End-User Robot Programming Using Mixed Reality

Samir Yitzhak Gadre!, Eric Rosen!, Gary Chien!, Elizabeth Phillipsm, Stefanie Tellex!, George Konidaris!

Abstract— Mixed Reality (MR) is a promising interface for
robot programming because it can project an immersive 3D
visualization of a robot’s intended movement onto the real
world. MR can also support hand gestures, which provide an
intuitive way for users to construct and modify robot motions.
We present a Mixed Reality Head-Mounted Display (MR-
HMD) interface that enables end-users to easily create and
edit robot motions using waypoints. We describe a user study
where 20 participants were asked to program a robot arm
using 2D and MR interfaces to perform two pick-and-place
tasks. In the primitive task, participants created typical pick-
and-place programs. In the adapted task, participants adapted
their primitive programs to address a more complex pick-
and-place scenario, which included obstacles and conditional
reasoning. Compared to the 2D interface, a higher number of
users were able to complete both tasks in significantly less time,
and reported experiencing lower cognitive workload, higher
usability, and higher naturalness with the MR-HMD interface.

I. INTRODUCTION

For robots to become widely used, humans must be able
to program their actions. For example, consider the task of
binning items. A roboticist might accomplish this task by
specifying a series of waypoints in computer code for the
robot to visit one by one. If the action must be modified, the
roboticist would explicitly modify the waypoints specified
in the code. This method is widely popular, but will not
work for end-users. The abstraction of breaking down actions
into a series of waypoints could be communicated, but
requiring the use of programming languages to specify those
waypoints is beyond their scope. Therefore, we need an
alternate method of interfacing with the waypoint action
system.

Visual programming is one such methodology. A broad
term, visual programming refers to a class of interfaces
where one interacts with a visual representation of ob-
jects, variables, classes, etc. [1]. Visual programming has
been a popular tool for programming computers by non-
programmers in visual art [2], audio production [3], and
education [4] because it allows users to focus on algorithmic
thinking, rather than the syntax needed to express their intent.

In the world of robotics, RViz and the Interactive Markers
package [5] allow for the creation of visual programming in-
terfaces that control and visualize a robot. Robot researchers
have also investigated how effective visual programming
is by creating and evaluating their own frameworks [6].
Using our binning task from before, it would be possible
to create and modify waypoints visually in a keyboard and
mouse interface. However, users would not see the waypoints
overlayed on the real robot environment.

IComputer Science, Brown University
2Behavioral Sciences and Leadership, United States Air Force Academy

(a) A screenshot from the MR
perspective of a user program-
ming a robot motion. Users can
specify green waypoints.

(b) After creating the waypoints,
users can visualize the robot arm
motion that is planned through
the waypoints.

Fig. 1: Our mixed reality interface.

We propose an end-user mixed reality-based visual pro-
gramming framework for creating and modifying waypoints
to create complex, multistep robot actions (Fig. 1). Users
can specify and group waypoints together to create primitive
motions, and adapt these waypoints to perform similar tasks.
Our interface allows users to visualize the entire motion the
robot plans to perform through the waypoints and have the
robot execute it. We use a commercially available Mixed
Reality Head-Mounted Display (MR-HMD), the Microsoft
HoloLens [7].

The MR-HMD at first seems to pose only advantages over
other visual programming interfaces by combining the robot
workspace and the GUI space for the end-user. However,
there are limitations to the technology that do not make
it obviously preferable to a 2D interface. For example, the
HoloLens has a limited field of view, so it relies on the
user to move around to get a full view of the MR scene.
Furthermore, imperfect hand tracking via computer vision
makes selection and dragging gestures less reliable than
mouse clicks, especially for novice HoloLens users.

We therefore conducted a user study with 20 participants
and compared the effectiveness of our MR interface to
a 2D visual programming interface for two similar pick-
and-place tasks. In the first task, participants programmed
primitive robot motions to pick up a block and place it on
a platform. In the second task, participants adapted their
primitive robot programs to sequentially pick-and-place two
cubes on different platforms. Our results show that compared
to the 2D interface, a higher number of users were able to
complete both tasks in significantly less time. Users reported
experiencing lower cognitive workload, higher usability and
naturalness with the MR-HMD interface.

