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Static analysis
by abstract interpretation
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Example of static analysis (input){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n;

{n0=i,n0=n,n0>=0}
while (i <> 0 ) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}
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Example of static analysis (output){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n;

{n0=i,n0=n,n0>=0}
while (i <> 0 ) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}
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Example of static analysis (safety){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n; n0 must be initially nonnegative

(otherwise the program does not
terminate properly)

{n0=i,n0=n,n0>=0}
while (i <> 0 ) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1  ̀ j < n0 so no upper overflow

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1  ̀ i > 0 so no lower overflow

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}
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Static analysis by abstract interpretation

Verification: define and prove automatically a property of
the possible behaviors of a complex computer pro-
gram (example: program semantics);

Abstraction: the reasoning/calculus can be done on an ab-
straction of these behaviors dealing only with those
elements of the behaviors related to the considered
property;

Theory: abstract interpretation.
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Example of static analysis

Verification: absence of runtime errors;
Abstraction: polyhedral abstraction (affine inequalities);
Theory: abstract interpretation.
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A very informal introduction
to the principles of
abstract interpretation
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Semantics

The concrete semantics of a program formalizes (is a
mathematical model of) the set of all its possible execu-
tions in all possible execution environments.
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Graphic example: Possible behaviors

x(t)

t

!"##$%&'(
)*+,'-)"*$'#
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Undecidability

– The concrete mathematical semantics of a program is
an “tinfinite” mathematical object, not computable;
– All non trivial questions on the concrete program se-
mantics are undecidable.
Example: termination
– Assume termination(P) would always terminates and
returns true iff P always terminates on all input data;
– The following program yields a contradiction

P ” while termination(P) do skip od.
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Graphic example: Safety properties

The safety properties of a program express that no possi-
ble execution in any possible execution environment can
reach an erroneous state.
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Graphic example: Safety property

x(t)

t

."*%$//'0(1"0'

!"##$%&'(
)*+,'-)"*$'#

VMCAI’05 Industrial Day, Paris, France, January 20, 2005 — 11 — ľ P. Cousot



Safety proofs

– A safety proof consists in proving that the intersection
of the program concrete semantics and the forbidden
zone is empty;
– Undecidable problem (the concrete semantics is not
computable);
– Impossible to provide completely automatic answers
with finite computer resources and neither human in-
teraction nor uncertainty on the answer 1.

1 e.g. probabilistic answer.
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Test/debugging

– consists in considering a subset of the possible execu-
tions;
– not a correctness proof;
– absence of coverage is the main problem.
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Graphic example: Property test/simulation

x(t)

t
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Abstract interpretation

– consists in considering an abstract semantics, that is
to say a superset of the concrete semantics of the pro-
gram;
– hence the abstract semantics covers all possible con-
crete cases;
– correct: if the abstract semantics is safe (does not in-
tersect the forbidden zone) then so is the concrete se-
mantics
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Graphic example: Abstract interpretation

x(t)

t
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Formal methods

Formal methods are abstract interpretations, which dif-
fer in the way to obtain the abstract semantics:
– “model checking”:
- the abstract semantics is given manually by the user;
- in the form of a finitary model of the program exe-
cution;
- can be computed automatically, by techniques rele-
vant to static analysis.
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– “deductive methods”:
- the abstract semantics is specified by verification con-
ditions;
- the user must provide the abstract semantics in the
form of inductive arguments (e.g. invariants);
- can be computed automatically by methods relevant
to static analysis.

– “static analysis”: the abstract semantics is computed
automatically from the program text according to pre-
defined abstractions (that can sometimes be tailored
automatically/manually by the user).
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Required properties of the abstract semantics

– sound so that no possible error can be forgotten;
– precise enough (to avoid false alarms);
– as simple/abstract as possible (to avoid combinatorial
explosion phenomena).
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Graphic example: The most abstract correct
and precise semantics

x(t)

t
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Graphic example: Erroneous abstraction — I

x(t)
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Graphic example: Erroneous abstraction — II

x(t)
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Graphic example: Imprecision ) false alarms

x(t)
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Abstract domains

Standard abstractions
– that serve as a basis for the design of static analyzers:
- abstract program data,
- abstract program basic operations;
- abstract program control (iteration, procedure, con-
currency, . . . );

