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Fast Parallel Matrix and GCD Computations 
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+ Cornell University, Ithaca, New York 

Parallel algorithms to compute the determinant and characteristic polynomial of 
matrices and the gcd of polynomials are presented. The rank of matrices and 
solutions of arbitrary systems of linear equations are computed by parallel Las 
Vegas algorithms. All algorithms work over arbitrary fields. They run in parallel 
time O(log ~ n) (where n is the number of inputs) and use a polynomial number of 
processors. 

1. INTRODUCTION 

Today's technology has motivated recent activity concerning parallel 
programs. Much of this activity has focussed on combinatorial questions 
(sorting, graph theoretic algorithms, etc.) and on questions relating to the 
parallel architecture itself (routing, queuing, etc.). It is also of recognized 
importance to investigate algebraic questions, and to this end we present 
algorithms for some basic problems such as computing the determinant and 
the rank of matrices or the gcd of polynomials. 

There are two basically different approaches to what constitutes a "fast 
parallel algorithm." One is to start from a good sequential algorithm and try 
to parallelize it with a near-optimal speed-up, i.e., try to achieve parallel time 
close to (sequential time)/(number of processors). The second approach is to 
attempt to make the parallel time as small as possible, allowing an almost 
arbitrary (e.g., polynomially bounded) number of processors. While the first 
approach seems to be appropriate for the present technology, where in effect 
only a rather limited amount of parallelism is available, it is not 
unreasonable to expect that some time in the future the "asymptotically fast 
algorithms" of the second approach will play an important role. The 
situation is not unlike the dual approach to sequential algorithms, where one 
is interested in both constant speed-up of known algorithms (say, by 
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programming optimization) and the construction of asymptotically fast 
algorithms (even though the hidden constants for the computing time may be 
large). Perhaps the reader has guessed by now that here we pursue the 
second approach to parallel programming. 

In this paper we discuss two basic problems: solving linear equations and 
simplifying rational expressions. Both have nice sequential 
solutions--Gaussian elimination and Euclid's algorithm--and it is an 
intriguing question if there also exist fast parallel methods. While Csanky 
(1976) has given a fast determinant algorithm over fields of characteristic 
zero, applications such as factoring polynomials require an algorithm that 
works over arbitrary fields, in particular finite fields. We present such an 
algorithm below, based on the general parallelization result by Valiant- 
Skyum-Berkowitz-Rackoff (1981). 

As direct corollaries we get fast methods for inverting matrices and 
solving nonsingular systems of linear equations. Further applications are the 
characteristic polynomial of a matrix and the gcd of polynomials. 

Some interesting combinatorial problems--maximal matchings, maximal 
flow--translate into the problem of computing the rank of matrices. We 
present a fast parallel Las Vegas method that either returns the rank of the 
input matrix or reports that it failed; the latter with small probability. 
Applications include finding a basis for the nullspace of a matrix, finding a 
maximal linearly independent subset of a given set of vectors, and the 
solution of a general (possibly singular) system of linear equations, all this 
again over arbitrary fields. 

2. THE MODEL 

The algorithms described in this paper can be implemented on a 
synchronous shared-memory model of parallel computation such as the 
PRAM (Fortune-Wyllie, 1978), with arithmetic and tests in the ground field 
F as basic operations, or on an algebraic circuit. The algorithms all use 
O(log 2 n) parallel time (=depth for circuits) and n °u) processors (=gates for 
circuits), when n is the number of inputs. In particular, it follows that the 
determinant and gcd problems are in the appropriate analog of uniform NC 
(Pippenger, 1979), and the rank problem is in the Monte Carlo or 
nbnuniform analog of NC. 

When the ground field F is Q or a finite field, we can represent the inputs 
as strings over a finite alphabet and ask for a (say) PRAM with bit 
instructions solving the problem. Our algorithms show that the determinant 
and gcd problems are in the corresponding Boolean class Arc, and the rank 
problem is in the Monte Carlo or nonuniform Boolean version of NC (in 
fact, for F = @ in NC). Here the essential point is that (for F = Q) according 
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to Edmonds (1967) the intermediate values in Gaussian elimination are 
reasonably small (see also Bareiss, 1968). 

