
S. Thompson (Ed.): TFPIE 2017.

EPTCS 270, 2018, pp. 1–17, doi:10.4204/EPTCS.270.1

Vector Programming Using Structural Recursion
An Introduction to Vectors for Beginners

Marco T. Morazán

Seton Hall University

morazanm@shu.edu

Vector programming is an important topic in many Introduction to Computer Science courses. De-

spite the importance of vectors, learning vector programming is a source for frustration to many

students given that they feel left adrift when it comes to resolving vector indexing errors. Even

though the size of a vector is a natural number, there have been no efforts to define a useful recursive

data definition to help beginners design vector processing functions. This article defines the concept

of a vector interval and describes how to exploit its recursive structure to design vector processing

functions. The described methodology provides a context beginners can use to reason about proper

vector indexing instead of leaving them adrift with this responsibility. A key feature of properly using

the described methodology is that if students process the correct vector interval then vector indexing

errors can not arise. The classroom deployment of this approach is described in detail. Students,

to date, have found vector intervals helpful in avoiding out-of-bounds indexing errors when all the

vector elements of the interval are processed.

1 Introduction

It may very well be true that every college-trained computer programmer remembers long nights de-

bugging programs that manipulate vectors. Perhaps, many readers of this article recall hours of work

trying to determine why an index into a vector was out of range. In some programming languages, this

is equivalent to figuring out why a program caused a core dump. If these same readers ponder about

this long enough, they may recall that many of those long frustrating nights occurred when they were

first exposed to vectors and beginning to learn how to program. Surprisingly, the same holds true for

many undergraduates today. Frankly, it is a bit shocking how little we have advanced as a community in

teaching vector programming to beginners.

Vector programming (a.k.a. array programming), of course, is extremely important in Computer

Science. Vectors, given that they are random access, allow us to efficiently implement algorithms for

applications in a myriad of fields. Vectors, for example, allow us to efficiently implement various data

structures such as binary trees [7], stacks [8], and process queues [15]. They also allow us to reduce the

complexity of algorithms such as, for example, finding a path in a directed graph [5] and matrix mul-

tiplication [3]. Vectors are also useful in the reduction of memory allocation by, for example, allowing

us to sort, say, files or numbers in place [9]. Given the importance and versatility of vectors it is in our

interest as a community to make an introduction to vector programming for beginners as frustrationless

as possible. This can be achieved by providing beginners with a structured model they can use to reason

about processing vectors.

The crux of the problem with much of the developed introductory material to vector programming is

that it provides a structureless definition of a vector. Some material goes a step further and presents an

ADT for vectors. Some of these ADTs describe a single operation: indexing. It is, thus, not surprising

that many beginners feel as being left adrift to figure out on their own how to avoid out-of-bounds

http://dx.doi.org/10.4204/EPTCS.270.1

2 Vector Programming Using Structural Recursion

indexing errors. This is highly undesirable, in the experience of the author, for at least two reasons. The

first is that students get frustrated enough to quit Computer Science as a major. This is an especially

important issue in universities, like in the USA, where beginning students spend a semester or two

shopping around for a major. The second is that students that persevere develop bad programming

habits associated with the belief that vector programming is a strict exercise in trial and error instead of

an exercise in design.

This article describes the work developed to introduce students to vector programming at Seton Hall

University (SHU). At the heart of the approach is providing students with data definitions that help them

design vector processing functions to solve problems. As the length of a vector can be of arbitrary size,

these must be recursive data definitions. Such data definitions can be directly exploited using structural

recursion to develop programs. The model presented to beginning students is that of a vector interval that

may only contain valid indices into a vector and is used to process all the elements in the interval. Thus,

reducing frustration over out-of-bounds errors. The article is organized as follows. Section 2 discusses

related work. Section 3 discusses the programming background of the students with whom this approach

is used. Section 4 introduces and defines the concept of an interval. In addition, it provides examples of

how to design functions using the different data definitions for an interval. Section 5 shows how students

are introduced to vector programming by developing data definitions for a vector interval. Section 6

discusses three extended vector programming examples using the described approach. Finally, Section 7

presents concluding remarks and directions for future work.

2 Related Work

Many textbooks introduce vectors as lacking a recursive structure that can be exploited to solve problems.

Readers are then introduced to how to use vectors using snippets of code that emphasize that an index

into the vector must be within its bounds. For example, a vector is described as a collection of variables

of the same type with each element having an index [8] or as a finite sequential list of elements of

the same datatype identifying the first element, the second element, the third element, and so forth

[7]. Such data definitions are inadequate, because they hide the recursive nature of the interval of valid

indices into the vector and focus exclusively on the syntax to declare, create, index, and mutate vectors.

They fail to provide the proper model to help beginners design functions/methods that process a vector

avoiding, for example, illegal indexes into the vector. The second data definition may even be considered

misleading by describing a vector as a list that has a well-known recursive structure. Vectors do not have

a decomposable structure like lists. Furthermore, describing vector elements as the first, the second, the

third, and so forth does not assist in any way the design of vector processing functions. We can not

program “and so forth.” Even some modern approaches to make programming popular among the young

address vectors in a very similar manner (e.g., [4]). In contrast, the work presented in this article aims

to provide students with a decomposable data definition that beginners can use to reason about vector

processing. This data definition is that of a vector interval. These intervals have a recursive structure that

guides the design of vector processing functions.

