
Chapter 9

Linear programming

The nature of the programmes a computer scientist has to conceive often requires some knowl-
edge in a specific domain of application, for example corporate management, network proto-
cols, sound and video for multimedia streaming,. . . Linear programming is one of the necessary
knowledges to handle optimization problems. These problems come from varied domains as
production management, economics, transportation network planning, . . . For example, one can
mention the composition of train wagons, the electricity production, or the flight planning by
airplane companies.

Most of these optimization problems do not admit an optimal solution that can be computed
in a reasonable time, that is in polynomial time (See Chapter 3). However, we know how to ef-
ficiently solve some particular problems and to provide an optimal solution (or at least quantify
the difference between the provided solution and the optimal value) by using techniques from
linear programming.

In fact, in 1947, G.B. Dantzig conceived the Simplex Method to solve military planning
problems asked by the US Air Force that were written as a linear programme, that is a system
of linear equations. In this course, we introduce the basic concepts of linear programming. We
then present the Simplex Method, following the book of V. Chvátal [2]. If you want to read
more about linear programming, some good references are [6, 1].

The objective is to show the reader how to model a problem with a linear programme when
it is possible, to present him different methods used to solve it or at least provide a good ap-
proximation of the solution. To this end, we present the theory of duality which provide ways
of finding good bounds on specific solutions.

We also discuss the practical side of linear programming: there exist very efficient tools
to solve linear programmes, e.g. CPLEX [3] and GLPK [4]. We present the different steps
leading to the solution of a practical problem expressed as a linear programme.

9.1 Introduction
A linear programme is a problem consisting in maximizing or minimizing a linear function
while satisfying a finite set of linear constraints.
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Linear programmes can be written under the standard form:

Maximize ∑n
j=1 c jx j

Subject to: ∑n
j=1 ai jx j ≤ bi for all 1≤ i≤ m

x j ≥ 0 for all 1≤ j ≤ n.
(9.1)

All constraints are inequalities (and not equations) and all variables are non-negative. The
variables x j are referred to as decision variables. The function that has to be maximized is
called the problem objective function.

Observe that a constraint of the form ∑n
j=1 ai jx j ≥ bi may be rewritten as ∑n

j=1(−ai j)x j ≤
−bi. Similarly, a minimization problem may be transformed into a maximization problem:
minimizing ∑n

j=1 c jx j is equivalent to maximizing ∑n
j=1(−c j)x j. Hence, every maximization

or minimization problem subject to linear constraints can be reformulated in the standard form
(See Exercices 9.1 and 9.2.).

A n-tuple (x1, . . . ,xn) satisfying the constraints of a linear programme is a feasible solution
of this problem. A solution that maximizes the objective function of the problem is called an
optimal solution. Beware that a linear programme does not necessarily admits a unique optimal
solution. Some problems have several optimal solutions while others have none. The later case
may occur for two opposite reasons: either there exist no feasible solutions, or, in a sense, there
are too many. The first case is illustrated by the following problem.

Maximize 3x1 − x2
Subject to: x1 + x2 ≤ 2

−2x1 − 2x2 ≤ −10
x1,x2 ≥ 0

(9.2)

which has no feasible solution (See Exercise 9.3). Problems of this kind are referred to as
unfeasible. At the opposite, the problem

Maximize x1 − x2
Subject to: −2x1 + x2 ≤ −1

−x1 − 2x2 ≤ −2
x1,x2 ≥ 0

(9.3)

has feasible solutions. But none of them is optimal (See Exercise 9.3). As a matter of fact, for
every number M, there exists a feasible solution x1,x2 such that x1− x2 > M. The problems
verifying this property are referred to as unbounded. Every linear programme satisfies exactly
one the following assertions: either it admits an optimal solution, or it is unfeasible, or it is
unbounded.
Geometric interpretation.

The set of points in IRn at which any single constraint holds with equality is a hyperplane in
IRn. Thus each constraint is satisfied by the points of a closed half-space of IRn, and the set of
feasible solutions is the intersection of all these half-spaces, a convex polyhedron P.
Because the objective function is linear, its level sets are hyperplanes. Thus, if the maximum
value of cx over P is z∗, the hyperplane cx = z∗ is a supporting hyperplane of P. Hence cx = z∗
contains an extreme point (a corner) of P. It follows that the objective function attains its
maximum at one of the extreme points of P.
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9.2 The Simplex Method
The authors advise you, in a humanist élan, to skip this section if you are not ready to suffer. In
this section, we present the principle of the Simplex Method. We consider here only the most
general case and voluntarily omit here the degenerate cases to focus only on the basic principle.
A more complete presentation can be found for example in [2].

9.2.1 A first example
We illustrate the Simplex Method on the following example:

Maximize 5x1 + 4x2 + 3x3
Subject to:

2x1 + 3x2 + x3 ≤ 5
4x1 + x2 + 2x3 ≤ 11
3x1 + 4x2 + 2x3 ≤ 8

x1,x2,x3 ≥ 0.

(9.4)

The first step of the Simplex Method is to introduce new variables called slack variables.
To justify this approach, let us look at the first constraint,

2x1 +3x2 + x3 ≤ 5. (9.5)

For all feasible solution x1,x2,x3, the value of the left member of (9.5) is at most the value
of the right member. But, there often is a gap between these two values. We note this gap x4. In
other words, we define x4 = 5−2x1−3x2− x3. With this notation, Equation (9.5) can now be
written as x4 ≥ 0. Similarly, we introduce the variables x5 and x6 for the two other constraints of
Problem (9.4). Finally, we use the classic notation z for the objective function 5x1 +4x2 +3x3.
To summarize, for all choices of x1,x2,x3 we define x4,x5,x6 and z by the formulas

x4 = 5 − 2x1 − 3x2 − x3
x5 = 11 − 4x1 − x2 − 2x3
x6 = 8 − 3x1 − 4x2 − 2x3
z = 5x1 + 4x2 + 3x3.

(9.6)

With these notations, the problem can be written as:

Maximize z subject to x1,x2,x3,x4,x5,x6 ≥ 0. (9.7)

The new variables that were introduced are referred as slack variables, when the initial
variables are usually called the decision variables. It is important to note that Equation (9.6)
define an equivalence between (9.4) and (9.7). More precisely:

• Any feasible solution (x1,x2,x3) of (9.4) can be uniquely extended by (9.6) into a feasible
solution (x1,x2,x3,x4,x5,x6) of (9.7).
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• Any feasible solution (x1,x2,x3,x4,x5,x6) of (9.7) can be reduced by a simple removal of
the slack variables into a feasible solution (x1,x2,x3) of (9.4).

• This relationship between the feasible solutions of (9.4) and the feasible solutions of (9.7)
allows to produce the optimal solution of (9.4) from the optimal solutions of (9.7) and vice
versa.

The Simplex strategy consists in finding the optimal solution (if it exists) by successive
improvements. If we have found a feasible solution (x1,x2,x3) of (9.7), then we try to find a
new solution (x̄1, x̄2, x̄3) which is better in the sense of the objective function:

5x̄1 +4x̄2 +3x̄3 ≥ 5x1 +4x2 +3x3.

