
Parallel Algorithms for Graphs
on a Very Large Number of Nodes

Krzysztof Onak
IBM T.J. Watson Research Center

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 1 / 26



Outline

1 Model of Computation

2 Sample Algorithms and Their Limitations

3 Efficiently Estimating MST Weight

4 Computing MST in Geometric Setting

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 2 / 26



Outline

1 Model of Computation

2 Sample Algorithms and Their Limitations

3 Efficiently Estimating MST Weight

4 Computing MST in Geometric Setting

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 3 / 26



Model: Massive Parallel Computation
[Karloff, Suri, Vassilvitskii 2010; Beame, Koutris, Suciu 2013; . . . ]

n items on input m machines

space per machine: s =
n
m
· small-factor

Machine

Machine

Machine Machine

Machine

Machine Machine

Machine

Machine

• Initially: each machine receives n/m items
• Single round:

1. Each machine performs computation
2. Each machine sends and receives at most O(s) data

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 4 / 26



Model: Massive Parallel Computation
[Karloff, Suri, Vassilvitskii 2010; Beame, Koutris, Suciu 2013; . . . ]

n items on input m machines

space per machine: s =
n
m
· small-factor

Machine

Machine

Machine Machine

Machine

Machine Machine

Machine

Machine

• Initially: each machine receives n/m items
• Single round:

1. Each machine performs computation
2. Each machine sends and receives at most O(s) data

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 4 / 26



Model: Massive Parallel Computation
[Karloff, Suri, Vassilvitskii 2010; Beame, Koutris, Suciu 2013; . . . ]

n items on input m machines

space per machine: s =
n
m
· small-factor

Machine

Machine

Machine Machine

Machine

Machine Machine

Machine

Machine

• Initially: each machine receives n/m items

• Single round:
1. Each machine performs computation
2. Each machine sends and receives at most O(s) data

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 4 / 26



Model: Massive Parallel Computation
[Karloff, Suri, Vassilvitskii 2010; Beame, Koutris, Suciu 2013; . . . ]

n items on input m machines

space per machine: s =
n
m
· small-factor

Machine

Machine

Machine Machine

Machine

Machine Machine

Machine

Machine

• Initially: each machine receives n/m items
• Single round:

1. Each machine performs computation
2. Each machine sends and receives at most O(s) data

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 4 / 26



Resources

n items on input m machines

space per machine: s =
n
m
· small-factor

• Popular assumption:

m = O(nα) for α ∈ (0,1) =⇒ s = nΩ(1)

• Likely to happen: s � m

Goals:
• Minimize the number of rounds
• Optimize running time
• Use amount of memory as close to linear as possible

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 5 / 26



Resources

n items on input m machines

space per machine: s =
n
m
· small-factor

• Popular assumption:

m = O(nα) for α ∈ (0,1) =⇒ s = nΩ(1)

• Likely to happen: s � m

Goals:
• Minimize the number of rounds
• Optimize running time
• Use amount of memory as close to linear as possible

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 5 / 26



Resources

n items on input m machines

space per machine: s =
n
m
· small-factor

• Popular assumption:

m = O(nα) for α ∈ (0,1) =⇒ s = nΩ(1)

• Likely to happen: s � m

Goals:
• Minimize the number of rounds
• Optimize running time
• Use amount of memory as close to linear as possible

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 5 / 26



Resources

n items on input m machines

space per machine: s =
n
m
· small-factor

• Popular assumption:

m = O(nα) for α ∈ (0,1) =⇒ s = nΩ(1)

• Likely to happen: s � m

Goals:
• Minimize the number of rounds

• Optimize running time
• Use amount of memory as close to linear as possible

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 5 / 26



Resources

n items on input m machines

space per machine: s =
n
m
· small-factor

• Popular assumption:

m = O(nα) for α ∈ (0,1) =⇒ s = nΩ(1)

• Likely to happen: s � m

Goals:
• Minimize the number of rounds
• Optimize running time

• Use amount of memory as close to linear as possible

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 5 / 26



Resources

n items on input m machines

space per machine: s =
n
m
· small-factor

• Popular assumption:

m = O(nα) for α ∈ (0,1) =⇒ s = nΩ(1)

• Likely to happen: s � m

Goals:
• Minimize the number of rounds
• Optimize running time
• Use amount of memory as close to linear as possible

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 5 / 26



Comparison to PRAM
• PRAM: classic parallel model

• m processors
• processors access common memory

• Many problems require Ω̃(log n) rounds in PRAM

Example: computing XOR of n bits requires
Ω(log n/ log log n) time in strongest PRAM model
[Beame, Håstad 1989]

Processor Processor Processor Processor

1 1 0 1 1 0 0 1 1 0 1 0 1 1 00 1 1 0

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 6 / 26



Comparison to PRAM
• PRAM: classic parallel model

• m processors
• processors access common memory

• Many problems require Ω̃(log n) rounds in PRAM

Example: computing XOR of n bits requires
Ω(log n/ log log n) time in strongest PRAM model
[Beame, Håstad 1989]

