DEIM Forum 2010 F3-3

Jodououooooogououd

0 of oo ooft

t100000000000000 4648601 DO OOOOOOOO
11000000000 000000 4648601 DO O0OD0OOOOOO
E-mail: tguoxi@db.itc.nagoya-u.ac.jp, TTishikawa@itc.nagoya-u.ac.jp

o000 OOoooOooobOooobOoobOoobOOoobObOOobOOoooOoobOOoOobObOOoboOobOOoOoOobOoooboodg
obooooooobOoboboooooobooboboooooobOoboobooooooobOobooboooooobooonoo
oboooooboboboobooooooobooboboboooboooooobOOobobobooooooobooonoo
obocooooooOooboboboooooooooobooboboobooobooooooboobobooooooooboooDo
obooooobobobooboooooooboobobobooboboooooobOobobooboooooooobooonoo
0000 0D D O direction-based spatial skyline, DSSOOOOOOOO0O0OOO0OOOOOCOOOOOOODOOOOOO
oboooooooobobooboooooooooboboboooboooooobOobobooboooooooobooono
OO0o0o0ooO0 bDSSOO00oooOoo0oooboo0ooooo0oOoooobo0ooOo bSSsoooOoooobooOoooon
OO0ooooo0o0ooDoOo bpSsSsOo0oooOoooooOooooboOooooboOoo

obooob0O bOooOooOobooocobOobooooobooobo

DirectionBased Spatial Skyline Queries

Xi GUO' and Yoshiharu ISHIKAWA T

1 Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
17 Information Technology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
E-mail: fguoxi@db.itc.nagoya-u.ac.jp, TTishikawa@itc.nagoya-u.ac.jp

Abstract A location-based service is a kind of mobile technologies which suggests items (restaurants, car parks,
etc.) to the mobile device users by utilizing and analyzing the geographical information. In this paper, we propose
a new location-based service to suggest the user nearer items in all directions rather than only the nearest item. We
compare the items and find better ones considering both the distance and the direction attributes. This problem
is a new skyline problem which takes into account two or more attributes to make decisions. We name this new
problem the direction-based spatial skyline (DSS) problem. One item dominates another item if it is closer to the
user and they are in the same direction. If an item cannot be domianted by any other items, it is on the DSS.
The items on the DSS are the nearer ones around the user. We also propose efficient algorithms to find the objects

which are on the DSS.
Key words Spatial databases, skyline queries, directions

. uses a GPS navigation device to position the user and guides
1. Introduction) o i o
the user to his destination through analyzing the maps in its

A location-based service is a mobile technology which gives
the mobile device user suggestions by using the geographical
information. It is an application or a system running in the
user’s mobile device. It positions the user, analyzes the ge-
ographical information, and presents suggestions to help the
user make a reasonalbe decision. The automotive naviga-

tion system is a typical location-based service. This system

database. The automotive navigation system has been stud-
ied for about twenty yeares. Recently, with the development
of mobile technologies, many new location-based services are
springing up. In this paper, we put forward a new location-
based service for helping the user to find nearer places or
objects all around.

Finding nearer places or objects in all directions is a fa-

miliar problem in our daily life. In most cases, we would
like to know the nearer surrounding targets rather than only
the nearest one. A tourist prefers acquiring the nearer sight
spots in all directions. Because it is not enough for her to
make a sightseeing plan if she only knows the nearest one.
A shopper would like to know all the nearby discount shops
around to make her shopping plan. Only the nearest one
seems too few for a shopper. A soldier has to be fully aware
of the nearby enemies in all directions. Because it will be
dangerous if she only notices the nearest enemie in a bat-
tle field. On the grounds of these practical requirements,
we develop a new location-based service to help people find
nearer targets in all directions by utilizing the mobile device
facilities.

In order to find the nearer objects in all directions, we de-
scribe the objects considering both their distances and their
directions. We assume the positions of the objects p; € P
and the user ¢ are points in the two-dimensional Euclidean
space R2. The object’s vector, which starts from the user
and ends in the object, indicates the distance and direction
of the object. The distance is the vector’s quantity which is
the Euclidean distance between the user and the object. The
direction is the vector’s direction pointing to the object from
the user’s position. We compare the distance of two objects
if they are in the same direction. And the nearer one is better
than the further one. However, whether two objects are in
the same direction or not is a matter of opinion. Intuitively
two objects are in the same direction if the included angle
between their vectors is smaller than an acceptable angle. In
our work, this acceptable angle is given by the user and we
denote it as 6.