By repeating this process, we obtain at the end an optimal solution.
To start, we first need a feasible solution. To find one in our example, it is enough to set

the decision variables x1,x2,x3 to zero and to evaluate the slack variables x4,x5,x6 using (9.6).
Hence, our initial solution,

x1 = 0,x2 = 0,x3 = 0,x4 = 5,x5 = 11,x6 = 8 (9.8)

gives the result z = 0.
We now have to look for a new feasible solution which gives a larger value for z. Finding

such a solution is not hard. For example, if we keep x2 = x3 = 0 and increase the value of x1,
then we obtain z = 5x1 ≥ 0. Hence, if we keep x2 = x3 = 0 and if we set x1 = 1, then we obtain
z = 5 (and x4 = 3,x5 = 7,x6 = 5). A better solution is to keep x2 = x3 = 0 and to set x1 = 2;
we then obtain z = 10 (and x4 = 1,x5 = 3,x6 = 2). However, if we keep x2 = x3 = 0 and if
we set x1 = 3, then z = 15 and x4 = x5 = x6 =−1, breaking the constraint xi ≥ 0 for all i. The
conclusion is that one can not increase x1 as much as one wants. The question then is: how much
can x1 be raised (when keeping x2 = x3 = 0) while satisfying the constraints (x4,x5,x6 ≥ 0)?

The condition x4 = 5−2x1−3x2−x3 ≥ 0 implies x1 ≤ 5
2 . Similarly, x5 ≥ 0 implies x1 ≤ 11

4
and x6 ≥ 0 implies x1 ≤ 8

3 . The first bound is the strongest one. Increasing x1 to this bound
gives the solution of the next step:

x1 =
5
2
,x2 = 0,x3 = 0,x4 = 0,x5 = 1,x6 =

1
2

(9.9)

which gives a result z = 25
2 improving the last value z = 0 of (9.8).

Now, we have to find a new feasible solution that is better than (9.9). However, this task
is not as simple as before. Why? As a matter of fact, we had at disposal the feasible solution
of (9.8), but also the system of linear equations (9.6) which led us to a better feasible solution.
Thus, we should build a new system of linear equations related to (9.9) in the same way as (9.6)
is related to (9.8).

Which properties should have this new system? Note first that (9.6) express the strictly
positive variables of (9.8) in function of the null variables. Similarly, the new system has to
express the strictly positive variables of (9.9) in function of the null variables of (9.9): x1,x5,x6
(and z) in function of x2,x3 and x4. In particular, the variable x1, whose value just increased
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from zero to a strictly positive value, has to go to the left side of the new system. The variable
x4, which is now null, has to take the opposite move.

To build this new system, we start by putting x1 on the left side. Using the first equation of
(9.6), we write x1 in function of x2,x3,x4:

x1 =
5
2
− 3

2
x2−

1
2

x3−
1
2

x4 (9.10)

Then, we express x5,x6 and z in function of x2,x3,x4 by substituting the expression of x1
given by (9.10) in the corresponding lines of (9.6).

x5 = 11−4
�

5
2
− 3

2
x2−

1
2

x3−
1
2

x4

�
− x2−2x3

= 1+5x2 +2x4,

x6 = 8−3
�

5
2
− 3

2
x2−

1
2

x3−
1
2

x4

�
−4x2−2x3

=
1
2

+
1
2

x2−
1
2

x3 +
3
2

x4,

z = 5
�

5
2
− 3

2
x2−

1
2

x3−
1
2

x4

�
+4x2 +3x3

=
25
2
− 7

2
x2 +

1
2

x3−
5
2

x4.

So the new system is

x1 = 5
2 − 3

2 x2 − 1
2 x3 − 1

2 x4
x5 = 1 + 5 x2 + 2 x4
x6 = 1

2 + 1
2 x2 − 1

2 x3 + 3
2 x4

z = 25
2 − 7

2 x2 + 1
2 x3 − 5

2 x4.

(9.11)

As done at the first iteration, we now try to increase the value of z by increasing a right
variable of the new system, while keeping the other right variables at zero. Note that raising x2
or x4 would lower the value of z, against our objective. So we try to increase x3. How much?
The answer is given by (9.11) : with x2 = x4 = 0, the constraint x1 ≥ 0 implies x3 ≤ 5, x5 ≥ 0
impose no restriction and x6 ≥ 0 implies that x3 ≤ 1. To conclude x3 = 1 is the best we can do,
and the new solution is

x1 = 2,x2 = 0,x3 = 1,x4 = 0,x5 = 1,x6 = 0 (9.12)

and the value of z increases from 12.5 to 13. As stated, we try to obtain a better solution but
also a system of linear equations associated to (9.12). In this new system, the (strictly) positive
variables x2,x4,x6 have to appear on the right. To build this new system, we start by handling
the new left variable, x3. Thanks to the third equation of (9.11) we rewrite x3 and by substitution
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in the remaining equations of (9.11) we obtain:

x3 = 1 + x2 + 3x4 − 2x6
x1 = 2 − 2x2 − 2x4 + x6
x5 = 1 + 5x2 + 2x4
z = 13 − 3x2 − x4 − x6.

(9.13)

It is now time to do the third iteration. First, we have to find a variable of the right side
of (9.13) whose increase would result in an increase of the objective z. But there is no such
variable, as any increase of x2,x4 or x6 would lower z. We are stuck. In fact, this deadlock
indicates that the last solution is optimal. Why? The answer lies in the last line of (9.13):

z = 13 − 3x2 − x4 − x6. (9.14)

The last solution (9.12) gives a value z = 13; proving that this solution is optimal boils down
to prove that any feasible solution satisfies z≤ 13. As any feasible solution x1,x2, . . . ,x6 satisfies
the inequalities x2 ≥ 0,x4 ≥ 0,x6 ≥ 0, then z≤ 13 directly derives from (9.14).

9.2.2 The dictionaries
More generally, given a problem

Maximize ∑n
j=1 c jx j

Subject to: ∑n
j=1 ai jx j ≤ bi for all 1≤ i≤ m

x j ≥ 0 for all 1≤ j ≤ n
(9.15)

we first introduce the slack variables xn+1,xn+2, . . . ,xn+m and we note the objective function z.
That is, we define

xn+i = bi− ∑n
j=1 ai jx j for all 1≤ i≤ m

z = ∑n
j=1 c jx j

(9.16)

In the framework of the Simplex Method, each feasible solution (x1,x2, . . . ,xn) of (9.15) is rep-
resented by n+m positive or null numbers x1,x2, . . . ,xn+m, with xn+1,xn+2, . . . ,xn+m defined by
(9.16). At each iteration, the Simplex Method goes from one feasible solution (x1,x2, . . . ,xn+m)
to an other feasible solution (x̄1, x̄2, . . . , x̄n+m), which is better in the sense that

n

∑
j=1

c jx̄ j >
n

∑
j=1

c jx j.

As we have seen in the example, it is convenient to associate a system of linear equations
to each feasible solution. As a matter of fact, it allows to find better solutions in an easy way.
The technique is to translate the choices of the values of the variables of the right side of the
system into the variables of the left side and in the objective function as well. These systems
have been named dictionaries by J.E. Strum (1972). Thus, every dictionary associated to (9.15)
is a system of equations whose variables xn+1,xn+2, . . . ,xn+m and z are expressed in function of
x1,x2, . . . ,xn. These n + m + 1 variables are closely linked and every dictionary express these
dependencies.
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Property 9.1. Any feasible solution of the equations of a dictionary is also a feasible solution
of (9.16) and vice versa.

For example, for any choice of x1,x2, . . . ,x6 and of z, the three following assertions are
equivalent:

• (x1,x2, . . . ,x6,z) is a feasible solution of (9.6);

• (x1,x2, . . . ,x6,z) is a feasible solution of (9.11);

• (x1,x2, . . . ,x6,z) is a feasible solution of (9.13).

