
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial


Aut
ho

r's
   

pe
rs

on
al

   
co

py

Dynamic agglomerative clustering of gene expression profiles

Faming Liang *, Naisyin Wang

Department of Statistics, Texas A&M University, College Station, TX 77843-3143, USA

Received 18 May 2005; received in revised form 19 December 2006
Available online 3 February 2007

Communicated by A. Fred

Abstract

The increasing use of microarray technologies is generating a large amount of data that must be processed to extract underlying gene
expression patterns. Existing clustering methods could suffer from certain drawbacks. Most methods cannot automatically separate scat-
tered, singleton and mini-cluster genes from other genes. Inclusion of these types of genes into regular clustering processes can impede
identification of gene expression patterns. In this paper, we propose a general clustering method, namely a dynamic agglomerative clus-
tering (DAC) method. DAC can automatically separate scattered, singleton and mini-cluster genes from other genes and thus avoid pos-
sible contamination to the gene expression patterns caused by them. For DAC, the scattered gene filtering step is no longer necessary in
data pre-processing. In addition, we propose a criterion for evaluating clustering results for a dataset which contains scattered, singleton
and/or mini-cluster genes. DAC has been applied successfully to two real datasets for identification of gene expression patterns. Our
numerical results indicate that DAC outperforms other clustering methods, such as the quality-based and model-based clustering meth-
ods, in clustering datasets which contain scattered, singleton and/or mini-cluster genes.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

DNA microarray technology has made it possible to
examine the expression of many genes over multiple devel-
opmental stages or different experimental conditions. One
of the important tasks is to identify groups of genes with
similar expression patterns (co-expressed genes) from
messy DNA microarray data. Microarray experiments
involve many scattered genes whose expression levels do
not change much across samples. The scattered genes pro-
vide no or little information to the underlying biological
processes, and show low correlation to the expression pat-
terns of non-scattered genes. If the scattered genes are
forced into a cluster, the average profile of this cluster
can be compromised and the composition of this cluster
might provide less information for future analyses. We

illustrate this phenomenon by Fig. 1, where the genes are
from four populations represented by the symbols ‘‘1’’,
‘‘2’’, ‘‘3’’, and ‘‘.’’, respectively. The scattered genes, which
are represented by ‘‘.’’, share no common patterns with any
of the other three populations. Inclusion of the scattered
genes means that many of the partition-based clustering
methods, such as the K-means (Tavazoie et al., 1999;
Tou and Gonzalez, 1979), hierarchical clustering (Carr
et al., 1997; Eisen et al., 1998) and self-organizing maps
(SOM) (Tamayo et al., 1999), fail to identify true expres-
sion patterns of the non-scattered genes. For this example,
these methods typically classify the genes into three clusters
separated by the dotted lines. The average profile of each
cluster is corrupted by the scattered genes. In addition to
the scattered genes, the microarray experiments involve
some singleton and mini-cluster genes. A gene is called a
singleton if its expression pattern is different from the
expression patterns of any other genes. Mini-cluster genes
refer to the genes which belong to a very small cluster.
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If the singleton or mini-cluster genes are forced into a clus-
ter, the expression pattern represented by this cluster can
be contaminated and consequently, be difficult to interpret.
In what follows, we call the scattered, singleton and mini-
cluster genes the noise genes for simplicity.

A common strategy to deal with scattered genes is to fil-
ter them away through a variation filter. The filter is usu-
ally set in a way such that only the genes bearing
sufficient variation across different treatments will be kept
for further analyses. For example, Tamayo et al. (1999)
set a filter for the yeast expression data (Cho et al., 1998)
to eliminate the genes for which the relative expression
change is less than 2 or the absolute expression change is
less than 35 units across the samples. It turns out that only
about 13 percent (828 out of 6218) of the genes pass the fil-
ter. This will inevitably cause some loss of data informa-
tion. The variation filter can remove genes which do not
change sufficiently with different experimental conditions
but still follow a certain pattern shared by other genes in
a cluster. Although the variation filter can remove scattered
genes, in our experience, it does not remove singleton and
mini-cluster genes.

To accommodate noise genes, several sequential cluster-
ing methods have been proposed in the recent literature,
including quality-based clustering (Heyer et al., 1999),
adaptive quality-based clustering (AQC) (De Smet et al.,
2002), CAST (Ben-Dor et al., 1999), gene shaving (Hastie
et al., 2000), CLICK (Sharan and Shamir, 2000), HCS
(Hartuv et al., 2000), and tight clustering (Tseng and
Wong, 2005). Refer to Shamir and Sharan (2002), Jiang
et al. (2004), and Tseng (2005) for overviews of these meth-
ods. Taking AQC as an example, it first searches for a clus-
ter center, and then groups the genes around the center into
a cluster. Once a cluster is formed, it will be removed from
the dataset and the process will be restarted for the remain-
ing genes. This process often results in a sub-optimal sepa-
ration for the overlapped clusters. This phenomenon can
be illustrated by Fig. 1, where clusters 2 and 3 are over-
lapped. Sequential removal of either cluster 2 or cluster 3
will lead to a sub-optimal separation between them. AQC
contains two parameters, minimum cluster size and test sig-

nificance level. However, no clear criterion is established
for choosing the parameters in AQC. Overall, neither of
the aforementioned methods have a default option to avoid
potential problems caused by singleton and mini-cluster
genes.