The basic stepping stone for the whole theory is the result by Valiant- 
Skyum-Berkowitz-Rackoff (1981). It says that any sequential program 
computing a polynomial of degree n with t steps can be converted to a 
parallel program with parallel time O0ogn(logn +log  t)) using O(t3n 6) 
processors. 

3. DETERMINANT AND GCD 

In this section we discuss the following problems: DETERMINANT(n)  
(=computing the determinant of an n × n matrix), CHARACTERISTIC 
POLYNOMIAL(n),  NONSINGULAR EQUATIONS(n) (=computing the 
solution of a nonsingular n × n system of linear equations), INVERSION(n) 
(=computing the inverse of an n × n matrix, if it is nonsingular), GCD(n) 
(=computing the monic gcd(f, g), where f ,  g E F[x] have degree ~<n). We 
write, e.g., INVERSION for the sequence (INVERSION(n)). 

The following result was proved by Csanky (1976), but only for fields of 
characteristic zero. 

THEOREM 1. For any field F, DETERMINANT, INVERSION, 
NONSINGULAR EQUATIONS, and CHARACTERISTIC 
POLYNOMIAL can be eomputed in parallel time O(log 2 n) using a 
polynomially bounded number of processors. For DETERMINANT and 
CHARACTERISTIC POLYNOMIAL, neither branching nor division 
occurs. 

Proof. We consider ordinary Gaussian elimination performed on an 
n × n matrix X = (xij) of indeterminates, with pivots chosen on the diagonal. 
This yields a (sequential) computation of de tX in time O(n3), using +, - ,  
• , /. Strassen (1973) gives a general recipe for avoiding divisions which in 
our case works as follows: When we execute the above Gaussian elimination 
on the n × n identity matr ix/ ,  the only divisions that occur are by 1. In other 
words, if we shift the input matrix X by the negative of the identity matrix 
and thus consider new indeterminates Yo" = xi] - g;j-, then all divisions in the 
algorithm (with xij replaced by Yij + g0") are by rational functions in the yij's 
which are 1 for Yll = YI2 . . . . .  y , , =  O, since this corresponds to setting 
X = L  These rational functions are invertible in the ring R = 
FIY11,Y~2 ..... Y, , I  of formal power series in the yifs. Also, d e t X =  
det((yij + gi])ij) is a polynomial in R of degree n. 

We now modify our Gaussian elimination as follows: Replace each 
division f / ( 1 -  g), where g has constant term 0, by a multiplication f *  
(1 + g +  g 2 +  ...). Also, instead of computing a power series h = h  o + 
h 1 + .-., where h t C R  is homogeneous of degree/, compute only the 
homogeneous parts ho,...,h . .  This can be done at a cost of ~<(n + 1) 2 
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operations per original operation. All this leads to a sequential computation 
of de tX in R with sequential time O(nS), using 1, +, - , .  only. (This timing 
estimate can be improved; see Strassen, 1973.) Substituting Yo = xo - 6tJ in 
this algorithm, we get a division-free straight-line algorithm in 
F[Xal, x~2 ..... x , , ]  that computes de tX  in time O(nS). 

We can now apply the parallelization method of Valiant-Skyum- 
Berkowitz-Rackoff (1981) to obtain a parallel algorithm for the determinant 
using O(log z n) time and a polynomial number of processors. Neither 
division nor branching occurs. 

Obviously INVERSION and NONSINGULAR EQUATIONS are not 
harder than DETERMINANT, but they require a division step at the end of 
the computation. For the characteristic polynomial, we execute the sequential 
division-free determinant algorithm on X - t I .  Each step computes a 
polynomial in t, and we split the step into ~<(n + 1) 2 operations in 
F[Xll ,X~z ..... x , , ]  by computing the coefficients of t °, t l , . . . , t  ~ separately. 
Parallelization applies again to yield the result. | 

R e m a r k  1. The above two-step conversion process applies to any 
sequential computation that computes a polynomial f C F [ x  1 ..... Xm] of 
degree n in time t. 

