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Wind Energy

 Fastest growing energy source 
in the world

 Current global installed capacity 
exceeds 100,000 MW, with a 
projected growth of more than 
20% per year for the next five 
years

 Wind farms today produce 
electrical power at a Cost-of-
Energy of approximately 
$0.03/kWh, comparable to that 
of coal and natural gas based 
power plants

Introduction 2

[data from www.wwindea.org]
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Increasing Turbine Size

 Typical size of utility-scale 
wind turbines has grown 
dramatically

 Large flexible structures 
operating in uncertain 
environments [video]

 Advanced controllers can 
help increase energy 
capture efficiency and 
reduce structural loading 

[diagrams and schematic from www.renewableenergy.no, 
www.aerospaceweb.org/aircraft/jetliner/b747, and 
en.wikipedia.org/wiki/American_football]

Decrease the cost 
of wind energy
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Outline

 Motivation and Wind Turbine Basics

 Wind Turbine Control Loops

 Issues in Turbine Control

 Advanced Turbine Control

 Wind Farms

 Offshore Wind

 Conclusions
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Vertical vs. Horizontal Axis Wind Turbines

 Vertical-axis wind turbines 
(VAWTs) more common among 
smaller turbines

 HAWTs are the most commonly 
produced utility-scale wind 
turbines 

 Advantages of horizontal-axis 
wind turbines (HAWTs)
 Improved power capture capabilities
 Pitchable blades
 Improved structural performance

Introduction 5

[photo from www.symscape.com]

[photo courtesy of L. J. Fingersh, NREL]
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Horizontal Axis Wind Turbine

rotor

NREL’s Control Advanced Research 
Turbine (CART2)

nacelle

tower
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Wind Turbine Components

 Wind encounters rotor, 
causing it to spin

 Low-speed shaft transfers 
energy to the gear box
 Steps up speed
 Spins high-speed shaft 

 High-speed shaft causes 
generator to spin, 
producing electricity

 Yaw system turns nacelle 
so that rotor faces into 
the wind

Introduction 6

[figure courtesy of US Dept. of Energy]

Upwind HAWT
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Wind Turbine Design Considerations

 Upwind vs. downwind
 Tower shadow

 Variable or fixed pitch
 Initial cost
 Ability to control loads 

and change 
aerodynamic torque

 Variable or fixed speed
 Aerodynamic efficiency
 Electrical power 

processing

 Number of blades
Introduction 7

[figure courtesy of US Dept. of Energy]

Upwind HAWT
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Operating Regions
 Region 1:  Low wind speed    

(below 6 m/s)
 Wind turbines not run, because 

power available in wind is low 
compared to losses in turbine 
system

 Region 2:  Medium wind speeds   
(6 m/s to 11.7 m/s)
 Variable-speed turbine captures 

more power
 Fixed-speed turbine optimized for 

one wind speed (10 m/s)
– Max difference in example curves is 

150 kW.
 For typical wind speed distributions, 

in this example, variable-speed 
turbine captures 2.3% more energy 
than constant-speed turbine 

Introduction 8

 Region 3:  High wind speeds (above 11.7 m/s)
 Power is limited to avoid exceeding safe electrical and mechanical load limits

Example Power Curves for 2.5 MW Wind Turbine

Region 1

Wind
Power

Variable
Speed

Turbine
Power

Fixed Speed Turbine Power
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Outline

 Motivation and Wind Turbine Basics
 Wind Turbine Control Loops

 Wind Inflow
 Sensors
 Actuators
 Torque Control
 Pitch Control

 Issues in Turbine Control
 Advanced Turbine Control
 Wind Farms
 Offshore Wind
 Conclusions
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Wind Turbine Control Loops

Torque 
Controller

Pitch 
Controller




Wind

Desired 
Rotor 
Speed
d

Speed 
Sensor

Pitch Motor

Power Converter

Rotor Speed

Pitch 
Angle

Load 
Torque

e


turbine axis

instantaneous wind field
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Wind Inflow
 Differential heating of atmosphere 

is driving mechanism for earth’s 
winds

 Numerous phenomena affect wind 
inflow across a wind turbine’s rotor 
plane
 Sea breezes
 Frontal passages
 Mountain and valley flows
 Nocturnal low-level jet

 Rotor plane of MW utility-scale 
turbines span from 60m to 180m 
above the ground

 Virtually impossible to obtain a 
good measurement of the wind 
speed encountering the entire span 
of blades

11Walk Around the Loops

[Figure courtesy of R. Banta, Y. Pichugina, 
N. Kelley, B. Jonkman, and W. Brewer]

Hourly profiles of mean wind speed 
after sunset on 15 Sept 2003
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Characterizing the Wind