A clustering method closely related to the sequential
clustering methods is the density-based hierarchical cluster-
ing (DHC) method (Jiang et al., 2003). DHC considers a
cluster as a high-dimensional ‘‘dense’’ area, where genes
are ‘‘attracted’’ with each other. At the ‘‘core’’ part of
the dense area, genes are crowded closely and, thus, have
high density. DHC constructs a hierarchical tree to orga-
nize the ‘‘dense’’ and ‘‘core’’ areas. DHC potentially works
for a dataset with noise genes by treating the genes lying
outside the ‘‘core’’ areas as noise genes. However, to con-
struct the clustering tree, the computational complexity
of this step is O(n2), where n is the number of genes in
the dataset. This makes DHC inefficient. Furthermore,
DHC requires two global parameters controlling the split-
ting process of dense areas. Like AQC, DHC lacks a clear
criterion for determining its parameters. Because the soft-
ware is not directly available to public, DHC is not
included in evaluations in this paper.

Besides DHC and the aforementioned sequential clus-
tering methods, the model-based clustering methods also
contain options that accommodate noise. In these meth-
ods, the data are typically modeled by a Gaussian mixture
distribution with the noise being handled by adding a term
to the mixture. In the context of gene expression profile
clustering, the noise refers to the noise genes. By assuming
that the noise observations are uniformly distributed in the
data region, Banfield and Raftery (1992), Dasgupta and
Raftery (1998), Campbell et al. (1997, 1999), McLachlan
and Peel (2000), and Fraley and Raftery (2002) modeled
the data using the following mixture distribution,

f ðxjhÞ ¼ s0

V
þ
XG

k¼1

sk/kðxijhkÞ; ð1Þ

where V is the hypervolume of the data region, G is the
number of clusters, sk P 0,

PG
k¼0sk ¼ 1, hk = (lk,Rk)
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Fig. 1. Illustrative graph for gene expression data. The scattered genes are represented by the symbol ‘‘.’’. The non-scattered genes belong to three clusters
represented by the symbols 1, 2 and 3, respectively.
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contains the parameters of component k, h = (s0, . . . ,
sG,h1, . . . , hG) contains all parameters of the model, and
/k is a multivariate Gaussian density, i.e.,

/kðxjhkÞ ¼ ð2pÞ�
p
2jRkj�

1
2 exp � 1

2
ðx� lkÞ

T R�1
k ðx� lkÞ

� �
:

ð2Þ

This model has been implemented by Fraley and Raftery
(2002) in the software MCLUST, which is available at
http://www.stat.washington.edu/mclust. In MCLUST, the
parameters of the model are estimated using the EM algo-
rithm (Dempster et al., 1977), and the number of clusters
and the structure of the covariance matrices are determined
according to the BIC criterion. Although the model (1) has
been used successfully in many other applications, it may
suffer from some difficulties in clustering gene expression
profiles. In practice, the normality assumption in (1) is of-
ten violated and the violation often leads to sub-optimal
clusters. The large number of parameters in the more flex-
ible options of the model could be another concern. This
could happen when the dimension of the data is high; see
Yeung et al. (2001) for examples. In addition, the default
estimates for the hypervolume V may not be suitable for
gene expression data. Recently, the model-based methods
have been used by a number of authors (Yeung et al.,
2001; Medvedovic and Sivaganesan, 2002; McLachlan
et al., 2002; Luan and Li, 2003; Wakefield et al., 2003;
Medvedovic et al., 2004) to gene expression data. In their
analysis, the scattered genes are usually filtered away in ad-
vance, and the noise term is not included in the model.

In this paper, we propose a general clustering method,
namely a dynamic agglomerative clustering (DAC)
method. DAC sets up a special cluster for collecting the
noise genes, and groups other genes into informative clus-
ters dynamically and agglomeratively. It avoids potential
cluster contamination caused by the noise genes. In addi-
tion, we propose a criterion for evaluating clustering results
for datasets containing noise genes. The criterion is used to
determine the parameter values for DAC. Our numerical
results indicate that DAC outperforms other clustering
methods, such as AQC and the noise option in MCLUST,
in clustering datasets with noise genes.

The remainder of this paper is organized as follows. In
Section 2, we describe the DAC method. In Section 3, we
compare the performance of DAC and other clustering
methods through a simulated example and a real dataset
taken from the literature. In Section 4, we apply DAC to
an avian pineal gland gene expression dataset for which
identification of the circadian patterns is the main focus
of the study. In Section 5, we conclude the paper with a
brief discussion.

2. Dynamic agglomerative clustering

Let the data be arranged in an n · p matrix denoted by
X = (xij), where n is the number of genes and p is the num-

ber of samples (treatments or time points). Let xij be the
expression level of gene i in sample j, and xi = (xi1, . . . ,xip)
be the expression profile of gene i.

To let the reader appreciate the idea behind DAC, in
what follows we first describe DAC in an intuitive fashion.
To cluster a dataset with noise genes, DAC sets up a special
cluster denoted by C0 for collecting the noise genes. Hence-
forth, this cluster will be called the null cluster even though
it is really not a cluster in the sense that genes in it share no
common pattern. DAC works by iterating between the fol-
lowing steps: (I) Group the genes into many small tight
clusters according to the cluster centers learned in the cur-
rent iteration; (II) Merge the similar clusters to form larger
clusters; (III) Move the small clusters with size less than a
threshold value into the null cluster. DAC is different from
agglomerative hierarchical clustering in two respects. First,
DAC includes an extra step (step III) to collect noise genes.
This is based on the observation that the noise genes tend
to be grouped into many small clusters when a large num-
ber of clusters were imposed in clustering. Second, the clus-
tering process of DAC is dynamic. At each iteration, the
genes are re-grouped according to the cluster centers
learned in the last iteration, and the cluster centers are then
re-adjusted accordingly. The iterative process of grouping
and adjusting will drive the cluster centers to the most typ-
ical gene expression patterns. We note that some other
clustering methods, such as K-means and SOM, also work
in an iterative fashion, but the number of clusters in these
methods has to be specified a priori.