The first step is to get rid of divisions ~ la Strassen (1973). For this, we 
have to find values a~,..., a m E F such that h(al ,..., am) 4= 0 for each division 
g/h in the computation. Then we shift the inputs by the negative of the ai's 
and thus consider new indeterminates Yz = xi - ai. Now each division in the 
algorithm (where every occurrence of xi is replaced by Yt + at) is by a 
rational function in Yl,.-., Ym which has a nonzero value for y~ . . . . .  
Ym = O. Such a rational function is invertible in the ring R = F l y  ~ . . . . .  Y m ~ ,  

and f =  f ( Y l  + al . . . . .  Ym + a,,) E R is a polynomial of degree n. 
As above, we replace every division by a multiplication in R, and for all 

operations compute the homogeneous parts of degree ~n. This yields a 
sequential computation in R for f with time O(tn2), using only +, --, , ,  and 
constants. Back-substituting we get an O(tn2)-algorithm in F i x  I ..... Xm] that 
computes f without divisions. 

The second step now is to apply the parallelization technique of Valiant- 
Skyum-Berkowitz-Rackoff (1981) to obtain a parallel algorithm with 
parallel time O(log2(tn)) using a polynomial (in t and n) number of 
processors. 

How can we find the a~,..., a m required in the first step? Every rational 
function g computed by the given algorithm can be written as a quotient 
g = b/c of polynomials in F[x  1 ..... Xm] with deg b, deg c ~< U. The product d 
of all such denominators c has degree <~t2 t. For every subset P ___ F with 
# P  > rot2 t there exists a = (al ..... am) C pm such that d(a I ..... am) 4= O. Such 
an a satisfies the requirements. 
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In fact, there is a Monte Carlo algorithm to find such an a: Take P with 
#P>~ 2mt2 t and choose a ~ pm at random. Then run the algorithm with 
input a, and report "failure" if a division by 0 is attempted. By Lemma 1, the 
probability that this will occur is ~<½. Note that if F = Q, say, and we have a 
"random bit generator," then we can choose P :  {-mt2t,.. . ,mt2t t and 
generate the required a 's  in time polynomial in t and m. 

If F is finite, say with p elements, then we can take an irreducible 
polynomial u ~ F[z] of degree 1 such that pt>l 2mt2 t, and consider the 
extension field G : F [ z ] / ( u )  ofF.  We can find such a u in random 
polynomial (in m and t) time (Rabin, 1980). We now view the algorithm as a 
computation over G[x I ..... Xm]. The field G has >/2mt2 t elements, so that we 
can apply the above Monte Carlo procedure to find an appropriate a ~ Gm. 
Each operation in G can be simulated by O(I 2) operations inF. Thus the 
"sequential to parallel" conversion also works over finite fields. 

One important property that is lost in the conversion is uniformity: given 
a uniform family of sequential algorithms, it is not clear how to make the 
resulting family of parallel algorithms uniform. In order to conserve 
uniformity, it would be sufficient to know the existence of a "test" 
polynomial d as above, with degree polynomial (not exponential as the d 
above) in tn. (The family of parallel algorithms in Theorem 1 is, of course, 
uniform, because we could explicitly write down al,..., am.) 

Remark 2. The algorithm of Theorem l uses O(n ~5) processors. 
Recently, Berkowitz (1982) has given an algorithm that computes n × n 
determinants in parallel time O(log 2 n) using O(n 3"5) processors. 

THEOREM 2. For any field F, GCD ean be computed in parallel time 
O(log 2 n). 

Proof Let f ,  gCF[x]  be nonzero, d e g f : m ~ < n = d e g g .  Let h :  
gcd(f,  g) be the monic greatest common divisor o f f  and g, and d = deg h. 
There exist polynomials u, v ~ F[x] such that h = uf + vg, deg u < n - d, 
and deg v < m - d .  For any k / > 0  and polynomials s = ~ s i x  i and t =  

t~x i, the conditions "sf  + tg is monic of degree k, and deg s < n -- k" tran- 
slate into the following (n + m -- 2k) X (n + m - 2k) systems S k of linear 
equations in the coefficients of s and t: 

fm 
fm-I  

° .  

A. . -A 

gn 
gn-1 gn 

g~ 

go. 
• g o  "'" g k  

f. 

