
The preceding five chapters explain how to use multiple regression to analyze 
the relationship among variables in a data set. In this chapter, we step back and 

ask, What makes a study that uses multiple regression reliable or unreliable? We 
focus on statistical studies that have the objective of estimating the causal effect of 
a change in some independent variable, such as class size, on a dependent variable, 
such as test scores. For such studies, when will multiple regression provide a useful 
estimate of the causal effect, and, just as importantly, when will it fail to do so?

To answer these questions, this chapter presents a framework for assessing 
statistical studies in general, whether or not they use regression analysis. This 
framework relies on the concepts of internal and external validity. A study is internally 
valid if its statistical inferences about causal effects are valid for the population and 
setting studied; it is externally valid if its inferences can be generalized to other 
populations and settings. In Sections 9.1 and 9.2, we discuss internal and external 
validity, list a variety of possible threats to internal and external validity, and discuss 
how to identify those threats in practice. The discussion in Sections 9.1 and 9.2 
focuses on the estimation of causal effects from observational data. Section 9.3 
discusses a different use of regression models—forecasting—and provides an 
introduction to the threats to the validity of forecasts made using regression models.

As an illustration of the framework of internal and external validity, in Section 
9.4 we assess the internal and external validity of the study of the effect on test 
scores of cutting the student–teacher ratio presented in Chapters 4 through 8.

9.1 Internal and External Validity

The concepts o6 internal and external validity, de6ined in Key Concept 9.1, pro-
vide a 6ramework 6or evaluating whether a statistical or econometric study is use-
6ul 6or answering a speci6ic question o6 interest.

Internal and external validity distinguish between the population and setting 
studied and the population and setting to which the results are generalized. The 
population studied is the population o6 entities—people, companies, school dis-
tricts, and so 6orth—6rom which the sample was drawn. The population to which 

9
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the results are generalized, or the population of interest, is the population o6 enti-
ties to which the causal in6erences 6rom the study are to be applied. For example, 
a high school (grades 9 through 12) principal might want to generalize our 6indings 
on class sizes and test scores in Cali6ornia elementary school districts (the popula-
tion studied) to the population o6 high schools (the population o6 interest).

By “setting,” we mean the institutional, legal, social, and economic environ-
ment. For example, it would be important to know whether the 6indings o6 a 
laboratory experiment assessing methods 6or growing organic tomatoes could be 
generalized to the 6ield, that is, whether the organic methods that work in the set-
ting o6 a laboratory also work in the setting o6 the real world. We provide other 
examples o6 di66erences in populations and settings later in this section.

Threats to Internal Validity
Internal validity has two components. First, the estimator o6 the causal e66ect 
should be unbiased and consistent. For example, i6 bnSTR is the OLS estimator o6 
the e66ect on test scores o6 a unit change in the student–teacher ratio in a certain 
regression, then bnSTR should be an unbiased and consistent estimator o6 the true 
population causal e66ect o6 a change in the student–teacher ratio, bSTR.

Second, hypothesis tests should have the desired signi6icance level (the actual 
rejection rate o6 the test under the null hypothesis should equal its desired sig-
ni6icance level), and con6idence intervals should have the desired con6idence 
level. For example, i6 a con6idence interval is constructed as bnSTR{1.96 SE(bnSTR),
this con6idence interval should contain the true population causal e66ect, bSTR,
with probability 95% over repeated samples.

In regression analysis, causal e66ects are estimated using the estimated regres-
sion 6unction, and hypothesis tests are per6ormed using the estimated regression 
coe66icients and their standard errors. Accordingly, in a study based on OLS 
regression, the requirements 6or internal validity are that the OLS estimator is 
unbiased and consistent, and that standard errors are computed in a way that 

Internal and External Validity

A statistical analysis is said to have internal validity i6 the statistical in6erences 
about causal e66ects are valid 6or the population being studied. The analysis is said 
to have external validity i6 its in6erences and conclusions can be generalized 6rom 
the population and setting studied to other populations and settings.

KEY CONCEPT
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makes con6idence intervals have the desired con6idence level. For various reasons 
these requirements might not be met, and these reasons constitute threats to 
internal validity. These threats lead to 6ailures o6 one or more o6 the least squares 
assumptions in Key Concept 6.4. For example, one threat that we have discussed 
at length is omitted variable bias; it leads to correlation between one or more 
regressors and the error term, which violates the 6irst least squares assumption. I6 
data are available on the omitted variable or on an adequate control variable, then 
this threat can be avoided by including that variable as an additional regressor.

Section 9.2 provides a detailed discussion o6 the various threats to internal 
validity in multiple regression analysis and suggests how to mitigate them.

Threats to External Validity
Potential threats to external validity arise 6rom di66erences between the popula-
tion and setting studied and the population and setting o6 interest.

Differences in populations. Di66erences between the population studied and the 
population o6 interest can pose a threat to external validity. For example, laboratory 
studies o6 the toxic e66ects o6 chemicals typically use animal populations like mice (the 
population studied), but the results are used to write health and sa6ety regulations 6or 
human populations (the population o6 interest). Whether mice and men di66er su66i-
ciently to threaten the external validity o6 such studies is a matter o6 debate.

More generally, the true causal e66ect might not be the same in the population 
studied and the population o6 interest. This could be because the population was 
chosen in a way that makes it di66erent 6rom the population o6 interest, because o6 
di66erences in characteristics o6 the populations, because o6 geographical di66er-
ences, or because the study is out o6 date.

Differences in settings. Even i6 the population being studied and the population 
o6 interest are identical, it might not be possible to generalize the study results i6 
the settings di66er. For example, a study o6 the e66ect on college binge drinking o6 
an antidrinking advertising campaign might not generalize to another identical 
group o6 college students i6 the legal penalties 6or drinking at the two colleges 
di66er. In this case, the legal setting in which the study was conducted di66ers 6rom 
the legal setting to which its results are applied.

More generally, examples o6 di66erences in settings include di66erences in the 
institutional environment (public universities versus religious universities), di66er-
ences in laws (di66erences in legal penalties), or di66erences in the physical environ-
ment (tailgate-party binge drinking in southern Cali6ornia versus Fairbanks, Alaska).
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Application to test scores and the student–teacher ratio. Chapters 7 and 8 
reported statistically signi6icant, but substantively small, estimated improvements 
in test scores resulting 6rom reducing the student–teacher ratio. This analysis was 
based on test results 6or Cali6ornia school districts. Suppose 6or the moment that 
these results are internally valid. To what other populations and settings o6 interest 
could this 6inding be generalized?

The closer the population and setting o6 the study are to those o6 interest, the 
stronger the case 6or external validity. For example, college students and college 
instruction are very di66erent 6rom elementary school students and instruction, so it 
is implausible that the e66ect o6 reducing class sizes estimated using the Cali6ornia 
elementary school district data would generalize to colleges. On the other hand, ele-
mentary school students, curriculum, and organization are broadly similar through-
out the United States, so it is plausible that the Cali6ornia results might generalize 
to per6ormance on standardized tests in other U.S. elementary school districts.

How to assess the external validity of a study. External validity must be judged 
using speci6ic knowledge o6 the populations and settings studied and those o6 
interest. Important di66erences between the two will cast doubt on the external 
validity o6 the study.

Sometimes there are two or more studies on di66erent but related populations. 
I6 so, the external validity o6 both studies can be checked by comparing their 
results. For example, in Section 9.4 we analyze test score and class size data 6or 
elementary school districts in Massachusetts and compare the Massachusetts and 
Cali6ornia results. In general, similar 6indings in two or more studies bolster claims 
to external validity, while di66erences in their 6indings that are not readily 
explained cast doubt on their external validity.1

How to design an externally valid study. Because threats to external validity stem 
6rom a lack o6 comparability o6 populations and settings, these threats are best 
minimized at the early stages o6 a study, be6ore the data are collected. Study 
design is beyond the scope o6 this textbook, and the interested reader is re6erred 
to Shadish, Cook, and Campbell (2002).

1A comparison o6 many related studies on the same topic is called a meta-analysis. The discussion in 
the box “The Mozart E66ect: Omitted Variable Bias?” in Chapter 6 is based on a meta-analysis, 6or 
example. Per6orming a meta-analysis o6 many studies has its own challenges. How do you sort the good 
studies 6rom the bad? How do you compare studies when the dependent variables di66er? Should you 
put more weight on studies with larger samples? A discussion o6 meta-analysis and its challenges goes 
beyond the scope o6 this textbook. The interested reader is re6erred to Hedges and Olkin (1985) and 
Cooper and Hedges (1994).
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9.2 Threats to Internal Validity 
of Multiple Regression Analysis

Studies based on regression analysis are internally valid i6 the estimated regression 
coe66icients are unbiased and consistent, and i6 their standard errors yield con6idence 
intervals with the desired con6idence level. This section surveys 6ive reasons why the 
OLS estimator o6 the multiple regression coe66icients might be biased, even in large 
samples: omitted variables, misspeci6ication o6 the 6unctional 6orm o6 the regression 
6unction, imprecise measurement o6 the independent variables (“errors in variables”), 
sample selection, and simultaneous causality. All 6ive sources o6 bias arise because the 
regressor is correlated with the error term in the population regression, violating the 
6irst least squares assumption in Key Concept 6.4. For each, we discuss what can be 
done to reduce this bias. The section concludes with a discussion o6 circumstances that 
lead to inconsistent standard errors and what can be done about it.

