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Solutions to Exercises 1.1

1. We have

1− i
2

=
1

2
+ (−1

2
)i.

So a =
1

2
and b = −1

2
.

5. We have

(2− i)2 = (2 + i)2 (because 2− i = 2− (−i) = 2 + i)

= 4 + 4i+

=−1︷︸︸︷
(i)2 = 3 + 4i.

So a = 3 and b = 4.

9. We have

(
1

2
+
i

7

)(
3

2
− i
)

=
1

2

3

2
+ i

(
3

14
− 1

2

) = 1
7︷︸︸︷

−i i
7

=
25

28
− i2

7

So a = 25
28 and b = −2

7 .

13. Multiplying and dividing by the conjugate of the denominator, i.e. by 2− i = 2 + i we
get

14 + 13i

2− i
=

(14 + 13i)(2 + i)

(2− i)(2 + i)
=

14 · 2 + 14 · i+ 13i · 2 + 13i2

4 + 1

=
28 + 14i+ 26i− 13

5
=

15

5
+

40

5
i = 3 + 8i

So a = 3 and b = 8.

17. Multiplying and dividing by the conjugate of the denominator, i.e. by x− iy = x+ iy
we get

x+ iy

x− iy
=
x+ iy

x− iy
· (x+ iy)

(x+ iy)

=
(x+ iy)2

x2 + y2

=
x2 + 2xyi+ y2i2

x2 + y2

=
x2 − y2 + 2xyi

x2 + y2

=
x2 − y2

x2 + y2
+

2xy

x2 + y2
i.
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So a =
x2 − y2

x2 + y2
and b =

2xy

x2 + y2
.

21. Let zj = xj + i yj , where xj , yj are real numbers and j = 1, 2, 3.

(a) We have

z1 + z2 = (x1 + x2) + i (y1 + y2) = (x2 + x1) + i (y2 + y1) = z2 + z1.

(b) We have

z1z2 = (x1x2 − y1y2) + i (x1y2 + x2y1) = (x2x1 − y2y1) + i (y2x1 + y1x2) = z2z1.

(c) The associative property

(x1 + x2) + x3 = x1 + (x2 + x3)

is valid for real numbers and so it holds for the real and imaginary parts of z,1z2, z3.
Consequently we have

(z1 + z2) + z3 = z1 + (z2 + z3).

(d) Note that

(z1z2)z3 =
(
(x1x2 − y1y2) + i (x1y2 + x2y1)

)
(x3 + i y3)

= (x1x2 − y1y2)x3 − (x1y2 + x2y1)y3 + i
(
(x1x2 − y1y2)y3 + (x1y2 + x2y1)x3

)
and also that

z1(z2z3) = (x1 + i y1)
(
(x2x3 − y2y3) + i (x2y3 + x3y2)

)
= x1(x2x3 − y2y3)− y1(x2y3 + x3y2) + i

(
x1(x2y3 + x3y2) + y1(x2x3 − y2y3)

)
.

We simply check now that the real and imaginary parts of the complex numbers (z1z2)z3

and z1(z2z3) coincide. Thus (z1z2)z3 = z1(z2z3).

(e) Notice that

z1(z2 + z3) = (x1 + i y1)(x2 + y2 + i (x3 + y3))

= x1(x2 + y2)− y1(x3 + y3) + i
(
x1(x3 + y3) + y1(x2 + y2)

)
while

z1z2 + z1z3 = (x1 + i y1)(x2 + i y2) + (x1 + i y1)(x3 + i y3))

= x1x2 − y1y2 + i (x1y2 + x2y1) + x1x3 − y1y3 + i (x1y3 + x3y1).

The real and imaginary parts of these numbers are equal so the distributive property

z1(z2 + z3) = z1z2 + z1z3

holds.
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25.

(2 + 3i)z = (2− i)z − i
{(2 + 3i)− (2− i)}z = −i

(2 + 3i− 2 + i)z = −i
4iz = −i

z = − i

4i

z = −1

4

So z = −1

4
.

29.

iz + 2i = 4

iz + 2i = 4 (Conjugating both sides)

iz + 2i = 4 (Using problem 34)

iz = 4− 2i

z =
4− 2i

i

z =
4− 2i

i
·
(
−i
−i

)
z =
−4i+ 2i2

1
z = −2− 4i

So z = −2− 4i.

33. We are given

(1− i)z1 + z2 = 3 + 2i

z1 + (2− i)z2 = 2 + i

From the first equation we obtain

z2 = 3 + 2i− (1− i)z1

= 3 + 2i− z1 + iz1
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We then substitute the expression for z2 into the second equation to get

z1 + (2− i)(3 + 2i− z1 + iz1) = 2 + i

z1 + 6 + 4i− 2z1 + 2iz1 − 3i− 2i2 + iz1 − i2z1 = 2 + i

z1 + 6 + 4i− 2z1 + 2iz1 − 3i+ 2 + iz1 + z1 = 2 + i

3iz1 + 8 + i = 2 + i

3iz1 = 2 + i− 8− i
3iz1 = −6

z1 =
−6

3i
z1 = −2i

Thus

z2 = 3 + 2i− 2i+ 2i2

= 3 + 2i− 2i− 2

= 1

So z1 = 2i and z2 = 1.

37. We have

x2 + 4x+ 5 = 0

x =
−4±

√
42 − 4× 5

2
(By the quadratic formula)

=
−4±

√
−4

2

=
−4± 2i

2
= −2± i

41. We have

anzn + an−1zn−1 + · · ·+ a1z + a0 = anzn + an−1zn−1 + · · ·+ a1z + a0

= an · zn + an−1 · zn−1 + · · ·+ a1 · z + a0

[Since a0, a1, · · · , an−1, an are all real]

= anzn + an−1zn−1 + · · ·+ a1z + a0

[by using the property that zn = (z)n]

= an(z)n + an−1(z)n−1 + · · ·+ a1(z) + a0.

45. We already know that z = 1 + i is a root of p(z) = z4 + 4, then then by problem 48,
z = 1− i is also a root of p(z). Thus h(z) = (z− 1− i)(z− 1 + i) = z2− 2z+ 2 divides p(z)
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and we get

p(z) = z4 + 4

= (z2 − 2z + 2)(z2 + 2z + 2)

= (z − 1− i)(z − 1 + i)(z + 1− i)(z + 1 + i)

Hence, p(z) = (z−1−i)(z−1+i)(z+1−i)(z+1+i) and its roots are 1+i, 1−i,−1+i,−1−i.

49. Let z = x+ iy such that z2 = −3 + 4i. We have

(x+ iy)2 = −3 + 4i

(x2 − y2) + 2xyi = −3 + 4i

By comparing the real and imaginary parts we get the following equations

x2 − y2 = −3

2xy = 4

From the first equation we have
y2 = x2 + 3

We now consider the second equation and substitute the expression for y2

2xy = 4

xy = 2

x2y2 = 4 (Squaring both sides)

x2(x2 + 3) = 4 (Substituting the expression for y2)

x4 + 3x2 = 4

x4 + 3x2 − 4 = 0

u2 + 3u− 4 = 0 (Put u = x2)

(u+ 4)(u− 1) = 0

u = 1 (Negative root is discarded since u = x2 is non-negative)

x2 = 1

x = ±1

Now from the relation xy = 2, we compute the value of y

y =
2

x
= ±2

We thus conclude that 1 + 2i and −1− 2i are the two square roots of −3 + 4i.
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Solutions to Exercises 1.2

1. Note that z = 1−i, −z = −(1−i) = −1+i and z̄ = 1− i = 1+i. Thus z has coordinates
(1,−1), −z has coordinates (−1, 1) and z̄ has coordinates (1, 1). Also |z| =

√
12 + 12 =

√
2.

5. Note that z = 1− i = 1 + i. Hence −z = −(1 + i) = −1− i and z = 1 + i = 1− i. Thus
z has coordinates (1, 1),−z has coordinates (−1,−1) and z has coordinates (1,−1). Also
|z| =

√
12 + 12 =

√
2.

9. We use the property that |ab| = |a||b| twice below:

|(1 + i)(1− i)(1 + 3i)| = |1 + i||(1− i)(1 + 3i)| =

√
2︷ ︸︸ ︷

|1 + i|

√
2︷ ︸︸ ︷

|1− i|

√
10︷ ︸︸ ︷

|1 + 3i| = 2
√

10.

13. Using the properties
∣∣∣ z1z2 ∣∣∣ = |z1|

|z2| and |z| = |z| we have∣∣∣∣ i

2− i

∣∣∣∣ =
|i|
|2− i|

=
|i|
|2− i|

=
1√
5

=

√
5

5
.
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17. The equation |z− i| = −1 does not have any solution because |z| is a distance from the
point z to the origin. And clearly a distance is always non-negative.

21. Let z = x+ iy and we have

|z − 1| ≤ 4

|x+ iy − 1| ≤ 4

|(x− 1) + iy|2 ≤ 42 (Squaring both sides)

(x− 1)2 + y2 ≤ 16

The inequality |z − 1| ≤ 4 represents a closed disc with radius 4 units and centre at z = 1
as shown below.

25. Let z = x+ iy and we have

0 < |z − 1− i| < 1

0 < |x+ iy − 1− i| < 1

0 < |(x− 1) + i(y − 1)|2 < 12

0 < (x− 1)2 + (y − 1)2 < 1

The inequality 0 < |z − 1 − i| < 1 represents a puntured open disc with radius 1 units,
centre at z = 1 + i and puctured at z = 1 + i as shown below.
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29. (a) Let z = x+ iy and we have

Re(z) = a

Re(x+ iy) = a

x = a

Thus the equation Re(z) = a represents the vertical line x = a.
(b) Let z = x+ iy and we have

Im(z) = b

Im(x+ iy) = b

y = b

Thus the equation Im(z) = b represents the horizontal line y = b.
(c) Let z = x+ iy and let z1 = x1 + iy1, z2 = x2 + iy2 be distinct points. We have

z = z1 + t(z2 − z1) (t is a real variable)

x+ iy = (x1 + iy1) + t(x2 + iy2 − x1 − iy1)

x+ iy = {x1 + t(x2 − x1)}+ i{y1 + t(y2 − y1)}

By comparing the real and imaginary parts we get

x = x1 + t(x2 − x1)

y = y1 + t(y2 − y1)

From the first equation we have

x− x1 = t(x2 − x1)

x− x1

x2 − x1
= t
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From the second equation we have

y − y1 = t(y2 − y1)

y − y1

y2 − y1
= t

Now by eliminating t from both the equations, we get

x− x1

x2 − x1
=

y − y1

y2 − y1

x− x1

y − y1
=
x2 − x1

y2 − y1

which represents the equation of a line passing through distinct points (x1, y1) and (x2, y2).

33. We know that

z.z = |z|2

z.

(
z

|z|2

)
= 1 (Dividing both sides by |z|2)

Thus we get that z−1 =
z

|z|2
.

37. (a) We get the estimate

| cos θ + i sin θ| ≤ | cos θ|+ |i sin θ|

by the triangle inequality. Now we notice that

|i sinθ| = |i| | sin θ| = 1| sin θ| = | sin θ|.

So,

| cos θ|+ |i sin θ| = | cos θ|+ | sin θ|.

We know from algebra that | sin θ| ≤ 1, and | cos θ| ≤ 1 Therefore we have

| cos θ|+ | sin θ| ≤ 1 + 1 = 2,

and this justifies the last step of the estimation above.

(b) By definition of the absolute value we know that if z = x + iy then |z| =
√
x2 + y2.

Therefore if z = cos θ + i sin θ then |z| =
√

(cos θ)2 + (sin θ)2. But from trigonometry we
know the formula

(cos θ)2 + (sin θ)2 = 1

is true for any number θ. Therefore we have

| cos θ + i sin θ| =
√

(cos θ)2 + (sin θ)2 = 1.
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41. We want to know something about | 1
z−4 | given some information about |z − 1|. Notice

that an upper bound of the quantity | 1
z−4 | is given by the reciprocal of any lower bound for

|z − 4|. So, first we can find some information about |z − 4|. For this we use some ideas
from the example 8 in this section. We notice that z − 4 = (z − 1) − 3. Therefore by the
inequality |z1 − z2| ≥ ||z1| − |z2|| we have

|z − 4| = |(z − 1)− 3| ≥ ||z − 1| − 3|

Now since we know |z−1| ≤ 1 we get that ||z−1|−3| ≥ |1−3| = 2. Hence |z−4| ≥ 2. Finally
taking reciprocals of the sides of the inequality we will reverse the sign of the inequality
and get the needed upper estimate:

1

|z − 4|
≤ 1

2
.

45. (a) By triangle inequality we have∣∣∣∣∣∣
n∑
j=1

vjwj

∣∣∣∣∣∣ ≤
n∑
j=1

|vjwj |.

And now we use the properties |z1z2| = |z1||z2| and |z| = |z| and get

|vjwj | = |vj ||wj | = |vj ||wj |.

Using this identity in the triangle inequality above and recalling the assumption that we
already proved () we have ∣∣∣∣∣∣

n∑
j=1

vjwj

∣∣∣∣∣∣ ≤
n∑
j=1

|vjwj |

=
n∑
j=1

|vj ||wj | ≤

√√√√ n∑
j=1

|vj |2
√√√√ n∑

j=1

|wj |2.

(b) Using the hint we start from the obvious inequality

0 ≤
n∑
j=1

(
|vj | − |wj |

)2
.

Expanding the right hand side of this inequality we have

0 ≤
n∑
j=1

(
|vj | − |wj |

)2
=

n∑
j=1

(
|vj |2 − 2|vj ||wj |+ |wj |2

)
=

n∑
j=1

(
|vj |2 + |wj |2

)
− 2

n∑
j=1

|vj ||wj |.
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Therefore
n∑
j=1

|vj ||wj | ≤
1

2

n∑
j=1

(
|vj |2 + |wj |2

)
=

1

2

( n∑
j=1

|vj |2 +
n∑
j=1

|wj |2
)

=
1

2
(1 + 1) = 1 =

√
1 ·
√

1 =

√√√√ n∑
j=1

|vj |2
√√√√ n∑

j=1

|wj |2.

(c) Using the hint we can consider v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) and look

at them as at vectors. If we define ‖v‖ =
√∑n

j=1 |vj |2 and ‖w‖ =
√∑n

j=1 |wj |2. Then it

turns out we need to prove the following inequality:

n∑
j=1

|vj | |wj | ≤ ‖v‖‖w‖.

In order to do so we define new vectors U = 1
‖u‖u and W = 1

‖w‖w. So, the coordinates of

these vectors are correspondingly Uj =
uj
‖u‖ and Wj =

wj
‖w‖ . Then we have

n∑
j=1

|Uj |2 =
n∑
j=1

∣∣∣∣ uj‖u‖
∣∣∣∣2 =

1

‖u‖2
n∑
j=1

|uj |2 =
1

‖u‖2
‖u‖2 = 1,

and similar we get
∑n

j=1 |Wj |2 = 1. Therefore we can apply part (b) to the vectors V and
W . We have

n∑
j=1

|Vj | |Wj | ≤

√√√√ n∑
j=1

|Vj |2
√√√√ n∑

j=1

|Wj |2.

The left side is equal to

n∑
j=1

|vj |
‖v‖
|wj |
‖w‖

=
1

‖v‖‖w‖

n∑
j=1

|vj ||wj |.

The right side is equal to√√√√ n∑
j=1

|vj |2
‖v‖2

√√√√ n∑
j=1

|wj |2
‖w‖2

=

√√√√ 1

‖v‖2
n∑
j=1

|vj |2
√√√√ 1

‖w‖2
n∑
j=1

|wj |2

=
1

‖v‖‖w‖

√√√√ n∑
j=1

|vj |2
√√√√ n∑

j=1

|wj |2

=
1

‖v‖‖w‖
‖u‖‖v‖ = 1.

Hence we can rewrite the inequality we received in the form:

1

‖v‖‖w‖

n∑
j=1

|vj ||wj | ≤ 1.

So, if we multiply both sides by ‖v‖‖w‖ we get the needed inequality.
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Solutions to Exercises 1.3

1. We need to present the number given in its polar form in the form with the real and
imaginary parts z = x+ iy. We have

z = 3

(
cos

7π

12
+ i sin

7π

12

)
= 3 cos

7π

12
+ i 3 sin

7π

12

In Cartesian coordinates z is represented by (3 cos 7π
12 , 3 sin 7π

12 ) as shown below.

5. Let z = −3− 3 i. Then we have r =
√

(−3)2 + (−3)2 =
√

9 · 2 = 3
√

2. Also, we can find
the argument by evaluating

cos θ =
x

r
=
−3

3
√

2
= −
√

2

2
and sin θ =

y

r
=
−3

3
√

2
= −
√

2

2
.

From the Table 1 in the Section 1.3 we see that θ = 5π
4 . Thus, arg z = 5π

4 + 2kπ. Since 5π
4

is not from the interval (−π, π] we can subtract 2π and get that Arg z = 5π
4 − 2π = −3π

4 .
So, the polar representation is

−3− 3 i = 3
√

2

(
cos

(
−3π

4

)
+ i sin

(
−3π

4

))
.

9. Again we can denote z = − i
2 . Then we have r =

√
(−1

2)2 = 1
2 . We can evaluate

cos θ =
x

r
=

0

1/2
= 0 and sin θ =

y

r
=
−1/2

1/2
= −1.

And, from the Table 1 in the Section 1.3 we find θ = 3π
2 . (Also we could plot the complex

number (− i
2) as a point in the complex plane and find the angle from the picture.) Therefore
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arg z = 3π
2 + 2πk. Since 3π

2 is not from the interval (−π, π] we can subtract 2π and get that
Arg z = 3π

2 − 2π = −π
2 . So, the polar representation is

− i
2

=
1

2

(
cos
(
−π

2

)
+ i sin

(
−π

2

))
.

13. We have z = x+ i y = 13 + i 2. Since x > 0 we compute

Arg z = tan−1(
y

x
) = tan−1(

2

13
) ≈ 0.153.

Hence we express arg z ≈ 0.153 + 2πk for all integer k.

17. First, we need to express the number z = −
√

3 + i in the polar form. We compute

r =
√

3 + 1 = 2. And since −
√

3 < 0, and 1 > 0 we see that Arg z = tan−1
(

1
−
√

3

)
=

tan−1
(
−
√

3
3

)
= 5π

6 . Since we need to find the cube of the number z we can use the De

Moivre’s Identity to get the polar representation:

(−
√

3 + i)3 =

(
2

(
cos

(
5π

6

)
+ i sin

(
5π

6

)))3

= 23

(
cos

(
5π

6

)
+ i sin

(
5π

6

))3

= 8

(
cos

(
15π

6

)
+ i sin

(
15π

6

))
= 8

(
cos

(
3π

6

)
+ i sin

(
3π

6

))
.

Where in the last identity we used the fact that Arg (−
√

3 + i)3 = 15π
6 − 2π = 3π

6 should
be in the interval (−π, π].

21. First, we find the modulus and the argument of the number z = 1 + i. We have
r =

√
12 + 12 =

√
2. And, since for z = x + iy = 1 + i1 we get x > 0 we compute

Arg z = tan−1
( y
x

)
= tan−1

(
1
1

)
= tan−1(1) = π

4 . Hence z can be expressed in the polar
form

1 + i =
√

2
(

cos
(π

4

)
+ i sin

(π
4

))
.

After this we can use De Moivre’s identity to get

(1 + i)30 =
(√

2
(

cos
(π

4

)
+ i sin

(π
4

)))30

= (
√

2)30

(
cos

(
30π

4

)
+ i sin

(
30π

4

))
= 215 (0 + i · 1) = 215 i.

Thus Re
(
(1 + i)30

)
= 0, and Im

(
(1 + i)30

)
= 215.
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25. (a) Set z1 = −1 = z2. Then Arg(z1z2) = Arg(1) = 0, whereas Arg(z1) + Arg(z2) =
π + π = 2π. Thus Arg(z1z2) 6= Arg(z1) + Arg(z2).

(b) Set z1 = 0 and z2 = −1. Then Arg

(
z1

z2

)
= Arg(0) = 0, whereas Arg(z1) − Arg(z2) =

0− π = −π. Thus Arg

(
z1

z2

)
6= Arg(z1)−Arg(z2).

(c) Set z = −1. Then Arg(z̄) = Arg(1) = 0, whereas −Arg(z) = −Arg(−1) = −π. Thus
Arg(z̄) 6= −Arg(z).

(d) Set z = −1. Then Arg(−z) = Arg(1) = 0, whereas Arg(z)+π = Arg(−1)+π = π+π =
2π. Thus Arg(−z) 6= Arg(z) + π.

29. We know that for any complex numbers z1 = r1(cos θ1 + i sin θ1), and z2 = r2(cos θ2 +
i sin θ2) we have

z1 z2 = r1[cos(θ1) + i sin(θ1)]r2[cos(θ2) + i sin(θ2)]

= r1 r2[cos(θ1 + θ2) + i sin(θ1 + θ2)].

We can use this property several times to get the identity above step by step.

z1z2 · · · zn = (z1 z2)z3 · · · zn
= (r1(cos(θ1) + i sin(θ1)) r2(cos(θ2) + i sin(θ2)))z3 · · · zn
= (r1 r2)(cos(θ1 + θ2) + i sin(θ1 + θ2))z3z4 · · · zn
= (r1 r2)(cos(θ1 + θ2) + i sin(θ1 + θ2))r3(cos(θ3) + i sin(θ3))z4 · · · zn
= (r1 r2 r3)(cos(θ1 + θ2 + θ3) + i sin(θ1 + θ2 + θ3))z4z5 · · · zn
= · · ·
= (r1 r2 · · · rn−1)(cos(θ1 + θ2 + · · ·+ θn−1) + i sin(θ1 + θ2 + · · ·+ θn−1))zn

= (r1 r2 · · · rn−1)(cos(θ1 + θ2 + · · ·+ θn−1) + i sin(θ1 + θ2 + · · ·+ θn−1))

·rn(cos(θn) + i sin(θn))

= (r1 r2 · · · rn−1 rn)

·(cos(θ1 + θ2 + · · ·+ θn−1 + θn) + i sin(θ1 + θ2 + · · ·+ θn−1 + θn)).

33. We have

z2 = i

z2 = cos
π

2
+ i sin

π

2

So by the formula for the n-th roots with n = 2, we find the roots to be

z1 = cos
π

4
+ i sin

π

4

z2 = cos
5π

4
+ i sin

5π

4
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37. In order to solve this equation we need to find the 7-th root of (−7). Thus we express
(−7) in the polar form. −7 = 7(cos(π) + i sin(π)). Hence by the formula for the n-th root
with n = 7 we have that the solutions are

z1 =
7
√

7 (cos(π/7) + i sin(π/7)) , z2 =
7
√

7 (cos(3π/7) + i sin(3π/7)) ,

z3 =
7
√

7 (cos(5π/7) + i sin(5π/7)) , z4 =
7
√

7 (cos(7π/7) + i sin(7π/7)) ,

z5 =
7
√

7 (cos(9π/7) + i sin(9π/7)) , z6 =
7
√

7 (cos(11π/7) + i sin(11π/7)) , and

z7 =
7
√

7 (cos(13π/7) + i sin(13π/7)) .
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41. We have

z4 = −1− i

z4 =
√

2

(
cos

5π

4
+ i sin

5π

4

)
.

So by the formula for the n-th roots with n = 4, we find the roots to be

z1 =
8
√

2

(
cos

5π

16
+ i sin

5π

16

)
z2 =

8
√

2

(
cos

13π

16
+ i sin

13π

16

)
z3 =

8
√

2

(
cos

21π

16
+ i sin

21π

16

)
z4 =

8
√

2

(
cos

29π

16
+ i sin

29π

16

)
.

45. We have

(z + 2)3 = 3i

w3 = 3
(

cos
π

2
+ i sin

π

2

)
(Set w = z + 2)
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So by the formula for n-th roots for n = 3, we find the roots to be

w1 =
3
√

3
(

cos
π

6
+ i sin

π

6

)
=

3
√

3

(√
3

2
+ i

1

2

)

=
( 6
√

3)5

2
+ i

3
√

3

2

w2 =
3
√

3

(
cos

5π

6
+ i sin

5π

6

)
=

3
√

3

(
−
√

3

2
+ i

1

2

)

= −( 6
√

3)5

2
+ i

3
√

3

2

w3 =
3
√

3

(
cos

9π

6
+ i sin

9π

6

)
= − 3
√

3i

Since z = w − 2, the solutions of the original problem are

z1 = w1 − 2

=

(
( 6
√

3)5

2
− 2

)
+ i

3
√

3

2

z2 = w2 − 2

= −

(
( 6
√

3)5

2
+ 2

)
+ i

3
√

3

2

z3 = w3 − 2

= −2− 3
√

3i.

49. We have

z2 + z + 1− i = 0

z =
−1±

√
12 − 4(1− i)

2
(Using the quadratic formula)

=
−1±

√
−3 + 4i

2

Now let

w2 = −3 + 4i

w2 = 5

(
−3

5
+ i

4

5

)
w2 = 5(cos θ + sin θ) (where

π

2
< θ < π and cos θ = −3

5
, sin θ =

4

5
)



18 Chapter 1 Complex Numbers and Functions

So the principal square root is

w =
√

5

(
cos

θ

2
+ i sin

θ

2

)

Now we use the half-angle identity i.e. cos
θ

2
= ±

√
1 + cos θ

2
, sin

θ

2
= ±

√
1− cos θ

2
and

compute

w =
√

5


√√√√1− 3

5
2

+ i

√√√√1 +
3

5
2


= 1 + 2i.

Thus the original solutions are

z1 =
−1 + w

2
= i

z2 =
−1− w

2
= −1− i.

