Areas of Triangles

We now will use the right-triangle trig formulas to find the areas of right triangles, equilateral triangles, and isosceles triangles. We then will use the isosceles triangles to find the area of regular n-sided polygons. Finally, we will use Heron's Formula to find the areas of other scalene triangles.

Right-Triangle Formulas

$$x^{2} + y^{2} = z^{2} \qquad z = \sqrt{x^{2} + y^{2}} \qquad x = \sqrt{z^{2} - y^{2}} \qquad y = \sqrt{z^{2} - x^{2}}$$

$$\cos \theta = \frac{\text{Adj}}{\text{Hyp}} = \frac{x}{z} \qquad \sin \theta = \frac{\text{Opp}}{\text{Hyp}} = \frac{y}{z} \qquad \tan \theta = \frac{\text{Opp}}{\text{Adj}} = \frac{y}{x}$$

$$x = z \cos \theta \quad \text{and} \quad y = z \sin \theta$$

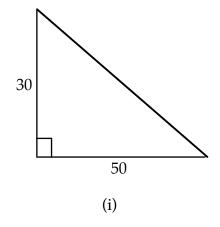
Right-Triangle Area

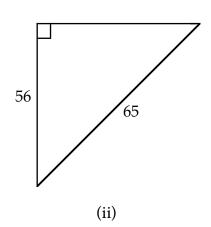
Given a right triangle, we can find the area using

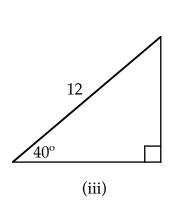
Rt. Triangle Area =
$$\frac{1}{2} \times base \times height$$

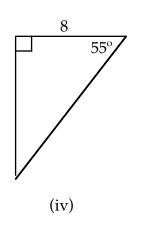
The base and height are the adjacent and opposite sides of the two acute angles, so we also can say Area = $\frac{1}{2} \times opp \times adj$ or Area = $\frac{1}{2} x y$.

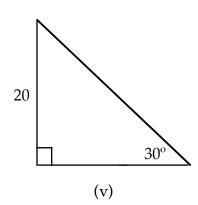
Example 1. Find the areas of the following right triangles:











Solutions. (i) We have the base and height, so the area is $\frac{1}{2}(30)(50) = 750$ sq. units.

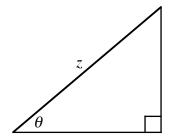
(ii) The last side is $x = \sqrt{65^2 - 56^2} = 33$, and the area is $\frac{1}{2}(33)(56) = 924$ sq. units.

(iii) The two lateral sides are given by $x = 12\cos 40^{\circ}$ and $y = 12\sin 40^{\circ}$. So the area is given by

Area =
$$\frac{1}{2} \times 12\cos 40^{\circ} \times 12\sin 40^{\circ} = \frac{12^{2}\cos 40^{\circ}\sin 40^{\circ}}{2} \approx 35.453 \text{ sq. units.}$$

(iv) To find the height y, we use $\tan(55^\circ) = \frac{y}{8}$ and $y = 8\tan(55^\circ)$. So the area is given by $\frac{1}{2} \times 8 \times 8\tan(55^\circ) \approx 45.7$ sq. units.

(v) To find the base x, we use $\tan(30^\circ) = \frac{20}{x}$ and $x = \frac{20}{\tan(30^\circ)}$. So the area is given by $\frac{1}{2} \times 20 \times \frac{20}{\tan(30^\circ)} \approx 346.41$ sq. units.



Another general form of right-triangle area can be given when we have the hypotenuse z and one angle θ . First, recall that $\sin(2\theta) = 2\sin\theta\cos\theta$ so that $\sin\theta\cos\theta = \frac{1}{2}\sin(2\theta)$. Because $x = z\cos\theta$ and $y = z\sin\theta$, we obtain Area $= \frac{1}{2}xy = \frac{1}{2}x\cos\theta \times z\sin\theta = \frac{z^2}{2}\cos\theta\sin\theta = \frac{z^2}{2}\left(\frac{1}{2}\sin(2\theta)\right) = \frac{z^2}{4}\sin(2\theta)$. The forms to use are

Rt. Triangle Area =
$$\frac{z^2}{2}\cos\theta\sin\theta$$
 or Rt. Triangle Area = $\frac{z^2}{4}\sin(2\theta)$

In Example (iii) above, we have Area = $\frac{12^2}{4}\sin(2 \times 40^\circ) \approx 35.453$ sq. units.

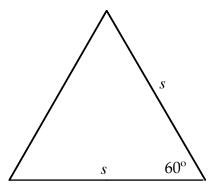
Examples (iv) and (v) also demonstrate other formulas that can be used. If we have an angle θ in a right triangle with x being adjacent and y being opposite, then

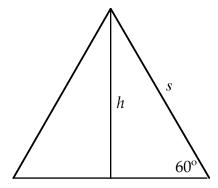
Rt. Triangle Area =
$$\frac{x^2}{2} \tan \theta$$
 and Rt. Triangle Area = $\frac{y^2}{2 \tan \theta}$

In most cases though, it is easiest to use Area = $\frac{1}{2} \times base \times height$, and simply find the base and height using right-triangle trig.

Equilateral Triangle Area

Given an equilateral triangle with three sides of length s and three 60° angles, we can still find the area using $\frac{1}{2} \times base \times height$. We note that $\sin 60^\circ = \frac{h}{s}$ which gives $h = s \times \sin 60^\circ = \frac{\sqrt{3}}{2} \times s$.