Omitted Variable Bias
Recall that omitted variable bias arises when a variable that both determines Y
and is correlated with one or more o6 the included regressors is omitted 6rom 
the regression. This bias persists even in large samples, so the OLS estimator is 
inconsistent. How best to minimize omitted variable bias depends on whether 
or not variables that adequately control 6or the potential omitted variable are 
available.

Solutions to omitted variable bias when the variable is observed or there are ade-
quate control variables. I6 you have data on the omitted variable, then you can 
include that variable in a multiple regression, thereby addressing the problem. 
Alternatively, i6 you have data on one or more control variables and i6 these con-
trol variables are adequate in the sense that they lead to conditional mean inde-
pendence [Equation (7.20)], then including those control variables eliminates the 
potential bias in the coe66icient on the variable o6 interest.

Adding a variable to a regression has both costs and bene6its. On the one 
hand, omitting the variable could result in omitted variable bias. On the other 
hand, including the variable when it does not belong (that is, when its population 
regression coe66icient is zero) reduces the precision o6 the estimators o6 the other 
regression coe66icients. In other words, the decision whether to include a variable 
involves a trade-o66 between bias and variance o6 the coe66icient o6 interest. In 
practice, there are 6our steps that can help you decide whether to include a vari-
able or set o6 variables in a regression.
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The 6irst step is to identi6y the key coe66icient or coe66icients o6 interest in 
your regression. In the test score regressions, this is the coe66icient on the student–
teacher ratio, because the question originally posed concerns the e66ect on test 
scores o6 reducing the student–teacher ratio.

The second step is to ask yoursel6: What are the most likely sources o6 important 
omitted variable bias in this regression? Answering this question requires applying 
economic theory and expert knowledge, and should occur be6ore you actually run 
any regressions; because this step is done be6ore analyzing the data, it is re6erred to 
as a priori (“be6ore the 6act”) reasoning. In the test score example, this step entails 
identi6ying those determinants o6 test scores that, i6 ignored, could bias our estimator 
o6 the class size e66ect. The results o6 this step are a base regression speci6ication, the 
starting point 6or your empirical regression analysis, and a list o6 additional “ques-
tionable” variables that might help to mitigate possible omitted variable bias.

The third step is to augment your base speci6ication with the additional ques-
tionable control variables identi6ied in the second step. I6 the coe66icients on the 
additional control variables are statistically signi6icant or i6 the estimated coe66i-
cients o6 interest change appreciably when the additional variables are included, 
then they should remain in the speci6ication and you should modi6y your base 
speci6ication. I6 not, then these variables can be excluded 6rom the regression.

The 6ourth step is to present an accurate summary o6 your results in tabular 
6orm. This provides “6ull disclosure” to a potential skeptic, who can then draw his 
or her own conclusions. Table 7.1 and 8.3 are examples o6 this strategy. For exam-
ple, in Table 8.3, we could have presented only the regression in column (7), 
because that regression summarizes the relevant e66ects and nonlinearities in the 
other regressions in that table. Presenting the other regressions, however, permits 
the skeptical reader to draw his or her own conclusions.

These steps are summarized in Key Concept 9.2.

Solutions to omitted variable bias when adequate control variables are not 
available. Adding an omitted variable to a regression is not an option i6 you do 
not have data on that variable and i6 there are no adequate control variables. Still, 
there are three other ways to solve omitted variable bias. Each o6 these three solu-
tions circumvents omitted variable bias through the use o6 di66erent types o6 data.

The 6irst solution is to use data in which the same observational unit is 
observed at di66erent points in time. For example, test score and related data 
might be collected 6or the same districts in 1995 and again in 2000. Data in this 
6orm are called panel data. As explained in Chapter 10, panel data make it possible 
to control 6or unobserved omitted variables as long as those omitted variables do 
not change over time.
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The second solution is to use instrumental variables regression. This method 
relies on a new variable, called an instrumental variable. Instrumental variables 
regression is discussed in Chapter 12.

The third solution is to use a study design in which the e66ect o6 interest (6or 
example, the e66ect o6 reducing class size on student achievement) is studied using 
a randomized controlled experiment. Randomized controlled experiments are 
discussed in Chapter 13.

Misspecification of the Functional Form 
of the Regression Function
I6 the true population regression 6unction is nonlinear but the estimated regression is 
linear, then this functional form misspecification makes the OLS estimator biased. 
This bias is a type o6 omitted variable bias, in which the omitted variables are the terms 
that re6lect the missing nonlinear aspects o6 the regression 6unction. For example, i6 
the population regression 6unction is a quadratic polynomial, then a regression that 
omits the square o6 the independent variable would su66er 6rom omitted variable bias. 
Bias arising 6rom 6unctional 6orm misspeci6ication is summarized in Key Concept 9.3.

Omitted Variable Bias: Should I Include More Variables 
in My Regression?

I6 you include another variable in your multiple regression, you will eliminate the 
possibility o6 omitted variable bias 6rom excluding that variable, but the variance 
o6 the estimator o6 the coe66icients o6 interest can increase. Here are some guide-
lines to help you decide whether to include an additional variable:

1. Be speci6ic about the coe66icient or coe66icients o6 interest.

2. Use a priori reasoning to identi6y the most important potential sources o6 
omitted variable bias, leading to a base speci6ication and some “questionable” 
variables.

3. Test whether additional “questionable” control variables have nonzero coe6-
6icients.

4. Provide “6ull disclosure” representative tabulations o6 your results so that 
others can see the e66ect o6 including the questionable variables on the 
coe66icient(s) o6 interest. Do your results change i6 you include a question-
able control variable?

KEY CONCEPT

9.2



322 CHAPTER 9 Assessing Studies Based on Multiple Regression

Solutions to functional form misspecification. When the dependent variable is con-
tinuous (like test scores), this problem o6 potential nonlinearity can be solved using 
the methods o6 Chapter 8. I6, however, the dependent variable is discrete or binary 
(6or example, Yi equals 1 i6 the ith person attended college and equals 0 otherwise), 
things are more complicated. Regression with a discrete dependent variable is discussed 
in Chapter 11.

Measurement Error and Errors-in-Variables Bias
Suppose that in our regression o6 test scores against the student–teacher ratio we 
had inadvertently mixed up our data so that we ended up regressing test scores 
6or 6i6th graders on the student–teacher ratio 6or tenth graders in that district. 
Although the student–teacher ratio 6or elementary school students and tenth 
graders might be correlated, they are not the same, so this mix-up would lead to 
bias in the estimated coe66icient. This is an example o6 errors-in-variables bias
because its source is an error in the measurement o6 the independent variable. 
This bias persists even in very large samples, so the OLS estimator is inconsistent 
i6 there is measurement error.

There are many possible sources o6 measurement error. I6 the data are collected 
through a survey, a respondent might give the wrong answer. For example, one ques-
tion in the Current Population Survey involves last year’s earnings. A respondent 
might not know his or her exact earnings or might misstate the amount 6or some 
other reason. I6 instead the data are obtained 6rom computerized administrative 
records, there might have been typographical errors when the data were 6irst entered.

To see that errors in variables can result in correlation between the regressor 
and the error term, suppose that there is a single regressor Xi (say, actual earn-
ings) but that Xi is measured imprecisely by X∼i (the respondent’s stated earnings). 
Because X∼i, not Xi, is observed, the regression equation actually estimated is the 

Functional Form Misspecification

Functional 6orm misspeci6ication arises when the 6unctional 6orm o6 the estimated 
regression 6unction di66ers 6rom the 6unctional 6orm o6 the population regression 
6unction. I6 the 6unctional 6orm is misspeci6ied, then the estimator o6 the partial 
e66ect o6 a change in one o6 the variables will, in general, be biased. Functional 
6orm misspeci6ication o6ten can be detected by plotting the data and the estimated 
regression 6unction, and it can be corrected by using a di66erent 6unctional 6orm.

KEY CONCEPT

9.3
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one based on X∼i. Written in terms o6 the imprecisely measured variable X∼i, the 
population regression equation Yi = b0 + b1Xi + ui is

Yi = b0 + b1X∼i + 3b1(Xi - X∼i) + ui4

= b0 + b1X
∼

i + vi, (9.1)

where vi = b1(Xi - X∼i) + ui. Thus the population regression equation written in 
terms o6 X∼i has an error term that contains the measurement error, the di66erence 
between X∼i and Xi. I6 this di66erence is correlated with the measured value X∼i,
then the regressor X∼i will be correlated with the error term and bn1 will be biased 
and inconsistent.

The precise size and direction o6 the bias in bn1 depend on the correlation 
between X∼i and the measurement error, X∼i - Xi. This correlation depends, in 
turn, on the speci6ic nature o6 the measurement error.

For example, suppose that the measured value, X∼i, equals the actual, unmea-
sured value, Xi, plus a purely random component, wi, which has mean zero and 
variance s2

w. Because the error is purely random, we might suppose that wi is 
uncorrelated with Xi and with the regression error ui. This assumption consti-
tutes the classical measurement error model in which X∼i = Xi + wi , where 
corr(wi, Xi) = 0 and corr(wi, ui) = 0. Under the classical measurement error 
model, a bit o6 algebra2 shows that bn1 has the probability limit

bn1 ¡
p s2

X

s2
X + s2

w
b1. (9.2)

That is, i6 the measurement error has the e66ect o6 simply adding a random element 
to the actual value o6 the independent variable, then bn1 is inconsistent. Because the 
ratio s2

X

s2
X + s2

w
 is less than 1, bn1 will be biased toward 0, even in large samples. In the 

extreme case that the measurement error is so large that essentially no in6ormation 
about Xi remains, the ratio o6 the variances in the 6inal expression in Equation (9.2) 
is 0 and bn1 converges in probability to 0. In the other extreme, when there is no 
measurement error, s2

w = 0, so bn1 ¡
p
b1.