From this point of view, the three dictionaries (9.6), (9.11) and (9.13) contain the same
information on the dependencies between the seven variables. However, each dictionary present
this information in a specific way. (9.6) suggests that the values of the variables x1, x2 and x3
can be chosen at will while the values of x4, x5, x6 and z are fixed. In this dictionary, the decision
variables x1, x2, x3 act as independent variables while the slack variables x4, x5, x6 are related to
each other. In the dictionary (9.13), the independent variables are x2,x4,x6 and the related ones
are x3,x1,x5,z.

Property 9.2. The equations of a dictionary have to express m variables among x1,x2, . . . ,xn+m,z
in function of the n remaining others.

Properties 9.1 and 9.2 define what a dictionary is. In addition to these two properties, the
dictionaries (9.6),(9.11) and (9.13) have the following property.

Property 9.3. When putting the right variables to zero, one obtains a feasible solution by eval-
uating the left variables.

The dictionaries that have this last property are called feasible dictionaries. As a matter
of fact, any feasible dictionary describes a feasible solution. However, all feasible solutions
cannot be described by a feasible dictionary. For example, no dictionary describe the feasible
solution x1 = 1, x2 = 0, x3 = 1, x4 = 2, x5 = 5, x6 = 3 of (9.4). The feasible solutions that can
be described by dictionaries are referred as basic solutions. The Simplex Method explores only
basic solutions and ignores all other ones. But this is valid because if an optimal solution exists,
then there is an optimal and basic solution. Indeed, if a feasible solution cannot be improved
by the Simplex Method, then increasing any of the n right variables to a positive value never
increases the objective function. In such case, the objective function must be written as a linear
function of these variables in which all the coefficient are non-positive, and thus the objective
function is clearly maximum when all the right variables equal zero. For example, it was the
case in (9.14).

9.2.3 Finding an initial solution
In the previous examples, the initialisation of the simplex method was not a problem. As a
matter of fact, we carefully chosen problems with all bi non negative. This way x1 = 0, x2 = 0,
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· · · , xn = 0 was a feasible solution and the dictionary was easily built. These problems are called
problems with a feasible origin.

What happens when confronted with a problem with an unfeasible origin? Two difficulties
arise. First, a feasible solution can be hard to find. Second, even if we find a feasible solution,
a feasible dictionary has then to be built. A way to solve these difficulties is to use an other
problem called auxiliary problem:

Minimise x0
Subject to: ∑n

j=1 ai jx j− x0 ≤ bi (i = 1,2, · · · ,m)
x j ≥ 0 ( j = 0,1, · · · ,n).

A feasible solution of the auxiliary problem is easily available: it is enough to set x j = 0∀ j ∈
[1 . . .n] and to give to x0 a big enough value. It is now easy to see that the original problem has
a feasible solution if and only if the auxiliary problem has a feasible solution with x0 = 0. In
other words, the original problem has a feasible solution if the optimal value of the auxiliary
problem is null. Thus, the idea is to first solve the auxiliary problem. Let see the details on an
example.

Maximise x1 − x2 + x3
Subject to :

2x1 − x2 + 2x3 ≤ 4
2x1 − 3x2 + x3 ≤ −5
−x1 + x2 − 2x3 ≤ −1

x1,x2,x3 ≥ 0

Maximise −x0
Subject to:

2x1 − x2 + 2x3 − x0 ≤ 4
2x1 − 3x2 + x3 − x0 ≤ −5
−x1 + x2 − 2x3 − x0 ≤ −1

x1,x2,x3,x0 ≥ 0

We introduce the slack variables. We obtain the dictionary:

x4 = 4 − 2x1 + x2 − 2x3 + x0
x5 = −5 − 2x1 + 3x2 − x3 + x0
x6 = −1 + x1 − x2 + 2x3 + x0
w = − x0.

(9.17)

Note that this dictionary is not feasible. However it can be transformed into a feasible one by
operating a simple pivot , x0 entering the basis as x5 exits it:

x0 = 5 + 2x1 − 3x2 + x3 + x5
x4 = 9 − 2x2 − x3 + x5
x6 = 4 +3 x1 − 4x2 + 3x3 + x5
w = −5 − 2x1 + 3x2 − x3 − x5.
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More generally, the auxiliary problem can be written as

Maximise −x0
Subject to: ∑n

j=1 ai jx j− x0 ≤ bi (i = 1,2, · · · ,m)
x j ≥ 0 ( j = 0,1,2, · · · ,n)

and the associated dictionary is

xn+i = bi− ∑n
j=1 ai jx j + x0 (i = 1,2, · · · ,m)

w = − x0

This dictionary can be made feasible by pivoting x0 with the variable the ”most unfeasible”, that
is the exiting variable xn+k is the one with bk ≤ bi for all i. After the pivot, the variable x0 has
value −bk and each xn+i has value bi−bk. All these values are non negative. We are now able
to solve the auxiliary problem using the simplex method. Let us go back to our example.

After the first iteration with x2 entering and x6 exiting, we get:

x2 = 1 + 0.75x1 + 0.75x3 + 0.25x5 − 0.25x6
x0 = 2 − 0.25x1 − 1.25x3 + 0.25x5 + 0.75x6
x4 = 7 − 1.5x1 − 2.5x3 + 0.5x5 + 0.5x6
w = −2 + 0.25x1 + 1.25x3 − 0.25x5 − 0.75x6.

After the second iteration with x3 entering and x0 exiting:

x3 = 1.6 − 0.2x1 + 0.2x5 + 0.6x6 − 0.8x0
x2 = 2.2 + 0.6x1 + 0.4x5 + 0.2x6 − 0.6x0
x4 = 3 − x1 − x6 + 2x0
w = − x0.

(9.18)

The last dictionary (9.18) is optimal. As the optimal value of the auxiliary problem is null,
this dictionary provides a feasible solution of the original problem: x1 = 0,x2 = 2.2,x3 = 1.6.
Moreover, (9.18) can be easily transformed into a feasible dictionary of the original problem.
To obtain the first three lines of the desired dictionary, it is enough to copy the first three lines
while removing the terms with x0:

x3 = 1.6 − 0.2x1 + 0.2x5 + 0.6x6
x2 = 2.2 + 0.6x1 + 0.4x5 + 0.2x6
x4 = 3 − x1 − x6

(9.19)

To obtain the last line, we express the original objective function

z = x1− x2 + x3 (9.20)

in function of the variables outside the basis x1,x5,x6. To do so, we replace the variables of
(9.20) by (9.19) and we get:

z = x1− (2.2+0.6x1 +0.4x5 +0.2x6)+(1.6−0.2x1 +0.2x5 +0.6x6) (9.21)
z =−0.6+0.2x1−0.2x5 +0.4x6
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The desired dictionary then is:

x3 = 1.6 − 0.2x1 + 0.2x5 + 0.6x6
x2 = 2.2 + 0.6x1 + 0.4x5 + 0.2x6
x4 = 3 − x1 − x6
z = −0.6 + 0.2x1 − 0.2x5 + 0.4x6

This strategy is known as the simplex method with two phases. During the first phase, we set
and solve the auxiliary problem. If the optimal value is null, we do the second phase consisting
in solving the original problem. Otherwise, the original problem is not feasible.

9.3 Duality of linear programming
Any maximization linear programme has a corresponding minimization problem called the dual
problem. Any feasible solution of the dual problem gives an upper bound on the optimal value
of the initial problem, which is called the primal. Reciprocally, any feasible solution of the
primal provides a lower bound on the optimal value of the dual problem. Actually, if one of
both problems admits an optimal solution, then the other problem does as well and the optimal
solutions match each other. This section is devoted to this result also known as the Duality
Theorem. Another interesting application of the dual problem is that, in some problems, the
variables of the dual have some useful interpretation.

