Parallel Algorithms for Graphs on a Very Large Number of Nodes

Krzysztof Onak

IBM T.J. Watson Research Center

Outline

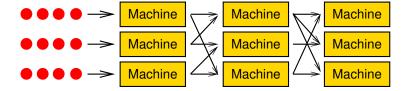
- 1 Model of Computation
- 2 Sample Algorithms and Their Limitations
- 3 Efficiently Estimating MST Weight
- 4 Computing MST in Geometric Setting

Outline

- Model of Computation
- 2 Sample Algorithms and Their Limitations
- 3 Efficiently Estimating MST Weight
- 4 Computing MST in Geometric Setting

[Karloff, Suri, Vassilvitskii 2010; Beame, Koutris, Suciu 2013; ...]

n items on input *m* machines

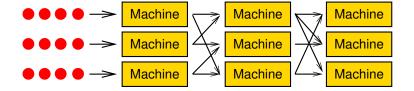


[Karloff, Suri, Vassilvitskii 2010; Beame, Koutris, Suciu 2013; ...]

n items on input

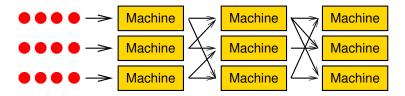
m machines

space per machine: $s = \frac{n}{m}$ · small-factor



[Karloff, Suri, Vassilvitskii 2010; Beame, Koutris, Suciu 2013; ...]

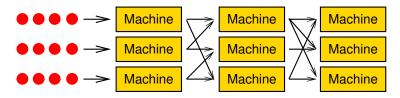
n items on input m machines space per machine: $s = \frac{n}{m} \cdot \text{small-factor}$



• Initially: each machine receives n/m items

[Karloff, Suri, Vassilvitskii 2010; Beame, Koutris, Suciu 2013; ...]

n items on input m machines space per machine: $s = \frac{n}{m} \cdot \text{small-factor}$



- Initially: each machine receives n/m items
- Single round:
 - 1. Each machine performs computation
 - 2. Each machine sends and receives at most O(s) data

n items on input *m* machines

space per machine: $s = \frac{n}{m} \cdot \text{small-factor}$

$$n$$
 items on input m machines space per machine: $s = \frac{n}{m} \cdot \text{small-factor}$

• Popular assumption:

$$m = O(n^{\alpha})$$
 for $\alpha \in (0,1)$ \Longrightarrow $s = n^{\Omega(1)}$

$$n$$
 items on input m machines space per machine: $s = \frac{n}{m} \cdot \text{small-factor}$

• Popular assumption:

$$m = O(n^{\alpha})$$
 for $\alpha \in (0,1)$ \Longrightarrow $s = n^{\Omega(1)}$

Likely to happen:

$$s\gg m$$

n items on input m machines space per machine: $s = \frac{n}{m} \cdot \text{small-factor}$

• Popular assumption:

$$m = O(n^{\alpha})$$
 for $\alpha \in (0,1)$ \Longrightarrow $s = n^{\Omega(1)}$

• Likely to happen: $s \gg m$

Goals:

Minimize the number of rounds

n items on input m machines space per machine: $s = \frac{n}{m} \cdot \text{small-factor}$

Popular assumption:

$$m = O(n^{\alpha})$$
 for $\alpha \in (0,1)$ \Longrightarrow $s = n^{\Omega(1)}$

• Likely to happen: $s \gg m$

Goals:

- Minimize the number of rounds
- Optimize running time

n items on input m machines space per machine: $s = \frac{n}{m} \cdot \text{small-factor}$

• Popular assumption:

$$m = O(n^{\alpha})$$
 for $\alpha \in (0,1)$ \Longrightarrow $s = n^{\Omega(1)}$

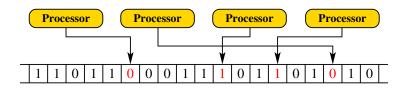
Likely to happen:

$$s\gg m$$

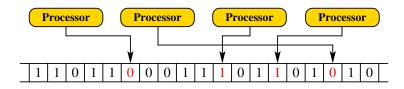
Goals:

- Minimize the number of rounds
- Optimize running time
- Use amount of memory as close to linear as possible