A di66erent model o6 measurement error supposes that the respondent makes 
his or her best estimate o6 the true value. In this “best guess” model the response 

2Under this measurement error assumption, vi = b1(Xi - X
�

i) + ui = -b1wi + ui, cov(Xi, ui) = 0, and 
cov(X

�
1, wi) = cov(Xi + wi, wi) = s2

w, so cov(X�i, vi) = -b1cov(X
�

1, wi) + cov(X
�

i, ui) = -b1s
2
w. Thus, 

6rom Equation (6.1), bn1 ¡
p
b1 - b1s

2
w >s2

X�. Now s2
X� = s

2
X + s2

w, so bn1 ¡
p
b1 - b1s

2
w >(s2

X + s2
w ) =

[s2
X > (s2

X + s2
w )]b1.
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X∼i is modeled as the conditional mean o6 Xi, given the in6ormation available to the 
respondent. Because X∼i is the best guess, the measurement error X∼i - Xi is uncor-
related with the response X∼i (i6 the measurement error were correlated with X∼i, then 
that would be use6ul in6ormation 6or predicting Xi, in which case X∼i would not have 
been the best guess o6 Xi). That is, E3(X∼i - Xi)X∼i4 = 0, and i6 the respondent’s 
in6ormation is uncorrelated with ui, then X∼i is uncorrelated with the error term vi.
Thus, in this “best guess” measurement error model, bn1 is consistent, but because 
var(vi) 7 var(ui), the variance o6 bn1 is larger than it would be absent measurement 
error. The “best guess” measurement error model is examined 6urther in Exercise 9.12.

Problems created by measurement error can be even more complicated i6 there 
is intentional misreporting. For example, suppose that survey respondents provide the 
income reported on their income taxes but intentionally underreport their true tax-
able income by not including cash payments. I6, 6or example, all respondents report 
only 90% o6 income, then X∼i = 0.90Xi and bn1 will be biased up by 10%.

Although the result in Equation (9.2) is speci6ic to classical measurement 
error, it illustrates the more general proposition that i6 the independent variable 
is measured imprecisely, then the OLS estimator is biased, even in large samples. 
Errors-in-variables bias is summarized in Key Concept 9.4.

Measurement error in Y. The e66ect o6 measurement error in Y is di66erent 6rom 
measurement error in X. I6 Y has classical measurement error, then this measure-
ment error increases the variance o6 the regression and o6 bn1 but does not induce 
bias in bn1. To see this, suppose that measured Yi is Y∼i, which equals true Yi plus 
random measurement error wi. Then the regression model estimated is 
Y∼i = b0 + b1Xi + vi, where vi = wi + ui. I6 wi is truly random, then wi and Xi are 
independently distributed so that E(wi 0Xi) = 0, in which case E(vi 0Xi) = 0, so 
bn1 is unbiased. However, because var(vi) 7 var(ui), the variance o6 bn1 is larger 

Errors-in-Variables Bias

Errors-in-variables bias in the OLS estimator arises when an independent vari-
able is measured imprecisely. This bias depends on the nature o6 the measurement 
error and persists even i6 the sample size is large. I6 the measured variable equals 
the actual value plus a mean-zero, independently distributed measurement error, 
then the OLS estimator in a regression with a single right-hand variable is biased 
toward zero, and its probability limit is given in Equation (9.2).

KEY CONCEPT

9.4
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than it would be without measurement error. In the test score/class size example, 
suppose that test scores have purely random grading errors that are independent o6 
the regressors; then the classical measurement error model o6 this paragraph applies 
to Y∼i, and bn1 is unbiased. More generally, measurement error in Y that has condi-
tional mean zero given the regressors will not induce bias in the OLS coe66icients.

Solutions to errors-in-variables bias. The best way to solve the errors-in-variables 
problem is to get an accurate measure o6 X. I6 this is impossible, however, econo-
metric methods can be used to mitigate errors-in-variables bias.

One such method is instrumental variables regression. It relies on having another 
variable (the “instrumental” variable) that is correlated with the actual value Xi but 
is uncorrelated with the measurement error. This method is studied in Chapter 12.

A second method is to develop a mathematical model o6 the measurement 
error and, i6 possible, to use the resulting 6ormulas to adjust the estimates. For 
example, i6 a researcher believes that the classical measurement error model applies 
and i6 she knows or can estimate the ratio s2

w>s2
X, then she can use Equation (9.2) 

to compute an estimator o6 b1 that corrects 6or the downward bias. Because this 
approach requires specialized knowledge about the nature o6 the measurement 
error, the details typically are speci6ic to a given data set and its measurement prob-
lems and we shall not pursue this approach 6urther in this textbook.

Missing Data and Sample Selection
Missing data are a common 6eature o6 economic data sets. Whether missing data 
pose a threat to internal validity depends on why the data are missing. We con-
sider three cases: when the data are missing completely at random, when the data 
are missing based on X, and when the data are missing because o6 a selection 
process that is related to Y beyond depending on X.

When the data are missing completely at random—that is, 6or random rea-
sons unrelated to the values o6 X or Y—the e66ect is to reduce the sample size but 
not introduce bias. For example, suppose that you conduct a simple random sam-
ple o6 100 classmates, then randomly lose hal6 the records. It would be as i6 you 
had never surveyed those individuals. You would be le6t with a simple random 
sample o6 50 classmates, so randomly losing the records does not introduce bias.

When the data are missing based on the value o6 a regressor, the e66ect also is 
to reduce the sample size but not introduce bias. For example, in the class size/
student–teacher ratio example, suppose that we used only the districts in which 
the student–teacher ratio exceeds 20. Although we would not be able to draw 
conclusions about what happens when STR … 20, this would not introduce bias 
into our analysis o6 the class size e66ect 6or districts with STR 7 20.
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In contrast to the 6irst two cases, i6 the data are missing because o6 a selection 
process that is related to the value o6 the dependent variable (Y), beyond depend-
ing on the regressors (X), then this selection process can introduce correlation 
between the error term and the regressors. The resulting bias in the OLS estimator 
is called sample selection bias. An example o6 sample selection bias in polling was 
given in the box “Landon Wins!” in Section 3.1. In that example, the sample selec-
tion method (randomly selecting phone numbers o6 automobile owners) was 
related to the dependent variable (who the individual supported 6or president in 
1936), because in 1936 car owners with phones were more likely to be Republicans. 
The sample selection problem can be cast either as a consequence o6 nonrandom 
sampling or as a missing data problem. In the 1936 polling example, the sample was 
a random sample o6 car owners with phones, not a random sample o6 voters. Alter-
natively, this example can be cast as a missing data problem by imagining a random 
sample o6 voters, but with missing data 6or those without cars and phones. The 
mechanism by which the data are missing is related to the dependent variable, 
leading to sample selection bias.

The box “Do Stock Mutual Funds Outper6orm the Market?” provides an 
example o6 sample selection bias in 6inancial economics. Sample selection bias is 
summarized in Key Concept 9.5.3

Solutions to selection bias. The methods we have discussed so 6ar cannot elimi-
nate sample selection bias. The methods 6or estimating models with sample selec-
tion are beyond the scope o6 this book. Those methods build on the techniques 
introduced in Chapter 11, where 6urther re6erences are provided.

Simultaneous Causality
So 6ar, we have assumed that causality runs 6rom the regressors to the dependent 
variable (X causes Y). But what i6 causality also runs 6rom the dependent variable to 

Sample Selection Bias

Sample selection bias arises when a selection process in6luences the availability o6 
data and that process is related to the dependent variable, beyond depending on 
the regressors. Sample selection induces correlation between one or more regres-
sors and the error term, leading to bias and inconsistency o6 the OLS estimator.

KEY CONCEPT
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3Exercise 18.16 provides a mathematical treatment o6 the three missing data cases discussed here.
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Do Stock Mutual Funds Outperform the Market?

reason, a study using data on historical per6ormance 

o6 currently available 6unds is subject to sample selec-

tion bias: The sample is selected based on the value o6 

the dependent variable, returns, because 6unds with 

the lowest returns are eliminated. The mean return 

o6 all 6unds (including the de6unct) over a ten-year 

period will be less than the mean return o6 those 

6unds still in existence at the end o6 those ten years, 

so a study o6 only the latter 6unds will overstate per-

6ormance. Financial economists re6er to this selection 

bias as “survivorship bias” because only the better 

6unds survive to be in the data set.

When 6inancial econometricians correct 6or 

survivorship bias by incorporating data on de6unct 

6unds, the results do not paint a 6lattering portrait 

o6 mutual 6und managers. Corrected 6or survivor-

ship bias, the econometric evidence indicates that 

actively managed stock mutual 6unds do not out-

per6orm the market on average and that past good 

per6ormance does not predict 6uture good per6or-

mance. For 6urther reading on mutual 6unds and sur-

vivorship bias, see Malkiel (2012), Chapter 11 and 

Carhart (1997). The problem o6 survivorship bias 

also arises in evaluating hedge 6und per6ormance; 

6or 6urther reading, see Aggarwal and Jorion (2010).