The problem of only using legal indices into a vector is traditionally and summarily left to the student

with no clear indication of how to accomplish this task (e.g., [14]). Some may convincingly argue that

this is relatively easy when you need to process an entire vector. However, the matter is not clear when

you need to process only part of a vector. Consider sorting a vector using insertion sorting which requires

inserting elements in the sorted part of a vector. It is difficult for a beginner to determine or be confident

that she is always correctly indexing the vector given that the size of the sorted part of the vector is not

M. T. Morazán 3

constant. Even worse, however, is that it is more difficult to pin down bugs when indexing errors occur

if a model that helps the student reason about indexes is not provided to them. In contrast, the work

presented in this article helps students reason about the indexes into a vector when all elements within

an interval are processed. A vector interval only spans the valid indexes of the part of the vector being

processed. As such, when the structure of an interval is used to design a function students know that any

natural number in the vector interval is a valid index. If the vector interval is empty then students know

that the vector should not be indexed.

Some efforts have gone beyond syntax. The textbook How to Design Programs (HtDP), for exam-

ple, describes a vector as a well-defined mathematical class of data with some basic constructors and

observers [5]. HtDP further states that we can think of vectors as functions on a small finite range of

natural numbers. This begins to provide some context for vector processing, but surprisingly falls short

of identifying the recursive structure of this range of natural numbers as it does so well for other types of

data. It is unlikely that future editions of HtDP are to develop this given that the second edition has elim-

inated its introduction to vector programming [6]. In contrast, the work presented in this article tackles

the recursive nature of this finite range of natural numbers and describes it as an interval. Furthermore,

the fact that this range is finite is carried to its logical conclusion to obtain two data definitions for a

vector interval. One data definition leads to a template that is used to design functions to process vectors

from right to left (i.e., from the largest index down to the lowest index in the vector interval) and the

other is used to design functions that process vectors from left to right (i.e., from the lowest index to the

largest index in the vector interval).

Related to the material discussed in this article, although not directly, are ubiquitous efforts to hide

low-level vector manipulation from programmers. For example, an Iterator generates a sequence of

elements from a collection, one at a time [16]. This allows programmers to examine every element of a

vector without worrying about properly indexing the vector. The details of properly indexing the vector

are hidden by the Iterator. Similarly in functional programming, for example in Racket, programmers

have access to functions like vector-map and vector-filter that iterate through a vector and that hide

the details of properly indexing the vector. Clearly, iterators and higher-order vector functions process

the entire interval of valid indices into a vector. Programming with vector intervals using structural

recursion, as presented in this article, also disallows improperly indexing a vector. In contrast, however,

these vector intervals are not restricted to only the entire range of valid indices into a vector. A vector

interval can be used to process any continuous subinterval of valid indices. Furthermore, whether in a

functional or object-oriented language, iterators and higher-order vector functions must be implemented

in the first place and this is certainly a context in which reasoning about vector intervals is valuable.

Vector intervals, in this article, are defined in terms of the size, N, of a vector. The idea is that a valid

interval of indices into a vector must be in [0..N-1]. This notion is similar to that found in dependently

typed programming languages such as Dependent ML [18] and Idris [2]. In Dependent ML, for example,

array is used as a built-in type constructor that takes as input a type for the elements of the array and

a natural number, n, for the size of the array. The array can only be indexed if the index is a natural

number less than n. This notion is not enforced by vector intervals, but vector intervals do begin to plant

the notion in students that data definitions can depend on dynamic properties of the data being processed.

3 Student Background

At SHU, the introductory Computer Science courses span two semesters and focus on problem solving

using a computer [10, 11]. The languages of instruction are the successively richer subsets of Racket

4 Vector Programming Using Structural Recursion

known as the student languages which are tightly-coupled with HtDP [5, 6]. No prior experience with

programming is assumed. Before introducing students to vector programming, the course familiarizes

students with primitive data (e.g., numbers, strings, booleans, symbols, and images), primitive functions,

and library functions to manipulate images (i.e., the image teachpack). During this introduction, students

are taught about variables, defining their own functions, and the importance of writing contracts and

purpose statements. The next step of the course introduces students to data analysis and programming

with compound data of finite size (i.e., structures). At this point, students are introduced to the first

design recipe. Students develop experience in developing data definitions, examples for data definitions,

function templates, and tests for all the functions they write. A great deal of emphasis is placed on all of

these steps as part of the problem-solving design process. Building on this experience, students develop

expertise on processing compound data of arbitrary size such as lists, natural numbers, and trees. In this

part of the course, students learn to design functions using structural recursion. After structural recursion,

students are introduced to functional abstraction and the use of higher-order functions such and map and

filter. The first course ends with a module on distributed programming [12].

In the second course students are exposed to generative recursion, accumulative recursion, and mu-

tation [13]. The course starts with generative recursion. At the end of this module, students get their first

exposure to vector programming. Students are taught the syntax needed for vectors and are introduced

to the design of vector processing functions using the material on intervals and vector intervals outlined

in this article. After this, the course exposes students to accumulative recursion and iteration. The course

ends with two modules on mutation that include their second exposure to vector programming. In this

second exposure, students design vector mutators using vector intervals.

The topics covered follow much of the structure of HtDP [5]. There are two 75-minute lectures every

week and the typical classroom has between 20 to 25 students. In addition to the lectures, the instructor

is available to students during office hours (3 hours/week) and there are 20-30 hours of tutoring each

week. Students may voluntarily attend any number of tutoring hours they like. The tutoring hours are

conducted by undergraduate students handpicked and trained by the author. These tutors focus on making

sure students develop answers for each step of the design recipe (from writing contracts to running tests).

