
CONFIGURATION MANAGEMENT OF THE CONTROL SYSTEM

Vincent Hardion, Darren Paul Spruce, Mirjam Lindberg, Antonio Milan Otero, Julio Lidon-Simon,
Jerzy Jan Jamroz, Andreas Persson, MAXIV Laboratory, Lund, Sweden

Abstract
The control system of big research facilities like

synchrotron involves a lot of work to keep hardware and
software synchronised to each other to have a good
coherence. Modern Control System middleware
Infrastructures like Tango use a database to store all
values necessary to communicate with the devices.
Nevertheless it is necessary to configure the driver of a
PowerSupply or a Motor controller before being able to
communicate with any software of the control system.
This is part of the configuration management which
involves keeping track of thousands of equipments and
their properties. In recent years, several DevOps tools like
Chef, Puppet, Ansible or SpaceMaster have been
developed by the OSS community. They are now
mandatory for the configuration of thousands of servers to
build clusters or cloud servers. Define a set of coherent
components, enable Continuous Deployment in synergy
with Continuous Integration, reproduce a control system
for simulation, rebuild and track changes even in the
hardware configuration are among the use cases. We will
explain the strategy of MaxIV on this subject, regarding
the configuration management.

INTRODUCTION
The term configuration refers to the actions that need to

be taken for a software to run in a coherent state with its
environment without any intrinsic changes involving
development.

Device Re-partition
The MAX IV control system is based on Tango for the

middleware layer and Sardana for the application layer,
with it's Taurus Framework as the graphical user interface
and additionally spock as the command line interface.

Each beamline and the Machine will have their own
control system on different separated networks.

The linac will be composed by around 1500 Tango
devices to control 75 different types of device. A majority
of the physical values will be monitored with PLCs and
also, most of the controllers will be driven by TCP/IP
communication.

Configuration of the Control System
The different types of software in the MAX IV Control

System consist of a set of operating systems, network
services and base frameworks such as Tango, device
drivers, libraries, Tango devices and applications such as
GUIs, Sardana macros and controllers which all need to
be deployed and configured before usage. The
configuration is not only necessary for the installation but
also during the lifetime of each component when a new
version update needs to activate new functionalities.

Any difference of configuration between computers is a
potential risk the consequence being to change the
behaviour of a piece of software. To avoid these
differences, a best practice in the Continuous Integration
process is to compile and test in the environment closest
possible to the target platform[1]. This can be done by
cloning a production server but a preferable method is to
track the minimal dependencies and configuration.

EXPERTISE DEVELOPMENT AS
STRATEGY, AUTOMATION AS A TOOL
The first principle for the long term strategy of the

Kontrol and IT Support (KITS) group at MAX IV is to
develop the expertise of the group. This is inspired by the
Toyota way[2]. One action involves eliminating repetitive
manual interventions which in the end bring little value.

Defining the necessary entry points of configuration is
one of the tasks involved in building a piece of software.
During the development, the configuration of the test
instance is done manually. But on a deployment-wide
scale each manual operation is (time consuming). This is
a common pattern when the information must pass
through different levels of the control system.

For example a Tango device is developed to
communicate with a PLC, a field bus controller, but each
instance is configured differently. The MAX IV Linac
vacuum system is managed by several Allen Bradley PLC
controllers. Each Tango device needs to be configured
with the IP address of the PLC but also with a list of tags
to expose around 1000 parameters. The automation of this
configuration is going to dramatically reduce a repetitive
manual task.

Conditions
There are several conditions to fulfill in order to

achieve the automatic deployment of the configuration:
• the information needs to be centralised
• the medium has to be independent from the system

that is to be configured.

Pros
Several advantages to have automation of the

configuration are:
• to greatly reduce the time to deploy
• to keep track of the essential configuration version if

a content versioning system is used (GIT, SVN, ...).
• to keep coherence between configuration data and

the process using it by considering the version of a
software component as part of the configuration
management.

• apply an additional configuration entry while at the
same time being able to upgrade to the last version of
the software which is able to process it (e.g. new
property for a Tango device server, ...)

THPPC013 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1114C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Infrastructure

• to make it easy to refactor the data organisation
applying change incrementally, reducing the risk of
errors.