II. RELATED WORK

The traditional way to program a robot is to write code.
ROS [8] is an extremely powerful middleware environment
for roboticists. ROS includes packages to allow programmers
to use languages like C++ and Python to interface with robot
hardware. However, leveraging the expertise of end-users
that lack software engineering skills would help make robots
more widely accessible.

ROS also includes many graphical user interfaces (GUIs),
such as RViz [5], for visualization. RViz can display robot
sensor data on a 2D screen and can be connected to
Movelt! [9] motion planners to enable users to program
robot movement via keyboard and mouse. 2D interfaces have
been shown to be useful for robot programming, but have
their own shortcomings with regards to immersiveness and
intuitiveness. They force users to interpret 3D information on
a 2D platform and use control interfaces that do not match
how users interact with the world.

Alexandrova et al. [6] created a 2D visual programming
language, RoboFlow, to enable end-users to easily program
mobile manipulators to perform general tasks in open-
environments. Action editing was important to resolve errors
[6].

Alexandrova et al. [10] developed a framework that en-
ables users to provide a demonstration of a task and then
use an intuitive monitor and mouse interface to edit demon-
strations for adaption to new tasks. Elliott et al. [11] extended
this work to allow for the grouping of several poses relative
to landmarks or objects in the scene. Having an intuitive
interface for non-experts to edit example motions for robots
is especially important in Learning from Demonstration
(LfD), where collecting many examples needed for learning
is not always feasible. In such cases, a more preferable
method may be to have the human perform one general
demonstration of the task, and then adapt parts of their
programmed action to new environments. Both Alexandrova
et al. [10] and Elliott et al. [11] used a 2D monitor interface
to adapt robot programs.

Language is a well-studied modality for programming
robots because it is one of the main ways humans commu-
nicate with each other. Language has been shown to be an
efficient way to parameterize a task through descriptions of
key items and locations in the environment [12]. Forbes et
al. [13] developed a natural language interface to allow users
to program robot motions via LfD. However, using language
to program robots has its limitations. For example, Forbes et
al. [13] studied basic object manipulation tasks that required
robot action classes that could easily be identified through
natural language. However, tasks that rely on actions that are
harder to describe can make language a noisy and difficult
interface to robots.

Recent techniques experiment with virtual reality (VR)
teleoperation interfaces. Whitney et al. [14] compared a VR
interface against a 2D monitor interface for teleoperating a
robot to perform a cup-stacking task. Whitney et al. [14]
found that users had a significantly easier time using the

VR headset, because they could navigate and interact with
the scene by moving their head and hands naturally. This
contrasts with keyboard and mouse actions that a typical
2D interface provides. Like the VR headset, the MR-HMD
allows users to navigate and interact with the perceived
environment using natural actions. However, an additional
benefit of the MR-HMD is that it allows the user to also see
the real world.

Rosen et al. [15] created an open-source ROS package,
ROS Reality, which enables robots to convey intent. The
package allows the robot to display its intended path as a
holographic time-lapse trail to a user wearing a MR-HMD.
Rosen et al. [15] conducted a user study to compare the
speed and task completion rate of novice participants using
a HoloLens and a 2D monitor interface to determine if a
proposed robot trajectory would collide with the environ-
ment. They found that the MR-HMD increased accuracy
and lowered task completion time. While Rosen et al. [15]
showed the promise of using a MR-HMD for visualizing
robot motion to non-experts, they did not address how
effective MR-HMD is for programming these motions. The
HoloLens’s limited hand-gesture tracking capabilities pose
the possible issue that MR-HMD may not be an effective
interface for creating these robot actions.

Walker et al. [16] investigated different MR signalling
mechanisms for a drone to communicate with a human.
They found quantitative task efficiency was significantly
higher when using MR signals than when using physically-
embodied signals.

