

MathOptimizer:

A nonlinear optimization package for Mathematica users

Frank J. Kampas1 and János D. Pintér2

1: WAM Systems, Inc, 600 W Germantown Pike, Plymouth Meeting, PA 19462 USA

fkampas@msn.com

2: Özyeğin University, Istanbul, 34662 Turkey, and PCS, Inc., Canada

janos.pinter@ozyegin.edu.tr, www.pinterconsulting.com

Technical Report, Özyeğin University, Istanbul

Submitted for publication: November 2009

__

Abstract

Mathematica is an advanced software system that enables symbolic computing, numerics, program code

development, model visualization and professional documentation in a unified framework. Our MathOptimizer
software package serves to solve global and local optimization models developed using Mathematica. We
introduce MathOptimizer’s key features and discuss its usage options that support a range of operational modes.
The numerical capabilities of the package are illustrated by simple and more advanced examples, pointing
towards a broad range of potential applications.

(C) 2009 Elsevier B.V. All rights reserved.

MSC: 90C30; 65K05

Keywords: Mathematica; MathOptimizer; Global and local optimization; Model development and solution; Illustrative

examples and applications.

__

1. Introduction

Mathematica, by Wolfram Research (www.wolfram.com), is a state-of-the-art software package

for scientific and technical computing. One of the great advantages of using Mathematica is that the
entire application development process − model development, computing, visualization and
professional level documentation − can be presented incrementally in an interactive Mathematica
notebook document (or in a set of such documents if preferred). Mathematica notebooks, being
ordinary text files, are portable across all major hardware and operating system platforms: this feature
enables convenient information exchange within a business, research, or academic-educational
context.

MathOptimizer is a global-local optimization software package for solving constrained nonlinear
optimization problems formulated in the Mathematica environment. In this work we shall consider the
following (terse, but general) nonlinear optimization model form:

minimize f(x) subject to the constraints x∈D:={x: g(x) ≤ 0, xl ≤ x ≤ xu}. (1.1)

In (1.1) x∈Rn is an n-dimensional real vector, f: Rn→R is the objective function; g: Rn→Rm is an m-

component real-valued constraint vector function. Correspondingly, in the model formulation shown

above 0∈Rm, and [xl,xu] defines an n-dimensional interval bound for x, all inequalities being properly
interpreted component-wise.

We shall assume that the components of the vector bounds xl and xu are finite, D is non-empty, and
that the model functions f and g (the latter component-wise) are continuous. The existence of the
global solution (set) is obviously guaranteed by these conditions. At the same time, the symbolic
solution of many instances of model (1.1) is impossible, and such models can also be difficult to solve
numerically. Significant difficulties can be caused by the − possible or verifiable − multimodality of f,
and/or by the possibly complicated − non-convex, perhaps even disjoint − feasible set D, implicitly
determined by the functions g.

Without going into technical details, let us remark that all well-posed, but seemingly more general
(finite-dimensional, continuous) constrained optimization models can be brought to the terse canonical
model form (1.1) by elementary or more advanced transformations. Although this also includes the
transformation of combinatorial optimization models to the form (1.1), the focus of the present work is
on nonlinear optimization with continuous decision variables.

MathOptimizer is aimed at finding the globally or locally optimal solution(s) of nonlinear models
that could have a multitude of such optima. Since MathOptimizer is a native Mathematica package,
optimization models can be developed exploiting the significant repertoire of Mathematica features
and functionality.

To address the general model-type stated by (1.1), MathOptimizer can be used in a variety of
operational modes, controlled by option settings. In this article, we first review the technical
background of MathOptimizer. This is followed by a detailed description of MathOptimizer's options,
illustrated by solving simple to more advanced optimization problems.

We assume that the Reader is familiar with – or that s/he will understand from our article – the
essential concepts and usage of Mathematica and MathOptimizer for the purposes of nonlinear
optimization. All Mathematica input commands (set using Courier Bold fonts) are explained and
illustrated in sufficient detail, and we provide references for technical details not discussed here.