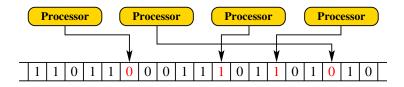
- PRAM: classic parallel model
 - m processors
 - processors access common memory



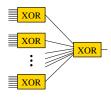
- PRAM: classic parallel model
 - m processors
 - processors access common memory
- Many problems require $\tilde{\Omega}(\log n)$ rounds in PRAM



- PRAM: classic parallel model
 - m processors
 - processors access common memory
- Many problems require $\tilde{\Omega}(\log n)$ rounds in PRAM Example: computing XOR of n bits requires $\Omega(\log n/\log\log n)$ time in strongest PRAM model [Beame, Håstad 1989]



- PRAM: classic parallel model
 - m processors
 - processors access common memory
- Many problems require Ω(log n) rounds in PRAM
 Example: computing XOR of n bits requires
 Ω(log n/ log log n) time in strongest PRAM model
 [Beame, Håstad 1989]
- Our model: O(log_s n) rounds for XOR



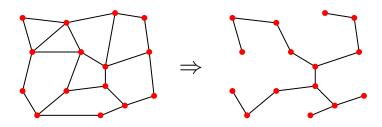
- PRAM: classic parallel model
 - m processors
 - processors access common memory
- Many problems require Ω(log n) rounds in PRAM
 Example: computing XOR of n bits requires
 Ω(log n/ log log n) time in strongest PRAM model
 [Beame, Håstad 1989]
- Our model: $O(\log_s n)$ rounds for XOR
 - If $s = n^{\Omega(1)}$, number of rounds is constant

- PRAM: classic parallel model
 - m processors
 - processors access common memory
- Many problems require $\tilde{\Omega}(\log n)$ rounds in PRAM Example: computing XOR of n bits requires $\Omega(\log n/\log\log n)$ time in strongest PRAM model [Beame, Håstad 1989]
- Our model: $O(\log_s n)$ rounds for XOR
 - If $s = n^{\Omega(1)}$, number of rounds is constant
- Our goal: constant number of communication rounds

Outline

- Model of Computation
- 2 Sample Algorithms and Their Limitations
- 3 Efficiently Estimating MST Weight
- 4 Computing MST in Geometric Setting

Main Subject of Study: Minimum Spanning Tree



Select the subset of edges of minimum weight that connects all vertices

[Karloff, Suri, Vassilvitskii 2010] [Lattanzi, Moseley, Suri, Vassilvitskii 2011]

[Karloff, Suri, Vassilvitskii 2010] [Lattanzi, Moseley, Suri, Vassilvitskii 2011]

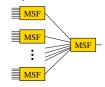
Input: weighted edges of a graph on N vertices

[Karloff, Suri, Vassilvitskii 2010] [Lattanzi, Moseley, Suri, Vassilvitskii 2011]

- Input: weighted edges of a graph on N vertices
- Main idea:
 - 1. Find minimum spanning forest for subset of edges
 - 2. Remove edges not in the forest

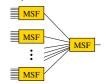
[Karloff, Suri, Vassilvitskii 2010] [Lattanzi, Moseley, Suri, Vassilvitskii 2011]

- Input: weighted edges of a graph on N vertices
- Main idea:
 - Find minimum spanning forest for subset of edges
 Remove edges not in the forest
- · Algorithm: repeat the process until problem solved



[Karloff, Suri, Vassilvitskii 2010] [Lattanzi, Moseley, Suri, Vassilvitskii 2011]

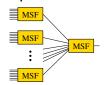
- Input: weighted edges of a graph on N vertices
- Main idea:
 - Find minimum spanning forest for subset of edges
 Remove edges not in the forest
- · Algorithm: repeat the process until problem solved



Caveat: ≥N space per machine required

[Karloff, Suri, Vassilvitskii 2010] [Lattanzi, Moseley, Suri, Vassilvitskii 2011]

- Input: weighted edges of a graph on N vertices
- Main idea:
 - Find minimum spanning forest for subset of edges
 Remove edges not in the forest
- · Algorithm: repeat the process until problem solved



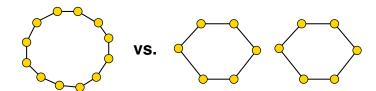
- Caveat: >N space per machine required
- Complexity: $s = N^{1+\Omega(1)} \Rightarrow O(1)$ rounds

Unlikely to be possible in general

- Unlikely to be possible in general
- Can reduce from Sparse Connectivity:
 - Do edges span a connected graph?