Students must attempt to follow the steps of the design recipe prior to attending tutoring. Based on a

student’s work, the tutors provide guidance but do not solve problems. Students are still responsible for

successfully completing all steps of the design recipe. In addition, tutors attend lectures to assist students

when they get stuck with, for example, syntax errors. This type of team-teaching with undergraduate

tutors has proven to be extremely well-received by students and to be an effective means to enhance the

learning experience.

4 Intervals

Before introducing students to vectors, they are re-introduced to the concept of an interval. The term

re-introduced is used in the same manner as students being re-introduced to natural numbers earlier in

the course. That is, students in general are familiar with at least one of the following “definitions” for the

set of natural numbers:

N = {0,1,2,3, . . .} N = {1,2,3, . . .}.

Both of these definitions are inadequate, because they do not describe how to construct a natural number.

Furthermore, students are left to figure out the meaning of Knowing how to construct a natural

number is important, because it empowers students with the knowledge needed to process such numbers

M. T. Morazán 5

by exploiting their structure. Therefore, a more useful data definition for the set of natural numbers is

(e.g., adopted in HtDP):

A natural number (natnum) is either:

1. 0

2. (add1 n), where n is a natural number.

Such a definition exposes the structure of natural numbers and is used to define a template to write

functions that process a natural number:

f-on-natnum: natnum → . . .

Purpose: . . .

(define (f-on-natnum n)

(cond [(= n 0) . . .]

[else n. . .(f-on-natnum (sub1 n))])).

The body of this template, in essence, states that the conditional distinguishes between the varieties of

natural numbers. For each variety an expression is needed to compute the result. When a natural number,

n, is a constructed natural number (i.e., the second variety) the expression can manipulate the value of

n and can recursively process, (sub1 n), the natural number used to construct n. This template is then

specialized by students every time they need to solve a problem that requires processing a natural number.

Specializing, in this context, means filling in the blanks (i.e., the different . . .).

Students bring to the classroom an understanding about intervals analogous to their initial under-

standing of natural numbers. That is, they define an interval as:

[i.. j], where i ≤ j

Once again, such a definition is inadequate. It does not expose the structure of an interval that is helpful to

solve problems that require processing an interval. Furthermore, the fact that an interval can be empty is

well-hidden by such a definition. Given that students are already familiar with recursive data definitions,

it is not much of an intellectual leap to re-define an interval, INTV, as:

An interval, INTV, is two integers, low and high, such that it

is either:

1. empty, if low > high

2. [[low..(sub1 high)]..high], where [low..(sub1 high)] is an INTV

and low ≤ high

The natural way to represent intervals is with a structure or an object that has two fields. Choosing

a two-integer representation is a concession to current practices in existing programming textbooks. To

the best knowledge of the author, there are no programming books that capture in a structure or an object

the lowest and highest indices of an interval. A judgement call had to be made between representing an

interval as two integers or as a structure/object. Given that beginning students will read programming

books that explicitly use two indices to process a vector, the two-integer representation was ultimately

chosen. It does have the advantage that it makes the material feel somewhat familiar to students that

arrive in the classroom with vector programming experience.

The INTV data definition makes the structure of an interval explicit. Students know that given that

there is variety in the data definition a conditional is needed to distinguish among the different varieties.

Furthermore, students can observe that when the interval is not empty high is a whole number con-

structed using n. This means that [low..(sub1 high)] is part of the structure of [low..high]. Put differently,

[low..(sub1 high)] is used to construct [low..high]. For example, the interval [-1..1] is constructed as

follows:

6 Vector Programming Using Structural Recursion

[-1..1] = [[-1..0]..1]

= [[-1..-1]..0..1]

= [[-1..-2]..-1..0..1]

= [empty..-1..0..1]

Now it becomes clear that when the interval is not empty the value of high as well as the result of recur-

sively processing the subinterval [low..(sub1 high)] can be used. This naturally leads to the following

function template to process an interval:

; f-on-INTV: int int → . . .

; Purpose: For the given INTV, . . .

(define (f-on-INTV low high)

(cond [(empty-INTV? low high) . . .]

[else high. . .(f-on-INTV low (sub1 high))]))

This template requires a function to detect that an interval is empty. For the chosen representation using

two integers, this function and tests are easily developed by students:

; empty-INTV?: int int → boolean

; Purpose: For the given INTV, determine if it is empty

(define (empty-INTV? low high) (> low high))

(check-expect (empty-INTV? 3 4) false)

(check-expect (empty-INTV? 30 30) false)

(check-expect (empty-INTV? 5 4) true)

The template can now be used to solve problems that process an interval. For instance, consider

computing the summation of all the integers in an interval. Students know to start with the template

for an INTV and to develop an answer for each variety of the data starting with the non-recursive case.

Students quickly observe that when the interval is empty the summation is 0. When the interval is not

empty, they observe that high must be added to the result of recursively processing [low..(sub1 high)].
Observe how reasoning about the structure of an interval leads the programmer to a solution. Putting

these ideas together leads to the following specialization of the template and tests for summing the

elements of an interval:

; sum-INTV: int int → int

; Purpose: For the given INTV, sum its elements

(define (sum-interval low high)

(cond [(empty-INTV? low high) 0]

[else (+ high (sum-INTV low (sub1 high)))]))

(check-expect (sum-INTV 10 1) 0)

(check-expect (sum-INTV 10 10) 10)

(check-expect (sum-INTV -1 1) 0)

After working out some exercises, students realize that the template suggests that intervals must be

processed from high to low (or right to left). However, many students also realize that it may be equally

correct to process an interval from low to high (or left to right). This requires the development of the

following data definition for an interval:

M. T. Morazán 7

An interval2, INTV2, is two integers, low and high, such that it

is either:

1. empty, if low > high

2. [low..[(add1 low)..high]], where [(add1 low)..high] is an INTV2

and low <= high

In this data definition, low is constructed by subtracting 1 from some integer n. This leads to the following

function template:

; f-on-INTV2: int int → . . .