9.3.1 Motivations: providing upper bounds on the optimal value
A way to quickly estimate the optimal value of a maximization linear programme simply con-
sists in computing a feasible solution whose value is sufficiently large. For instance, let us
consider the following problem formulated in Problem 9.4. The solution (0,0,1,0) gives us a
lower bound of 5 for the optimal value z∗. Even better, we get z∗ ≥ 22 by considering the so-
lution (3,0,2,0). Of course, doing so, we have no way to know how close to the optimal value
the computed lower bound is.

Problem 9.4.
Maximize 4x1 + x2 +5x3 +3x4

Subject to: x1− x2− x3 +3x4 ≤ 1
5x1 + x2 +3x3 +8x4 ≤ 55
−x1 +2x2 +3x3−5x4 ≤ 3

x1,x2,x3,x4 ≥ 0

The previous approach provides lower bounds on the optimal value. However, this intuitive
method is obviously less efficient than the Simplex Method and this approach provides no clue
about the optimality (or not) of the obtained solution. To do so, it is interesting to have upper
bounds on the optimal value. This is the main topic of this section.
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How to get an upper bound for the optimal value in the previous example? A possible
approach is to consider the constraints. For instance, multiplying the second constraint by 5

3 ,
we get that z∗ ≤ 275

3 . Indeed, for any x1,x2,x3,x4 ≥ 0:

4x1 + x2 +5x3 +3x4 ≤ 25
3

x1 +
5
3

x2 +5x3 +
40
3

x4 = (5x1 + x2 +3x3 +8x4)×
5
3

≤ 55× 5
3

=
275
3

In particular, the above inequality is satisfied by any optimal solution. Therefore, z∗ ≤ 275
3 .

Let us try to improve this bound. For instance, we can add the second constraint to the third
one. This gives, for any x1,x2,x3,x4 ≥ 0:

4x1 + x2 +5x3 +3x4 ≤ 4x1 +3x2 +6x3−3x4

≤ (5x1 + x2 +3x3 +8x4)+(−x1 +2x2 +3x3−5x4)
≤ 55+3 = 58

Hence, z∗ ≤ 58.
More formally, we try to upper bound the optimal value by a linear combination

of the constraints. Precisely, for all i, let us multiply the ith constraint by yi ≥ 0 and then
sum the resulting constraints. In the previous two examples, we had (y1,y2,y3) = (0, 5

3 ,0) and
(y1,y2,y3) = (0,1,1). More generally, we obtain the following inequality:

y1(x1− x2− x3 +3x4)+ y2(5x1 + x2 +3x3 +8x4)+ y3(−x1 +2x2 +3x3−5x4)
= (y1−5y2− y3)x1 +(−y1 + y2 +2y3)x2 +(−y1 +3y2 +3y3)x3 +(3y1 +8y2−5y3)x4
≤ y1 +55y2 +3y3

For this inequality to provide an upper bound of 4x1 + x2 + 5x3 + 3x4, we need to ensure that,
for all x1,x2,x3,x4 ≥ 0,

4x1 + x2 +5x3 +3x4

≤ (y1−5y2− y3)x1 +(−y1 + y2 +2y3)x2 +(−y1 +3y2 +3y3)x3 +(3y1 +8y2−5y3)x4.

That is, y1−5y2− y3 ≥ 4, −y1 + y2 +2y3 ≥ 1, −y1 +3y2 +3y3 ≥ 5, and 3y1 +8y2−5y3 ≥ 3.
Combining all inequalities, we obtain the following minimization linear programme:

Minimize y1 +55y2 +3y3
Subject to:

y1−5y2− y3 ≥ 4
−y1 + y2 +2y3 ≥ 1
−y1 +3y2 +3y3 ≥ 5
3y1 +8y2−5y3 ≥ 3

y1,y2,y3 ≥ 0

This problem is called the dual of the initial maximization problem.
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9.3.2 Dual problem
We generalize the example given in Subsection 9.3.1. Consider the following general maxi-
mization linear programme:

Problem 9.5.
Maximize ∑n

j=1 c jx j
Subject to: ∑n

j=1 ai jx j ≤ bi for all 1≤ i≤ m
x j ≥ 0 for all 1≤ j ≤ n

Problem 9.5 is called the primal. The matricial formulation of this problem is

Maximize cT x
Subject to: Ax≤ b

x≥ 0

where xT = [x1, . . . ,xn] and cT = [c1, . . . ,cn] are vectors in Rn, and bT = [b1, . . . ,bm] ∈ Rm,
and A = [ai j] is a matrix in Rm×n.

To find an upper bound on cT x, we aim at finding a vector yT = [y1, . . . ,ym] ≥ 0 such that,
for all feasible solutions x≥ 0 of the initial problem, cT x≤ yT Ax≤ yT b = bT y, that is:

Minimize bT y
Subject to: AT y≥ c

y≥ 0
In other words, the dual of Problem 9.5 is defined by:

Problem 9.6.
Minimize ∑m

i=1 biyi
Subject to: ∑m

i=1 ai jyi ≥ c j for all 1≤ j ≤ n
yi ≥ 0 for all 1≤ i≤ m

Notice that the dual of a maximization problem is a minimization problem. Moreover, there
is a one-to-one correspondence between the m constraints of the primal ∑ j=1...n ai jx j ≤ bi and
the m variables yi of the dual. Similarly, the n constraints ∑m

i=1 ai jyi ≥ c j of the dual correspond
one-to-one to the n variables xi of the primal.

Problem 9.6, which is the dual of Problem 9.5, can be equivalently formulated under the
standard form as follows.

Maximize ∑m
i=1(−bi)yi

Subject to: ∑m
i=(−ai j)yi ≤−c j for all 1≤ j ≤ n

yi ≥ 0 for all 1≤ i≤ m
(9.22)

Then, the dual of Problem 9.22 has the following formulation which is equivalent to Prob-
lem 9.5.

Minimize ∑n
j=1(−c j)x j

Subject to: ∑n
j=1(−ai j)x j ≥−bi for all 1≤ i≤ m

x j ≥ 0 for all 1≤ j ≤ n
(9.23)
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We deduce the following lemma.

Lemma 9.7. If D is the dual of a problem P, then the dual of D is P. Informally, the dual of the
dual is the primal.

9.3.3 Duality Theorem
An important aspect of duality is that feasible solutions of the primal and the dual are related.

Lemma 9.8. Any feasible solution of Problem 9.6 yields an upper bound for Problem 9.5. In
other words, the value given by any feasible solution of the dual of a problem is an upper bound
for the primal problem.

Proof. Let (y1, . . . ,ym) be a feasible solution of the dual and (x1, . . . ,xn) be a feasible solution
of the primal. Then,

n

∑
j=1

c jx j ≤
n

∑
j=

�
m

∑
i=

ai jyi

�
x j ≤

m

∑
i=1

�
n

∑
j=1

ai jx j

�
yi ≤

m

∑
i=1

biyi.

Corollary 9.9. If (y1, . . . ,ym) is a feasible solution of the dual of a problem (Problem 9.6)
and (x1, . . . ,xn) is a feasible solution of the corresponding primal (Problem 9.5) such that
∑n

j=1 c jx j = ∑m
i=1 biyi, then both solutions are optimal.

Corollary 9.9 states that if we find two solutions for the dual and the primal achieving the
same value, then this is a certificate of the optimality of these solutions. In particular, in that
case (if they are feasible), both the primal and the dual problems have same optimal value.