Finding the nearer objects in all directions is a new sky-
line problem. The skyline problem is selecting better objects
by comparing them in two or more attributes. If one object
is better than another object in all attributes, it dominates
another object. If one object cannot be dominated by any
other objects, it is on the skyline. So the objects on the
skyline are better objects considering all the attributes. In
our case, we compare objects in the distance and direction
attributes. One object can dominate another object if it is
nearer and they are in the same direction. Our direction-
based spatial skyline (DSS) is to find out the objects which
are not dominated by any other objects considering both the

distance and direction attributes.

Example 1 Figure. 1 and Figure. 2 shows an example of

finding neaer objects in all directions. There are 9 objects

(a to i) and the user q. The 6 given by the user is 7. As

Figure. 1 shows, we describe objects a and b by using vector
a 3B, The a i
QA and vector @B. The distances of a and b are |QA| and

|Q.B)| And the directions of a and b are the directions of
vector @1 and vector @ Objects a and b are in the same
direction because the included angle between Q—A> and Q? is
smaller than 6. Figure. 2 shows the nearer objects around
the user (the red points). And they are the objects on the
direction-based spatial skyline. Objects b, h and f are dom-
inated by object a because they are in the same direction
with object a but further than a. Likewise, objects g and ¢ is
dominated by objects ¢ and e respectively. The objects a, c,

d and e cannot be dominated by any other objects and they

are on the direction-based spatial skyline. |
o
o9 "
oc
b(B)
-Koj
aQ) W
od
| f o
o o
e

g Ah
o ad
.
Qc .
\ d
\ ‘b
~< \ ,70
~ < \ ’
S~ (3]
Suple,
IERY:)
NN
/
®d ’ ' \\
, ! N
’ \ N
4 1 AN
, \ N
, N
’ ' N fo
:bl ‘e \\

Figure. 2 Direction-based spatial skyline(f = g)

2. Preliminaries

We define our problem in the two-dimensional Euclidean
space R?. The objects P = {p;|i € [1, n]} and the user ¢ are
all points with xy-coordinates in R2. For simple, we create
the xy-coordinates by using the user’s position as the origin
O(0, 0) and the direction of the vector ON as the x-axis.
(N is the nearest neighbor of the user.) The vector from the
user ¢ (O(0, 0)) to the object p (P(xp, yp)) indicates the

distance and the direction of this object.

Definition 1 (Distance) The quantity of the vector opP
is the distance d, of the object p.

dy = |OP| = /22 + 42 (1)

O

Definition 2 (Direction) The direction of the object p is
the direction of vector O? We describe the direction by us-
ing the counter-clockwise angle from the x-axis to the vector
O?. And we denote this angle as a,.

arctan %Z’ zp >0, yp 20

arctan z—i +m, xp <0

ap = arctan Z—’; +2m, x>0, Yy Z0 (2)
5 zp =0, yp 20
3z, p =0, yp <0

O

where the arctangent value ranges in its usual principal value
-2 2]

There are two objects p; (at the position P;(zp,,yp,;)) and
p; (at the position Pj(xp,, yp,)). If the included angle be-
oF. o7,
tween the vector OF; and the vector OF; is smaller than 6

(given by the user), the two objects are in the same direction.

Definition 3 (Same Direction) For two objects p; and

pj, we denote their included angle ZP;OP; as Bp,p, -

——
B = arccos ﬁ OF, _ arccos Tp;ZTp; + YpiYp, (3)
piPj — = RN B et N
j |O z||OP]| sz‘de
If BPiP] < 6, p; and p; are in the same direction. O

Oh
>
| fO
o o
e

Figure. 3 The directions of the objects (0 = 7)

Example 2 Figure. 3 shows an example. We create the xy-
coordinates by using the user’s position as the origin O(0, 0)
and the direction of the vector O—1>4 as the x-axis. The direc-
tion of the object b is the direction of the vector O@ We use
the counter-clockwise angle a; which starts from the x-axis
and ends in O? to denote this direction. Likewise, we can
also denote the directions of objects g and c. If § = 7, the
objects ¢ and g are in the same direction becasue ZCOG < 6.

On the contrary, the objects ¢ and b are in the different di-
rection because ZBOC > 7. [}

We compare two objects considering both the distance at-
tribute and the direction attribute. If one object p; is nearer
than another object p; and they are in the same direction,
the object p; is better than p;. We also say that the object
p; dominates the object p;.