For the Vacuum system of the MAX IV linac, we use a
generic Tango device, PyAttributeProcessor, that exposes
any PLC parameter as an attribute. We can first deploy
one Tango Device per section including pressures and
temperatures and finally after the commissioning decide
to have one Tango device for the entire Linac with all of
the pressure values and another Tango device for the
temperature values.

CONFIGURATION MANAGEMENT
STRATEGY

“Software Configuration Management (SCM)[1] is the
task of tracking and controlling changes in the software,
part of the larger cross-discipline field of configuration
management.”[3]. From the OS to the Tango Device all
layers have to be managed before it is possible to truly
control the configuration of the Control System.

Operating System
The Operating System was one of the first software

layer employing SCM tools to control third party
application installation and to ensure coherence. Besides
package managers like RPM or APT for Linux which
control the version of software components and their
initial configuration, some independent OS tools were
developed to manage the configuration of distributed
software during its entire lifecycle. CFEngine[4] was the
first modern open source tool released in 1993 and is part
of the top 3 used in the OSS sphere together with
Puppet[5] and Chef[6].

For the MAX IV Control System several criteria have
been defined for the choice of the configuration
management software:
• Open Source: with an established community and

support from a consultant company
• Portability between Linux distributions: the standard

OS of the MAX IV control system is CentOs 6 but
some equipment comes with other flavours of
embedded Linux.

• Integration: as much as possible with Python as it
will represent ¾ of the future developments of the
CS team. (But in any case the language used by the
software itself could not be a deal breaker).

• Evolving: to be able to cover the configuration of the
entire control system layer.

• Developer friendly: to reduce the amount of system
administration for the control engineer.

For the functionality:
• Idempotent: the capacity to check if a system is

compliant with the reference without needing to
modify it. The same operation applied several times
has the same consequence as if applied once.

• Stateless: the application should not leave tracks in
the operating system to avoid any memory effects.
The configuration is held in one place.

• Small Footprint: the deployment is reduced to a
minimum of servers to avoid spending much time
managing the configuration management system.
The system should come with a minimal dependency
set.

 As the development of the control system software at
MAX IV is based on a Lean[2] strategy, the preference is
for the tools with minimal functionality corresponding to
the specification. The complexity only grows with tools
that add a lot of additional, non-relevant functionality.

Tools Choice
Spacewalk[7] supported by RedHat has been the first

tool studied to understand the benefits of the
configuration management for the control system. Its
functionality extends beyond the configuration
management scope by also providing monitoring, and OS
installation. In parallel, Chef and Puppet were those tested
from the list of possible tools[8] as they are supported by
a huge community. These alternatives focused only on the
configuration, without any database requirement and both
are portable (Ruby based). Both can work in push only
mode (in contrast to client/server mode) with a small
footprint on the managed servers. They provide a
complete set of functionality which provide the checking
of targeted systems with the referential configuration. The
installation and use of these tools requires a solid
knowledge of the Ruby platform, thus increasing the
learning curve. So, the Python based tools have been
investigated to see if they could provide the same
functionality. SaltStake[9] and Ansible[10] are 2 possible
solutions but only the last has been tested in real
conditions. The quick start and the simplicity differs from
the previous tools: Ansible needs only SSH and Python,
installed by default in recent Linux distributions.

ANSIBLE
With Ansible the configuration is written in plain text

and only a command line is necessary to run the
application in parallel on all controlled computers.

Inventory
A text file so-called “Inventory” keeps the list of

computers and their roles inside the control system.

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC013

Control System Infrastructure

ISBN 978-3-95450-139-7

1115 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 1: Ansible Inventory file of MAX II.

The Figure 1 shows how we have managed to configure
a Machine network and the different roles in a Tango
control system which are shared with the beamline
networks:
• the Tango database,
• the server which runs the Tango devices,
• the client computer which runs GUIs and CLIs.
The inventory variables are used to distinguish the

configuration between the control systems. In the Figure
1, “[machine:vars]” contains the variable “tango_host”
which will be applied to any control system computers of
the Machine.

