DP2 Report: A collaborative text editor

Eleftherios Ioannidis, elefthei@mit.edu
Tal Tchwella, tchwella@mit.edu

Larry Rudolph, R0O1

May 25, 2012



1 Introduction

This paper describes the architecture of a collaborative text editor and the decisions that
informed its design. At a basic level, each document is shared by a group, and the text
editor allows multiple users, who are part of the same group, to work concurrently on the
same document. In the proposed design, users can edit documents whether online or offline,
and can join and leave groups at will. The system supports pairwise merging of documents,
done through several possible connectivity scenarios. The merge process is automated and
minimizes the need for users to explicitly resolve conflicts between document versions. Users
can also name and commit a specific version of a document. Redundancy and use of a write-
ahead log provide fault tolerance for the aforementioned features.

Keen attention to modularity played a large part in the design: the use of interfaces
not only shields the user from the inner workings of the text editor, but separates the text
editor’s implementation from the rest of the system, reducing complexity. Some reasonable
constraints and assumptions led to further sweeping simplifications in the design without
significantly reducing usability. The end result is a collaborative text editor that is both
simple to use and relatively simple to implement.

2 Design

The design description outlines (1) interfaces, (2) data structures, (3) logging, (4) merging,
(5) commits, and (6) dynamic group membership.

2.1 Interfaces

The text editor has access to two interfaces - one for document storage, the other for com-
munication with other users in the same editing group. Communication to both interfaces
is transparent to the text editor.

2.1.1 Network Interface

The design provides a network interface, which will handle read(), write() and get_online()
operations. All operations are handled using RPC calls and return appropriate error codes
when they terminate. In case of direct connectivity, all functions work the same way assum-
ing there is a working RPC socket established between two users.

The text editor will implement two possible network connectivity scenarios: group con-
nections, and direct connections. In a group connection, any group member connected to the
Internet is online and also connected to other online group members. On the other hand, a
direct connection only requires a physical connection between two members of a document
group, and does not require Internet connectivity.

The design assumes each user has a unique IP address. Thus, each user is identified by
a UUID (Unique User ID), which is the user’s IP address.



2.1.2 read(UUID, file, file_cursor, buffer)

Performs a remote read() on the designated file belonging to the user with the given UUID.
The read starts at the file_cursor and returns read data in buffer. The number of read bytes
is equal to the size of the buffer. Figure 3.1.2 shows all possible error codes.

2.1.3 write(UUID, file, file_cursor, buffer)

Performs a remote write() on the designated file belonging to the user with the given UUID.
The write starts at the file_cursor and writes all data in buffer in the file. Again, figure 3.1.2
shows all possible error codes.

Return | Meaning
0 Returned successfully
1 User unreachable
2 Transaction incomplete
3 Network down
4 File not found

Figure 1: Possible return values of read() and write(), and their significance.

2.1.4 get_online(UUIDS|])

Sends a ping to everyone in the given list of group members (UUIDS[]) and returns the IP
addresses of the ones available, via the network interface used. The network interface makes
no assumptions about the state of UUIDS]]; instead, group membership is stored in each
document, and passed whenever this operation is invoked.

2.1.5 Storage Interface

The design also provides several storage interfaces, allowing users to save their documents in
different locations, such as local storage or on ”cloud services.” Implementation of the local
storage interface is considered sufficient. In the local storage implementation, users store
their own version of each shared document and its associated log on local disk. Each user’s
shared documents and logs are placed in a directory that serves as a chroot jail, to prevent
both unauthorized accesses to the user’s file system and unauthorized changes to the shared
documents by outsiders.

2.2 Data Structures

The data structures that make up the document are organized hierarchically. The text
editor contains one or more open documents. Each document contains an ordered list of
paragraphs, and each paragraph contains an ordered list of words. These data structures
are derived from a common abstract class. Figure 2 shows these different classes.



Document contents consist only of plaintext. Paragraphs are separated by new-line
characters, and each word is the concatenation of contiguous non-whitespace and contigu-
ous whitespace characters. Paragraphs always contain an empty word which marks the end
of the paragraph. Words never contain new-line characters.

