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Model: Massive Parallel Computation
[Karloff, Suri, Vassilvitskii 2010; Beame, Koutris, Suciu 2013; .. .]

n items on input m machines

. n
space per machine: s = e small-factor
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e Initially: each machine receives n/m items

e Single round:
1. Each machine performs computation
2. Each machine sends and receives at most O(s) data
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Resources

n items on input m machines

: n
space per machine: s = e small-factor

e Popular assumption:
m=0(n*)fora e (0,1) = s=n

e Likely to happen: s>m

Goals:
e Minimize the number of rounds
e Optimize running time
e Use amount of memory as close to linear as possible
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Comparison to PRAM

e PRAM: classic parallel model

® /7 Processors
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Comparison to PRAM

e PRAM: classic parallel model

® /7 Processors
® processors access common memory

 Many problems require Q(log n) rounds in PRAM

Example: computing XOR of n bits requires
Q(log n/loglog n) time in strongest PRAM model
[Beame, Hastad 1989]

e Our model: O(log, n) rounds for XOR

If s = n®"), number of rounds is constant

e Our goal: constant number of communication rounds
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@ Sample Algorithms and Their Limitations
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Main Subject of Study:
Minimum Spanning Tree

Select the subset of edges of minimum weight
that connects all vertices
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Filtering Technique
[Karloff, Suri, Vassilvitskii 2010]
[Lattanzi, Moseley, Suri, Vassilvitskii 2011]
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Filtering Technique
[Karloff, Suri, Vassilvitskii 2010]
[Lattanzi, Moseley, Suri, Vassilvitskii 2011]

Input: weighted edges of a graph on N vertices
Main idea:

1. Find minimum spanning forest for subset of edges
2. Remove edges not in the forest

Algorithm: repeat the process until problem solved

Caveat: >N space per machine required
o Complexity: s = N+ = O(1) rounds
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N'-2() Space in O(1) Rounds?
Unlikely to be possible in general
Can reduce from Sparse Connectivity:
Do edges span a connected graph?
Conjecture: superconstant number of rounds
with N'=2() memory
Is this instance hard?

(solvable in O(log N) rounds)

VS.

Reduction: connect select vertex to all vertices
with heavy edges

e This talk: algorithms with O(N¢) space per machine
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@ Efficiently Estimating MST Weight
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Result
[Lacki, Madry, Mitrovi¢, O., Sankowski]

e Input: M edges, weightsin {1,2,..., W}
(#nodes N < #edges M)
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Result
[Lacki, Madry, Mitrovi¢, O., Sankowski]

e Input: M edges, weightsin {1,2,..., W}
(#nodes N < #edges M)

o Algorithm:
e Computes (1 + ¢)-approximation to MST weight

e Space per machine:

2
o) M+N-<W> )forM/m:MQ“)
m' m \ e

e Number of rounds: O(log(W/e¢))

e Note: No dependence on W would disprove
Sparse Connectivity Conjecture
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Use techniques of Chazelle, Rubinfeld, Trevisan (2005)
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e G, = graph restricted to edges of weight < i
e T; = #connected components in G;

e Number of edges of weight >/ in MST = T; — 1
w

= weight(MST) =) (T, - 1)

i=1

e Ci(v) = size of the component of v in G;

Ti=> 1/Cy(v)
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Approach
Use techniques of Chazelle, Rubinfeld, Trevisan (2005):

e G, = graph restricted to edges of weight < i

T; = #connected components in G;

Number of edges of weight >/ in MST = T; — 1
w

= weight(MST) =) (T, - 1)

i=1

e Ci(v) = size of the component of v in G;

7-/':21/Ci(v)

Good approximation:
e Compute sizes of small components
e Replace 1/Ci(v) with 0 if Cij(v) > W /e
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Implementation

e Reachability sets R, for each node v:
o Set of W/e nodes accessible via cheapest edges

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. .. 14 /26



Implementation

e Reachability sets R, for each node v:

o Set of W/e nodes accessible via cheapest edges
o Initially: collect cheapest incident edges

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. .. 14 /26



Implementation

e Reachability sets R, for each node v:
o Set of W/e nodes accessible via cheapest edges
o Initially: collect cheapest incident edges
e Repeat O(log(W/¢)) times:
Ask nodes u on R, for their R, and update

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. .. 14 /26



Implementation

e Reachability sets R, for each node v:
o Set of W/e nodes accessible via cheapest edges
o Initially: collect cheapest incident edges
e Repeat O(log(W/¢)) times:
Ask nodes u on R, for their R, and update

e O(log(W/e)) updates suffice to explore useful nodes
up to distance W /e

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. .. 14/26



Implementation

e Reachability sets R, for each node v:

o Set of W/e nodes accessible via cheapest edges
o Initially: collect cheapest incident edges
e Repeat O(log(W/¢)) times:

Ask nodes u on R, for their R, and update

e O(log(W/e)) updates suffice to explore useful nodes
up to distance W /e

e Use QuickSort-like sorting algorithm of Goodrich,
Sitchinava, Zhang (2011) to organize communication
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@ Computing MST in Geometric Setting

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. .. 15/26



Geometric Setting
Input: set of points in low dimensional metric space

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. ..