53. We have

z4 − (1 + i)z2 + i = 0

u2 − (1 + i)u+ i = 0 (Set u = z2)

u =
−(1 + i)±

√
(1 + i)2 − 4i

2
(Using the quadratic formula)

u =
−(1 + i)±

√
−2i

2

u =
−(1 + i)± (−1 + i)

2
(The principal square root of −2i is −1 + i, see problem 51)

u = −1,−i.
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Since z =
√
u, we get

z1 =
√
−1

= i

z2 = −
√
−1

= −i
z3 =

√
−i

=

√
cos

3π

2
+ i sin

3π

2

= cos
3π

4
+ i sin

3π

4

= − 1√
2

+ i
1√
2

z4 = −
√
−i

= −z3

=
1√
2
− i 1√

2
.

57. By De Moivre’s identity for n = 3 we have

cos 3θ + i sin 3θ = (cos θ + i sin θ)3

= cos3 θ + 3i cos2 θ sin θ + 3i2 cos θ sin2 θ + i3 sin3 θ

= (cos3 θ − 3 cos θ sin2 θ) + i(3 cos2 θ sin θ − sin3 θ)

Now by comparing the real and imaginary parts we get

cos 3θ = cos3 θ − 3 cos θ sin2 θ

sin 3θ = 3 cos2 θ sin θ − sin3 θ.

61. We have zn = 1 and by the formula for n-th roots we get

zn = cos 0 + i sin 0

ωk = cos

(
2kπ

n

)
+ i sin

(
2kπ

n

)
(where k = 0, · · · , n− 1).

65. We prove the binomial formula for complex numbers by induction on n. The statement
for n = 1 can be easily verified. By induction hypothesis, we assume that the statement is
true for n and we prove it for n+ 1.

(a+ b)n+1 = (a+ b)n.(a+ b)

=

(
n∑

m=0

(
n

m

)
an−m.bm

)
(a+ b)
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By expanding the product we see that the coefficient of an+1−ibi in (a + b)n+1 is equal to
the sum of the coefficient of an−ibi in (a + b)n i.e.

(
n
i

)
and the coefficient of an+1−ibi−1 in

(a+ b)n i.e.
(
n
i−1

)
. Thus we get

(a+ b)n+1 = an+1 +

(
n∑

m=1

((
n

m

)
+

(
n

m− 1

))
an+1−mbm

)
+ bn+1

= an+1 +

(
n∑

m=1

(
n+ 1

m

)
an+1−mbm

)
+ bn+1

(
use

(
n

m

)
+

(
n

m− 1

)
=

(
n+ 1

m

))

=
n+1∑
m=0

(
n+ 1

m

)
an+1−mbm

(
By convention

(
n+ 1

0

)
= 1 =

(
n+ 1

n+ 1

))
.

We have thus proved the statement for n+ 1 which shows that the binomial theorem holds
true for complex numbers.
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Solutions to Exercises 1.4

1. We are given f(z) = iz + 2 + i. Now

f(1 + i) = i(1 + i) + 2 + i = 1 + 2i

f(−1 + i) = i(−1 + i) + 2 + i = 1

f(−1− i) = i(−1− i) + 2 + i = 3

f(1− i) = i(1− i) + 2 + i = 3 + 2i.

5. Let S be the square with vertices 1 + i,−1 + i,−1− i, 1− i which is shown below.

Then f [S] is also a square with vertices 1, 3, 3 + 2i, 1 + 2i which is shown below.

9. Observe that

f(z) = (−1− i)z + 3 + i =
√

2

(
− 1√

2
− i√

2

)
z + 3 + i =

√
2e−

3iπ
4 z + (3 + i)
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Thus f(z) is obtained by rotating z clockwise by
3π

4
, then stretching by a factor of

√
2 and

then translating 1 unit up and 3 units to the right.

13. We are given f(z) = z2 − 2z + i. Now set z = x+ iy and we get

f(x+iy) = (x+iy)2−2(x+iy)+i = x2+2ixy−y2−2x−2iy+i = (x2−y2−2x)+i(2xy−2y+1)

Therefore u(x, y) = x2 − y2 − 2x and v(x, y) = 2xy − 2y + 1.

17. We are given f(z) = 3 Arg(z). Now set z = x+ iy and we get

f(x+ iy) = 3 Arg(x+ iy)

Therefore

u(x, y) =


3 tan−1

( y
x

)
if x > 0

3 tan−1
( y
x

)
+ 3π if x < 0, y ≥ 0

3 tan−1
( y
x

)
− 3π if x < 0, y < 0

and v(x, y) = 0.

21. Let f(z) = az + b and we have

f(1) = 3 + i

a+ b = 3 + i

a = 3 + i− b

Also we have

f(3i) = −2 + 6i

3ia+ b = −2 + 6i

3i(3 + i− b) + b = −2 + 6i (Substituting the expression for a)

−3 + 9i+ (1− 3i)b = −2 + 6i

(1− 3i)b = 1− 3i

b = 1

So a = 3 + i− 1 = 2 + i. Thus f(z) = (2 + i)z + 1.

25. We are given S = {z ∈ C : Re(z) > 0, Im(z) > 0} as shown by the shaded region
below.
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An arbitrary point of S is of the form z = x+ iy, where x > 0 and y > 0. Then under the
mapping f(z) = −z + 2i, we have

f(z) = −(x+ iy) + 2i = −x+ i(2− y)

We hence note that Re(f(z)) ranges in the interval −∞ < Re(f(z)) < 0 and Im(f(z))
ranges in the interval −∞ < Re(f(z)) < 2. So

f [S] = {z ∈ C : Re(z) < 0, Im(z) < 2}

as shown by the shaded region below.

29. S is a square with vertices 1 + i,−1 + i,−1− i, 1− i which is shown below.
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We see that the transformation f is given by

f(z) = 3(z + 1)e−
iπ
2 = −3(z + 1)i

Also note that

f(1 + i) = 3− 6i

f(−1 + i) = 3

f(−1− i) = −3

f(1− i) = −3− 6i

f [S] is a square with vertices given by (3,−6), (3, 0), (−3, 0), (−3,−6) which is shown below.
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33. We are given S = {z ∈ C : 0 < |z| ≤ 3,
π

3
≤ Arg(z) ≤ 2π

3
} as shown by the shaded

region below.

If we write z = r(cos θ + i sin θ), then f(z) = 1
z = 1

r (cos(−θ) + i sin(−θ)). Hence the polar
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coordinates of w = f(z) = ρ(cosφ+ i sinφ) are 1
3 < ρ <∞, and −2π

3 ≤ Arg w ≤ −
π
3 . As r

increases from 0 to 3, ρ decreases from ∞ to 1
3 ; and as θ goes from π

3 up to 2π
3 , φ decreases

from (−π
3 ) to (−2π

3 ). Thus

f [S] = {z ∈ C :
1

3
< |z| <∞, −2π

3
≤ Arg(z) ≤ −π

3
}

as shown by the shaded region below.

37. We are given S = {x+ iy : −2 ≤ x ≤ 0} and is represented by the shaded region below.

Now consider a vertical strip Lx0 = {x + iy : x = x0} of S. Let z be an arbitrary point of
Lx0 and assume x0 > 0. Then under the mapping f(z) = z2, we have

f(z) = (x0 + iy)2 = (x2
0 − y2) + i(2x0y)
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We set u = Re(f(z)) = x2
0 − y2 and v = Im(f(z)) = 2x0y. By eliminating y, we get an

algebraic relation between u and v, i.e.

u = x2
0 −

v2

4x2
0

Thus we get

f [Lx0 ] =
{
u+ iv : u = x2

0 −
v2

4x2
0

}
which is a leftward-facing parabola with vertex at (x2

0, 0) and v-intercepts at (0,±2x2
0). Also

it is not hard to see that f [L0] = (−∞, 0]. Since S =
⋃

−2≤x0≤0
Lx0 , we get

f [S] =
⋃

−2≤x0≤0

f [Lx0 ]

= (−∞, 0] ∪
⋃

−2≤x0<0

{
u+ iv : u = x2

0 −
v2

4x2
0

}
=
{
u+ iv : u ≤ 4− v2

16

}
.

In other words f [S] is the region enclosed within the parabola u = 4 − v2

16
as represented

by the shaded region below.

41. We are given S = {x+ iy : 0 ≤ y ≤ 2}. Now consider a horizontal strip Ly0 = {x+ iy :
y = y0} of S. Let z be an arbitrary point of Ly0 and assume y0 > 0. Then under the
mapping f(z) = z2, we have

f(z) = (x+ iy0)2 = (x2 − y2
0) + i(2xy0)



28 Chapter 1 Complex Numbers and Functions

We set u = Re(f(z)) = x2 − y2
0 and v = Im(f(z)) = 2xy0. By eliminating x, we get an

algebraic relation between u and v, i.e.

u =
v2

4y2
0

− y2
0

Thus we get

f [Ly0 ] =
{
u+ iv : u =

v2

4y2
0

− y2
0

}
which is a rightward-facing parabola with vertex at (−y2

0, 0) and v-intercepts at (0,±2y2
0).

Also it is not hard to see that f [L0] = [0,∞). Since S =
⋃

0≤y0≤2
Ly0 , we get

f [S] =
⋃

0≤y0≤2

f [Ly0 ]

= [0,∞) ∪
⋃

0<y0≤2

{
u+ iv : u =

v2

4y2
0

− y2
0

}
=
{
u+ iv : u ≥ v2

16
− 4
}

In other words f [S] is the region enclosed within the parabola u =
v2

16
− 4 as represented

by the shaded region below.

45. We are given S = {z ∈ C \ {0} :
π

4
≤ Arg(z) ≤ 3π

4
} ∪ {0}. We consider the strip

Lr0 = {z : |z| = r0,
π

4
≤ Arg(z) ≤ 3π

4
} of S. Let z be an arbitrary point of Lr0 , then under

the mapping f(z) = iz2 we get

f(z) = i (r0(cos θ + i sin θ))2 = r2
0

(
cos
(

2θ +
π

2

)
+ i sin

(
2θ +

π

2

))
.
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As θ increases from
π

4
to

3π

4
, 2θ +

π

2
increases from π to 2π. Thus

f [Lr0 ] = {z ∈ C : |z| = r2
0, π ≤ Arg(z) ≤ 2π}

and f(0) = 0. Since S = {0} ∪
⋃

0<r0<∞
Lr0 , we get

f [S] = {f(0)} ∪
⋃

0<r0<∞
f [Lr0 ] = {z ∈ C \ {0} : π ≤ Arg(z) ≤ 2π} ∪ {0}

In other words f [S] is the lower half complex plane including the real axis as shown by the
shaded region below.

49. (a) We compute

f(g(z)) = ag(z) + b = a(cz + d) + b = acz + ad+ b = (ac)z + (ad+ b).

This means that f(g(z)) is also linear.
(b) First, we express the number a in the polar form a = r(cos θ+ i sin θ). If we substitute
this value to the function f(z) we obtain

f(z) = r(cos θ + i sin θ)z + b = ((cos θ + i sin θ)(rz)) + b.

So, if we take g1(z) = z + b, g2(z) = (cos θ + i sin θ)z, and g3(z) = rz we can find a
representation for f(z):

f(z) = g1((cos θ + i sin θ)(rz)) = g1(g2(rz)) = g1(g2(g3(z))).

And we notice that g1 is a translation, g2 is a rotation, and g3 is a dilation.

53. If a real number z is positive then we can express it in the polar form z = r =
r(cos(0) + i sin(0)) for r > 0. And it follows that Argz = 0. If a real number z is negative
then we can express it in the polar form z = −r = r(cos(π) + i sin(π)) for r > 0. And it
follows that Argz = π. So, it follows that the image of the set S is two numbers 0 and π.
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57. We need to solve the equation 1
z = z which is equivalent to z2 = 1. The solutions of

the last equation are the square roots of 1 which are +1 and −1. Hence the fixed points
are ±1.

61. (a) We know that w is in f [L]. This means that there is z = m+ i n with integers m
and n such that z2 = w. By the way we can compute

w = z2 = (m+ i n)2 = m2 + 2imn+ (i n)2 = m2 − n2 + 2imn

Now take m1 = −n and n1 = m. Then for z1 = m1 + i n1 we compute

z2
1 = (m1 + i n1)2 = m2

1 − n2
1 + 2im1n1 = (−n)2 −m2 + 2i (−m)n

= −(m2 − n2 + 2imn) = −w.

Hence −w is also from f [L].

If we take z2 = z = m− i n then we find

z2
2 = (z)2 = z2 = w.

Hence w is from f [L].

Finally, we can compute −Rew + i Imw = −( Rew − i Imw) = −w. Since we already
proved u = w is from f [L]. And, for u from f [L] we have (−u) is from f [L] as well. We
can conclude that −Rew + i Imw = −u is from f [L].
(b) This part follows from the formula given in the proof of the part (a). That is for
z = m+ i n

w = z2 = (m+ i n)2 = m2 + 2imn+ (i n)2 = (m2 − n2) + i(2mn).

We notice that (m2 − n2) is integer and (2mn) is integer. So, w = z2 is also from L.
(c) By the part (b) it follows that w is in L. Hence the function f maps the number w to
f(w) which is already in f [L]. And this is what we needed to prove.
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Solutions to Exercises 1.5

1. Note that

lim
n→∞

|an| = lim
n→∞

∣∣∣∣∣ i sin
(
nπ2
)

n

∣∣∣∣∣ ≤ lim
n→∞

1

n
= 0.

Therefore the sequence {an}∞n=1 converges to 0.

5. Note that

lim
n→∞

|an| = lim
n→∞

∣∣∣∣cosn− in
n2

∣∣∣∣ ≤ lim
n→∞

|cosn|+ |in|
n2

≤ lim
n→∞

1 + n

n2
= 0

Therefore the sequence {an}∞n=1 converges to 0.

9. (a) Let L = lim
n→∞

an. Then given ε > 0 we have |an − L| < ε for n > Nε. Then

|an+1 − L| < ε for n > Nε − 1. Therefore lim
n→∞

an = L = lim
n→∞

an+1.

(b) We are given a1 = i and

an+1 =
3

2 + an

lim
n→∞

an+1 = lim
n→∞

3

2 + an

lim
n→∞

an+1 =
3

2 + lim
n→∞

an

L =
3

2 + L
(by part (a))

L2 + 2L− 3 = 0

(L+ 3)(L− 1) = 0

L = 1,−3

We shall now show that L = −3 is absurd.
Claim : Re(an) ≥ 0
Proof. We shall prove the statement by induction on n. Since Re(a1) = 0, the statement

is true for n = 1. Hence assume that the statement is true for some n ≥ 1. Then we have

Re (an+1) = Re

(
3

2 + an

)
=

3

Re (2 + an)

=
3

2 + Re (an)

≥ 0

which completes the proof.
Thus the claim rules out the possibility of L = −3. Hence lim

n→∞
an = 1.
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13. We have

∞∑
n=3

3− i
(1 + i)n

=
3− i

(1 + i)3

( ∞∑
n=0

1

(1 + i)n

) (
convergent since

∣∣∣∣ 1

1 + i

∣∣∣∣ =
1√
2
< 1

)

=
(3− i)
(1 + i)3

 1

1−
(

1
1+i

)
 (geometric series formula)

=
(3− i)
(1 + i)3

.
(1 + i)

i

=
(3− i)
i(1 + i)2

= −3

2
+
i

2

17. Let SN =
N∑
n=2

1

(n+ i)(n− 1 + i)
denote the N -th partial sum. Then we have

N∑
n=2

1

(n+ i)(n− 1 + i)
=

N∑
n=2

(n+ i)− (n− 1 + i)

(n+ i)(n− 1 + i)

=
N∑
n=2

(
1

(n− 1) + i
− 1

n+ i

)
=

1

1 + i
− 1

N + i

Note that

lim
N→∞

SN =
1

1 + i
− lim
N→∞

1

N + i
=

1

1 + i

The series
∞∑
n=2

1

(n+ i)(n− 1 + i)
is convergent since the partial sums SN converge and

∞∑
n=2

1

(n+ i)(n− 1 + i)
= lim

N→∞
SN =

1

1 + i
.

21. The series
∞∑
n=0

(
1 + 3i

4

)n
is convergent because it is a geometric series and the modulus

of the common ratio is

∣∣∣∣1 + 3i

4

∣∣∣∣ =

√
10

4
< 1.

25. We apply root test to the series
∞∑
n=0

(
1 + 2in

n

)n
. Note that

ρ = lim
n→∞

∣∣∣∣(1 + 2in

n

)n∣∣∣∣ 1n = lim
n→∞

∣∣∣∣1 + 2in

n

∣∣∣∣ = lim
n→∞

∣∣∣∣ 1n + 2i

∣∣∣∣ = lim
n→∞

√
4 +

1

n2
= 2 > 1

Since ρ > 1 we conclude that the series
∞∑
n=0

(
1 + 2in

n

)n
is divergent.
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29. Note that

en − ie−n

en2 = en−n
2 − ie−n−n2

= en(1−n) − ien(−1−n)

Using the root test on
∑∞

n=1 e
n(1−n) gives

lim
n→∞

n
√
en(1−n) = lim

n→∞
e1−n = 0 < 1.

Similarly, for
∑∞

n=1 e
n(−1−n), we have

lim
n→∞

n
√
en(−1−n) = lim

n→∞
e−1−n = 0 < 1,

so both of these series converge. Thus,

∞∑
n=1

en − ie−n

en2 =
∞∑
n=1

en(1−n) − i
∞∑
n=1

en(−1−n)

converges.

33. Note that
∞∑
n=0

zn

2n
is a geometric series and it converges iff

∣∣∣z
2

∣∣∣ < 1

|z| < 2

Now if z satisfies the inequality |z| < 2 we get

∞∑
n=0

zn

2n
=

1

1−
(z

2

) (geometric series formula)

=
2

2− z
.

37. Note that
∞∑
n=1

1

(2− 10z)n
is a geometric series and it converges iff

∣∣∣∣ 1

2− 10z

∣∣∣∣ < 1

|2− 10z| > 1∣∣∣∣z − 1

5

∣∣∣∣ > 1

10
(dividing both sides by 10)



34 Chapter 1 Complex Numbers and Functions

Now if z satisfies the inequality

∣∣∣∣z − 1

5

∣∣∣∣ > 1

10
we get

∞∑
n=1

1

(2− 10z)n
=

(
1

2− 10z

)( ∞∑
n=0

1

(2− 10z)n

)

=

(
1

2− 10z

) 1

1− 1

2− 10z

 (geometric series formula)

=
1

1− 10z
.

41. We are given that the n-th partial sum sn =
i

n
. Thus

∣∣∣ lim
n→∞

sn

∣∣∣ =

∣∣∣∣ lim
n→∞

i

n

∣∣∣∣ = lim
n→∞

1

n
= 0.

Therefore the series converges to 0.

45. We have

an+1 =
(7 + 3i)n

1 + 2in2
an

an+1

an
=

(7 + 3i)n

1 + 2in2∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣(7 + 3i)n

1 + 2in2

∣∣∣∣ =
n
√

58√
1 + 4n4

=

√
58

n

√
4 +

1

n4

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

√
58

n

√
4 +

1

n4

= 0 < 1

Hence by the ratio test we conclude that the series
∞∑
n=0

an converges.
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Solutions to Exercises 1.6

1. (a) We have

eiπ = cosπ + i sinπ = −1.

(b) We have

e2iπ = cos(2π) + i sin(2π) = 1.

(c) We have

3e−1+200iπ = 3e−1 · e200iπ = 3e−1 (cos(200π) + i sin(200π)) = 3e−1 · 1 =
3

e
.

(d) We have

eln(3)+201iπ
2

3
=
eln(3) · e201iπ

2

3
=

3
(
cos
(
201π2

)
+ i sin

(
201π2

))
3

= i.

5. (a) We have

cos θ − i sin θ = cos(−θ) + i sin(−θ) = e−iθ.

(b) We have

sin θ + i cos θ = cos
(π

2
− θ
)

+ i sin
(π

2
− θ
)

= ei(
π
2
−θ).

(c) We have
1

cos θ + i sin θ
=

1

eiθ
= e−iθ.

(d) We have
cos θ + i sin θ

cos(3θ) + i sin(3θ)
=

eiθ

e3iθ
= eiθ−3iθ = e−2iθ.

9. (a) We have

ez1 = e1+i = e1 · ei = e · (cos 1 + i sin 1) = e cos(1) + ie sin(1).

(b) We have

3iez2 = 3ie1−i = 3ie1 · e−i = 3ie(cos(−1) + i sin(−1)) = 3e sin(1) + i3e cos(1).

(c) We have

ez1 .ez2 = ez1+z2 = e(1+i)+(1−i) = e2.

(d) We have
ez1

ez2
= ez1−z2 = e(1+i)−(1−i) = e2i = cos(2) + i sin(2).

13. (a) We have

−3− 3i = 3
√

2

(
− 1√

2
− i 1√

2

)
= 3
√

2

(
cos

(
5π

4

)
+ i sin

(
5π

4

))
= 3
√

2ei
5π
4 .
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(b) We have

−
√

3

2
+ i

1

2
= cos

(
5π

6

)
+ i sin

(
5π

6

)
= ei

5π
6 .

(c) We have

−1−
√

3i = 2

(
−1

2
− i
√

3

2

)
= 2

(
cos

(
4π

3

)
+ i sin

(
4π

3

))
= 2ei

4π
3 .

(d) We have

−3e2i = 3(− cos(2)− i sin(2)) = 3(cos(π + 2) + i sin(π + 2)) = 3ei(π+2).

17. Consider a vertical line segment of S,

Lx0 =
{
x0 + iy : 0 ≤ y ≤ π

2

}
.

An arbitrary point z = x0 + iy of Lx0 is mapped to

f(z) = ez = ex0+iy = ex0 · eiy.

Now as y varies from 0 to
π

2
, the image f(z) traces a quarter circle having radius ex0 . Thus

we get

f(Lx0) =
{
ex0eiθ : 0 ≤ θ ≤ π

2

}
.

Therefore

f(S) = f

 ⋃
−3≤x0≤3

Lx0


=

⋃
−3≤x0≤3

f(Lx0)

=
⋃

−3≤x0≤3

{
ex0eiθ : 0 ≤ θ ≤ π

2

}
=
{
reiθ : e−3 ≤ r ≤ e3, 0 ≤ θ ≤ π

2

}
21. Consider a vertical line segment of S,

Lx0 = {x0 + iy : 0 ≤ y ≤ π}

An arbitrary point z = x0 + iy of Lx0 is mapped to

f(z) = ez = ex0+iy = ex0 · eiy

Now as y varies from 0 to π, the image f(z) traces a semicircle having radius ex0 . Thus we
get

f [Lx0 ] =
{
ex0eiθ : 0 ≤ θ ≤ π

}
.
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Therefore

f [S] = f

[ ⋃
−∞<x0<∞

Lx0

]
=

⋃
−∞<x0<∞

f [Lx0 ]

=
⋃

−∞<x0<∞

{
ex0eiθ : 0 ≤ θ ≤ π

}
= {z ∈ C : Im(z) ≥ 0} \ {0}.

25. (a) We have

ez = 2− 2i

ez = 2
√

2

(
1√
2
− i 1√

2

)
ez = 2

√
2

(
cos

(
7π

4

)
+ i sin

(
7π

4

))
ez = eln(2

√
2) · ei

7π
4

ez−ln(2
√

2)−i 7π4 = 1

z − ln
(

2
√

2
)
− i7π

4
= i2kπ (k ∈ Z)

z = ln
(

2
√

2
)

+ i

(
2k +

7

4

)
π (k ∈ Z).

(b) We have

e2z = i

e2z = cos
π

2
+ i sin

π

2

e2z = ei
π
2

e2z−iπ
2 = 1

2z − iπ
2

= i2kπ (k ∈ Z)

z = i

(
k +

1

4

)
π (k ∈ Z)

29. Let z = x+ iy and we have

|ez| ≤ 1 ⇐⇒ ex ≤ 1
(
|ex+iy| = ex, see Exercise 33.