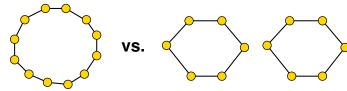
- Unlikely to be possible in general
- Can reduce from Sparse Connectivity:
 Do edges span a connected graph?
- Conjecture: superconstant number of rounds with N^{1-Ω(1)} memory

- Unlikely to be possible in general
- Can reduce from Sparse Connectivity:
 Do edges span a connected graph?
- Conjecture: superconstant number of rounds with N^{1-Ω(1)} memory
- Is this instance hard?



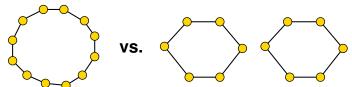
- Unlikely to be possible in general
- Can reduce from Sparse Connectivity:
 Do edges span a connected graph?
- Conjecture: superconstant number of rounds with N^{1-Ω(1)} memory
- Is this instance hard?

(solvable in $O(\log N)$ rounds)



- Unlikely to be possible in general
- Can reduce from Sparse Connectivity:
 Do edges span a connected graph?
- Conjecture: superconstant number of rounds with N^{1-Ω(1)} memory
- Is this instance hard?

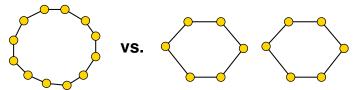
(solvable in $O(\log N)$ rounds)



 Reduction: connect select vertex to all vertices with heavy edges

- Unlikely to be possible in general
- Can reduce from Sparse Connectivity:
 Do edges span a connected graph?
- Conjecture: superconstant number of rounds with N^{1-Ω(1)} memory
- Is this instance hard?

(solvable in $O(\log N)$ rounds)



- Reduction: connect select vertex to all vertices with heavy edges
- This talk: algorithms with $O(N^{\epsilon})$ space per machine

Outline

- Model of Computation
- 2 Sample Algorithms and Their Limitations
- 3 Efficiently Estimating MST Weight
- 4 Computing MST in Geometric Setting

[Łącki, Mądry, Mitrović, O., Sankowski]

Input: M edges, weights in {1,2,..., W}
 (#nodes N ≤ #edges M)

[Łącki, Mądry, Mitrović, O., Sankowski]

- Input: M edges, weights in {1,2,..., W}
 (#nodes N ≤ #edges M)
- Algorithm:
 - Computes $(1 + \epsilon)$ -approximation to MST weight

[Łącki, Mądry, Mitrović, O., Sankowski]

- Input: M edges, weights in {1,2,..., W}
 (#nodes N ≤ #edges M)
- Algorithm:
 - Computes $(1 + \epsilon)$ -approximation to MST weight
 - Space per machine:

$$O\left(\frac{M}{m} + \frac{N}{m} \cdot \left(\frac{W}{\epsilon}\right)^2\right)$$
 for $M/m = M^{\Omega(1)}$

[Łącki, Mądry, Mitrović, O., Sankowski]

- Input: M edges, weights in {1,2,..., W}
 (#nodes N ≤ #edges M)
- Algorithm:
 - Computes $(1 + \epsilon)$ -approximation to MST weight
 - Space per machine:

$$O\left(\frac{M}{m} + \frac{N}{m} \cdot \left(\frac{W}{\epsilon}\right)^2\right)$$
 for $M/m = M^{\Omega(1)}$

• Number of rounds: $O(\log(W/\epsilon))$

[Łącki, Mądry, Mitrović, O., Sankowski]

- Input: M edges, weights in {1,2,..., W}
 (#nodes N ≤ #edges M)
- Algorithm:
 - Computes $(1 + \epsilon)$ -approximation to MST weight
 - Space per machine:

$$O\left(\frac{M}{m} + \frac{N}{m} \cdot \left(\frac{W}{\epsilon}\right)^2\right)$$
 for $M/m = M^{\Omega(1)}$