– can be parametrized to allow for manual adaptation
to the application domains.
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Graphic example: Standard abstraction
by intervals

x(t)

t

;<=*'-$#'()*+,'-)"*:(+%#)*+-)$"0(%:($0)'*>+&#

."*%$//'0(1"0'

!"##$%&'(
)*+,'-)"*$'#

.+&#'(+&+*<#

VMCAI’05 Industrial Day, Paris, France, January 20, 2005 — 25 — ľ P. Cousot



Graphic example: A more refined abstraction

x(t)
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A very informal introduction
to static analysis
algorithms
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Standard operational semantics
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Standard semantics

– Start from a standard operational semantics that de-
scribes formally:
- states that is data values of program variables,
- transitions that is elementary computation steps;
– Consider traces that is successions of states correspond-
ing to executions described by transitions (possibly in-
finite).
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Graphic example: Small-steps transition
semantics

x(t)
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Example: Small-steps transition semantics of
an assignment

int x;
...
l:

x := x + 1;
l’:

fl : x = v ! l0 : x = v + 1 j v 2 [min_int; max_int` 1]g
[ fl : x = max_int! l0 : x = ˙g (runtime error)
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Example: Small-steps transition semantics of
a loop

l1:
x := 1;

l2:
while x < 10 do

l3:
x := x + 1

l4:
od

l5:

l1 : : : :
l1 : x = `1
l1 : x = 0
l1 : x = 1
l1 : : : :

3

777775

&
!
%

l2 : x = 1

l2 : x = 1! l3 : x = 1
l3 : x = 1! l4 : x = 2
l4 : x = 2! l3 : x = 2
l3 : x = 2! l4 : x = 3
: : :
l4 : x = 10! l5 : x = 10
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Example: Trace semantics of loop

l1:
x := 1;

l2:
while x < 10 do

l3:
x := x + 1

l4:
od

l5:l1 : : : :
l1 : x = `1
l1 : x = 0
l1 : x = 1
l1 : : : :

3

777775

&
!
%

l2 : x = 1! l3 : x = 1! l4 : x = 2!

l3 : x = 2! l4 : x = 3 : : :! l4 : x = 10! l5 : x = 10
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Transition systems

– hS; t!i where:
- S is a set of states/vertices/. . .

- t! 2 }(SˆS) is a transition relation/set of arcs/. . .

t
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Collecting semantics
in fixpoint form
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Collecting semantics

– consider all traces simultaneously;
– collecting semantics:
- sets of states that describe data values of program
variables on all possible trajectories;
- set of states transitions that is simultaneous elemen-
tary computation steps on all possible trajectories;
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Graphic example: sets of states

x(t)

t
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Graphic example: set of states transitions

x(t)

t
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Example: Reachable states of a transition
system

I
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Reachable states in fixpoint form

F (X) = I [ fs0 j 9s 2 X : s t! s0g

R = lfp
„

; F

=
+1[

n=0

Fn(;) where f0(x) = x
fn+1(x) = f(fn(x))
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Example of fixpoint iteration
for reachable states lfp

„
; –X

. I [ fs0 j 9s 2 X : s t! s0g

I

F ! " F ! " F ! " F ! "# $  %
@ A B 0
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Example of fixpoint iteration
for reachable states lfp

„
; –X

. I [ fs0 j 9s 2 X : s t! s0g

!

F ! " F ! " F ! " F ! "# $  %
@ A B 0
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Example of fixpoint iteration
for reachable states lfp

„
; –X

. I [ fs0 j 9s 2 X : s t! s0g

!

F ! " F ! " F ! " F ! "# $  %
@ A B 0
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Abstraction by Galois connections
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Abstracting sets (i.e. properties)

– Choose an abstract domain, replacing sets of objects
(states, traces, . . . ) S by their abstraction ¸(S)
– The abstraction function ¸ maps a set of concrete ob-
jects to its abstract interpretation;
– The inverse concretization function ‚ maps an abstract
set of objects to concrete ones;
– Forget no concrete objects: (abstraction from above)
S „ ‚(¸(S)).
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Interval abstraction ¸

!