-~s._~_ ~] -0].: ,: 

l S O [ 

! tm--k-I ] 
o,  _1/ 
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So for f ,  g as above, the following algorithm computes gcd(f,  g) in parallel 
time O(log z n): 

(1) Compute in parallel a o ..... a,.,  where a k = d e t A  k and A k is the 
coefficient matrix of S k. 

(2) Set d =  rain{k: a k 4= 0}. 

(3) Compute a solution (s, t) of S d. (Note that S d is a nonsingular 
system.) 

(4) Compute gcd(f,  g) = sf  + tg. | 

It would be important to have a similar result for the gcd of two integers, 
and we ask the 

Open Question 1. Is INTEGER GCD C NC? 

4. RANK OF MATRICES 

For algorithms computing the rank of matrices, i.e., the maximal size of 
nonsingular submatrices, we can restrict attention to square matrices (by 
padding with zeroes if necessary). We denote by Mn(S ) the set of n × n 
matrices with entries from a set S. The rank cannot in general be considered 
as an element of the ground field, and we have to make some output 
convention such as the following: we require the algorithm to compute 
f l  ..... f~ ~ F(xl~, xlz ..... x~n) such that for any A E M.(F) 

rank(A) = max{i: i =  0 or f/(A) 4= 0}. 

We remark that this convention is inadequate over C, since then the n 
equations fl(A ) . . . . .  fn(A) = 0 in n ~ variables should have only A = 0 as 
solution. If n > 1, then this is impossible over any algebraically closed field. 

Ibarra-Moran-Rosier  (1980) have the following result: If  F is a subfield 
of ~, then rank(A)=rank(AtA) and the matrix AtA is symmetric and 
diagonalizable. Hence its rank can be read off from the coefficients of its 
characteristic polynomial c = Y~0<i<n ci xi as 

rank(A) -- max{j: e._j 4= 0}. 

Thus R A N K  can be computed in parallel time O(log 2 n) for such a field. 
They also show that this is true if F is a subfield of C and one is allowed to 
use complex conjugation in the algorithm. 

The rank question has some nice applications in combinatorial 
complexity. Consider a bipartite graph G on 2n nodes. We associate to it an 
n × n matrix X over Q(x11, xlz ..... xn,) which has x u in the (i, j )  position if 
node i is connected to node j, and zero otherwise. Then the maximal size of a 
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matching in G is equal to rank(X) (Edmonds, 1967). By substituting 
randomly chosen integers (from a fixed finite range, see Lemma 1) for the 
indeterminates and computing the rank of such matrices over Q, we get a 
Monte Carlo algorithm to determine the maximal size of matchings in G, 
and hence a (nonuniform) algorithm for this problem whose parallel time is 
O(log 2 n). It would be interesting to have an algorithm of this type that 
actually constructs a maximal matching. 

Next consider a directed graph with each edge being assigned an integer 
capacity that is polynomially bounded by the number of nodes of the graph. 
Feather (1981) reduces the problem of finding the maximum flow in such a 
graph to the above maximal matching problem, and thus obtains an 
O(log 2 n) algorithm. 

It is interesting to note that without the restriction on the capacities the 
problem is log space complete for P (Goldschlager-Shaw-Staples, 1982), 
and hence we do not expect it to have a solution in parallel time O(log k n) 
for some k. 

The rank algorithm by Ibarra-Moran-Rosier provides a nice solution for 
fields like • and ~. For the general case, in particular for finite fields, we 
have the following result: 

THEOREM 3. For any field F, we can compute the rank of n X n matrices 
over F with a Monte Carlo algorithm with error probability ~<0.95 using 
parallel time O(log z n) and a polynomially bounded total number of 
processors. No division occurs. 

Proof Let F be a field, n C N and A ~ Mn(F ). We assume some finite 
subset P ___ F of cardinality p such that either p ) 3n z or P = F. Furthermore, 
we assume a "random element generator" for P that produces in one step of 
a processor a randomly chosen element from P with respect to the uniform 
distribution on P. (Thus if # F  >~ 3n 2, we can take any large enough subset 
for P, and otherwise we take P = F.) 

For a matrix M ~ M n ( F  ) and l ~ i ~ < n  let Pi(M) be the principal i × i  
minor of M, i.e., the square submatrix of M consisting of the first i rows and 
columns of M, and pi(M) = det(Pi(M)). We perform the following algorithm 
to compute rank(A): 

(1) Choose two matrices B, C C MR(P) at random. 