; Purpose: . . .

(define (f-on-INTV2 low high)

(cond [(empty-INTV2? low high) . . .]

[else low. . .(f-on-INTV2 (add1 low) high)]))

It is important to highlight to students that the above template is not an instance of generative recursion.

Many students see add1 and associate it with generative recursion and mistakenly feel they must develop

a termination argument for functions written using this template.

Once armed with this knowledge, students can now solve problems processing the interval from left

to right. For instance, summing all the integers in an interval can also be solved as follows:

; sum-INTV2: int int → int

; Purpose: For the given INTV, sum its elements

(define (sum-INTV2 low high)

(cond [(empty-INTV2? low high) 0]

[else (+ low (sum-INTV2 (add1 low) high))]))

(check-expect (sum-INTV2 10 1) 0)

(check-expect (sum-INTV2 10 10) 10)

(check-expect (sum-INTV2 -1 1) 0)

5 Vector Processing

Armed with an understanding of how to process intervals, students are ready to be introduced to vectors.

After introducing students to what a vector is, why it is desirable to use them, and some basic vector-

syntax, students are explained that it is common to process a contiguous subset of a vector. The emphasis

here is on common given that arrays are random access and can be processed in many different ways.

Nonetheless, the reader is reminded that the goal is to expose students for the first time to vectors and, as

such, intervals are useful to reason about and design programs to process a contiguous subset of a vector.

For example, for a given vector V, we may want to process the entire vector (from indices 0 to (sub1
(vector-length V)) or we may want to process only part of the vector (from indices a to b). Clearly,

processing a contiguous subset of a vector requires processing an interval. Once again, this is not a huge

intellectual leap for students. Care must be taken, however, because we must avoid attempting to access

a vector with an illegal index that is either negative or greater than or equal to the length of the vector.

This requires developing a data definition for a vector interval. A vector interval is an interval that places

restrictions on what values low and high may take. In general, a valid index into a vector, V, is between

0 and (sub1 (vector-length V)). Thus, we can define a vector interval as follows:

8 Vector Programming Using Structural Recursion

; f-on-vector: (vector X) → . . .

; Purpose: . . .

(define (f-on-vector V)

(local [; f-on-VINTV: int int → . . .

; Purpose: For the given VINTV, . . .

(define (f-on-VINTV low high)

(cond [(empty-VINTV? low high) . . .]

[else (vector-ref V high)

. . .(f-on-VINTV low (sub1 high))]))

; f-on-VINTV2: int int → . . .

; Purpose: For the given VINTV2, . . .

(define (f-on-VINTV2 low high)

(cond [(empty-VINTV2? low high) . . .]

[else (vector-ref V low)

. . .(f-on-VINTV2 (add1 low) high)]))]

. . .))

Figure 1: The Template for Functions on Vectors.

For a vector of size N, a vector interval, VINTV, is two integers,

low ≥ 0 and -1 ≤ high ≤ N-1, such that it is either:

1. empty (i.e., low > high)

2. [[low..(sub1 high)]..high], where [low..(sub1 high)] is a VINTV

and low ≤ high

Observe that this data definition restricts a VINTV to only contain valid indices into the vector when

it is not empty. That is, it depends on N. The indices are all natural numbers. Further observe that the

structure of a vector interval is exactly the same as the structure of an interval. There is a difference when

processing a VINTV. We are interested in processing vector elements instead of interval elements. This

means that in the body of a function to process a VINTV a vector must be referenced. As with intervals,

a data definition that leads to processing a vector interval from left to right is also developed.

The above observations allow for the in-class development of the function template to process a

vector displayed in Figure 1. The contract states that any function that processes a vector must take as

input at least a vector of any type (X is a type variable). The body of the function is a local-expression

that may be used to define one or more local functions and values. Students are told that problem analysis

will reveal the type of expression that is needed in the body of the local-expression. If a single value is

needed from the given vector, then the expression will be one that processes a vector interval. Otherwise,

the expression will be one that uses different values obtained from processing the same vector. The local

definition section contains two templates: one for each direction that a vector interval can be processed

in. At least one of the templates is to be used to process vector elements. Observe that in each of the

local templates, vector elements are processed (using vector-ref) instead of interval elements.

To make the use of the function template to process a vector concrete, consider computing the average

of a vector of numbers. Problem analysis reveals that the vector cannot be empty given that division by 0

is undefined. It also reveals that it does not matter in which direction the VINTV is processed as addition

is a commutative operation. Now, the template for functions on a vector from Figure 1 is specialized.

M. T. Morazán 9

; avg-vector: (vectorof number) → number

; Purpose: To compute the average of the given vector

; Assumption: The vector is not empty.