)
⇐⇒ x < 0

⇐⇒ Re(z) < 0
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Solutions to Exercises 1.7

1. (a)

cos i =
ei(i) + e−i(i)

2

=
e−1 + e1

2
= cosh(1)

= cos(0) cosh(1)− i sin(0) sinh(1)

sin i =
ei(i) − e−i(i)

2i

=
e−1 − e1

2i

= i

(
e1 − e−1

2

)
= i sinh(1)

= sin(0) cosh(1) + i cos(0) sinh(1)

(b)

cos
π

2
= 0

= cos
(π

2

)
cosh(0)− i sin

(π
2

)
sinh(0)

sin
π

2
= 1

= sin
(π

2

)
cosh(0) + i cos

(π
2

)
sinh(0)

(c)

cos(π + i) =
ei(π+i) + e−i(π+i)

2

=
eiπ · e−1 + e−iπ · e1

2

=
(cosπ + i sinπ) · e−1 + (cosπ − i sinπ) · e1

2

=

(
e1 + e−1

2

)
cosπ − i

(
e1 − e−1

2

)
sinπ

= cos(π) cosh(1)− i sin(π) sinh(1)
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sin(π + i) =
ei(π+i) − e−i(π+i)

2i

=
eiπ · e−1 − e−iπ · e1

2i

=
(cosπ + i sinπ) · e−1 − (cosπ − i sinπ) · e1

2i

=

(
e1 + e−1

2

)
sinπ + i

(
e1 − e−1

2

)
cosπ

= sin(π) cosh(1) + i cos(π) sinh(1)

(d)

cos
(π

2
+ 2πi

)
=
ei(

π
2

+2πi) + e−i(
π
2

+2πi)

2

=
e
π
2
i · e−2π + e−

π
2
i · e2π

2

=
(cos π2 + i sin π

2 ) · e−2π + (cos π2 − i sin π
2 ) · e2π

2

=

(
e2π + e−2π

2

)
cos

π

2
− i
(
e2π − e−2π

2

)
sin

π

2

= cos
(π

2

)
cosh(2π)− i sin

(π
2

)
sinh(2π)

sin
(π

2
+ 2πi

)
=
ei(

π
2

+2πi) − e−i(
π
2

+2πi)

2i

=
e
π
2
i · e−2π − e−

π
2
i · e2π

2i

=
(cos π2 + i sin π

2 ) · e−2π − (cos π2 − i sin π
2 ) · e2π

2i

=

(
e2π + e−2π

2

)
sin

π

2
+ i

(
e2π − e−2π

2

)
cos

π

2

= sin
(π

2

)
cosh(2π) + i cos

(π
2

)
sinh(2π)

5.

cos(1 + i) = cos(1) cosh(1)− i sin(1) sinh(1)

sin(1 + i) = sin(1) cosh(1) + i cos(1) sinh(1)

tan(1 + i) =
sin(1 + i)

cos(1 + i)

=
sin(1) cosh(1) + i cos(1) sinh(1)

cos(1) cosh(1)− i sin(1) sinh(1)

| cos(1 + i)| =
√

cos2(1) + sinh2(1)

| sin(1 + i)| =
√

sin2(1) + sinh2(1)
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9.

sin(2z) = sin(2(x+ iy))

= sin(2x+ i2y)

= sin(2x) cosh(2y) + i cos(2x) sinh(2y)

13.

tan z =
sin z

cos z

=
sin(x+ iy)

cos(x+ iy)

=
sin(x) cosh(y) + i cos(x) sinh(y)

cos(x) cosh(y)− i sin(x) sinh(y)

=

(
sin(x) cosh(y) + i cos(x) sinh(y)

cos(x) cosh(y)− i sin(x) sinh(y)

)
·
(

cos(x) cosh(y) + i sin(x) sinh(y)

cos(x) cosh(y) + i sin(x) sinh(y)

)
=

sin(x) cos(x) cosh2 y − sin(x) cos(x) sinh2 y + i(sinh(y) cosh(y) sin2(x) + sinh(y) cosh(y) cos2(x))

cos2 x+ sinh2 y

=
sin(x) cos(x) + i sinh(y) cosh(y)

cos2 x+ sinh2 y

=

(
sin(x) cos(x)

cos2 x+ sinh2 y

)
+ i

(
sinh(y) cosh(y)

cos2 x+ sinh2 y

)

17. Consider the horizontal strip

Ly0 =
{
x+ iy0 : −π

2
≤ x ≤ π

2

}
The mapping f(z) = sin z maps an arbitrary point of Ly0 to

f(x+ iy0) = sin(x+ iy0) = sinx cosh y0 + i cosx sinh y0

Set u = sinx cosh y0 and v = cosx sinh y0. Observe that

(
u

cosh y0

)2

+

(
v

sinh y0

)2

= 1

Now as x varies in the interval −π
2 ≤ x ≤ π

2 , the point (u, v) traces an upper semi-ellipse
with u-intercepts (± cosh y0, 0) and v-intercept (0, sinh y0). Thus

f [Ly0 ] =

{
u+ iv :

(
u

cosh y0

)2

+

(
v

sinh y0

)2

= 1, v ≥ 0

}
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Thus

f [S] = f

[ ⋃
α≤y0≤β

Ly0

]
=

⋃
α≤y0≤β

f [Ly0 ]

=
⋃

α≤y0≤β

{
u+ iv :

(
u

cosh y0

)2

+

(
v

sinh y0

)2

= 1, v ≥ 0

}

=

{
u+ iv :

( u

coshα

)2
+
( v

sinhα

)2
≥ 1,

(
u

coshβ

)2

+

(
v

sinhβ

)2

≤ 1

}
.

21.

sin z = sin(x+ iy)

=
ei(x+iy) − e−i(x+iy)

2i

=
e−y+ix − ey−ix

2i

=
e−y · eix − ey · e−ix

2i

=
e−y(cosx+ i sinx)− ey(cosx− sinx)

2i

=

(
ey + e−y

2

)
sinx+ i

(
ey − e−y

2

)
cosx

= sinx cosh y + i cosx sinh y

| sin z| = | sin(x+ iy)|
= | sinx cosh y + i cosx sinh y|

=

√
sin2 x cosh2 y + cos2 x sinh2 y

=

√
sin2 x(1 + sinh2 y) + (1− sin2 x) sinh2 y

=

√
sin2 x+ sinh2 y.
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25.

cos θ =
eiθ + e−iθ

2

cos3 θ =

(
eiθ + e−iθ

2

)3

cos3 θ =
e3iθ + 3eiθ + 3e−iθ + e−3iθ

8

cos3 θ =
cos(3θ) + i sin(3θ) + cos(θ) + i sin(θ) + cos(θ)− i sin(θ) + cos(3θ)− i sin(3θ)

8

cos3 θ =
cos 3θ + 3 cos θ

4

29.

sin z1 cos z2 + cos z1 sin z2

=

(
eiz1 − e−iz1

2i

)(
eiz2 + e−iz2

2

)
+

(
eiz1 + e−iz1

2

)(
eiz2 − e−iz2

2i

)
=
ei(z1+z2) + ei(z1−z2) − ei(z2−z1) − e−i(z1+z2) + ei(z1+z2) − ei(z1−z2) + ei(z2−z1) − e−i(z1+z2)

4i

=
ei(z1+z2) − e−i(z1+z2)

2i
= sin(z1 + z2)

33.

2 sin z1 sin z2 = 2

(
eiz1 − e−iz1

2i

)(
eiz2 − e−iz2

2i

)
= −

(
ei(z1+z2) − ei(z1−z2) − e−i(z1−z2) + e−i(z1+z2)

2

)

=
ei(z1−z2) + e−i(z1−z2)

2
− ei(z1+z2) + e−i(z1+z2)

2
= cos(z1 − z2)− cos(z1 + z2).

37.

cosh(z + πi) = cos(i(z + πi))

= cos(iz − π)

= − cos(iz)

= − cosh z
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sinh(z + πi) = −i sin(i(z + πi))

= −i sin(iz − π)

= i sin(iz)

= − sinh z.

41.

1 + 2 sinh2 z = 1 + 2(−i sin(iz))2

= 1− 2 sin2(iz)

= 2 cos2(iz)− 1

= 2 cosh2 z − 1

= 2 cos2(iz)− 1

= cos(2iz)

= cosh(2z)

= cos(2iz)

= cos2(iz)− sin2(iz)

= (cos(iz))2 + (−i sin(iz))2

= cosh2 z + sinh2 z.

45.

cosh z1 cosh z2 + sinh z1 sinh z2

= cos(iz1) cos(iz2) + (−i sin(iz1))(−i sin(iz2))

= cos(iz1) cos(iz2)− sin(iz1) sin(iz2)

= cos(iz1 − iz2)

= cos(i(z1 − z2))

= cosh(z1 − z2).

49.

2 sinh z1 cosh z2

= 2(−i sin(iz1))(cos(iz2))

= −i(2 sin(iz1) cos(iz2))

= −i(sin(iz1 + iz2) + sin(iz1 − iz2))

= −i sin(i(z1 + z2))− i sin(i(z1 − z2))

= sinh(z1 + z2) + sinh(z1 − z2).

53. (a) Let
S = 1 + z + · · ·+ zn.
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Then

zS = z + z2 + · · ·+ zn+1.

By subtracting the second equation from the first, we get

S − zS = (1 + z + · · ·+ zn)− (z + z2 + · · ·+ zn+1)

(1− z)S = 1− zn+1

S =
1− zn+1

1− z
(z 6= 1).

(b)

1 + eiθ + · · ·+ einθ =
1− ei(n+1)θ

1− eiθ
(By Problem 53(a).)

=

(
1− ei(n+1)θ

1− eiθ

)(
e−

iθ
2

e−
iθ
2

)

=
(1− ei(n+1)θ) · e−

iθ
2

e−
iθ
2 − e

iθ
2

=

(
(ei(n+1)θ − 1) · e−

iθ
2

2i

)
(
e
iθ
2 − e−

iθ
2

2i

)

=
i(1− ei(n+1)θ) · e−

iθ
2

2 sin θ
2

(c) From part (b), we get

1 + eiθ + · · ·+ einθ =
i(1− ei(n+1)θ) · e−

iθ
2

2 sin θ
2

=
i(e−

iθ
2 − ei(n+ 1

2
)θ)

2 sin θ
2

=
i
(
cos θ2 − i sin θ

2 − cos
(
n+ 1

2

)
θ − i sin

(
n+ 1

2

)
θ
)

2 sin θ
2

=

(
1

2
+

sin
(
n+ 1

2

)
θ

2 sin θ
2

)
+ i

(
cos θ2 − cos

(
n+ 1

2

)
θ

2 sin θ
2

)
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By taking the real and imaginary parts of the above identity, we get

Re
(

1 + eiθ + · · ·+ einθ
)

=
1

2
+

sin
(
n+ 1

2

)
θ

2 sin θ
2

1 + cos θ + · · ·+ cosnθ =
1

2
+

sin
(
n+ 1

2

)
θ

2 sin θ
2

1

2
+ cos θ + · · ·+ cosnθ =

sin
(
n+ 1

2

)
θ

2 sin θ
2

Im
(

1 + eiθ + · · ·+ einθ
)

=
cos θ2 − cos

(
n+ 1

2

)
θ

2 sin θ
2

sin θ + · · ·+ sinnθ =
cos θ2 − cos

(
n+ 1

2

)
θ

2 sin θ
2
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Solutions to Exercises 1.8

1. (a)

log(2i) = ln(|2i|) + i arg (2i)

= ln 2 + i
(π

2
+ 2kπ

)
(k ∈ Z).

(b)

log(−3− 3i) = ln(| − 3− 3i|) + i arg (−3− 3i)

= ln
(

3
√

2
)

+ i

(
5π

4
+ 2kπ

)
(k ∈ Z).

(c)

log
(

5ei
π
7

)
= ln

(
|5ei

π
7 |
)

+ i arg (5ei
π
7 )

= ln 5 + i
(π

7
+ 2kπ

)
(k ∈ Z).

(d)

log(−3) = ln(| − 3|) + i arg (−3)

= ln 3 + i (π + 2kπ) (k ∈ Z).

5. If we know log z, to find Log z, it suffices to choose the value of log z with the imaginary
part lying in the interval (−π, π].

Log (2i) = ln 2 + i
(π

2

)
Log (−3− 3i) = ln

(
3
√

2
)
− i
(

3π

4

)
Log (5ei

π
7 ) = ln 5 + i

(π
7

)
Log (−3) = ln 3 + iπ.

9. Note that

log 1 = ln |1|+ i arg (1) = i2kπ (k ∈ Z)

If we know log z, to find log6 z, it suffices to choose the value of log z with the imaginary
part lying in the interval (6, 6 + 2π]. Thus

log6 1 = i2π.
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13. We have

ez = 3

ez = eLog 3

ez−Log 3 = 1

z − Log 3 = i2kπ (k ∈ Z)

z = Log 3 + i2kπ (k ∈ Z)

= ln 3 + i2kπ (k ∈ Z)

17. We have

e2z + 5 = 0

e2z = −5

e2z = eLog (−5)

e2z−Log (−5) = 1

2z − Log (−5) = i2kπ (k ∈ Z)

z =
1

2
Log (−5) + ikπ (k ∈ Z)

= 1
2 ln 5 + i

(π
2

+ kπ
)

(k ∈ Z).

21.

Log (−1) = ln | − 1|+ iArg (−1) = iπ

Log (i) = ln |i|+ iArg (i) = i
(π

2

)
Log (−i) = ln | − i|+ iArg (−i) = −i

(π
2

)
.

Note that

Log (−1)(i) = Log (−i) = −i
(π

2

)
6= i(π) + i

(π
2

)
= Log (−1) + Log (i).

25.

Log z + Log (2z) =
3π

2

ln |z|+ iArg (z) + ln |2z|+ iArg (2z) =
3π

2

ln |2z2|+ i2 Arg (z) =
3π

2
( Arg (z) = Arg (2z))

By comparing the real and imaginary parts, we get two relations

ln |2z2| = 3π

2
2 Arg (z) = 0
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From the first relation we get

ln |2z2| = 3π

2

2|z|2 = e
3π
2

|z| = e
3π
4

√
2

From the second relation we get

2 Arg (z) = 0

Arg z = 0

Thus z = |z|. (cos( Arg z) + i sin( Arg z)) =
e

3π
4

√
2

.

29.

5i = eiLog 5

= ei(ln |5|+iArg (5))

= ei ln 5

33.

(3i)4 = 34 · i4

= 81

Thus (3i)4 = 81 has a unique value.

37. Set z = −1. Then

Log z = Log−1 = Log (−1) = ln | − 1|+ iArg (−1) = iπ

Again
Log z = Log (−1) = ln | − 1|+ iArg (−1) = iπ = −iπ

Thus we see that
Log (−1) 6= Log (−1)

41. By problem 38, the image of the punctured plane C \ {0} under the mapping f(z) =
log3π z is S3π = {z = x+ iy : 3π < y ≤ 5π}.

45. The domain of the map is

S = {z = r · eiθ :
1

2
≤ r ≤ 1, −π < θ ≤ π}.

The mapping f(z) = Log z maps an arbitrary point z = r · eiθ of S to

f(z) = Log (r · eiθ) = ln |r · eiθ|+ iArg (r · eiθ) = ln r + iθ.
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Set u = ln r and v = θ. As r varies between 1
2 ≤ r ≤ 1, u varies between − ln 2 ≤ u ≤ 0

and as θ varies between −π < θ ≤ π, v also varies between −π < v ≤ π. Thus

f [S] = {u+ iv : − ln 2 ≤ u ≤ 0, −π < v ≤ π}.

49. (a) We have

tanw =
sinw

cosw

tanw =

(
eiw − e−iw

2i

)
·
(

2

eiw + e−iw

)
i tanw =

eiw − e−iw

eiw + e−iw

1 + i tanw = 1 +
eiw − e−iw

eiw + e−iw

=
2eiw

eiw + e−iw

(b) From part (b), we have

i tanw =
eiw − e−iw

eiw + e−iw

1− i tanw = 1− eiw − e−iw

eiw + e−iw

=
2e−iw

eiw + e−iw

(c) From parts (a) and (b) we get

1 + i tanw

1− tanw
=

(
2eiw

eiw + e−iw

)
·
(
eiw + e−iw

2e−iw

)
1 + i tanw

1− tanw
= ei2w

1 + iz

1− iz
= ei2w (Set z = tanw)

log

(
1 + iz

1− iz

)
= log

(
ei2w

)
log

(
1 + iz

1− iz

)
= i2w

w =
i

2
log

(
1− iz
1 + iz

)
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53. (a)

z
p
q = e

p
q

log z

= e
p
q

(ln |z|+i arg (z))

= e
p
q

(ln |z|+i( Arg (z)+2kπ))
(k ∈ Z)

= e
p
q

( Log z+i2kπ)
(k ∈ Z)

= e

(
p
q

)
Log z · e

i2kpπ
q (k ∈ Z)

(b) Set En = e
i2npπ
q . Now

En+q = e
i2(n+q)pπ

q = e
i2npπ
q

+i2pπ
= e

i2npπ
q · ei2pπ = e

i2npπ
q · 1 = En

Since En = En+q, there can be at most q values for z
p
q .

(c) Lets suppose that Ej = El for some 0 ≤ j < l ≤ q − 1. Thus

e
i2jpπ
q = e

i2lpπ
q

e
i2(l−j)pπ

q = 1

i2(l − j)pπ
q

= i2kπ (for some integer k)

p(l − j)
q

= k

(d) It is impossible for
p(l − j)

q
to be an integer since gcd(p, q) = 1 and 0 < (l − j) < q.

Therefore En are distinct for 0 ≤ n ≤ q − 1 and hence z
p
q has q distinct values.
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Solutions to Exercises 2.1

1. We notice that the set {z : |z| ≤ 1} is the closed disk of radius one centered at the
origin. The interior points are {z : |z| < 1}, or the open unit disk centered at the origin.
And, the boundary is the set {z : |z| = 1}, or the unit circle centered at the origin.

5. We see that the set {z : Re z > 0} is a right half-plane. Since the inequality Re z > 0
is strict, this set is open. Really, if some z0 is in from the set {z : Re z > 0}. Then
for any number 0 < r < Re z and any complex number z such that |z − z0| < r we have
Re z > Re z0 − r > 0. Therefore z is also from the same set {z : Re z > 0}. This justifies
that the set {z : Re z > 0} is open. Also, it is clear from its picture that any two points
from the set {z : Re z > 0} can be connected even by a straight line segment, the simplest
polygonal line. So, the set {z : Re z > 0} is also connected. Since it is simultaneously open
and connected this set is a region.

9. We see that the set A = {z : z 6= 0, |Arg z| < π
4 } ∪ {0} is an infinite sector with the

vertex z = 0 included but the rays {z : z 6= 0, Arg z = ±π
4 } are not included. Since any

open disc with the center at the origin z = 0 is not contained in the set A it follows this
set is not open. On the other hand since the rays {z : z 6= 0, Arg z = ±π

4 } are not in this
set A it follows the set A is also not closed. It is clear from the picture that any two points
from the set A can be connected by a straight line segment. So, the set A is connected.
Since it is not open the set A is not a region.

13. One of simple examples is the following. Let us take the sets A = {0} and B = {1}.
Each of these sets is a point. Any single point is a connected set but it is obviously that
A∪B = {0}∪{1} consists of only two points and they cannot be connected by a polygonal
line inside A ∪B.

17. To prove this statement we need to show that if C \S is closed then any point z of the
set S is an interior point of S. Let us assume this is not true and there it is a point z0 of S
which is not an interior point. This means that every neighborhood of z0 contains at least
one point not from S. Thus, every neighborhood of z0 contains at least one point from the
complement of S, the set C \ S. And z0 is not from C \ S. By definition of boundary of
a set it follows that z0 is from the boundary of the set C \ S. But we know that the set
C \S is closed and thus it contains all its boundary. And, thus z0 must be in C \S which is
impossible since z0 is from the set S. This gives a contradiction to our assumption. Hence
the assumption was wrong and the set S is open.

21. To show that the set A ∪B is a region we need to show that is open and connected.

Let z0 is a point of A ∪ B. Thus, z0 is either from A or from B. If z0 is from A then
since A is open it follows some neighborhood of z0 is contained in A and thus also in A∪B.
Similar if z0 is from B then some neighborhood of z0 is contained in B and thus in A ∪B.
It implies that z0 is an interior point of A ∪B. Hence the set A ∪B is open.

To show that A∪B is connected we need to show that any two points z1 and z2 of A∪B
can be connected by a polygonal line. Let the point z3 is some point from the non-empty
intersection of A and B. Then z3 and z1 are from the same set A or B. Therefore they can
be connected by a polygonal line l1. Also z3 and z2 are from the same set A or B. And they
can be connected by a polygonal line l2. Now it is obvious that z1 and z2 are connected by
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the polygonal line l1 ∪ l2 passing through z3. Hence A ∪B is connected.
Since A ∪B is simultaneously open and connected it is a region.
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Solutions to Exercises 2.2
1. Using properties of limits and the fact that limz→i z = i we have

lim
z→i

3z2 + 2z − 1 = 3 lim
z→i

z2 + 2 lim
z→i

z − 1

= 3
(

lim
z→i

z
)2

+ 2 lim
z→i

z − 1

= 3i2 + 2i− 1 = −3 + 2i− 1 = −4 + 2i.

5. First we add to fractions under the sign of limit. We use the identity z2 + 1 = (z − i)(z + i). We
have

1

z − i
− 1

z2 + 1
=

z + i

(z − i)(z + i)
− 1

(z − i)(z + i)

=
z + i− 1

(z − i)(z + i)
.

We again use the properties from the Theorem 2.2.7 and the fact that limz→i z = i to get

lim
z→i

1

z − i
− 1

z2 + 1
= lim

z→i

z + i− 1

(z − i)(z + i)

=
limz→i(z + i− 1)

limz→i z − i limz→i(z + i)

=
2i− 1

(limz→i z − i)2i

[since lim
z→c

f(z) = 0 ⇔ lim
z→c

1

f(z)
=∞]

=
2i− 1

2i
∞ =∞.

9. We evaluate using properties of limits and the fact that Arg z is always real to get

lim
z→−3

( Arg z)2 = lim
z→−3

|Arg z|2

=

(
lim
z→−3

|Arg z|
)2

.

We know that in general Arg z is discontinuous on the ray (−∞, 0]. But it turns out that the function
f(z) = |Arg z| is continuous on the open ray (−∞, 0). Really if z0 is from the open ray (−∞, 0) and
z approaches to z0 from the second quadrant then Arg z approaches to π. Therefore |Arg z| also
approaches π. Now if z approaches to z0 from the third quadrant then Arg z approaches to −π.
But |Arg z| approaches π again. So, in either case |Arg z| approaches π. Therefore we conclude

lim
z→z0

|Arg z| = π.

If we take z0 = −3 we have

lim
z→z0

( Arg z)2 =

(
lim
z→−3

|Arg z|
)2

= π2.
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13. Since z approaches∞ (thus z 6= 0) we can divide by z both the numerator and the denominator.
We have

lim
z→∞

z + 1

3i z + 2
= lim

z→∞

1 + 1
z

3i+ 2
z

=
1 + limz→∞

1
z

3i+ limz→∞
2
z

=
1

3i
=

i

3i2
= − i

3
.

17. We have

lim
z→1

−1

(z − 1)2
= −

(
lim
z→1

1

z − 1

)2

.

Now we notice that if f(z) approaches 0 if z approaches 1 then g(z) = 1
f(z) approaches ∞. Also if

limz→1 g(z) =∞ then limz→1 g(z)2 =∞. Using these properties we compute(
lim
z→1

1

z − 1

)2

= ∞.

Since multiplying by a non-zero constant does not change approaching to ∞ we have

lim
z→1

−1

(z − 1)2
= ∞.

21. We know that a real exponential function f(x) = ex has the properties

lim
x→+∞

f(x) = 0,

and

lim
x→−∞

f(x) = +∞.

So, we see that even for real z the function f(z) has different limits in the positive and negative
directions. Hence, it also cannot have a unique limit when z approaches infinity in the complex
plane C.

25. Approaching z0 = 0 from the positive x-axis and the negative x-axis, respectively, thus

lim
y=0
x→0+

z

|z|
= lim
x→0+

x

|x|
= 1,

lim
y=0
x→0−

z

|z|
= lim
x→0−

x

|x|
= −1.

Since lim
y=0
x→0+

z

|z|
6= lim

y=0
x→0−

z

|z|
, therefore the limit lim

z→0

z

|z|
does not exist.

29. We need to show that

(1) lim
z→∞

f(z) = L ⇔ lim
z→0

f

(
1

z

)
= L;

Suppose the left statement is true. This means that for any ε > 0 there is an R > 0 such that
|z| > R it follows |f(z)− L| < ε. Now let ε > 0 be any. Let us denote δ = 1

R where R is chosen as
above. Then it follows that for any |z| < δ we have

∣∣ 1
z

∣∣ > R. Thus it follows |f( 1
z )− L| < ε. Hence

limz→0 f
(

1
z

)
= L.
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Now we suppose that the right statement is true. Again we pick any ε > 0. We can choose δ > 0
such that if |z| < δ then |f( 1

z )− L| < ε. Let us denote R = 1
δ . If |z| > R then | 1z | <

1
R = δ. So,

|f(z)− L| =

∣∣∣∣f( 1
1
z

)
− L

∣∣∣∣ < ε.

Hence limz→∞ f (z) = L.

33. If z 6= −1 − 3i then the function h(z) = z−i
z+1+3i is continuous in z. The discontinuity at

z0 = −1− 3i is not removable because z0 − i = −1− 3i− i = −1− 4i and z0 + 1 + 3i = 0. And we
have

lim
z→−1−3i

z − i
z + 1 + 3i

= (−1− 4i) lim
z→−1−3i

1

z + 1 + 3i

= (−1− 4i)∞ =∞.

37. We use the definition of sin z using the exponential function. We have

sin z =
eiz − e−iz

2i
.

From the Example 2.2.19 we know that ez is continuous everywhere in C. Since eiz = f(g(z)) for
g(z) = iz and f(z) = eiz and both functions are continuous it follows from Theorem 2.2.13 that eiz

is also continuous. Similar we show that the function e−iz is continuous. Then by Theorem 2.2.13

sin z =
eiz − e−iz

2i
=

1

2i
eiz − 1

2i
e−iz

is continuous in C.

41. (a) First, assume that f is continuous and A is open. Let z0 be from f−1[A]. This means
that f(z0) is in A. Since A is open there is ε > 0 such that the ε-neighborhood is a subset of
A, or Bε(f(z0)) ⊂ A. Since f is continuous at z0 there is a δ > 0 such that if |z − z0| < δ then
|f(z)− f(z0)| < ε. Thus f(z) is in A. And therefore z which is in f−1[f(z)] is in f−1[A]. Therefore
the whole δ-neighborhood of z0 is in f−1[A]. And it follows that f−1[A] is open.

Second, assume that f−1[A] is open whenever A is open. Let z0 be any complex number and
ε > 0 be any too. Then by assumption the ε-neighborhood Bε(f(z0)) of f(z0) is open too. Therefore
f−1[Bε(f(z0))] is open. In particular, there is δ > 0 such that Bδ(z0) ⊂ f−1[Bε(f(z0))]. It follows
that for any z such that |z − z0| < δ we have |f(z)− f(z0)| < ε. Hence f is continuous.