S tock mutual 6unds are investment vehicles that 

hold a port6olio o6 stocks. By purchasing shares 

in a mutual 6und, a small investor can hold a broadly 

diversi6ied port6olio without the hassle and expense 

(transaction cost) o6 buying and selling shares in indi-

vidual companies. Some mutual 6unds simply track 

the market (6or example, by holding the stocks in the 

S&P 500), whereas others are actively managed by 

6ull-time pro6essionals whose job is to make the 6und 

earn a better return than the overall market—and 

competitors’ 6unds. But do these actively managed 

6unds achieve this goal? Do some mutual 6unds con-

sistently beat other 6unds and the market?

One way to answer these questions is to compare 

6uture returns on mutual 6unds that had high returns 

over the past year to 6uture returns on other 6unds and 

on the market as a whole. In making such compari-

sons, 6inancial economists know that it is important to 

select the sample o6 mutual 6unds care6ully. This task 

is not as straight6orward as it seems, however. Some 

databases include historical data on 6unds currently 

available 6or purchase, but this approach means that 

the dogs—the most poorly per6orming 6unds—are 

omitted 6rom the data set because they went out o6 

business or were merged into other 6unds. For this 

one or more regressors (Y causes X)? I6 so, causality runs “backward” as well as 6or-
ward; that is, there is simultaneous causality. I6 there is simultaneous causality, an 
OLS regression picks up both e66ects, so the OLS estimator is biased and inconsistent.

For example, our study o6 test scores 6ocused on the e66ect on test scores o6 
reducing the student–teacher ratio, so causality is presumed to run 6rom the 
student–teacher ratio to test scores. Suppose, however, that a government initiative 
subsidized hiring teachers in school districts with poor test scores. I6 so, causality 
would run in both directions: For the usual educational reasons low student–teacher 
ratios would arguably lead to high test scores, but because o6 the government 
program low test scores would lead to low student–teacher ratios.



328 CHAPTER 9 Assessing Studies Based on Multiple Regression

Simultaneous causality leads to correlation between the regressor and the 
error term. In the test score example, suppose that there is an omitted 6actor that 
leads to poor test scores; because o6 the government program, this 6actor that 
produces low scores in turn results in a low student–teacher ratio. Thus a negative 
error term in the population regression o6 test scores on the student–teacher ratio 
reduces test scores, but because o6 the government program it also leads to a 
decrease in the student–teacher ratio. In other words, the student–teacher ratio is 
positively correlated with the error term in the population regression. This in turn 
leads to simultaneous causality bias and inconsistency o6 the OLS estimator.

This correlation between the error term and the regressor can be made math-
ematically precise by introducing an additional equation that describes the reverse 
causal link. For convenience, consider just the two variables X and Y and ignore 
other possible regressors. Accordingly, there are two equations, one in which X
causes Y and one in which Y causes X:

Yi = b0 + b1Xi + ui and (9.3)

Xi = g0 + g1Yi + vi. (9.4)

Equation (9.3) is the 6amiliar one in which b1 is the e66ect on Y o6 a change in X,
where u represents other 6actors. Equation (9.4) represents the reverse causal 
e66ect o6 Y on X. In the test score problem, Equation (9.3) represents the educa-
tional e66ect o6 class size on test scores, while Equation (9.4) represents the reverse 
causal e66ect o6 test scores on class size induced by the government program.

Simultaneous causality leads to correlation between Xi and the error term ui

in Equation (9.3). To see this, imagine that ui is positive, which increases Yi. How-
ever, this higher value o6 Yi a66ects the value o6 Xi through the second o6 these 
equations, and i6 g1 is positive, a high value o6 Yi will lead to a high value o6 Xi.
Thus, i6 g1 is positive, Xi and ui will be positively correlated.4

Because this can be expressed mathematically using two simultaneous equa-
tions, the simultaneous causality bias is sometimes called simultaneous equations 
bias. Simultaneous causality bias is summarized in Key Concept 9.6.

Solutions to simultaneous causality bias. There are two ways to mitigate simul-
taneous causality bias. One is to use instrumental variables regression, the topic 

4To show this mathematically, note that Equation (9.4) implies that cov(Xi, ui) = cov(g0 + g1Yi +
vi, ui) = g1cov(Yi, ui) + cov(vi, ui). Assuming that cov(vi, ui) = 0 by Equation (9.3) this in turn implies 
that cov(Xi, ui) = g1cov(Yi, ui) = g1cov(b0 + b1Xi + ui, ui) = g1b1cov(Xi, ui) + g1s

2
u. Solving 6or 

cov(Xi, ui) then yields the result cov(Xi, ui) = g1s
2
u>(1 - g1b1).
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o6 Chapter 12. The second is to design and implement a randomized controlled 
experiment in which the reverse causality channel is nulli6ied, and such experi-
ments are discussed in Chapter 13.

Sources of Inconsistency of OLS Standard Errors
Inconsistent standard errors pose a di66erent threat to internal validity. Even i6 the OLS 
estimator is consistent and the sample is large, inconsistent standard errors will produce 
hypothesis tests with size that di66ers 6rom the desired signi6icance level and “95%” 
con6idence intervals that 6ail to include the true value in 95% o6 repeated samples.

There are two main reasons 6or inconsistent standard errors: improperly han-
dled heteroskedasticity and correlation o6 the error term across observations.

Heteroskedasticity. As discussed in Section 5.4, 6or historical reasons some 
regression so6tware report homoskedasticity-only standard errors. I6, however, 
the regression error is heteroskedastic, those standard errors are not a reliable 
basis 6or hypothesis tests and con6idence intervals. The solution to this problem 
is to use heteroskedasticity-robust standard errors and to construct F-statistics 
using a heteroskedasticity-robust variance estimator. Heteroskedasticity-robust 
standard errors are provided as an option in modern so6tware packages.

Correlation of the error term across observations. In some settings, the population 
regression error can be correlated across observations. This will not happen i6 the 
data are obtained by sampling at random 6rom the population because the random-
ness o6 the sampling process ensures that the errors are independently distributed 
6rom one observation to the next. Sometimes, however, sampling is only partially 
random. The most common circumstance is when the data are repeated observations 
on the same entity over time, such as the same school district 6or di66erent years. I6 
the omitted variables that constitute the regression error are persistent (like district 
demographics), “serial” correlation is induced in the regression error over time. 

Simultaneous Causality Bias

Simultaneous causality bias, also called simultaneous equations bias, arises in a 
regression o6 Y on X when, in addition to the causal link o6 interest 6rom X to Y,
there is a causal link 6rom Y to X. This reverse causality makes X correlated with 
the error term in the population regression o6 interest.

KEY CONCEPT

9.6
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Serial correlation in the error term can arise in panel data (data on multiple districts 
6or multiple years) and in time series data (data on a single district 6or multiple years).

Another situation in which the error term can be correlated across observa-
tions is when sampling is based on a geographical unit. I6 there are omitted vari-
ables that re6lect geographic in6luences, these omitted variables could result in 
correlation o6 the regression errors 6or adjacent observations.

Correlation o6 the regression error across observations does not make the OLS 
estimator biased or inconsistent, but it does violate the second least squares assump-
tion in Key Concept 6.4. The consequence is that the OLS standard errors—both 
homoskedasticity-only and heteroskedasticity-robust—are incorrect in the sense 
that they do not produce con6idence intervals with the desired con6idence level.

In many cases, this problem can be 6ixed by using an alternative 6ormula 6or 
standard errors. We provide 6ormulas 6or computing standard errors that are 
robust to both heteroskedasticity and serial correlation in Chapter 10 (regression 
with panel data) and in Chapter 15 (regression with time series data).

Key Concept 9.7 summarizes the threats to internal validity o6 a multiple 
regression study.

Threats to the Internal Validity of a Multiple Regression Study

There are 6ive primary threats to the internal validity o6 a multiple regression study:

1. Omitted variables

2. Functional 6orm misspeci6ication

3. Errors in variables (measurement error in the regressors)

4. Sample selection

5. Simultaneous causality

Each o6 these, i6 present, results in 6ailure o6 the 6irst least squares assumption, 
E(ui 0X1i,c, Xki) ≠ 0, which in turn means that the OLS estimator is biased 
and inconsistent.

Incorrect calculation o6 the standard errors also poses a threat to internal 
validity. Homoskedasticity-only standard errors are invalid i6 heteroskedasticity 
is present. I6 the variables are not independent across observations, as can arise 
in panel and time series data, then a 6urther adjustment to the standard error 
6ormula is needed to obtain valid standard errors.

Applying this list o6 threats to a multiple regression study provides a system-
atic way to assess the internal validity o6 that study.

KEY CONCEPT

9.7
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9.3 Internal and External Validity When 
the Regression Is Used for Forecasting

Up to now, the discussion o6 multiple regression analysis has 6ocused on the esti-
mation o6 causal e66ects. Regression models can be used 6or other purposes, how-
ever, including 6orecasting. When regression models are used 6or 6orecasting, 
concerns about external validity are very important, but concerns about unbiased 
estimation o6 causal e66ects are not.

Using Regression Models for Forecasting
Chapter 4 began by considering the problem o6 a school superintendent who 
wants to know how much test scores would increase i6 she reduced class sizes in 
her school district; that is, the superintendent wants to know the causal e66ect on 
test scores o6 a change in class size. Accordingly, Chapters 4 through 8 6ocused on 
using regression analysis to estimate causal e66ects using observational data.