Fang et al. [17] created an MR interface to program and
visualize robot trajectories. However, they do so using a 2D
interface. Ni et al. [18] evaluated the effectiveness of an
augmented reality interface against traditional robot welding
programming methodologies. Virtual representations of the
robot trajectory were visualized over a video feed of the real
robot, enabling novice users to use the augmented reality
interface to program new welding paths for the robot to act
out. Ni et al. [18] found that the augmented reality interface
allowed users to program robot actions more quickly and
intuitively, especially for users without prior computer-aided
design knowledge. However, the 2D interfaces of both Fang
et al. [17] and Ni et al. [18] force users to look at a screen
and not strictly at the robot workspace, which poses safety
issues when collaborating with a robot in close-quarters.
On the other hand, MR-HMDs allow users to both provide
visualizations over the workspace and safely interact with
the 3D GUI components using hand gestures.

III. APPROACH

We designed an MR-based interface that allows users to
specify waypoints in 3D trajectories. We wanted to test if
the notion of adaptation [10], [11] was made more powerful
when end-users could edit robot motion in the real world.
We therefore created a baseline 2D GUI and a MR-HMD
3D GUI Our contribution is evaluating the effectiveness of
using a MR-HMD interface for programming and editing
robot motion.

The following subsections address important features of
our approach. We discuss waypoints, groups, visualization,
and execution. At the lowest level, users program the robot
by creating waypoints through which the robot must move.
These waypoints can be collected into groups, which can be
visualized in MR and executed in real life.

The waypoint (Fig. la) is the fundamental unit of pro-
gramming in a robot motion. A user adds a waypoint to
the tail of a sequence of end-effector poses (3D positions
and quaternions) that the robot arm must move through. A
waypoint is represented as a hologram of the end-effector,
which can be open or closed. For example, if an arbitrary
waypoint has state closed, then a command is sent to the
gripper to close after it has converged on the waypoint pose.
waypoints can be adjusted and deleted by the user.

A group (Fig. la) comprises a sequence of waypoints
that together form an action. Hence, every waypoint is
associated with a group. Groups are split into primitive and
adapted groups. Primitive groups are taken to be fundamental
building-blocks such as a generic pick-and-place action.
After the primitive motions are created, they can be altered—
by moving, adding, and deleting individual waypoints—to
solve related or more complex tasks. These altered primitives
are adapted groups.

Given a group, or a sequence of groups, it is possible to
visualize the path that the robot arm will take from waypoint
to waypoint (Fig. 1b). Visualization allows the robot to
convey how it will move through the specified waypoints
in the form of a holographic time-lapse trail. Visualization
is key in the editing process as it allows the user to further
change an adapted group if they are not satisfied with the
trajectory.

Once a user is satisfied with the adapted groups, they can
execute it to make the robot arm move in the real world as
per the visualization. We use Movelt! to plan from waypoint
to waypoint.

IV. SYSTEM

Implementation was split into front-end Unity code for the
HoloLens MR-HMD and back-end ROS code for Movelt!
and the Baxter. The 2D monitor baseline used the same back-
end as the 3D interface. The front-ends were identical, except
that the 2D monitor interface displayed graphics on a screen
instead of holograms. Additionally, the 2D monitor interface
had a rendering of a point cloud of the workspace (Fig. 3a).

Unity code supported both GUIs. This code made requests
to the back-end as waypoints were altered, updated the robot
arm movement trails upon receiving motion plans from the
back-end, and sent execution requests to the back-end. We
used ROS Reality [19] to visualize the robot model and 3D
sensor data for the monitor interface.

The hologram of the Baxter was created by parsing and
rendering a Unified Robot Description Format (URDF). The
rendering of Baxter was overlaid on the real robot in a
calibration step.

There were two slotted columns attached to the hologram
of the robot in the form of a manager menu (Fig. 3b). The

(a) The primitive task. The user had to program the robot to
1) pick up the cube, then bring it over the wall and 2) place
it on the platform.

2) Place 4) Place

1) Pick

N

(b) The adapted task. The user had to program the robot to 1)
pick up the cube from a new location, 2) place it on the same
platform, 3) pick up a second cube, and 4) place on a second
platform, all while avoiding walls.