(define (avg-vector V)

(local [; sum-elems: int int → natnum

; Purpose: For the given interval, sum the

vector elements

(define (sum-elems low high)

(cond [(empty-VINTV? low high) 0]

[else (+ (vector-ref V high)

(sum-elems low (sub1 high)))]))]

(/ (sum-elems 0 (sub1 (vector-length V)))

(vector-length V))))

(check-within (avg-vector (vector 6 7 8 9)) 7.5 0.01)

(check-within (avg-vector (vector 1 2 3)) 2 0.01)

Figure 2: A Function to Compute the Average of a Vector of Numbers.

The contract indicates that the input is a vector of numbers, V, and that the function returns a number.

The body of the local-expression must be an expression that divides the sum of the vector elements by the

length of the vector. This means that we must write a function to compute the sum of vector elements.

Given our problem analysis, either of the templates to process a vector interval can be used. Without

loss of generality, we can choose to process from right to left (i.e., the template for VINTV). This means

that when the vector interval is empty the answer is 0 and that when it is not empty we add (vector-ref
V high) to the result of recursively processing the rest of the VINT (i.e., [low..high-1]). The resulting

function and its tests are displayed in Figure 2. Observe that by using the template based on structural

recursion it is impossible to have indexing errors if a valid vector interval is provided as the initial input

to sum-elems. Thus, simplifying the job for beginners.

6 Extended Examples

This section presents three extended examples of how to design functions that process vectors. The

first, the dot product of two vectors [1, 17], is an example of how to process multiple vector intervals

simultaneously in step. The second, the merging of two sorted vectors [9], is an example of how to

process multiple vector intervals that are not processed in step. This example also shows that the design

of vector mutators can benefit from exploiting the structure of vector intervals. The third, insertion-sort

[5, 9], sorts a vector in place. This is an example of how reasoning about vector intervals, not vector

indexing, assists in the design of functions/mutators.

6.1 The Dot Product of Two Vectors of Numbers

Given two vectors of numbers, V1 and V2, the dot product is defined as:

V1 · V2 = Σ
N
i=0 V1[i]*V2[i], where N is the length of the vectors minus 1.

In-classroom problem analysis reveals:

10 Vector Programming Using Structural Recursion

; dot-product: (vector number) (vectorof number) → number

; Purpose: To compute the dot product of the two given vectors

(define (dot-product V1 V2)

(local [; sum-products: int int → number

; Purpose: For the given VINTV, compute the dot product of V1 and V2

(define (sum-products low high)

(cond [(empty-VINTV2? low high) 0]

[else (+ (* (vector-ref V1 low) (vector-ref V2 low))

(sum-products (add1 low) high))]))]

(sum-products 0 (sub1 (vector-length V1)))))

(check-within (dot-product (vector) (vector)) 0 0.01)

(check-within (dot-product (vector 1 2 3) (vector 1 2 3)) 14 0.01)

Figure 3: Function to Compute the Dot Product of Two Vectors.

• Both vectors must have the same length.

• Both vectors must be entirely processed simultaneously in step.

• Vector elements can be processed either right to left or vice versa.

Given these insights, students conclude that the function can be designed around processing a single

vector interval, say for V1, and then specialize the template for functions on vectors to develop their

code. The input is two vectors of numbers and the output is a number. This is reflected in the contract in

Figure 3. The body of the local-expression calls a function, sum-products, to process the single interval

that spans all the elements of both vectors (i.e., from 0 to (sub1 (vector-length V1))). Observe that the

interval given to sum-products only contains valid indices into the vector. Thus, indexing errors cannot

occur when using the function template.

The function, sum-products, is designed using either template for vector interval processing given

the third insight above. Figure 3 displays tests and the result of using the template that processes the

vector interval from left to right. The code is developed by steps, as before, by formulating answers for

each variety of vector interval. Students have no trouble seeing that the answer is 0 when the interval

is empty. When the interval is not empty, students are explained that they must do something with the

two elements, in this case, at the low end of each vector. This is what it means to process both vectors

simultaneously in step. This action, of course, is to multiply them. To formulate the final answer, this

product must be added to the result of recursively processing the rest of the vector interval.

As stated, no indexing errors can arise in this example. The key to success is for students to properly

define the initial VINTV2 to be processed. In this case, this task is fairly straightforward given that both

vectors must be processed in their entirety. Also observe that there is no guess work involved in how to

process the rest of the elements in each vector. The solution to that concern is baked into the template

for functions on a vector.

6.2 Merge Two Sorted Vectors

Consider the problem of merging two vectors that are sorted in non-decreasing order into a single vector

that is sorted in non-decreasing order. In-classroom problem analysis yields the following insights:

M. T. Morazán 11

; merge: (vector number) (vectorof number) → (vectorof number)

; Purpose: To merge the two given sorted vectors in non-decreasing order

; Assumption: The given vectors are sorted in non-decreasing order

(define (merge V1 V2)

(local [; res: (vectorof number)

; Purpose: To store the merged elements so far

(define res (build-vector (+ (vector-length V1)

(vector-length V2))

(lambda (i) (void))))

; combine: int int int int int int → (vectorof number)

; Purpose: For the given VINTVs, merge V1 and V2 into res

(define (combine lowv1 highv1 lowv2 highv2 lowres highres)

. . .)

(combine 0 (sub1 (vector-length V1))

0 (sub1 (vector-length V2))

0 (sub1 (vector-length res)))))

(check-expect (merge (vector) (vector)) (vector))

(check-expect (merge (vector 10) (vector 2)) (vector 2 10))

(check-expect (merge (vector 1 4 6) (vector 2 4 5 8 9))

(vector 1 2 4 4 5 6 8 9))

Figure 4: Basic Outline for a Function to Merge Two Sorted Vectors.