- Number of rounds: $O(\log(W/\epsilon))$
- Note: No dependence on W would disprove Sparse Connectivity Conjecture

Use techniques of Chazelle, Rubinfeld, Trevisan (2005)

Use techniques of Chazelle, Rubinfeld, Trevisan (2005):

G_i = graph restricted to edges of weight < i

Use techniques of Chazelle, Rubinfeld, Trevisan (2005):

- G_i = graph restricted to edges of weight < i
- T_i = #connected components in G_i

Use techniques of Chazelle, Rubinfeld, Trevisan (2005):

- G_i = graph restricted to edges of weight < i
- T_i = #connected components in G_i
- Number of edges of weight $\geq i$ in MST = $T_i 1$

Use techniques of Chazelle, Rubinfeld, Trevisan (2005):

- G_i = graph restricted to edges of weight < i
- T_i = #connected components in G_i
- Number of edges of weight $\geq i$ in MST = $T_i 1$

$$\Rightarrow$$
 weight(MST) = $\sum_{i=1}^{W} (T_i - 1)$

Use techniques of Chazelle, Rubinfeld, Trevisan (2005):

- *G_i* = graph restricted to edges of weight < *i*
- T_i = #connected components in G_i
- Number of edges of weight $\geq i$ in MST = $T_i 1$

$$\Rightarrow$$
 weight(MST) = $\sum_{i=1}^{W} (T_i - 1)$

• $C_i(v)$ = size of the component of v in G_i

$$T_i = \sum_{v} 1/C_i(v)$$

Use techniques of Chazelle, Rubinfeld, Trevisan (2005):

- G_i = graph restricted to edges of weight < i
- T_i = #connected components in G_i
- Number of edges of weight $\geq i$ in MST = $T_i 1$

$$\Rightarrow$$
 weight(MST) = $\sum_{i=1}^{W} (T_i - 1)$

• $C_i(v)$ = size of the component of v in G_i

$$T_i = \sum_{v} 1/C_i(v)$$

- Good approximation:
 - Compute sizes of small components
 - Replace $1/C_i(v)$ with 0 if $C_i(v) \geq W/\epsilon$

- Reachability sets R_v for each node v:
 - Set of W/ϵ nodes accessible via cheapest edges

- Reachability sets R_v for each node v:
 - Set of W/ϵ nodes accessible via cheapest edges
 - Initially: collect cheapest incident edges

- Reachability sets R_v for each node v:
 - Set of W/ϵ nodes accessible via cheapest edges
 - Initially: collect cheapest incident edges
 - Repeat O(log(W/ε)) times:
 Ask nodes u on R_V for their R_u and update

- Reachability sets R_v for each node v:
 - Set of W/ϵ nodes accessible via cheapest edges
 - Initially: collect cheapest incident edges
 - Repeat O(log(W/ε)) times:
 Ask nodes u on R_V for their R_u and update
- $O(\log(W/\epsilon))$ updates suffice to explore useful nodes up to distance W/ϵ

- Reachability sets R_v for each node v:
 - Set of W/ϵ nodes accessible via cheapest edges
 - Initially: collect cheapest incident edges
 - Repeat O(log(W/ε)) times:
 Ask nodes u on R_V for their R_u and update
- O(log(W/ε)) updates suffice to explore useful nodes up to distance W/ε
- Use QuickSort-like sorting algorithm of Goodrich, Sitchinava, Zhang (2011) to organize communication

Outline

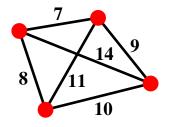
- Model of Computation
- 2 Sample Algorithms and Their Limitations
- 3 Efficiently Estimating MST Weight
- 4 Computing MST in Geometric Setting

Geometric Setting

Input: set of points in low dimensional metric space

Geometric Setting

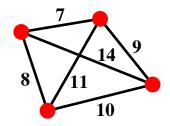
Input: set of points in low dimensional metric space



Points induce a weighted graph

Geometric Setting

Input: set of points in low dimensional metric space



- Points induce a weighted graph
- Graph problems to consider:
 - Minimum Spanning Tree
 - Earth Mover Distance
 - Transportation Problem
 - Travelling Salesman Problem

- Input: N points in low dimensional metric space
 - Example: R²
 - Generalizes to bounded doubling dimension