(2) For all i, 1 ~< i ~  n, compute f / =  pi(BAC). 

The output s can be read off in the manner described above: 

s = max{i: i = 0  or f .  4= 0}. 

It is clear from Theorem I that this algorithm uses parallel time O(log 2 n), a 
polynomially bounded number of processors, and no division. Also 
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s ~  rank(A). The remainder of this proof is devoted to establishing the 
estimate 

Prob(s = rank(A)) ~> 0.05. 

Let r = rank(A)• We consider 

g~ = Pr(Q AR ) ~ F[QI~, Q12,..., Rn,] 

as a polynomial in the indeterminate entries Qis, Ru of the n × n-matrices 
Q, R. Thus gA is linear in each of its 2n 2 indeterminates. It is nonzero, since 
by permuting the rows and columns of A one can obtain a matrix with 
nonsingular principal r X r minor; in other words, there exist permutation 
matrices S, T E M , ( F )  such that Pr(SAT) is nonsingular, and hence 
gA(S, T) ~ O. We also have 

Prob(s < r) = Prob(ga(B, C) = 0) 

-~ p-2"2 #{(B, C) C M,(P)a: gA(B, C) = 0}. 

It remains to show that 

Prob(g~(B, C) = 0) ~ 0.95. 

We now distinguish two cases. 

Case 1. p >~ 3n 2. By Lemma l, 

Prob(gA(B, C) = O) <~ 2na/p ~ 0.95. 

Case 2. P =  F. Let 

D = 

1 " . .  

1 
0 

M.(F) 

be a diagonal matrix with r a n k ( D ) =  r. Then 

Pr(BDC) = Pr(B) Pr(C), Pr(BDC) = Pr(B)pr(C). 

By Lemma 2(ii), we have 

Prob(pr(B ) = 0) < 3, 

and similarly for C. Since the entries of B and C are chosen independently, 
pr(B) and p~(C) are independent random variables• Hence we get 
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Prob(pr(BDC ) = O) = Prob(pr(B) p~(C) = O) 

= Prob(pr(B ) = 0) + Prob(pr(C ) = O) 

-- Prob(flr(B ) = Pr(C) = 0) ~< ~ -  ~ < 0.95, 

using the monotonicity of  the function 2 x -  x 2 for 0 ~< x ~< 1. 
Getting back to our input matrix A, we note that there exist nonsingular 

matrices S, T ~ M,(F)  such that A = SDT. Then 

Prob(gA(B, C) = 0) = Prob(p~(BAC) = O) 

= Prob(pr(BSDTC ) = O) = Prob(Pr(BDC ) = 0) ~< 0.95. 

The third equality follows from the fact that the mapping 

Mn(F ) × M,(F)  -t  Mn(F) X M,(F)  

(B, C)~  (BS- ' ,  T-1C) 

is a bijection. | 

For  the two lemmas that establish the probabilistic estimates, we assume 
the following sebup: A field F, P _~ F finite with p ~> 2 elements, and d ~ N. 

LEMMA I. Let m E N, f C F[x, ..... Xm] be nonzero and of  degree <.d in 
each variable. Then 

P r o b ( f  = 0) ~ md/p. 

Proof Let 

q = V r o b ( f =  0) = p - m # { a  ~ pro: f ( a )  = 0}. 

W e  show by induction on m that q <~ md/p. The case m = 1 is obvious. For  
m > 1 we can as sume  that x m occurs  in f (otherwise,  apply the induct ion  
hypothesis), and write f as a polynomial in x m 

f =  ~P giXrn, go , . . . ,geEF[xl  ..... Xm_ l ] ,  ge=/=O, O<e<.d .  
O<~i~e 

Then 

#{a c P m : f ( a ) =  0} ~<#{a c P m :  ge(a) = 0} 

l + # a ~Pm: g~(a)@ 0 and ~ gi(a) a m 
i 

<~ pm(m -- 1)diP +dp  m- ' = pmmd/p. 