Processor Processor Processor Processor

1 1 0 1 1 0 0 1 1 0 1 0 1 1 00 1 1 0

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 6 / 26



Comparison to PRAM
• PRAM: classic parallel model

• m processors
• processors access common memory

• Many problems require Ω̃(log n) rounds in PRAM

Example: computing XOR of n bits requires
Ω(log n/ log log n) time in strongest PRAM model
[Beame, Håstad 1989]

Processor Processor Processor Processor

1 1 0 1 1 0 0 1 1 0 1 0 1 1 00 1 1 0

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 6 / 26



Comparison to PRAM
• PRAM: classic parallel model

• m processors
• processors access common memory

• Many problems require Ω̃(log n) rounds in PRAM

Example: computing XOR of n bits requires
Ω(log n/ log log n) time in strongest PRAM model
[Beame, Håstad 1989]

• Our model: O(logs n) rounds for XOR

XOR

XOR

XOR

XOR

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 6 / 26



Comparison to PRAM
• PRAM: classic parallel model

• m processors
• processors access common memory

• Many problems require Ω̃(log n) rounds in PRAM

Example: computing XOR of n bits requires
Ω(log n/ log log n) time in strongest PRAM model
[Beame, Håstad 1989]

• Our model: O(logs n) rounds for XOR

If s = nΩ(1), number of rounds is constant

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 6 / 26



Comparison to PRAM
• PRAM: classic parallel model

• m processors
• processors access common memory

• Many problems require Ω̃(log n) rounds in PRAM

Example: computing XOR of n bits requires
Ω(log n/ log log n) time in strongest PRAM model
[Beame, Håstad 1989]

• Our model: O(logs n) rounds for XOR

If s = nΩ(1), number of rounds is constant

• Our goal: constant number of communication rounds

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 6 / 26



Outline

1 Model of Computation

2 Sample Algorithms and Their Limitations

3 Efficiently Estimating MST Weight

4 Computing MST in Geometric Setting

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 7 / 26



Main Subject of Study:
Minimum Spanning Tree

⇒

Select the subset of edges of minimum weight

that connects all vertices

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 8 / 26



Filtering Technique
[Karloff, Suri, Vassilvitskii 2010]

[Lattanzi, Moseley, Suri, Vassilvitskii 2011]

• Input: weighted edges of a graph on N vertices
• Main idea:

1. Find minimum spanning forest for subset of edges
2. Remove edges not in the forest

• Algorithm: repeat the process until problem solved
MSF

MSF

MSF

MSF

• Caveat: ≥N space per machine required
• Complexity: s = N1+Ω(1) ⇒ O(1) rounds

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 9 / 26



Filtering Technique
[Karloff, Suri, Vassilvitskii 2010]

[Lattanzi, Moseley, Suri, Vassilvitskii 2011]

• Input: weighted edges of a graph on N vertices

• Main idea:

1. Find minimum spanning forest for subset of edges
2. Remove edges not in the forest

• Algorithm: repeat the process until problem solved
MSF

MSF

MSF

MSF

• Caveat: ≥N space per machine required
• Complexity: s = N1+Ω(1) ⇒ O(1) rounds

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 9 / 26



Filtering Technique
[Karloff, Suri, Vassilvitskii 2010]

[Lattanzi, Moseley, Suri, Vassilvitskii 2011]

• Input: weighted edges of a graph on N vertices
• Main idea:

1. Find minimum spanning forest for subset of edges
2. Remove edges not in the forest

• Algorithm: repeat the process until problem solved
MSF

MSF

MSF

MSF

• Caveat: ≥N space per machine required
• Complexity: s = N1+Ω(1) ⇒ O(1) rounds

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 9 / 26



Filtering Technique
[Karloff, Suri, Vassilvitskii 2010]

[Lattanzi, Moseley, Suri, Vassilvitskii 2011]

• Input: weighted edges of a graph on N vertices
• Main idea:

1. Find minimum spanning forest for subset of edges
2. Remove edges not in the forest

• Algorithm: repeat the process until problem solved
MSF

MSF

MSF

MSF

• Caveat: ≥N space per machine required
• Complexity: s = N1+Ω(1) ⇒ O(1) rounds

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 9 / 26



Filtering Technique
[Karloff, Suri, Vassilvitskii 2010]

[Lattanzi, Moseley, Suri, Vassilvitskii 2011]

• Input: weighted edges of a graph on N vertices
• Main idea:

1. Find minimum spanning forest for subset of edges
2. Remove edges not in the forest

• Algorithm: repeat the process until problem solved
MSF

MSF

MSF

MSF

• Caveat: ≥N space per machine required

• Complexity: s = N1+Ω(1) ⇒ O(1) rounds

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 9 / 26



Filtering Technique
[Karloff, Suri, Vassilvitskii 2010]

[Lattanzi, Moseley, Suri, Vassilvitskii 2011]

• Input: weighted edges of a graph on N vertices
• Main idea:

1. Find minimum spanning forest for subset of edges
2. Remove edges not in the forest

• Algorithm: repeat the process until problem solved
MSF

MSF

MSF

MSF

• Caveat: ≥N space per machine required
• Complexity: s = N1+Ω(1) ⇒ O(1) rounds

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 9 / 26



N1−Ω(1) Space in O(1) Rounds?