- Input: N points in low dimensional metric space
 - Example: R²
 - Generalizes to bounded doubling dimension
- Algorithm:
 - Computes $(1 + \epsilon)$ -approximate MST

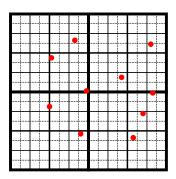
- Input: N points in low dimensional metric space
 - Example: ℝ²
 - Generalizes to bounded doubling dimension
- Algorithm:
 - Computes $(1 + \epsilon)$ -approximate MST
 - Space per machine: roughly O(N/m)
 (as long as it fits subproblems)

- Input: N points in low dimensional metric space
 - Example: R²
 - Generalizes to bounded doubling dimension
- Algorithm:
 - Computes $(1 + \epsilon)$ -approximate MST
 - Space per machine: roughly O(N/m)
 (as long as it fits subproblems)
 - Number of rounds: O(1)

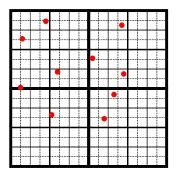
- Input: N points in low dimensional metric space
 - Example: R²
 - Generalizes to bounded doubling dimension
- Algorithm:
 - Computes $(1 + \epsilon)$ -approximate MST
 - Space per machine: roughly O(N/m)
 (as long as it fits subproblems)
 - Number of rounds: O(1)
 - Running time: near-linear

Random Gridding We reuse the Arora-Mitchell approach:

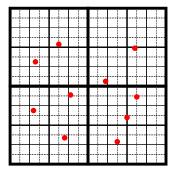
We reuse the Arora-Mitchell approach:



We reuse the Arora-Mitchell approach:

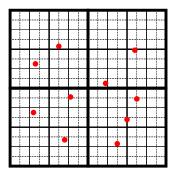


We reuse the Arora-Mitchell approach:

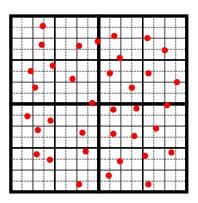


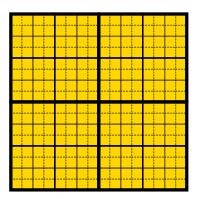
We reuse the Arora-Mitchell approach:

Apply a randomly shifted grid

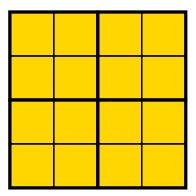


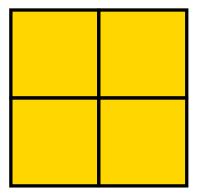
Key property: cell of side Δ separates points x and y w.p. $O(1) \cdot \frac{\rho(x,y)}{\Delta}$





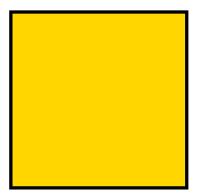






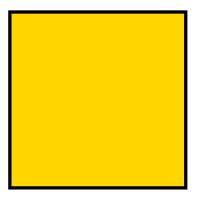
Using Random Gridding

Typical usage: Recursive dynamic program for approximately solving problem



Using Random Gridding

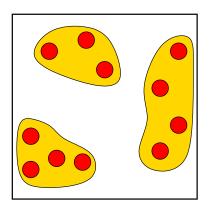
Typical usage: Recursive dynamic program for approximately solving problem



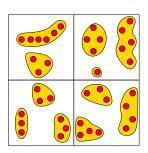
Can partially isolate what happens inside a cell

• Connect points closer than $\frac{\epsilon \cdot \operatorname{diam}(S)}{100 \cdot N}$ arbitrarily

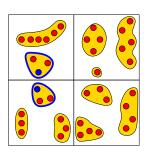
- Connect points closer than $\frac{\epsilon \cdot \operatorname{diam}(S)}{100 \cdot N}$ arbitrarily
- Sub-solution for cell of side Δ : $\epsilon^2 \Delta$ -covering with induced components



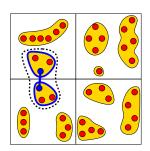
- Connect points closer than $\frac{\epsilon \cdot \operatorname{diam}(S)}{100 \cdot N}$ arbitrarily
- Sub-solution for cell of side Δ : $\epsilon^2 \Delta$ -covering with induced components
- Combining sub-solutions:
 Truncated version of Kruskal's algorithm