Hence q <~ md/p. | 
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u(t, n) 

1 

3/4 

1/2 

1/4 

t 
1/4 1/2 3/4 1 

FIG. 1. The upper bound u(t, n) on the probability that an n X n matrix is singular. The 
entries of the matrix are nonconstant polynomials of degree ~<d over an arbitrary field F 
whose arguments are randomly chosen from a subset of F with p elements, and t = dip. The 
values n = 1, 2, 3, 4 are shown, and n = oe shows an upper bound for any n E N. 

Lemma 2 gives a sharp estimate of the probability that a matrix of 
polynomials is singular. We consider indeterminates X~l, x ~  ..... x,n over F, 
and an n X n matrix g of univariate polynomials gu C F[xu] of degree ~<d. 
We assume that no go is constant. Furthermore, we introduce the function 
u(t, n ) =  1 - I - I i < i < n  ( 1 - t  i) for 0 ~ t ~ <  1 and n@ N. u is monotonically 
increasing in both arguments (see Fig. 1). 

LEMMA 2. 
zero. Then 

(i) 
(ii) 

(iii) 

Proof. 

In the above set-up, let q be the probability that det(g) is 

q <~ u(d/p, n), 

if  d = 1, then q < ~, 

if d =  1 and P is afield, then q = u ( 1 / p , n ) .  

Let t = diP. 

(i) We have to show that 

q = p -"2#{A  ~ M,(P):  det(g(A)) = 0} ~< u(t, n), 

where g(A) is the matrix with ( i , j )  entry gu(Au). For 1 ~< r~< n, let Tr be the 
set of all r ×  n matrices with entries from P, and S t =  {A E Tr: 
rank(g(A)) = r}. Now let A C S~_ 1 and 1~_ {1 ..... n} such that # I =  r -  1 
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and the square minor of  g(A) with rows 1 ..... r - -  1 and columns i ~ I is 
nonsingular. A vector y C F" which is linearly dependent on the row vectors 
of  g(A) is determined by its entries Yi for i E I. 

For  a vector z C T~ such that y = (gn(z0 , . . . ,  g~,(z,)) is linearly dependent 
on the rows of g(A), we can in general choose the entries z i for i E I  
arbitrarily; for the other entries we then have at most  d choices each, deter- 
mined by the fixed value for gri(zi). In particular,  there are at most  
pr-~d ~-~+1 such vectors z E T 1. Thus 

#Sr>/ ( p n -  pr-ld"-r+~)#Sr_ l= p n ( 1 - t "  r + , ) # S r _ ~ ,  

and by induction on r we get 

#S~ >~ p r ,  1-I (1 -- t;). 
n-r<i<~n 

Thus 

q = P  n 2 ( p , 2 _ # S n ) ~ < l _  I 1  ( 1 - - t ' ) = u ( t , n ) .  
l < i < n  

(ii) For  0 ~ t < ~ l ,  let 

v(t)= lira u(t,n)= l -  ]-I ( 1 - t i ) .  
n~oo 1<i 

The product  in v is uniformly convergent on every interval [0, a] with a < 1 
(see Henrici (1977), Sect. 8.2, for a discussion and the relation of v with 
combinatorial  questions), and v is 
particular,  for 0 ~< t ~ ½ and n ~ N 

0 <. u(t, n) < v(t) 

a monotonical ly  increasing function. In 
we have 

~< v(½) = 0.7112... < 3. 

This proves (ii), since then t = lip ~ ½. 
(iii) Under the hypotheses of  (iii), we can replace "a t  most  

pr-ld"-r+l" by "exact ly  pr-l,, in the argument  for (i), and 

# S t  = p r ,  1~ (1 - t i) 
n-r<i<~n 

follows. This implies q =- u(t, n). This fact has been discovered several times, 
see, e.g., Jordan (1911), F ine-Niven  (1944), and Rotman  (1973, 
Theorem 8.8). | 

Statement (iii) shows that the estimate in (i) is sharp in a certain sense. 
We remark that  the estimate of  (i) also holds when the determinant is 
replaced by the permanent;  the proof  is slightly different. 

It  is now clear what  the estimates in the proof  of  Theorem 3 really should 



252 BORODIN, VON ZUR GATHEN, AND HOPCROFT 

be: if c =  2v (½) -  v(½)2 = 0.9166..., then we should assume either p >/2n2/c 
or P = F, and the error probability then is ~<e. 