• Unlikely to be possible in general
• Can reduce from Sparse Connectivity:

Do edges span a connected graph?
• Conjecture: superconstant number of rounds

with N1−Ω(1) memory
• Is this instance hard?

(solvable in O(log N) rounds)

vs.

• Reduction: connect select vertex to all vertices
with heavy edges

• This talk: algorithms with O(Nε) space per machine

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 10 / 26



N1−Ω(1) Space in O(1) Rounds?
• Unlikely to be possible in general

• Can reduce from Sparse Connectivity:
Do edges span a connected graph?

• Conjecture: superconstant number of rounds
with N1−Ω(1) memory

• Is this instance hard?

(solvable in O(log N) rounds)

vs.

• Reduction: connect select vertex to all vertices
with heavy edges

• This talk: algorithms with O(Nε) space per machine

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 10 / 26



N1−Ω(1) Space in O(1) Rounds?
• Unlikely to be possible in general
• Can reduce from Sparse Connectivity:

Do edges span a connected graph?

• Conjecture: superconstant number of rounds
with N1−Ω(1) memory

• Is this instance hard?

(solvable in O(log N) rounds)

vs.

• Reduction: connect select vertex to all vertices
with heavy edges

• This talk: algorithms with O(Nε) space per machine

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 10 / 26



N1−Ω(1) Space in O(1) Rounds?
• Unlikely to be possible in general
• Can reduce from Sparse Connectivity:

Do edges span a connected graph?
• Conjecture: superconstant number of rounds

with N1−Ω(1) memory

• Is this instance hard?

(solvable in O(log N) rounds)

vs.

• Reduction: connect select vertex to all vertices
with heavy edges

• This talk: algorithms with O(Nε) space per machine

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 10 / 26



N1−Ω(1) Space in O(1) Rounds?
• Unlikely to be possible in general
• Can reduce from Sparse Connectivity:

Do edges span a connected graph?
• Conjecture: superconstant number of rounds

with N1−Ω(1) memory
• Is this instance hard?

(solvable in O(log N) rounds)

vs.

• Reduction: connect select vertex to all vertices
with heavy edges

• This talk: algorithms with O(Nε) space per machine

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 10 / 26



N1−Ω(1) Space in O(1) Rounds?
• Unlikely to be possible in general
• Can reduce from Sparse Connectivity:

Do edges span a connected graph?
• Conjecture: superconstant number of rounds

with N1−Ω(1) memory
• Is this instance hard? (solvable in O(log N) rounds)

vs.

• Reduction: connect select vertex to all vertices
with heavy edges

• This talk: algorithms with O(Nε) space per machine

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 10 / 26



N1−Ω(1) Space in O(1) Rounds?
• Unlikely to be possible in general
• Can reduce from Sparse Connectivity:

Do edges span a connected graph?
• Conjecture: superconstant number of rounds

with N1−Ω(1) memory
• Is this instance hard? (solvable in O(log N) rounds)

vs.

• Reduction: connect select vertex to all vertices
with heavy edges

• This talk: algorithms with O(Nε) space per machine

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 10 / 26



N1−Ω(1) Space in O(1) Rounds?
• Unlikely to be possible in general
• Can reduce from Sparse Connectivity:

Do edges span a connected graph?
• Conjecture: superconstant number of rounds

with N1−Ω(1) memory
• Is this instance hard? (solvable in O(log N) rounds)

vs.

• Reduction: connect select vertex to all vertices
with heavy edges

• This talk: algorithms with O(Nε) space per machine

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 10 / 26



Outline

1 Model of Computation

2 Sample Algorithms and Their Limitations

3 Efficiently Estimating MST Weight

4 Computing MST in Geometric Setting

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 11 / 26



Result
[Łącki, Mądry, Mitrović, O., Sankowski]

• Input: M edges, weights in {1,2, . . . ,W}
(#nodes N ≤ #edges M)

• Algorithm:
• Computes (1 + ε)-approximation to MST weight

• Space per machine:

O

(
M
m

+
N
m
·
(

W
ε

)2
)

for M/m = MΩ(1)

• Number of rounds: O(log(W/ε))

• Note: No dependence on W would disprove
Sparse Connectivity Conjecture

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 12 / 26



Result
[Łącki, Mądry, Mitrović, O., Sankowski]

• Input: M edges, weights in {1,2, . . . ,W}
(#nodes N ≤ #edges M)