To describe DAC in a formal fashion, we introduce the
following notations:

Ci cluster i formed by DAC, i = 0, . . . ,c;
mi size of cluster Ci, i = 0, . . . ,c;
mhigh reference cluster size;
mlow threshold value for the size of non-noise gene clus-

ters;
di threshold value for assigning a gene to cluster Ci;
dhigh initial value of di at the birth of cluster Ci;
dlow threshold value for cluster merging;
g learning rate of DAC;
k shrinking factor of g in iterations;
/(x) normalizing operator which normalizes x to a vec-

tor with mean 0 and variance 1;
r(1, . . . ,n) a permutation of the numbers 1, . . . ,n;
r(k) kth element of the permutation r(1, . . . ,n).

In addition, we define the following similarity functions:
the similarity function between two genes:

q1ðxi; xjÞ ¼ exp �s
Xp

k¼1

ðxik � xjkÞ2
( )

; ð3Þ

the similarity function between a gene and a cluster:

q2ðxi;CjÞ ¼ exp �s
Xp

k¼1

ðxik � xjkÞ2
( )

; ð4Þ
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and the similarity function between two clusters:

q3ðCi;CjÞ ¼ exp �s
Xp

k¼1

ðxik � xjkÞ2
( )

: ð5Þ

In these similarity functions, s is a scale parameter, and
xj = (xj1, . . . ,xjp)T is the center of cluster Cj. Note that
these similarity functions are equivalent to Pearson’s corre-
lation coefficient, as the gene expression profiles have been
normalized here. Inclusion of the scale parameter s makes
the similarity measure more flexible. The use of the similar-
ity functions instead of Pearson’s correlation coefficient
will be justified further at near the end of Section 2. For
simplicity, we set s = 1 for all examples of this paper.
The similarity functions and their corresponding threshold
values control the pattern learning, cluster merging and
noise gene collection steps described above.

In the pattern learning step, a gene x can be assigned to
cluster Ci only if qðx;CiÞ > di. The threshold di is a func-
tion of cluster size. It is initialized at a large number
denoted by dhigh at the birth of the cluster, and is then
adjusted to a smaller value in iterations according to the
updated cluster size. In the cluster merging step, only two
clusters with similarity exceeding the threshold value dlow

can be merged. In the noise gene collection step, the clus-
ters with size less than the threshold value mlow will be
moved into the null cluster. The use of the reference cluster
size mhigh is to adjust the value of di’s as in (10).

The parameters g and k control the convergence rate of
DAC, and reduce the chance of moving noise genes sense-
lessly from cluster to cluster in the clustering procedure. At
each iteration, the genes will be presented to the clustering
procedure in the order of a random permutation. This will
eliminate the potential bias caused to clustering by the
order of data presentation. The DAC algorithm can then
be described as follows:

(a) (Initialization) Normalize the expression profile of
each gene; that is, set xi /(xi) for i = 1, . . . ,n. Ini-
tialize the parameters, dhigh, dlow, mhigh, mlow, g, and
k. Set c = 1, m1 = 1, d1 = dhigh, and initialize x1 by
a gene drawn from X at random, and assign all other
genes to the cluster C0.

(b) (Randomization) Generate a random permutation
r(1, . . . ,n) of the numbers 1, . . . ,n.

(c) (Pattern learning) Repeat steps (c.1)–(c.4) for
k = 1, . . . ,n.
(c.1) (Locate the current cluster) Locate Cj, the cur-

rent cluster which gene xr(k) belongs to.
(c.2) (Find acceptable clusters) Find A ¼ fi : q2ðxrðkÞ;

CiÞ > di; i ¼ 1; . . . ; cg, the set of acceptable clus-
ters which the gene xr(k) can be reassigned into.

(c.3) (Find the nearest acceptable cluster and update
the related clusters) If A is non-empty, set
j0  arg maxi2Aq2ðxrðkÞ;CiÞ. Change the cluster
membership of gene xr(k) from cluster Cj to
cluster Cj0 . If j 0 5 j, update xj0 to

xj0  / xj0 þ
g

mj0 þ 1
ðxrðkÞ � xj0 Þ

� �
: ð6Þ

If j 0 5 j and j 5 0, update xj to

xj  / xj �
g

mj � 1
ðxrðkÞ � xjÞ

� �
: ð7Þ

Set mj0  mj0 þ 1 and mj mj � 1.
(c.4) (Add a new cluster) If A is empty, add a new

cluster. Set c c + 1, xc xr(k), and dc =
dhigh; change the cluster membership of gene
r(k) from cluster Cj to cluster Cc; and update
xj (if j 5 0) as in Eq. (7).