MathOptimizer will work across all hardware and operating system platforms for which a current
Mathematica implementation is available from Wolfram Research. At the time of this writing (2009)
the current Mathematica version is 7.0.1. MathOptimizer has been originally developed and tested
using Mathematica 4.0 (in 2002). Since then it has been updated and significantly revised: our article
discusses the current version that has numerous added features compared to earlier versions. The test
results and optional timings reported below were obtained using our “average capability” personal
computers. Most of the examples presented here can be solved well within a second, unless explicitly
noted otherwise.

For technical background and details not discussed here, we refer to the extensive topical literature
related to nonlinear optimization and to Mathematica: here only a few illustrative references will be
given. Classical (local) nonlinear optimization is discussed e.g. by Bertsekas [1], Boyd and
Vandenberghe [2], Hillier and Lieberman [4], while the subject of global optimization is discussed e.g.
by Horst and Pardalos [5], Pardalos and Romeijn [9], and Pintér [10,11,12]. Mathematica itself is
described by its standard reference Wolfram [17], as well as e.g. by Gaylord, Kamin and Wellin [3],
Maeder [8], Trott [14], and Wagner [15]. Finally, MathOptimizer is described in detail by its technical
documentation [7].

2. MathOptimizer Installation

The current MathOptimizer installation file system consists of the integrated global-local solver

package (file MO.m), and its documentation (file UserGuide.nb). MO.m is intended for loading into
Mathematica using the standard Needs command. To guarantee this − assuming that Mathematica is
installed in the directory C:\Mathematica\7.0 − MO.m is to be placed in C:\Mathematica\7.0\AddOns\
Applications\MathOptimizer. Following Mathematica‘s earlier convention, the MathOptimizer
documentation can be put into the C:\...\MathOptimizer\Documentation\English subdirectory. (This
location has supported the direct invocation of the User Guide through Mathematica’s Help system,
for earlier versions of the software. Now the User Guide can be simply opened as a Mathematica
notebook document whenever needed.)

Based on the recommended standard installation directory structure, MathOptimizer can be directly
invoked for use by the following Mathematica command:

Needs["MathOptimizer`MO`"]

Note that, in order to follow Mathematica’s syntax, we will not end input commands and outputs

by the period (.) symbol.
The file MO.m contains the Optimize package that integrates all MathOptimizer solvers and their

options. The functionality of Optimize can be queried by the command

?Optimize

In reply, Optimize returns the following Mathematica output:

Optimize[objective, constraints_List, varswithbounds_List, options___] minimizes the given

objective function under a given set (list) of constraint functions, and given variable bounds. The
varswithbounds list is defined in the form {{var1, var1 lower bound, var1 upper bound}, {var2, var2
lower bound, var2 upper bound}...}.

Type Options[Optimize] to see the options and their default settings.
Type ?optionname for more information on each individual option.

(All Mathematica output will be typeset in Times New Roman fonts, occasionally and slightly

formatted for the purposes of this article.)
As shown above, the Optimize function requires three key arguments. The first argument is the

model objective function, the second is the possibly empty list of model constraints, and the third is
the list of decision variables with corresponding bounds. A number of options can be selected and
added to the basic input list of Optimize: we will discuss these options later on.

3. Using MathOptimizer: A Model Development Template

Our first example introduces a conceptual model development template. Following the general

model form (1.1) and the corresponding key input information requirements of MathOptimizer, we can
define standard symbols for the model components:

varswithbounds the decision variables with given lower and upper bounds; nominal

values (representing an initial solution guess) can be optionally added
objective the model objective function that is minimized by default
constraints the model constraints: these can be given in ≤0, =0, or ≥0 format.