 Average wind speed
 Spatial
 Temporal

 Frequency distribution of 
wind speeds
 Spatial
 Temporal

 Prevailing wind direction
 Frequency of other wind 

directions

 Capacity Factor

CF =
actual energy output over time period

energy output if turbine operated at max output over same time period
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Wind Turbine Control Loops

Torque 
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Pitch 
Controller
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Sensors

 Rotor speed measured 
on either high-speed 
(generator) or low-speed 
(rotor) shafts
 Gear box ratio known

 Anemometers used for 
supervisory control 
purposes
 Usually located on 

nacelle behind rotor 
plane

 Power measurement 
devices

poor measurement 
of wind

[figure courtesy of US Dept. of Energy]

Upwind HAWT
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Sensors

 Rotor speed measured 
on either high-speed 
(generator) or low-speed 
(rotor) shafts
 Gear box ratio known

 Anemometers used for 
supervisory control 
purposes
 Usually located on 

nacelle behind rotor 
plane

 Power measurement 
devices

poor measurement 
of wind

Several types of sonic and propeller anemometers 
on a meteorological tower at NREL’s NWTC

[Photo courtesy of L. J. Fingersh, NREL]
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Additional Sensors

 Strain gauges
 Tower
 Blades

 Accelerometers
 Position encoders
 Drive shaft
 Blade pitch 

actuation systems

 Torque 
transducers 

16Walk Around the Loops

[figure courtesy of US Dept. of Energy]

Upwind HAWT
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Wind Turbine Control Loops
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Actuators

 Yaw motor
 Slow (usually < 1 deg/s)

 Generator
 Fast (time constant usually 

> 10x that of rotor speed) 

[figure courtesy of US Dept. of Energy]

Upwind HAWT
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Actuators

 Yaw motor
 Slow (usually < 1 deg/s)

 Generator
 Fast (time constant usually 

> 10x that of rotor speed) 

[Photo courtesy of L. J. Fingersh, NREL]

Inside the Nacelle of the 3-Bladed Controls 
Advanced Research Turbine (CART3) at NREL’s

National Wind Technology Center (NWTC)

CART3 is a 600 kW wind turbine with a 
40 m rotor diameter that is used at NREL’s

NWTC as an experimental test bed 
for advanced controllers.
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Actuators

 Blade pitch motor
 Fast

– Up to 18 deg/s for 600 kW turbines
– Up to 8 deg/s for 5 MW turbines

 Collective vs. Individual Pitch

[Photo courtesy of L. J. Fingersh, NREL]

Three pitch motors on the CART3 
 Yaw motor
 Slow (usually < 1 deg/s)

 Generator
 Fast (time constant usually 

> 10x that of rotor speed) 

CART3 is equipped with 
independent blade pitch capability.

18Walk Around the Loops
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More on Actuators
 Operational blade pitch angle data from CART2:
 CART2 is a 2-bladed, 600 kW 

wind turbine with a 43 m diameter 
rotor at NREL’s NWTC

 Data from a normal shut-down 
event caused by the wind speed 
decreasing into Region 1
• Pitch rate limited to approx 5 deg/s
• Lag between commanded and 

actual pitch can be represented by a 
1st-order filter

19Walk Around the Loops

 Teetering hinge on 2-bladed turbines
 Allows rotor to respond to differential loads 

when blades in vertical position
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Torque Control

Torque 
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“Standard” Torque Control

 c = generator (control) 
torque

 = measured rotor speed
  = air density
 R = rotor radius
 CPmax = maximum power 

coefficient
 * = optimum tip-speed ratio
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Tip-speed ratio:
w
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Torque Control: Perfect Measurements

 When measurements are perfect and turbine is 
perfectly modeled, “standard” torque control 
leads to optimal operation in the steady-state
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Torque Control Summary

 Data from CART2

 Key features of 
standard torque 
control
 Nonlinear
 Only required 

measurement is 
rotor speed

 Saturates at rotor 
speeds near rated

 Speed regulation 
achieved via pitch 
control

23Walk Around the Loops
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Pitch Control

Torque 
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Pitch 
Controller
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PID Pitch Control

 Speed regulation at high 
winds typically achieved 
using PID pitch control

 e = error in rotor speed
 d = desired rotor speed
 c = control pitch angle

 Pitch rate actuation limits 
may be up to 8 deg/s
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Pitch Control Variations

 Derivative term may be filtered 
to reduce measurement noise 
errors

 KP, KI, and KD may be gain 
scheduled due to system 
nonlinearities

 Pitch control signal can be 
given as angle or rate of 
change

 Pitch control may be collective 
or independent
 MIMO control options available

sKD
e



s

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10 12 14 16 18 20 22

Blade Pitch (deg.)