Now consider a di66erent problem. A parent moving to a metropolitan area 
plans to choose where to live based in part on the quality o6 the local schools. The 
parent would like to know how di66erent school districts per6orm on standardized 
tests. Suppose, however, that test score data are not available (perhaps they are 
con6idential) but data on class sizes are. In this situation, the parent must guess at 
how well the di66erent districts per6orm on standardized tests based on a limited 
amount o6 in6ormation. That is, the parent’s problem is to 6orecast average test 
scores in a given district based on in6ormation related to test scores—in particular, 
class size.

How can the parent make this 6orecast? Recall the regression o6 test scores 
on the student–teacher ratio (STR) 6rom Chapter 4:

TestScore = 698.9 - 2.28 * STR. (9.5)

We concluded that this regression is not use6ul 6or the superintendent: The OLS
estimator o6 the slope is biased because o6 omitted variables such as the compo-
sition o6 the student body and students’ other learning opportunities outside 
school.

Nevertheless, Equation (9.5) could be use6ul to the parent trying to choose a 
home. To be sure, class size is not the only determinant o6 test per6ormance, but 
6rom the parent’s perspective what matters is whether it is a reliable predictor o6 
test per6ormance. The parent interested in 6orecasting test scores does not care 
whether the coe66icient in Equation (9.5) estimates the causal e66ect on test scores 
o6 class size. Rather, the parent simply wants the regression to explain much o6 
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the variation in test scores across districts and to be stable—that is, to apply to the 
districts to which the parent is considering moving. Although omitted variable 
bias renders Equation (9.5) useless 6or answering the causal question, it still can 
be use6ul 6or 6orecasting purposes.

More generally, regression models can produce reliable 6orecasts, even i6 
their coe66icients have no causal interpretation. This recognition underlies much 
o6 the use o6 regression models 6or 6orecasting.

Assessing the Validity of Regression 
Models for Forecasting
Because the superintendent’s problem and the parent’s problem are conceptually 
very di66erent, the requirements 6or the validity o6 the regression are di66erent 6or 
their respective problems. To obtain credible estimates o6 causal e66ects, we must 
address the threats to internal validity summarized in Key Concept 9.7.

In contrast, i6 we are to obtain reliable 6orecasts, the estimated regression 
must have good explanatory power, its coe66icients must be estimated precisely, 
and it must be stable in the sense that the regression estimated on one set o6 data 
can be reliably used to make 6orecasts using other data. When a regression model 
is used 6or 6orecasting, a paramount concern is that the model is externally valid 
in the sense that it is stable and quantitatively applicable to the circumstance in 
which the 6orecast is made. In Part IV, we return to the problem o6 assessing the 
validity o6 a regression model 6or 6orecasting 6uture values o6 time series data.

9.4 Example: Test Scores and Class Size

The 6ramework o6 internal and external validity helps us to take a critical look at 
what we have learned—and what we have not—6rom our analysis o6 the Cali6or-
nia test score data.

External Validity
Whether the Cali6ornia analysis can be generalized—that is, whether it is exter-
nally valid—depends on the population and setting to which the generalization is 
made. Here, we consider whether the results can be generalized to per6ormance 
on other standardized tests in other elementary public school districts in the 
United States.

Section 9.1 noted that having more than one study on the same topic provides 
an opportunity to assess the external validity o6 both studies by comparing their 
results. In the case o6 test scores and class size, other comparable data sets are, in 
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6act, available. In this section, we examine a di66erent data set, based on standard-
ized test results 6or 6ourth graders in 220 public school districts in Massachusetts 
in 1998. Both the Massachusetts and Cali6ornia tests are broad measures o6 
student knowledge and academic skills, although the details di66er. Similarly, the 
organization o6 classroom instruction is broadly similar at the elementary school 
level in the two states (as it is in most U.S. elementary school districts), although 
aspects o6 elementary school 6unding and curriculum di66er. Thus 6inding similar 
results about the e66ect o6 the student–teacher ratio on test per6ormance in the 
Cali6ornia and Massachusetts data would be evidence o6 external validity o6 the 
6indings in Cali6ornia. Conversely, 6inding di66erent results in the two states 
would raise questions about the internal or external validity o6 at least one o6 
the studies.

Comparison of the California and Massachusetts data. Like the Cali6ornia data, 
the Massachusetts data are at the school district level. The de6initions o6 the vari-
ables in the Massachusetts data set are the same as those in the Cali6ornia data 
set, or nearly so. More in6ormation on the Massachusetts data set, including de6i-
nitions o6 the variables, is given in Appendix 9.1.

Table 9.1 presents summary statistics 6or the Cali6ornia and Massachusetts 
samples. The average test score is higher in Massachusetts, but the test is di66er-
ent, so a direct comparison o6 scores is not appropriate. The average student–
teacher ratio is higher in Cali6ornia (19.6 versus 17.3). Average district income is 
20% higher in Massachusetts, but the standard deviation o6 income is greater in 

TABLE 9.1 Summary Statistics for California and Massachusetts Test Score Data Sets

California Massachusetts

Average Standard Deviation Average Standard Deviation

Test scores 654.1 19.1 709.8 15.1

Student–teacher ratio 19.6 1.9 17.3 2.3

% English learners 15.8% 18.3% 1.1% 2.9%

% Receiving lunch subsidy 44.7% 27.1% 15.3% 15.1%

Average district income ($) $15,317 $7226 $18,747 $5808

Number o6 observations 420 220

Year 1999 1998
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Cali6ornia; that is, there is a greater spread in average district incomes in Cali6or-
nia than in Massachusetts. The average percentage o6 students still learning Eng-
lish and the average percentage o6 students receiving subsidized lunches are both 
much higher in the Cali6ornia than in the Massachusetts districts.

Test scores and average district income. To save space, we do not present scatterplots 
o6 all the Massachusetts data. Because it was a 6ocus in Chapter 8, however, it is 
interesting to examine the relationship between test scores and average district 
income in Massachusetts. This scatterplot is presented in Figure 9.1. The general 
pattern o6 this scatterplot is similar to that in Figure 8.2 6or the Cali6ornia data: 
The relationship between income and test scores appears to be steep 6or low 
values o6 income and 6latter 6or high values. Evidently, the linear regression plot-
ted in the 6igure misses this apparent nonlinearity. Cubic and logarithmic regres-
sion 6unctions are also plotted in Figure 9.1. The cubic regression 6unction has a 
slightly higher R 2 than the logarithmic speci6ication (0.486 versus 0.455). Compar-
ing Figures 8.7 and 9.1 shows that the general pattern o6 nonlinearity 6ound in the 
Cali6ornia income and test score data is also present in the Massachusetts data. 

FIGURE 9.1  Test Scores vs. Income for Massachusetts Data
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The precise 6unctional 6orms that best describe this nonlinearity di66er, however, 
with the cubic speci6ication 6itting best in Massachusetts but the linear-log speci-
6ication 6itting best in Cali6ornia.

Multiple regression results. Regression results 6or the Massachusetts data are 
presented in Table 9.2. The 6irst regression, reported in column (1) in the table, 
has only the student–teacher ratio as a regressor. The slope is negative (-1.72), 

TABLE 9.2 Multiple Regression Estimates of the Student–Teacher Ratio and Test Scores: 
Data from Massachusetts

Dependent variable: average combined English, math, and science test score in the school district, fourth grade; 
220 observations.

Regressor (1) (2) (3) (4) (5) (6)

Student–teacher ratio 
(STR)

-1.72**
(0.50)

-0.69*
(0.27)

-0.64*
(0.27)

12.4
(14.0)

-1.02**
(0.37)

-0.67*
(0.27)

STR2       -0.680
(0.737)

   

STR3       0.011
(0.013)

   

% English learners   -0.411
(0.306)

-0.437
(0.303)

-0.434
(0.300)

   

% English learners 7
median? (Binary, HiEL)

        -12.6
(9.8)

 

HiEL * STR         0.80
(0.56)

 

% Eligible 6or 6ree lunch   -0.521**
(0.077)

-0.582**
(0.097)

-0.587**
(0.104)

-0.709**
(0.091)

-0.653**
(0.72)

District income (logarithm)   16.53**
(3.15)

       

District income     -3.07
(2.35)

-3.38
(2.49)

-3.87*
(2.49)

-3.22
(2.31)

District income2     0.164
(0.085)

0.174
(0.089)

0.184*
(0.090)

0.165
(0.085)

District income3     -0.0022*
(0.0010)

-0.0023*
(0.0010)

-0.0023*
(0.0010)

-0.0022*
(0.0010)

Intercept 739.6**
(8.6)

682.4**
(11.5)

744.0**
(21.3)

665.5**
(81.3)

759.9**
(23.2)

747.4**
(20.3)

(Table 9.2 continued)
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(Table 9.2 continued)

F-Statistics and p-Values Testing Exclusion of Groups of Variables

(1) (2) (3) (4) (5) (6)

All STR variables and interac-
tions = 0

      2.86
(0.038)

4.01
(0.020)

 

STR2, STR3 = 0       0.45
(0.641)

   

Income2, Income3     7.74
(6  0.001)

7.75
(6  0.001)

5.85
(0.003)

6.55
(0.002)

HiEL, HiEL * STR         1.58
(0.208)

 

SER 14.64 8.69 8.61 8.63 8.62 8.64

R 2 0.063 0.670 0.676 0.675 0.675 0.674

These regressions were estimated using the data on Massachusetts elementary school districts described in Appendix 9.1. Stan-
dard errors are given in parentheses under the coe66icients, and p-values are given in parentheses under the F-statistics.
Individual coe66icients are statistically signi6icant at the *5% level or **1% level.

and the hypothesis that the coe66icient is zero can be rejected at the 1% signi6i-
cance level (t = -1.72>0.50 = -3.44).