When interpreted as the decision problem "is A in U r =  {B ~M~(F) :  
rank(B) ~< r}?", the above Monte Carlo algorithm always answers correctly 
if A C U r, and correctly with probability ~>@0 if A ~ U r. We can improve 
this behaviour to get a Las Vegas algorithm that always answers correctly 
and with high probability has a low parallel running time. 

THEOREM 4. For any f ield F, there exists a Las Vegas algorithm for  the 
rank of  n × n matrices that uses parallel time O(log z n), no divisions and a 
polynomial number o f  processors and that either returns the rank o f  the input 
matrix (and a maximal nonsingular minor) or reports "failure." The 
probability o f  the second ease is ~ 2 - " .  

Proof Let A ~ Mn(F ). For 1 ~< i ~< n let A i C Mn(F) consist of the first i 
rows of A and zero rows otherwise, and r i = rank(Ai). Apply the algorithm 
of Theorem 3 independently 28n times in parallel to each A i, and let s i be the 
maximum of the numbers computed forAi.  Thus s; ~< r t, and for each i 

[ 19 "~28n Prob(si < ri) <. ~ j  . 

Let I = { i :  - l~<i<~n and si_ l < s i }  (with s 0 = 0  ) , and A ' C M , ( F )  be the 
matrix whose ith row is the ith row of A if i ~ 1 and zero otherwise. Perform 
the computation that was done above for the rows of A now for the columns 
of A'  to obtain a set J~_ {1,..., n}. The parallel time for all this is O(log 2 n), 
and 

Prob(the I × J minor of A is not a maximal (square) 

nonsingular minor) <. zntT¢) ~ " 19 x28n < 2 - "  

If #I4= g~4 r, then report failure. Else apply the determinant algorithm of 
Theorem 1 to compute AIj and each AKL with I t _ K ,  J c L ,  # K = # L  = 
# I  + 1 in parallel time O(log 2 n). Here AKL denotes the determinant of the 
minor of A with rows from K and columns from L. If  either A u = 0 or some 
such A/~ L is nonzero, then report failure. Otherwise, return s n = rank(A) and 
the I × J minor as a maximal nonsingular minor. II 

Using the rank algorithm over ~ by Ibarra-Moran-Rosier  and the above 
construction, we get a deterministic algorithm that uses parallel time 
O(log 2 n) and computes a maximal nonsingular minor. Can we have similar 
improvement for arbitrary fields? Of course our Monte Carlo algorithm 
yields nonuniform algorithms using parallel time O(log 2 n). It would be 
particularly interesting to have an answer to the following: 

Open Question 2. Can RANK be computed in parallel time O(log 2 n) 
over finite fields, using a uniform family of deterministic algorithms? 
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In connection with the maximal matching problem we remark that our 
algorithm gives an O(log 2 n) method to determine a set of nodes on which a 
matching of maximal size will take place; not, however, the actual matching. 

5. REDUCTIONS 

We have considered a number of algebraic problems whose parallel 
complexity is now known to be O(log 2 n). Whether or not the parallel 
complexity for any of these (and some closely related) problems can be 
reduced to O(log n) remains a fundamental challenge for all of complexity 
theory (see, for example, Borodin, 1982, and Valiant, 1982). It is natural 
then to study the relative complexity of these problems. 

Valiant (1982) introduced the notion of algebraic projections as a strong 
type of reducibility between polynomials. For functions P = (P(n)) and P '  = 
(P'(n)), we write P <~ P'  to informally denote the fact that P can be reduced 
to P'  essentially by multiple use of projections and possibly some simple 
(i.e., of O(log n) parallel complexity) arithmetic operations. A precise 
definition for <~ will not be developed here. Given any reasonable definition 
of reducibility P ~< P',  and certainly for the specific reductions given in this 
section, it follows that T(P) and T(P') satisfy T(P)--O(T(P')), using the 
fact that for all interesting functions P, log n = O(T(P(n))). We write P ~ P'  
to denote P <~ P'  and P'  <~ P, and we write P <~ P'  + P" to denote that both 
P' and P" are used in the reduction. 