(d) (Cluster merging) Repeat steps (d.1)–(d.2) until
maxi;jq3ðCi;CjÞ < dlow.
(d.1) (Find the nearest clusters) Set ði0; j0Þ  

arg max16i;j6cq3ðCi;CjÞ.
(d.2) (Merge clusters) If mj0 < mi0 , merge Cj0 into Ci0 ,

set mi0  mi0 þ mj0 and

xi0  / xi0 þ
gmj0

mi0 þ mj0
ðxj0 � xi0 Þ

� �
: ð8Þ

Otherwise, merge Ci0 into Cj0 , set mj0  mi0 þ mj0

and

xj0  / xj0 þ
gmi0

mi0 þ mj0
ðxi0 � xj0 Þ

� �
: ð9Þ

Set c c � 1.
(e) (Null cluster formation) Merge the clusters with size

less than mlow into the null cluster C0.
(f) (Threshold updating) Set g kg, and adjust di for

i = 1, . . . ,c as follows:

logðdiÞ 

logðdhighÞ; if mi6mlow;

logðdhighÞ� ½logðmiÞ� logðmlowÞ�
� logðdhighÞ�logðdlowÞ

logðmhighÞ�logðmlowÞ
; if mlow <mi <mhigh;

logðdlowÞ; if mi P mhigh:

8>>>><>>>>:
ð10Þ

(g) (Termination checking) Checking the termination
condition of the procedure. If the condition is satis-
fied, go to step (i); otherwise, go to step (b).

(i) (Cluster Assignment) Repeat steps (i.1)–(i.2) for
k = 1, . . . ,n.
(i.1) (Find acceptable clusters) Find the set

A ¼ fi : q2ðxrðkÞ;CiÞ > di; i ¼ 1; . . . ; cg.
(i.2) (Assign genes to the nearest acceptable cluster)

If A is non-empty, assign the gene to the cluster
Cj0 , where j0 ¼ arg maxi2Aq2ðxrðkÞ;CiÞ. Other-
wise, assign the gene to the null cluster C0.

In DAC, the center of the null cluster C0 is never calcu-
lated, as the pattern represented by it is not of interest to
us. Besides the similarity function q3(Æ,Æ) defined in (5), we
have also tried

q3ðCi;CjÞ ¼
1

mimj

X
xk12Ci

X
xk22Cj

q1ðxk1; xk2Þ; ð11Þ

F. Liang, N. Wang / Pattern Recognition Letters 28 (2007) 1062–1076 1065
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which corresponds to the average-linkage function in the
agglomerative hierarchical clustering algorithm (Murtagh,
1983). We note that the function q3 defined in (5) corre-
sponds to the mean-linkage function. These two similarity
functions lead to similar results, but the one defined in (11)
is more computationally intensive.

In the threshold updating step, log(d) decreases linearly
with log(m). Here, we work on the logarithm of d,
because the similarity functions specified in (3)–(5) are
exponential functions of Pearson’s correlation coefficient.
Working under log-scales allows us to compare the
threshold and Pearson’s correlation coefficient directly.
We measure the cluster size in the logarithmic scale, as
we want to avoid a drastic change of d with a cluster size.
Other reduction schemes for di’s could also work well but
we have satisfactory performances when adopting this
choice. The termination condition can be a pre-specified
number of iterations, or a criterion for the convergence
of cluster centers. For example, we may set the following
criterion for measuring the convergence of cluster centers:
In the most recent 10 consecutive iterations, the number
of clusters does not change and the cluster centers satisfy
the following inequality for a pre-specified small
number �,

max
16i6c
kxðtþ1Þ

i � x
ðtÞ
i k < � for t ¼ T ; . . . ; T � 9; ð12Þ

where T denotes the current iteration number, x
ðtÞ
i repre-

sents the center of cluster i at iteration t, and kÆk repre-
sents a pre-specified distance measure for two cluster
centers.

For given similarity functions, DAC has six free param-
eters to be determined by the user, namely, g, k, mhigh, mlow,
dhigh, and dlow. Even though setting six parameters might
seem to be a difficult task, we note that the settings for
most of the parameters do not significantly affect the out-
come. For the parameters which need to be chosen more
carefully, we propose a method to determine their values
simultaneously by optimizing an objective function. In
what follows, we discuss the roles of these parameters
and explain how to set them. Through (6)–(9), the learning
rate g and the shrinking factor k determine the convergence
rate of DAC. The smaller values of g and k lead to a faster
convergence of DAC, but perhaps also result in a larger
chance for DAC to fail to capture the true gene expression
patterns. In this paper, we let g = 1 at the first iteration and
let it decrease geometrically with the factor k = 0.99 in the
following iterations. The learning rate can also be set as a
harmonic function of the iteration number as in (Tamayo
et al., 1999), for example, gt = 0.02T/(T + 100t) with T

being the total number of iterations. The learning rate
shrinkage is motivated by the observation that useless steps
could be wasted on moving noise genes from cluster to
cluster. If g and k are both fixed to 1, the cluster centers
learned in DAC will be reduced to the average profile of
the corresponding clusters.

The parameter dhigh controls tightness of the clusters
formed in the first iteration. The parameter dlow determines
tightness of the clusters eventually formed by DAC. A
large dlow will result in a large number of small tight clus-
ters, whereas a small dlow will result in a small number of
large loose clusters. In our experience, dlow is perhaps the
most important parameter of DAC. In practice, we fix dhigh

and other parameters and vary dlow over a finite set in order
to find an acceptable value for dlow. In this paper, we fix
dhigh = 0.6 for all examples.

The parameters mhigh and mlow represent our estimate of
the maximum and minimum sizes of non-noise gene clus-
ters, respectively. The parameter mhigh works as a reference
value for the cluster size, and its effect on DAC is limited.
Our experience shows that a value between n/10 and n/3 is
often appropriate for mhigh. The parameter mlow is more
important to DAC than the parameter mhigh. A large mlow

will result in that some non-noise genes are grouped as
noise genes, whereas a small mlow will result in findings
of pseudo expression patterns. This suggests that mlow

should be set to a large value if we are only interested in
the major gene expression patterns; and it should be set
to a small value otherwise. In practice, mlow can be deter-
mined as follows. Try a sequence of values for mlow from
low to high. If some value results in a big gap in the num-
ber of clusters, i.e., a drastic decrease of the number of clus-
ters, mlow can then be set to that value. The underlying
rationale is that the noise genes tend to be grouped into
many small clusters.