The remaining columns report the results o6 including additional variables that 
control 6or student characteristics and o6 introducing nonlinearities into the esti-
mated regression 6unction. Controlling 6or the percentage o6 English learners, the 
percentage o6 students eligible 6or a 6ree lunch, and the average district income 
reduces the estimated coe66icient on the student–teacher ratio by 60%, 6rom -1.72
in regression (1) to -0.69 in regression (2) and -0.64 in regression (3).

Comparing the R 2’s o6 regressions (2) and (3) indicates that the cubic speci-
6ication (3) provides a better model o6 the relationship between test scores and 
income than does the logarithmic speci6ication (2), even holding constant the 
student–teacher ratio. There is no statistically signi6icant evidence o6 a nonlinear 
relationship between test scores and the student–teacher ratio: The F-statistic in 
regression (4) testing whether the population coe66icients on STR2 and STR3 are 
zero has a p-value o6 0.641. Similarly, there is no evidence that a reduction in the 
student–teacher ratio has a di66erent e66ect in districts with many English learners 
than with 6ew [the t-statistic on HiEL * STR in regression (5) is 0.80>0.56 = 1.43]. 
Finally, regression (6) shows that the estimated coe66icient on the student–teacher 
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ratio does not change substantially when the percentage o6 English learners 
[which is insigni6icant in regression (3)] is excluded. In short, the results in regres-
sion (3) are not sensitive to the changes in 6unctional 6orm and speci6ication consid-
ered in regressions (4) through (6) in Table 9.2. There6ore, we adopt regression (3) 
as our base estimate o6 the e66ect in test scores o6 a change in the student–teacher 
ratio based on the Massachusetts data.

Comparison of Massachusetts and California results. For the Cali6ornia data, we 
6ound the 6ollowing:

1. Adding variables that control 6or student background characteristics reduced 
the coe6fcient on the student–teacher ratio 6rom -2.28 [Table 7.1, regres-
sion (1)] to -0.73 [Table 8.3, regression (2)], a reduction o6 68%.

2. The hypothesis that the true coe6fcient on the student–teacher ratio is zero 
was rejected at the 1% signifcance level, even a6ter adding variables that 
control 6or student background and district economic characteristics.

3. The e66ect o6 cutting the student–teacher ratio did not depend in an impor-
tant way on the percentage o6 English learners in the district.

4. There is some evidence that the relationship between test scores and the 
student–teacher ratio is nonlinear.

Do we 6ind the same things in Massachusetts? For 6indings (1), (2), and (3), the 
answer is yes. Including the additional control variables reduces the coe66icient on 
the student–teacher ratio 6rom -1.72 [Table 9.2, regression (1)] to -0.69 [Table 
9.2, regression (2)], a reduction o6 60%. The coe66icients on the student–teacher 
ratio remain signi6icant a6ter adding the control variables. Those coe66icients are 
only signi6icant at the 5% level in the Massachusetts data, whereas they are sig-
ni6icant at the 1% level in the Cali6ornia data. However, there are nearly twice as 
many observations in the Cali6ornia data, so it is not surprising that the Cali6ornia 
estimates are more precise. As in the Cali6ornia data, there is no statistically sig-
ni6icant evidence in the Massachusetts data o6 an interaction between the student–
teacher ratio and the binary variable indicating a large percentage o6 English 
learners in the district.

Finding (4), however, does not hold up in the Massachusetts data: The 
hypothesis that the relationship between the student–teacher ratio and test scores 
is linear cannot be rejected at the 5% signi6icance level when tested against a 
cubic speci6ication.

Because the two standardized tests are di66erent, the coe66icients themselves 
cannot be compared directly: One point on the Massachusetts test is not the same 
as one point on the Cali6ornia test. I6, however, the test scores are put into the 
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same units, then the estimated class size e66ects can be compared. One way to do this 
is to trans6orm the test scores by standardizing them: Subtract the sample average 
and divide by the standard deviation so that they have a mean o6 0 and a variance o6 1. 
The slope coe66icients in the regression with the standardized test score equal the 
slope coe66icients in the original regression divided by the standard deviation o6 
the test. Thus the coe66icient on the student–teacher ratio divided by the standard 
deviation o6 test scores can be compared across the two data sets.

This comparison is undertaken in Table 9.3. The 6irst column reports the OLS 
estimates o6 the coe66icient on the student–teacher ratio in a regression with the 
percentage o6 English learners, the percentage o6 students eligible 6or a 6ree lunch, 
and the average district income included as control variables. The second column 
reports the standard deviation o6 the test scores across districts. The 6inal two 
columns report the estimated e66ect on test scores o6 reducing the student–teacher 
ratio by two students per teacher (our superintendent’s proposal), 6irst in the units 
o6 the test and second in standard deviation units. For the linear speci6ication, the 
OLS coe66icient estimate using Cali6ornia data is -0.73, so cutting the student–
teacher ratio by two is estimated to increase district test scores by -0.73 * (-2) = 1.46

TABLE 9.3 Student–Teacher Ratios and Test Scores: Comparing the Estimates from 
California and Massachusetts

Estimated Effect of Two Fewer 

Students per Teacher, In Units of:

OLS Estimate

βnSTR

Standard Deviation 

of Test Scores 

Across Districts Points on the Test

Standard

Deviations

California

Linear: Table 9.3(2) -0.73
(0.26)

19.1 1.46
(0.52)

0.076
(0.027)

Cubic: Table 9.3(7) — 19.1 2.93 0.153
Reduce STR from 20 to 18     (0.70) (0.037)

Cubic: Table 9.3(7) — 19.1 1.90 0.099
Reduce STR from 22 to 20     (0.69) (0.036)

Massachusetts

Linear: Table 9.2(3) -0.64 15.1 1.28 0.085
  (0.27)   (0.54) (0.036)

Standard errors are given in parentheses.
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points. Because the standard deviation o6 test scores is 19.1 points, this corresponds 
to 1.46>19.1 = 0.076 standard deviation o6 the distribution o6 test scores across 
districts. The standard error o6 this estimate is 0.26 * 2>19.1 = 0.027. The esti-
mated e66ects 6or the nonlinear models and their standard errors were computed 
using the method described in Section 8.1.

Based on the linear model using Cali6ornia data, a reduction o6 two students 
per teacher is estimated to increase test scores by 0.076 standard deviation unit, 
with a standard error o6 0.027. The nonlinear models 6or Cali6ornia data suggest 
a somewhat larger e66ect, with the speci6ic e66ect depending on the initial student–
teacher ratio. Based on the Massachusetts data, this estimated e66ect is 0.085 stan-
dard deviation unit, with a standard error o6 0.036.

These estimates are essentially the same. Cutting the student–teacher ratio is 
predicted to raise test scores, but the predicted improvement is small. In the Cal-
i6ornia data, 6or example, the di66erence in test scores between the median district 
and a district at the 75th percentile is 12.2 test score points (Table 4.1), or 
0.64 (= 12.2>19.1) standard deviations. The estimated e66ect 6rom the linear 
model is just over one-tenth this size; in other words, according to this estimate, 
cutting the student teacher–ratio by two would move a district only one-tenth o6 
the way 6rom the median to the 75th percentile o6 the distribution o6 test scores 
across districts. Reducing the student–teacher ratio by two is a large change 6or a 
district, but the estimated bene6its shown in Table 9.3, while nonzero, are small.

This analysis o6 Massachusetts data suggests that the Cali6ornia results are 
externally valid, at least when generalized to elementary school districts else-
where in the United States.

Internal Validity
The similarity o6 the results 6or Cali6ornia and Massachusetts does not ensure 
their internal validity. Section 9.2 listed 6ive possible threats to internal validity 
that could induce bias in the estimated e66ect on test scores on class size. We con-
sider these threats in turn.

Omitted variables. The multiple regressions reported in this and previous chapters 
control 6or a student characteristic (the percentage o6 English learners), a 6amily eco-
nomic characteristic (the percentage o6 students receiving a subsidized lunch), and a 
broader measure o6 the a66luence o6 the district (average district income).

I6 these control variables are adequate, then 6or the purpose o6 regression 
analysis it is as i6 the student–teacher ratio is randomly assigned among districts 
with the same values o6 these control variables, in which case the conditional 



340 CHAPTER 9 Assessing Studies Based on Multiple Regression

mean independence assumption holds. There still could be, however, some omitted 
6actors 6or which these three variables might not be adequate controls. For example, 
i6 the student–teacher ratio is correlated with teacher quality even among districts 
with the same 6raction o6 immigrants and the same socioeconomic characteristics 
(perhaps because better teachers are attracted to schools with smaller student–
teacher ratios) and i6 teacher quality a66ects test scores, then omission o6 teacher 
quality could bias the coe66icient on the student–teacher ratio. Similarly, among dis-
tricts with the same socioeconomic characteristics, districts with a low student–
teacher ratio might have 6amilies that are more committed to enhancing their 
children’s learning at home. Such omitted 6actors could lead to omitted variable bias.

One way to eliminate omitted variable bias, at least in theory, is to conduct an 
experiment. For example, students could be randomly assigned to di66erent size 
classes, and their subsequent per6ormance on standardized tests could be compared. 
Such a study was in 6act conducted in Tennessee, and we examine it in Chapter 13.