• Algorithm:
• Computes (1 + ε)-approximation to MST weight

• Space per machine:

O

(
M
m

+
N
m
·
(

W
ε

)2
)

for M/m = MΩ(1)

• Number of rounds: O(log(W/ε))

• Note: No dependence on W would disprove
Sparse Connectivity Conjecture

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 12 / 26



Result
[Łącki, Mądry, Mitrović, O., Sankowski]

• Input: M edges, weights in {1,2, . . . ,W}
(#nodes N ≤ #edges M)

• Algorithm:
• Computes (1 + ε)-approximation to MST weight

• Space per machine:

O

(
M
m

+
N
m
·
(

W
ε

)2
)

for M/m = MΩ(1)

• Number of rounds: O(log(W/ε))

• Note: No dependence on W would disprove
Sparse Connectivity Conjecture

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 12 / 26



Result
[Łącki, Mądry, Mitrović, O., Sankowski]

• Input: M edges, weights in {1,2, . . . ,W}
(#nodes N ≤ #edges M)

• Algorithm:
• Computes (1 + ε)-approximation to MST weight

• Space per machine:

O

(
M
m

+
N
m
·
(

W
ε

)2
)

for M/m = MΩ(1)

• Number of rounds: O(log(W/ε))

• Note: No dependence on W would disprove
Sparse Connectivity Conjecture

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 12 / 26



Result
[Łącki, Mądry, Mitrović, O., Sankowski]

• Input: M edges, weights in {1,2, . . . ,W}
(#nodes N ≤ #edges M)

• Algorithm:
• Computes (1 + ε)-approximation to MST weight

• Space per machine:

O

(
M
m

+
N
m
·
(

W
ε

)2
)

for M/m = MΩ(1)

• Number of rounds: O(log(W/ε))

• Note: No dependence on W would disprove
Sparse Connectivity Conjecture

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 12 / 26



Approach
Use techniques of Chazelle, Rubinfeld, Trevisan (2005)

:
• Gi = graph restricted to edges of weight < i

• Ti = #connected components in Gi

• Number of edges of weight ≥i in MST = Ti − 1

⇒ weight(MST) =
W∑

i=1

(Ti − 1)

• Ci(v) = size of the component of v in Gi

Ti =
∑

v

1/Ci(v)

• Good approximation:
• Compute sizes of small components
• Replace 1/Ci(v) with 0 if Ci(v) ≥W/ε

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 13 / 26



Approach
Use techniques of Chazelle, Rubinfeld, Trevisan (2005):
• Gi = graph restricted to edges of weight < i

• Ti = #connected components in Gi

• Number of edges of weight ≥i in MST = Ti − 1

⇒ weight(MST) =
W∑

i=1

(Ti − 1)

• Ci(v) = size of the component of v in Gi

Ti =
∑

v

1/Ci(v)

• Good approximation:
• Compute sizes of small components
• Replace 1/Ci(v) with 0 if Ci(v) ≥W/ε

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 13 / 26



Approach
Use techniques of Chazelle, Rubinfeld, Trevisan (2005):
• Gi = graph restricted to edges of weight < i

• Ti = #connected components in Gi

• Number of edges of weight ≥i in MST = Ti − 1

⇒ weight(MST) =
W∑

i=1

(Ti − 1)

• Ci(v) = size of the component of v in Gi

Ti =
∑

v

1/Ci(v)

• Good approximation:
• Compute sizes of small components
• Replace 1/Ci(v) with 0 if Ci(v) ≥W/ε

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 13 / 26



Approach
Use techniques of Chazelle, Rubinfeld, Trevisan (2005):
• Gi = graph restricted to edges of weight < i

• Ti = #connected components in Gi

• Number of edges of weight ≥i in MST = Ti − 1

⇒ weight(MST) =
W∑

i=1

(Ti − 1)

• Ci(v) = size of the component of v in Gi

Ti =
∑

v

1/Ci(v)

• Good approximation:
• Compute sizes of small components
• Replace 1/Ci(v) with 0 if Ci(v) ≥W/ε

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 13 / 26



Approach
Use techniques of Chazelle, Rubinfeld, Trevisan (2005):
• Gi = graph restricted to edges of weight < i

• Ti = #connected components in Gi

• Number of edges of weight ≥i in MST = Ti − 1

⇒ weight(MST) =
W∑

i=1

(Ti − 1)

• Ci(v) = size of the component of v in Gi

Ti =
∑

v

1/Ci(v)

• Good approximation:
• Compute sizes of small components
• Replace 1/Ci(v) with 0 if Ci(v) ≥W/ε

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 13 / 26



Approach
Use techniques of Chazelle, Rubinfeld, Trevisan (2005):
• Gi = graph restricted to edges of weight < i

• Ti = #connected components in Gi

• Number of edges of weight ≥i in MST = Ti − 1

⇒ weight(MST) =
W∑

i=1

(Ti − 1)