For illustration, let us consider the model

minimize (x1

2 – 2 x2)
2 + (x1 – 2) 2 (3.1)

sin(x1
2 – 3 x1x2) = 0

x1
4 + 5 x2

3 – 40 ≤ 0
–5≤ x1 ≤ 3
–5≤ x2 ≤ 4

In Mathematica, lists of objects are denoted by entries placed between curly brackets {}. The list

of Optimize‘s input arguments corresponding to (3.1) is

varswithbounds = {{x1,-5, 3},{x2,-5,4}}

objective = (x1^2-2*x2)^2+(x1-2)^2

constraints = {Sin[x1^2-3*x1*x2]==0,x1^4+5*x2^3-40≤≤≤≤0}

Now we can call MathOptimizer to solve (3.1) by the command

Optimize[objective,constraints,varswithbounds]

The result returned by the package (immediately following the Optimize call shown above) is

the following Mathematica list:

{0.0166185, {x1→1.87448, x2→1.74215}, Maximal Constraint Violation→1.80328×10-10}.

The first entry of the return list is the numerical global optimum estimate found f* ~ 0.0166185; the

second entry shows the elements of the corresponding solution vector x1* ~ 1.87448, x2* ~ 1.74215;
and the last entry is the maximal constraint violation (MCV) value ~ 1.80328·10-10 at (x1*, x2*). The
MCV value refers to the violation of the general constraints. (The box constraints must always be
satisfied by assumption except when deliberately relaxed: we will discuss this point later on.)

Let us note that numerical values can be displayed with higher accuracy if needed, using standard
Mathematica functionality: the built-in function N[expression,nd] returns (more precisely,
attempts to return) the numerical value of an arbitrary suitable Mathematica expression with nd-

digit precision.
In spite of its small size, model (3.1) is not trivial. For comparison, we have solved the same model

using the built-in Mathematica function NMinimize that serves for numerical nonlinear
optimization. The solution found by NMinimize applying its default settings is not as good as
MathOptimizer's solution: see below. (Notice that NMinimize does not return a value similar to the
MCV indicator of MathOptimizer: hence, we do not get direct feedback regarding the level of
feasibility of the solution found.)

{1.03074, {x1→1.13774, x2→0.379247}}

Of course, we will not claim that this is always the case. However, our example illustrates a

practically important point: using different algorithms and corresponding software implementations to
solve difficult numerical problems can be useful.

4. MathOptimizer Options

4.1. List of Options

The combined global-local search approach implemented in MathOptimizer theoretically

guarantees stochastic convergence to the global solution (set): consult Pintér [10] for the theoretical
background. MathOptimizer‘s default option settings are frequently − but not always − sufficient to
find the (numerical) global solution. Generally speaking, in "relatively easy" optimization problems
one should always obtain the same solution, except perhaps small numerical differences, even when
reasonably changing some MathOptimizer options. In “more difficult” models − that are quite typical
in the global optimization context − it often makes sense to change one or several of the options, to
possibly explore alternative solutions. Although a universal recipe for option settings cannot be
expected, a prudent selection of options can lead to improved numerical solutions in difficult models,
with a moderate amount of experimentation.

The list of MathOptimizer options is queried by the command Options[Optimize]. This
leads to the following return value list, formatted for better readability:

{PenaltyMultiplier→1,
MultiStarts→10,
Samples→1000,
RandomSeed→0,
SamplingMethod→Random,
ListableExpressions→True,

LocalSearches→4,
ShowGlobalResults→False,
ShowDetailedGlobalResults→False,
ShowLocalResults→False,
ShowDetailedLocalResults→False,
LocalSearchMethod→FindMinimum,
BoundedLocalSearch→True,
RepeatedLocalSearches→True}

This list displays the MathOptimizer option names and their assigned default settings. The option

names follow the recommended Mathematica style for function names and similar option symbols. All
default option settings can be changed by using standard Mathematica conventions.

In this article, it would be excessive to describe in detail each of these options. Instead, we offer a
short commentary related to each of them, and briefly illustrate some of the key options by simple
examples. For numerous further examples, we refer again to [7].

PenaltyMultiplier

PenaltyMultiplier is the penalty factor p used in the definition of the so-called merit function. If the

constraint vectors are separated into equalities g(x)=0 and inequalities h(x)≤0, then the merit function
is defined as f(x) + p·(||g(x)|| + ||max[h(x),0]||); here the absolute value (l1)-norm is used.

Here is an illustrative example, with a slight entertainment flavour: we attempt to find a
Pythagorean triplet by using global optimization.