The text editor treats the plaintext and data structure representations of the document
as equivalent. In particular, data structures are updated to accurately represent the docu-
ment during a save or merge.

All data structures share a globally unique identifier (GUID), a checksum, and a modifi-
cation flag. The document itself stores a hash table of version numbers (i.e. a version vector),
while each paragraph and word stores an index indicating its position in the document.

General Information

GUID: byte

Checksum: byte

htversion

+getGUID() : byte
+getChecksum() : byte
+getversion()
+setChecksum(checksum:byte)|
+setVersion()

Document Paragraph Word
-Paragraphs: Paragraph — — — =|-Words:Word |==—— >|+data: string
+insertParagraphInFront(p:Paragraph): void +insertwordInFront(w:word): void
+insertParagraphIngnd(p:Paragraph) +insertWordInEnd(w:wWord)
+insertParagraphAtLocation(p:Paragraph,index:int): void +insertWordAtLocation(wi:Word,index:int): voifd
+removeParagraphAtlocation{index:int) +removeWordAtlLocation(index:int)

Figure 2: UML diagram of the document, paragraph and word classes
and the abstract class they all inherit from.

2.2.1 GUID

Each GUID is a concatenation of the owner’s UUID with the GUIDs of all parent classes
as well as a unique label associated with the data structure’s type. The document label is
randomly generated and immutable once a document is created. The paragraph and word
labels are generated by two separate integer counters local to each user and initialized to
zero; the counters increment by one whenever a new paragraph or word is inserted. Note
that a paragraph’s GUID is distinct from its index, and likewise for words. Figure 3 shows
how inheritance rules provide a GUID for each object.

2.2.2 Checksum

Every data structure corresponds to a contiguous subset of plaintext characters in the docu-
ment. Checksums are calculated simply by taking an MDS5 hash of the plaintext that defines
a given data structure. A word’s checksum is equivalent to the checksum of the string of
characters that make up that word.



User Document Paragraph Word
2 Ty
ﬁ - 1 D[ParS —Pp index=42

uuibD:18 24,5669 GUID:18.24.56.69:1 GUID: 18.24.56.69:1:5 GUID: 18.24,56.69:1:5:42

Figure 3: An object’s GUID is the concatenation of the owner’s UUID, parents’ GUIDs
and a unique object label.

2.2.3 Version Vector

The document contains a hash table whose keys correspond to the UUID of each user
currently sharing the document. There are as many keys as group members.

2.2.4 Modification Flag

Every data structure contains a boolean flag whose value is true if the data structure was
modified since the last merge. This flag is initialized to false.

2.3 Logging

Each user’s text editor maintains a separate write-ahead log (WAL) for each shared doc-
ument. The WAL is crucial for completing merges and commits as well as improving the
system’s robustness.

2.3.1 Operations

The WAL tracks what changes are made to the document. In particular, the following
actions are recognized:

1. Inserting a new paragraph at a known index.

2. Deleting a paragraph.

3. Inserting a sequence of one or more words at a known index.

4. Deleting a sequence of one or more words from a paragraph at a known index.
5. Moving a paragraph from one index to another.

In turn, these operations define the log entry format. A log entry consists of the type
of operation performed, the GUID of the paragraph being modified/added/deleted, the
paragraph/word index where the operation is performed, number of words inserted/deleted
if applicable, the resulting paragraph checksum and a timestamp. If multiple paragraphs
are instantly added or deleted, the log will consider this as if one paragraph at a time was
added or deleted.

Given the difficulty of distinguishing paragraph moves from deletes and inserts, the system
defines a move as deletion of a paragraph and insertion of the exact same contents at a
different paragraph index. When this occurs, the inserted paragraph will have the same
GUID as the deleted paragraph.



2.3.2 Logs and Saving

For each open document, the text editor maintains a separate temporary log. Changes made
by a user are automatically recorded in memory. These records are flushed to the temp log
in local storage at some configurable, fixed time interval.