As discussed above, DAC has essentially only two
parameters dlow and mlow. The parameters dhigh and mhigh

mainly serve as starting values. Inclusion of other param-
eters makes the algorithm more flexible. In the following
we describe one method for determining the parameters of
DAC simultaneously by optimizing an objective function.
The objective function evaluates the overall quality of the
resulting clusters. As reviewed by Chen et al. (2002), there
are various criteria in the literature for evaluating the
overall quality of a clustering result. However, these crite-
ria are all designed for datasets without noise genes. For
example, the average silhouette width (Rousseeuw, 1987)
is one such criterion. The average silhouette width is a
composite index reflecting the compactness and separation
of clusters. For each gene i, its silhouette width is defined
as

sðiÞ ¼ bðiÞ � aðiÞ
maxfaðiÞ; bðiÞg ;

where a(i) is the average dissimilarity (defined below) of
gene i to other genes in the same cluster, and b(i) is the
average dissimilarity of gene i to genes in its nearest neigh-
bor cluster. For a dataset without noise genes, the average
silhouette width �s ¼

Pn
i¼1si=n is a good measure for the

overall quality of a clustering result. The larger the value
of �s is, the better is the overall quality of the clustering re-
sult. However, for a dataset with noise genes maximizing �s
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will force the noise genes to be grouped as non-noise genes.
Hence, the relative size of �s cannot be used as a criterion for
evaluating the overall quality of a clustering result pro-
duced by DAC.

To accommodate noise genes, in the following we mod-
ified �s to be

es ¼ X
xi 62C0

sðiÞ þ
X
xi2C0

maxf0; sðiÞg
" #,

n: ð13Þ

Because the genes in the null cluster C0 are not grouped by
similarity, members of C0 tend to have a negative silhouette
width. The statistic �s penalizes the null cluster members
with negative silhouette widths, while es does not. Hence,es encourages the collection of noise genes into the null clus-
ter. If a non-null cluster gene is wrongly classified into the
null cluster, its silhouette width will be changed from a po-
sitive value to zero. Hence, es also penalizes this type of mis-
classification. The above analysis implies that es can work
as a good criterion for evaluating the overall quality of
clusters produced by DAC. Given the statistic es, the prob-
lem of parameter determination in DAC is converted into
an optimization problem, finding a setting of parameters
mhigh, mlow, dhigh and dlow such that es is maximized. In
practice, an extensive search for such a setting does not
seem necessary. We fix mhigh, mlow and dhigh, and then
determine dlow by maximizing es over a finite set of candi-
date values.

To calculate ~s, we need to define a dissimilarity function
for two genes. Considering the similarity function defined
in (5), we define the dissimilarity function as

d1ðxi; xjÞ ¼ 1� q1ðxi; xjÞ

¼ 1� exp �s
Xp

k¼1

ðxik � xjkÞ2
( )

: ð14Þ

Although q1 defined in (5) is equivalent to Pearson’s corre-
lation coefficient r and independent of s essentially, d1 is
not equivalent to 1 � r and depends on the parameter s.
When s is large (the difference of gene expression profiles
is amplified), maximizing ~s tends to classify non-noise genes
as noise genes and the resulting clusters tends to be tight.
When s is small, maximizing ~s tends to classify noise genes
as non-noise genes and the resulting clusters tends to be
loose. The parameter s gives us the freedom to adjust the
similarity and dissimilarity functions. It should decrease
as the dimension p increases. Our experience shows that
DAC is not sensitive to the choice of s. A value of s taken
in the interval [0.5,2] is appropriate for most examples of
this paper. As mentioned before, s is fixed to 1 in this pa-
per. Note that the dissimilarity function is not required
to satisfy the triangle inequality (Kaufman and Rousseeuw,
1988, page 16), but it satisfies the other mathematical
requirements of a distance function, i.e., d1(xi,xj) P 0,
d1(xi,xj) = d1(xj,xi), and d1(xi,xi) = 0.

3. Illustrative examples

3.1. A simulated example

This example consists of 10 datasets. Each dataset con-
sists of 1000 genes, among which 400 genes are generated
from the 6-dimensional Gaussian distribution N6(l,0.22I6),
300 genes from N6(�l, 0.22I6), and 300 genes from
N(0, 0.22I6), where l ¼ ð3

4
; 3

4
; 3

4
;� 3

4
;� 3

4
;� 3

4
Þ and I6 is the

six-dimensional identity matrix. Since, from a biological
point of view, we are primarily interested in the relative
up/down-regulation of gene expressions instead of the
absolute amplitude changes, we normalized the expression
profile of each gene to have mean 0 and variance 1. The
genes generated from the distribution N(0, 0.22I6) can be
regarded as scattered genes, as they have a flat expression
pattern and a large dispersion after normalization. To
examine the performance of DAC in clustering a dataset
with scattered genes, the scattered genes in these datasets
are not filtered away in advance.