Definition 4 (Dominate) For two objects p; and p;, if
dp; < dp; and Byp,p, < 0, the object p; dominates the object
pj. We denote the dominance relationship as p; < p; (or

pj = pi)- o

Definition 5 (Direction-Based Spatial Skyline) Ifone
object p; cannot be dominated by any other objects, it is on
the direction-based spatial skyline (DSS) S.

S = {pilp: + pj, Yp; € P —{pi}}. (4)

3. Direction-Based Spatial Skyline Query
Algorithms

A naive solution to this problem is to compare every object
p; with all the other objects in both of the direction and dis-
tance attributes. If p; is closer than any other points which
are in the same direction with it, it is on the DSS S. The
time complexity of this solution is O(n?). Obviously, we can
improvement the procdure considering when an object has
already been dominated by another object, it is unseated to
be on the DSS. However, the cost is still quite large.

We propose an efficient method to answer the DSS query
efficiently. The method is based on nearest neighbor queries
in spatial databases and it can utilize spatial indexes such as
R-tree efficiently. The idea is simple. At first, we find the
nearest neighbor p; for the user’s position O. p; is on the
DSS because it is better than any other objects in the dis-
tance attribute. The object p; dominates the objects which
are in the same direction with it. In other words, it becomes
the dominator of its 20 area. Next we get the second nearest
neighbor po. If it falls into the area dominated by pi, it is
not on the DSS. Otherwise, it becomes another object on the
DSS. No matter it is on the DSS or not, it can dominate a
certain area which are not dominated by pi. We repeat this
procedure for the remaining objects from the nearest one.
As the process goes, the area dominated by the observed ob-
jects enlarges. The process continues when all the angles are

covered.

Example 3 Fig. 4 shows an example of finding the DSS
based on the idea, where § = §. Fig. 4(a) shows the ini-
tial step. The object a is the nearest neighbor and is on the

DSS. It dominates a 260 angle ZA;0A3. Next we check the

y
Oh
Og
ocC As
%p
9‘
OINX®6 a X
(o]
d
A
Oof
Oj Oe
y
Oh
Og
°oc | g, A
l" b
%)
o T--.B: X
(o]
d
Oj
Og
C
od
As
Oof
Oj Oe
y
Oh

Figure. 4 Processing a DSS query (6 = 7)

second nearest neighbor b as in Fig. 4(b). It falls into the
dominated angle ZA10A; of the object a and cannot be on
the DSS. Because the object b also dominates a 20 angle, the
dominated area is enlarged as ZA10OBz. Then we check the
third nearest neighbor ¢ as in Fig. 4(c). It is outside of the
dominated area and becomes an another object on the DSS.

And the dominated angle is enlarged to the angle ZA10C5.

Likewise, we check the fourth nearest neighbor d and the
fifth nearest neighbor e as in Fig. 4(d). They do not fall into
the dominated angles and become the objects on the DSS.
And the full angles 27 are covered. The process terminates
and we have found the final DSS points set S = {a,c,d,e}.
Note that we do not have to access other objects g, h, ¢ and

f in the query process. |

The procedure is summarized in Algorithm 1. The algorithm
assumes that we can use the nearest neighbor query facility.
The symbol C' represents a set of ranges of angles such as
C = {[10,20], [30,50]}, where 10,...,50 are degrees. The

algorithm is fast because it does not check all the points.

Algorithm 1 DSS Query
1: procedure DSSQUERY(Q, 0)

2: S <+ 0; > Set of DSS points
3: init_NN_query(Q); > Initialize the NN query
4: C « 0 > Initialize the covered angle set
5: repeat

6: p get_next(); > Get the next NN point
7: oy <+ direction(p); > Caculate the direction of p
8: if o ¢ C then > Object p is not dominated by S
9: S« SuU{p}; > Object p is on the DSS
10: end if
11: C+ CU{[ap —0,ap +0]}; > Update the covered

angles
12: until C = {0, 360]}
13: output S;

> all the 27 angles are covered

14: end procedure

3.1 Discussion

Specially if every nearest neighbor is in the same direction
with its previous nearest neighbor, there is only the first
nearest neighbor on the DSS. Because every nearest neigh-
bor can be dominated by its previous nearest neighbor if
they are in the same direction. This is the worst case for
our direction-based spatial skyline. Intuitively, in this case
the user will not satisfy with the query results because the
objects suggested are too few but actually the nearer objects

in different directions exist.