During a save, the user’s text editor is blocked until the save completes or fails. Several
steps are needed when the user saves a document:

1. Any unsaved changes in memory are flushed to the temp log. A checkpoint entry is
appended to the log to indicate that all changes are recorded in local storage.

2. A shadow copy of the document is created, and the contents of the temp log are
appended to the shadow copy’s document log.

3. The text editor scans the log entries and sets the modification flag to true for each
new or modified data structure and its parents.

4. Checksums are recalculated across the board, and appended to the shadow copy’s
document log. Another checkpoint entry is appended to the temp log; this is the
save’s commit point.

5. Finally the old document is deleted, and replaced by the shadow copy. A final check-
point is written to the new document’s log, and then the temp log is cleared.

The above scheme tolerates system failure at multiple points:

e If the system crashes before the user saves, some, if not all progress can be recovered
by fast-forwarding through the temp log. This is also the case if the system crashes
before step 1 of the save completes.

e If the system crashes during a save, but before the commit point, the save process can
be restarted.

e If the system crashes after the commit point, recovery is trivial.

2.4 Merging

Any two users who are connected to each other can merge their local changes to produce
a single unified document version. Merges must start manually: one user sends a merge
request to another user, who must accept before the users merge. Only two users can merge
at a time; both users must also save their document before the merge can begin. A user
automatically rejects other merge requests if the user is already in the middle of a merge.

Once a merge begins, both users’ text editors are blocked until the merge terminates,
successfully or otherwise. Although slightly inconvenient, it greatly reduces the complexity
of the merge implementation.

When a merge starts, each user’s client creates an empty merge log. Once filled, the
merge log will contain all changes that need to be applied to the document in order to suc-
cessfully merge.



A merge outcome is determined by comparing the version vectors in the users’ docu-
ments. Figure 4 illustrates one possible scenario. Define version(U) = n, such that user A
has version n of user U’s changes to the document, and U is some key in A’s version table.
Before comparing versions, if U’s document’s modification flag is set to true, the value of
versiony (U) is temporarily incremented by one during the merge. If a merge is successful,
the new value of versiony(U) is made permanent and the modification flag is set back to
false.

Depending on what states the documents are in, a specific merge outcome is decided.
Possible outcomes are described below:

2.4.1 Casel

Suppose without loss of generality that versiona(A) = versionp(A). If versiona(B) =
versiong(B), then the documents are equivalent and a merge need not take place. Other-
wise, versiona(B) < versiong(B) and therefore B’s document version should overwrite A’s
version. Then, the contents of B’s document are transferred in their entirety to A, whose
client writes the document to a shadow copy. User A then compares the checksums and
version vectors of the shadow copy and B’s document. If both agree, A writes a checkpoint
in the old document’s log, sends an acknowledgement of success back to B, and replaces
the old document with the shadow copy. A final merge checkpoint, i.e. the merge’s commit
point, along with the new version vector are written in both document logs and finally, both
clients clear their merge logs and unblock the text editor.

Alice’s Hash Table: {"Alice’: 2. "Bob': 5, "Charlie’: 3, ‘David’: 3}
Bob's Hash Table: {"Alice’: 2, 'Bob': & "Charlie’: 8 ‘David’: 3}
+1 +1

Mew Hash Table for both users: {"Alice’: 3, ‘Bob’: 7, ‘Charlie’: 8, ‘Dravid”: 3}

Figure 4: Instead of using IP addresses as keys, names are used in
the example to better illustrate the scenario of updating version
numbers. The version numbers are maxed, to produce a new hash
table for both users.

If the checksums do not agree, the overwrite process retries up to three consecutive times.
If the checksums still never match, the merge process aborts and both users are alerted of the
error. The merge is aborted, both users are unblocked, and all merge logs and any shadow
copies are deleted.