Ad-hoc Command
The ad hoc command is useful to complete an action on

several computers in the same time. Ansible uses the
inventory file to include the computers in the execution
list. Ansible comes with a predefined list of action to
execute a shell command, to install a package, to start a
service, etc. There are also third party modules for
managing specific applications such as MySQL.

The Figure 2 shows an example of how to check the
Red Hat version of the control system computers. Ansible
continues the execution of this command, even if one
computer is unreachable and until each computer has
returned an answer.

Figure 2: Ad hoc Ansible command to check the CentOS
version.

Playbook
An Ansible playbook is used to keep the different

actions needed to reach a configuration state instead of
repeating them manually with an ad hoc command. The
playbook is used with the inventory file during the
execution of Ansible. The playbooks are written in yaml
format.

The Figure 3 shows the definition of one playbook to
check or to set the common configuration of Tango for a
database, a server or a client. Here the “tango-common”
RPM package and the TANGO_HOST environment
variable represent the minimal configuration.

Figure 3: Playbook for checking the TANGO_HOST
value.

THPPC013 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1116C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Infrastructure

Figure 4: execution of the tango common playbook.

A complete report of what has been changed to reach
the expected configuration is displayed at the end of the
playbook execution. In the Figure 4 the green line
indicates that no action has been done as the current
configuration of the control system computer is correct.

FUTURE DEVELOPMENT
The decision to continue the test in depth has been

taken after installing Ansible and successfully completing
the configuration of 3 laptops with all the CS client
applications in only 1 day of development. The next days
we were able to control most of the MAX II Machine and
beamlines.

Automatic Deployment
The ability of Ansible to work with the application

layer gives the possibility to deploy any software items.
By setting the continuous Integration server to execute an
Ansible playbook any in-house developments can be
deployed automatically after their release.

Tango Configuration through Ansible
The next step will be to use the Ansible model of

configuration management to set up the Control System.
Thanks to the plugin system of Ansible, which can be in
Python or other languages, we will be able to connect
with the Tango tools. The idempotent behaviour will be
the main task to adapt the existing components.

This could lead to a perfect coherence between the
version of a software, the location where it is running and
the correct configuration related to the local hardware.

CONCLUSION
The first installation of the MAX IV Control System,

planned for Q4 2013, will involve 1500 Tango devices to
configure within a short time frame. For this the first
priority was to establish a process of gathering the
configuration information and then how to use them to

deploy the Tango representation of the hardware
equipments. After knowing only how to proceed manually
the software engineers are currently developing an
automatic way to configure an entire Tango Database.

We found some obstacles to the full automation: some
equipment comes with proprietary and graphical utilities,
mandatory for changing the IP address but difficult to
integrate without API in Ansible.

Ansible has already been executed in the production
server to change the MAX II’s Machine Tango database
computer and by consequence to change the
TANGO_HOST every where. Also it helped a lot for the
migration of Tango to the version 8.

Because ~10% of our time is allocated to infrastructure
improvement, Ansible allows us to iterate step by step
adding new computers or new services when needed. In
this context we will try to fully integrate the Tango
configuration to Ansible to keep all configuration in one
single point.

REFERENCES
 [1] V. Hardion et al, Assessing Software Quality at Each

Step of its Lifecycle to Enhance Reliability of
Control Systems, SOLEIL, Gif-sur-Yvette France,
ICALEPCS’11, Grenoble (2011)

 [2] The Toyota Way, Jeffrey Liker, McGraw-Hill
Education (India) Pvt Limited, Mar 1, 2004

 [3] h t t p : / / e n . w i k i p e d i a . o r g / w i k i /
Software_configuration_management

 [4] http://cfengine.com/
 [5] http://puppetlabs.com/
 [6] http://www.opscode.com/chef/
 [7] http://spacewalk.redhat.com/
 [8] h t t p : / / e n . w i k i p e d i a . o r g / w i k i /

Comparison_of_open_source_configuration_manag
ement_software

 [9] http://saltstack.com/
[10] http://www.ansibleworks.com/

Proceedings of ICALEPCS2013, San Francisco, CA, USA THPPC013

Control System Infrastructure

ISBN 978-3-95450-139-7

1117 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

