the 

CoreML framework [59] has been used. CoreML provides converters that can change 

Keras models to a CoreML model. The inference CoreML model can be used to make 

predictions in the app with the integration of the CoreML framework shown in Figure 47. 

Core ML is the foundation for domain-specific frameworks and functionality and 

supports Vision for image analysis, Natural Language for natural language processing, 

and Gameplay Kit for evaluating learned decision trees. 

 

Figure 47. Steps for implementing a Machine Learning model into an iOS app 

 CoreML allows making a network API call by sending the data and then waiting 

for a response. The communication handshaking can be critical for applications such as 

video processing of successive frames from the on-device camera. Core ML is optimized 
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for on-device performance, which minimizes its memory footprint and power 

consumption. Running strictly on the device ensures the privacy of user data and 

guarantees that the app remains functional and responsive when a network connection is 

unavailable. 

Results of the app 

 The working app and its preview is shown below in Figure 48. These screenshots 

are taken from an iPad running the latest iOS version 12.3. In figure 48, from the left, 

three expressions have been detected correctly and the correct emoticons for the 

expressions have been showed by the app. These three expressions are respectively 

neutral, happy and surprise. The app has been tested for other expressions and it works 

fine. The app can now classify the seven different human facial expressions and show 

them with the correct emoticon on the device’s screen. The last two pictures on the right 

are to show the ability of the app to correctly classify expressions from side views. 

 

Figure 48. Screenshots of the working iOS app  

The app was tested with different subjects and provides high accuracy of detected facial 

expressions. The latency to correctly detect expressions and show the emoticon is 0.0026 

seconds. So, now an app has been developed to utilize and test the DCNN model for 

clinical trials for children with ASD and effectiveness of the app will be determined by 

the users and evaluators. Also, it will also be known from the test trials if there any 
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improvement is needed for the app to have better impact to the main goal of the app – 

teach children with ASD to correctly recognize seven universal human facial expressions.  
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VIII. CONCLUSION 

In this thesis, the goal was to design a deep convolutional neural network for 

facial expression recognition that can help autistic children to recognize emotions. The 

approach of detecting facial expression was through a design and development of a Deep 

Convolutional Neural Network (DCNN) capable of predicting human facial expressions. 

The DCNN model was also tested through a developed iOS app for mobile device 

settings to emulate clinical utilization. The DCNN consisted of three CONV layers 

stacked on top of each other with the number of filters doubling in each block. It was 

important that the CNN be: 

• Deep enough to obtain high accuracy, and 

• Be small enough to run in real-time on the CPU. 

The DCNN model was first trained on the FER2013 dataset, part of the Kaggle 

Emotion and Facial Expression Recognition challenge. The FER dataset was utilized as 

the trial image dataset and was modified to versions containing images of different 

lighting contrast conditions. From part of the initial results obtained, the best test 

accuracy of 63.11% was achieved without overfitting the model marking the result 

satisfactory. Training the same model, it was seen that the datasets with bright-contrast 

images yields to a better test accuracy than datasets with dark-contrast images. Then 

experimentation with datasets containing images from different angles such as top view, 

bottom view and side views were considered. It would enable this effort to have a model 

which can recognize human facial expression from any angle in any lighting condition in 

any environment. 
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To accomplish this goal, the same DCNN model was trained and tested using 

KDEF dataset. KDEF dataset contains images of facial expressions from five different 

angles and it was the best dataset to train the model for recognizing facial expressions 

from different viewpoints. It was found that further accuracy could likely be obtained by 

performing image preprocessing being more aggressive with data augmentation, 

hyperparameter tuning and adding in regularization. Histogram equalization was used as 

a preprocessing stage before feeding the images into the DCNN model which boosted the 

accuracy of the model. SGD optimizer with Nesterov acceleration was used in the 

training process. Moreover, different hyperparameters of the model such as learning rate, 

batch size, number of epochs, dropout values etc. were tuned and optimized to better 

improve the accuracy and performance of the model. Finally, the test accuracy of 86.44% 

was achieved which out-performed the performance metrics utilizing the frontal images 

from the FER2013 dataset and the leaderboard of the Kaggle Emotion and Facial 

Expression Recognition challenge. The results showed the necessary training analysis of 

the DCNN model utilizing sideview angled images and to foresee the improvements 

necessary for the overall facial expression application. Then using this same model and 

through optimizing the network, the model accuracy achieved was above 75% for all 

types of the different lighting conditions which was a huge improvement from earlier 

results with the FER dataset.  

Finally, the pretrained DCNN model was implemented into an iOS app so that the 

app can be used as a byproduct of the model to use it in clinical trials for the children 

with ASD. CoreML and Vision frameworks have been used for the iOS app development 

with Xcode as the IDE and Swift as the programming language. The operation of the app 
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is to open the camera, detect human faces, correctly classify the expressions, associate the 

expression with the correct emoticon and show the emoticon on the device screen. The 

app can recognize and classify facial expressions in real time as the pretrained DCNN 

model was imported and implemented in the app. The app was tested against different 

subjects and it has been found that it is able to correctly classify facial expressions and 

display it with the correct associated emoticon for each class. Now, the goal for the app is 

to be used by speech-language pathologists as a technological tool when working with 

children with ASD.  In conjunction with tele practice, the app can be used to teach 

children with ASD to recognize and identify facial expressions while receiving therapy in 

real-time to practice social skills during everyday social interaction. 
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IX. FUTURE WORK 

A face detection algorithm can be developed to compliment the DCNN model so 

that it can detect faces from different viewpoints and in different lighting conditions 

before feeding the detected images to DCNN model. The DCNN model is able to deal 

with different viewpoints and lighting conditions; but for the app to be able to work in 

different conditions, a face detection algorithm with similar extensions is a must. As the 

final model for this thesis was trained with upward and downward pictures containing 

only happy and sad expressions, it lacks other emotions as well as accuracy in this 

domain. A dataset can be developed by collecting facial expression images from different 

sources or by taking pictures from an upward and downward direction for seven universal 

expressions.  

Further work will be required for the app as the effectiveness of the model is 

tested in the clinical setting with children with Autism. The DCNN model can be 

improved with the inclusion of a microphone because children with ASD can’t identify 

sarcasm. In that case, speech processing can be done along with image processing in the 

DCNN algorithm. Also, a simple game can be integrated to the app of picking the right 

emoticon for the right expression when the app detects any face. This can also be a test to 

see whether the children with Autism are learning from the game or not.  

In the clinical trials, if the app becomes successful, then children with ASD will 

not have to frequently see a speech-language pathologist in person with this application. 

The mobility of the app will allow users for a quick and easy access to speech-language 

therapy using tele practice. In fact, it allows children with ASD to practice receiving and 

participating in speech-language therapy in real-time. Once the app is in production, it 
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will be free and opened-sourced so others may work to improve the model. The 

application will be available to everyone through the iOS app store, and the code through 

a repository. This will allow the audience availability of the application and get crowd-

sourced feedback of its effectiveness. 
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