Fig. 2: The primitive and adapted tasks used in our experi-
ments.

right column contained primitive groups and the left column
contained adapted groups. A user started by creating a
primitive. They could add waypoints or start a new primitive
group by clicking the “Add Gripper” and ‘“New Group”
buttons, respectively. After creating primitives, the user could
drag groups to the left column where they became adapted
groups.

The user could add and delete waypoints to alter the
primitive so that it was well suited for an adapted task.
The left column also acted as a run queue that executed the
group actions from top to bottom. By clicking the “Visualize”
button, a user was shown a movement trail that the order
of the adapted groups implied. By clicking the “Execute”
button, the user made the robot execute the desired motion.

The front-end used a websocket client, ROS# [20] to send
messages to the back-end. The client connected to ROS
bridge [21], which linked the front-end to the Baxter ROS
network. The client code marshaled data and sent it to the
bridge. The bridge published these messages to the desired
ROS topics. If the location, state, or existence of a waypoint
was changed, a message was sent to update the back-end’s
knowledge of the waypoint. The front-end also sent two
other types of messages, one to visualize a motion and one
to execute a trajectory. Both of these requests hit Movelt!
code. We used Movelt! to create a Cartesian plan through
the waypoints of the various groups. These plans were sent
to the front-end via the Bridge Server. If the end-user wanted
to visualize the path, then the motion plan was displayed as
a movement trail on the front-end. If the end-user wished to
execute the motion plan, Movelt! communicated with Baxter
to actuate its joints.

Execute List Primitive List

Group0

ﬁmg‘ =3 [mwﬂé Groper)

(b) A picture of the man-

(a) Motion through waypoints

visualized in our 2D interface. ager menu included in both

The manager menu is not visi- the 2D monitor and MR inter-

ble. face. Users can add waypoints,
create primitive and adapted
groups, and visualize and ex-
ecute motions.

Fig. 3: (a) Our 2D visual programming interface and (b)
manager menu for 2D and MR.

V. EXPERIMENT

The aim of our evaluation was to test the hypothesis that
the MR interface would be faster and easier to use than the
2D baseline interface. We conducted a user study asking
non-experts to program a 7 degree of freedom (7-dof) robot
arm to perform a primitive and adapted pick-and-place task
using our MR and 2D interfaces. Twenty users—15 male
and 5 female—participated in the study. We measured user
task completion times, system usability, subjective cognitive
workload, and perceived naturalness for both interfaces.

A. Task

Participants completed a primitive and adapted task (Fig.
2). In the primitive task (Fig. 2a), users were instructed to
program the robot to pick up a cube, bring it over a wall,
and place it on a platform. In the adapted task (Fig. 2b), the
participant was asked to program the robot arm to pick up
the first block from a new location, move it over the wall,
and place it on the same platform. As part of the adapted
task, the participant also had to pick up a second block, take
it over a wall twice the height of the first, and place it on a
second platform.

B. Interfaces

We compared two interfaces:

« Monitor Interface: Participants used a monitor, keyboard,
and mouse to program and edit robot motions (Fig. 3).
Using this interface, a user navigated the virtual scene
and oriented the camera view in 3D spacing using a
combination of right-mouse clicks, drags, and keyboard
button presses. To interact with the waypoint programming
interface, users were able to use the left-mouse button.
This 2D monitor interface framework is similar to that of
Alexandrova et al. [10] and Elliott et al. [11].

« Mixed Reality Interface: Participants used a HoloLens
to program and edit robot motions. Users could translate
and rotate their perspective by simply moving their head
as they normally would. To interact with the programming
interfaces, users perform tapping and dragging hand ges-
tures on the GUI components shown in Fig. 1.

C. Study Design

The study used a within-subjects design where all par-
ticipants performed both experimental programming tasks
using both interfaces. Participants were randomly assigned
to the order in which they used each interface to complete
the programming tasks. Furthermore, experimenters coun-
terbalanced the order of the two interfaces across study
participants. For each interface, participants performed first
the primitive task, then the adapted task.