• A vector to hold all the elements of the given vectors must be allocated. Given that this vector

must be mutated every time an element is added, it must be a state variable.

• Three different intervals must be processed simultaneously: one for each of the input vectors and

one for the result vector. These intervals are not processed in step.

• Each vector must be processed in its entirety.

Figure 4 displays the basic outline for a function to merge two sorted vectors obtained from beginning to

specialize the template for a function on a vector. The contract, the purpose statement, and the assumption

indicate that two sorted vectors of numbers are expected as input and a sorted vector is expected as

output. The body of the local-expression calls an auxiliary function, combine, to process the three vector

intervals. Three intervals are needed as input, because they are not processed in step. Observe that

all three initial vector intervals span all the valid indices, respectively, for each vector. Thus, by using

structural recursion indexing errors cannot occur. Locally, the state variable, res, is defined to store the

result. Its invariant states that it is a vector of numbers. This vector is initialized to contain only void
values to indicate that nothing in the vector has been initialized. The tests demonstrate the expected

behavior with vectors of varying sizes.

The task left is to develop the body of combine. Given that three intervals are not processed in step,

we need to determine the different conditions that may arise during processing to augment the cond-

expression that appears in the template to process a vector interval. After some class discussion, the

conclusion is reached that at each step an element of one of the input vectors is placed in the result

12 Vector Programming Using Structural Recursion

(cond [(and (empty-VINTV2? lowv1 highv1)

(empty-VINTV2? lowv2 highv2))

res]

[(empty-VINTV2? lowv1 highv1)

(begin

(vector-set! res lowres (vector-ref V2 lowv2))

(combine lowv1 highv1

(add1 lowv2) highv2

(add1 lowres) highres))]

[(empty-VINTV2? lowv2 highv2)

(begin

(vector-set! res lowres (vector-ref V1 lowv1))

(combine (add1 lowv1) highv1

lowv2 highv2

(add1 lowres) highres))]

[(< (vector-ref V1 lowv1) (vector-ref V2 lowv2))

(begin

(vector-set! res lowres (vector-ref V1 lowv1))

(combine (add1 lowv1) highv1

lowv2 highv2

(add1 lowres) highres))]

[else

(begin

(vector-set! res lowres (vector-ref V2 lowv2))

(combine lowv1 highv1

(add1 lowv2) highv2

(add1 lowres) highres))]))]

Figure 5: The Conditional for the function combine from Figure 4.

.

vector. Furthermore, the input vectors and the result vector are to be processed from left to right. This is

an implementation choice and it is equally correct to process the intervals from right to left. These new

insights and our implementation choice, in conjunction with the previous insights, lead us to five cases

that must be addressed:

1. The intervals for both input vectors are empty.

2. The interval for the first input vector is empty.

3. The interval for the second input vector is empty.

4. The low element of the first input vector is less than the low element of the second input vector.

5. The low element of the second input vector is less than or equal to the low element of the first

input vector.

Observe that the non-recursive case is listed first and must be the first to be solved. For this case, there

are no more elements to process in either vector interval for the input vectors and the result vector is

M. T. Morazán 13

returned. For the second case, the vector interval for the first vector is empty and the process continues

by placing the remaining elements left in the second vector interval into the result vector. The recursive

call is made with the rest of the vector intervals for both the second input vector and the result vector.

The third case is the same as the second case, but it is the vector interval for the second vector that is

empty. The recursive call is made with the rest of the vector intervals for both the first input vector and

the result vector. The fourth and fifth cases place the smallest low element of the input vectors into the

result vector. The recursive call is always made with the rest of the interval for the result and the rest

of the interval for the input vector that had an element placed in the result. The resulting conditional

is displayed in Figure 5. Once again, observe that the proper use of structural recursion eliminates the

possibility of indexing errors.

The important lesson to derive from this example is that when more than one interval is processed

then every recursive call must be made with the rest of the intervals that process either the low or the

high vector element. The key to avoiding indexing errors is now reduced to, once again, making sure the

initial vector intervals are valid.

6.3 Insertion-sort In Place

Insertion-sort is an algorithm that may be used to sort a vector in place. Sorting a vector, V, for a given

vector interval is summarized as follows:

• If the vector interval is empty, stop.

• If the vector interval is not empty

– Sort the rest of the interval.

– Insert the first element of the vector interval into the sorted subinterval.

A basic outline for the insertionsort function is displayed in Figure 6. Readers familiar with HtDP,

will recognize the basic outline. Here its presentation has been adapted to use the concept of a vector

interval. The code displayed is typical of what is developed in the classroom by student-led discussion

using the template for a function on a vector. The function takes as input a vector of numbers and returns

void as it is a mutator. The entire vector must be sorted and this is reflected by the vector interval given as

input to the auxiliary function sort!. The tests illustrate that both the desired effect/mutation is achieved

and the desired result is returned.

Class discussion leads to having sort! process the vector interval from left to right. Thus, the template

to process a VINTV2 is used. It is made clear, however, that the vector interval can be processed from

right to left and this is left as a homework exercise. Students quickly realize that if the given VINTV2
is empty then the mutator should stop and this is reflected by returning void. If the given VINTV2 is

not empty, then the rest of the vector interval is sorted. This part is not controversial for students. After

sorting the rest of the given VINTV2, students typically state that the vector interval [low..high] must be

processed again to place the low element in the right place.