• Ci(v) = size of the component of v in Gi

Ti =
∑

v

1/Ci(v)

• Good approximation:
• Compute sizes of small components
• Replace 1/Ci(v) with 0 if Ci(v) ≥W/ε

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 13 / 26



Approach
Use techniques of Chazelle, Rubinfeld, Trevisan (2005):
• Gi = graph restricted to edges of weight < i

• Ti = #connected components in Gi

• Number of edges of weight ≥i in MST = Ti − 1

⇒ weight(MST) =
W∑

i=1

(Ti − 1)

• Ci(v) = size of the component of v in Gi

Ti =
∑

v

1/Ci(v)

• Good approximation:
• Compute sizes of small components
• Replace 1/Ci(v) with 0 if Ci(v) ≥W/ε

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 13 / 26



Implementation

• Reachability sets Rv for each node v :
• Set of W/ε nodes accessible via cheapest edges

• Initially: collect cheapest incident edges
• Repeat O(log(W/ε)) times:

Ask nodes u on Rv for their Ru and update

• O(log(W/ε)) updates suffice to explore useful nodes
up to distance W/ε

• Use QuickSort-like sorting algorithm of Goodrich,
Sitchinava, Zhang (2011) to organize communication

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 14 / 26



Implementation

• Reachability sets Rv for each node v :
• Set of W/ε nodes accessible via cheapest edges
• Initially: collect cheapest incident edges

• Repeat O(log(W/ε)) times:
Ask nodes u on Rv for their Ru and update

• O(log(W/ε)) updates suffice to explore useful nodes
up to distance W/ε

• Use QuickSort-like sorting algorithm of Goodrich,
Sitchinava, Zhang (2011) to organize communication

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 14 / 26



Implementation

• Reachability sets Rv for each node v :
• Set of W/ε nodes accessible via cheapest edges
• Initially: collect cheapest incident edges
• Repeat O(log(W/ε)) times:

Ask nodes u on Rv for their Ru and update

• O(log(W/ε)) updates suffice to explore useful nodes
up to distance W/ε

• Use QuickSort-like sorting algorithm of Goodrich,
Sitchinava, Zhang (2011) to organize communication

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 14 / 26



Implementation

• Reachability sets Rv for each node v :
• Set of W/ε nodes accessible via cheapest edges
• Initially: collect cheapest incident edges
• Repeat O(log(W/ε)) times:

Ask nodes u on Rv for their Ru and update

• O(log(W/ε)) updates suffice to explore useful nodes
up to distance W/ε

• Use QuickSort-like sorting algorithm of Goodrich,
Sitchinava, Zhang (2011) to organize communication

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 14 / 26



Implementation

• Reachability sets Rv for each node v :
• Set of W/ε nodes accessible via cheapest edges
• Initially: collect cheapest incident edges
• Repeat O(log(W/ε)) times:

Ask nodes u on Rv for their Ru and update

• O(log(W/ε)) updates suffice to explore useful nodes
up to distance W/ε

• Use QuickSort-like sorting algorithm of Goodrich,
Sitchinava, Zhang (2011) to organize communication

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 14 / 26



Outline

1 Model of Computation

2 Sample Algorithms and Their Limitations

3 Efficiently Estimating MST Weight

4 Computing MST in Geometric Setting

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 15 / 26



Geometric Setting
Input: set of points in low dimensional metric space

• Points induce a weighted graph
• Graph problems to consider:

• Minimum Spanning Tree
• Earth Mover Distance
• Transportation Problem
• Travelling Salesman Problem
• . . .

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 16 / 26



Geometric Setting
Input: set of points in low dimensional metric space

9

10

8 11

14

7

• Points induce a weighted graph

• Graph problems to consider:
• Minimum Spanning Tree
• Earth Mover Distance
• Transportation Problem
• Travelling Salesman Problem
• . . .

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 16 / 26



Geometric Setting
Input: set of points in low dimensional metric space

9

10

8 11

14

7

• Points induce a weighted graph
• Graph problems to consider:

• Minimum Spanning Tree
• Earth Mover Distance
• Transportation Problem
• Travelling Salesman Problem
• . . .