2.4.2 Case 2

Another possibility is that versiona(A) > versiong(A), while version(B) < versiong(B).
In this case, the document checksums are compared next. If the checksums match, the
changes in A’s version and B’s version are equivalent. The new version vector should be the
max of each of A and B’s version numbers.



Otherwise, A and B must backtrack through their logs to find the latest merge checkpoint
in which version 4(U) = versiong(U) for some key U in the version vector. From that point,

the merge proceeds by rolling forward from each checkpoint to the end of the associated log.
Figure 5 shows the pseudo code for this merging process.

Y
AN Compare modified
P
> paragraphs in A with
records in Log B
Log A Log B

Paragraph
GUID in
Log A also
inLog B

Auto-merge  ——7

Resolve Conflict

A

A's paragraph
checksum
B's paragraph
checksum

False

Figure 5: Flowchart of the merge process. Conditions are rhom-

boids and actions are rectangles. Arrows indicate code execution
flow.



This particular merge process has the following steps:

1. Each user creates his own shadow copy of the checkpoint document version. Merged
changes are applied to the shadow copies.

2. Both logs are scanned for move records. If the same paragraph was moved by both
users, that paragraph is added to the conflict list. The conflict list contains sets of two
or more changes that affect the same GUID.

All other move records are merged automatically, and are ignored in future steps.

3. A’s modifications are compared against B’s modifications. If user A modified a para-
graph whose GUID appears in any of B’s log records, all matching log records are in
conflict, and are added to the conflict list.

4. Step 2 is repeated for any records in B’s log that were not added to the conflict list.

5. After all possible conflicts are found, each set in the conflict list is checked. If the
checksums agree, there is no conflict. If none of A’s inserts have the same index as
any of B’s inserts or are overlapped by B’s deletes, none of A’s deletes overlap any
of B’s inserts or deletes, and vice versa for B and A, these changes can be merged
without conflict. Otherwise, a conflict is signaled and the merge starter must resolve
this manually. After a manual conflict resolution, a checkpoint is written to each merge
log.

6. All remaining changes not included in the conflict list are automatically merged.

7. Finally, the version numbers of both users are matched as shown in figure 4. The
checksums of both shadow documents are compared and the merge process is finalized
as in case 1. This time, both users send success messages to each other.

2.4.3 Unsuccessful Merges

Since the merge process uses shadow copies, both users can abort the merge at any time
while keeping their files unchanged.

Merges can also fail for unexpected reasons storage failure, network failure, log failure, check-
sum errors, and incomplete transfers. In these cases, all merge logs and shadow copies must
be deleted. If one of the users crashes during the merge, then the merge timeouts. The other
user’s merge log is erased, and his text editor is unblocked.

One problematic scenario occurs when one of the users crashes between receiving the
checksum verification, and saving the actual shadow file as the primary file. To address
this, the pre-merge document’s log tracks the progress of the merge. If the user received
a verification, the client should be able to see that the commit was successful or not, and
then perform the necessary steps to recover. Either the shadow copy is saved as the primary
copy, or the shadow copy is deleted.



2.5 Commits

The text editor allows a group’s users to specify commit points, or canonical versions of the
group’s document.

Commits are uniquely named, immutable, and readable on local storage by all group
members. For any commit, each user has the exact same copy. Commits are stored in a
hash table whose keys are the names of each commit, and whose values are the document
contents identified by the associated commit.

The proposed system implements commit points with a standard two-phase commit
(2PC) protocol. To simplify the commit process and any reasoning about its correctness, all
group members must be online during the entirety of any commit. The authors believe this
requirement does not pose an unreasonable burden on usability.

2.5.1 Phase 1: Starting a Commit

Only when all the users in document’s group are online, connected to each other, a member
of the group can initiate a commit by assigning a name to his local version of the doc-
ument. The initial committer broadcasts a commit prepare message to every other user;
the message’s contents include a PREPARE header, the identity of the initial committer,
the commit name, and lists of the document’s checksums and version vectors, ordered such
that a given index refers to the correct pairing of checksum and version vector. The initial
committer’s document is locked until the entire commit process terminates.