(b) First, assume that f−1[A] is closed whenever A is closed. To show that f is continuous
by part(a) it is enough to show that f−1[B] is open whenever B is open. So, let open B be given.
Since the complement of an open set is closed (problem 17 Section 2.1) we have A = C \B is closed.
Therefore, by assumption f−1[A] is closed too. Now we use the identity

f−1[B] = C \ f−1[A]

which is true for any set B and A = C \ B. Really, if z is in f−1[B]. Then f(z) is in B = C \ A.
Therefore f(z) is in the complement of f−1[A]. On the other hand if z is in C \ f−1[A] then f(z)
cannot be in A = C \ B. And, thus f(z) is in B. So, f−1(z) is in f−1[B]. Since f−1[A] is closed
it follows from (2) and Problem 17 Section 2.1 that the complement set f−1[B] is open. Thus f is
continuous.

Second, assume that f is continuous and B is closed. Then A = C \ B is open. Therefore by
part (a) it follows that f−1[A] is open. By (2) it follows that f−1[B] = C \ f−1[A]. f−1[A] is open.
Then by Problem 17 Section 2.1 it follows that its complement, f−1[B] is closed.
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Solutions to Exercises 2.3
1. If we take g(z) = 3z2 + 2z and h(z) = z − 1 then we have

f(z) = 3(z − 1)2 + 2(z − 1) = g(h(z)).

By the chain rule and the formula that (zn)
′

= nzn−1 for a positive integer n we have

f ′(z) = g′(h(z))h′(z) = (6(z − 1) + 2)1 = 6(z − 1) + 2 = 6z − 4.

5. By the quotient rule and the formula for the derivative of a polynomial it follows(
1

z3 + 1

)′
=

(1)′(z3 + 1)− 1(z3 + 1)′

(z3 + 1)2
=

0− 3z2

(z3 + 1)2
= − 3z2

(z3 + 1)2
.

9. We have f(z) = z2/3 = (z1/3)2. So, if we take g(z) = z1/3 and h(z) = z2 then f(z) = h(g(z)).
So, by the chain rule and the formulas for the derivatives of polynomial and n-th root we get

f ′(z) = h′(g(z))g′(z) = 2g(z)
1

3
z(1−3)/3 = 2z1/3 1

3
z−2/3 =

2

3
z−1/3.

13. If we take f(z) = z100 and z0 = 1 then the limit is the definition of the derivative of f at z0

since f(z0) = 1100 = 1. By the formula for the derivative of zn for a positive integer n we have

lim
z→1

z100 − 1

z − 1
= f ′(z0) = 100z100−1

0 = 100 · 199 = 100.

17. If z0 is from the region {z : |z| < 1} then the function f coincides with the function g(z) = z
on some neighborhood of z0. Since g(z) is differentiable everywhere then the limit used in the
definition of differentiability of f coincides with the corresponding limit for g which we know is
equal to g′(z0) = 1. So, inside the region {z : |z| < 1} we have f ′(z) = 1.

Now if z0 is from the region {z : |z| > 1} then the function f coincides with the function
h(z) = z2 on some neighborhood of z0. So, using the same argument as above we get that inside
this region {z : |z| > 1} we have f ′(z) = (z2)′ = 2z.

The question of differentiability remains for z0 from the circle {z : |z| = 1}. We have f(z0) = z0.
So, if z0 6= 1 then z0 6= z2

0 and since f coincides with h(z) = z2 inside the region {z : |z| > 1}. And
h(z) is continuous everywhere. So, if z approaches z0 inside the region {z : |z| > 1} then f(z) = h(z)
approaches h(z0) = z2

0 which we know is not equal to f(z0). So, f is not continuous at a such z0.
Now if z0 = 1 then both g and h coincide at this point. Now let C1 be any path which approaches
z0 = 1 inside the region {z : |z| < 1} (for example C1 = {z : z = r, 0 < r < 1}) and C2 be any
path which approaches z0 = 1 inside the region {z : |z| > 1} (for example C2 = {z : z = r, r > 1}).
Since g and h are differentiable everywhere we have

lim
z→z0

z on C1

f(z)− f(z0)

z − z0
= lim

z→z0
z on C1

g(z)− g(z0)

z − z0

= g′(z0) = 1

and

lim
z→z0

z on C2

f(z)− f(z0)

z − z0
= lim

z→z0
z on C2

h(z)− h(z0)

z − z0

= h′(z0) = 2z0 = 2.
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Since we have different limits when we approach z0 = 1 from different directions, it follows
that the derivative of f(z) does not exist at z0 = 1. Finally, we see that the derivative of f exist
everywhere except the circle {z : |z| = 1 } and

f ′(z) =

{
1 if |z| < 1,
2z if |z| > 1,

21. We take g(z) = zp/q and f(z) = zq in Theorem 4 and get h(z) = f(g(z)) = (zp/q)q = zp there.

Since f(z) 6= 0 for any z 6= 0 and z
p/q
0 6= 0 for z0 6= 0 and not on the negative real axis we have

f ′(g(z0)) 6= 0. We also know that

g(z) = e
p
q ( Log (z)+i2kπ)

for some integer k. So, g is a composition of two continuous functions on its domain. Therefore g is
also continuous. Now we can use Theorem 4 to get

d

dz
zp/q =

h′(z)

f ′(g(z))
=

pzp−1

qg(z)q−1
=

pzp−1

qz(p/q)(q−1)
=

pzpz−1

qzpz−p/q

[if we divide the numerator and the denominator by zp

and multiply them by zp/qz]

=
p

qz
zp/q.

25. (a) Since (i2 + 1)7 = i6 + 1 = 0, we have

lim
z→i

(
z2 + 1

)7
z6 + 1

=
7
(
z2 + 1

)6
(2z)

6z5

∣∣∣∣
z=i

= 0.

(b) We have

lim
z→i

z3 + (1− 3i)z2 + (i− 3)z + 2 + i

z − i
=

3z2 + 2(1− 3i)z + i− 3

1

∣∣∣∣
z=i

= 3i.
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Solutions to Exercises 2.4

1. If (x, y) 6= (0, 0) then we can compute the derivatives directly since x2 + y2 6= 0. We have

ux =
(xy)x(x2 + y2)− xy(x2 + y2)x

(x2 + y2)2

=
y(x2 + y2)− 2x2y

(x2 + y2)2
.

Similar

uy =
(xy)y(x2 + y2)− xy(x2 + y2)y

(x2 + y2)2

=
x(x2 + y2)− 2xy2

(x2 + y2)2
.

Now if (x, y) = (0, 0) then we can notice that for any x1 6= 0 we have

u(x1, 0) =
x10

x2
1 + 02

= 0.

Therefore

ux(0, 0) = lim
x1→0

u(x1, 0)− u(0, 0)

x1 − 0
= lim
x1→0

0

x1
= 0.

Therefore the partial derivative of u with respect to x exists at (0, 0) and is equal to 0.
Similarly, we notice that for any y1 6= 0 we have

u(0, y1) =
0y1

02 + y2
= 0.

Therefore

uy(0, 0) = lim
y1→0

u(0, y1)− u(0, 0)

y1 − 0
= lim
y1→0

0

y1
= 0.

Hence uy exists at (0, 0) and is equal to 0.
To show that u(x, y) is not continuous at (0, 0) we pick a point (x, x) for any number x 6= 0. We

compute

u(x, x) =
x2

x2 + x2
=

1

2
.

Therefore if x approaches zero then (x, x) approaches (0, 0) but u(x, x) = 1/2 does not approach
u(0, 0) = 0. Therefore u is discontinuous at (0, 0).

5. Since f and g are differentiable at x = x0 and y = y0 correspondingly we have

f(x) = f(x0) + f ′(x0)(x− x0) + ε1(x)|x− x0|

and
g(y) = g(y0) + g′(y0)(y − y0) + ε2(y)|y − y0|

where ε1(x)→ 0 as x→ x0 and ε2(y)→ 0 as y → y0. Therefore we have

u(x, y) = f(x)g(y)

= (f(x0) + f ′(x0)(x− x0) + ε1(x)|x− x0|)(g(y0) + g′(y0)(y − y0)

+ε2(y)|y − y0|)
= f(x0)g(y0) + g(y0)f ′(x0)(x− x0) + f(y0)g′(x0) +m(x, y),
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where

m(x, y) = f ′(x0)g′(y0)(x− x0)(y − y0)

+ε1(x)|x− x0|(g(y0) + g′(y0)(y − y0) + ε2(y)|y − y0|)
+ε2(y)|y − y0|(f(x0) + f ′(x0)(x− x0)).

To show that that u is differentiable at z0 = (x0, y0) it is enough to check that

lim
z→z0

m(z)

|z − z0|
= 0.

First, we show that limz→z0
(x−x0)(y−y0)
|z−z0| = 0. To see it we will use the squeeze theorem and the

inequality ab ≤ a2+b2

2 . To prove the inequality we start from the obvious inequality (a − b)2 ≥ 0
which is equivalent to a2 − 2ab+ b2 ≥ 0 or if we add 2ab to both sides we get a2 + b2 ≥ 2ab and if

we divide by 2 we get a2+b2

2 ≥ ab which is the needed inequality. Now for a = x− x0 and b = y− y0

we get

(x− x0)(y − y0) ≤ (x− x0)2 + (y − y0)2

2
=
|z − z0|2

2
by Pythagorian theorem.

We also can put a = −(x− x0) and b = y − y0 to receive similar

−(x− x0)(y − y0) ≤ (x− x0)2 + (y − y0)2

2
=
|z − z0|2

2
.

If we multiply the whole inequality by (−1) then we need to reverse the inequality and we get

(x− x0)(y − y0) ≥ −|z − z0|2

2
.

If we combine the inequalities (1) and (1) we conclude that

−|z − z0|2

2
≤ (x− x0)(y − y0) ≤ |z − z0|2

2
.

If we divide these inequalities by |z − z0| we get

−|z − z0|
2

≤ (x− x0)(y − y0)

|z − z0|
≤ |z − z0|

2
.

We have limz→z0 −
|z−z0|

2 = 0 and limz→z0
|z−z0|

2 = 0. So, by squeeze theorem

lim
z→z0

(x− x0)(y − y0)

|z − z0|
= 0.

We notice that

lim
z→z0

(g(y0) + g′(y0)(y − y0) + ε2(y)|y − y0|)

= lim
y→y0

(g(y0) + g′(y0)(y − y0) + ε2(y)|y − y0|) = g(y0).

Now we find that

lim
z→z0

ε1(x)|x− x0|(g(y0) + g′(y0)(y − y0) + ε2(y)|y − y0|)
|z − z0|

= lim
z→z0

ε1(x)|x− x0|
|z − z0|

lim
z→z0

(g(y0) + g′(y0)(y − y0) + ε2(y)|y − y0|) = 0g(y0) = 0
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since |x−x0|
|z−z0| is bounded by 1 and ε1(x)→ 0 if z → z0.

Similarly, we find that

lim
z→z0

ε2(y)|y − y0|(f(x0) + f ′(x0)(y − y0))

|z − z0|

= lim
z→z0

ε2(y)|y − y0|
|z − z0|

lim
z→z0

(f(x0) + f ′(x0)(x− x0)) = 0f(x0) = 0.

Finally adding the limits (1)-(1) we conclude that

lim
z→z0

m(z)

|z − z0|
= 0.

9. Project Problem: Is it true that if uy(x, y) = 0 for all (x, y) is a region Ω, then u(x, y) = φ(x);
that is, u depends only on x? The answer is no in general, as the following counterexamples show.

For (x, y) in the region Ω shown in Figure 8, consider the function

u(x, y) =

{
0 if x > 0,

sgny if x ≤ 0,

where the signum function is defined by sgny = −1, 0, 1, according as y < 0, y = 0, or y > 0.
Show that uy(x, y) = 0 for all (x, y) in Ω but that u is not a function of x alone.

Note that in the previous example ux does not exist for x = 0. We now construct a function
over the same region Ω for which the partial exist, uy = 0, and u is not a function of x alone. Show
that these properties hold for

u(x, y) =

{
0 if x > 0,

e−1/x2

sgny if x ≤ 0.

Come up with a general condition on Ω that guarantees that whether uy = 0 on Ω then u depends
only on x. [Hint: Use the mean value theorem as applied to vertical line segments in Ω.]

For any point in the region (x, y) ∈ Ω, the partial derivative uy(x, y) at this point can be denoted
as

uy(x, y) = lim
h→0

u(x, y + h)− u(x, y)

h
.

By the definition of the function u(x, y),
If x > 0, then uy(x, y) = 0;
If x < 0 and y < 0 or y > 0, since the region does not contain the boundary, thus uy(x, y) = 0;
Otherwise, consider the line segments along the y-axis. Since the region Ω does not contain the

origin, for y > 0, x = 0, we have

uy(0, y) = lim
h→0

u(0, y + h)− u(0, y)

h
= lim
h→0

1− 1

h
= 0.

Similarly, for y < 0, x = 0, we have

uy(x, y) = lim
h→0

u(0, y + h)− u(0, y)

h
= lim
h→0

−1− (−1)

h
= 0.

Hence, it implies that the partial derivative satisfies uy(x, y) = 0 for all (x, y) ∈ Ω, but u(x, y)
depends on both x and y.
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Consider the ux in the previous example. Since

ux(0, y) = lim
h→0

u(0 + h, y)− u(0, y)

h
.

If y > 0 (similar applying to y < 0), then

lim
h→0+

u(h, y)− u(0, y)

h
= lim
h→0+

0− 1

h
6= lim
h→0−

1− 1

h
= 0,

which implies that ux does not exist for x = 0.
Now, consider the new function from this example. For the partial derivative uy(x, y),
If x > 0, then uy(x, y) = ux(x, y) = 0;

If x < 0, then we can also obtain that uy(x, y) = 0, whenever y > 0 or y < 0 since e1/x2

>

0,∀x ∈ R\{0}. And for ux, since e1/x2

is differentiable at R\{0}, thus ux also exists.
But u is not a function of x alone. Therefore, the properties hold for this new u(x, y). Assume

that the region Ω is convex or path-connected.
Fix any x = x0, such that we can obtain a vertical line segment in Ω. Then for any (x0, y1), (x0, y2) ∈

Ω, since the region Ω is convex, then the vertical line segment joins (x0, y1) and (x0, y2) is contained
in Ω. By mean value theorem, we have

u(x0, y1)− u(x0, y2) = uy(x0, ξ)(y1 − y2),

for some ξ between y1 and y2. Since uy = 0 on Ω, then u(x0, y1) = u(x0, y2). Since x0 and then
(x0, y1), (x0, y2) ∈ Ω are all arbitrarily chosen, thus u depends only on x.
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Solutions to Exercises 2.5

1. For z = x + iy we get z = u(x, y) + iv(x, y) for u(x, y) = x and v(x, y) = y. Differentiating u
with respect to x and y, we find

∂u

∂x
= 1,

∂u

∂y
= 0.

Differentiating v with respect to x and y, we find

∂v

∂x
= 0,

∂v

∂y
= 1.

Comparing these derivatives we see clearly that ∂u
∂x = ∂v

∂y and ∂u
∂y = − ∂v

∂x . Hence the Cauchy-Riemann
equations are satisfied at all points. The partial derivatives are clearly continuous everywhere, so
by Theorem 2.4.4, u(x, y) and v(x, y) are differentiable everywhere.. Appealing to Theorem 2.5.1,
we conclude that z is analytic at all points, or, entire. We compute the derivative as f ′(x + iy) =
ux(x, y) + ivx(x, y), giving

f ′(z) = 1 + i0 = 1.

5. Let f(z) = ez, z = x+ iy. Then

ez = ex−iy

= ex(cos(−y) + i sin(−y))

= ex cos(y)− i ex sin(y)

= u(x, y) + iv(x, y)

for u(x, y) = ex cos(y) and v(x, y) = −ex sin(y). Differentiating, we have

∂u

∂x
= ex cos(y),

∂v

∂x
= −ex sin(y),

∂u

∂y
= −ex sin(y),

∂v

∂y
= −ex cos(y).

If the Cauchy-Riemann equations are to be satisfied, we must have ex cos(y) = 0 and ex sin(y) = 0.
However, this implies that sin(y) = cos(y) = 0, and sin and cos are never simultaneously zero. Thus,
the Cauchy-Riemann equations cannot be satisfied at any point, and f(z) is nowhere analytic.

9. For z = x+ iy we get

zez = (x+ iy)ex+iy

= (x+ iy)ex(cos y + i sin y)

= ex(x cos y − y sin y + i(y cos y + x sin y))

= u(x, y) + iv(x, y)

for u(x, y) = ex(x cos y − y sin y) and v(x, y) = ex(y cos y + x sin y). Differentiating u using the
product rule with respect to x, we find

∂u

∂x
=

∂

∂x
(exx cos y − exy sin y)

=

(
∂

∂x
(ex)x+ ex

∂

∂x
(x)

)
cos y − ∂

∂x
(ex)y sin y

= (exx+ ex) cos y − exy sin y

= ex(x cos y + cos y − y sin y).
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Also differentiating u with respect to y, we find

∂u

∂y
=

∂

∂y
(exx cos y − exy sin y)

= exx
∂

∂y
(cos y)− ex

(
∂

∂y
(y) sin y + y

∂

∂y
(sin y)

)
= −exx sin y − ex (sin y + y cos y)

= ex(−x sin y − sin y − y cos y)

Similarly, we compute the derivatives v with respect to x and y

∂v

∂x
=

∂

∂x
(exy cos y + exx sin y)

=
∂

∂x
(ex)y cos y +

(
∂

∂x
(ex)x+ ex

∂

∂x
(x)

)
sin y

= exy cos y + (exx+ ex) sin y

= ex(y cos y + sin y + x sin y)

and

∂v

∂y
=

∂

∂y
(exy cos y + exx sin y)

= ex
(
∂

∂y
(y) cos y + y

∂

∂y
(cos y) + x

∂

∂y
(sin y)

)
= ex (cos y − y sin y + x cos y) .

Comparing these derivatives we see that ∂u
∂x = ∂v

∂y and ∂u
∂y = − ∂v

∂x . Hence the Cauchy-Riemann
equations are satisfied at all points. Appealing to Theorem 2.5.1, we conclude that zez is analytic
at all points, or entire. We compute the derivative as f ′(z) = ux(x, y) + ivx(x, y), getting

d

dz
zez = ex(x cos y + cos y − y sin y) + iex(−x sin y − sin y − y cos y).

13. Let z = x + iy. This implies f(z) = |z|2 = x2 + y2. Hence, u(x, y) = x2 + y2 and v(x, y) = 0.
Therefore,

ux(x, y) = 2x, uy(x, y) = 2y, and vx(x, y) = vy(x, y) = 0.

The fact that ux(x, y) = vy(x, y) and uy(x, y) = −vx(x, y) implies x = 0 and y = 0. Since the
function f(z) = |z|2 is not differentiable in any neighborhood of z = 0, it cannot be analytic even
at the point z = 0.

17. From the Example 2.5.4, sin z is entire and d
dz sin z = cos z. By Exercise 2.5.10, cos z is entire

and d
dz cos z = − sin z. By Theorem 2.3.5, we have

d

dz
sin z cos z = cos z

d

dz
sin z + sin z

d

dz
cos z = cos2 z − sin2 z.

Since sin z and cos z are entire, sin z cos z is also entire.

21. By Exercise 2.5.12, cosh z is entire and d
dz cosh z = sinh z. Applying Theorem 2.3.11, we have

d

dz
cosh

(
z2 + 3i

)
= sinh

(
z2 + 3i

) d

dz

(
z2 + 3i

)
= 2z sinh

(
z2 + 3i

)
.
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Since cosh z and z2 are entire, cosh
(
z2 + 3i

)
is also entire.

25. By (2.5.13) and Theorem 2.3.11, we have

d

dz

−1/2

= −1

2
(z − i)−3/2 d

dz
= − 1

2(z − i)3/2
,

and this is analytic for all z − i ∈ C \ (−∞, 0], that is, for all z ∈ C \ {z : Re z ≤ 0, Im z = i}.

29. By L’Hospital’s rule,

lim
z→0

Log (z + 1)

z
=

d
dz Log (z + 1)

d
dz z

∣∣∣∣
z=0

=
1

z + 1

∣∣∣∣
z=0

= 1.

33. Since f = u+ iv is analytic in a region Ω, then for any (x, y) ∈ Ω, we have

ux(x, y) = vy(x, y), and uy(x, y) = −vx(x, y).

We have two cases:

(1) If Ref is constant on Ω, then ux(x, y) = uy(x, y) = 0 on Ω which implies that vx(x, y) =
vy(x, y) = 0 on Ω. Therefore, f is constant on Ω.

(2) If Imf is constant on Ω, then vx(x, y) = vy(x, y) = 0 on Ω which implies that ux(x, y) =
uy(x, y) = 0 on Ω. Therefore, f is constant on Ω.

Hence, f is constant on Ω if either Ref or Imf are constant on Ω.

37. We want to rotate the line to the subset of real axis and use Exercise 33. In order to rotate the
line, we first choose a complex number c ∈ f [Ω]. Then f [Ω]− c is a subset of a line passing through
the origin. We may then choose an angle θ to complete the rotation so that

g(z) = eiθ(f(z)− c)

is a real-valued function on Ω. Since c and θ are constant, g(z) is also analytic with Imf ≡ 0.
Therefore, by Exercise 33, g(z) is constant in Ω, and f(z) = e−iθg(z) + c is constant in Ω.

41. Letting f(z) = zn = rn(cos(nθ) + i sin(nθ)), we have that u(r, θ) = rn cos(nθ) and v(r, θ) =
rn sin(nθ). Thus, we have

∂u

∂r
= nrn−1 cos(nθ),

∂v

∂r
= nrn−1 sin(nθ),

∂u

∂θ
= −nrn sin(nθ),

∂v

∂θ
= nrn cos(nθ).

We can see that the polar Cauchy-Riemann equations hold everywhere for n > 0 and for z 6= 0 for
n < 0, and these partial derivatives are continuous where they are defined, so f(z) is analytic on C
for n > 0 and on C \ {0} for n < 0, and we have that

f ′(z) = e−iθ(ur + ivr) = e−iθ
(
nrn−1 cos(nθ) + inrn−1 sin(nθ)

)
= e−iθnrn−1einθ = nrn−1ei(n−1)θ = nzn−1.
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Solutions to Exercises 3.1

1.Given z1 = 1 + i and z2 = −1− 2i, apply (3.1.2) to obtain the parametrization of the line
segment [z1, z2]:

γ(t) = (1− t)z1 + tz2 = (1− t)(1 + i) + t(−1− 2i), 0 ≤ t ≤ 1,

or
γ(t) = t(−2− 3i) + 1 + i, 0 ≤ t ≤ 1.

5. The parametrization is given by γ(t) = eit for −π
4 ≤ t ≤

π
4 .

9. The parametrization is given by γ(t) = −3 + 2i+ 5eit for −π
2 ≤ t ≤ 0.

13. From Exercise 10, we have that

γ(t) =

{
5i− 3it 0 ≤ t ≤ 1

2e
iπt
2 1 ≤ t ≤ 4.

By (3.1.3), we have

γ∗(t) = γ(b+ a− t) =

{
2e

iπ
2

(4−t) 0 ≤ t ≤ 3

5i− 3i(4− t) 3 ≤ t ≤ 4.

17. This is a negatively-oriented circle with center −i and radius 1
2 .

21. By the chain rule, we have

d

dt
(2 + i) cos(3it) = (2 + i)

d

dt
cos(3it) = −3i(2 + i) sin(3it) = (3− 6i) sin(3it).

25. In complex form, we have

γ(t) = x(t) + iy(t) = (a− b) cos t+ b cos

(
a− b
b

t

)
+ i

(
(a− b) sin t− b sin

(
a− b
b

t

))
= (a− b)(cos t+ i sin t) + b

(
cos

(
a− b
b

t

)
− i sin

(
a− b
b

t

))
= (a− b)eit + be−i

a−b
b
t.

29. We first verify the endpoints.

γ(0) = 0, γ

(
1

3

)
= 1 + i; γ

(
2

3

)
= −1 + i; γ(1) = 0.

Note γ1(t) = 3t(1 + i) for 0 ≤ t ≤ 1
3 represents the subset of the line y = x. Observe

γ2(t) = 3 + i − 6t for 1
3 ≤ t ≤ 2

3 represents the subset of the line y = 1. Notice γ3(t) =
(−1 + i)(3− 3t) for 2

3 ≤ t ≤ 1 represents the subset of the line y = −x.



66 Chapter 3 Complex Integration

Solutions to Exercises 3.2
1. We have ∫ 2π

0
e3ix dx =

1

3i
e3ix

∣∣∣∣2π
0

=
1

3i
(e6iπ − 1) = 0.

5. Write

x+ i

x− i
=

x+ i

x− i

(
x+ i

x+ i

)
=

x2 + 2ix− 1 + i

x2 + 1

= 1− 2

x2 + 1
+

2ix

x2 + 1
.

So

∫ 1

−1

x+ i

x− i
dx =

∫ 1

−1
1 dx−

∫ 1

−1

2

x2 + 1
dx+

=0, odd integrand︷ ︸︸ ︷
2i

∫ 1

−1

x

x2 + 1
dx

= x− 2 tan−1 x
∣∣∣1
−1

= 2− π.

9. Proceed as in Example 2:

f(x) =

{
(3 + 2i)x if − 1 ≤ x ≤ 0,

ix2 if 0 ≤ x ≤ 1;

hence an antiderivative

F (x) =

{
3+2i

2 x2 + C if − 1 ≤ x ≤ 0,

i
3x

3 if 0 ≤ x ≤ 1.

Setting F (0+) = F (0−), we obtain 0 = 3+2i
2 0 + C or C = 0. Hence a continuous antider-

vative of f is

F (x) =

{
3+2i

2 x2 if − 1 ≤ x ≤ 0,

i
3x

3 if 0 ≤ x ≤ 1.