DAC was applied to this example. To determine the
parameter values, we first worked on one dataset. Hence-
forth, this dataset is called the sample dataset. We fix
mhigh = 250 and mlow = 20 and let dlow vary over the set
{0.05, 0.1, . . . , 0.6}. For each value of dlow, DAC was run
10 times. Each run consists of 20 iterations. Fig. 2b sug-
gests that [0.25,0.45] is an appropriate interval of dlow.
Fig. 2a shows that DAC is fairly robust to the value of dlow.
It can identify the true number of clusters for the non-noise
genes with any value of dlow in the set {0.05, . . . , 0.6}. DAC
was then run for each of the 10 datasets with dlow = 0.4.
Each run also consists of 20 iterations. Fig. 3 shows the
clusters identified by DAC for the sample dataset. DAC
has successfully separated the non-noise genes from the
noise genes and grouped them into two clusters. A compar-
ison with the true clusters shows that there are only 4 (out
of 1000) genes being misclustered. The results for the other
9 datasets are similar. The overall misclustering rate for the
10 datasets is 0.53%, and the average of es is 0.471. These
results together with those achieved by AQC and
MCLUST with the noise option are summarized in
Table 1.

For comparison, we also applied AQC and MCLUST
with the noise option to this example. The software for
AQC was developed by De Smet et al. (2002) and is avail-
able at http://www.esat.kuleuven.ac.be/~thijs/Work/Clus-
tering.html. For this example, we set the minimum cluster
size to 20 and the test significance level to 0.95. The latter
one is the default value given in the software. The overall
misclustering rate is 2.63%, which is significantly higher
than that of DAC. The average of es is 0.455. In calculatinges, the unclustered genes are grouped as the null cluster.
AQC was also run with other settings, for example, the
minimum cluster size equals to 5, 10, and 50. The results
are all similar.

To apply MCLUST (model (1)) to this example, an ini-
tial estimate for the noise is required (Fraley and Raftery,
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2002). For simplicity, we used the true noise as a surrogate
for the estimate; that is, specifying that the last 300 genes of
each dataset are noise genes. The BIC analysis suggests
that the EEE model (ellipsoidal and equal variance) is
appropriate for this example. The overall misclustering rate
is 1.32% and the average of es is 0.46. In calculating es, the
noise cluster is treated as the null cluster. This is true for
the other examples of this paper. Because the data are gen-
erated from a Gaussian mixture distribution and the sam-

ple size of each cluster is large, this is an ideal example
for MCLUST with noise. However, even for this example,
DAC still outperforms MCLUST with noise.

It is encouraging to note that �es shows a consistent
(reverse) order with ‘‘error rate’’ in Table 1. This implies
that when the error rate is not calculable, es can potentially
work as an evaluation criterion for the clustering results of
a dataset with noise genes. In each of the real examples of
this paper, es is reported for the three methods as a measure
for the overall quality of the clustering results.

Since DAC and AQC are both model-free methods and
AQC works fairly well for this example, we make a further
examination for their performance. Fig. 4 shows the noise
genes (in the non-normalization scale) identified by DAC
and AQC from the sample dataset. For this dataset,
AQC classifies some non-noise genes as noise genes, while
DAC avoids this mistake.

To assess the sensitivity of DAC to its parameter values,
we conducted the following experiment: fix dlow = 0.4 and
tried different values of mhigh, mlow and dhigh. The results
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Fig. 2. Clustering results of DAC for the sample dataset with various choices of dlow. (a) The average number of clusters (except for the null cluster).
(b) The average modified silhouette width. The averages are calculated based on 10 independent runs, and the vertical segments in the plots show
the respective 95% confidence intervals of the averages.
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Fig. 3. Clusters identified by DAC for the sample dataset.

Table 1
Comparison of clustering results produced by AQC, MCLUST and DAC
for the simulated example

Algorithm AQC MCLUST DAC

Error rate (%) 2.63 1.32 0.53
SD 0.12 0.10 0.06
�es 0.455 0.460 0.471
SD 0.001 0.002 0.000

Error rate and �es are calculated by averaging over 10 datasets. SD: stan-
dard deviation.
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are shown in Table 2. They indicate that DAC is not
sensitive to the choice of the parameters mhigh, mlow and
dhigh. No error rate presented in Table 2 is significantly
different from 0.54 (0.06), the error rate obtained with
(mhigh,mlow,dhigh) = (250, 20,0.6).

To show that the performance of the popular clustering
methods could suffer from the existence of noise genes, we
applied agglomerative hierarchical clustering (AHC),
K-means and SOM methods to this example. For each
method, the genes were forced to be grouped into three
clusters. The software for AHC and K-means are available
in S-PLUS. The software for SOM was developed by
Tamayo et al. (1999) and is available at http://www-geno-
me.wi.mit.edu/software/genecluster2/gc2.html. AHC was
applied this example with the Euclidean distance and the
average linkage. The overall misclustering rate for the ten
datasets is 24.98% with standard deviation 0.53%, which
is very far from that of DAC. AHC was also tried with var-
ious options of linkage and dissimilarity functions, such as
single-linkage, complete-linkage, and the dissimilarity
function defined in (14). The results are all similar. Like
AHC, K-means also fails to capture the true expression
patterns of the non-noise genes. The overall misclustering
rate for the ten datasets is 10.74% with standard deviation
0.28%. In SOM, a grid of size 1 · 3 was used for each data-
set, and other parameters were set to the default values
given in the software. The overall misclustering rate is
10.75% with standard deviation 0.31%. For these three
methods, es is not calculated, as the null cluster is not well
defined among the clusters found by them.