"

!!"

#

$$

fx : [1; 99]; y : [2; 77]g
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Interval concretization ‚

!

"

!!"

#

$$

fx : [1; 99]; y : [2; 77]g
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The abstraction ¸ is monotone

!

"

!!"

#

%&

&!''

("

!)

fx : [33; 89]; y : [48; 61]g
v

fx : [1; 99]; y : [2; 90]g

X „ Y ) ¸(X) v ¸(Y )

VMCAI’05 Industrial Day, Paris, France, January 20, 2005 — 46 — ľ P. Cousot



The concretization ‚ is monotone

fx : [33; 89]; y : [48; 61]g
v

fx : [1; 99]; y : [2; 90]g

X v Y ) ‚(X) „ ‚(Y )
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The ‚ ‹ ¸ composition is extensive

!

"

!!"

#

$$

fx : [1; 99]; y : [2; 77]g

X „ ‚ ‹ ¸(X)
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The ¸ ‹ ‚ composition is reductive

!

"

!!"

#

$$

fx : [1; 99]; y : [2; 77]g
==v

fx : [1; 99]; y : [2; 77]g

¸ ‹ ‚(Y ) ==v Y
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Correspondance between concrete and
abstract properties

– The pair h¸; ‚i is a Galois connection:

h}(S); „i `̀ !̀ ̀`̀¸
‚
hD; vi

– h}(S); „i `̀`!̀! ̀`̀`
¸

‚
hD; vi when ¸ is onto (equivalently

¸ ‹ ‚ = 1 or ‚ is one-to-one).
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Galois connection

hD;„i `̀ !̀ ̀`̀¸
‚
hD;vi

iff 8x; y 2 D : x „ y =) ¸(x) v ¸(y)

^ 8x; y 2 D : x v y =) ‚(x) „ ‚(y)
^ 8x 2 D : x „ ‚(¸(x))

^ 8y 2 D : ¸(‚(y)) v x

iff 8x 2 D; y 2 D : ¸(x) v y () x „ ‚(y)
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Graphic example: Interval abstraction

x(t)

t
;0)'*>+&(4$)8(#=9*$"9#(#)+)'#
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Graphic example: Abstract transitions

x(t)

t
;0)'*>+&()*+0#$)$"0
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Example: Interval transition semantics of
assignments

int x;
...
l:

x := x + 1;
l’:

fl : x 2 [‘; h]! l0 : x 2 [l+ 1;min(h+ 1; max_int)] [
f˙ j h = max_intg j ‘ » hg

where [‘; h] = ; when h < ‘.
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Function abstraction
#

$

#

*+,-./0- 123/45

6250.7-7 123/45

F] = ¸ ‹ F ‹ ‚
i:e: F ] =  ‹ F

hP; „i `̀ !̀ ̀`̀¸
‚
hQ; vi )

hP mon7 !̀ P; _„i `̀`̀ `̀ `̀ `̀! ̀`̀ `̀ `̀ `̀`
–F .¸‹F ‹‚

–F ] . ‚‹F]‹¸
hQ mon7 !̀ Q; _vi
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Example: Set of traces to trace of intervals
abstraction

Set of traces:

¸1 #

Trace of sets:

¸2 #

Trace of intervals
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Example: Set of traces to reachable states
abstraction

Set of traces:

¸1 #

Trace of sets:

¸3 #

Reachable states
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Composition of Galois Connections

The composition of Galois connections:

hL; »i `̀ !̀ ̀ `̀
¸1

‚1 hM; vi

and:

hM; vi `̀ !̀ ̀ `̀
¸2

‚2 hN; —i

is a Galois connection:

hL; »i `̀`̀ `̀! ̀`̀ `̀`
¸2‹¸1

‚1‹‚2 hN; —i
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Abstract semantics in fixpoint form
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Graphic example: traces of sets of states
in fixpoint form

x(t)

t
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Graphic example: traces of sets of states
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Graphic example: traces of intervals
in fixpoint form

x(t)
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Graphic example: traces of intervals
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x(t)

t
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Graphic example: traces of intervals
in fixpoint form

x(t)

t
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Approximate fixpoint abstraction

F

F
]

Concrete domain

Abstract domain

F F F F F
F

F
] F

] F
]

F
]

â Approximation
relation

?