By Theorem 3.2.7, we have that∫ 1

−1
f(x) dx = F (1)− F (−1) =

i

3
− 3 + 2i

2
= −3

2
− 2

3
i.

13. Parameterize C1(0) by γ(t) = eit where 0 ≤ t ≤ 2π. It follows that γ′(t) = ieit. Then,∫
C1(0)

(2z + i) dz =

∫ 2π

0
(2eit + i)ieit dt = 0.
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17. For the given γ(t), we have γ′(t) = ieit − 2ie−it. Thus, the integral becomes∫
γ

(z + 2z) dz =

∫ 2π

0

(
eit + 2e−it + 2eit + 2e−it

)(
ieit − 2ie−it

)
dt

=

∫ 2π

0

(
eit + 2e−it

)
d
(
eit + 2e−it

)
+ 2

∫ 2π

0
eit + 2e−it

(
ieit − 2ie−it

)
dt

=

[(
eit + 2e−it

)2
2

]2π

0

+ 2

∫ 2π

0

(
e−it + 2eit

)(
ieit − 2ie−it

)
dt

= 2i

∫ 2π

0

(
2e2it − 2e−2it − 3

)
dt = 2i

∫ 2π

0
(4 sin(2t)− 3) dt

= 2i[−2 cos(2t)− 3t]2π0 = −12πi.

21. Write

I =

∫
[z1, z2, z3, z4, z1]

z dz

=

∫
[z1, z2]

z dz +

∫
[z2, z3]

z dz +

∫
[z3, z4]

z dz +

∫
[z4, z1]

z dz

= I1 + I2 + I3 + I4,

where z1 = 0, z2 = 1, z3 = 1 + i, and z4 = i. To evaluate I1, parametrize [z1, z2] by
z = γ1(t) = t, 0 ≤ t ≤ 1, dz = dt. So

I1 =

∫
[z1, z2]

z dz =

∫ 1

0
t dt =

1

2
.

To evaluate I2, parametrize [z2, z3] by z = γ2(t) = 1 + it, 0 ≤ t ≤ 1, dz = i dt. So

I2 =

∫
[z2, z3]

z dz =

∫ 1

0
(1 + it)i dt = i(t+

i

2
t2)
∣∣∣1
0

= i(1 +
i

2
) = −1

2
+ i.

To evaluate I3, parametrize [z3, z4] by z = γ3(t) = (1− t) + i, 0 ≤ t ≤ 1, dz = −dt. So

I3 =

∫
[z3, z4]

z dz = −
∫ 1

0
((1− t) + i) dt = −(1 + i) +

1

2
= −1

2
− i.

To evaluate I4, parametrize [z4, z1] by z = γ4(t) = (1− t)i, 0 ≤ t ≤ 1, dz = −idt. So

I4 =

∫
[z4, z1]

z dz = −i
∫ 1

0
i(1− t) dt = 1− 1

2
=

1

2
.

Finally, adding the four integrals, we obtain I = 0.
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25. We apply the definition of the path integral, with γ(t) = aeit + be−i
a
2
t, 0 ≤ t ≤ 2π,

γ′(t) = aieit − iab2 e
−ia

2
t, a = 8, b = 5:∫

γ
z dz =

∫ 2π

0

(
aeit + be−i

a
2
t
)(

aieit − iab
2
e−i

a
2
t

)
dt

=

∫ 2π

0

(
ia2e2it − iab

2

2
e−iat + iabei(1−

a
2

)t − ia
2b

2
ei(1−

a
2

)t

)
dt = 0.

29. We have f(z) = zz, γ(t) = (1− t)(2 + i) + t(−1− i) = (−3− 2i)t+ 2 + i, 0 ≤ t ≤ 1,
dz = (−3− 2i)dt. So∫

[z1, z2]
(x2 + y2) dz =

∫ 1

0
((−3− 2i)t+ 2 + i)((−3 + 2i)t+ 2− i)(−3− 2i)dt

= (−3− 2i)

∫ 1

0

(
13t2 + (−3− 2i)(2− i)t+ (2 + i)(−3 + 2i)t+ 5

)
dt

= (−3− 2i)

(
13

3
+

(−3− 2i)(2− i)
2

+
(2 + i)(−3 + 2i)

2
+ 5

)
= −4− 8

3
i.

33. We have that γ′(t) = ieit = − sin t+ i cos t, so we have

∣∣γ′(t)∣∣ =

√
|− sin t|2 + |cos t|2 = 1.

Thus, the arc length is

`(γ) =

∫ π/6

0
1 dt =

π

6
.

37. Let γ(t) = 2eit for 0 ≤ t ≤ 2π. It follows that |z| = 2. This implies that |z − 1| ≥
|z| − |1| = 1, so

∣∣∣ 1
z−1

∣∣∣ ≤ 1. We also have that `(γ) = 4π. Thus,
∣∣∣∫C2(0)

1
z−1 dz

∣∣∣ ≤ 4π.

41. (a) Suppose m = n. Then∫ π

−π
eimxe−inx dx =

∫ π

−π
1 dx = 2π.

Otherwise, with m 6= n, we have∫ π

−π
eimxe−inx dx =

∫ π

−π
ei(m−n)x dx =

[
1

i(m− n)
ei(m−n)x

]π
−π

= 0.

(b) For all integers m and n, we have

eimxe−inx = (cosmx+ i sinmx)(cosnx− i sinnx)

= cosmx cosnx+ sinmx sinnx+ i(cosnx sinmx− cosmx sinnx).
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Now suppose m and n are non-negative integers with m 6= n. Without loss of generality,
we may assume n 6= 0. Then we also have m 6= −n and∫ π

−π
cosmx cosnx dx =

∫ π

−π
Re

eimxe−inx + eimxeinx

2
dx

=
1

2
Re

(∫ π

−π
eimxe−inx dx+

∫ π

−π
eimxeinx dx

)
=

1

2
Re (0 + 0) = 0.

Similarly, ∫ π

−π
sinmx sinnx dx =

∫ π

−π
Re

eimxe−inx − eimxeinx

2
dx

=
1

2
Re

(∫ π

−π
eimxe−inx dx−

∫ π

−π
eimxeinx dx

)
=

1

2
Re (0− 0) = 0.

Now for any m and n, we have∫ π

−π
cosmx sinnx dx =

∫ π

−π
Im

eimxeinx − eimxe−inx

2
dx

=
1

2

(
Im

∫ π

−π
eimxeinx dx− Im

∫ π

−π
eimxe−inx dx

)
=

1

2
(0− 0) = 0,

since Im
∫ π
−π e

imxe−inx dx = 0 whether m = n or m 6= n.
Finally, with m = n 6= 0, we have∫ π

−π
cos2mx dx =

∫ π

−π
Re

eimxe−imx + eimxeimx

2
dx

=
1

2
Re

(∫ π

−π
eimxe−imx dx+

∫ π

−π
eimxeimx dx

)
=

1

2
Re (2π + 0) = π.

Similarly, ∫ π

−π
sin2mx dx =

∫ π

−π
Re

eimxe−imx − eimxeimx

2
dx

=
1

2
Re

(∫ π

−π
eimxe−imx dx−

∫ π

−π
eimxeimx dx

)
=

1

2
Re (2π − 0) = π.
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Solutions to Exercises 3.3

1. An antiderivative of f(z) = z2 +z−1 is simply F (z) = 1
3z

3 + 1
2z

2−z+C where C is an arbitrary
complex constant. The function F is entire and so we can take Ω = C.

5. To find an antiderivative of 1
(z−1)(z+1) , we proceed as we would have done in calculus. Using

partial fractions, write

1

(z − 1)(z + 1)
=

A

z − 1
+

B

z + 1

1

(z − 1)(z + 1)
=

A(z + 1) +B(z − 1)

(z − 1)(z + 1)

1 = A(z + 1) +B(z − 1).

Taking z = −1, it follows that B = − 1
2 . Taking z = 1, it follows that A = 1

2 . Hence

1

(z − 1)(z + 1)
=

1

2(z − 1)
− 1

2(z + 1)
.

An antiderivative of this function is

F (z) =
1

2

(
Log (z − 1)− Log (z + 1)

)
+ C,

where C is an arbitrary complex constant. (You could also use a different branch of the logarithm.)
The function Log (z − 1) is analytic in C \ (−∞, 1], while the function Log (z + 1) is analytic in
C\(−∞,−1]. So the function F (z) = 1

2

(
Log (z−1)− Log (z+1)

)
+C, is analytic in C\(−∞, 1] and

we may take Ω = C\(−∞, 1]. In fact, the function Log (z−1)− Log (z+1) = Log z−1
z+1 is analytic in

a larger region C \ [−1, 1]. There are at least two possible ways to see this. One way is to note that
the linear fractional transformation w = z−1

z+1 takes the interval [−1, 1] onto the half-line (−∞, 0].
All other values of z outside the interval [−1, 1] are mapped into C\(−∞, 0] and so the composition
Log z−1

z+1 is analytic everywhere on C \ [−1, 1]. Another way to show that Log (z − 1)− Log (z + 1)
is analytic in C \ [−1, 1] is to use Theorem 4, Sec. 2.3. Let g(z) = Log (z − 1) − Log (z + 1) and
f(z) = ez. The function g(z) is continuous on C \ [−1, 1], because the discontinuities of Log (z − 1)
and Log (z + 1) cancel on (−∞, −1). The function f(z) = ez is obviously entire. The composition
f(g(z)) is equal to the function z−1

z+1 , which is analytic except at the points z = ±1. According to
Theorem 4, Sec. 2.3, the function g(z) is analytic in C \ [−1, 1].

9. An antiderivative of z sinh z2 is 1
2 cosh z2 + C, as you can verify by differentiation. The an-

tiderivative is valid for all z.

13. Using Exercise 12, we find that an antiderivative of the function log0 z − log π
2
z is z log0 z −

z log π
2
z. This antiderivative is valid except on the branch cuts of the two logarithms, that is, on

Ω = C \
(
[0,∞) ∪ {it : 0 ≤ t <∞}

)
.

17. The integrand is entire and has an antiderivative in a region containing the path. So, by
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Theorem 3.3.4, ∫
γ

z2 dz =
1

3
z3

∣∣∣∣γ(π4 )

γ(0)

=
1

3

(
(ei

π
4 + 3e2iπ4 )3 − (ei·0 + 3e2i·0)3

)
=

1

3

(
ei

3π
4 + 9ei

2π
4 ei

π
2 + 27ei

π
4 e2iπ2 + 27ei

3π
2 − (4)3

)
=

1

3

(
−
√

2

2
+ i

√
2

2
− 9− 27(

√
2

2
+ i

√
2

2
)− 27i− (4)3

)

=
1

3

(
(−14

√
2− 73 + i(−13

√
2− 27)

)
21. Since sin z is continuous on the complex plane with entire antiderivative − cos z, we have, by
Theorem 3.3.4, ∫

γ

sin zdz = − cos z

∣∣∣∣2e
i π
2

2

= cos 2− cos(2i).

25. The function z Log z has an antiderivative 1
2z

2
(

Log z − 1
2

)
, and this antiderivative is analytic

on the region C \ (−∞, 0], which contains the closed path [z1, z2, z3, z1]. Thus, by Theorem 3.3.4,∫
[z1, z2, z3, z1]

z Log z dz = 0.

29. (a) Differentiating, we have

d

dz

1

α+ 1
zα+1 =

1

α+ 1
(α+ 1)zα+1−1 = zα.

(b) By part (a), an antiderivative of 1√
z

= z−
1
2 is 2z

1
2 = 2

√
z, and this is analytic on C\(−∞, 0].

Since γ is contained in this region, by Theorem 3.3.4, we have∫
γ

1√
z
dz = 2

√
z

∣∣∣∣i
−i

= 2
√

2i.

33. (a) Parametrize CR(z0) by γ(t) = z0 +Reit, 0 ≤ t ≤ 2π. Then γ′(t) = iReit and we have∫
γ

Im z dz =

∫ 2π

0

Im (Reit + z0)iReit dt =

∫ 2π

0

(R sin t+ Im z0)iReit dt

=

∫ 2π

0

iR2eit sin t dt+

∫ 2π

0

i Im (z0)Reit dt =

∫ 2π

0

iR2 sin t(cos t+ i sin t) dt+

=0︷ ︸︸ ︷[
Im (z0)Reit

]2π
0

= iR2

∫ 2π

0

sin t cos t dt−R2

∫ 2π

0

sin2 t dt = iR2

∫ 2π

0

1

2
sin(2t) dt−R2

∫ 2π

0

(
1

2
− 1

2
cos(2t)

)
dt

=

=0︷ ︸︸ ︷
−iR

2

4
[cos(2t)]

2π
0 −

R2

2
[t]

2π
0 +

=0︷ ︸︸ ︷
R2

4
[sin(2t)]

2π
0 = −πR2.

(b) If Im z had an analytic antiderivative on an open subset Ω of C, there would be some z0 ∈ Ω
and R > 0 such that CR(z0) ⊂ Ω. By Theorem 3.3.4, we should have

∫
CR(z0)

Im z dz = 0, but by
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(a), we have
∫
CR(z0)

Im z dz = −πR2 6= 0, a contradiction. Therefore, no such antiderivative can
exist.

(c) If Re z had an analytic antiderivative on an open subset Ω of C, then, since z has an entire
antiderivative, we would also have an antiderivative for Im z = z−Re z

i on Ω, but by (b), such an
antiderivative cannot exist. Thus, Re z cannot have such an antiderivative.
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Solutions to Exercises 3.4

1. Let γ1, . . . , γ4 be the four sides of the square, parametrized as

x1(t) = t,

x2(t) = 1,

x3(t) = 1− t,
x4(t) = 0,

y1(t) = 0,

y2(t) = t,

y3(t) = 1,

y4(t) = 1− t,
0 ≤ t ≤ 1.

Then the left integral from (3.4.1) becomes∫
γ

P dx+Q dy

=

∫
γ1

xy dx+ y dy +

∫
γ2

xy dx+ y dy +

∫
γ3

xy dx+ y dy +

∫
γ4

xy dx+ y dy.

Parametrizing each integral, we obtain∫
γ1

xy dx+ y dy =

∫ 1

0

0 + 0 dt = 0,∫
γ2

xy dx+ y dy =

∫ 1

0

0 + t dt =
1

2
,∫

γ3

xy dx+ y dy =

∫ 1

0

(1− t)(1)(−1) + 0 dt = −1

2
,∫

γ4

xy dx+ y dy =

∫ 1

0

0 + (1− t)(−1) dt = −1

2
.

Thus, ∫
γ

xy dx+ y dy = −1

2
.

The right integral from (3.4.1) becomes∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∫ 1

0

∫ 1

0

−x dx dy = −
∫ 1

0

x dx

∫ 1

0

dy = −1

2
.

These two integrals are equal, verifying Green’s Theorem.

5. The area of D is most straightforwardly expressed as∫∫
D

dx dy.

For the first integral, we have P = −y,Q = 0, so by Green’s Theorem, we have∫
γ

−y dx =

∫∫
D

(0− (−1)) dx dy =

∫∫
D

dx dy.

For the second, we have P = 0, Q = x, which by Green’s Theorem gives∫
γ

x dy =

∫∫
D

(1− 0) dx dy =

∫∫
D

dx dy.
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Finally, the third integral is equal to the average of the first two, so it is also equal to the area of D.

9. (a) For t 6= 0, we have

f ′(t) =
d

dt
t2 sin

1

t
= 2t sin

1

t
− cos

1

t
,

and this is defined for all t 6= 0. At t = 0, by the definition of the derivative, we have

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim
x→0

x sin
1

x
= 0.

Thus, f ′(t) is defined for all t ∈ R.
(b) To show that the given curve is a path, first note that the curve is continuous: the graph

of f(t) is clearly continuous for t 6= 0, and limt→0 f(t) = 0 = f(0) by the squeeze theorem, so the
portion of the curve from f(t) is continuous. Furthermore, since f(0) = 0 and f( 1

π ) = 0, the curve is
continuous at the piece boundaries. The straight line segment is clearly continuous. Then, to show
that the curve is piecewise-continuously differentiable, note that we can parametrize the part of the
curve from f(t) by γ(t) = t + if(t), 0 ≤ t ≤ 1

π . We then have γ′(t) = 1 + f ′(t), and as f ′(t) exists
from part (a) and is continuous on

(
0, 1

π

)
, this piece of the curve is continuously differentiable. The

straight line segment from
(
0, 1

π

)
to (0, 0) is clearly continuously differentiable. Thus, the curve is

piecewise-continuously differentiable, and, thus, a path. Since f(0) = 0 and the straight line ends at
(0, 0), the curve is clearly closed. To see that the path intersects itself an infinite number of times,
note that for any n ∈ N, tn := 1

nπ ∈
[
0, 1

π

]
and f(tn) = 0. Thus, the piece of the curve from f(t)

intersects the straight line segment at an infinite number of points (tn, 0).
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Solutions to Exercises 3.5

1. This is both convex and star-shaped.

5. This is neither convex nor star-shaped.

9. The integrand is analytic on C \ {−2, 2}, and the path of integration and its interior lie
inside a star-shaped region on which the integrand is analytic (take, for example, B 3

2
(0)).

By Theorem 3.5.4, the integral over the square, traced once, is zero. Since the integral over
the given path is ten times this, it is also zero.
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Solutions to Exercises 3.6

1. Each path is continuously deformable to a point in Ω and Ω is connected. So the two
paths are homotopic.

5. The region Ω is simply connected, so the two paths are homotopic.

9. Given the path γ, consider the homotopy H(t, s) = γ
(
(1 − s)t

)
. Then H(t, 0) = γ(t)

and H(t, 1) = γ(0). Obviously H is continuous, so γ is homotopic to a point.

13. (a) The first figure is convex, the second and third are not.
(b) We have trivially that H(t, 0) = γ0(t) and H(t, 1) = γ1(t). Since γ0(t) and γ1(t) are

continuous in t, and s and 1− s are continuous in s, H(t, s) is continuous in both variables.
Furthermore, since γ0(t0) and γ1(t0) are in Ω for all 0 ≤ t0 ≤ 1 and Ω is convex, we have
that H(t0, s) = (1− s)γ0(t0) + sγ1(t0) ∈ Ω for all 0 ≤ s ≤ 1. Thus, H(t, s) is a continuous
mapping from the unit square into Ω and is a homotopy from γ0 to γ1.

(c) The same mapping (3.6.17) and the same reasoning as (b) shows this.
(d) Let γ1(t) = z1 in part (c).
(e) Using (3.6.17), we have

H(t, s) = (1− s)
(
e2πit + e4πin) + 3se2πit.
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Solutions to Exercises 3.7

1. By Example 3.7.4, we have

(a) ∫
C

2i

z − i
dz = 2i

∫
C

1

z − i
= −4π.

(b) ∫
C

2i

z − i
dz = 2i

∫
C

1

z − i
= 0.

5. We have ∫
C

[
2i

z − 2
− 3 + 2i

z + i

]
dz = 2i

∫
C

1

z − 2
− (3 + 2i)

∫
C

1

z + i
dz.

Thus,

(a) ∫
C

[
2i

z − 2
− 3 + 2i

z + i

]
dz = 2i(2πi)− 0 = −4π.

(b) ∫
C

[
2i

z − 2
− 3 + 2i

z + i

]
dz = 2i(2πi)− (3 + 2i)(2πi) = −6πi.

(c) ∫
C

[
2i

z − 2
− 3 + 2i

z + i

]
dz = 0− 0 = 0.

There is one overlooked combination, where 2 is outside C and −i is inside C:∫
C

[
2i

z − 2
− 3 + 2i

z + i

]
dz = 0− (3 + 2i)(2πi) = 4π − 6πi.

9. Since 1 lies in the interior of γ, ∫
γ

dz

z − 1
= 2πi.

13. Since
ez

z + 2
is analytic on C1(0) and its interior, then the integral can be computed as

∫
C1(0)

ez

z + 2
dz = 0.
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17. The function f(z) = ez

z+i has a discontinuity at z = −i. Hence, it is analytic inside

an on the simple path γ(t) = i + eit, 0 ≤ t ≤ 2π (circle, centered at i with radius 1). By
Theorem 3.6.7, ∫

γ

ez

z + i
dz = 0.

21. The path [z1, z2, z3, z1] is contained in a region that does not intersect the branch
cut of Log z. Hence the function f(z) = z2 Log z is analytic inside an on the simple path
[z1, z2, z3, z1], and so by Theorem 5,∫

[z1, z2, z3, z1]
z2 Log z dz = 0.

25. The path C2(0) contains both roots of the polynomial z2 − 1. We will evaluate the
integral by using the method of Example 5. We have

z

z2 − 1
=

A

z − 1
+

B

z + 1
⇒ z = A(z + 1) +B(z − 1).

Setting z = 1, we get 1 = 2A or A = 1
2 . Setting z = −1, we get −1 = −2B or B = 1

2 .
Hence

z

z2 − 1
=

1

2(z − 1)
+

1

2(z + 1)
,

and so ∫
C2(0)

z

z2 − 1
dz =

1

2

∫
C2(0)

1

z − 1
dz +

1

2

∫
C2(0)

1

z + 1
dz =

1

2
2πi+

1

2
2πi = 2πi,

where we have applied the result of Example 4 in evaluating the integrals.

29. Write γ = (γ1, γ2), where γ1 is the circle centered at i and γ2 is the circle centered at
−1. Then∫

γ

1

(z + 1)2(z2 + 1)
dz =

∫
γ1

1

(z + 1)2(z2 + 1)
dz +

∫
γ2

1

(z + 1)2(z2 + 1)
dz = I1 + I2.

The partial fraction decomposition of the integrand is

1

(z + 1)2(z2 + 1)
=

1

2(z + 1)
+

1

2(z + 1)2
− 1

4(z + i)
− 1

4(z − i)
.

We have

I1 =
1

2

∫
γ1

dz

z + 1
+

1

2

∫
γ1

dz

(z + 1)2
− 1

4

∫
γ1

dz

z + i
− 1

4

∫
γ1

dz

z − i

=
1

2
· 0 +

1

2
· 0− 1

4
· 0− 1

4
· 2πi = −π

2
i,
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where the first 3 integrals are 0 because the integrands are analytic inside an on γ1, and
the fourth integral follows from Example 4. Similarly,

I2 =
1

2

∫
γ2

dz

z + 1
+

1

2

∫
γ2

dz

(z + 1)2
− 1

4

∫
γ2

dz

z + i
− 1

4

∫
γ2

dz

z − i

=
1

2
· 2πi+

1

2
· 0− 1

4
· 0− 1

4
· 0 = πi,

where the first, third, and fourth integrals follow from Example 4, and the second integral
follows from Example 4, Sec. 3.2. Thus, the desired integral is equal to

I1 + I2 =
π

2
i.

33. Let p(z) = anz
n + · · ·+ a1z + a0. Then we have

1

2πi

∫
C

p(z)

z − z0
dz

= an
1

2πi

∫
C

zn

z − z0
dz + · · ·+ a1

1

2πi

∫
C

z

z − z0
dz + a0

1

2πi

∫
C

1

z − z0
dz

= anz
n
0 + · · ·+ a1z0 + a0 [by Exercise 32]

= p(z0).

37. The integrand factors as

1

z4 + 1
=

1(
z − ei

π
4

)(
z − ei

3π
4

)(
z − ei

5π
4

)(
z − ei

7π
4

) ,
and all of these roots are distinct and inside C2(0). By Exercise 36, we have∫

C2(0)

1

z4 + 1
=

∫
C2(0)

1(
z − ei

π
4

)(
z − ei

3π
4

)(
z − ei

5π
4

)(
z − ei

7π
4

) = 0.
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Solutions to Exercises 3.8

1. Apply Cauchy’s formula with f(z) = cos z at z = 0. Then∫
C1(0)

cos z

z
dz =

∫
C1(0)

cos z

z − 0
dz = 2πif(0) = 2πi.

5. Apply Cauchy’s formula with f(z) = −Log z at z = i. Then∫
C 1

2
(i)

Log z

−z + i
dz =

∫
C 1

2
(i)

−Log z

z − i
dz = −2πiLog i = −2πi

(
ln 1 + i

π

2

)
= π2.

9. We apply the generalized Cauchy formula with f(z) = sin z at z = π with n = 2. Then∫
γ

sin z

(z − π)3
dz =

2πi

2!
f (2)(π) = πi(− sinπ) = 0.

13. Follow the solution in Example 2. Draw small nointersecting negatively oriented circles
inside γ, γ1 centered at 0 and γ2 centered at i. Then∫

γ

z + cos(πz)

z(z2 + 1)
dz =

∫
γ1

z + cos(πz)

z(z2 + 1)
dz +

∫
γ2

z + cos(πz)

z(z2 + 1)
dz = I1 + I2.

Apply Cauchy’s formula with f(z) = z+cos(πz)
z2+1

at z = 0. Then (recall γ1 is negatively
oriented)

I1 =

∫
γ1

z + cos(πz)

z(z2 + 1)
dz = −2πif(0) = −2πi

0 + cos 0

02 + 1
= −2πi.

Apply Cauchy’s formula with f(z) = z+cos(πz)
z(z+i) at z = i. Then

I2 =

∫
γ2

z + cos(πz)

z(z2 + 1)
dz =

∫
γ2

z + cos(πz)

z(z + i)(z − i)
dz

= −2πif(i) = −2πi
i+ cosπi

i(2i)
= +πi(i+ coshπ).

So I1 + I2 = −π − iπ(2− coshπ).

17. Factor the denominator as z3−3z+2 = (z+2)(z−1)2. Apply the generalized Cauchy
formula (6), with f(z) = 1

z+2 at z = 1, with n = 1. Then∫
C 3

2
(0)

dz

(z + 2)(z − 1)2
= 2πif ′(1) = 2πi

−1

32
= −2πi

9
.