3.2. Leukemia cell line HL-60 data

The myeloid leukemia cell line HL-60 undergoes macro-
phage differentiation on treatment with the phorbol ester
PMA. Nearly 100% of HL-60 cells become adherent and
exit the cell cycle with 24 h of PMA treatment. To monitor
the process, expression levels of more than 6000 human
genes were measured at four time points 0, 0.5, 4 and
24 h after PMA stimulation. This dataset is available at
http://www-genome.wi.mit.edu/software/genecluster2/gc2.
html and has been used by Tamayo et al. (1999) as an
example to support the use of SOM.

In this paper, we use this dataset to demonstrate that
DAC can make a further improvement in a dataset with
scattered genes being removed in advance by a variation fil-
ter. In particular, DAC can further remove singletons and
mini-clusters so that the patterns in tighter large clusters
can be better identified. The variation filter used here is
the same as that used in (Tamayo et al., 1999). Totally
there are 590 genes left after filtration. This number is
slightly different from the number (567) reported in
(Tamayo et al., 1999). The 590 genes were then normalized
such that the expression profile of each gene has mean 0
and variance 1.

SOM was applied to the pre-processed data. As in
(Tamayo et al., 1999), a grid of size 4 · 3 was specified
for the dataset. The genes were clustered into 12 clusters,
which are shown in Fig. 5.

SOM performs very well for this example. It is only in its
comparison to outcomes of DAC that we see that the
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Fig. 4. The left panel shows the gene expression profiles clustered into the null cluster by DAC. The right panel shows the gene expression profiles
unclustered by AQC.

Table 2
Clustering error rates of DAC with various choices of (mhigh,mlow,dhigh)

Setting (250,20,0.5) (250,20,0.7) (250,10,0.6) (250,30,0.6) (200,20,0.6) (300,20,0.6)

Error rate (%) 0.56 0.55 0.57 0.54 0.58 0.54
SD 0.06 0.08 0.07 0.07 0.08 0.05

The error rates are calculated by averaging over the 10 simulated datasets. SD: standard deviation of the error rate.
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outcome could be further improved by removing singleton
and mini-cluster genes.

AQC was applied to the pre-processed data with the
minimum cluster size 2 and the test significance level
0.725. AQC finds 11 clusters which are shown in Fig. 6.
The corresponding value of es is 0.320. Here we set a very
low test significance level, because AQC finds no clusters
for this example when the test significance level is greater
than 0.85. Fig. 6 indicates that AQC tends to produce tight
clusters and leave too many genes unclustered. This finding
is consistent with the results presented in Fig. 4 for the sim-
ulated example.

MCLUST with the noise option was applied to this
example. The unclustered genes by AQC were used as the

initial estimate for the noise genes. The BIC analysis
(Fig. 7) suggests that an 11-component VVV model
(excluding the noise component) is appropriate for this
dataset. The clusters are shown in Fig. 8, and the corre-
sponding value of es is 0.425. The VVV model is the most
general model in MCLUST, in which the covariance matri-
ces are unrestricted across the Gaussian components of the
mixture model. For this example, MCLUST has similar
performance to AQC: it clusters too many genes (162 out
of 590 genes) as noise genes. Note that this dataset does
not include scattered genes, and the percentage of singleton
and mini-cluster genes should be low.

Finally, DAC was applied to this example with
mhigh = 200, mlow = 5, and dlow 2 {0.05, 0.1, . . . , 0.6}. Here
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Fig. 5. Clustering result of SOM for the pre-processed HL-60 data.
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mlow was set to a small value as the scattered genes have
been eliminated from the dataset. For each value of dlow,
DAC was run 50 iterations. Fig. 9b suggests that
dlow = 0.25 is appropriate for this example. Fig. 10 shows
the 12 clusters (including the null cluster) obtained in a
run with dlow = 0.25. The corresponding value of es is
0.493. In Fig. 9b, the curve of es appears to be bimodal.
It indicates that the null cluster (cluster 9) may contain
one or more mini-clusters. It is easy to see that cluster 9
contains two separable subclusters and some singleton
genes. Except for the null cluster, each of the other 11 clus-
ters represents a different pattern.

In summary, the major gene expression patterns con-
tained in the HL-60 data can be identified by any of the
four clustering methods: SOM, MCLUST with noise,
AQC and DAC. For example, the largest 8 DAC clusters
correspond to SOM clusters 1, 3, 2, 4, 6, 8, 12, and 5,

respectively. Here we refer the clusters identified by DAC
as the DAC clusters, and refer the clusters identified by
other methods equivalently. Since this is an illustrative
example for SOM, it is no surprise that SOM works well.
To complete the comparison, we note that the largest 6
DAC clusters correspond to AQC clusters 3, 2, 4, 5, 6,
and 9, respectively; and they also correspond to MCLUST
clusters 3, 8, 4, 6, 9 and 5, respectively. As a reference quan-
tity for the overall quality of the clustering results, the val-
ues of es produced by AQC, MCLUST and DAC are
summarized in Table 3. The comparison indicates again
the superiority of DAC for this example.

4. Avian pineal gland gene expressions data

The avian pineal gland contains both circadian
oscillators and photoreceptors to produce rhythms in
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Fig. 8. Clustering result of MCLUST with noise for the pre-processed HL-60 data. Cluster 12 corresponds to the noise cluster.
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biosynthesis of the hormone melatonin in vivo and in vitro.
It is of great interest to understand the genetic mechanisms
driving the rhythms. For this purpose, a sequence of cDNA
microarrays of birds’ pineal gland transcripts under the
light–dark (LD) condition were generated. The birds were

euthanized at 2, 6, 10, 14, 18, 22 h Zeitgeber time (ZT) to
obtain mRNA to produce adequate cDNA libraries. Four
microarray chips per time point were produced. Through-
out the experiment, samples from LD ZT18 were used as
controls. Four observations at each time point were log-
transformed and averaged. This produces a data matrix
of size 7730 · 6. Each row represents the expression profile
of a particular gene at six time points, and it was then nor-
malized to have mean 0 and variance 1. To examine the
performance of DAC in clustering a large dataset with
noise genes, no filtration is performed in data pre-process-
ing. All genes are kept for the clustering analysis.