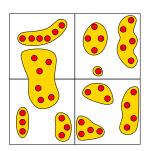
- Connect points closer than $\frac{\epsilon \cdot \operatorname{diam}(S)}{100 \cdot N}$ arbitrarily
- Sub-solution for cell of side Δ : $\epsilon^2 \Delta$ -covering with induced components
- Combining sub-solutions:
 Truncated version of Kruskal's algorithm
 - 1. Find two closest clusters



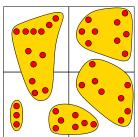
- Connect points closer than $\frac{\epsilon \cdot \operatorname{diam}(S)}{100 \cdot N}$ arbitrarily
- Sub-solution for cell of side Δ : $\epsilon^2 \Delta$ -covering with induced components
- Combining sub-solutions:
 Truncated version of Kruskal's algorithm
 - 1. Find two closest clusters
 - 2. If their distance less than $\epsilon \Delta$, connect them



- Connect points closer than $\frac{\epsilon \cdot \operatorname{diam}(S)}{100 \cdot N}$ arbitrarily
- Sub-solution for cell of side Δ : $\epsilon^2 \Delta$ -covering with induced components
- Combining sub-solutions:
 Truncated version of Kruskal's algorithm
 - 1. Find two closest clusters
 - 2. If their distance less than $\epsilon \Delta$, connect them

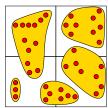


- Connect points closer than $\frac{\epsilon \cdot \operatorname{diam}(S)}{100 \cdot N}$ arbitrarily
- Sub-solution for cell of side Δ : $\epsilon^2 \Delta$ -covering with induced components
- Combining sub-solutions:
 Truncated version of Kruskal's algorithm
 - 1. Find two closest clusters
 - 2. If their distance less than $\epsilon \Delta$, connect them and repeat

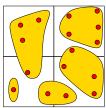


- Connect points closer than $\frac{\epsilon \cdot \operatorname{diam}(S)}{100 \cdot N}$ arbitrarily
- Sub-solution for cell of side Δ : $\epsilon^2\Delta$ -covering with induced components
- Combining sub-solutions:
 Truncated version of Kruskal's algorithm
 - 1. Find two closest clusters
 - 2. If their distance less than $\epsilon \Delta$, connect them and repeat
- Pass up $\epsilon^2\Delta$ -covering with information about connected components

- Connect points closer than $\frac{\epsilon \cdot \operatorname{diam}(S)}{100 \cdot N}$ arbitrarily
- Sub-solution for cell of side Δ : $\epsilon^2 \Delta$ -covering with induced components
- Combining sub-solutions:
 Truncated version of Kruskal's algorithm
 - 1. Find two closest clusters
 - 2. If their distance less than $\epsilon \Delta$, connect them and repeat
- Pass up $\epsilon^2\Delta$ -covering with information about connected components



- Connect points closer than $\frac{\epsilon \cdot \operatorname{diam}(S)}{100 \cdot N}$ arbitrarily
- Sub-solution for cell of side Δ : $\epsilon^2 \Delta$ -covering with induced components
- Combining sub-solutions:
 Truncated version of Kruskal's algorithm
 - 1. Find two closest clusters
 - 2. If their distance less than $\epsilon \Delta$, connect them and repeat
- Pass up $\epsilon^2\Delta$ -covering with information about connected components



- Connect points closer than $\frac{\epsilon \cdot \operatorname{diam}(S)}{100 \cdot N}$ arbitrarily
- Sub-solution for cell of side Δ : $\epsilon^2 \Delta$ -covering with induced components
- Combining sub-solutions:
 Truncated version of Kruskal's algorithm
 - 1. Find two closest clusters
 - 2. If their distance less than $\epsilon \Delta$, connect them and repeat
- Pass up $\epsilon^2\Delta$ -covering with information about connected components
- Expected cost of solution: optimum \cdot (1 + ϵ · #levels)

• Merge $N^{\Omega(1)} \times N^{\Omega(1)}$ cells at once

- Merge $N^{\Omega(1)} \times N^{\Omega(1)}$ cells at once
- Sub-solutions for all subcells should fit on a single machine