The function insert! places the low element of the given VINTV2 in the right place. Once again,

students perform the required case analysis on a VINTV2. If the vector interval is empty, there is nothing

to place in the right place and the mutator stops returning void. Is the given VINTV2 is not empty, the

low and low + 1 elements are tested. If they are not out of order, the mutator stops returning void as V
is sorted for the given vector interval. If they are out of order, the mutator swaps them and proceeds to

complete the inserting operation using the rest of the given VINTV2.

Much to their surprise, students get an out of bounds error when they run their tests. The yet unknown

bug manifests itself in the insert! function when comparing the low and low + 1 elements. Students

14 Vector Programming Using Structural Recursion

; insort-in-place!: (vector number) → (void)

; Purpose: To sort the given vector in non-decreasing order

; Effect: Rearrange the elements of the given vector in non-decreasing order

(define (insort-in-place! V)

(local [; insert!: int int → (void)

; Purpose: For the given VINTV2, insert V[low] in V[low+1..high]

; such that V[low..high] is in non-decreasing order

; Effect: V elements are swapped until one is >= V[low] or

; the given VINTV2 is empty

(define (insert! low high)

(cond [(empty-VINTV? low high) (void)]

[else (cond [(<= (vector-ref V low)

(vector-ref V (add1 low))) (void)]

[else (begin (swap low (add1 low))

(insert! (add1 low) high))])]))

; sort!: int int → (void)

; Purpose: For the given VINTV2, sort V using insertion sort

; Effect: For the given VINTV2, rearrange V in non-decreasing order

(define (sort! low high)

(cond [(empty-VINTV2? low high) (void)]

[else

(begin (sort! (add1 low) high)

(insert! low high))]))]
(sort! 0 (sub1 (vector-length V)))))

(define VINS0 (vector 10))

(define VINS1 (vector 10 3 7 17 11))

(check-expect (begin (insort-in-place! VINS0) VINS0) (vector 10))

(check-expect (begin (insort-in-place! VINS1) VINS1) (vector 3 7 10 11 17))

Figure 6: Buggy Insertionsort in Place.

observe that an attempt is made to index the vector at (vector-length V) + 1 and are now asked how

an indexing error can occur if the template to process a vector interval is correctly used. After some

vivid class discussion, the students determine the answer. The template has not been correctly used. The

bug is that the initial vector interval given to insert! is incorrect (highlighted in italics in Figure 6). To

correctly insert the low element, sort! must provide [low..(sub1 high)] as the initial vector interval to

insert!. Observe that now V[low + 1] can never cause an indexing error in insert!. That is, insert! will

never try to index V at (vector-length V) + 1. Furthermore, observe that it is impossible for low =
high in insert!. Therefore, we need not worry about insert! not properly working if it were ever called

with non-empty vector interval of size 1. The mutator insert! is annotated with assumptions to reflect

these observations. The correct code for insertion-sorting in place is displayed in Figure 7. The tests for

insort-in-place! explicitly include a test for a vector of size 1 to highlight that the mutator works when

the interval of valid indices is [a..a] (i.e., high = low).

The important lesson to derive from this example is that beginning students must be led to reason

about vector intervals and not about vector indexing errors like done by most, if not all, textbooks. Never

M. T. Morazán 15

; insort-in-place!: (vector number) → (void)

; Purpose: To sort the given vector in non-decreasing order

; Effect: Rearrange the elements of the given vector in non-decreasing order

(define (insort-in-place! V)

(local [; insert!: int int → (void)

; Purpose: For the given VINTV2, insert V[low] in V[low+1..high]

; such that V[low..high] is in non-decreasing order

; Effect: V elements are swapped until one is >= V[low] or

; the given VINTV2 is empty

; Assumptions: high+1 is a valid index into V

; low 6= high

(define (insert! low high)

(cond [(empty-VINTV? low high) (void)]

[else (cond [(<= (vector-ref V low)

(vector-ref V (add1 low))) (void)]

[else (begin (swap low (add1 low))

(insert! (add1 low) high))])]))

; sort!: int int → (void)

; Purpose: For the given VINTV2, sort V using insertion sort

; Effect: For the given VINTV2, rearrange V in non-decreasing order

(define (sort! low high)

(cond [(empty-VINTV2? low high) (void)]

[else (begin (sort! (add1 low) high)

(insert! low (sub1 high)))]))]

(sort! 0 (sub1 (vector-length V)))))

(define VINS0 (vector 10))

(define VINS1 (vector 10 3 7 17 11))

(check-expect (begin (insort-in-place! VINS0) VINS0) (vector 10))

(check-expect (begin (insort-in-place! VINS1) VINS1) (vector 3 7 10 11 17))

Figure 7: Insertionsort in Place.

mind that interpreters and compilers manifest bugs as vector indexing errors. Unless taught to reason

about vector intervals, students spend a frustrating amount of time trying to find an inexistent bug in a

function that is correctly written (e.g., the mutator insert! in the example above).

7 Concluding Remarks

This article presents a design-oriented methodology to help beginners develop vector processing func-

tions. It is based on the concept of a vector interval that has a recursive structure. This recursive structure

is exploited to develop a function template that is specialized by students to solve problems. An im-

portant issue that is addressed by this methodology is the proper indexing of vectors. The concept of a

vector interval is helpful in avoiding (and resolving) out-of-bounds indexing errors when all the vector

elements of the interval are processed. Several examples are presented to illustrate the use of the design

methodology in practice. These examples illustrate how to use vector intervals in the context of pro-

16 Vector Programming Using Structural Recursion

cessing several vectors simultaneously and of finding bugs that manifest themselves as vector indexing

errors.