DAC was first applied to cluster the data with
mhigh = 1000, mlow = 20 and dlow = 0.05, 0.1, 0.15, 0.2,
0.25. For each value of dlow, DAC was run 2000 iterations.
The value of es was calculated at the end of each run.
Fig. 11a shows that the resulting number of clusters
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Fig. 10. Clustering result of DAC for the pre-processed HL-60 data. Cluster 9: the null cluster which comprises singleton and mini-cluster genes. Other
Clusters: the clusters identified by DAC.

Table 3
Comparison of es produced by different methods for the HL-60 dataset and
the avian dataset

Examples AQC MCLUST DAC

Averagea Maximumb

HL-60 0.320 0.425 0.482 (0.002) 0.493
avian 0.166 0.132 0.175 (0.002) 0.186

The numbers in the parentheses are the standard deviations of the
averages.

a Obtained by averaging over 10 runs.
b Maximum value of es found in the 10 runs.
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increases as dmin increases. Fig. 11b shows the curve of es
versus dmin. It suggests that 0.05 is a suitable value for dmin,
as we prefer a clustering result with a small number of
clusters and a large value of es. The values of es resulted
from the choice dmin = 0.1 is not significantly larger than
that from dmin = 0.05, while the number of clusters resulted
from dmin = 0.05 is significantly smaller than that from
dmin = 0.1. Fig. 12 shows the clusters obtained in a run of
DAC with dlow = 0.05. In the run, 555 genes (about 7.2%
of 7730 genes) are grouped into the null cluster, and other
genes are grouped into 18 clusters which are tight and rea-
sonably separated. The corresponding value of es is 0.186.
This value together with the values of es produced by
AQC and MCLUST are summarized in Table 3. Fig. 13a

shows the expression profiles of all genes in the dataset,
and Fig. 13b shows the expression profiles of the genes
grouped into the null cluster. The plots indicate that
DAC has successfully separated the noise genes from
non-noise genes for this dataset. DAC was also run with
other parameter settings. The results are similar. The major
gene expression patterns, say, those represented by clusters
1,2, . . . , 7, 10, and 11 (in Fig. 11), can be found in all runs.

AQC was run for this dataset with the minimum cluster
size 20 and the test significance level 0.95. It leaves 4946
genes (about 64% of total genes) unclustered, and groups
other genes into three clusters, which correspond to clusters
1, 2, and 3 as shown in Fig. 12, respectively. The respective
cluster sizes are 1345, 1249 and 190. It misses several other
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typical gene expression patterns identified by DAC. The
corresponding value of es is 0.166.

Finally, MCLUST with noise was also applied to this
dataset. The unclustered genes by AQC were used as the
initial estimate of the noise genes. The BIC analysis
(Fig. 14) suggests that an 18-component VVV model
(excluding the noise component) is appropriate for the
data. The resulting clusters are shown in Fig. 15, and the
corresponding value of es is 0.132. MCLUST works less
well for this example. The normality assumption for the
non-noise genes could be of a problem for this dataset.
For example, clusters 1, 3, 9, 16 and 18 represent very sim-
ilar patterns and perhaps should be combined into one
cluster. Due to the imposition of normality, MCLUST
groups them into several clusters.

5. Discussion

In this paper, we have proposed a new clustering
method—the DAC method. DAC can automatically sepa-

rate noise genes from other genes and thus avoid possible
contamination to gene expression patterns caused by the
noise genes. For DAC, the scattered gene filtering step is
no longer necessary in data pre-processing. In addition,
we have proposed a criterion for evaluating clustering
results of a dataset which contains noise genes. DAC has
been applied successfully to two real datasets containing
noise genes. DAC has also been applied successfully to
some conventional datasets which do not contain noise
observations (the results are not reported in the paper).
Our numerical results indicate that DAC can work as a
general clustering method for a dataset with or without
noise observations.

DAC is closely related to the noise modeling method in
MCLUST. In the latter, it is assumed explicitly that the
noise genes are uniformly distributed in the data region.
In DAC, this is done implicitly. The agglomerative hierar-
chical clustering method tends to cluster the noise genes
into many small clusters. Based on this observation, we
merge small clusters into the null cluster in step (e) of
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DAC. The difference between these two methods is obvi-
ous. The noise modeling method is model-based and
requires the non-noise data to satisfy some distribution
assumptions. When the assumptions are violated, the clus-
tering results may be sub-optimal. Typically, similar pat-
terns will be clustered into several clusters. DAC is a
model-free method. It is robust to the distribution of the
data. In addition, DAC sets up a parameter (dlow) to con-
trol the similarity of clusters. This leads to the phenomenon
that the DAC clusters are more separable than the clusters
produced by other methods. For example, in Fig. 5, SOM
clusters 8 and 9 are almost non-separable; in Fig. 6, AQC
clusters 5 and 9 are very similar; and in Fig. 15,
MCLUST clusters 1, 3, 9, 16 and 18 are very similar. Highly
similar clusters are not observed in the DAC clusters.
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