21. Let ζ = eit, 0 ≤ t ≤ 2π. Then dζ = ieit dt, and we can reexpress the integral as

F (z) =
1

2π

∫ 2π

0

eit

eit − z
dt =

1

2π

∫
C1(0)

1

ζ − z
dζ

i
.
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Since |z| < 1, z is within C1(0), by Cauchy’s Theorem, we have

F (z) =
1

2πi

∫
C1(0)

1

ζ − z
dζ = 1.

25. Define g(z) =
∫ 1

0 cos(zt) dt and let ζ = t for 0 ≤ t ≤ 1. Then g(z) becomes g(z) =∫
[0,1] cos(zζ) dζ. Let φ(z, ζ) = cos(zζ). Then φ(z, ζ) is continuous in ζ ∈ [0, 1] and analytic

in z ∈ C. Furthermore, the derivative dφ
dz = ζ cos(zζ) is continuous in ζ ∈ [0, 1]. By Theorem

3.8.5, g(z) is analytic in C, i.e., entire.

If z = 0, g(z) =
∫ 1

0 dt = 1. For z 6= 0, we have

g(z) =

∫ 1

0
cos zt dt =

1

z
sin zt

∣∣∣1
t=0

=
sin z

z
.

Thus

g(z) =

{
1 if z = 0,

sin z
z if z 6= 0,

is an entire function.

29. For z inside C, by Cauchy’s formula,

f(z) =
1

2πi

∫
C

f(ζ)

ζ − z
dζ.

But f(ζ) = g(ζ) for ζ on C. So, for all z inside C,

f(z) =
1

2πi

∫
C

f(ζ)

ζ − z
dζ =

1

2πi

∫
C

g(ζ)

ζ − z
dζ = g(z),

by Cauchy’s formula applied to g.

33. Since f is analytic at z = z0, then there exists an open set in which f is analytic.
Choose R > 0 such that CR(z0) and its interior are contained in D. Now consider

1

2πi

∫
CR(z0)

f(ζ)

(ζ − z)(ζ − z0)
dζ,

for |z − z0| < R. Then

(i) For z = z0. Since f(z) is analytic at z = z0, then f(ζ) is analytic inside and on CR(z0)
with the existence of f ′(z0).

1

2πi

∫
CR(z0)

f(ζ)

(ζ − z0)2
dζ = f ′(ζ)|ζ=z0 = f ′(z0).
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(ii) For z 6= z0. Since f(ζ)
ζ−z is analytic inside and on Cε(z0) and f(ζ)

ζ−z0 is analytic inside and
on Cε(z) for some sufficiently small ε > 0, then by Cauchy’s Integral Formula:

1

2πi

∫
CR(z0)

f(ζ)

(ζ − z)(ζ − z0)
dζ =

1

2πi

∫
Cε(z0)

f(ζ)
ζ−z
ζ − z0

dζ +
1

2πi

∫
Cε(z)

f(ζ)
ζ−z0
ζ − z

dζ

=
[ f(ζ)

ζ − z

]∣∣∣∣
ζ=z0

+
[ f(ζ)

ζ − z0

]∣∣∣∣
ζ=z

=
f(z)− f(z0)

z − z0
.

Combining the two statements above, we can obtain:

φ(z) =
1

2πi

∫
CR(z0)

f(ζ)

(ζ − z)(ζ − z0)
dζ =

{
f ′(z0) if z = z0
f(z)−f(z0)

z−z0 if z 6= z0.

Since when z 6= z0, we have φ(z) = f(z)−f(z0)
z−z0 is clearly analytic at z0. For z = z0, first

denote

F (z, ζ) :=
f(ζ)

(ζ − z)(ζ − z0)
,

thus F (z, ζ) is analytic with respect to z. Thus
d

dz
F (z, ζ) exists for all |z− z0| < R. Given

any fixed r > 0 with 0 < |z − z0| < r < R. Since F is analytic inside and on Cr(z0) which
implies that F is continuous on Cr(z0) and its interior, then there exists M > 0 such that
M is the maximum of |F (z, ζ)| for all z on Cr(z0) and its interior and ζ ∈ CR(z0), thus for
0 < |z − z0| < r

2 : ∣∣∣F (z, ζ)− F (z0, ζ)

z − z0
− d

dz
F (z0, ζ)

∣∣∣ ≤ 2M |z − z0|
r2

.

Integrating the expression inside the absolute value on the left, we have∣∣∣φ(z)− φ(z0)

z − z0
− 1

2πi

∫
CR(z0)

d

dz
F (z0, ζ)dζ

∣∣∣ ≤ 2πR

2π

2M |z − z0|
r2

=
2MR|z − z0|

r2
→ 0,

as |z − z0| → 0. Thus lim
z→z0

φ(z)− φ(z0)

z − z0
=

1

2πi

∫
CR(0)

d

dz

f(ζ)

(ζ − z)(ζ − z0)
dζ exists, which

implies that φ(z) is analytic at z = 0. Since r < R is arbitrarily chosen, we have φ(z) is
analytic for |z − z0| < R. Therefore, φ is analytic at z0.
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Solutions to Exercises 3.9

1. We have |f(z)| = |z|. Obviously, if z belongs to the unit disk, |z| ≤ 1, then the largest
value of |f(z)| is 1 and its smallest value is 0. Hence |f(z)| attains its maximum value at
all points of the boundary, and it attains its minimum value at the point z = 0, inside
the region. The fact that the minimum is attained inside the region does not contradict
Corollary 3, because f(z) vanishes at z = 0 inside of Ω.

5. The function f(z) = z
z2+2

is continuous for all z such that 2 ≤ |z| ≤ 3 and does not
vanish inside this annular region. Thus according to Corollary 3, |f | attains its maximum
and minimum at the boundary; that it at points where |z| = 2 or |z| = 3. Using the triangle
inequality, we have

|z2 + 2| ≤ |z|2 + 2 ⇒ 1

|z|2 + 2
≤ 1∣∣z2 + 2

∣∣ ;
|z2 + 2| ≥

∣∣|z|2 − 2
∣∣ ⇒ 1∣∣z2 + 2

∣∣ ≤ 1∣∣|z|2 − 2
∣∣ .

On the part of the boundary |z| = 2, we have

1

3
=

2

|2|2 + 2
≤ |f(z)| =

∣∣∣∣ z

z2 + 2

∣∣∣∣ ≤ 2

|2|2 − 2|
= 1.

On the part of the boundary |z| = 3, we have

3

11
=

3

|3|2 + 2
≤ |f(z)| =

∣∣∣∣ z

z2 + 2

∣∣∣∣ ≤ 3

|3|2 − 2|
=

3

7
.

Thus the smallest value of |f(z)| is 3
11 . It is attained at a point z with |z| = 3. For this

value of z, we must have |z2 + 2| = 11. The only possibilities are z = ±3.
The largest value of |f(z)| is 1. It is attained at a point z with |z| = 2. For this value

of z, we must have |z2 + 2| = 2 or z2 = −4. The only possibilities are z = ±2i.

9. We have

|f(z)| = | ln |z|+ iArg z|;
|f(z)|2 = (ln |z|)2 + ( Arg z)2.

The largest value (respectively, minimum value) of |f(z)| is attained when |f(z)|2 attains
its largest value (respectively, minimum value). The largest value of |f(z)|2 = (ln |z|)2 +
( Arg z)2 is clearly attained when |z| = 2 and Arg z = π

4 . So |f(z)| attains its maximum

value
√

(ln 2)2 + (π4 )2 when z = 2ei
π
4 .

The smallest value of |f(z)|2 = (ln |z|)2 + ( Arg z)2 is clearly attained when |z| = 1 and
Arg z = 0. So |f(z)| attains its smallest value 0 when z = 1.

13. (a) To verify the identity

zn − wn = (z − w)(zn−1 + zn−2w + zn−3w2 + · · ·+ z wn−2 + wn−1),

expand the right side. All terms cance except for zn − wn.
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(b) If p(z) = pnz
n + pn−1z

n−1 + · · · + p1z + p0 is a polynomial of degree n ≥ 2, and if
p(z0) = 0, then pnz

n
0 + pn−1z

n−1
0 + · · ·+ p1z0 + p0 = 0. From (a),

p(z) = p(z)− p(z0) = pn(zn − zn0 ) + pn−1(zn−1 − zn−1
0 ) + · · ·+ p1(z − z0)

= (z − z0)q(z),

where q(z) = (zn−1 + zn−2z0 + zn−3z2
0 + · · ·+ z zn−2

0 + zn−1
0 ) is a polynomial of degree n− 1

in z.

17. Suppose that f is entire and that it omits an open nonempty set, say, there is an open
disk BR(w0) with R > 0 in the w-plane such that f(z) is not in BR(w0) for all z. Let
g(z) = 1

f(z)−w0
. Then g(z) is also entire, because f(z) 6= w0 for all z. In fact, since f(z) is

not in BR(w0), its distance to w0 is always greater than R. That is, |f(z)− w0| ≥ R. But
this implies that |g(z)| ≤ 1

R , which in turn implies that g is constant, by Liouville’s theorem.
Since g(z) 6= 0, this constant is obviously not 0. So C = 1

f(z)−w0
, hence f(z) = 1

C + w0 is
constant.

21. Suppose that f(z) = f(x + i y) is periodic in x and y, and let T1 > 0 and T2 > 0 be
such that f((x + T1) + i (y + T2)) = f(x + i y) for all z = x + i y. Because f is periodic
in both x and y, its values repeat on every T1 × T2-rectangle. This means that, if we take
the rectangle R = [0, T1]× [0, T2] and consider the values of f on this rectangle, then these
are all the values taken by f(z), for z in C. The reason is that the complex plane can be
tiled by translates of R in the x and y direction, where in the x drection we translate by
T1 units at a time, and in the y direction we translate by T2 units at a time. Now since f
is continuous, it is bounded on R; that is |f(z)| ≤ M for some constant M and all z in R.
But since f takes on all its values in R, we concude that |f(z)| ≤M for all z in C, and thus
f must be constant by Liouville’s theorem.

If f is constant in x or y alone, f need not be constant. As an example, take f(z) = sin z
then f is 2π-periodic in the x variable. By considering f(iz) = sin(iz), we obtain a function
that is periodic in y alone. Both functions are entire and clearly not constant.

25. Let g(z) = eif(z), for all |z| ≤ 1. Since f is analytic on |z| < 1 and continuous on
|z| ≤ 1, then g is also analytic on |z| < 1 and continuous on |z| ≤ 1. Since f is real-valued
for all |z| = 1, we have that |g(z)| = 1 for all |z| = 1. Since g is nonvanishing in |Z| < 1, by
Exercise 23, we have g(z) is constant on |z| ≤ 1. Thus

g(z) = eif(z) = A, where |A| = 1.

This implies that f(z) = c+2k(z)π for some c ∈ R and k : C→ Z. Since f(z) is continuous
on |z| ≤ 1, we must have that k(z) = k0 and f(z) is constant on |z| ≤ 1.
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Solutions to Exercises 4.1

1. The sequence of functions fn(x) =
sinnx

n
converges uniformly on the interval 0 ≤ x ≤ π,

with limn→∞ fn(x) = 0 for all 0 ≤ x ≤ π. To see this, let Mn = max |0 − fn(x)| =
max |fn(x)|, where the maximum is taken over all x in [0, π]. Then Mn =≤ 1

n . Since
Mn → 0, as n → ∞, it follows that fn converges uniformly to f = 0 on [0, π]. In fact, we
have uniform convergence on the entire real line.

5. (a) and (b) First, let us determine the pointwise limit of the sequence of functions

fn(x) =
nx

n2x2 − x+ 1
. For x in the interval 0 ≤ x ≤ 1, we have

fn(x) =
nx

n2x2 − x+ 1
=

nx

n2(x2 − x
n2 + 1

n2

=
x

n(x2 − x
n2 + 1

n2

→ 0, as n→∞.

Does the sequence converge to 0 uniformly for all x in [0, 1]? To answer this question we
estimate the maximum possible difference between 0 and fn(x), as x varies in [0, 1]. For
this purpose, we compute Mn = max |fn(x)| for x in [0, 1]. We have

f ′n(x) =
n− n3 x2

(1− x+ n2 x2)2 ; f ′n(x) = 0→ n− n3 x2 = 0→ x =
1

n
;

fn(
1

n
) =

1

2− 1
n

>
1

2
→ Mn >

1

2
.

Since Mn does not converge to 0, we conclude that the sequence does not converge uniformly
to 0 on [0, 1].
(c) The sequence does converge uniformly on any interval of the form [a, b], where 0 < a <
b ≤ 1. To see this, pick n so that 0 < 1

n < a. Then, fn(x) < 0 for all a < x (check the sign
of f ′n(x) if 1

n < x. Hence fn(x) is decreasing on the interval [a, b]. So, if Mn = max |fn(x)|
for x in [a, b], then 0 ≤Mn ≤ |fn(a)|. But fn(a)→ 0, by part (a), so thus Mn → 0, and so
fn(x) converges uniformly on [a, b].

9. (a) We have fn(0) =
1

2n2
→ 0, as n→∞. For any 0 < |z| ≤ 1,

lim
n→∞

fn(z) = lim
n→∞

nz + 1

z + 2n2
= lim

n→∞

z
n + 1

n2

z
n2 + 2

= 0.

Therefore, for all z ∈ C with |z| ≤ 1, the sequence {fn(z)} converges pointwisely to f(z) = 0.
(b) Let n > 1, we have for all z with |z| ≤ 1:

|fn(z)− f(z)| =
∣∣∣ nz + 1

z + 2n2

∣∣∣ ≤ n|z|+ 1

2n2 − |z|
≤ n+ 1

2(n2 − 1)
=

1

2(n− 1)
→ 0,

as n→∞. Therefore, for all z ∈ C with |z| ≤ 1, the sequence {fn(z)} converges uniformly
to f(z) = 0.

13. If |z| ≤ 1, then ∣∣∣∣ zn

n(n+ 1)

∣∣∣∣ ≤ 1

n(n+ 1)
.
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Apply the Weierstrass M -test with Mn = 1
n(n+1) = 1

n −
1

n+1 . Since
∑
Mn is a convergent

telescoping series, it follows that the series
∞∑
n=1

zn

n(n+ 1)
, converges uniformly for all |z| ≤ 1.

17. If |z| ≤ 2, then ∣∣∣∣(z + 2

5

)n∣∣∣∣ ≤ (4

5

)n
.

Apply the Weierstrass M -test with Mn =
(

4
5

)n
. Since

∑
Mn is convergent (a geometric

series with r < 1), it follows that the series
∞∑
n=0

(
z + 2

5

)n
converges uniformly for all |z| ≤ 2.

21. If 2.01 ≤ |z − 2| ≤ 2.9, then∣∣∣∣(z − 2)n

3n

∣∣∣∣ ≤ (2.9

3

)n
= An,

and ∣∣∣∣ 2n

(z − 2)n

∣∣∣∣ ≤ ( 2

2.01

)n
= Bn.

Apply the Weierstrass M -test with Mn = (An +Bn). Since
∑
Mn is convergent (two geo-

metric series with ratios < 1), it follows that the series
∞∑
n=0

{
(z − 2)n

3n
+

2n

(z − 2)n

}
converges

uniformly in the annular region 2.01 ≤ |z − 2| ≤ 2.9.

25. (a) For
∣∣z − 1

2

∣∣ < 1
6 , we have

|z| =
∣∣∣∣(z − 1

2

)
+

1

2

∣∣∣∣ ≤ ∣∣∣∣z − 1

2

∣∣∣∣+

∣∣∣∣12
∣∣∣∣ < 2

3
.

Since

∞∑
n=0

(
2

3

)n
is convergent, we conclude from the Weierstrass M-test that

∞∑
n=0

zn con-

verges uniformly on
∣∣z − 1

2

∣∣ < 1
6 .

(b) We claim that

∞∑
n=0

zn does not converge uniformly on |z− 1
2 | <

1
2 : We have that, for

|z − 1
2 | <

1
2 ,

|z| =
∣∣∣∣(z − 1

2

)
+

1

2

∣∣∣∣ ≤ ∣∣∣∣z − 1

2

∣∣∣∣+

∣∣∣∣12
∣∣∣∣ < 1,

and we know that the series

∞∑
n=0

zn converges pointwise to s(z) =
1

1− z
in |z| < 1. Its nth

partial sum is sn(z) =
1− zn+1

1− z
. Take z = x to be a real number with |x| < 1. Then

|s(x)− sn(z)| =
∣∣∣∣ xn+1

1− x

∣∣∣∣ =
xn+1

1− x
→∞ as x→ 1.
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Therefore, the maximum difference Mn between each partial sum and the series sum is
unbounded on |z| < 1, so the sequence of partial sums, and, hence, the series, does not
converge uniformly on |z| < 1.

29. (a) Let δ > 1 be a positive real number. To show that the series

ζ(z) =

∞∑
n=1

1

nz
(principal branch of nz)

converges uniformly on the half-plane Hδ = {z : Re z ≥ δ > 1}, we will apply the Weier-
strass M -test. For all z ∈ Hδ, we have

|nz| =
∣∣∣e(x+iy) lnn

∣∣∣ = ex lnn = nx > nδ.

So ∣∣∣∣ 1

nz

∣∣∣∣ ≤ 1

nδ
= Mn.

Since
∑
Mn =

∑ 1
nδ

is a convergent series (because δ > 1), it follows from the Weierstrass

M -test that that
∑∞

n=1
1
nz converges uniformly in Hδ.

(b) Each term of the series
∑∞

n=1
1
nz is analytic in H = {z : Re z > 1} (in fact, each term

is entire). To conclude that the series is analytic in H, it is enough by Corollary 2 to show
that the series converges uniformly on any closed disk contained in H. If S is a closed disk
contained in H, S is clearly disjoint from the imaginary axis. Let Hδ (δ > 0) be a half-plane
containing S. By part (a), the series converges uniformly on Hδ, consequently, the series
converges uniformly on S. By Corollary 2, the series is analytic in H. (Note the subtilty
in the proof. We did not show that the series converges uniformly on H. In fact, the series
does not converge uniformly in H.)
(c) To compute ζ ′(z), according to Corollary 2, we can differentiate the series term-by-
term. Write

1

nz
=

1

ez lnn
= e−z lnn.

Using properties of the exponential function, we have

d

dz

1

nz
=

d

dz
e−z lnn = − lnne−z lnn = − lnn

1

nz
.

So, for all z ∈ H,

ζ ′(z) = −
∞∑
n=1

lnn

nz
.

33. To show that fn {fn} converges uniformly on Ω, it is enough to show that

max
z∈Ω
|fn(z)− fm(z)|

can be made arbitrarily small by choosing m and n large. In other words, given ε > 0, we
must show that there is a positive integer N such that if m, n ≥ N , then

max
z∈Ω
|fn(z)− fm(z)| < ε.
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This will show that the sequence {fn} is uniformly Cauchy, and hence it is uniformly
convergent by Exercise 30.

Since each fn is analytic inside C and continuous on C, it follows that fn − fm is also
analytic inside C and continuous on C. Since C is a simple closed path, the region interior
to C is a bounded region. By the maximum principle, Corollary 2, Sec. 3.7, the maximum
value of |fn− fm| occurs on C. But on C the sequence {fn} is a Cauchy sequence, so there
is a positive integer N such that if m, n ≥ N , then

max
z∈C
|fn(z)− fm(z)| < ε.

Hence
max
z∈Ω
|fn(z)− fm(z)| ≤ max

z∈C
|fn(z)− fm(z)| < ε,

which is what we want to prove.
The key idea in this exercise is that the maximum value of an analytic function occurs

on the boundary. So the uniform convergence of a sequence inside a bounded region can be
deduced from the uniform convergence of the sequence on the boundary of the region.
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Solutions to Exercises 4.2

1. By ratio test, for z 6= 0:

ρ = lim
n→∞

∣∣∣∣(−1)n+1 zn+1

2n+ 3
(−1)n

2n+ 1

zn

∣∣∣∣ = |z| lim
n→∞

2n+ 1

2n+ 3
= |z|.

Therefore, the series converges absolutely when |z| < 1 and diverges when |z| > 1. The
radius of convergence is 1; the disk of convergence is |z| < 1; and the circle of convergence
is |z| = 1.

5. By ratio test, for z 6= 1
2i :

ρ = lim
n→∞

∣∣∣∣(4iz − 2)n+1

2n+1

2n

(4iz − 2)n

∣∣∣∣ = lim
n→∞

∣∣∣∣(4iz − 2)

2

∣∣∣∣ = |2iz − 1|.

Then the series converges absolutely when |2iz − 1| < 1, thus∣∣∣∣2i(z − 1

2i

)∣∣∣∣ ≤ 1 =⇒
∣∣∣∣z − (−i)

2

∣∣∣∣ < 1

2
.

The series diverges when
∣∣∣z − (−i)

2

∣∣∣ > 1
2 . The radius of convergence is 1

2 ; the disk of

convergence is
∣∣∣z − (−i)

2

∣∣∣ < 1
2 ; and the circle of convergence is

∣∣∣z − (−i)
2

∣∣∣ = 1
2 .

9. We compute the radius of convergence by using the Cauchy-Hadamard formula

1

R
= lim sup n

√∣∣∣(1− ein
π
4

)n∣∣∣ = lim sup
∣∣∣1− einπ4 ∣∣∣ = 2.

To understand why the lim sup is equal to 2, recall that the lim sup is the limit of the sup

of the tail of the sequence
{∣∣∣1− einπ4 ∣∣∣}∞

n=N
, as N tends to ∞. The terms ein

π
4 take values

from the set
{
±
√

2
2 ±

√
2

2 ,±i,±1
}

. So the largest value of
∣∣∣1− einπ4 ∣∣∣ is 2, and this value

repeats infinitely often, which explains the value of the lim sup. Thus, R = 1
2 .

13. We have known the geometric series below:

∞∑
n=0

zn =
1

1− z
, |z| < 1,

then by differentiating term-by-term:

∞∑
n=0

nzn−1 =
∞∑
n=1

nzn−1 =
1

(1− z)2
, |z| < 1.

It follows that

∞∑
n=1

2nzn−1 =
2

(1− z)2
, where |z| < 1, i.e., the radius of convergence is 1.
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17. We have

∞∑
n=0

(3z − i)n

3n
=

∞∑
n=0

(
3
(
z − i

3

))n
3n

=
∞∑
n=0

(
z − i

3

)n
=

∞∑
n=0

wn
(
w = z − i

3

)
=

1

1− w
=

1

1−
(
z − i

3

) ∣∣∣∣z − i

3

∣∣∣∣ < 1

=
3

3 + i− 3z
,

which is valid for
∣∣z − i

3

∣∣ < 1.

21. If
∑∞

n=0 an(z − z0)n has a radius of convergence R1 > 0 and
∑∞

n=0 bn(z − z0)n

has a radius of convergence R2 > 0, then both series converge absolutely for |z − z0| <
min{R1, R2}. Then, by Theorem 1.5.28, we have( ∞∑

n=0

an(z − z0)n

)( ∞∑
n=0

bn(z − z0)n

)
=

∞∑
n=0

cn(z − z0)n, |z − z0| < min{R1, R2},

where

cn =
n∑
k=0

ak(z − z0)kbn−k(z − z0)n−k =
n∑
k=0

akbn−k(z − z0)n = (z − z0)n
n∑
k=0

akbn−k

= (a0bn + a1bn−1 + · · ·+ an−1b1 + anb0)(z − z0)n,

and this series is absolutely convergent on this region. It is possible for this Cauchy product
to have a radius of convergence R larger than min{R1, R2}, but it is guaranteed to be at
least this large.

25. (a) In the formula, take z1 = z2 = 1
2 , then[

Γ

(
1

2

)]2

= 2Γ(1)

∫ π
2

0
cos1−1 θ sin1−1 θdθ = 2

∫ π
2

0
dθ = 2

π

2
= π,

so Γ
(

1
2

)
=
√
π.

(b) In (9), let u2 = t, 2u du = dt, then

Γ(z) =

∫ ∞
0

tz−1e−t dt =

∫ ∞
0

u2(z−1)e−u
2
(2u)du = 2

∫ ∞
0

u2z−1e−u
2
du.

(c) Using (b)

Γ(z1)Γ(z2) = 2

∫ ∞
0

u2z1−1e−u
2
du2

∫ ∞
0

v2z2−1e−v
2
dv

= 4

∫ ∞
0

∫ ∞
0

e−(u2+v2)u2z1−1v2z2−1du dv.
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(d) Switching to polar coordinates: u = r cos θ, v = r sin θ, u2 + v2 = r2, dudv = rdrdθ; for
(u, v) varying in the first quadrant (0 ≤ u < ∞ and 0 ≤ v < ∞), we have 0 ≤ θ ≤ π

2 , and
0 ≤ r <∞, and the double integral in (c) becomes

Γ(z1)Γ(z2) = 4

∫ ∞
0

∫ π
2

0
e−r

2
(r cos θ)2z1−1(r sin θ)2z2−1rdrdθ

= 2

∫ π
2

0
(cos θ)2z1−1(sin θ)2z2−1dθ

=Γ(z1+z2)︷ ︸︸ ︷
2

∫ ∞
0

r2(z1+z2)−1e−r
2
dr

(use (b) with z1 + z2 in place of z)

= 2Γ(z1 + z2)

∫ π
2

0
(cos θ)2z1−1(sin θ)2z2−1dθ,

implying (d).
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Solutions to Exercises 4.3

1. According to Theorem 1, the Taylor series around z0 converges in the largest disk,
centered at z0 = 0, in which the function is analytic. Clearly, ez−1 is entire, so radius of
convergence is R =∞.