The base of the entire triangle is s and the height is $\frac{\sqrt{3}}{2}s$, so the area of an equilateral triangle is $(1/2) \times s \times \frac{\sqrt{3}}{2}s = \frac{\sqrt{3}s^2}{4}$.

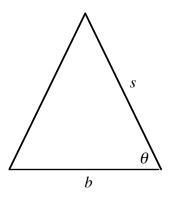
Equilateral Triangle Area =
$$\frac{\sqrt{3} s^2}{4}$$

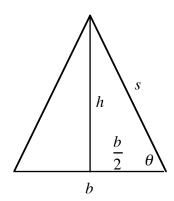
Example 2. Find the area of an equilateral triangle with sides of length 20 inches.

Solution. The area is $\frac{\sqrt{3} \times 20^2}{4} \approx 173.2$ square inches.

Isosceles Triangle Area

Given an isosceles triangle, we can find the area using $\frac{1}{2} \times base \times height$ provided we know the base angle θ and either the base length b or vertical side s. Generally, we are given only one of b or s.





If we have s, then $\frac{b}{2} = s \times \cos \theta$ and $h = s \times \sin \theta$, which gives

Isosceles Triangle Area =
$$\frac{b}{2} \times h = s^2 \cos \theta \sin \theta$$

If we have b, then $\tan \theta = h / (b / 2)$ which gives $h = \frac{b}{2} \tan \theta$. The area is then

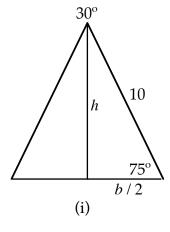
Isosceles Triangle Area =
$$\frac{b}{2} \times h = \frac{b^2}{4} \tan \theta$$

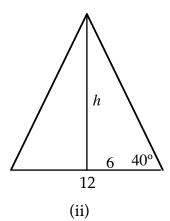
Example 3. Find the areas of the following isosceles triangles:

- (i) Vertical sides of length 10 inches and a vertical angle of 30°
- (ii) A base of 12 feet and base angles of 40°

Solution. (i) If the vertical angle is 30°, then each base angle is $\theta = \frac{180 - 30}{2} = 75^{\circ}$. So the height is $h = 10 \times \sin 75^{\circ}$ and half the base is $b/2 = 10 \times \cos 75^{\circ}$. So the area is

$$\frac{b}{2} \times h = 10^2 \cos 75^\circ \sin 75^\circ = 25 \text{ in}^2.$$



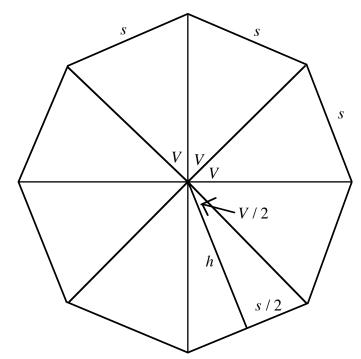


(ii) With b = 12 and $\theta = 40^{\circ}$, then $h / 6 = \tan 40^{\circ}$ or $h = 6 \tan 40^{\circ}$. So the area is $\frac{b}{2} \times h = 6 \times 6 \tan 40^{\circ} \left(= \frac{12^2}{4} \tan 40^{\circ} \right) = 30.2 \text{ ft}^2$.

Regular *n*-Sided Polygons

A regular n-sided polygon makes n congruent isosceles triangles where the base of a triangle equals one side s of the polygon. If there are n sides, then the vertical angle of each interior triangle is $V = \frac{360^{\circ}}{n}$.

In order to find the area of the polygon, we first must find the area of each interior isosceles triangle. But now we will do so in terms of the *vertical* angle V. We note that $\tan\left(\frac{V}{2}\right) = \frac{s/2}{h}$, so that $h = \frac{s/2}{\tan\left(\frac{V}{2}\right)}$.



The area of one interior isosceles triangle is then $\frac{s}{2} \times h = \frac{s^2}{4\tan\left(\frac{V}{2}\right)}$. Using $V = \frac{360^{\circ}}{n}$

and $\frac{V}{2} = \frac{180^{\circ}}{n}$, we obtain the area of a regular *n*-sided polygon:

Regular *n*-gon area =
$$\frac{n s^2}{4 \tan\left(\frac{180^\circ}{n}\right)}$$

Example 4. Find the area of a regular octagon (n = 8) with sides of length 10 inches.

Solution. Each vertical angle is $V = 360^{\circ}/8 = 45^{\circ}$. Bisecting an interior triangle, we have $\tan(22.5^{\circ}) = \frac{5}{h}$; so $h = \frac{5}{\tan(22.5^{\circ})}$. The overall area is then $8\left(\frac{1}{2} \times base \times ht\right) = 8\left(\frac{1}{2} \times 10 \times \frac{5}{\tan(22.5^{\circ})}\right)$, or $\frac{8 \times 10^{2}}{4\tan\left(\frac{180^{\circ}}{8}\right)}$, which gives about **482.8427 square inches**.

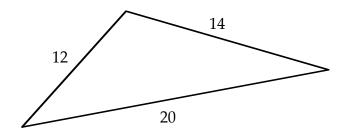
Scalene Triangles and Heron's Formula

Suppose a triangle has sides of length a, b, and c. Then Heron's Formula gives the area as

Area =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

where $s = \frac{1}{2}(a+b+c)$

Example 5. Find the area of the following triangle:



Solution. Let $s = \frac{1}{2}(12 + 14 + 20) = 23$. Then the area is

$$\sqrt{23(23-20)(23-14)(23-12)} = \sqrt{23\times3\times9\times11} = \sqrt{6831} \approx 82.65 \text{ sq. units.}$$