Optimize[Abs[x2+y2−z2],{Sin[ππππx]==0,Sin[ππππy]==0,Sin[ππππz]==0},

 {{x,1,5},{y,1,5},{z,1,5}},PenaltyMultiplier→3]
{5.86198*10-12, {x→3., y→4., z→5.}, Maximal Constraint Violation→1.84269*10-12}

MultiStarts

If used in its global and local search modes, then MathOptimizer first performs MultiStarts
(number of) global searches in a stochastic multistart based sampling framework, and then it performs
local searches starting from the best result or several of the best results found by the global searches.
The default setting of MultiStarts is 10; it may be advisable to increase this number for higher-
dimensional or otherwise more difficult models. A suggested heuristic setting, in line with (1.1), is
m+1+n, where m+1 is number of model functions, and n is the number of decision variables. It is
important to point out that MultiStarts→0 leads to local search only, without a preceding global search
phase. This local search is started from a given initial point or − if such information is absent, then −
from the midpoint of the search range defined by the lower and upper bounds.

The next example illustrates that in difficult global optimization problems the quality of solution
could improve by increasing the number of global scope multistarts. The example chosen is
Trefethen's Problem 4: for details, consult e.g. Weisstein [16]. We shall consider the objective function

objective=Exp[Sin[50*x]]+Sin[60*Exp[y]]+Sin[70*Sin[x]]+

 Sin[Sin[80*y]]-Sin[10*(x+y)]+(x^2+y^2)/4;

This function is highly multimodal as shown by Figure 1, and hence it often has served as a test
challenge for global solvers in recent years.

Figure 1. The objective function in Trefethen's Problem 4, for -3≤x≤3, -3≤y≤3.

The next command attempts to minimize this function over the interval region -3≤x≤3, -3≤y≤3,

from a given initial point x=1, y=2. Notice the empty list {} in the Optimize call that indicates the
absence of general constraints (the box constraints always have to be defined).

Optimize[objective,{},{{x,-3,1,3},{y,-3,2,3}},MultiStarts→0]

{2.21767,{x→0.944705,y→2.00307},Maximal Constraint Violation→0}

The solution found is only one of the great many local optima, see Figure 1. By contrast, even a small
number (3) of global scope multistart phases − each followed by local search from the best point found
in the given global search phase − leads to the global solution (that is known for this well-studied test
problem).

Optimize[objective,{},{{x,-3,1,3},{y,-3,2,3}},MultiStarts→3]

{-3.30687,{x→-0.0244031,y→0.210612},Maximal Constraint Violation→0}

In fact, the solution directly retrieved from MathOptimizer’s result on the next Mathematica input

line

{-3.306868647475235,{x→-0.024403079694365632,y→0.21061242715536216}

meets the 10-digit precision requirement of the originally posted challenge.

Samples

The option Samples determines the total number of sample points in each multistart iteration. Samples
can be set to any non-negative integer value, at least in principle. It is recommended to set its value as
an increasing function of the model size, considering both the number of variables and constraints.
The next example shows that a moderate amount of multistart based sampling (global scope
search phases followed by corresponding local searches) suffices to handle Trefethen’s
Problem 4:

Optimize[objective,{},{{x,-3,-2,3},{y,-3,-1,3}},

MultiStarts→→→→10, Samples→→→→100]

{-3.30687,{x→-0.0244031,y→0.210612},Maximal Constraint Violation→0}

RandomSeed

The default setting for RandomSeed is 0. Changing the random seed to an arbitrary positive integer
may lead to a numerically different solution, and thus the option can serve as an easy mechanism to
generate a sequence of alternative solutions in difficult multimodal problems.

To illustrate this point, consider the following optimization problem that has two global solutions;
the corresponding optimized decision variables have opposite signs. By using different random seeds
in an automated sequence of four optimization runs, both global solutions can be obtained. The
Table and TableForm commands jointly lead to reporting the results in a tabular form. (Again, the
output is slightly formatted for better readability.)