Functional form. The analysis here and in Chapter 8 explored a variety o6 6unctional 
6orms. We 6ound that some o6 the possible nonlinearities investigated were not statis-
tically signi6icant, while those that were did not substantially alter the estimated e66ect 
o6 reducing the student–teacher ratio. Although 6urther 6unctional 6orm analysis 
could be carried out, this suggests that the main 6indings o6 these studies are unlikely 
to be sensitive to using di66erent nonlinear regression speci6ications.

Errors in variables. The average student–teacher ratio in the district is a broad and 
potentially inaccurate measure o6 class size. For example, because students move in 
and out o6 districts, the student–teacher ratio might not accurately represent the 
actual class sizes experienced by the students taking the test, which in turn could 
lead to the estimated class size e66ect being biased toward zero. Another variable 
with potential measurement error is average district income. Those data were taken 
6rom the 1990 census, while the other data pertain to 1998 (Massachusetts) or 1999 
(Cali6ornia). I6 the economic composition o6 the district changed substantially over 
the 1990s, this would be an imprecise measure o6 the actual average district income.

Selection. The Cali6ornia and the Massachusetts data cover all the public elemen-
tary school districts in the state that satis6y minimum size restrictions, so there is 
no reason to believe that sample selection is a problem here.

Simultaneous causality. Simultaneous causality would arise i6 the per6ormance 
on standardized tests a66ected the student–teacher ratio. This could happen, 6or 
example, i6 there is a bureaucratic or political mechanism 6or increasing the 6unding 



9.4  Example: Test Scores and Class Size 341

o6 poorly per6orming schools or districts that in turn resulted in hiring more teach-
ers. In Massachusetts, no such mechanism 6or equalization o6 school 6inancing was 
in place during the time o6 these tests. In Cali6ornia, a series o6 court cases led to 
some equalization o6 6unding, but this redistribution o6 6unds was not based on 
student achievement. Thus in neither Massachusetts nor Cali6ornia does simulta-
neous causality appear to be a problem.

Heteroskedasticity and correlation of the error term across observations. All the 
results reported here and in earlier chapters use heteroskedastic-robust standard 
errors, so heteroskedasticity does not threaten internal validity. Correlation o6 the 
error term across observations, however, could threaten the consistency o6 the stan-
dard errors because simple random sampling was not used (the sample consists o6 
all elementary school districts in the state). Although there are alternative standard 
error 6ormulas that could be applied to this situation, the details are complicated 
and specialized and we leave them to more advanced texts.

Discussion and Implications
The similarity between the Massachusetts and Cali6ornia results suggest that these 
studies are externally valid, in the sense that the main 6indings can be generalized 
to per6ormance on standardized tests at other elementary school districts in the 
United States.

Some o6 the most important potential threats to internal validity have been 
addressed by controlling 6or student background, 6amily economic background, and 
district a66luence, and by checking 6or nonlinearities in the regression 6unction. Still, 
some potential threats to internal validity remain. A leading candidate is omitted 
variable bias, perhaps arising because the control variables do not capture other 
characteristics o6 the school districts or extracurricular learning opportunities.

Based on both the Cali6ornia and the Massachusetts data, we are able to 
answer the superintendent’s question 6rom Section 4.1: A6ter controlling 6or 6am-
ily economic background, student characteristics, and district a66luence, and a6ter 
modeling nonlinearities in the regression 6unction, cutting the student–teacher 
ratio by two students per teacher is predicted to increase test scores by approxi-
mately 0.08 standard deviation o6 the distribution o6 test scores across districts. 
This e66ect is statistically signi6icant, but it is quite small. This small estimated 
e66ect is in line with the results o6 the many studies that have investigated the 
e66ects on test scores o6 class size reductions.5

5I6 you are interested in learning more about the relationship between class size and test scores, see 
the reviews by Ehrenberg et al. (2001a, 2001b).
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The superintendent can now use this estimate to help her decide whether to 
reduce class sizes. In making this decision, she will need to weigh the costs o6 the 
proposed reduction against the bene6its. The costs include teacher salaries and 
expenses 6or additional classrooms. The bene6its include improved academic per-
6ormance, which we have measured by per6ormance on standardized tests, but 
there are other potential bene6its that we have not studied, including lower drop-
out rates and enhanced 6uture earnings. The estimated e66ect o6 the proposal on 
standardized test per6ormance is one important input into her calculation o6 costs 
and bene6its.

9.5 Conclusion

The concepts o6 internal and external validity provide a 6ramework 6or assessing 
what has been learned 6rom an econometric study.

A study based on multiple regression is internally valid i6 the estimated coe66i-
cients are unbiased and consistent, and i6 standard errors are consistent. Threats to 
the internal validity o6 such a study include omitted variables, misspeci6ication o6 
6unctional 6orm (nonlinearities), imprecise measurement o6 the independent vari-
ables (errors in variables), sample selection, and simultaneous causality. Each o6 
these introduces correlation between the regressor and the error term, which in turn 
makes OLS estimators biased and inconsistent. I6 the errors are correlated across 
observations, as they can be with time series data, or i6 they are heteroskedastic but 
the standard errors are computed using the homoskedasticity-only 6ormula, then 
internal validity is compromised because the standard errors will be inconsistent. 
These latter problems can be addressed by computing the standard errors properly.

A study using regression analysis, like any statistical study, is externally valid 
i6 its 6indings can be generalized beyond the population and setting studied. Some-
times it can help to compare two or more studies on the same topic. Whether or 
not there are two or more such studies, however, assessing external validity 
requires making judgments about the similarities o6 the population and setting 
studied and the population and setting to which the results are being generalized.

The next two parts o6 this textbook develop ways to address threats to internal 
validity that cannot be mitigated by multiple regression analysis alone. Part III 
extends the multiple regression model in ways designed to mitigate all 6ive sources 
o6 potential bias in the OLS estimator; Part III also discusses a di66erent approach 
to obtaining internal validity, randomized controlled experiments. Part IV devel-
ops methods 6or analyzing time series data and 6or using time series data to esti-
mate so-called dynamic causal e66ects, which are causal e66ects that vary over time.
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Summary

1. Statistical studies are evaluated by asking whether the analysis is internally 
and externally valid. A study is internally valid i6 the statistical in6erences 
about causal e66ects are valid 6or the population being studied. A study is 
externally valid i6 its in6erences and conclusions can be generalized 6rom the 
population and setting studied to other populations and settings.

2. In regression estimation o6 causal e66ects, there are two types o6 threats to 
internal validity. First, OLS estimators are biased and inconsistent i6 the
regressors and error terms are correlated. Second, con6idence intervals and 
hypothesis tests are not valid when the standard errors are incorrect.

3. Regressors and error terms may be correlated when there are omitted variables,
an incorrect 6unctional 6orm is used, one or more o6 the regressors are measured 
with error, the sample is chosen nonrandomly 6rom the population, or there is 
simultaneous causality between the regressors and dependent variables.

4. Standard errors are incorrect when the errors are heteroskedastic and the 
computer so6tware uses the homoskedasticity-only standard errors, or when 
the error term is correlated across di66erent observations.

5. When regression models are used solely 6or 6orecasting, it is not necessary 
6or the regression coe66icients to be unbiased estimates o6 causal e66ects. It 
is critical, however, that the regression model be externally valid 6or the 
6orecasting application at hand.
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Review the Concepts

9.1 What is the di66erence between internal and external validity? Between the 
population studied and the population o6 interest?

9.2 Key Concept 9.2 describes the problem o6 variable selection in terms o6 
a trade-o66 between bias and variance. What is this trade-o66? Why could 
including an additional regressor decrease bias? Increase variance?

9.3 Economic variables are o6ten measured with error. Does this mean that 
regression analysis is unreliable? Explain.

9.4 Suppose that a state o66ered voluntary standardized tests to all its third 
graders and that these data were used in a study o6 class size on student per-
6ormance. Explain how sample selection bias might invalidate the results.

9.5 A researcher estimates the e66ect on crime rates o6 spending on police by 
using city-level data. Explain how simultaneous causality might invalidate 
the results.

9.6 A researcher estimates a regression using two di66erent so6tware packages. 
The 6irst uses the homoskedasticity-only 6ormula 6or standard errors. The 
second uses the heteroskedasticity-robust 6ormula. The standard errors are 
very di66erent. Which should the researcher use? Why?

Exercises

9.1 Suppose that you have just read a care6ul statistical study o6 the e66ect 
o6 advertising on the demand 6or cigarettes. Using data 6rom New York 
during the 1970s, the study concluded that advertising on buses and sub-
ways was more e66ective than print advertising. Use the concept o6 external 
validity to determine i6 these results are likely to apply to Boston in the 
1970s, Los Angeles in the 1970s, and New York in 2014.

9.2 Consider the one-variable regression model Yi = b0 + b1Xi + ui and sup-
pose that it satis6ies the least squares assumptions in Key Concept 4.3. Suppose 
that Yi is measured with error, so the data are Y∼i = Yi + wi, where wi is the 
measurement error, which is i.i.d. and independent o6 Yi and Xi. Consider 
the population regression Y∼i = b0 + b1Xi + vi, where vi is the regression 
error, using the mismeasured dependent variable, Y∼i.

a. Show that vi = ui + wi.
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b. Show that the regression Y∼i = b0 + b1Xi + vi satis6ies the least 
squares assumptions in Key Concept 4.3. (Assume that wi is inde-
pendent o6 Yj and Xj 6or all values o6 i and j and has a 6inite 6ourth 
moment.)

c. Are the OLS estimators consistent?

d. Can con6idence intervals be constructed in the usual way?

e. Evaluate these statements: “Measurement error in the X’s is a serious 
problem. Measurement error in Y is not.”