Example 4 Figure. 5 shows an example of this worst case.
The distribution of the objects is like a spire. Considering
the distance attribute, d, < dp < dec < dy < dn < dg <
di < de < df. Considering the direction attribute, Bap < 6,
Boe < 0, Beg < 0, Bgn < 6, Bra < 0, Pai < 0, Bie < 6 and
Ber < 0. Therefore, a < b, b <c¢,c <g, g <h, h <d,
d <1i,i<eande < f. So all the objects are dominated
by their previous nearest neighbor except the object a. In
this case there is only one object a on the skyline. However,
intuitively the other objects also seem to be good choices for

the user. [|

y
g
L
/ c
[b
{ 0 a' X
od
KeJ (]
i _/
e f
\o

Figure. 5 The worst case (0 = 7)

In order to solve this problem, we extend our original defini-

tions of the DSS and propose the comparable scope DSS.
4. Comparable Scope DSS

In the worst case of our DSS definition, if every nearest
neighbor is in the same direction with its previous nearest
neighbor, there is only the first nearest neighbor on the DSS.
In order to solve this problem, we extend our original defini-

tions of the DSS and propose the comparable scope DSS.

Definition 6 (Comparable Scope) The comparable scope
of the object p is its 26 angles [ap — 0, + 0]. We denote

the comparable scope as \p. O

If another object p; falls into the comparable scope Ap, of
the object p;, their included angle Bp,p; is smaller than 0. If
dp, < dp;, strictly speaking, the object p; is better than the

object p; only in their common comparable scopes.

Definition 7 (Scope Dominate) If dy, < dy;, pi scope
dominates p; in their common comparable scopes vVp,p;, =

Ap; NAp,;. We denote this dominant relationship as p; =vp;p;

Pj (0T Pj =nyp; PI)- o

Definition 8 (Fully Dominate) The object p; is scope
dominated by objects {p}|j € 1..k,p; € P — {pi}}.

/
;-
pi ’Ypip;c Pk

If Vpivy, U Ypiny U U Vpipf, = Ap;, the object p; is fully dom-
inated. O

Then we can define the Comparable Scope DSS based on the
definition of the fully dominate.

Definition 9 (Comparable Scope DSS) If the object
pi cannot be fully dominated, it is on the Comparable Scope
DSS (CDSS). We denote the skyline as C'S.

CS = {pilpi #n,, Pi, ¥0j € P —{pi}, 15, SHp;} (5)

@)
=
3
x

@)

Figure. 6 Comparable Scope DSS (6 = 7)

Example 5 Figure. 6 shows an example of the CDSS. The
comparable scope of the object a is the Aq = [aa — 0, aq +0].
Fig. 6 (a) shows the object a dominates the object b in their
common comparable scope Ya, = Ag N Ap. And the object b
cannot be fully dominated because it cannot be dominated
by neither the object a nor the object c in the scopes 1, and
by Fig. 6 (b) shows the object ¢ is dominated by the object
a in 7., and is dominated by the object b in .. And the
object c is fully dominated because yeq U7yer = Ac. Therefore,
the objects a and b cannot be fully dominated and they are
on the CDSS. u

We can process the CDSS queries by using the basic idea
of the DSS query’s solution. At first, we find the nearest
object p1 for the user’s position O. The object p; is on the
CDSS because it is closer to the user than any other objects
in its comparable scope A,,. Next we get the second nearest
neighbor py. If it falls into Ap,, it is dominated by p; in
their common comparable scope vp,p,. It is on the CDSS if

Ypipe F Aps- Otherwise, it is not on the CDSS. We repeat

this procedure for the remaining objects from the nearest one
until the scope covered by the observed objects enlarges to
all angles 2. The procedure is summarized in Algorithm 2

which has some small changes of Algorithm 1.

Algorithm 2 CDSS Query
1: procedure CDSSQUERY(Q, 0)

2: CS + 0 > Set of CDSS points
3: init_NN_query(Q); > Initialize the NN query
4: C + 0 > Initialize the covered angle set
5: repeat

6: p + get_next(); > Get the next NN point
7 ayp + direction(p); > Caculate the direction of p
8: Ap + [ap — 0, ap + 0]; > Set the comparable scope of p
9: Np < Ap —Ap NC; > Set the undominated scope 7,
10: if np £ 0 then > Scope 7 exists
11: CS + CSU{p}; > Object p is on the CDSS
12: C <+ CUnp; > Update the covered angles
13: end if

14: until C' = {[0, 360]} > all the 27 angles are covered
15: output CS;

16: end procedure

5. Experiments

The experiments were implemented by using a PC with an
Intel Pentium CPU (3.00 GHz), 2GB of memory, and Fedora
11 OS. The dataset was made by extracting the midpoints for
each line segment of the LBeach dataset. (LBeach datasets
are road line segments of Long Beach from the TIGER
database http://tiger.census.gov/.) This dataset consisted
of 50747 points and was normalized in [0, 1000]* space.