5. Since the function f(z) :=
z + 1

z − i
is analytic for all z 6= i, and the Taylor series around

z0 = 2 + i converges in the disk centered at z0 in which the function is analytic, thus the
largest disk around z0 on which f is analytic has radius:

ρ = |z0 − i| = |2 + i− i| = 2.

Therefore, the radius of convergence of f(z) at z0 is ρ = 2.

9. We have that

2i

3− iz
=

2i

3 + i− i(z − (−1))
=

2i

3 + i

1

1− i(z−(−1))
3+i

,

so the Taylor series expansion around z0 = −1 can be written

2i

3− iz
=

1 + 3i

5

∞∑
n=0

(
1 + 3i

10

)n
(z − (−1))n,

with
∣∣1+3i

10 (z − (−1))
∣∣ < 1 if and only if |z − (−1)| <

√
10. Therefore, the radius of conver-

gence is
√

10.

13. Arguing as we did in Exercises 1-9, we find that the Taylor series of f(z) =
z

1− z
around z0 = 0 has radius of convergence equal to the distance from z0 = 0 to the nearest
point where f fails to be analytic. Thus R = 1. (This will also come out of the computation
of the Taylor series.) Now, for |z| < 1, the geometric series tells us that

1

1− z
=

∞∑
n=0

zn.

Multiplying both sides by z, we get, for |z| < 1,

z

1− z
=

∞∑
n=0

zn+1.

17. Because the function is entire, the Taylor series will have an infinite radius of conver-
gence. Note that the series expansion around 0 is easy to obtain:

ez =
∞∑
n=0

zn

n!
⇒ zez = z

∞∑
n=0

zn

n!
=

∞∑
n=0

zn+1

n!
.

But how do we get the series expansion around z0 = 1? In the previous expansion, replacing
z by z − 1, we get

(z − 1)ez−1 =

∞∑
n=0

(z − 1)n+1

n!
.
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The expansion on the right is a Taylor series centered at z0 = 1, but the function on the
left is not quite the function that we want. Let f(z) = zez. We have

(z − 1)ez−1 = e−1zez − ez−1 = e−1f(z)− ez−1.

So f(z) = e
[
(z − 1)ez−1 + ez−1

]
. Using the expansion of (z − 1)ez−1 and the expansion of

ez−1 =
∑∞

n=0
(z−1)n

n! , we find

f(z) = e
[ ∞∑
n=0

(z − 1)n+1

n!
+
∞∑
n=0

(z − 1)n

n!

]
= e
[ ∞∑
n=1

(z − 1)n

(n− 1)!
+
∞∑
n=0

(z − 1)n

n!

]
= e

[ ∞∑
n=1

(z − 1)n

(n− 1)!
+ +1 +

∞∑
n=1

(z − 1)n

n!

]
= e

[
1 +

∞∑
n=1

(z − 1)n
(

1

(n− 1)!
+

1

n!

)]
= e
[
1 +

∞∑
n=1

(z − 1)n
(
n

n!
+

1

n!

)]
= e

[
1 +

∞∑
n=1

(z − 1)n
n+ 1

n!

]
.

21. (a) To obtain the partial fractions decomposition

1

(1− z)(2− z)
=

1

1− z
− 1

2− z
,

we proceed in the usual way:

1

(1− z)(2− z)
=

A

1− z
+

B

2− z

=
A(2− z) +B(1− z)

(1− z)(2− z)
;

1 = A(2− z) +B(1− z)
Take z = 2 ⇒ 1 = −B, B = −1.

Take z = 1 ⇒ 1 = A.

Thus we obtain the desired partial fractions decomposition. Expanding each term in the
partial fractions decomposition around z0 = 0, we obtain

1

1− z
=

∞∑
n=0

zn, |z| < 1;

− 1

2− z
= − 1

2(1− z
2)

= −1

2

∞∑
n=0

(z
2

)n
, |z

2
| < 1, or |z| < 2.

So, for |z| < 1,

1

(1− z)(2− z)
=

1

1− z
− 1

2− z
=

∞∑
n=0

(
1− 1

2n+1

)
zn.
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(b) We an derive the series in (a) by considering the Cauchy products of the series expan-
sions of 1

1−z and 1
2−z , as follows. From (a), we have

1

1− z
· 1

2− z
=

∞∑
n=0

zn ·
∞∑
n=0

zn

2n+1
=

∞∑
n=0

cnz
n,

where cn is obtained from the Cauchy product formula (see Exercise 21, Sec. 4.3):

cn =
n∑
k=0

akbn−k,

ak = 1, bn−k =
1

2n−k+1
,

cn =

n∑
k=0

1

2n−k+1
=

1

2n+1

n∑
k=0

2k.

(c) To show that the Cauchy product is the same as the series that we found in (a), we
must prove that

1

2n+1

n∑
k=0

2k =

(
1− 1

2n+1

)
.

But this is clear since

n∑
k=0

2k = 1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1,

and so

1

2n+1

n∑
k=0

2k =
1

2n+1

(
2n+1 − 1

)
=

(
1− 1

2n+1

)
.

The radius of the Maclaurin series is 1. This follows from our argument in (a) or from
Theorem 1, since the function has a problem at z = 1.

25. By the Exercise 24,

f(z) = − 1

(2i− z)3
= − i

8

∞∑
n=0

(
n+ 2

2

)( z
2i

)n
for all |z| < 2.

29. (a) Since even functions are characterized by the fact that f(z)− f(−z) = 0, and since

f(−z) =

∞∑
n=0

cn(−z)n =

∞∑
n=0

(−1)ncnz
n,



Section 4.3 Taylor Series 95

we have that f is even if and only if

f(z)− f(−z) = 0

m
∞∑
n=0

cnz
n −

∞∑
n=0

(−1)ncnz
n =

∞∑
n=0

(1− (−1)n)cnz
n = 0

m
(1− (−1)n)cn = 0 for all n = 0, 1, 2, . . .

m
2c2n+1 = 0 for all n = 0, 1, 2, . . .

m
c2n+1 = 0 for all n = 0, 1, 2, . . . .

(b) Similarly, f is odd if and only if

f(z) + f(−z) = 0

m
∞∑
n=0

cnz
n +

∞∑
n=0

(−1)ncnz
n =

∞∑
n=0

(1 + (−1)n)cnz
n = 0

m
(1 + (−1)n)cn = 0 for all n = 0, 1, 2, . . .

m
2c2n = 0 for all n = 0, 1, 2, . . .

m
c2n = 0 for all n = 0, 1, 2, . . . .

33. (a) The sequence of integers {ln} satisfies the recurrence relation ln = ln−1 + ln−2

for n ≥ 2, with l0 = 1 and l1 = 3. As suggested, suppose that ln occur as the Maclaurin
coefficient of some analytic function f(z) =

∑∞
n=0 lnz

n, |z| < R. To derive the given
identity for f , multiply the series by z and z2, and then use the recurrence relation for the
coefficients. Using l0 = 1 and l1 = 3, we obtain

f(z) =

∞∑
n=0

lnz
n = 1 + 3z +

∞∑
n=2

lnz
n;

zf(z) =
∞∑
n=0

lnz
n+1 =

∞∑
n=1

ln−1z
n = l0z +

∞∑
n=2

ln−1z
n;

zf(z) = z +
∞∑
n=2

ln−1z
n;

z2f(z) =

∞∑
n=0

lnz
n+2 =

∞∑
n=2

ln−2z
n.
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Using the recurrence relation and the preceding identities, we obtain

f(z) = 1 + 3z +

∞∑
n=2

lnz
n

= 1 + 3z +
∞∑
n=2

(
ln−1 + ln−2

)
zn

= 1 + 3z +

zf(z)−z︷ ︸︸ ︷
∞∑
n=2

ln−1z
n +

z2f(z)︷ ︸︸ ︷
∞∑
n=2

ln−2z
n

= 1 + 3z + zf(z)− z + z2f(z) = 1 + 2z + zf(z) + z2f(z).

Solving for f(z), we obtain

f(z) =
1 + 2z

1− z − z2
.

(b) To compute the Maclaurin series of f , we will use the result of Exercise 22:

1

(z1 − z)(z2 − z)
=

1

z1 − z2

∞∑
n=0

(zn+1
1 − zn+1

2 )

(z1z2)n+1
zn, |z| < |z1|, z1 6= z2, |z1| ≤ |z2|.

To derive this identity, start with the partial fractions decomposition

1

(z1 − z)(z2 − z)
=

1

z1 − z2

[
1

z2 − z
− 1

z1 − z

]
=

1

z1 − z2

[
1

z2(1− z
z2

)
− 1

z1(1− z
z1

)

]
.

Apply a geometric series expansion and simplify:

1

(z1 − z)(z2 − z)
=

1

z1 − z2

[
1

z2

∞∑
n=0

( z
z2

)n − 1

z1

∞∑
n=0

( z
z1

)n]

=
1

z1 − z2

∞∑
n=0

( 1

zn+1
2

− 1

zn+1
1

)
zn

=
1

z1 − z2

∞∑
n=0

(zn+1
1 − zn+1

2 )

(z1z2)n+1
zn.

Now, consider the function

1

1− z − z2
=

−1

z2 + z − 1
=

−1

(z1 − z)(z2 − z)
,

where z1 and z2 are the roots of z2 + z − 1:

z1 =
−1 +

√
5

2
and z2 =

−1−
√

5

2
,

arranged so that z1| < |z2|. These roots satisfy known relationships determined by the
coefficients of the polynomial z2 +z−1. We will need the following easily verified identities:

z1 − z2 =
√

5 and z1z2 = −1.
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We will also need the following identities:

zn1 (z1 − 2) = (−1)n

(
1−
√

5

2

)n (
− 2 +

−1 +
√

5

2

)
= (−1)n

(
1−
√

5

2

)n (−5 +
√

5

2

)
= (−1)n

√
5

(
1−
√

5

2

)n+1

.

Similarly,

zn2 (2− z2) = (−1)n

(
1 +
√

5

2

)n (
2 +

1 +
√

5

2

)
= (−1)n

(
1 +
√

5

2

)n (5 +
√

5

2

)
= (−1)n

(
1 +
√

5

2

)n√
5
(1 +

√
5

2

)
= (−1)n

√
5

(
1 +
√

5

2

)n+1

.

We are now ready to derive the desired Maclaurin series. We have

1

1− z − z2
=

−1

z2 + z − 1
=

−1

(z1 − z)(z2 − z)

=
−1√

5

∞∑
n=0

zn+1
1 − zn+1

2

(−1)n+1
zn =

−1√
5

∞∑
n=0

(−1)n+1
(
zn+1

1 − zn+1
2

)
zn

=
−1√

5

=
√

5︷ ︸︸ ︷
(z1 − z2)(−1) +

−1√
5

∞∑
n=1

(−1)n+1
(
zn+1

1 − zn+1
2

)
zn

= 1 +
1√
5

∞∑
n=1

(−1)n
(
zn+1

1 − zn+1
2

)
zn;

2z

1− z − z2
=

2√
5

∞∑
n=0

(−1)n
(
zn+1

1 − zn+1
2

)
zn+1 =

−2√
5

∞∑
n=1

(−1)n
(
zn1 − zn2

)
zn.
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So

f(z) =
1 + 2z

1− z − z2

= 1 +
1√
5

∞∑
n=1

(−1)n
(
2zn2 − 2zn1 − zn+1

2 + zn+1
1

)
zn

= 1 +
1√
5

∞∑
n=1

(−1)n
(
zn2 (2− z2) + zn1 (z1 − 2)

)
zn

= 1 +
1√
5

∞∑
n=1

(−1)n(−1)n
√

5

(1 +
√

5

2

)n+1

+

(
1−
√

5

2

)n+1
 zn


= 1 +

∞∑
n=1

(1 +
√

5

2

)n+1

+

(
1−
√

5

2

)n+1
 zn.

Thus

ln =

(
1 +
√

5

2

)n+1

+

(
1−
√

5

2

)n+1

, n ≥ 0.

37. We use the binomial series expansion from Exercise 36, with α = 1
2 . Accordingly, for

|z| < 1,

(1 + z)
1
2 =

∞∑
n=0

(
1
2
n

)
zn,

where, for n ≥ 1,(
1
2
n

)
=

1
2(1

2 − 1) · · · (1
2 − n+ 1)

n!
=

1
2
−3
2 · · ·

−(2n−3)
2

n!

= (−1)n−1
1
2

3
2 · · ·

(2n−3)
2

n!
= (−1)n−1 1

2nn!

1 · 3 · 5 · · · (2n− 3) · 2 · 4 · · · (2n− 2)

2 · 4 · · · (2n− 2)

= (−1)n−1 1

2nn!

(2n− 2)!

2 · 1 · 2 · 2 · · · 2 · (n− 1)
= (−1)n−1 1

2nn!

(2n− 2)!

2n−1 · 1 · 2 · · · (n− 1)

= = (−1)n−1 1

2nn!

(2n− 2)!

2n−1(n− 1)!
= (−1)n−1 1

2nn!

(2n− 2)!

2n−1(n− 1)!

2n(2n− 1)

2n(2n− 1)

= (−1)n−1 1

2nn!

(2n)!

2nn!(2n− 1)
(−1)n−1 (2n)!(2n− 1)

22n(n!)2
= (−1)n−1 (−1)n−1

22n(2n− 1)

(
2n
n

)
.

Thus

(1 + z)
1
2 =

∞∑
n=0

(−1)n−1

22n(2n− 1)

(
2n
n

)
zn, |z| < 1.

41. (a) and (b) There are several possible ways to derive the Taylor series expansion of
f(z) = Log z about the point z0 = −1 + i. Here is one way. Let z0 = −1 + i, so |z0| =

√
2.

The function Log z is analytic except on the negative real axis and 0. So it is guaranteed by
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Theorem 1 to have a series expansion in the largest disk around z0 that does not intersect
the negative real axis. Such a disc, as you can easily verify, has radius Im z0 = 1. However,
as you will see shortly, the series that we obtain has a larger radius of convergence, namely
|z0| =

√
2 (of course, this is not a contradiction to Theorem 1).

Consider the function Log z in B1(z0), where it is analytic. (The disk of radius 1,
centered at z0 is contained in the upper half-plane.) For z ∈ B1(z0), we have d

dz Log z = 1
z .

Instead of computing the Taylor series of Log z directly, we will first compute the Taylor
series of 1

z , and then integrate term-by-term within the radius of convergence of the series
(Theorem 3, Sec. 4.3). Getting ready to apply the geometric series result, we write

1

z
=

1

z0 − (z0 − z)
=

1

z0

(
1− z0−z

z0

) (z0 6= 0)

=
1

z0
· 1

1− z0−z
z0

=
1

z0

∞∑
n=0

(
z0 − z
z0

)n
=

1

z0

∞∑
n=0

(−1)n
(
z − z0

)n
zn0

,

where the series expansion holds for∣∣∣∣z0 − z
z0

∣∣∣∣ < 1⇔ |z0 − z| < |z0|.

Thus the series representation holds in a disk of radius |z0| =
√

2, around z0. Within this
disk, we can integrate the series term-by-term and get∫ z

z0

1

ζ
dζ =

1

z0

∞∑
n=0

(−1)n

zn0

∫ z

z0

(
ζ − z0

)n
dζ =

1

z0

∞∑
n=0

(−1)n

(n+ 1)zn0

(
z − z0

)n+1
.

Reindexing the series by changing n+ 1 to n, we obtain∫ z

z0

1

ζ
dζ =

∞∑
n=1

(−1)n+1

nzn0

(
z − z0

)n |z − z0| < |z0| =
√

2.

Now we have to decide what to write on the left side. The function Log z is an antiderivative
of 1

z in the disk of radius 1, centered at z0. (Remember that Log z is not analytic on the
negative real axis, so we cannot take a larger disk.) So, for |z − z0| < 1, we have∫ z

z0

1

ζ
dζ = Log ζ

∣∣∣z
z0

= Log z − Log z0.

Thus, for |z − z0| < 1, we have

Log z = Log z0 +

∞∑
n=1

(−1)n+1

nzn0

(
z − z0

)n
,

even though the series on the right converges in the larger disk |z − z0| <
√

2.
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Solutions to Exercises 4.4

1. We have that

1

1 + z
=

1

z

1

1 + 1
z

=
1

z

∞∑
n=0

(
−1

z

)n
=
∞∑
n=0

(−1)n

zn+1
,

and this converges provided
∣∣−1

z

∣∣ < 1, that is, when 1 < |z|.

5. Since
∣∣ 1
z2

∣∣ < 1, we can use a geometric series in 1
z2

as follows. We have

1

1 + z2
=

1

z2

1

1− −1
z2

=
1

z2

∞∑
n=0

(
−1

z2

)n
=

1

z2

∞∑
n=0

(−1)n

z2n
=

∞∑
n=0

(−1)n

z2(n+1)

=
∞∑
n=1

(−1)n−1

z2n
,

where in the last series we shifted the index of summation by 1. Note that (−1)n−1 =
(−1)n+1, and so the two series that we derived are the same.

9. Since the function f(z) := z +
1

z
can be written as:

z +
1

z
= 1 + (z − 1) +

1

1 + (z − 1)
= 1 + (z − 1) +

1

z − 1

1

1 + 1
z−1

.

Then the Laurent series expansion for f(z) in the annulus 1 < |z − 1| is:

z +
1

z
= 1 + (z − 1) +

∞∑
n=0

(−1)n
1

(z − 1)n+1
,

where 1 < |z − 1|.

13. Since the function f(z) :=
z

(z + 2)(z + 3)
can be written as:

z

(z + 2)(z + 3)
=
−2

z + 2
+

3

z + 3
.

(1) For the annulus 2 < |z|:

1

z + 2
=

1

z

1

1 + 2
z

=

∞∑
n=0

(−1)n2n
1

zn+1
.

(2) For the annulus |z| < 3:

1

z + 3
=

1

3

1

1 + z
3

=

∞∑
n=0

(−1)n
1

3n+1
zn.



Section 4.4 Laurent Series 101

Then in the annulus 2 < |z| < 3, we have the Laurent series for f(z):

z

(z + 2)(z + 3)
=
∞∑
n=1

(−1)n2n
1

zn
+
∞∑
n=0

(−1)n
1

3n
zn,

where 2 < |z| < 3.

17. First, derive the partial fractions decomposition

z2 + (1− i)z + 2

(z − i)(z + 2)
= 1 +

1

z − i
− 2

z + 2
.

The first step should be to reduce the degree of the numerator by dividing it by the denom-
inator. As in Exercise 13, we handle each term separately, the constant term is to be left
alone for now. In the annulus 1 < |z| < 2, we have

∣∣1
z

∣∣ < 1 and
∣∣ z

2

∣∣ < 1. So to expand 1
z−i ,

factor the z in the denominator and you’ll get

1

z − i
=

1

z(1− i
z )

=
1

z

1

1− i
z

,

where
∣∣ i
z

∣∣ < 1 or 1 < |z|. Apply a geometric series expansion: for 1 < |z|,

1

z − i
=

1

z

1

1− i
z

=
1

z

∞∑
n=0

( i
z

)n
=

∞∑
n=0

in

zn+1

=
∞∑
n=1

in−1

zn
.

To expand 2
z+2 , in the annulus 1 < |z| < 2, because

∣∣ z
2

∣∣ < 1, we divide the denominator by
2 and get

2

z + 2
=

2

2(1 + z
2

=
1

1− −z2
.

Expand, using a geometric series, which is valid for |z| < 2, and get

2

z + 2
=

1

1− −z2
=

∞∑
n=0

(
−z
2

)n =

∞∑
n=0

(−1)n
zn

2n
.

Hence, for 1 < |z| < 2,

1 +
1

z − i
− 2

z + 2
= 1−

∞∑
n=1

in−1

zn
+

∞∑
n=0

(−1)n
zn

2n
.

21. The function f(z) =
1

(z − 1)(z + i)
has isolated singularities at z = 1 and z = −i.

If we start at the center z0 = −1, the closest singularity is −i and its distance to z0 is√
2. Thus f(z) is analytic in the disk of radius

√
2 and center at z0 = −1, which is the

annulus |z + 1| <
√

2. This is one of the Laurent series that we seek. Moving outside this
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disk, we encounter the second singularity at z = 1. Thus f(z) is analytic in the annulus√
2 < |z + 1| < 2, and has a Laurent series representation there. Finally, the function is

analytic in the annulus 2 < |z + 1| and so ha a Laurent expansion there.
We now derive the three series expansions. Using a partial fractions decomposition, we

have

f(z) =
1

(z − 1)(z + i)
=

A

z − 1
− A

z + i
,

where A = 1
2 −

i
2 = 1

2(1− i). We have, for |z + 1| < 2,

1

z − 1
=

1

−2 + (z + 1)
= −1

2

1

1− z+1
2

= −1

2

∞∑
n=0

(
z + 1

2

)n
.

For |z + 1| <
√

2, we have
∣∣∣ z+1

1−i

∣∣∣ < 1, and so

1

z + i
=

1

(i− 1) + (z + 1)
=
−1

1− i
1

1− z+1
1−i

=
−1

1− i

∞∑
n=0

(
z + 1

1− i

)n
.

Thus, for |z + 1| <
√

2, we have

f(z) =
1

(z − 1)(z + i)
=

A

z − 1
− A

z + i

= −A
2

∞∑
n=0

(
z + 1

2

)n
+

A

1− i

∞∑
n=0

(
z + 1

1− i

)n
= −1− i

4

∞∑
n=0

(
z + 1

2

)n
+

1

2

∞∑
n=0

(
z + 1

1− i

)n
.

For
√

2 < |z + 1|, we have
∣∣∣ 1−i
z+1

∣∣∣ < 1, and so

1

z + i
=

1

(i− 1) + (z + 1)
=

1

z + 1

1

1− 1−i
z+1

=
1

z + 1

∞∑
n=0

(
1− i
z + 1

)n
=
∞∑
n=0

(1− i)n

(z + 1)n+1

=
1

1− i

∞∑
n=1

(1− i)n

(z + 1)n
.

So, if
√

2 < |z + 1| < 2, then

f(z) =
1

(z − 1)(z + i)
=

A

z − 1
− A

z + i

= −1− i
4

∞∑
n=0

(
z + 1

2

)n
− 1− i

2

∞∑
n=0

(1− i)n

(z + 1)n+1
.
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Finally, for 2 < |z + 1|, we have

1

z − 1
=

1

−2 + (z + 1)
=

1

z + 1

1

1− 2
z+1

=
1

z + 1

∞∑
n=0

(
2

z + 1

)n
=

1

2

∞∑
n=1

2n

(z + 1)n
.

So, if 2 < |z + 1|, then

f(z) =
1

(z − 1)(z + i)
=

A

z − 1
− A

z + i

=
1− i

2

∞∑
n=0

2n

(z + 1)n+1
− 1− i

2

∞∑
n=0

(1− i)n

(z + 1)n+1

=
1− i

4

∞∑
n=1

2n

(z + 1)n
− 1

2

∞∑
n=1

(1− i)n

(z + 1)n
.

25. In this problem, the idea is to evaluate the integral by integrating a Laurent series
term-by-term. This process is justified by Theorem 1, which asserts that the Laurent
series converges absolutely and uniformly on any closed and bounded subset of its domain
of convergence. Since a path is closed and bounded, if the path lies in the domain of
convergence of the Laurent series, then the series converges uniformly on the path. Hence,
by Corollary 1, Sec. 4.2, the series can be differentiated term-by-term. We now present the
details of the solution. Using the Maclaurin series of sin z, we have for all z 6= 0,

sin
1

z
=

∞∑
n=0

(−1)n

(2n+ 1)!
z−(2n+1).

Thus∫
C1(0)

sin
1

z
dz =

∫
C1(0)

( ∞∑
n=0

(−1)n

(2n+ 1)!
z−(2n+1)

)
dz =

∞∑
n=0

(−1)n

(2n+ 1)!

∫
C1(0)

z−(2n+1) dz.

We now recall the important integral formula: for any integer m:∫
C
zm dz =

{
2πi if m = −1,
0 otherwise,

where C is any positively oriented simple closed path containing 0 (see Example 4, Sec.
3.4). Thus, ∫

C1(0)
z−(2n+1) dz =

{
2πi if n = 0,
0 otherwise.

Hence all the terms in the series

∞∑
n=0

(−1)n

(2n+ 1)!

∫
C1(0)

z−(2n+1) dz
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are 0, except the term that corresponds to n = 0, which is equal to 2πi. So∫
C1(0)

sin
1

z
dz = 2πi.

29. We follow the same strategy as in Exercise 25 and use the series expansion from
Exercise 5. We have∫

C4(0)
Log

(
1 +

1

z

)
dz =

∫
C4(0)

( ∞∑
n=1

(−1)n−1

n

1

zn

)
dz

=
∞∑
n=1

(−1)n−1

n

∫
C4(0)

1

zn
dz

= 2πi,

where we have used the fact that
∫
C4(0)

1
zndz = 2πi if n = 1 and 0 otherwise.

33. (a) Parametrizing ζ(θ) = eiθ,−π ≤ θ ≤ π, we have

1

2πi

∫
C1(0)

e
z
2

(
ζ− 1

ζ

)
dζ

ζn+1
=

1

2π

∫ π

−π
e
z
2(eiθ−e−iθ)e−inθ dθ

=
1

2π

∫ π

−π
eiz sin θe−inθ dθ =

1

2π

∫ π

−π
ei(z sin θ−nθ) dθ

=
1

2π

∫ π

−π

(
cos(z sin θ − nθ) + i sin(z sin θ − nθ)

)
dθ.

Now, exploiting symmetry, note that z sin θ−nθ is odd, so sin(z sin θ − nθ) is also odd and
that portion of the integral vanishes. Furthermore, cos(z sin θ − nθ) is even, so we have

1

2π

∫ π

−π

(
cos(z sin θ − nθ) + i sin(z sin θ − nθ)

)
dθ

=
1

2π

∫ π

−π
cos(z sin θ − nθ) dθ =

1

π

∫ π

0
cos(z sin θ − nθ) dθ.