- Merge $N^{\Omega(1)} \times N^{\Omega(1)}$ cells at once
- Sub-solutions for all subcells should fit on a single machine
- Use sorting [Goodrich, Sitchinava, Zhang 2011] for grouping points and subcells that are close

- Merge $N^{\Omega(1)} \times N^{\Omega(1)}$ cells at once
- Sub-solutions for all subcells should fit on a single machine
- Use sorting [Goodrich, Sitchinava, Zhang 2011] for grouping points and subcells that are close
- Near-linear time:
 - Relax Kruskal's algorithm
 - Efficient nearest neighbor data structure [Krauthgamer, Lee 2004], [Cole, Gottlieb 2006]

Lower Bounds for MST

- Natural questions to ask:
 - Can generalize to unbounded dimension?
 - Can compute exact solution?

Lower Bounds for MST

- Natural questions to ask:
 - Can generalize to unbounded dimension?
 - Can compute exact solution?
- Query complexity:
 - Model: distance queries
 - Our algorithm can be adapted to arbitrary bounded doubling dimensional metric in this model
 - Lower bound: $N^{\Omega(1)}$ rounds

Lower Bounds for MST

- Natural questions to ask:
 - Can generalize to unbounded dimension?
 - Can compute exact solution?
- Query complexity:
 - Model: distance queries
 - Our algorithm can be adapted to arbitrary bounded doubling dimensional metric in this model
 - Lower bound: $N^{\Omega(1)}$ rounds
- We give a conditional lower bound based on Sparse Connectivity

In constant number of rounds:

Computing exact MST in ℓ_{∞}^{d} for $d = 100 \log N$ \Rightarrow deciding Sparse Connectivity

In constant number of rounds:

Computing exact MST in ℓ_{∞}^{d} for $d = 100 \log N$ \Rightarrow deciding Sparse Connectivity

Construction:

- For each vertex, pick a random vector v_i in $\{-1, +1\}^d$
- For each edge e = (i, j), add point $f(e) = v_i + v_j$

In constant number of rounds:

Computing exact MST in ℓ_{∞}^{d} for $d = 100 \log N$ \Rightarrow deciding Sparse Connectivity

Construction:

- For each vertex, pick a random vector v_i in $\{-1, +1\}^d$
- For each edge e = (i, j), add point $f(e) = v_i + v_j$

Distances (whp.):

- Adjacent edges: $||f(e) f(e')||_{\infty} \le 2$
- Non-adjacent edges: $||f(e) f(e')||_{\infty} = 4$

In constant number of rounds:

Computing exact MST in ℓ_{∞}^{d} for $d = 100 \log N$ \Rightarrow deciding Sparse Connectivity

Construction:

- For each vertex, pick a random vector v_i in $\{-1, +1\}^d$
- For each edge e = (i, j), add point $f(e) = v_i + v_j$

Distances (whp.):

- Adjacent edges: $||f(e) f(e')||_{\infty} \le 2$
- Non-adjacent edges: $||f(e) f(e')||_{\infty} = 4$

MST weight:

- Connected: < 2(M-1)
- Not connected: > 2M

Other Results

[Andoni, Nikolov, O., Yaroslavtsev 2014]

- Algorithm for approximating Earth-Mover Distance
- A new way of partitioning the instance into subproblems
- Resolves an open question of Sharathkumar & Agarwal (2012) about the transportation problem:

First near-linear time algorithm

Main goal:

• Main goal:

Efficient algorithms for the Massive Parallel Computation Model

Important efficiency measure: number of rounds
 When can it be made O(1) with low memory?

Main goal:

- Important efficiency measure: number of rounds
 When can it be made O(1) with low memory?
- Well known obstacle: Sparse Connectivity

Main goal:

- Important efficiency measure: number of rounds
 When can it be made O(1) with low memory?
- Well known obstacle: Sparse Connectivity
- This talk: efficient algorithms for MST

Main goal:

- Important efficiency measure: number of rounds
 When can it be made O(1) with low memory?
- Well known obstacle: Sparse Connectivity
- This talk: efficient algorithms for MST
- Future research:
 - More such algorithms
 - Better understanding of our limitations

Questions?