?]

v

F] = ¸ ‹ F ‹ ‚ ) ¸(lfpF ) v lfpF]
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approximate/exact fixpoint abstraction

Exact Abstraction:

¸(lfpF ) = lfpF]

Approximate Abstraction:

¸(lfpF ) @] lfpF]
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Convergence acceleration
by widening/narrowing
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Graphic example: upward iteration
with widening

x(t)

t

;0$)$+&(#)+)'#
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Graphic example: upward iteration
with widening

x(t)

t
;0)'*>+&()*+0#$)$"0
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Graphic example: upward iteration
with widening

x(t)

t
;0)'*>+&()*+0#$)$"0(4$)8(4$/'0$0C
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Graphic example: upward iteration
with widening

x(t)

t

;0)'*>+&()*+0#$)$"0(4$)8(4$/'0$0C
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Graphic example: stability of the
upward iteration

x(t)

t
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Convergence acceleration with widening
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Widening operator
A widening operator

!
2 Lˆ L 7! L is such that:

– Correctness:
- 8x; y 2 L : ‚(x) v ‚(x

!
y)

- 8x; y 2 L : ‚(y) v ‚(x
!
y)

– Convergence:
- for all increasing chains x0 v x1 v . . . , the in-
creasing chain defined by y0 = x0, . . . , yi+1 =
yi

!
xi+1, . . . is not strictly increasing.
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Fixpoint approximation with widening
The upward iteration sequence with widening:
– X̂0 = ?- (infimum)
– X̂i+1 = X̂i if F (X̂i) v X̂i

= X̂i
!
F (X̂i) otherwise

is ultimately stationary and its limit Â is a sound upper
approximation of lfp

?-
F :
lfp
?-
F v Â
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Interval widening
– L = f?g[f[‘; u] j ‘; u 2 Z[f`1g^u 2 Z[fg^‘ » ug
– The widening extrapolates unstable bounds to infinity:

?
!
X = X

X
!
? = X

[‘0; u0]
!
[‘1; u1] = [if ‘1 < ‘0 then `1 else ‘0;

if u1 > u0 then +1 else u0]

Not monotone. For example [0; 1] v [0; 2] but [0; 1]
!

[0; 2] = [0; +1] 6v [0; 2] = [0; 2]
!
[0; 2]
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Example: Interval analysis (1975)
Program to be analyzed:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]
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Example: Interval analysis (1975)
Equations (abstract interpretation of the semantics):

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]
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Example: Interval analysis (1975)
Resolution by chaotic increasing iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = ;
X2 = ;
X3 = ;
X4 = ;
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Example: Interval analysis (1975)
Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = ;
X3 = ;
X4 = ;
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Example: Interval analysis (1975)
Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 1]
X3 = ;
X4 = ;
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Example: Interval analysis (1975)
Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 1]
X3 = [2; 2]
X4 = ;
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Example: Interval analysis (1975)
Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 2]
X3 = [2; 2]
X4 = ;
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Example: Interval analysis (1975)
Increasing chaotic iteration: convergence !

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 2]
X3 = [2; 3]
X4 = ;
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Example: Interval analysis (1975)
Increasing chaotic iteration: convergence !!

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 3]
X3 = [2; 3]
X4 = ;
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Example: Interval analysis (1975)
Increasing chaotic iteration: convergence !!!

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 3]
X3 = [2; 4]
X4 = ;
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Example: Interval analysis (1975)
Increasing chaotic iteration: convergence !!!!

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 4]
X3 = [2; 4]
X4 = ;
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Example: Interval analysis (1975)
Increasing chaotic iteration: convergence !!!!!

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 4]
X3 = [2; 5]
X4 = ;
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Example: Interval analysis (1975)
Increasing chaotic iteration: convergence !!!!!!