9.3 Labor economists studying the determinants o6 women’s earnings dis-
covered a puzzling empirical result. Using randomly selected employed 
women, they regressed earnings on the women’s number o6 children and 
a set o6 control variables (age, education, occupation, and so 6orth). They 
6ound that women with more children had higher wages, controlling 6or 
these other 6actors. Explain how sample selection might be the cause o6 
this result. (Hint: Notice that women who do not work outside the home 
are missing 6rom the sample.) [This empirical puzzle motivated James 
Heckman’s research on sample selection that led to his 2000 Nobel Prize 
in Economics. See Heckman (1974).]

9.4 Using the regressions shown in column (2) o6 Table 9.3 and column (2) o6 
Table 9.2, construct a table like Table 9.3 to compare the estimated e66ects 
o6 a 10% increase in district income on test scores in Cali6ornia and Mas-
sachusetts.

9.5 The demand 6or a commodity is given by Q = b0 + b1P + u, where 
Q denotes quantity, P denotes price, and u denotes 6actors other than 
price that determine demand. Supply 6or the commodity is given by 
Q = g0 + g1P + v, where v denotes 6actors other than price that deter-
mine supply. Suppose that u and v both have a mean o6 zero, have variances 
s2

u and s2
v, and are mutually uncorrelated.

a. Solve the two simultaneous equations to show how Q and P depend 
on u and v.

b. Derive the means o6 P and Q.

c. Derive the variance o6 P, the variance o6 Q, and the covariance 
between Q and P.

d. A random sample o6 observations o6 (Qi, Pi) is collected, and Qi is 
regressed on Pi. (That is, Qi is the regressand, and Pi is the regressor.) 
Suppose that the sample is very large.



346 CHAPTER 9 Assessing Studies Based on Multiple Regression

i. Use your answers to (b) and (c) to derive values o6 the regression 
coe66icients. [Hint: Use Equations (4.7) and (4.8).]

ii. A researcher uses the slope o6 this regression as an estimate o6 the 
slope o6 the demand 6unction (b1). Is the estimated slope too large 
or too small? (Hint: Remember that demand curves slope down 
and supply curves slope up.)

9.6 Suppose that n = 100 i.i.d. observations 6or (Yi, Xi) yield the 6ollowing 
regression results:

Yn = 32.1 + 66.8X, SER = 15.1, R2 = 0.81.
(15.1) (12.2)

Another researcher is interested in the same regression, but he makes an 
error when he enters the data into his regression program: He enters each 
observation twice, so he has 200 observations (with observation 1 entered 
twice, observation 2 entered twice, and so 6orth).

a. Using these 200 observations, what results will be produced by his 
regression program? (Hint: Write the “incorrect” values o6 the sam-
ple means, variances, and covariances o6 Y and X as 6unctions o6 the 
“correct” values. Use these to determine the regression statistics.)

Yn = ____ + ____X, SER = ____, R2 = ____.
(____) (____)

b. Which (i6 any) o6 the internal validity conditions are violated?

9.7 Are the 6ollowing statements true or 6alse? Explain your answer.

a. “An ordinary least squares regression o6 Y onto X will not be inter-
nally valid i6 X is correlated with the error term.”

b. “Each o6 the 6ive primary threats to internal validity implies that X is 
correlated with the error term.”

9.8 Would the regression in Equation (9.5) be use6ul 6or predicting test scores 
in a school district in Massachusetts? Why or why not?

9.9 Consider the linear regression o6 TestScore on Income shown in Figure 
8.2 and the nonlinear regression in Equation (8.18). Would either o6 these 
regressions provide a reliable estimate o6 the e66ect o6 income on test 
scores? Would either o6 these regressions provide a reliable method 6or 
6orecasting test scores? Explain.
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9.10 Read the box “The Return to Education and the Gender Gap” in Section 
8.3. Discuss the internal and external validity o6 the estimated e66ect o6 
education on earnings.

9.11 Read the box “The Demand 6or Economics Journals” in Section 8.3. Dis-
cuss the internal and external validity o6 the estimated e66ect o6 price per 
citation on subscriptions.

9.12 Consider the one-variable regression model Yi = b0 + b1Xi + ui and sup-
pose that it satis6ies the least squares assumptions in Key Concept 4.3. The 
regressor Xi is missing, but data on a related variable, Zi, are available, and 
the value o6 Xi is estimated usingX

�
i = E(Xi 0Zi). Let wi = X∼i - Xi.

a. Show that X∼i  is the minimum mean square error estimator o6 Xi

using Zi. That is, let Xn i = g(Zi) be some other guess o6 Xi based on 
Zi, and show that E3(Xn i - Xi)

24 Ú E3(X∼i - Xi)
24. (Hint: Review 

Exercise 2.27.)

b. Show that E(wi 0 X�i) = 0.

c. Suppose that E(ui 0Zi) = 0 and that X∼i  is used as the regressor in 
place o6 Xi. Show that bn1 is consistent. Is bn0 consistent?

9.13 Assume that the regression model Yi = b0 + b1Xi + ui satis6ies the least 
squares assumptions in Key Concept 4.3 in Section 4.4. You and a 6riend 
collect a random sample o6 300 observations on Y and X.

a. Your 6riend reports the he inadvertently scrambled the X observa-
tions 6or 20% o6 the sample. For these scrambled observations, the 
value o6 X does not correspond to Xi 6or the ith observation; rather, 
it corresponds to the value o6 X 6or some other observation. In the 
notation o6 Section 9.2, the measured value o6 the regressor, X∼i , is 
equal to Xi 6or 80% o6 the observations, but it is equal to a randomly 
selected Xj 6or the remaining 20% o6 the observations. You regress Yi

on X∼i . Show that E(bn1) = 0.8b1.

b. Explain how you could construct an unbiased estimate o6 b1 using the 
OLS estimator in (a).

c. Suppose now that your 6riend tells you that the X’s were scrambled 
6or the 6irst 60 observations but that the remaining 240 observations 
are correct. You estimate b1 by regressing Y on X, using only the cor-
rectly measured 240 observations. Is this estimator o6 b1 better than 
the estimator you proposed in (b)? Explain.
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Empirical Exercises

(Only two empirical exercises 6or this chapter are given in the text, but 
you can 6ind more on the text website, http://www.pearsonhighered.com/stock_
watson/.)

E9.1 Use the data set CPS12, described in Empirical Exercise 8.2, to answer the 
6ollowing questions.

a. Discuss the internal validity o6 the regressions that you used to 
answer Empirical Exercise 8.2(l). Include a discussion o6 possible 
omitted variable bias, misspeci6ication o6 the 6unctional 6orm o6 the 
regression, errors in variables, sample selection, simultaneous causal-
ity, and inconsistency o6 the OLS standard errors.

b. The data set CPS92_12 described in Empirical Exercise 3.1 includes 
data 6rom 2012 and 1992. Use these data to investigate the (temporal) 
external validity o6 the conclusions that you reached in Empirical 
Exercise 8.2(l). [Note: Remember to adjust 6or in6lation, as explained 
in Empirical Exercise 3.1(b).]

E9.2 Use the data set Birthweight_Smoking introduced in Empirical Exercise 
5.1 to answer the 6ollowing questions.

a. In Empirical Exercise 7.1(6), you estimated several regressions and 
were asked: “What is a reasonable 95% con6idence interval 6or the 
e66ect o6 smoking on birth weight?”

i. In Chapter 8 you learned about nonlinear regressions. Can you 
think o6 any nonlinear regressions that can potentially improve 
your answer to Empirical Exercise E7.1(6)? A6ter estimating 
these additional regressions, what is a reasonable 95% con6idence 
interval 6or the e66ect o6 smoking on birth weight?

ii. Discuss the internal validity o6 the regressions you used to con-
struct the con6idence interval. Include a discussion o6 possible 
omitted variable bias, misspeci6ication o6 the 6unctional 6orm o6 
the regression, errors in variables, sample selection, simultaneous 
causality, and inconsistency o6 the OLS standard errors.

b. The data set Birthweight_Smoking includes babies born in Pennsylvania 
in 1989. Discuss the external validity o6 your analysis 6or (i) Cali6ornia in 
1989, (ii) Illinois in 2015, and (iii) South Korea in 2014.
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 A P P E N D I X

9.1 The Massachusetts Elementary School 
Testing Data

The Massachusetts data are districtwide averages 6or public elementary school districts in 

1998. The test score is taken 6rom the Massachusetts Comprehensive Assessment System 

(MCAS) test administered to all 6ourth graders in Massachusetts public schools in the 

spring o6 1998. The test is sponsored by the Massachusetts Department o6 Education and 

is mandatory 6or all public schools. The data analyzed here are the overall total score, 

which is the sum o6 the scores on the English, math, and science portions o6 the test.

Data on the student–teacher ratio, the percentage o6 students receiving a subsidized 

lunch, and the percentage o6 students still learning English are averages 6or each elemen-

tary school district 6or the 1997–1998 school year and were obtained 6rom the Massachu-

setts Department o6 Education. Data on average district income were obtained 6rom the 

1990 U.S. Census.