Users (everyone else besides the commit initiator) vote to COMMIT or ABORT upon
receiving a commit prepare message. After receiving the prepare message, a user can only
vote if it isn’t currently blocked (for example, in the middle of merging with another client);
otherwise, the user waits for the blocking action to finish before voting.

Voting is automatic. A user votes COMMIT if and only if the commit version and local
version have equivalent checksums and version vectors. Else, a user votes ABORT for any
of the following reasons:

1. The commit version and local version are not equivalent.
2. A hardware or OS failure prevents the client from processing the PREPARE message.
3. The user timed out because a blocking action took too long to finish.

Upon deciding what to vote, a user records its decision in the log, and then sends an ac-
knowledgement back to the initial committer, containing an ACK header, the user’s identity
and the value of the vote. If the vote is COMMIT, the user’s text editor is blocked for the
remainder of the commit process.

If the user does not respond within five minutes, the initiator will automatically assume
the user voted an ABORT, due to a failure of timeout. Since all users are supposed to be
online at the time of the commit, a failure to receive a response from one of the users means
that the user crashed, and therefore the commit cannot take place at that time.



2.5.2 Phase 2: Finishing a Commit

When the original committer receives everyone’s vote, the final action is decided as follows:
only if everyone votes COMMIT, the final action is a COMMIT; else, the final action is
ABORT. If the original committer times out, the final action defaults to ABORT. The final
action is broadcasted to each client that voted COMMIT; the broadcast contains a FINAL
ACTION header, the identity of the original committer, the commit name, and the actual
final action to be taken.

When a committer receives this broadcast, it stores the successful commit in its commit
table when the final action is COMMIT. A client does nothing when the final action is
ABORT. Since a commit only occurs when the commit and local versions match, a client
needs not undo any changes to the document; indeed, the document itself is never changed
during a commit.

A successful commit implies that everyone has the same version. Therefore, when a
commit succeeds, each user clears his document log.

After a client takes the appropriate action, it records its decision in the log and sends a
second acknowledgement back to the original committer. The client’s text editor is also un-
blocked. The original committer’s document is blocked until acknowledgements are received
from everyone else.

2.5.3 Simultaneous Commits

The proposed system forbids simultaneous commits. However, if one user has started a
commit, it is very much possible for another user to start a commit before receiving the first
user’s PREPARE message.

Unsurprisingly, detection works when one commit initiator receives a commit broadcast
from a different commit initiator. When this occurs, the client votes ABORT for the received
broadcast and also automatically aborts its own COMMIT once all the votes are received.
This occurs regardless if all the votes are COMMIT or not.

2.5.4 Dynamic Group Membership

As noted earlier, the version vectors are really version hash-tables, however, they will still be
referred as version vectors. Of course, hash tables support insertions, deletions, and resizing.
The initial size of the hash-table is going to be of 10 buckets, to allow 10 different users to
work on the same document. Any additional user, above the current size of the hash-table
is going to create a new hash-table with double the current size. If the hash-table shrinks
to one-fourth the current size, it is going to shrink by a factor of 2.

In order to join a group, a new user must bootstrap himself to the group by accessing
one of the group members through one of the network interfaces specified for the text editor.
The client thus receives the IP addresses of all the other users, so he can communicate with
them online, or by direct connection. Moreover, the new client receives the latest document

10



version of the client he connected to. On all merges, the two clients first compare the check-
sums of the keys of their version hash-tables. If they match, they proceed to the merge
process as described in the merge section. If they do not agree, the clients that are missing
from the version vector are automatically added with along their version numbers to the
other client.

Removing oneself from the group requires use of the commit process, although a commit
isn’t stored per se. Since commits can only succeed if all group members are online, everyone
can acknowledge the removal of a user from the group without synchronization issues. Before
the commit can take place, all version vectors are compared and merged. Afterwards,
anyone who wants to remove himself can initiate a commit; removal can be safely done
after completion of the 2nd phase.