Table[Optimize[x2-y2,{Cos[x-y]≥0.5},{{x,-5,5},{y,-5,5}},
RandomSeed → i], {i,4}]//TableForm

{-24.9443, {x→0.235988,y→-5.}, Maximal Constraint Violation→0.},
 {-24.9443, {x→0.235988,y→-5.}, Maximal Constraint Violation→0.},
 {-24.9443, {x→-0.235988,y→5.}, Maximal Constraint Violation→0.},
 {-24.9443, {x→-0.235988,y→5.}, Maximal Constraint Violation→0.}

SamplingMethod

The default setting (Random) leads to generating a sequence of pseudo-random global search
points. The alternative low discrepancy generator (QuasiRandom) setting can produce a more uniform
coverage of the box search region (with a greater computational effort), especially when the sample
size is rather limited. Hence, changing the sampling method may lead to numerically different
solutions in difficult multimodal problems. Trefethen’s Problem 4 with a limited search effort is used
for illustration:

objective=Exp[Sin[50*x]]+Sin[60*Exp[y]]+Sin[70*Sin[x]]+

 Sin[Sin[80*y]]-Sin[10*(x+y)]+(x^2+y^2)/4;

Optimize[objective,{},{{x,-3,1,3},{y,-3,2,3}},
MultiStarts→1,Samples→500,SamplingMethod→"Random"]

{-2.78312,{x→-0.0254078,y→-0.339479},Maximal Constraint Violation→0}

Optimize[objective,{},{{x,-3,1,3},{y,-3,2,3}},
MultiStarts→1,Samples→500,SamplingMethod→"QuasiRandom"]

{-3.06263,{x→0.34493,y→0.368019},Maximal Constraint Violation→0}

ListableExpressions

MathOptimizer takes advantage of the fact that many mathematical functions such as x2 or

Sin[x] are listable. Listability means that such functions automatically thread over array arguments.
If the optimization model is defined by listable functions, then one should use the default setting True
for this option: in general this leads to somewhat faster program runs. If the objective function or
constraints include expressions that are not listable (this can be verified within Mathematica), then
ListableExpressions should be set to False.

LocalSearches

Following the global search phase, a local search is performed starting from the best LocalSearches

number of points (those with the lowest merit function values). In general, setting larger values in this
option could improve the solution quality in difficult optimization problems.

ShowGlobalResults

MathOptimizer performs a number of global searches in a multistart framework, and then uses a
local search to improve the result of the best global search. Although theoretically this approach
guarantees global convergence, in numerical practice the best result from the global search phase may
not give the best final result after a local search is performed. ShowGlobalResults enables the user to
see the merit function values returned by all the global searches, in order to decide if local searches
should be performed starting from other global search results. In other words, setting this parameter to
True (default is False) can help to explore alternative solutions based on a range of global search based
initial solution “guesses”.

ShowDetailedGlobalResults

If this options is set to True, then a sorted list of the objective function values and associated

variable values found by the global searches is returned, ordered by their quality. This list also
includes the (additional) results evaluated for the nominal variable values.

This option can be useful, when the model function evaluations are expensive, and we would like
to get some useful information about the best solutions found in a resource-limited run. Another good
reason to use it can be when the local search could run into numerical difficulties, due e.g. to local
non-differentiability of some model functions. In such cases, one can just do a (limited or detailed)
global search and omit the local search option, by setting the options LocalSearches to 0, and
RepeatedLocalSearches to False. (The option RepeatedLocalSearches will be discussed shortly.)

For illustration, we use again Trefethen’s Problem 4:

objective=Exp[Sin[50*x]]+Sin[60*Exp[y]]+Sin[70*Sin[x]]+

Sin[Sin[80*y]]-Sin[10*(x+y)]+(x2+y2)/4;

Optimize[objective,{},{{x,-3,3},{y,-3,3}},

MultiStarts→→→→5,Samples→→→→200,ShowDetailedGlobalResults→→→→True,

LocalSearches→→→→0,RepeatedLocalSearches→→→→False]

{{Detailed Global Search Results→
{
{-2.40972,{0.341628,0.293711}},
{-2.17049,{-1.16677,0.209861}},
{-1.61935,{1.35706,-1.18785}},
{-1.32988,{-0.947472,-0.0914035}},
{-1.30179,{1.07655,-0.249177}},
{0.695189,{0,0}}
}}}

ShowLocalResults

If this option is set to True (used in conjunction with ShowGlobalResults→True), then a sorted
list of the local search results (objective function values only) is returned, in the same order as the
corresponding global results. The best solution found is always fully displayed, however.