We evaluated the performance of the intantaneous DSS
query by the number of the processed nearest neighbors and
the number of the DSS points. Fig. 7 shows the average
number of the processed nearest neighbors. The number de-
creases with the increase of § and is far smaller than the total
number of points. When the 0 is larger, the nearest neighbor
can dominate larger angle ranges and the algorithm termi-
nates quickly. Fig. 8 shows the number of DSS points with
repect to the different fs. The number also decreases with
the increase of 6 because when the 0 is larger, one DSS point
can cover larger area and dominate much more points.

We also captured some images of the DSS points with dif-
ferent s and different user positions. As Fig. 9 shows, the
larger point is the user’s position, the solid points are the

DSS points and the hollow points are the other points.
6. Related Work

Traditionally, the skyline query problem is known as the
maximum vector problem [2] in mathmatical field. Skyline

query has attracted more and more attentions in database

80 T T T T

40 | 1

20 - = 4

the number of processed NN points

0 (degree)

Figure. 7 The Number of Processed Nearest Neighbors

the number of DSS points
©

0 (degree)

Figure. 8 The Number of DSS Points

Figure. 9 The Images of DSS Points

area since 2001 when the first paper [1] considering skyline
queries in relational databases appeared. Afterwards, many
subsequent algorithms [3] [5] [6] appeared to optimize it.
Moreover, skyline queries in spatial database becomes a
hot issue accompanied with the development of mobile tech-
nology. Most spatial skyline queries [7] [8] are based on the
distance aspect. [7] considers how to find out better targets

with regard to several possible locations of the query. [8] pro-

posed the method to find out the skyline considering distance

aspect and non-spatial aspects.
7. Conclusion

In this paper, we propose the definiton of the direction-
based spatial skyline(DSS). And we design an efficient algo-
rithm to answer the DSS query. Then we extend our basic
definition to the comparable scope DSS and we also design

an algorithm to answer the CDSS query.
Acknowledgments

This research was partly supported by a Grant-in-Aid for
Scientific Research (#19300027, #21013023) from the Japan
Society for the Promotion of Science (JSPS).

O O

[1] Stephan Borzsényi and Donald Kossmann and Kon-
rad Stocker, The Skyline Operator, ICDE, 2001.

[2] F. P. Preparata and M. I. Shamos, Computational Geome-
try: An Introduction, New York: Springer-Verlag, 1985.

[3] Dimitris Padadias and Yufei Tao and Greg Fu and Bern-
hard Seeger, An Optimal and Progressive Algorithm for
Skyline Queries, SIGMOD, 2003.

[4] Chee-Yong Chan and Pin-Kwang Eng and Kian-Lee Tan,
Stratified Computation of Skylines with Partially-Ordered
Domains, SIGMOD, 2005.

[5] J. Chomicki and P. Godfrey and J. Gryz and D. Liang, Sky-
line with presorting, ICDE, 2003.

[6] Parke Godfrey Ryan and Ryan Shipley and Jarek Gryz,
Mazimal Vector Computation in Large Data Sets, VLDB,
2005.

[7] Mehdi Sharifzadeh and Cyrus Shahabi, The Spatial Skyline
Queries, VLDB, 2006.

[8] Baihua Zhang and Ken C. K. Lee and Wang-Chien Lee,
Location-Dependent Skyline Query, MDM, 2008.

[9] Zhiyong Huang and Hua Lu and Beng Chin Ooi and An-
thony K. H. Tung, Continuous Skyline Queries for Moving
Objects, TKDE, 2006.

[10] Katerina Raptopoulou and Apostolos Papadopoulos and
Yannis Manolopoulos, Fast Nearest-Neighbor Query Pro-
cessing in Moving-Object Databases, Geolnformatica, 2003.

[11] YuFei Tao and Dimitris Papadias and Qiongmao Shen, Con-
tinuous Nearest Neighbor Search, VLDB, 2002.

[12] http:en.wikipedia.orgwikiQuartic_function