Csanky (1976) has the following reductions: 

(a) Over any field, 

INVERSION ~ NONSINGULAR EQUATIONS 

DETERMINANT ~< CHARACTERISTIC POLYNOMIAL. 

(b) The characteristic polynomial can be computed by evaluating it at 
several points (using a determinant algorithm) and interpolating. If the field 
contains the necessary roots of unity to support a fast Fourier transform, 
then the interpolation can be performed in O(log n), using the roots of unity 
as interpolation points. We then have 

CHARACTERISTIC POLYNOMIAL ~< DETERMINANT. 

(c) If the field has characteristic zero, then 

DETERMINANT <~ NONSINGULAR EQUATIONS. 

Thus, over C all four problems are equivalent. 
Next, we consider the problems BASIS (=computing a maximal linearly 

independent subset of a given set of vectors), EQUATIONS (=deciding 
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whether a (possibly singular) system of linear equations has a solution, and 
in the affirmative case, computing one solution), and NULLSPACE 
(=computing a basis for the nullspace of a matrix). 

THEOREM 5. For an arbitrary f ield,  we have the fo l lowing reductions: 

(i) BASIS ~ RANK ~< NULLSPACE <~ RANK + INVERSION, 

(ii) EQUATIONS ~ RANK + INVERSION. 

P r o o f  (i) We note that the rank is implied directly by BASIS or 
NULLSPACE. The reduction BASIS ~< RANK is obtained by including v i 

in the basis iff rank(v 1 ..... Vi_l) < rank(v~ ..... vi). For the remaining 
reduction, we can compute a maximal nonsingular minor M for an input 
matrixA, by applying BASIS (say) first to the columns of A and then to the 
rows of the selected columns. Without loss of generality let M be the upper 
r ×  r submatrix of A. For each i satisfying r < i~<n, we can solve the 
nonsingular system M x  i = y i ,  where Yi denotes the first r rows of the ith 
column ofA. A basis for the nullspace of A then consists of the vectors 

[iJ 1 ' r < i < ~ n ,  

that is, x i is extended by 0's except for an - i  in the ith position. 

(ii) For EQUATIONS, we again compute a maximal nonsingular 
minor M of the input matrix, solve the corresponding nonsingular system of 
linear equations, set all indeterminates not corresponding to columns of M 
equal to zero, and check whether this constitutes a solution. If it does not, 
then the input system has no solution at all. | 

Allowing nonuniform reductions, and allowing the concept of reducibility 
to use linear transformations, it follows (by Theorem 3 and Csanky's 
reductions) that RANK ~< CHARACTERISTIC POLYNOMIAL ~< 
DETERMINANT and hence EQUATIONS <~ DETERMINANT. We also 
know (from Theorem 2) that GCD ~< DETERMINANT. 

We are left with a number of potential reductions which are either 
completely unresolved or hold only in the nonuniform case. In particular, we 
ask the following: 

Open Question 3. (a) Are any of the above problems ~<GCD? 

(b) Is DETERMINANT ~ NONSINGULAR EQUATIONS for 
arbitrary fields? 



FAST PARALLEL MATRIX 255 

The latter question is also open in the sequential setting (see Baur-Strassen, 
1983). 

6. CONCLUSIONS 

We have laid the foundation for what might be called a "theoretical 
package for parallel symbolic manipulation." The problems investigated 
include gcd of polynomials, solution of linear equations, determinant and 
rank of matrices. They all can be solved in parallel time O(log2(input size)); 
for rank a Las Vegas method is used. 

Further important routines for this "theoretical package" include factoring 
polynomials over finite fields (which provided the original motivation for this 
paper; consider the critical role of the GCD and NULLSPACE in the 
Berlekamp (1970) factoring algorithm), continued fractions and partial 
fraction expansion of rational functions, Pad6 approximation of power series, 
and interpolation. They will be discussed in a forthcoming paper (von zur 
Gathen, 1983). 

Finally, as in sequential computation, we remark that integer problems are 
often more difficult to understand than the corresponding polynomial 
problem. For example, it remains an open problem as to whether or not a 
fast (e.g., O(log z n)) parallel algorithm exists for the gcd of two n-bit 
numbers. An even more challenging open problem concerns the parallel 
complexity of determining primality. 
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