ShowDetailedLocalResults

If this option is set to True, then a sorted list of the detailed local search results (objective function
values and variable values) is returned, in the same order as the corresponding global results.

LocalSearchMethod

This option selects the optimization method used in the local search phase. The default method is

Mathematica's built-in FindMinimum function. The alternative choice is AugmentedLagrangian that

invokes an implementation of the augmented Lagrangian optimization method. It may be advisable to
try both local searches in solving difficult models.

Optimize[x+y+z,{x2+y2+z2==1,x(y+1)==1/2},{{x,-2,2},{y,-2,2},

{z,-2,2}}, LocalSearchMethod→→→→"FindMinimum"]

{-1.75583,{x→-0.515919,y→-1.2202,z→-0.019716},

Maximal Constraint Violation→0.755445}

Optimize[x+y+z,{x2+y2+z2==1,x(y+1)==1/2},{{x,-2,2},{y,-2,2},

{z,-2,2}}, LocalSearchMethod→→→→" AugmentedLagrangian"]

{-0.372761,{x→0.532935,y→-0.0618001,z→-0.843896},

MaximalConstraintViolation→4.25963×10-8}

BoundedLocalSearch

The global search phase (by its algorithm design) always satisfies the explicitly given variable

bounds. However, the local search could leave the feasible region – by violating the preset variable
bounds – if BoundedLocalSearch is set to False. Applying this option may lead to better results, if the
bounds were perhaps misspecified. The next example illustrates this possibility.

Optimize[(x-6)2+(y-2)2,{},{{x,-5,5},{y,-5,5}}]

{1.,{x→5.,y→2.},Maximal Constraint Violation→0}

Optimize[(x-6)2+(y-2)2,{},{{x,-5,5},{y,-5,5}},

BoundedLocalSearch→→→→False]

{0.,{x→6.,y→2.},Maximal Constraint Violation→0}

RepeatedLocalSearches

The default setting is True, which means that local search is performed at several times during the

global search phase. This setting typically results in faster optimization and better overall results, but
may not do so for all problems. As always, it could make sense to test both option settings in solving
difficult models.

5. Optimization Models with (Arbitrary) Continuous Mathematica Functions

MathOptimizer can handle a very broad range of user-defined model functions, including
many of Mathematica's built-in functions and their various (programmed) extensions. In
principle, one could use “all” continuous Mathematica functions − if suitable − as model
components. We will illustrate this key point by relatively simple examples in the next two
subsections.

A small, but important technical consideration is to define the model functions so that they
are only evaluated numerically, and for general safety (if in doubt, then) to set the option
ListableExpressions to False.

5.1. Example 1: Optimizing a Parametric Integral Expression

In the first example we wish to find the parameter 0§a§3 in the parametric integral

 2

0
cos()sin()ax ax dx

π

∫ (5.1)

so that the corresponding integral is minimal. This problem can be directly handled by the next two
Mathematica and MathOptimizer commands: the first one defines the objective function, and second
one solves the resulting optimization problem.

f[a_?NumberQ]:= NIntegrate[Cos[a*x^2]*Sin[a*x],{x,0,Pi}]

Optimize[f[a],{},{{a,0,3}},ListableExpressions→→→→False,

MultiStarts→→→→1]
{-0.293604,{a→0.465361},Maximal Constraint Violation→0}}

Due to the embedded numerical evaluation of the integral − for algorithmically selected values of

the parameter a − the runtime is about two minutes. MathOptimizer has found the correct solution as
confirmed by Figure 2 below.

Plot[f[a],{a,0,3}]

0.5 1.0 1.5 2.0 2.5 3.0

-0.2

0.2

0.4

Figure 2. The objective function in the optimization problem induced by (5.1).