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 5]
X3 = [2; 5]
X4 = ;
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Example: Interval analysis (1975)
Increasing chaotic iteration: convergence !!!!!!!

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 5]
X3 = [2; 6]
X4 = ;
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Example: Interval analysis (1975)
Convergence speed-up by widening:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1;+1] ( widening
X3 = [2; 6]
X4 = ;
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Example: Interval analysis (1975)
Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1;+1]
X3 = [2;+1]
X4 = ;

VMCAI’05 Industrial Day, Paris, France, January 20, 2005 — 76 — ľ P. Cousot



Example: Interval analysis (1975)
Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 9999]
X3 = [2;+1]
X4 = ;
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Example: Interval analysis (1975)
Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 9999]
X3 = [2;+10000]
X4 = ;
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Example: Interval analysis (1975)
Final solution:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 9999]
X3 = [2;+10000]
X4 = [+10000;+10000]
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Example: Interval analysis (1975)
Result of the interval analysis:

x := 1;
1: {x = 1}

while x < 10000 do
2: {x 2 [1; 9999]}

x := x + 1
3: {x 2 [2;+10000]}

od;
4: {x = 10000}

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

X1 = [1; 1]
X2 = [1; 9999]
X3 = [2;+10000]
X4 = [+10000;+10000]
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Example: Interval analysis (1975)
Checking absence of runtime errors with interval analysis:

x := 1;
1: {x = 1}

while x < 10000 do
2: {x 2 [1; 9999]}

x := x + 1
3: {x 2 [2;+10000]}

od;
4: {x = 10000}

8
>>><

>>>:

X1 = [1; 1]
X2 = (X1 [X3) \ [`1; 9999]
X3 = X2 ˘ [1; 1]
X4 = (X1 [X3) \ [10000;+1]

8
>>><

>>>:

 ̀ no overflow
X2 = [1; 9999]
X3 = [2;+10000]
X4 = [+10000;+10000]
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Refinement of abstractions
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Approximations of an [in]finite set of points:
from above

x

y

f: : : ; h19; 77i; : : : ;
h20; 03i; : : :g
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Approximations of an [in]finite set of points:
from above

x

y

?

?

?
?

?

?

?
?

?

?

f: : : ; h19; 77i; : : : ;

h20; 03i; h?; ?i; : : :g

From Below: dual 2 + combinations.

2 Trivial for finite states (liveness model-checking), more difficult for infinite states (variant functions).
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Effective computable approximations of an
[in]finite set of points; Signs 3

x

y

x – 0
y – 0

3 P. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL’79, pp. 269–282,
1979.
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Effective computable approximations of an
[in]finite set of points; Intervals 4

x

y

x 2 [19; 77]
y 2 [20; 03]

4 P. Cousot & R. Cousot. Static determination of dynamic properties of programs. Proc. 2nd Int. Symp. on
Programming, Dunod, 1976.
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Effective computable approximations of an
[in]finite set of points; Octagons 5

x

y

8
>>><

>>>:

1 » x » 9
x+ y » 77
1 » y » 9
x` y » 99

5 A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. PADO ’2001.
LNCS 2053, pp. 155–172. Springer 2001. See the The Octagon Abstract Domain Library on
http://www.di.ens.fr/~mine/oct/
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Effective computable approximations of an
[in]finite set of points; Polyhedra 6

x

y

19x+ 77y » 2004
20x+ 03y – 0

6 P. Cousot & N. Halbwachs. Automatic discovery of linear restraints among variables of a program. ACM
POPL, 1978, pp. 84–97.
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Effective computable approximations of an
[in]finite set of points; Simple

congruences 7

x

y

x = 19 mod 77
y = 20 mod 99

7 Ph. Granger. Static Analysis of Arithmetical Congruences. Int. J. Comput. Math. 30, 1989, pp. 165–190.
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Effective computable approximations of an
[in]finite set of points; Linear

congruences 8

x

y

1x+ 9y = 7 mod 8
2x` 1y = 9 mod 9

8 Ph. Granger. Static Analysis of Linear Congruence Equalities among Variables of a Program.
TAPSOFT ’91, pp. 169–192. LNCS 493, Springer, 1991.
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Effective computable approximations of an
[in]finite set of points; Trapezoidal lin-

ear congruences 9

x

y


1x+ 9y 2 [0; 77] mod 10
2x` 1y 2 [0; 99] mod 11

9 F. Masdupuy. Array Operations Abstraction Using Semantic Analysis of Trapezoid Congruences. ACM
ICS ’92.
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Refinement of iterates
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Graphic example: Refinement required
by false alarms

x(t)

t

."*%$//'0(1"0'