D. Experimental Procedure

Participants began the study by reviewing the informed
consent information. After they agreed to participate, the
experimenters explained the two tasks that the users were to
program. In addition, the experimenters explained the various
components of the programming interfaces as described in
Section III. After the users understood the task and how
the programming interfaces worked, they were randomly
selected to first complete tasks on either the 2D monitor
or MR interface. For each interface, users were taught the
controls before completing the primitive task. Then, they
moved on to the adapted task. In the adapted task, users
could access the successful motions they had programmed
in the primitive task and edit them to achieve the new goal.
Before each task, experimenters gave a 3-2-1 countdown, at
which point users were timed for programming the necessary
motions up to the point of having the robot execute the
final motion. For both the primitive and adapted task, users
were given up to five attempts, where an attempt would be
considered a failure if a) the robot failed to sequentially place
the cubes on the correct platforms or b) if the robot arm ran
into a wall while executing a motion. The time of their first
success was recorded. After completing both the primitive
and adapted tasks, users filled out all usability, workload,
and naturalness surveys for that interface, and then moved
on to the other interface condition.

E. Dependent Measures

Our objective dependent variables were the task success
rate and the task completion times for both the primitive and
adapted tasks.

If users were unable to create a successful robot motion
to complete the primitive task in up to 5 tries in a given
interface, then that user did not attempt the adapted task
in that interface. Thus, we report task success rate in the
primitive task for each interface as the number of users
who were able to have at least one successfully programmed
robot motion divided by the total number of participants.
Furthermore, we report task completion rate in the adapted
task for each interface as the number of users who were

able to successfully program the robot motion divided by
the number of people who had successfully programmed a
robot motion in the primitive task. The subjective dependent
measures included the NASA Task Load Index (NASA-TLX)
[22], the System Usability Scale (SUS) [23], and a survey
intended to measure user perceptions of the naturalness and
usefulness of each interface.

NASA-TLX: the NASA-TLX is a subjective measure of
perceived cognitive workload. Participants provide ratings
of their perceived workload while completing a task on
six sub-scales: mental demand, physical demand, temporal
demand, effort, frustration, and performance. Five of the
sub-scales are rated from O (very low demand) to 100 (very
high demand) and the performance sub-scale is rated from 0
(perfect performance) to 100 (failure). For this experiment,
the weighted measure of paired comparisons among the
sub-scales was not included. See Moroney et al. [24] for
a discussion. The subjective cognitive workload score was
calculated by taking the average of the six sub-scale scores.

SUS: the System Usability Scale assesses overall system
usability by asking participants to rate ten statements on
a 7-point Likert-type scale from “Strongly Disagree” to
“Strongly Agree”. The statements cover aspects like system
complexity, consistency, and cumbersomeness among others.
The SUS scores are converted to a scale of 0 (low usability)
to 100 (high usability). See Sauro [25] for more detail on
SUS scoring.

Perceived Naturalness Survey: the Perceived Natural-
ness Survey was derived to measure how natural using
the interface felt to each participant. The naturalness of an
interface has been discussed as a necessary component of
building good user interfaces [26], [27] and can lead to
positive outcomes like better learning in computer mediated
environments [28], but little work has been done on how
to directly measure how “natural” an interface feels to a
user. Prior work has suggested that components of interface
naturalness include natural mapping—the ability of a system
to map its control to changes in the mediated environment
in a natural and predictable manner [26], as well as control,
maneuverability, direct connections, and salience of input
and feedback, to name a few. This survey was a first attempt
in measuring those concepts of naturalness. The survey
included items like, “It was easy to understand how changes
in the interface would result in changes in the real-world,”
“Using the interface, I felt like I had full control over the
robot,” “The interface felt predictable,” and “The interface
felt natural,” among others. Participants responded to these
statements using a 7-point Likert-type scale that ranged from
“Strongly Agree” to “Strongly Disagree.” Scores on this
measure were calculated by taking users average response
across the 11 items.

F. Hypotheses

Overall, we expected users to perform better (lower task
completion times, higher task completion rate, lower work-
load, higher usability and preference) on the MR interface

than the 2D monitor interface in both the primitive and
adapted tasks.

H1: Users will quantitatively perform better on the MR
interface than the 2D monitor interface for completing the
primitive task. Better performance is categorized as a) lower
task completion time and b) higher task completion rate.