Let us note that the built-in function NMinimize finds the suboptimal solution a ~ 1.42484 with

the corresponding local optimum value f[a] ~ 0.00601389: see Figure 2. Again, this example can serve
as a motivation to use several alternative high-quality solver tools to handle difficult nonlinear
optimization models − whenever this is possible.

5.2. Example 2: Minimizing Composite Bessel Functions

The Bessel function BesselJ[n,z] satisfies the parametric differential equation

z2 y’’+z y’+(z2-n2) y=0

Due to their oscillating behaviour, Bessel functions can be used also in global optimization

tests. For example, consider the optimization problem formulated, solved, and visualized below.

objective = BesselJ[3,x]+BesselJ[4,x];

Optimize[objective,{},{{x,-50,100}},MultiStarts→→→→1]

{-0.473448,{x→8.62573},Maximal Constraint Violation→0}

This is the correct numerical solution, see Figure 3:

Plot[objective,{x,-50,100}, PlotRange→→→→All]

-40 -20 20 40 60 80 100

-0.4

-0.2

0.2

0.4

0.6

0.8

Figure 3. The objective function BesselJ[3,x]+BesselJ[4,x], -50≤x≤100.

It is easy to extend this example to higher dimensions, and thereby to create further test models

with a known solution. Next, we solve and visualize a direct two-dimensional model extension:

objective2=BesselJ[3,x]+BesselJ[4,x]+BesselJ[3,y]+BesselJ[4,y];

Optimize[objective2,{},{{x,-50,100},{y,-50,100}},MultiStarts→→→→1]

{-0.946897,{x→8.62573,y→8.62573},Maximal Constraint Violation→0}

Plot3D[objective2,{x,-50,100},{y,-50,100},PlotPoints→→→→100,

PlotRange→→→→All]

Figure 4. The objective function BesselJ[3,x]+BesselJ[4,x]+BesselJ[3,y]+BesselJ[4,y],
-50≤x≤100, -50≤y≤100.

Based on the result of the one-dimensional model version, we can directly conclude that

MathOptimizer has found the correct (numerical global) solution: Figure 4 shows the many local
optima in this test problem.

6. Optimization of Non-uniform Circle Packings

Optimized object packings (configurations or arrangements) are important in various engineering
and scientific fields such as numerical integration, potential energy models, experimental design, and
others. Next, we will illustrate MathOptimizer performance by solving circle packing problems.
Specifically, we consider the following general problem-type: given an arbitrary collection of circles,

find the smallest circumscribing circle that includes all circles in a “tight” non-overlapping
arrangement. This and similar packing problems have been studied recently by a number of
researchers (including the authors). In general, the global solution in such problems is often unknown:
hence only putative optima are published, except for special cases and/or for very small model
instances.

In our illustrative numerical study, we have taken circles with radii ri=1/i1/2, for i=1,…,imax; here
imax determines the problem size. We will omit the discussion of the related Mathematica code
development [6,7], and only summarize here some of our illustrative results obtained by using
MathOptimizer, for 5,10,15, and 20 circles. Let us remark that for imax=20 the corresponding
optimization model includes 190 non-convex constraints (that express the pairwise “no overlap”
relation): thus it is far from trivial. We also emphasize that in our numerical experiments we do not
exploit any insight into the possible structure of such packings: MathOptimizer is used as a “blind”
(completely automatic) solver tool. The results are summarized in Table 1.

Number of circles Optimum value found Runtime in seconds
5 1.75155 4.212
10 1.94642 21.466
15 2.04702 54.694
20 2.13901 206.889

 Table 1. Non-uniform circle packings: illustrative results.

For illustration, the 20-circle configuration found by MathOptimizer is shown below.

Figure 5. The 20-circle configuration found by MathOptimizer.

Although the runtimes are increasing (as it can be expected), numerical performance seems to
scale reasonably well as the model size increases − at least for the problem-instances considered.

For comparison, we also ran NMinimize on these problems. In our tests, both packages found
the same numerical solution for 5 circles, while in the larger test model instances considered
MathOptimizer surpassed the quality of the solution (circumscribed circle radius) found by
NMinimize by up to 2 percent.