.+&#'(+&+*<#
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Graphic example: Partitionning

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#
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Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#
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Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#

VMCAI’05 Industrial Day, Paris, France, January 20, 2005 — 93 — ľ P. Cousot



Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#
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Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#

VMCAI’05 Industrial Day, Paris, France, January 20, 2005 — 93 — ľ P. Cousot



Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#
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Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#
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Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#
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Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#
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Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#
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Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#
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Graphic example: partitionned upward itera-
tion with widening

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#
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Graphic example: safety verification

x(t)

t

!"##$%&'(
/$#-*')'(

)*+,'-)"*$'#

."*%$//'0(1"0'
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Examples of partitionnings

– sets of control states: attach local information to pro-
gram points instead of global information for the whole
program/procedure/loop
– sets of data states:
- case analysis (test, switches)
– fixpoint iterates:
- widening with threshold set
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Interval widening with threshold set

– The threshold set T is a finite set of numbers (plus
+1 and `1),
– [a; b]

!
T [a
0; b0] = [if a0 < a then maxf‘ 2 T j ‘ » a0g

else a;
if b0 > b then minfh 2 T j h – b0g

else b] :
– Examples (intervals):
- sign analysis: T = f`1; 0;+1g;
- strict sign analysis: T = f`1;`1; 0;+1;+1g;

– T is a parameter of the analysis.
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Combinations of abstractions
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Forward/reachability analysis

II
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Backward/ancestry analysis

II
F
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Iterated forward/backward analysis

I
F

I
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Example of iterated forward/backward analysis
Arithmetical mean of two integers x and y:
{x>=y}

while (x <> y) do
{x>=y+2}

x := x - 1;
{x>=y+1}

y := y + 1
{x>=y}

od
{x=y}

Necessarily x – y for proper termination
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Example of iterated forward/backward analysis
Adding an auxiliary counter k decremented in the loop
body and asserted to be null on loop exit:
{x=y+2k,x>=y}

while (x <> y) do
{x=y+2k,x>=y+2}

k := k - 1;
{x=y+2k+2,x>=y+2}

x := x - 1;
{x=y+2k+1,x>=y+1}

y := y + 1
{x=y+2k,x>=y}

od
{x=y,k=0}

assume (k = 0)
{x=y,k=0}

Moreover the differ-
ence of x and y must
be even for proper ter-
mination
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Conclusion
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Theoretical applications of abstract interpretation

– Static Program Analysis [POPL ’77,78,79] inluding Data-
flow Analysis [POPL ’79,00], Set-based Analysis [FPCA ’95],
etc
– Syntax Analysis [TCS 290(1) 2002]
– Hierarchies of Semantics (including Proofs) [POPL ’92, TCS
277(1–2) 2002]
– Typing [POPL ’97]
– Model Checking [POPL ’00]
– Program Transformation [POPL ’02]
– Software watermarking [POPL ’04]
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Practical applications of abstract
interpretation

– Program analysis and manipulation: a small rate of false
alarms is acceptable
- AiT: worst case execution time – Christian Ferdi-
nand

– Program verification: no false alarms is acceptable
- TVLA: A system for generating abstract interpreters
– Mooly Sagiv
- Astrée: verification of absence of run-time errors –
Laurent Mauborgne
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Industrial applications of abstract
interpretation

– Both to Program analysis and verification
– Experience with the industrial use of abstract interpre-
tation-based static analysis tools – Jean Souyris (Air-
bus France)
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THE END

More references at URL www.di.ens.fr/~cousot.
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