For instance, we can easily verify that (0,14,0,5) is a feasible solution for Problem 9.4 with
value 29. On the other hand, (11,0,6) is a feasible solution for the dual with same value. Hence,
the optimal solutions for the primal and for the dual coincide and are equal to 29.

In general, it is not immediate that any linear programme may have such certificate of opti-
mality. In other words, for any feasible linear programme, can we find a solution of the primal
problem and a solution of the dual problem that achieve the same value (thus, this value would
be optimal)? One of the most important result of the linear programming is the duality theorem
that states that it is actually always the case: for any feasible linear programme, the primal and
the dual problems have the same optimal solution. This theorem has been proved by D. Gale,
H.W. Kuhn and A. W. Tucker [5] and comes from discussions between G.B. Dantzig and J. von
Neumann during Fall 1947.

Theorem 9.10 (DUALITY THEOREM). If the primal problem defined by Problem 9.5 admits an
optimal solution (x∗1, . . . ,x

∗
n), then the dual problem (Problem 9.6) admits an optimal solution

(y∗1, . . . ,y
∗
m), and

n

∑
j=1

c jx∗j =
m

∑
i=1

biy∗i .
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Proof. The proof consists in showing how a feasible solution (y∗1, . . . ,y
∗
m) of the dual can be

obtained thanks to the Simplex Method, so that z∗ = ∑m
i=1 biy∗i is the optimal value of the primal.

The result then follows from Lemma 9.8.
Let us assume that the primal problem has been solved by the Simplex Method. For this

purpose, the slack variables have been defined by

xn+i = bi−
n

∑
j=1

ai jx j for 1≤ i≤ m.

Moreover, the last line of the last dictionary computed during the Simplex Method gives the
optimal value z∗ of the primal in the following way: for any feasible solution (x1, . . . ,xn) of the
primal we have

z =
n

∑
j=1

c jx j = z∗+
n+m

∑
i=1

c̄ixi.

Recall that, for all i ≤ n + m, c̄i is non-positive, and that it is null if xi is one of the basis
variables. We set

y∗i =−c̄n+i for 1≤ i≤ m.

Then, by definition of the y∗i ’s and the xn+i’s for 1≤ i≤ m, we have

z =
n

∑
j=1

c jx j = z∗+
n

∑
i=1

c̄ixi−
m

∑
i=1

y∗i

�
bi−

n

∑
j=1

ai jx j

�

=

�
z∗ −

m

∑
i=1

y∗i bi

�
+

n

∑
j=1

�
c̄ j +

m

∑
i=1

ai jy∗i

�
x j.

Since this equation must be true whatever be the affectation of the xi’s and since the c̄i’s are
non-positive, this leads to

z∗ =
m

∑
i=1

y∗i bi and

c j = c̄ j +
m

∑
i=1

ai jy∗i ≤
m

∑
i=1

ai jy∗i for all 1≤ j ≤ n.

Hence, (y∗1, . . . ,y
∗
m) defined as above is a feasible solution achieving the optimal value of the

primal. By Lemma 9.8, this is an optimal solution of the dual.

9.3.4 Relation between primal and dual
By the Duality Theorem and Lemma 9.7, a linear programme admits a solution if and only if its
dual admits a solution. Moreover, according to Lemma 9.8, if a linear programme is unbounded,



9.3. DUALITY OF LINEAR PROGRAMMING 143

then its dual is not feasible. Reciprocally, if a linear programme admits no feasible solution,
then its dual is unbounded. Finally, it is possible that both a linear programme and its dual have
no feasible solution as shown by the following example.

Maximize 2x1− x2
Subject to: x1− x2 ≤ 1

−x1 + x2 ≤ −2
x1,x2 ≥ 0

Besides the fact it provides a certificate of optimality, the Duality Theorem has also a prac-
tical interest in the application of the Simplex Method. Indeed, the time-complexity of the Sim-
plex Method mainly yields in the number of constraints of the considered linear programme.
Hence, when dealing with a linear programme with few variables and many constraints, it will
be more efficient to apply the Simplex Method on its dual.

Another interesting application of the Duality Theorem is that it is possible to compute an
optimal solution for the dual problem from an optimal solution of the primal. Doing so gives
an easy way to test the optimality of a solution. Indeed, if you have a feasible solution of some
linear programme, then a solution of the dual problem can be derived (as explained below).
Then the initial solution is optimal if and only if the solution obtained for the dual is feasible
and leads to the same value.

More formally, the following theorems can be proved

Theorem 9.11 (Complementary Slackness). Let (x1, . . . ,xn) be a feasible solution of Prob-
lem 9.5 and (y1, . . . ,ym) be a feasible solution of Problem 9.6. These are optimal solutions if
and only if

m

∑
i=1

ai jyi = c j, or x j = 0, or both for all 1≤ j ≤ n, and
n

∑
j=1

ai jx j = bi, or yi = 0, or both for all 1≤ i≤ m.

Proof. First, we note that since x and y are feasible (bi−∑n
j=1 ai jx j)yi ≥ 0 and (∑m

i=1 ai jyi−
c j)x j ≥ 0. Summing these inequalities over i and j, we obtain

m

∑
i=1

�
bi−

n

∑
j=1

ai jx j

�
yi ≥ 0 (9.24)

n

∑
j=1

�
n

∑
i=1

ai jyi− c j

�
x j ≥ 0 (9.25)

Adding Inequalities 9.24 and 9.25 and using the strong duality theorem, we obtain

m

∑
i=1

biyi−
m

∑
i=1

n

∑
j=1

ai jx jyi +
n

∑
j=1

m

∑
i=1

ai jyix j−
n

∑
j=1

c jx j =
m

∑
i=1

biyi−
n

∑
j=1

c jx j = 0.
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Therefore, Inequalities 9.24 and 9.25 must be equalities. As the variables are positive, we
further get that

for all i,

�
bi−

n

∑
j=1

ai jx j

�
yi = 0

and for all j,

�
m

∑
i=1

ai jyi− c j

�
x j = 0.

A product is equal to zero if one of its two members is null and we obtain the desired result.

Theorem 9.12. A feasible solution (x1, . . . ,xn) of Problem 9.5 is optimal if and only if there is
a feasible solution (y1, . . . ,ym) of Problem 9.6 such that:

∑m
i= ai jyi = c j i f x j > 0

yi = 0 i f ∑m
j=1 ai jx j < bi

(9.26)

Note that, if Problem 9.5 admits a non-degenerated solution (x1, . . . ,xn), i.e., xi > 0 for any
i≤ n, then the system of equations in Theorem 9.12 admits a unique solution.

Optimality certificates - Examples. Let see how to apply this theorem on two examples.
Let us first examine the statement that

x∗1 = 2, x∗2 = 4, x∗3 = 0, x∗4 = 0, x∗5 = 7, x∗6 = 0

is an optimal solution of the problem

Maximize 18x1 − 7x2 + 12x3 + 5x4 + 8x6
Subject to: 2x1 − 6x2 + 2x3 + 7x4 + 3x5 + 8x6 ≤ 1

−3x1 − x2 + 4x3 − 3x4 + x5 + 2x6 ≤ −2
8x1 − 3x2 + 5x3 − 2x4 + 2x6 ≤ 4
4x1 + 8x3 + 7x4 − x5 + 3x6 ≤ 1
5x1 + 2x2 − 3x3 + 6x4 − 2x5 − x6 ≤ 5

x1,x2, · · · ,x6 ≥ 0

In this case, (9.26) says:

2y∗1 − 3y∗2 + 8y∗3 + 4y∗4 + 5y∗5 = 18
−6y∗1 − y∗2 − 3y∗3 + 2y∗5 = −7

3y∗1 + y∗2 − y∗4 − 2y∗5 = 0
y∗2 = 0

y∗5 = 0

As the solution (1
3 ,0, 5

3 ,1,0) is a feasible solution of the dual problem (Problem 9.6), the pro-
posed solution is optimal.
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Secondly, is
x∗1 = 0, x∗2 = 2, x∗3 = 0, x∗4 = 7, x∗5 = 0

an optimal solution of the following problem?