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 16 / 26



Result
[Andoni, Nikolov, O., Yaroslavtsev 2014]

• Input: N points in low dimensional metric space
• Example: R2

• Generalizes to bounded doubling dimension

• Algorithm:
• Computes (1 + ε)-approximate MST
• Space per machine: roughly O(N/m)

(as long as it fits subproblems)
• Number of rounds: O(1)

• Running time: near-linear

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 17 / 26



Result
[Andoni, Nikolov, O., Yaroslavtsev 2014]

• Input: N points in low dimensional metric space
• Example: R2

• Generalizes to bounded doubling dimension

• Algorithm:
• Computes (1 + ε)-approximate MST

• Space per machine: roughly O(N/m)
(as long as it fits subproblems)

• Number of rounds: O(1)

• Running time: near-linear

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 17 / 26



Result
[Andoni, Nikolov, O., Yaroslavtsev 2014]

• Input: N points in low dimensional metric space
• Example: R2

• Generalizes to bounded doubling dimension

• Algorithm:
• Computes (1 + ε)-approximate MST
• Space per machine: roughly O(N/m)

(as long as it fits subproblems)

• Number of rounds: O(1)

• Running time: near-linear

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 17 / 26



Result
[Andoni, Nikolov, O., Yaroslavtsev 2014]

• Input: N points in low dimensional metric space
• Example: R2

• Generalizes to bounded doubling dimension

• Algorithm:
• Computes (1 + ε)-approximate MST
• Space per machine: roughly O(N/m)

(as long as it fits subproblems)
• Number of rounds: O(1)

• Running time: near-linear

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 17 / 26



Result
[Andoni, Nikolov, O., Yaroslavtsev 2014]

• Input: N points in low dimensional metric space
• Example: R2

• Generalizes to bounded doubling dimension

• Algorithm:
• Computes (1 + ε)-approximate MST
• Space per machine: roughly O(N/m)

(as long as it fits subproblems)
• Number of rounds: O(1)

• Running time: near-linear

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 17 / 26



Random Gridding
We reuse the Arora-Mitchell approach:

Apply a randomly shifted grid

Key property: cell of side ∆ separates points x and y
w.p. O(1) · ρ(x ,y)

∆

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 18 / 26



Random Gridding
We reuse the Arora-Mitchell approach:

Apply a randomly shifted grid

Key property: cell of side ∆ separates points x and y
w.p. O(1) · ρ(x ,y)

∆

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 18 / 26



Random Gridding
We reuse the Arora-Mitchell approach:

Apply a randomly shifted grid

Key property: cell of side ∆ separates points x and y
w.p. O(1) · ρ(x ,y)

∆

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 18 / 26



Random Gridding
We reuse the Arora-Mitchell approach:

Apply a randomly shifted grid

Key property: cell of side ∆ separates points x and y
w.p. O(1) · ρ(x ,y)

∆

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 18 / 26



Random Gridding
We reuse the Arora-Mitchell approach:

Apply a randomly shifted grid

Key property: cell of side ∆ separates points x and y
w.p. O(1) · ρ(x ,y)

∆

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 18 / 26



Using Random Gridding
Typical usage: Recursive dynamic program

for approximately solving problem

Can partially isolate what happens inside a cell

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 19 / 26



Using Random Gridding
Typical usage: Recursive dynamic program

for approximately solving problem

Can partially isolate what happens inside a cell

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 19 / 26



Using Random Gridding
Typical usage: Recursive dynamic program

for approximately solving problem

Can partially isolate what happens inside a cell

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 19 / 26



Using Random Gridding
Typical usage: Recursive dynamic program

for approximately solving problem

Can partially isolate what happens inside a cell

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 19 / 26



Using Random Gridding
Typical usage: Recursive dynamic program

for approximately solving problem

Can partially isolate what happens inside a cell

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 19 / 26



Using Random Gridding
Typical usage: Recursive dynamic program

for approximately solving problem

Can partially isolate what happens inside a cell

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 19 / 26



Using Random Gridding
Typical usage: Recursive dynamic program

for approximately solving problem

Can partially isolate what happens inside a cell

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 19 / 26



Our Algorithm
• Connect points closer than ε·diam(S)

100·N arbitrarily

• Sub-solution for cell of side ∆:
ε2∆-covering with induced components

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 20 / 26



Our Algorithm
• Connect points closer than ε·diam(S)

100·N arbitrarily
• Sub-solution for cell of side ∆:

ε2∆-covering with induced components

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 20 / 26



Our Algorithm
• Connect points closer than ε·diam(S)

100·N arbitrarily
• Sub-solution for cell of side ∆:

ε2∆-covering with induced components
• Combining sub-solutions:

Truncated version of Kruskal’s algorithm

1. Find two closest clusters
2. If their distance less than ε∆, connect them

and repeat

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 20 / 26



Our Algorithm
• Connect points closer than ε·diam(S)

100·N arbitrarily
• Sub-solution for cell of side ∆:

ε2∆-covering with induced components
• Combining sub-solutions:

Truncated version of Kruskal’s algorithm
1. Find two closest clusters

2. If their distance less than ε∆, connect them

and repeat

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 20 / 26



Our Algorithm
• Connect points closer than ε·diam(S)

100·N arbitrarily
• Sub-solution for cell of side ∆:

ε2∆-covering with induced components
• Combining sub-solutions:

Truncated version of Kruskal’s algorithm
1. Find two closest clusters
2. If their distance less than ε∆, connect them

and repeat

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 20 / 26



Our Algorithm
• Connect points closer than ε·diam(S)

100·N arbitrarily
• Sub-solution for cell of side ∆:

ε2∆-covering with induced components
• Combining sub-solutions:

Truncated version of Kruskal’s algorithm
1. Find two closest clusters
2. If their distance less than ε∆, connect them

and repeat

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 20 / 26



Our Algorithm
• Connect points closer than ε·diam(S)

100·N arbitrarily
• Sub-solution for cell of side ∆:

ε2∆-covering with induced components
• Combining sub-solutions:

Truncated version of Kruskal’s algorithm
1. Find two closest clusters
2. If their distance less than ε∆, connect them

and repeat

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 20 / 26



Our Algorithm
• Connect points closer than ε·diam(S)

100·N arbitrarily
• Sub-solution for cell of side ∆:

ε2∆-covering with induced components
• Combining sub-solutions:

Truncated version of Kruskal’s algorithm
1. Find two closest clusters
2. If their distance less than ε∆, connect them

and repeat

• Pass up ε2∆-covering with information about
connected components

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 20 / 26



Our Algorithm
• Connect points closer than ε·diam(S)

100·N arbitrarily
• Sub-solution for cell of side ∆:

ε2∆-covering with induced components
• Combining sub-solutions:

Truncated version of Kruskal’s algorithm
1. Find two closest clusters
2. If their distance less than ε∆, connect them

and repeat

• Pass up ε2∆-covering with information about
connected components

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 20 / 26



Our Algorithm
• Connect points closer than ε·diam(S)

100·N arbitrarily
• Sub-solution for cell of side ∆:

ε2∆-covering with induced components
• Combining sub-solutions:

Truncated version of Kruskal’s algorithm
1. Find two closest clusters
2. If their distance less than ε∆, connect them

and repeat

• Pass up ε2∆-covering with information about
connected components

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 20 / 26



Our Algorithm
• Connect points closer than ε·diam(S)

100·N arbitrarily
• Sub-solution for cell of side ∆:

ε2∆-covering with induced components
• Combining sub-solutions:

Truncated version of Kruskal’s algorithm
1. Find two closest clusters
2. If their distance less than ε∆, connect them

and repeat

• Pass up ε2∆-covering with information about
connected components

• Expected cost of solution: optimum · (1 + ε · #levels)

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 20 / 26



Select Implementation Details

• Merge NΩ(1) × NΩ(1) cells at once

• Sub-solutions for all subcells should fit on
a single machine

• Use sorting [Goodrich, Sitchinava, Zhang 2011]
for grouping points and subcells that are close

• Near-linear time:
• Relax Kruskal’s algorithm
• Efficient nearest neighbor data structure

[Krauthgamer, Lee 2004], [Cole, Gottlieb 2006]

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 21 / 26



Select Implementation Details

• Merge NΩ(1) × NΩ(1) cells at once

• Sub-solutions for all subcells should fit on
a single machine

• Use sorting [Goodrich, Sitchinava, Zhang 2011]
for grouping points and subcells that are close

• Near-linear time:
• Relax Kruskal’s algorithm
• Efficient nearest neighbor data structure

[Krauthgamer, Lee 2004], [Cole, Gottlieb 2006]

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 21 / 26



Select Implementation Details

• Merge NΩ(1) × NΩ(1) cells at once

• Sub-solutions for all subcells should fit on
a single machine

• Use sorting [Goodrich, Sitchinava, Zhang 2011]
for grouping points and subcells that are close

• Near-linear time:
• Relax Kruskal’s algorithm
• Efficient nearest neighbor data structure

[Krauthgamer, Lee 2004], [Cole, Gottlieb 2006]

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 21 / 26



Select Implementation Details

• Merge NΩ(1) × NΩ(1) cells at once

• Sub-solutions for all subcells should fit on
a single machine

• Use sorting [Goodrich, Sitchinava, Zhang 2011]
for grouping points and subcells that are close

• Near-linear time:
• Relax Kruskal’s algorithm
• Efficient nearest neighbor data structure

[Krauthgamer, Lee 2004], [Cole, Gottlieb 2006]

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 21 / 26



Lower Bounds for MST

• Natural questions to ask:
• Can generalize to unbounded dimension?
• Can compute exact solution?

• Query complexity:
• Model: distance queries
• Our algorithm can be adapted to arbitrary bounded

doubling dimensional metric in this model
• Lower bound: NΩ(1) rounds

• We give a conditional lower bound based
on Sparse Connectivity

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 22 / 26



Lower Bounds for MST

• Natural questions to ask:
• Can generalize to unbounded dimension?
• Can compute exact solution?

• Query complexity:
• Model: distance queries
• Our algorithm can be adapted to arbitrary bounded

doubling dimensional metric in this model
• Lower bound: NΩ(1) rounds

• We give a conditional lower bound based
on Sparse Connectivity

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 22 / 26



Lower Bounds for MST

• Natural questions to ask:
• Can generalize to unbounded dimension?
• Can compute exact solution?