H2: Users will quantitatively perform better on the MR
interface than the 2D monitor interface for completing the
adapted task. Better performance is categorized as a) lower
task completion time and b) higher task completion rate.

H3: Users will report higher subjective impressions of the
MR interface than the 2D monitor interface for completing
the primitive task. Better subjective performance is catego-
rized as a) lower reported workload, b) higher usability, and
c¢) higher perceived naturalness of the interface.

G. Results

1) Primitive and Adapted Task Completion: Two paired
sample t-tests were conducted to evaluate differences in task
completion times between the 2D monitor and MR interfaces
for both the primitive and adapted tasks (Fig. 4a). There was
a statistically significant difference in mean task completion
times (in seconds) between the 2D interface (M=189.44,
S$D=105.33) and the MR interface (M=132.50, SD=92.40)
on the primitive task, ¢(17)=2.77, p=0.013, Cohen’s d=0.57.
There was also a significant difference in mean task com-
pletion times between the 2D (M=263.98, SD =123.88) and
MR (M=145.28, SD=108.43) interface for the adapted task,
t(17)=5.656, p <0.001, Cohen’s d=1.02. Additionally, all
participants (100%) were able to complete the primitive
and adapted tasks using the MR interface. On the other
hand, fewer (N=18) participants were able to complete the
primitive task using the 2D interface. Since these participants
were not able to complete the primitive task, they were
unable to adapt that plan in the adapted task. Thus, they
did not complete either. Using the MR interface, participants
completed both the primitive and adapted tasks faster than in
the 2D interface and with higher task completion rate. Thus,
Hypotheses 1 and 2 were supported.

2) Workload: Statistically significant differences were
also found between subjective ratings of mental workload
between the 2D and MR interfaces (Fig. 4b), ¢(19)=4.07,
p =0.001, Cohen’s d=0.93. Participants reported significantly
lower cognitive workload using the MR interface (M=31.54,
SD=15.69) than the 2D interface (M=46.13, SD=15.59).

3) Usability: Participants also reported significantly
higher usability scores for the MR interface (M=76.75,
SD=15.88) as compared to the 2D interface (M=47.75,
SD=21.73), t(19)=7.73, p <0.001, Cohen’s d=1.52 (Fig. 4c).

4) Naturalness of the interface: Finally, participants also
reported that interacting with the MR interface (M=5.8,
SD=0.67) felt significantly more natural than using the 2D
interface (M=3.82, SD=1.37), t(19)=8.72, p <0.001, Cohen’s
d=1.83 (Fig. 4d). Taken together, the results of the subjective
measures of workload, usability, and perceived naturalness
support Hypothesis 3.

NASA-TLX Mean Scores

Mean Task Completion Time (s)

on SUS Mean Scores

6 Naturalness Mean Scores

5
40]
30]

20]

10]

0

Interface

0 Primitive Task Adapted Task

(b) NASA-TLX scores for
monitor and MR

(a) Task completion times for
each interface/task.

T
T

. 2D
5r|E=2 MR

4

3

2]

1]

0!

Interface

Interface

(c) A graph of the results from the(d) A graph of the results from
SUS Survey.

our Naturalness Survey.

Fig. 4: A figure of selected quantitative and qualitative results. Error bars show standard error.

5) Order effects: Additionally analyses were conducted
to test whether the order in which participants interacted
with each interface biased the results. There were a few
results affected by order. First, if participants interacted with
the 2D interface after interacting with the MR interface,
they rated the 2D interface significantly lower on usability
than participants who interacted with 2D interface first. This
result may suggest that participants were disappointed or
frustrated by the 2D interface after having first interacted
with the MR system, mean difference=23.31. #(18)=3.17,
p=0.008, Cohen’s d=1.46. A look at the frustration subscale
of the NASA-TLX revealed that participants did indicate
significantly higher frustration scores for the 2D interface as
compared to the MR interface, £(19)=4.13, p=0.001, Cohen’s
d=1.27, mean difference=31.5. Similar results were found for
the perceived naturalness measure. If participants interacted
with the 2D interface after interacting with the MR interface
they rated the 2D interface significantly lower on how natural
the interface felt than participants who interacted with the
interfaces in the reverse order, t(18)=4.29, p=0.002, Cohen’s
d=2.00, mean difference=1.98. The inverse was also true
for perceive naturalness of the MR interface. If participants
interacted with the MR interface second, then they rated
the MR interface significantly higher on the measure of
naturalness of the interface than participants who interacted
with the MR interface first, £(18)=2.45, p=0.033, Cohen’s
d=1.14, mean difference=0.69.