Maximize 8x1 − 9x2 + 12x3 + 4x4 + 11x5
Subject to: 2x1 − 3x2 + 4x3 + x4 + 3x5 ≤ 1

x1 + 7x2 + 3x3 − 2x4 + x5 ≤ 1
5x1 + 4x2 − 6x3 + 2x4 + 3x5 ≤ 22

x1,x2, · · · ,x5 ≥ 0

Here (9.26) translates into:
−3y∗1 + 7y∗2 + 4y∗3 = −9

y∗1 − 2y∗2 + 2y∗3 = 4
y∗2 = 0

As the unique solution of the system (3.4,0,0.3) is not a feasible solution of Problem 9.6, the
proposed solution is not optimal.

9.3.5 Interpretation of dual variables
As said in the introduction of this section, one of the major interests of the dual programme is
that, in some problems, the variables of the dual problem have an interpretation.

A classical example is the economical interpretation of the dual variables of the following
problem. Consider the problem that consits in maximizing the benefit of a company building
some products. Each variable x j of the primal problem measures the amount of product j that is
built, and bi the amount of resource i (needed to build the products) that is available. Note that,
for any i≤ n, j ≤m, ai, j represents the number of units of resource i needed per unit of product
j. Finally, c j denotes the benefit (the price) of a unit of product j.

Hence, by checking the units of measure in the constraints ∑ai jyi ≥ c j, the variable yi must
represent a benefit per unit of resource i. Somehow, the variable yi measures the unitary value
of the resource i. This is illustrated by the following theorem the proof of which is omitted.

Theorem 9.13. If Problem 9.5 admits a non degenerated optimal solution with value z∗, then
there is ε > 0 such that, for any |ti|≤ ε (i = 1, . . . ,m), the problem

Maximize ∑n
j= c jx j

Subject to ∑n
j=1 ai jx j ≤ bi + ti (i = 1, . . . ,m)

x j ≥ 0 ( j = 1, . . . ,n)

admits an optimal solution with value z∗+ ∑m
i=1 y∗i ti, where (y∗1, . . . ,y

∗
m) is the optimal solution

of the dual of Problem 9.5.

Theorem 9.13 shows how small variations in the amount of available resources can affect the
benefit of the company. For any unit of extra resource i, the benefit increases by y∗i . Sometimes,
y∗i is called the marginal cost of the resource i.

In many networks design problems, a clever interpretation of dual variables may help to
achieve more efficient linear programme or to understand the problem better.
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9.4 Exercices

9.4.1 General modelling
Exercise 9.1. Which problem(s) among P1, P2 and P3 are under the standard form?

P1 : Maximize 3x1 − 5x2
Subject to: 4x1 + 5x2 ≥ 3

6x1 − 6x2 = 7
x1 + 8x2 ≤ 20

x1,x2 ≥ 0

P2 : Minimize 3x1 + x2 + 4x3 + x4 + 5x5
Subject to: 9x1 + 2x2 + 6x3 + 5x4 + 3x5 ≤ 5

8x1 + 9x2 + 7x3 + 9x4 + 3x5 ≤ 2
x1,x2,x3,x4 ≥ 0

P3 : Maximize 8x1 − 4x2
Subject to: 3x1 + x2 ≤ 7

9x1 + 5x2 ≤ −2
x1,x2 ≥ 0

Exercise 9.2. Put under the standard form:

P4 : Minimize −8x1 + 9x2 + 2x3 − 6x4 − 5x5
Subject to: 6x1 + 6x2 − 10x3 + 2x4 − 8x5 ≥ 3

x1,x2,x3,x4,x5 ≥ 0

Exercise 9.3. Consider the following two problems corresponding to Problems 9.2 and 9.3 of
the course. Prove that the first one is unfeasible and that the second one is unbounded.

Maximize 3x1 − x2
Subject to: x1 + x2 ≤ 2

−2x1 − 2x2 ≤ −10
x1,x2 ≥ 0

Maximize x1 − x2
Subject to: −2x1 + x2 ≤ −1

−x1 − 2x2 ≤ −2
x1,x2 ≥ 0

Exercise 9.4. Find necessary and sufficient conditions on the numbers s and t for the problem

P5 : Maximize x1 + x2
Subject to: sx1 + tx2 ≤ 1

x1,x2 ≥ 0
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a) to admit an optimal solution;

b) to be unfeasible;

c) to be unbounded.

Exercise 9.5. Prove or disprove: if the problem (9.1) is unbounded, then there exists an index
k such that the problem:

Maximize xk
Subject to: ∑n

j=1 ai jx j ≤ bi for 1≤ i≤ m
x j ≥ 0 for 1≤ j ≤ n

is unbounded.

Exercise 9.6. The factory RadioIn builds to types of radios A and B. Every radio is produced
by the work of three specialists Pierre, Paul and Jacques. Pierre works at most 24 hours per
week. Paul works at most 45 hours per week. Jacques works at most 30 hours per week. The
resources necessary to build each type of radio and their selling prices as well are given in the
following table:

Radio A Radio B
Pierre 1h 2h
Paul 2h 1h
Jacques 1h 3h
Selling prices 15 euros 10 euros

We assume that the company has no problem to sell its production, whichever it is.
a) Model the problem of finding a weekly production plan maximizing the revenue of Ra-

dioIn as a linear programme. Write precisely what are the decision variables, the objective
function and the constraints.

b) Solve the linear programme using the geometric method and give the optimal production
plan.

Exercise 9.7. The following table shows the different possible schedule times for the drivers
of a bus company. The company wants that at least one driver is present at every hour of the
working day (from 9 to 17). The problem is to determine the schedule satisfying this condition
with minimum cost.

Time 9 – 11h 9 – 13h 11 – 16h 12 – 15h 13 – 16h 14– 17h 16 – 17h
Cost 18 30 38 14 22 16 9

Formulate an integer linear programme that solves the company decision problem.

Exercise 9.8 (Chebyshev approximation). Data : m measures of points (xi,yi) ∈ Rn+1, i =
1, ...,m.
Objective: Determine a linear approximation y = ax+b minimizing the largest error of approx-
imation. The decision variables of this problem are a ∈ Rn and b ∈ R. The problem may be
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formulated as:
minz = max

i=1,...,m
{|yi−axi−b|}.

It is unfortunately not under the form of a linear program. Let us try to do some transformations.

Questions:

1. We call Min-Max problem the problem of minimizing the maximum of a set of numbers:

minz = max{c1x, ...,ckx}.

How to write a Min-Max problem as an LP?

2. Can we express the following constraints

|x|≤ b

or
|x|≥ b

in a LP (that is without absolute values)? If yes, how?