7. Conclusions

The MathOptimizer package serves to solve nonlinear optimization models formulated using

Mathematica. Mathematica‘s advanced model development capabilities in combination with
MathOptimizer offer a powerful platform for nonlinear systems modeling and optimization. Our
article illustrates some of the advantages of using a single software platform platform for application
development; many further examples are discussed e.g. in [6,7,13].

Let us mention finally that MathOptimizer has been used by industry, research organizations and in
academia to solve optimization problems since 2002. We expect that the new − more efficient and
flexible − package version described here will also assist many researchers in their work.

Acknowledgements

The initial MathOptimizer development work (by JDP) benefited from advice, books and software,
and a visiting scholar grant provided by Wolfram Research. The first MathOptimizer software
development project was also supported by the National Research Council of Canada, and by a
subsequent research contract from DRDC, Dartmouth, NS, Canada. The valuable advice and
suggestions received from Dr. Christopher Purcell (DRDC) throughout this early development work
are also gratefully acknowledged.

References

[1] Bertsekas, D.P. (1999) Nonlinear Programming. (2nd Edition) Athena Scientific, Cambridge, MA.
[2] Boyd, S. and Vandenberghe, L. (2004) Convex Optimization. Cambridge University Press, New York.
[3] Gaylord, R.J., Kamin, S.N. and Wellin, P.R. (1996) An Introduction to Programming with Mathematica.

(2nd Edition) Springer-Verlag, New York / Berlin / Heidelberg.
[4] Hillier, F.S. and Lieberman, G.J. (2005) Introduction to Operations Research. (8th edn.) McGraw-Hill, New

York.
[5] Horst, R. and Pardalos, P.M., Eds. (1995) Handbook of Global Optimization, Vol. 1. Kluwer Academic

Publishers, Dordrecht.
[6] Kampas, F.J. and Pintér, J.D. (2006) Configuration analysis and design by using optimization tools in

Mathematica. The Mathematica Journal 10 (1), 128-154.
[7] Kampas, F.J. and Pintér, J.D. (2009) MathOptimizer − An advanced nonlinear optimization program system

for Mathematica users. User Guide. (Current edition) Published and distributed by PCS, Inc.
[8] Maeder, R.E. (1997) Programming in Mathematica. (3rd Edition) Addison-Wesley, Reading, MA.
[9] Pardalos, P.M. and Romeijn, H.E., Eds. (2002) Handbook of Global Optimization, Vol. 2. Kluwer Academic

Publishers, Dordrecht.
[10] Pintér, J.D. (1996) Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms,

Implementations and Applications). Kluwer Academic Publishers, Dordrecht.
[11] Pintér, J.D. (2002) Global Optimization: Software, Tests and Applications. Chapter 15 (pp. 515-569) in:

Pardalos and Romeijn, Eds., Handbook of Global Optimization, Vol. 2. Kluwer Academic Publishers,
Dordrecht.

[12] Pintér, J.D., Ed. (2006) Global Optimization: Scientific and Engineering Case Studies. Springer Science +
Business Media, New York.

[13] Pintér, J.D. and Kampas, F.J. (2005) Nonlinear optimization in Mathematica with MathOptimizer

Professional. Mathematica in Education and Research 10 (2), 1-18.
[14] Trott, M. (2004, 2006) The Mathematica GuideBooks, Volumes 1-4: Programming, Graphics, Numerics,

Symbolics. Springer Science + Business Media, New York.
[15] Wagner, D.B. (1996) Power Programming with Mathematica − The Kernel. McGraw-Hill, New York.
[16] Weisstein, Eric W. (2009) "Hundred-Dollar, Hundred-Digit Challenge Problems." From MathWorld − A

Wolfram Web Resource, http://mathworld.wolfram.com/Hundred-DollarHundred-DigitChallengeProblems.
html.

[17] Wolfram, S. (2005) The Mathematica Book. (5th Edition) Wolfram Media, Champaign, IL, and Cambridge
University Press, Cambridge, UK.