16/26



Geometric Setting
Input: set of points in low dimensional metric space

e Points induce a weighted graph

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. .. 16/26



Geometric Setting
Input: set of points in low dimensional metric space

e Points induce a weighted graph
e Graph problems to consider:

e Minimum Spanning Tree

o Earth Mover Distance

o Transportation Problem

e Travelling Salesman Problem

e ...
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Result
[Andoni, Nikolov, O., Yaroslavtsev 2014]

e Input: N points in low dimensional metric space
e Example: R?
e Generalizes to bounded doubling dimension
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Result
[Andoni, Nikolov, O., Yaroslavtsev 2014]

e Input: N points in low dimensional metric space
e Example: R?
e Generalizes to bounded doubling dimension

e Algorithm:
e Computes (1 + ¢)-approximate MST
e Space per machine: roughly O(N/m)
(as long as it fits subproblems)
e Number of rounds: O(1)
¢ Running time: near-linear
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Random Gridding

We reuse the Arora-Mitchell approach:

Apply a randomly shifted grid
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Random Gridding

We reuse the Arora-Mitchell approach:

Apply a randomly shifted grid

Key property: cell of side A separates points x and y
w.p. O(1) - Xy)
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Using Random Gridding

Typical usage: Recursive dynamic program
for approximately solving problem
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Using Random Gridding

Typical usage: Recursive dynamic program
for approximately solving problem

Can partially isolate what happens inside a cell
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Our Algorithm
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€2 A-covering with induced components
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Our Algorithm

: e-diam(S)
» Connect points closer than ~55y

e Sub-solution for cell of side A:

€2 A-covering with induced components
e Combining sub-solutions:

Truncated version of Kruskal’s algorithm

1. Find two closest clusters
2. If their distance less than e/, connect them

@‘

arbitrarily

S =
LA

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. .. 20/26




Our Algorithm

: e-diam(S)
» Connect points closer than ~55y

e Sub-solution for cell of side A:

€2 A-covering with induced components
e Combining sub-solutions:

Truncated version of Kruskal’s algorithm

1. Find two closest clusters
2. If their distance less than e/, connect them

arbitrarily

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. .. 20/26
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€2 A-covering with induced components
e Combining sub-solutions:
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Our Algorithm

: e-diam(S)
Connect points closer than =555
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€2 A-covering with induced components
Combining sub-solutions:
Truncated version of Kruskal’s algorithm
1. Find two closest clusters
2. If their distance less than e/, connect them
and repeat

Pass up €2A-covering with information about
connected components
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Our Algorithm

: e-diam(S)
Connect points closer than =555

Sub-solution for cell of side A:
€2 A-covering with induced components
Combining sub-solutions:
Truncated version of Kruskal’s algorithm
1. Find two closest clusters
2. If their distance less than e/, connect them
and repeat

Pass up €2A-covering with information about
connected components

Expected cost of solution: optimum - (1 + € - #levels)

arbitrarily
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Select Implementation Details
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Select Implementation Details

e Merge N x N cells at once

e Sub-solutions for all subcells should fit on
a single machine

e Use sorting [Goodrich, Sitchinava, Zhang 2011]
for grouping points and subcells that are close

e Near-linear time:
¢ Relax Kruskal’s algorithm
¢ Efficient nearest neighbor data structure
[Krauthgamer, Lee 2004], [Cole, Gottlieb 2006]
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Lower Bounds for MST

e Natural questions to ask:

e Can generalize to unbounded dimension?
e Can compute exact solution?
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e Query complexity:
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e Our algorithm can be adapted to arbitrary bounded
doubling dimensional metric in this model
 Lower bound: N rounds

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. .. 22/26



Lower Bounds for MST

e Natural questions to ask:

e Can generalize to unbounded dimension?
e Can compute exact solution?

e Query complexity:
¢ Model: distance queries
e Our algorithm can be adapted to arbitrary bounded
doubling dimensional metric in this model
 Lower bound: N rounds

e We give a conditional lower bound based
on Sparse Connectivity
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Reduction
In constant number of rounds:

Computing exact MST in ¢9_ for d = 100log N
= deciding Sparse Connectivity
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Reduction
In constant number of rounds:

Computing exact MST in ¢9_ for d = 100log N
= deciding Sparse Connectivity

Construction:
e For each vertex, pick a random vector v; in {—1,+1}¢
o For each edge e = (/. ), add point f(e) = v; + v,
Distances (whp.):
o Adjacent edges: ||f(€) — f(€')]o < 2
e Non-adjacent edges: ||f(e) — f(€')]|c = 4
MST weight:
e Connected: <2(M —1)
e Not connected: > 2M
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Other Results
[Andoni, Nikolov, O., Yaroslavtsev 2014]

e Algorithm for approximating Earth-Mover Distance

e A new way of partitioning the instance into
subproblems

¢ Resolves an open question of Sharathkumar &
Agarwal (2012) about the transportation problem:

First near-linear time algorithm
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Summary

e Main goal:

Efficient algorithms
for the Massive Parallel
Computation Model
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Summary

Main goal:

Efficient algorithms
for the Massive Parallel
Computation Model

Important efficiency measure: number of rounds
When can it be made O(1) with low memory?

Well known obstacle: Sparse Connectivity
This talk: efficient algorithms for MST

Future research:

e More such algorithms
o Better understanding of our limitations
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Questions?
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