Future work includes formulating generative and accumulative recursion as well as multidimensional-

vector processing examples that further demonstrate the usefulness of reasoning about vector intervals to

design functions. The work is also being extended to demonstrate how to use vector intervals to reason

about algorithms that do not process all the elements of a vector within a given vector interval (e.g.,

functions used by heapsort). In this case, it is necessary to introduce students to a bit of logic to deter-

mine if an index is valid given a vector interval. In addition to functional programming, the work with

vector intervals is being extended to a course that focuses on object-oriented design. Finally, on a more

long-term basis, students are being surveyed to determine how well vector intervals appeal to them and

how useful they find them for vector programming.

8 Acknowledgements

Students traditionally believe that the learning process flows from the professor to the students. In my

case, nothing can be further from the truth. The work presented in this article is inspired by the difficulties

faced and by the questions addressed to me by my beginning students. The author thanks them for

providing me with valuable lessons regarding how to teach an introduction to vector programming. In

particular, I thank Josephine Des Rosiers for her many heated debates with me about designing programs.

References

[1] Sara Baase (1988): Computer Algorithms, second edition. Addison-Wesley Publishing, Reading, MA, USA.

[2] Edwin Brady (2017): Type-Driven Development with Idris. Manning Publications, USA.

[3] Richard L. Burden & J. Douglas Faires (1985): Numerical Analysis, third edition. Prindle, Weber, & Schmidt.

[4] Code.org (2017): Lesson 13: Introduction to Arrays.

[5] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt & Shriram Krishnamurthi (2001): How to Design

Programs: An Introduction to Programming and Computing. MIT Press, Cambridge, MA, USA.

[6] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt & Shriram Krishnamurthi (2015): How to Design

Programs. Http://www.ccs.neu.edu/home/matthias/HtDP2e/.

[7] William Ford & William Topp (1996): Data Structures with C++, first edition. Prentice Hall.

[8] Michael T. Goodrich & Roberto Tamassia (2001): Data Structures and Algorithms in Java, second edition.

John Wiley & Sons.

[9] Donald E. Knuth (1998): The Art of Computer Programming, Volume 3: Sorting and Searching, second

edition. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA.

[10] Marco T. Morazán (2011): Functional Video Games in the CS1 Classroom. In Rex Page, Zoltán Horváth

& Viktória Zsók, editors: Trends in Functional Programming: 11th International Symposium, TFP 2010,

Norman, OK, USA, May 17-19, 2010. Revised Selected Papers, Lecture Notes in Computer Science, Springer

Berlin Heidelberg, Berlin, Heidelberg, pp. 166–183, doi:10.1007/978-3-642-22941-1_11.

[11] Marco T. Morazán (2012): Functional Video Games in CS1 II. In Ricardo Peña & Rex Page, editors: Trends

in Functional Programming: 12th International Symposium, TFP 2011, Madrid, Spain, May 16-18, 2011,

Revised Selected Papers, Lecture Notes in Computer Science 7193, Springer Berlin Heidelberg, Berlin, Hei-

delberg, pp. 146–162, doi:10.1007/978-3-642-32037-8_10.

[12] Marco T. Morazán (2014): Functional Video Games in CS1 III. In Jay McCarthy, editor: Trends in Func-

tional Programming: 14th International Symposium, TFP 2013, Provo, UT, USA, May 14-16, 2013, Revised

http://dx.doi.org/10.1007/978-3-642-22941-1_11
http://dx.doi.org/10.1007/978-3-642-32037-8_10

M. T. Morazán 17

Selected Papers, Lecture Notes in Computer Science 8322, Springer Berlin Heidelberg, Berlin, Heidelberg,

pp. 149–167, doi:10.1007/978-3-642-45340-3_10.

[13] Marco T. Morazán (2015): Generative and Accumulative Recursion Made Fun for Beginners. Comput. Lang.

Syst. Struct. 44(PB), pp. 181–197, doi:10.1016/j.cl.2015.08.001.

[14] Robert Sedgewick & Kevin Wayne (2007): Introduction to Programming in Java: An Interdisciplinary Ap-

proach, 1st edition. Addison-Wesley Publishing Company, USA.

[15] Abraham Silberschatz, Peter Baer Galvin & Greg Gagne (2010): Operating System Concepts wit Java, eighth

edition. John Wiley & Sons.

[16] Paul T. Tymann & G. Michael Schneider (2004): Modern Software Development Using Java. Thomson

Brooks/Cole.

[17] Stewart Venit & Wayne Bishop (1985): Elementary Linear Algebra, second edition. Prindle, Weber, and

Schmidt.

[18] Hongwei Xi (2007): Dependent ML An Approach to Practical Programming with Dependent Types. J. Funct.

Program. 17(2), pp. 215–286, doi:10.1017/S0956796806006216.

http://dx.doi.org/10.1007/978-3-642-45340-3_10
http://dx.doi.org/10.1016/j.cl.2015.08.001
http://dx.doi.org/10.1017/S0956796806006216

	1 Introduction
	2 Related Work
	3 Student Background
	4 Intervals
	5 Vector Processing
	6 Extended Examples
	6.1 The Dot Product of Two Vectors of Numbers
	6.2 Merge Two Sorted Vectors
	6.3 Insertion-sort In Place

	7 Concluding Remarks
	8 Acknowledgements