G
ai

n 
Sc

he
du

le
 F

ac
to

r G
S

26Walk Around the Loops



Pao & Johnson American Control Conference, June 2009

Partners in the Colorado Renewable Energy Collaboratory’s Center for Research and Education in Wind

Pitch and Torque Control

 Pitch control 
saturated below 
rated
 Saturation 

value chosen 
to optimize 
energy capture

 Pitch and 
torque control 
loops 
complement 
each other
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Outline

 Motivation and Wind Turbine Basics
 Wind Turbine Control Loops
 Issues in Turbine Control
 Size
 Multiple control loops
 Control while stopped
 Modeling inaccuracies

 Advanced Turbine Control
 Wind Farms
 Offshore Wind
 Conclusions
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Increasing Turbine Size

 Increased flexibility may 
lead to structural vibrations
 Tower motion (fore-aft and 

side-to-side)
 Drive train torsion
 Blade bending and twisting

 Rotor is larger than some 
“coherent” wind turbulence 
structures
 Requires individual blade 

pitch control [diagrams and schematic from www.renewableenergy.no, 
www.aerospaceweb.org/aircraft/jetliner/b747, and 
en.wikipedia.org/wiki/American_football]
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Multiple Control Loops

 Transition between regions 2 and 3 
sometimes leads to maximum turbine 
loads

 Switching between 
torque and pitch 
control may 
exacerbate problem

 CART2 field data 
during a bad 
transition:

30Turbine Control Issues
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Control while Stopped

 Supervisory control may stop 
turbines due to faults or high 
winds

 Little active control usually 
performed while stopped
 Yaw control may still be 

performed to point turbine into 
the wind

 Extreme loads may occur 
during “parked” conditions, 
usually in high winds

 Fault detection and health 
monitoring are also of interest

Most active 
control 
performed 
here
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Modeling Inaccuracies

 Torque control assumes perfect knowledge of the 
turbine’s Cp surface
 Errors can be costly

 Effect of a 5% modeling error in the optimal tip speed 
ratio 
 Energy loss of around 1% - 3% in Region 2
 Assume we reach DOE’s 20% Wind Energy by 2030 goal

– requires ~300 GW of installed 
capacity

 Assume the cost of energy is 
$0.03 per kilowatt-hour (kWh)

 Thus, a 1% loss of energy is 
equivalent to a loss of $630 
million per year

32Turbine Control Issues
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Advanced Control Strategies

 Adaptive control

 Feedforward control
 Using wind speed estimates
 Using wind speed measurements

 Lots of others under development

TURBINEFEEDBACK
CONTROLLER

FEEDFORWARD
CONTROLLER



-
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Advanced Blades

 New configurations and 
actuators under 
development
 Multiple pitch actuators per 

blade
– Will allow different pitch angles 

at different radial positions
 Microtabs

– Will change aerodynamic forces
 Air valves

– Will change aerodynamic forces

 Advanced blade concepts 
will likely require new 
control systems

Multiple pitch actuators per blade

Microtabs (not to scale)
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Wind Farm Considerations

 Wind farms can take advantage of economies of 
scale

 May differ from individual turbines in 
 noise
 safety
 visual
 environmental effects

36Wind Farms
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Wind Farm Layouts and Control

 Control focuses
 Electricity
 Aerodynamics

 Control goal is to maximize “array efficiency”
given existing configuration

37Wind Farms
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Offshore Wind Motivation

 Advantages to offshore wind
 Wind resource typically higher and more 

consistent
 Turbine size is not 

limited by transportation 
constraints
 Visual and noise effects 

can be avoided more 
easily
 More area available, 

especially near 
population centers
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Offshore Wind Turbine Configurations

U.S. has 
relatively 
more deep 
water near 
the shoreline 
than Europe, 
so more 
floating 
turbines are 
likely in the 
U.S.

[Image courtesy of NREL]
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Floating Platforms

 Floating 
platform 
configurations 
have been 
borrowed from 
offshore oil rig 
technologies

[Image courtesy of NREL]
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Offshore Wind Challenges

 Waves can excite structural modes 
for both floating and fixed offshore 
turbines

 Deep water anchors are expensive
 U.S. has more deep water near 

population centers than Europe

 What is the best way to control a 
floating inverted pendulum with a 
large spinning mass at its top?
 What actuators are necessary?
 How will control affect the energy 

capture?

41Offshore Wind
Graphic courtesy of NREL
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Conclusions

 Large, flexible turbines lend 
themselves to control solutions, and 
turbines are getting larger and more 
flexible

 Existing turbine controllers tend not 
to take advantage of the wealth of 
available control theory
 Industry has been slow to adopt 

advanced control strategies for both 
individual turbines and wind farms

 Offshore wind turbine control is a big 
prospective area for research
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