3. Rewrite the problem of finding a Chebyshev linear approximation as an LP.

9.4.2 Simplex
Exercise 9.9. Solve with the Simplex Method the following problems:

a.
Maximize 3x1 + 3x2 + 4x3
Subject to:

x1 + x2 + 2x3 ≤ 4
2x1 + 3x3 ≤ 5
2x1 + x2 + 3x3 ≤ 7

x1,x2,x3 ≥ 0
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b.
Maximize 5x1 + 6x2 + 9x3 + 8x4
Subject to:

x1 + 2x2 + 3x3 + x4 ≤ 5
x1 + x2 + 2x3 + 3x4 ≤ 3

x1,x2,x3,x4 ≥ 0

c.
Maximize 2x1 + x2
Subject to:

2x1 + 3x2 ≤ 3
x1 + 5x2 ≤ 1

2x1 + x2 ≤ 4
4x1 + x2 ≤ 5

x1,x2 ≥ 0

Exercise 9.10. Use the Simplex Method to describe all the optimal solutions of the following
linear programme:

Maximize 2x1 + 3x2 + 5x3 + 4x4
Subject to:

x1 + 2x2 + 3x3 + x4 ≤ 5
x1 + x2 + 2x3 + 3x4 ≤ 3

x1,x2,x3,x4 ≥ 0

Exercise 9.11. Solve the following problems using the simplex method with two phases.

a.
Maximise 3x1 + x2
Subject to:

x1 − x2 ≤ −1
−x1 − x2 ≤ −3
2x1 + x2 ≤ 4

x1,x2 ≥ 0

b.
Maximise 3x1 + x2
Subject to:

x1 − x2 ≤ −1
−x1 − x2 ≤ −3
2x1 + x2 ≤ 2

x1,x2 ≥ 0
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c.
Maximise 3x1 + x2
Subject to:

x1 − x2 ≤ −1
−x1 − x2 ≤ −3
2x1 − x2 ≤ 2

x1,x2 ≥ 0

9.4.3 Duality
Exercise 9.12. Write the dual of the following linear programme.

Maximize 7x1 + x2
Subject to:

4x1 + 3x2 ≤ 3
x1 − 2x2 ≤ 4

−5x1 − 2x2 ≤ 3
x1,x2 ≥ 0

Exercise 9.13. Consider the following linear programme.

Minimize −2x1 − 3x2 − 2x3 − 3x4
Subject to:

−2x1 − x2 − 3x3 − 2x4 ≥ −8
3x1 + 2x2 + 2x3 + x4 ≤ 7

x1,x2,x3,x4 ≥ 0

(9.27)

a) Write the programme (9.27) under the standard form.

b) Write the dual (D) of programme (9.27).

c) Give a graphical solution of the dual programme (D).

d) Carry on the first iteration of the Simplex Method on the linear programme (9.27).
After three iterations, one find that the optimal solution of this programme is x1 = 0,
x2 = 2, x3 = 0 and x4 = 3.

e) Verify that the solution of (D) obtained at Question c) is optimal.

Exercise 9.14. We consider the following linear programme.

Maximize x1 − 3x2 + 3x3
Subject to :

2x1 − x2 + x3 ≤ 4
−4x1 + 3x2 ≤ 2

3x1 − 2x2 − x3 ≤ 5
x1,x2,x3 ≥ 0

If the solution x∗1 = 0, x∗2 = 0, x∗3 = 4 optimal?
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Exercise 9.15. Prove that the following linear programme is unbounded.

Maximize 3x1 − 4x2 + 3x3
Subject to :

−x1 + x2 + x3 ≤ −3
−2x1 − 3x2 + 4x3 ≤ −5
−3x1 + 2x2 − x3 ≤ −3

x1,x2,x3 ≥ 0

Exercise 9.16. We consider the following linear programme.

Maximize 7x1 + 6x2 + 5x3 − 2x4 + 3x5
Subject to:

x1 + 3x2 + 5x3 − 2x4 + 2x5 ≤ 4
4x1 + 2x2 − 2x3 + x4 + x5 ≤ 3
2x1 + 4x2 + 4x3 − 2x4 + 5x5 ≤ 5
3x1 + x2 + 2x3 − x4 − 2x5 ≤ 1

x1,x2,x3,x4,x5 ≥ 0.

Is the solution x∗1 = 0,x∗2 = 4
3 ,x∗3 = 2

3 ,x∗4 = 5
3 ,x∗5 = 0, optimal?

Exercise 9.17. 1. Because of the arrival of new models, a salesman wants to sell off quickly
its stock composed of eight phones, four hands-free kits and nineteen prepaid cards. Thanks
to a market study, he knows that he can propose an offer with a phone and two prepaid cards
and that this offer will bring in a profit of seven euros. Similarly, we can prepare a box with a
phone, a hands-free kit and three prepaid cards, yielding a profit of nine euros. He is assured to
be able to sell any quantity of these two offers within the availability of its stock. What quantity
of each offer should the salesman prepare to maximize its net profit?

2. A sales representative of a supermarket chain proposes to buy its stock (the products, not
the offers). What unit prices should he negociate for each product (phone, hands-free kits, and
prepaid cards)?

Exercise 9.18 (FARKAS’ LEMMA). The following two linear programmes are duals of each
other.

maximize 0x subject to Ax = 0 and x≥ b
minimize − zb subject to yA− z = 0 and z≥ 0

Farkas’ Lemma says that exactly one of the two linear systems:

Ax = 0, x≥ b and yA≥ 0, yAb > 0

has a solution. Deduce Farkas’ Lemma from the Duality Theorem (9.10).
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Exercise 9.19. The following two linear programmes are duals of each other.

minimize y0 subject to yA≥ c
maximize cx subject to Ax = 0 and x≥ 0

A variant of Farkas’ Lemma says that exactly one of the two linear systems:

yA≥ c and Ax = 0, x≥ 0, cx > 0

has a solution. Deduce this variant of Farkas’ Lemma from the Duality Theorem (9.10).

Exercise 9.20 (Application of duality to game theory- Minimax principle (*)). In this problem,
based on a lecture of Shuchi Chawla, we present an application of linear programming duality
in the theory of games. In particular, we will prove the Minimax Theorem using duality.

Let us first give some definition. A two-players zero-sum game is a protocol defined as
follows: two players choose strategies in turn; given two strategies x and y, we have a valuation
function f (x,y) which tells us what the payoff for Player one is. Since it is a zero sum game, the
payoff for the Player two is exactly − f (x,y). We can view such a game as a matrix of payoffs
for one of the players. As an example take the game of Rock-Paper-Scissors, where the payoff
is one for the winning party or 0 if there is a tie. The matrix of winnings for player one will
then be the following:

A =




0 −1 1
1 0 −1
−1 1 0





Where Ai j corresponds to the payoff for player one if player one picks the i-th element and
player two the j-th element of the sequence (Rock, Paper, Scissors). We will henceforth refer
to player number two as the column player and player number one as the row player. If the row
player goes first, he obviously wants to minimize the possible gain of the column player.

What is the payoff of the row player? If the row player plays first, he knows that the column
player will choose the minimum of the line he will choose. So he has to choose the line with
the maximal minimum value. That is its payoff is

max
i

min
j

Ai j.

Similarly, what is the payoff of the column player if he plays first? If the column player plays
first, the column player knows that the row player will choose the maximum of the column that
will be chosen. So the column player has to choose the column with minimal maximum value.
Hence, the payoff of the row player in this case is

min
j

max
i

Ai j.

Compare the payoffs. It is clear that

max
i

min
j

Ai j ≤min
j

max
i

Ai j.

The minimax theorem states that if we allow the players to choose probability distributions
instead of a given column or row, then the payoff is the same no matter which player starts.
More formally:
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Theorem 9.14 (Minimax theorem). If x and y are probability vectors, then

max
y

(min
z

yT Ax) = min
x

(max
y

(yT Ax)).