• Query complexity:
• Model: distance queries
• Our algorithm can be adapted to arbitrary bounded

doubling dimensional metric in this model
• Lower bound: NΩ(1) rounds

• We give a conditional lower bound based
on Sparse Connectivity

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 22 / 26



Reduction
In constant number of rounds:

Computing exact MST in `d
∞ for d = 100 log N

⇒ deciding Sparse Connectivity

Construction:
• For each vertex, pick a random vector vi in {−1,+1}d

• For each edge e = (i , j), add point f (e) = vi + vj

Distances (whp.):
• Adjacent edges: ‖f (e)− f (e′)‖∞ ≤ 2
• Non-adjacent edges: ‖f (e)− f (e′)‖∞ = 4

MST weight:
• Connected: ≤ 2(M − 1)

• Not connected: ≥ 2M

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 23 / 26



Reduction
In constant number of rounds:

Computing exact MST in `d
∞ for d = 100 log N

⇒ deciding Sparse Connectivity

Construction:
• For each vertex, pick a random vector vi in {−1,+1}d

• For each edge e = (i , j), add point f (e) = vi + vj

Distances (whp.):
• Adjacent edges: ‖f (e)− f (e′)‖∞ ≤ 2
• Non-adjacent edges: ‖f (e)− f (e′)‖∞ = 4

MST weight:
• Connected: ≤ 2(M − 1)

• Not connected: ≥ 2M

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 23 / 26



Reduction
In constant number of rounds:

Computing exact MST in `d
∞ for d = 100 log N

⇒ deciding Sparse Connectivity

Construction:
• For each vertex, pick a random vector vi in {−1,+1}d

• For each edge e = (i , j), add point f (e) = vi + vj

Distances (whp.):
• Adjacent edges: ‖f (e)− f (e′)‖∞ ≤ 2
• Non-adjacent edges: ‖f (e)− f (e′)‖∞ = 4

MST weight:
• Connected: ≤ 2(M − 1)

• Not connected: ≥ 2M

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 23 / 26



Reduction
In constant number of rounds:

Computing exact MST in `d
∞ for d = 100 log N

⇒ deciding Sparse Connectivity

Construction:
• For each vertex, pick a random vector vi in {−1,+1}d

• For each edge e = (i , j), add point f (e) = vi + vj

Distances (whp.):
• Adjacent edges: ‖f (e)− f (e′)‖∞ ≤ 2
• Non-adjacent edges: ‖f (e)− f (e′)‖∞ = 4

MST weight:
• Connected: ≤ 2(M − 1)

• Not connected: ≥ 2M

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 23 / 26



Other Results
[Andoni, Nikolov, O., Yaroslavtsev 2014]

• Algorithm for approximating Earth-Mover Distance

• A new way of partitioning the instance into
subproblems

• Resolves an open question of Sharathkumar &
Agarwal (2012) about the transportation problem:

First near-linear time algorithm

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 24 / 26



Summary

• Main goal:
Efficient algorithms

for the Massive Parallel
Computation Model

• Important efficiency measure: number of rounds
When can it be made O(1) with low memory?

• Well known obstacle: Sparse Connectivity

• This talk: efficient algorithms for MST

• Future research:
• More such algorithms
• Better understanding of our limitations

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 25 / 26



Summary

• Main goal:
Efficient algorithms

for the Massive Parallel
Computation Model

• Important efficiency measure: number of rounds
When can it be made O(1) with low memory?

• Well known obstacle: Sparse Connectivity

• This talk: efficient algorithms for MST

• Future research:
• More such algorithms
• Better understanding of our limitations

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 25 / 26



Summary

• Main goal:
Efficient algorithms

for the Massive Parallel
Computation Model

• Important efficiency measure: number of rounds
When can it be made O(1) with low memory?

• Well known obstacle: Sparse Connectivity

• This talk: efficient algorithms for MST

• Future research:
• More such algorithms
• Better understanding of our limitations

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 25 / 26



Summary

• Main goal:
Efficient algorithms

for the Massive Parallel
Computation Model

• Important efficiency measure: number of rounds
When can it be made O(1) with low memory?

• Well known obstacle: Sparse Connectivity

• This talk: efficient algorithms for MST

• Future research:
• More such algorithms
• Better understanding of our limitations

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 25 / 26



Summary

• Main goal:
Efficient algorithms

for the Massive Parallel
Computation Model

• Important efficiency measure: number of rounds
When can it be made O(1) with low memory?

• Well known obstacle: Sparse Connectivity

• This talk: efficient algorithms for MST

• Future research:
• More such algorithms
• Better understanding of our limitations

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 25 / 26



Questions?

Krzysztof Onak (IBM Research) Parallel Algorithms for Graphs on a Very Large. . . 26 / 26


	Model of Computation
	Sample Algorithms and Their Limitations
	Efficiently Estimating MST Weight
	Computing MST in Geometric Setting