3 Analysis

3.1 Scenario Specific Analysis

When two users merge, it is trivial to treat every difference between the two documents as
a conflict. However, significant performance and usability gains can be realized in certain
scenarios where document changes do not affect each other. The merge process described
previously handles the scenarios described below.

3.1.1 Scenario 1: Non-Interfering Changes

Any change to a part of the document made only by user A or user B, but not both, is
a non-interfering change. Since only one user made a change at that location, it cannot
possibly introduce a merge conflict.

During the merge process, after the set of possible conflicting changes is produced, any
remaining change must be a non-interfering change. These changes are merged automatically
in step 5. However, this only applies at the paragraph level of granularity. The merge process
is also able to detect non-interfering changes inside a single paragraph, since the log tracks
the location of all document changes.

3.1.2 Scenario 2: Merging Between Three Users

Suppose users A, B, and C each have the same copy of document D. Users A and B connect
to each other and make the same change to some paragraph P, producing D;}’ - Meanwhile,

user C makes a different change to P, producing D,C.

Next, A and B disconnect from each other. A comes into contact with C so when the
two users connect, a conflict is discovered. This conflict must be resolved manually. Now,
A and C’s document versions match.

Finally, B and C connect. While one can naively consider B and C’s versions of paragraph

P to be in conflict, C’s versions are greater than or equal to B’s versions for all users U in the
version vector. This means merge case 1 can be applied, and B’s document is rolled forward

11



to C’s version automatically. Figure 4 demonstrates this example of version vector matching.

Automatic merging is only possible if B made no further changes to paragraph P after
disconnecting from A. Otherwise, when B and C connect, this also constitutes a conflict and
must be resolved manually.

A | 221 — 323
B | 221 — 221
C | 112 — 323

Figure 6: Initially, users A and B are merged so they have the same version number 221.
Once user A and C merge, their new version number is 323. When users B and C come to
merge, all the version numbers in C’s version vector are bigger than or equal to B’s version
numbers, and therefore C’s version overwrites B’s version.

3.1.3 Scenario 3: Simultaneous Move and Modification

If users A and B move the same paragraph to two different locations, there must be a con-
flict. However, if user A moves paragraph P while user B modifies the same paragraph, both
changes can be merged automatically without any conflict.

These changes are handled in step 1 of the merge process, where the log is scanned for
paragraph moves. The design makes this possible because when a paragraph is moved, the
GUID is unchanged.

3.1.4 Scenario 4: Equivalent Changes

When two users make the same changes to a paragraph, the resulting checksums are also
equivalent for both users. Step 4 of the merge process detects this scenario and treats these
changes as if no conflict had ever occurred. This optimization can also apply at the document
level.

3.2 Broad Performance Analysis

On this collaborative text editor document reads, writes and merges take polynomial time,
as the pairwise merges scan both users logs, and compare each record, one-by-one. More-
over, the performance depends a great deal on the external underlying infrastructure such
as network latency and storage read/write speed of the storage interface.

On the other hand, commit operations are a bottleneck in terms of performance, for
two reasons: they require all users to be online, and also stall other operations until the
commit terminates, since everyone’s vote is required. The commit overhead increases with
the number of users as it takes more time for everyone to get the prepare message from
the initiator and vote on a commit. In the end, the running time of a commit operation
depends on when the last user will vote on the commit. A more efficient design would require

12



introducing additional complexity and bridging commits for users connected through direct
connectivity. For simplicity’s sake the authors decided to implement unbridged commits,
with the only disadvantage that they are slow and provide an upper bound on the number
of collaborating users.

4 Conclusion

The crux of the design is the modularization of the text editor, network, and storage systems,
as well as the interfaces connecting them. Simplicity and transparency were the guiding prin-
ciples; the overall design achieves both, for users and programmers alike. The design is also
robust to system crashes and network disconnections.

While the design can be implemented as is, one should consider these additions and
improvements: a basic security system, optimizations in the merging algorithm, a solution

to eliminate blocking during merges, and support for asynchronous commits and group
membership changes.

5 Word Count

4230.

13



