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Today’s Lecture 

• Advice on how getting learning algorithms to different applications. 

• Most of today’s material is not very mathematical.  But it’s also some of the 
hardest material in this class to understand. 

• Some of what I’ll say today is debatable. 

• Some of what I’ll say is not good advice for doing novel machine learning 
research. 

• Key ideas:
1. Diagnostics for debugging learning algorithms.
2. Error analyses and ablative analysis. 
3. How to get started on a machine learning problem.

– Premature (statistical) optimization. 
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Debugging Learning 
Algorithms
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Debugging learning algorithms

Motivating example: 

• Anti-spam.  You carefully choose a small set of 100 words to use as 
features.  (Instead of using all 50000+ words in English.) 

• Bayesian logistic regression, implemented with gradient descent, gets 20% 
test error, which is unacceptably high. 

• What to do next?
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Fixing the learning algorithm

• Bayesian logistic regression: 

• Common approach: Try improving the algorithm in different ways.
– Try getting more training examples.
– Try a smaller set of features. 
– Try a larger set of features. 
– Try changing the features: Email header vs. email body features.
– Run gradient descent for more iterations.
– Try Newton’s method.
– Use a different value for λ.
– Try using an SVM.

• This approach might work, but it’s very time-consuming, and largely a matter 
of luck whether you end up fixing what the problem really is. 
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Diagnostic for bias vs. variance

Better approach: 
– Run diagnostics to figure out what the problem is. 
– Fix whatever the problem is.

Bayesian logistic regression’s test error is 20% (unacceptably high). 

Suppose you suspect the problem is either:
– Overfitting (high variance).
– Too few features to classify spam (high bias). 

Diagnostic:
– Variance: Training error will be much lower than test error.
– Bias: Training error will also be high. 
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More on bias vs. variance

Typical learning curve for high variance:

m (training set size)

er
ro

r Test error

Training error

• Test error still decreasing as m increases.  Suggests larger training set 
will help.
• Large gap between training and test error. 

Desired performance
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More on bias vs. variance

Typical learning curve for high bias:

m (training set size)

er
ro

r Test error

Training error

• Even training error is unacceptably high. 
• Small gap between training and test error. 

Desired performance
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Diagnostics tell you what to try next

Bayesian logistic regression, implemented with gradient descent.

Fixes to try: 
– Try getting more training examples.
– Try a smaller set of features. 
– Try a larger set of features.
– Try email header features.
– Run gradient descent for more iterations.
– Try Newton’s method.
– Use a different value for λ.
– Try using an SVM.

Fixes high variance.
Fixes high variance.
Fixes high bias.
Fixes high bias. 
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Optimization algorithm diagnostics

• Bias vs. variance is one common diagnostic. 

• For other problems, it’s usually up to your own ingenuity to construct your 
own diagnostics to figure out what’s wrong. 

• Another example: 
– Bayesian logistic regression gets 2% error on spam, and 2% error on non-spam.  

(Unacceptably high error on non-spam.)  
– SVM using a linear kernel gets 10% error on spam, and 0.01% error on non-

spam.  (Acceptable performance.) 
– But you want to use logistic regression, because of computational efficiency, etc.

• What to do next? 
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More diagnostics

• Other common questions:
– Is the algorithm (gradient descent for logistic regression) converging? 

Iterations

J(θ)

O
bj

ec
tiv

e

It’s often very hard to tell if an algorithm has converged yet by looking at the objective.
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More diagnostics

• Other common questions:
– Is the algorithm (gradient descent for logistic regression) converging? 
– Are you optimizing the right function?
– I.e., what you care about: 

(weights w(i) higher for non-spam than for spam).
– Bayesian logistic regression?  Correct value for λ? 

– SVM?  Correct value for C?
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Diagnostic 

An SVM outperforms Bayesian logistic regression, but you really want to deploy Bayesian 
logistic regression for your application. 

Let θSVM be the parameters learned by an SVM.

Let θBLR be the parameters learned by Bayesian logistic regression.

You care about weighted accuracy: 

θSVM outperforms θBLR.  So:

BLR tries to maximize:

Diagnostic: 
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Two cases

Case 1:

But BLR was trying to maximize J(θ).  This means that θBLR fails to maximize J, and the 
problem is with the convergence of the algorithm. Problem is with optimization 
algorithm.  

Case 2: 

This means that  BLR succeeded at maximizing J(θ).  But the SVM, which does worse on 
J(θ), actually does better on weighted accuracy a(θ).  

This means that J(θ) is the wrong function to be maximizing, if you care about a(θ).  
Problem is with objective function of the maximization problem. 
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Diagnostics tell you what to try next

Bayesian logistic regression, implemented with gradient descent.

Fixes to try: 
– Try getting more training examples.
– Try a smaller set of features. 
– Try a larger set of features.
– Try email header features.
– Run gradient descent for more iterations.
– Try Newton’s method.
– Use a different value for λ.
– Try using an SVM.

Fixes high variance.
Fixes high variance.
Fixes high bias.
Fixes high bias. 
Fixes optimization algorithm.
Fixes optimization algorithm.
Fixes optimization objective.
Fixes optimization objective.
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The Stanford Autonomous Helicopter

Payload: 14 pounds
Weight: 32 pounds
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Machine learning algorithm

Simulator 
1. Build a simulator of helicopter.

2. Choose a cost function.  Say J(θ) = ||x – xdesired||2                 (x = helicopter position)

3. Run reinforcement learning (RL) algorithm to fly helicopter in simulation, so       
as to try to minimize cost function: 

θRL = arg minθ J(θ) 

Suppose you do this, and the resulting controller parameters θRL gives much worse 
performance than your human pilot.  What to do next? 