VI. DISCUSSION

Overall our results strongly support the use of MR inter-
faces for novice users to program and adapt robot motions.
In our user study, participants were significantly faster and
better able to complete the programming tasks using the
MR interface than the 2D keyboard and mouse interface.
In addition, participants reported lower levels of cognitive
workload (e.g., frustration, effort, mental, temporal, and
physical demand) in the MR interface. Users reported that the
MR interface felt more usable and natural when completing
the programming tasks. This seemed to stem from the tedious
nature of using mouse and keyboard to reposition the camera
view and manipulate waypoints. The 2D monitor also did
not seem ideal for interpreting the 3D workspace making it
harder to understand the true pose of the specified waypoints.

Using MR, users could simply move their heads to readjust
their point of view.

Our findings on the order of completion may also re-
veal the subjective appeal of using the MR interface. If
participants used the 2D interface after interacting with the
MR interface, they rated the 2D interface significantly lower
in usability and naturalness. It was also the case that if
participants used the MR interface after having been exposed
to the 2D, they rated the MR interface significantly higher.

This interface could be adapted for future research and
industry applications. We see particular applications to LfD,
where waypoints are specified to constitute a demonstration.
This approach could be used to program personal and indus-
trial robots. In a household setting, a user might program
a sweeping primitive for a robot outfitted with a broom
attachment. In a factory line setting, a worker might program
a soldering robot to place molten metal at a precise location
on a chip.

VII. CONCLUSION

We introduced a new MR-based interface for end-users to
program and adapt trajectories. We evaluated the effective-
ness of using our MR system for programming and editing
robot motions in a primitive and adapted pick-and-place task
against a 2D monitor and keyboard equivalent. Our study
showed that users were able to more quickly and accurately
program and edit robot motions using MR than the 2D
baseline. In addition, users found that our MR interface
required less work, was easier to use, and was more natural
to use in comparison to the baseline. This study shows the
large promise MR has for making robot programming more
accessible to all end-users.

REFERENCES

[1] B. A. Myers, “Visual programming, programming by example, and
program visualization: A taxonomy,” in SIGCHI Conference on Hu-
man Factors in Computing Systems (CHI), 1986, pp. 59-66.

[2] “Blender,” Blender Foundation, http://www.blender.org, [Accessed:
2018].

[3] “Max software tools for media,” Cycling 74,
https://cycling74.com/products/max, [Accessed: 2018].

[4] M. Resnick, J. Maloney, A. Monroy-Herndndez, N. Rusk, E. East-
mond, K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman,
and Y. Kafai, “Scratch: Programming for all,” in Communications of
the ACM, vol. 52, no. 11, 2009, pp. 60-67.

[5]

[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

D. Gossow, A. Leeper, D. Hershberger, and M. Ciocarlie, “Interactive
markers: 3-d user interfaces for ros applications [ros topics],” in IEEE
Robotics & Automation Magazine, vol. 18, no. 4, 2011, pp. 14-15.
S. Alexandrova, Z. Tatlock, and M. Cakmak, “Roboflow: A flow-based
visual programming language for mobile manipulation tasks,” in /[EEE
International Conference on Robotics and Automation (ICRA), 2015,
pp. 5537-5544.
“Hololens,” Microsoft,
[Accessed 2018].

M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “Ros: an open-source robot oper-
ating system.” in Open-source software workshop of the International
Conference on Robotics and Automation (ICRA), 2009.

“Movelt!”” Willow Garage, 2007, https://moveit.ros.org, [Accessed:
2018].