Let us prove the theorem.

1. Formulate the problem of maximizing its payoff as a linear program.

2. Formulate the second problem of minimzing its loss as a linear program.

3. Prove that the second problem is a dual of the first problem.

4. Conclude.

Exercise 9.21. Prove the following proposition.

Proposition 9.15. The dual problem of the problem

Maximize cT x subject to Ax≤ a and Bx = b and x≥ 0

is the problem

Minimize aT y+bT z subject to AT y+BT z≥ c and y≥ 0,z≥ 0.

9.4.4 Modelling Combinatorial Problems via (integer) linear program-
ming

Lots of combinatorial problems may be formulated as linear programmes.

Exercise 9.22 (Minimum vertex cover (Polynomial < duality)). A vertex cover is a set C of
vertices such that all edges e of E are incident to at least one vertex of C. The Minimum vertex
cover problem is to find a cover C of minimum size.

1. Express the minimum vertex cover problem for the following graph as a linear program:

F

A

E D

CB

2. Express the minimum vertex cover problem for a general graph as a linear program.

Exercise 9.23 (Minimum Edge Cover). Adapt the linear program giving the minimum vertex
cover to the minimum edge vertex cover problem.



154 CHAPTER 9. LINEAR PROGRAMMING

Exercise 9.24 (Matching for Bipartite Graphs). Adapt the linear program giving the matching
of maximum cardinality of a general graph to a bipartite graph.

Exercise 9.25. Considering the graph

A
|
B–D
| /
C

what does the following linear program do?

min xA + xB + xC + xD
subject to

xA + xB ≥ 1
xB + xD ≥ 1
xB + xC ≥ 1
xC + xD ≥ 1

xA ≥ 0,xB ≥ 0,xC ≥ 0,xD ≥ 0

Exercise 9.26 (Maximum cardinality matching problem (Polynomial < flows or augmenting
paths)). Let G = (V,E) be a graph. A matching M ⊆ E is a collection of edges such that every
vertex of V is incident to at most one edge of M. The maximum cardinality matching problem
is to find a matching M of maximum size.

Express the maximum cardinality matching problem as a linear program.

Exercise 9.27 (Maximum clique (NP-complete)). A clique of a graph G = (V, E) is a subset C
of V, such that every two nodes in V are joined by an edge of E. The maximum clique problem
consist of finding the largest cardinality of a clique.

Express the maximum clique problem as a linear program.
Hint: think of a constraint for nodes not linked by an edge.

Exercise 9.28 (Modeling). A university class has to go from Marseille to Paris using buses.
There are some strong inimities inside the group and two people that dislike each other cannot
share the same bus. What is the minimum number of buses needed to transport the whole group?
Write a LP that solve the problem. (We suppose that a bus does not have a limitation on the
number of places. )

Exercise 9.29 (French newspaper enigma). What is the maximum size of a set of integers
between 1 and 100 such that for any pair (a,b), the difference a-b is not a square ?

1. Model this problem as a graph problem.

2. Write a linear program to solve it.
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Exercise 9.30 (Maximum independent set (NP-hard)). An independent set of a graph G = (V, E)
is a subset I of V , such that every two nodes in V are not joined by an edge of E. The maximum
independent set problem consist of finding the largest cardinality of an independent set.

Exercise 9.31 (Minimum Set Cover (NP-hard)). Input: A universal set U = {1, ...,n} and a
family S of subsets S1, . . . , Sm of U.
Optimization Problem: What is the smallest subset of subsets T ⊂ S such that ∪ti∈T ti = U?
Decision problem: Given an integer k, does there exists a subset of T of cardinality k, such that
∪ti∈T ti = U? This decision problem is NP-complete.
Question: Write the set cover problem as a linear program.
Alternative question: (easier, give the linear program) Explain what is doing each line of the
program.

Exercise 9.32 (Example for the Maximum Set Packing). Suppose you are at a convention of
foreign ambassadors, each of which speaks English and other various languages.

- French ambassador: French, Russian

- US ambassador:

- Brazilian ambassador: Portuguese, Spanish

- Chinese ambassador: Chinese, Russian

- Senegalese ambassador: Wolof, French, Spanish

You want to make an announcement to a group of them, but because you do not trust them,
you do not want them to be able to speak among themselves without you being able to under-
stand them (you only speak English). To ensure this, you will choose a group such that no two
ambassadors speak the same language, other than English. On the other hand you also want to
give your announcement to as many ambassadors as possible.

Write a linear program giving the maximum number of ambassadors at which you will be
able to give the message.

Exercise 9.33 (Maximum Set Packing (Dual of the set cover problem)). Given a finite set S and
a list of subsets of S.
Decision problem: Given an integer k, do there exist k pairwise disjoint sets (meaning, no two
of them intersect)?
Optimization problem: What is the maximum number of pairwise disjoint sets in the list?

9.4.5 Modelling Flow Networks and Shortest Paths.
Definition 9.16 (Elementary flow network). A flow network is a four-tuple N = (D,s, t,c)
where

- D = (V,A) is a directed graph with vertice set V and arc set A.
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- c is a capacity function from A to R+∪∞. For an arc a ∈ A, c(a) represents its capacity,
that is the maximum amount of flow it can carry.

- s and t are two distinct vertices: s is the source of the flow and t the sink.

A flow is a function f from A to R+ which respects the flow conservation constraints and
the capacity constraints.

Exercise 9.34 (Maximum flow (Polynomial < Ford-Fulkerson)). Write the linear program solv-
ing the maximum flow problem for a flow network.

Exercise 9.35 (Multicommodity flow). Consider a flow network N = (D,s, t,c). Consider a set
of demands given by the matrix D = (di j ∈ R; i, j ∈ V, i �= j), where di j is the amount of flow
that has to be sent from node i to node j. The multicommodity flow problem is to determine
if all demands can be routed simultaneously on the network. This problem models a telecom
network and is one of the fundamental problem of the networking research field.

Write a linear program that solves the multicommodity flow problem.

Exercise 9.36 (s−t shortest path). Let D = (V,A, l) be a weighted digraph. l is a length function
from A to R+. For a ∈ A, l(a) is the length of arc a. Let s and t two distinguised vertices.

Write a linear program that finds the length of a shortest path between s and t.

Exercise 9.37 (How far are you from anybody in Facebook?). In graph theory, the distance
between two vertices in a graph is the number of edges in a shortest path connecting them. We
consider the graph of Facebook members. Two people are at distance one if they are friends.

The eccentricity ε of a vertex v is the greatest distance between v and any other vertex. It
can be thought of as how far a node is from the node most distant from it in the graph. The
diameter of a graph is the maximum eccentricity of any vertex in the graph. That is, it is the
greatest distance between any pair of vertices.

1. Write an LP to compute the eccentricity of a given vertex.

2. Write an LP which computes the diameter of the Facebook graph.

Exercise 9.38 (Minimum Cut Problem).

Definition 9.17 (Cut - Reminder). In a flow network N = (G,s, p,c) a cut is a bipartition
C = (Vs,Vp) of the vertices of G such that s ∈Vs and p ∈Vp. The capacity of the cut C, denoted
by δ(C), is the sum of the capacities of the out-arcs of Vs (i.e., the arcs (u,v) with u ∈ Vs and
v ∈Vp).

Write a linear program that solves the minimum cut problem.
Hint: Use variables to know in which partition is each vertex and additional variables to know
which edges are in the cut.



Bibliography

[1] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combinatorial
Optimization. Wiley-Interscience, 1998.
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