Improve simulator?
Modify cost function J? 
Modify RL algorithm? 
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Debugging an RL algorithm

The controller given by θRL performs poorly.  
Suppose that:

1. The helicopter simulator is accurate.
2. The RL algorithm correctly controls the helicopter (in simulation) so as to 

minimize J(θ). 
3. Minimizing J(θ) corresponds to correct autonomous flight. 

Then: The learned parameters θRL should fly well on the actual helicopter.  

Diagnostics:
1. If θRL flies well in simulation, but not in real life, then the problem is in the 

simulator.  Otherwise: 
2. Let θhuman be the human control policy.  If J(θhuman) < J(θRL), then the problem is 

in the reinforcement learning algorithm.  (Failing to minimize the cost function J.) 
3. If J(θhuman) ≥ J(θRL), then the problem is in the cost function. (Maximizing it 

doesn’t correspond to good autonomous flight.) 
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More on diagnostics

• Quite often, you’ll need to come up with your own diagnostics to figure out 
what’s happening in an algorithm. 

• Even if a learning algorithm is working well, you might also run diagnostics to 
make sure you understand what’s going on.  This is useful for:

– Understanding your application problem: If you’re working on one important ML 
application for months/years, it’s very valuable for you personally to get a intuitive 
understand of what works and what doesn’t work in your problem. 

– Writing research papers: Diagnostics and error analysis help convey insight about 
the problem, and justify your research claims.

– I.e., Rather than saying “Here’s an algorithm that works,” it’s more interesting to 
say “Here’s an algorithm that works because of component X, and here’s my 
justification.”

• Good machine learning practice: Error analysis.  Try to understand what 
your sources of error are. 
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Error Analysis
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Error analysis

Many applications combine many different learning components into a 
“pipeline.” E.g., Face recognition from images: [contrived example]

Logistic regressionFace detection

Camera
image

Eyes segmentation

Nose segmentation

Mouth segmentation

Preprocess
(remove background)

Label
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Error analysis

How much error is attributable to each of the 
components? 

Plug in ground-truth for each component, and 
see how accuracy changes.

Conclusion: Most room for improvement in face 
detection and eyes segmentation. 

Component Accuracy
Overall system 85%

Preprocess (remove 
background) 85.1%

Face detection 91%
Eyes segmentation 95%
Nose segmentation 96%
Mouth segmentation 97%
Logistic regression 100%

Logistic regressionFace detection

Camera
image

Eyes segmentation

Nose segmentation

Mouth segmentation

Preprocess
(remove background)

Label

Preprocess
(remove background)

Face detection

Eyes segmentation

Nose segmentation

Mouth segmentation

Logistic regression
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Ablative analysis

Error analysis tries to explain the difference between current performance and 
perfect performance.

Ablative analysis tries to explain the difference between some baseline (much 
poorer) performance and current performance.

E.g., Suppose that you’ve build a good anti-spam classifier by adding lots of 
clever features to logistic regression:

– Spelling correction.
– Sender host features.
– Email header features.
– Email text parser features.
– Javascript parser. 
– Features from embedded images. 

Question: How much did each of these components really help? 
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Ablative analysis

Simple logistic regression without any clever features get 94% performance.

Just what accounts for your improvement from 94 to 99.9%? 

Ablative analysis: Remove components from your system one at a time, to see 
how it breaks. 

Conclusion: The email text parser features account for most of the 
improvement. 

Component Accuracy
Overall system 99.9%

Spelling correction 99.0
Sender host features 98.9%
Email header features 98.9%

Email text parser features 95%
Javascript parser 94.5%

Features from images 94.0% [baseline]
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Getting started on a 
learning problem
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Getting started on a problem 

Approach #1: Careful design. 

• Spend a long term designing exactly the right features, collecting the right dataset, 
and designing the right algorithmic architecture.

• Implement it and hope it works.  

• Benefit: Nicer, perhaps more scalable algorithms.  May come up with new, elegant, 
learning algorithms; contribute to basic research in machine learning. 

Approach #2: Build-and-fix.

• Implement something quick-and-dirty.

• Run error analyses and diagnostics to see what’s wrong with it, and fix its errors.

• Benefit: Will often get your application problem working more quickly.  Faster time to 
market.  
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Premature statistical optimization

Very often, it’s not clear what parts of a system are easy or difficult to build, and 
which parts you need to spend lots of time focusing on.  E.g.,

The only way to find out what needs work is to implement something quickly, 
and find out what parts break. 

[But this may be bad advice if your goal is to come up with new machine 
learning algorithms.]

Logistic regressionFace detection

Camera
image

Eyes segmentation

Nose segmentation

Mouth segmentation

Preprocess
(remove background)

Label

This system’s much too 
complicated for a first attempt. 

Step 1 of designing a learning 
system: Plot the data. 



Andrew Y. Ng 

The danger of over-theorizing

[Based on Papadimitriou, 1995]

Mail 
delivery 

robot

Obstacle 
avoidance

Robot 
manipulation

Navigation

Object 
detection

Color 
invariance

3d similarity
learning

Differential 
geometry of 
3d manifolds

Complexity of 
non-Riemannian 

geometries

… Convergence 
bounds for 

sampled non-
monotonic logic

VC 
dimension
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Summary
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Summary

• Time spent coming up with diagnostics for learning algorithms is time well-
spent.

• It’s often up to your own ingenuity to come up with right diagnostics.

• Error analyses and ablative analyses also give insight into the problem.

• Two approaches to applying learning algorithms:
– Design very carefully, then implement.  

• Risk of premature (statistical) optimization.
– Build a quick-and-dirty prototype, diagnose, and fix. 
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