S. Alexandrova, M. Cakmak, K. Hsiao, and L. Takayama, “Robot
programming by demonstration with interactive action visualizations.”
in Robotics: Science and Systems (RSS), 2014.

S. Elliott, R. Toris, and M. Cakmak, “Efficient programming of manip-
ulation tasks by demonstration and adaptation,” in /EEE International
Symposium on Robot and Human Interactive Communication (RO-
MAN), 2017.

T. Kollar, S. Tellex, M. Walter, A. Huang, A. Bachrach, S. Hemachan-
dra, E. Brunskill, A. Banerjee, D. Roy, S. Teller, and N. Roy, “Gener-
alized grounding graphs: A probabilistic framework for understanding
grounded language,” in Journal of Artificial Intelligence Research
(JAIR), 2013.

M. Forbes, R. Rao, L. Zettlemoyer, and M. Cakmak, “Robot program-
ming by demonstration with situated spatial language understanding,”
in IEEE International Conference on Robotics and Automation (ICRA),
2015, pp. 2014-2020.

D. Whitney, E. Rosen, E. Phillips, G. Konidaris, and S. Tellex,
“Comparing robot grasping teleoperation across desktop and virtual
reality with ros reality,” in International Symposium on Robotics
Research (ISRR), 2017.

E. Rosen, D. Whitney, E. Phillips, G. Chien, J. Tompkin, G. Konidaris,
and S. Tellex, “Communicating robot arm motion intent through
mixed reality head-mounted displays,” in International Symposium On
Robotics Research (ISRR), 2017.

https://www.microsoft.com/en-us/hololens,

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

M. Walker, H. Hedayati, J. Lee, and D. Szafir, “Communicating robot
motion intent with augmented reality,” in ACM/IEEE International
Conference on Human-Robot Interaction (HRI), 2018, pp. 316-324.
H. Fang, S. Ong, and A. Nee, “Interactive robot trajectory planning
and simulation using augmented reality,” in Robotics and Computer-
Integrated Manufacturing, vol. 28, no. 2, 2012, pp. 227-237.

D. Ni, A. Yew, S. Ong, and A. Nee, “Haptic and visual augmented
reality interface for programming welding robots,” in Advances in
Manufacturing, vol. 5, no. 3, 2017, pp. 191-198.

D. Whitney, E. Rosen, D. Ullman, E. Phillips, and S. Tellex, “Ros
reality: A virtual reality framework using consumer-grade hardware
for ros-enabled robots,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2018.

“ROS#) Siemens, https://github.com/siemens/ros-sharp, [Accessed:
2018].

C. Crick, G. Jay, S. Osentoski, and O. Jenkins, “Ros and rosbridge:
Roboticists out of the loop,” in ACM/IEEE International Conference
on Human-Robot Interaction (HRI), 2012, pp. 493-494.

S. Hart and L. Staveland, “Development of nasa-tlx (task load in-
dex): Results of empirical and theoretical research,” in Advances in
Psychology, vol. 52, 1988, pp. 139-183.

J. Brooke, “Sus - a quick and dirty usability scale,” in Usability
Evaluation in Industry, 1996, pp. 189-194.

W. Moroney, D. Biers, F. Eggemeier, and J. Mitchell, “A comparison
of two scoring procedures with the nasa task load index in a simulated
flight task,” in IEEE National Aerospace and Electronics Conference
(NAECON), 1992, pp. 734-740.

J. Sauro, “Measuring usability with the system usability scale (sus),”
https://measuringu.com/sus/ [Accessed: 2018].

P. Skalski, R. Lange, and R. Tamborini, “Mapping the way to fun:
The effect of video game interfaces on presence and enjoyment,” in
International Workshop on Presence, 2006, pp. 63—64.

S. Ramm, J. Giacomin, D. Robertson, and A. Malizia, “A first
approach to understanding and measuring naturalness in driver-car in-
teraction,” in International Conference on Automotive User Interfaces
and Interactive Vehicular Applications, 2014, pp. 1-10.

S. Bailey, “Getting the upper hand: Natural gesture interfaces improve
instructional efficiency on a conceptual computer lesson,” Ph.D. dis-
sertation, University of Central Florida, 2017.