(b) If z = x is real, we have that |cos(x sin θ − nθ)| ≤ 1 for all θ, so by the ML-inequality,
we have

|Jn(x)| = 1

π

∣∣∣∣∫ π

0
cos(z sin θ − nθ) dθ

∣∣∣∣ ≤ 1

π
(1)(π) = 1.
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Solutions to Exercises 4.5

1. Since
(1− z2) sin z = (1− z)(1 + z) sin z

and all zeros of sin z are of the form kπ for k ∈ Z, we have that the zeros of this function
are at 1,−1, kπ for k ∈ Z. By the expansion of sin z around zero, we have that

sin z = z − z3

3!
+
z5

5!
− · · · = z

(
1− z2

3!
+
z4

5!
− · · ·

)
and the zero of sin z at zero has order one. Similarly, by symmetry of sin z, all zeros of sin z
have order one. We also see that the zeros −1 and 1 of the original function have order one,
so all zeros have order one.

5. Since all zeros of sin z are isolated, which are kπ, k ∈ Z:

(1) At z = 0, we have the Taylor expansion:

sin z = z
(

1− z2

3!
+
z4

5!
− · · ·

)
=: zλ(z),

where λ(0) 6= 0. Therefore we have

sin7 z

z4
=
z7λ7(z)

z4
= z3λ7(z).

where λ7(0) 6= 0. Then
sin7 z

z4
has zero of order 3 at 0.

(2) At z = kπ, k ∈ Z\{0}, we have

sin7 z

z4
= z7λ

7(z)

z4
,

λ7(z)

z4
6= 0.

Then
sin7(z)

z4
has zero of order 7 at kπ, k ∈ Z\{0}.

9. Let f(z) := 1 − z2

2
− cos z, and we know f(z) is entire. Then the Taylor expansion for

f(z) at 0 is:

f(z) = 1− z2

2
− cos z = 1− z2

2
−
(

1− z2

2!
+
z4

4!
− z6

6!
+ · · ·

)
= −z

4

4!
+
z6

6!
− · · · = z4

(
− 1

4!
+
z2

6!
− · · ·

)
=: z4λ(z).

Since λ(z) = − 1

4!
+
z2

6!
− · · · is a power series which converges for all z, then λ(z) is entire.

And λ(0) = − 1

4!
6= 0. Therefore, f(z) = 1− z2

2
− cos z has the zero of order 4 at z0 = 0.
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13. Clearly, the function

f(z) =
1− z2

sin z
+
z − 1

z + 1

has isolated singularities at −1 and kπ, where k is an integer. These singularities are all
simple poles. To prove the last assertion, it is easier to work with each part of the function
separately. First, show that 1−z2

sin z has a simple pole at the zeros of sin z, which follows
immediately from the fact that the zeros of sin z are simple zeros. Second, show that z−1

z+1
has a simple pole at z = −1, which follows immediately from the fact that −1 is a simple
zero of z + 1. Now to put the two terms together, you can use the following fact:

If f(z) has a pole of order m at z0 and g(z) is analytic at z0, then f(z) + g(z) has a
pole of order m at z0.

This result is easy to prove using, for example, Theorem 8.

17. Write

z tan
1

z
= z

sin 1
z

cos 1
z

.

The problem points of this function are at 0 and at the zeros of the equation cos 1
z = 0.

Solving, we find
1

z
=
π

2
+ kπ ⇒ z = zk =

2

π(2k + 1)
, k an integer.

Since, as k → ∞, zk → 0, the function f(z) is not analytic in any punctured disk of the
form 0 < |z|. Thus 0 is not an isolated singularity. At all the other points zk, the singularity
is isolated and the order of the singularity is equal to the order of the zero of cos z at zk.
Since the zeros of cos z are all simple (this is very similar to Example 1), we conclude that
f(z) has simple poles at zk.

21. The function f(z) :=
1

z
− sin

1

z
is analytic when z 6= 0, then z = 0 is the isolated

singularity of f(z). Thus the Laurent series expansion for f(z) about 0 can be written as:

f(z) = z−1 −
(
z−1 − z−3

3!
+
z−5

5!
− · · ·

)
=
z−3

3!
− z−5

5!
+
z−7

7!
− · · · .

Since an 6= 0 for infinitely many n < 0, therefore z = 0 is an essential singularity of f(z).

25. Determining the type of singularity of f(z) = 1
z+1 at ∞ is equivalent to determining

the type of singularity of

f

(
1

z

)
=

1
1
z + 1

=
z

1 + z

at z = 0. Since f
(

1
z

)
has a removable singularity at 0, we conclude that f has a removable

singularity at z =∞. Note that this is consistent with our characterization of singularities
according to the behavior of the function at the point. Since f(z) → 0 as z → ∞, we
conclude that f has a removable singularity and may be redefined to have a zero at ∞.

29. In order to determine the type of singularity of f(z) := sin
1

z
at ∞, it is equivalent

to determine the type of singularity of f

(
1

z

)
= sin z at 0. It is clear that f

(
1

z

)
has a
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removable singularity at 0, since

lim
z→0

f

(
1

z

)
= lim

z→0
sin z = 0.

Therefore, f(z) has a removable singularity at ∞. And since f(z) → 0, as z → ∞, the
function has a zero at ∞.

33. (a) Suppose that f is entire and bounded. Consider g(z) = f(1
z ). Then g is analytic

at all z 6= 0. So z = 0 is an isolated singularity of g(z). For all z 6= 0, we have |g(z)| =
|f(1

z )| ≤M <∞, where M is a bound for |f(z)|, which is supposed to exist. Consequently,
g(z) is bounded around 0 and so 0 is a removable singularity of g(z).
(b) Since f is entire, it has a Maclaurin series that converges for all z. Thus, for all z,
f(z) =

∑∞
n=0 anz

n. In particular, we can evaluate this series at 1
z and get, for z 6= 0 ,

g(z) = f(z) =
∞∑
n=0

an
zn
.

By the uniqueness of Laurent series expansion, it follows that this series is the Laurent
series of g. But g has a removable singularity at 0. So all the terms with negative powers
of z must be zero, implying that g(z) = a0 and hence f(z) = a0 is a constant.

37. (a) If f has a pole of order m ≥ 1 at z0, then

f(z) =
1

(z − z0)m
φ(z),

where φ is analytic at z0 and φ(z0) 6= 0. (See (6), Sec. 4.6.) So if n is a positive integer,
then

[f(z)]n =
1

(z − z0)mn
φn(z) =

1

(z − z0)mn
ψ(z),

where ψ is analytic at z0 and ψ(z0) 6= 0. Thus [f(z)]n has a pole at z0 of order mn if n > 0.
If n < 0, then

[f(z)]n = (z − z0)−mn
1

φn(z)
= (z − z0)−mnψ(z),

where ψ is analytic at z0 and ψ(z0) 6= 0. Thus [f(z)]n has a zero at z0 of order −mn if
n < 0.
(b) If f has an essential singularity at z0 then |f(z)| is neither bounded nor tends to infinity
at z0. Clearly, the same holds for |[f(z)]n| = |f(z)|n: It is neither bounded nor tends to ∞
near z0. Thus [f(z)]n has an essential singularity at z0.

41. Let f be such a function. Since f is entire, f is continuous on C, so

f(0) = f

(
lim
n→∞

1

n

)
= lim

n→∞
f

(
1

n

)
= lim

n→∞
0 = 0

and we have that z0 = 0 is a zero of f . Furthermore, this zero is not isolated, since any
neighborhood of zero contains a number of the form 1

n for sufficiently large n. By Theorem
4.5.4, since f is analytic on C and has a non-isolated zero, f vanishes everywhere on C.
Thus, the only such function is f(z) = 0 for all z ∈ C.
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Solutions to Exercises 4.6

1. No: by the Schwarz-Pick Theorem, for any analytic function g from the unit disc to
itself, we must have, for all a in the unit disc,

∣∣g′(a)
∣∣ ≤ 1− |g(a)|2

1− |a|2
,

but this would imply that g′(1
5) ≤ 1− 16

25

1− 1
25

= 3
8 , and 5

12 �
3
8 .

5. By Schwarz’s lemma, we have that |f ′(0)| ≤ 1 and |(f−1)′(0)| = 1
|f ′(0)| ≤ 1, so |f ′(0)| = 1.

Since this equality holds, Schwarz’s lemma gives that f(z) = cz with |c| ≤ 1. But then
f−1(z) = 1

cz, so we also have that
∣∣1
c

∣∣ ≤ 1, so |c| = 1.

9. If p has no zeros inside the unit disk, then by Corollary 3.9.10, p(z) = A is constant.
Since p has modulus 1 on the unit circle, we have that |A| = 1.

Now suppose that p has zeros a1, a2, . . . , am inside the unit circle, counted according
to multiplicity. Then we can write p(z) = (a1 − z)(a2 − z) · · · (am − z)q(z), where q is
a polynomial with no zeros inside the unit circle. Multiplying p by a product of linear
transformations of the form φaj (z) =

1−ajz
aj−z gives us

F (z) = p(z)
m∏
j=1

φaj (z) = (a1 − z)(a2 − z) · · · (am − z)q(z)
1− a1z

a1 − z
1− a2z

a2 − z
· · · 1− amz

am − z

= q(z)(1− a1z)(1− a2z) · · · (1− amz).

Then F is a polynomial with no zeros inside the unit circle, and since each φaj has modulus
1 on the unit circle, F also has modulus on the unit circle. Thus, by Corollary 3.9.10,
F (z) = A is a constant, and we have |A| = 1. But since F is a constant polynomial, we
must have that each aj = 0, and q(z) = A is a constant. Thus, p(z) = (−1)mAzm = A′zm,
where A′ = (−1)mA and |A′| = 1.

13. No: apply Schwarz’s lemma to g(z) = f(z)
3 to yield that |g′(0)| ≤ 1, that is, |f ′(0)| ≤ 3.
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Solutions to Exercises 5.1

1. We write

f(z) =
1 + z

z
=

1

z
+ 1.

Then it is clear that f has one simpe pole at z0 = 0. The Laurent series expansion of f(z)
at z0 = 0 is already given. The residue at 0 is the coefficient of 1

z in the Laurent series a−1.
Thus a−1 = Res (f, 0) = 1.

.
5. We have one pole of order 3 at z0 = −3i. We write

(
z − 1

z + 3i

)3

=
1

(z + 3i)3
[(z + 3i) + (−3i− 1)]3

=
1

(z + 3i)3

[
(z + 3i)3 + 3(z + 3i)2(−1− 3i) + 3(z + 3i)(−1− 3i) + (−3i− 1)3

]
= 1 + 3

(−1− 3i)

z + 3i
+ 3

(−1− 3i)

(z + 3i)2
+

(−3i− 1)3

(z + 3i)3
.

Thus

a−1 = 3(−1− 3i) = Res

((
z − 1

z + 3i

)3

,−3i

)
.

9. Write

f(z) = csc(πz)
z + 1

z − 1
=

1

sinπz

z + 1

z − 1
.

Simple poles at the integers, z = k, z 6= 1. For k 6= 1,

Res (f, k) = lim
z→k

(z − k)
1

sinπz

z + 1

z − 1

= lim
z→k

z + 1

z − 1
lim
z→k

(z − k)

sinπz

=
k + 1

k − 1
lim
z→k

1

π cosπz
(L’Hospital’s rule)

=
k + 1

k − 1

1

π cos kπ
=

(−1)k

π

k + 1

k − 1
.

At z0 = 1, we have a pole of order 2. To simplify the computation of the residue, let’s
rewrite f(z) as follows:

1

sinπz

z + 1

z − 1
=

1

sinπz

(z − 1) + 2

z − 1

=
1

sinπz
+

2

(z − 1) sinπz

We have

Res (f, 1) = Res (
1

sinπz
, 1) + Res (

2

(z − 1) sinπz
, 1);
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Res (
1

sinπz
, 1) = lim

z→1
(z − 1)

1

sinπz
= − 1

π
(Use l’Hospital’s rule.);

Res (
2

(z − 1) sinπz
, 1) = lim

z→1

d

dz

2(z − 1)

sinπz

= 2 lim
z→1

sinπz − (z − 1)π cosπz

(sinπz)2

= 2 lim
z→1

π cosπz − π cosπz + (z − 1)π sinπz

2π sinπz cosπz
= 0.

So Res (f, 1) = − 1
π .

13. The easiest way to compute the integral is to apply Cauchy’s generalized formula with

f(z) =
z2 + 3z − 1

z2 − 3
,

which is analytic inside and on C1(0). Hence∫
C1(0)

z2 + 3z − 1

z(z2 − 3)
dz = 2πif(0) = 2πi

(1

3

)
=

2πi

3
.

Note that from this value, we conclude that

Res
(z2 + 3z − 1

z(z2 − 3)
, 0
)

=
1

3

because the integral is equal to 2πi times the residue at 0.

17. The function Let f(z) =
1

z(z − 1)(z − 2) · · · (z − 10)
, then z = 0 and z = 1 are simple

poles of f(z) inside C 3
2
(0). Since C 3

2
(0) is the circle positively oriented centered at the

origin with radius
3

2
, with

Res (f(z), 0) = lim
z→0

zf(z) = lim
z→0

1

(z − 1) · · · (z − 10)
=

1

10!
,

Res (f(z), 1) = lim
z→1

(z − 1)f(z) = lim
z→1

1

z(z − 2) · · · (z − 10)
= − 1

9!
.

Then the path integral can be evaluated by∫
C 3

2 (0)

dz

z(z − 1) · · · (z − 10)
= 2πi[ Res (f(z), 0) + Res (f(z), 1)]

= 2πi
( 1

10!
− 1

9!

)
= −18πi

10!
.

C 3

2

H0L

-2 -1 1 2

-2

-1

1

2

Therefore, the path integral

∫
C 3

2 (0)

dz

z(z − 1)(z − 2) · · · (z − 10)
= −18πi

10!
.
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21. The function

f(z) =
ez

2

z6

has a pole of order 6 at 0. To compute the residue at 0, we find the coefficient a1 in the
Laurent series expansion about 0. We have

1

z6
ez

2
=

1

z6

∞∑
n=0

(z2)n

n!
.

It is clear that this expansion has no terms with odd powers of z, positive or negative.
Hence a−1 = 0 and so ∫

C1(0)

ez
2

z6
dz = 2πiRes (0) = 0.

25. Same approach as in Exercise 21:

sin z

z6
=

1

z6

∞∑
k=0

(−1)k
z2k+1

(2k + 1)!

=
1

z6

[
z − z3

3!
+
z5

5!
− · · ·

]
Coefficient of 1

z : a−1 = 1
5! , so∫

C1(0)

sin z

z6
dz = 2πiRes (0) =

2πi

5!
.

29. (a) The Order of a pole of csc(πz) = 1
sinπz is the order of the zero of

1

csc(πz)
= sinπz.

Since the zeros of sinπz occur at the integers and are all simple zeros (see Example 1,
Section 4.6), it follows that cscπz has simple poles at the integers.
(b) For an integer k,

Res
(

cscπz, k
)

= lim
z→k

(z − k) cscπz = lim
z→k

z − k
sinπz

= lim
z→k

1

π cosπz
(l’Hospital’s rule)

=
(−1)k

π
.

(c) Suppose that f is analytic at an integer k. Apply Proposition 1(iii), then

Res
(
f(z) csc(πz), k

)
=

(−1)k

π
f(k).
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33. A Laurent series converges absolutely in its annulus of convergence. Thus to multiply
two Laurent series, we can use Cauchy products and sum the terms in any order. Write

f(z)g(z) =

∞∑
n=−∞

an(z − z0)n
∞∑

n=−∞
bn(z − z0)n

=
∞∑

n=−∞
cn(z − z0)n,

where cn s obtained by collecting all the terms in (z − z0)n, after expanding the product.
Thus

cn =
∞∑

j=−∞
ajbn−j ;

in particular

c−1 =

∞∑
j=−∞

ajb−1−j ,

and hence

Res
(
f(z)g(z), z0

)
=

∞∑
j=−∞

ajb−j−1.

37. (a) We have, Exercise 35(a), Section 4.5,

J0(z) =
1

2πi

∫
C1(0)

e
z
2

(
ζ− 1

ζ
)
)
dζ

ζ
.

Thus ∫ ∞
0

J0(t)e−st dt =
1

2πi

∫ ∞
0

∫
C1(0)

e
−t
(
s− 1

2
(ζ− 1

ζ
)
)
dζ

ζ
dt

(b) For ζ on C1(0), we have

ζ − 1

ζ
= ζ − ζ = 2i Im (ζ),

which is 0 if Im (ζ) = 0 (i.e., ζ = ±1) or is purely imaginary. In any case, for all ζ ∈ C1(0),
and all real s > 0 and t, we have∣∣∣∣e−t(s− 1

2
(ζ− 1

ζ
)
)∣∣∣∣ =

∣∣e−ts∣∣ ∣∣∣e t2 (ζ− 1
ζ

)
∣∣∣ = e−ts.

So, by the inequality on integrals (Th.2, Sec. 3.2),∣∣∣∣∣ 1

2πi

∫
C1(0)

e
−t
(
s− 1

2
(ζ− 1

ζ
)
)
dζ

ζ

∣∣∣∣∣ ≤ 2π

2π
max
ζ∈C1(0)

∣∣∣∣e−t(s− 1
2

(ζ− 1
ζ

)
)

1

ζ

∣∣∣∣
= max

ζ∈C1(0)

∣∣∣∣e−t(s− 1
2

(ζ− 1
ζ

)
)∣∣∣∣ (|ζ| = 1)

≤ e−ts
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Thus the iterated integral in (a) is absolutely convergent because∣∣∣∣∣ 1

2πi

∫ ∞
0

∫
C1(0)

e
−t
(
s− 1

2
(ζ− 1

ζ
)
)
dζ

ζ
dt

∣∣∣∣∣ ≤
∫ ∞

0

∣∣∣∣∣
∫
C1(0)

e
−t
(
s− 1

2
(ζ− 1

ζ
)
)
dζ

ζ

∣∣∣∣∣ dt
≤

∫ ∞
0

e−ts dt =
1

s
<∞

(c) Interchange the order of integration, and evaluate the integral in t, and get∫ ∞
0

J0(t)e−st dt =
1

2πi

∫
C1(0)

∫ ∞
0

e
−t
(
s− 1

2
(ζ− 1

ζ
)
)
dt
dζ

ζ

=
1

2πi

∫
C1(0)

1(
s− 1

2(ζ − 1
ζ )
)e−t(s− 1

2
(ζ− 1

ζ
)
)∣∣∣∣∣
∞

0

dζ

ζ

=
1

πi

∫
C1(0)

1

−ζ2 + 2sζ + 1
dζ

because, as t→∞, ∣∣∣∣e−t(s− 1
2

(ζ− 1
ζ

)
)∣∣∣∣ = e−ts → 0.

(d) We evaluate the integral using the residue theorem. We have simple poles at

ζ =
−s±

√
s2 + 1

−1
= s±

√
s2 + 1.

Only s−
√
s2 + 1 is inside C0(1). To see this, note that because s > 0 and

√
s2 + 1 > 1, we

have s+
√
s2 + 1 > 1. Also

s <
√
s2 + 1 < 1 + s ⇒ −1− s < −

√
s2 + 1 < −s ⇒ −1 < s−

√
s2 + 1 < 0.

By Proposition 5.1.3(ii)

Res

(
1

−ζ2 + 2sζ + 1
, s−

√
s2 + 1

)
=

1

−2ζ + 2s

∣∣∣∣
ζ=s−

√
s2+1

=
1

2
√
s2 + 1

Thus, for s > 0, ∫ ∞
0

J0(t)e−st dt =
2πi

πi

1

2
√
s2 + 1

=
1√
s2 + 1

.

(e) Repeat the above steps making the appropriate changes.
Step (a’): Use the integral representation of Jn and get

In =

∫ ∞
0

Jn(t)e−st dt =
1

2πi

∫ ∞
0

∫
C1(0)

e
−t
(
s− 1

2
(ζ− 1

ζ
)
)
dζ

ζn+1
dt
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Step (b’) is exactly like (b) because, for ζ on C1(0), we have |ζn+1| = |ζ| = 1.
Step (c’): As in (c), we obtain

In =
1

πi

∫
C1(0)

1

(−ζ2 + 2sζ + 1)ζn
dζ.

Let η = 1
ζ = ζ. Then dζ = − 1

η2
dη. As ζ runs through C1(0) in the positive direction, η

runs through C1(0) in the negative direction. Hence

In =
1

πi

∫
−C1(0)

− 1
η2
dη

(− 1
η2

+ 2s 1
η + 1) 1

ηn
=

1

πi

∫
C1(0)

ηndη

η2 + 2sη − 1
.

Step (d’): We evaluate the integral using the residue theorem. We have simple poles at

ζ =
−s±

√
s2 + 1

−1
= −s±

√
s2 + 1.

Only −s+
√
s2 + 1 is inside C0(1). (Just argue as in (d).) By Proposition 1(ii)

Res

(
ηn

η2 + 2sη − 1
,−s+

√
s2 + 1

)
=

ηn

2η + 2s

∣∣∣∣
η=−s+

√
s2+1

=

(√
s2 + 1− s

)n
2
√
s2 + 1

Thus, for s > 0, ∫ ∞
0

Jn(t)e−st dt =
1√
s2 + 1

(√
s2 + 1− s

)n
.
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Solutions to Exercises 5.2

1. Let z = eiθ, dz = ieiθdθ, dθ = −i
z dz, cos θ = z+1/z

2 . Then

∫ 2π

0

dθ

2− cos θ
=

∫
C1(0)

− i
zdz

2− (z+1/z)
2

= −i
∫
C1(0)

dz

2z − z2

2 −
1
2

= −i
∫
C1(0)

dz

− z2

2 + 2z − 1
2

= 2π
∑
j

Res

(
1

− z2

2 + 2z − 1
2

, zj

)
,

where the sum of the residues extends over all the poles of 1

2z− z2
2
− 1

2

inside the unit disk.

We have

−z
2

2
+ 2z − 1

2
= 0 ⇔ z2 − 4z + 1 = 0.

The roots are z = 2 ±
√

3, and only z1 = 2 −
√

3 is inside C1(0). We compute the residue
using Proposition 1(ii), Sec. 5.1:

Res

((
− z2

2
+ 2z − 1

2

)−1
, z1

)
=

1

−z1 + 2
=

1√
3
.

Hence ∫ 2π

0

dθ

2− cos θ
=

2π√
3
.

5. Let z = eiθ, dz = ieiθdθ, dθ = −i dz
z , cos θ = z+1/z

2 , and cos 2θ = e2iθ+e−2iθ

2 =
z2+ 1

z2

2 .
Then ∫ 2π

0

cos 2θ

5 + 4 cos θ
dθ = −i

∫
C1(0)

1
2(z2 + 1

z2
)

5 + 4 (z+1/z)
2

dz

z

= − i
2

∫
C1(0)

z4 + 1

5z2 + 2z3 + 2z

dz

z

= − i
2

∫
C1(0)

z4 + 1

z2(2z2 + 5z + 2)
dz

= − i
2

2πi
∑
j

Res

(
z4 + 1

z2(2z2 + 5z + 2)
, zj

)

= π
∑
j

Res

(
z4 + 1

z2(2z2 + 5z + 2)
, zj

)
,



116 Chapter 5 Residue Theory

where the sum of the residues extends over all the poles of z4+1
z2(2z2+5z+2)

inside the unit disk.

We have a pole of order 2 at 0 and possible more poles at the roots of 2z2 + 5z + 2. Let’s
compute the residue at 0.

Res

(
z4 + 1

z2(2z2 + 5z + 2)
, 0

)
= lim

z→0

d

dz

z4 + 1

(2z2 + 5z + 2)

=
4z3(2z2 + 5z + 2)− (z4 + 1)(4z + 5)

(2z2 + 5z + 2)2

∣∣∣∣
z=0

= −5

4
.

For the nonzero poles, solve
2z2 + 5z + 2 = 0.

The roots are z = −5±3
4 . Only z1 = −1

2 is inside C1(0). We compute the residue using
Proposition 5.1.3(ii):

Res

(
z4 + 1

z2(2z2 + 5z + 2)
, z1

)
=

z4
1 + 1

z2
1

1
d
dz (2z2 + 5z + 2)

∣∣
z1

=
(1

2)4 + 1
1
4 (4(−1

2) + 5)
=

17

12
.

Hence ∫ 2π

0

cos 2θ

5 + 4 cos θ
dθ = π

(
17

12
− 5

4

)
=
π

6
.

9. Let z = eiθ, dz = ieiθdθ, dθ = −i dz
z , cos θ = z+1/z

2 , sin θ = z−1/z
2i . Then∫ 2π

0

dθ

7 + 2 cos θ + 3 sin θ
= −i

∫
C1(0)

dz

z(7 + (z + 1/z) + 3
2iz

2 − 3
2i

= −i
∫
C1(0)

dz

(1− 3
2 i)z

2 + 7z + (1 + 3
2 i)

= 2π
∑
j

Res

(
1

(1− 3
2 i)z

2 + 7z + (1 + 3
2 i)

, zj

)
,

where the sum of the residues extends over all the poles of 1
(1− 3

2
i)z2+7z+(1+ 3

2
i)

inside the unit

disk. Solve (
1− 3

2
i
)
z2 + 7z +

(
1 +

3

2
i
)

= 0.

You’ll find

z =
−7±

√
49− 4(1− 3

2 i)(1 + 3
2 i)

2(1− 3
2 i)

=
−7±

√
49− 4(1 + 9

4)

2(1− 3
2 i)

=
−7±

√
36

2− 3i
=
−7± 6

2− 3i

=
−13

2− 3i
or
−1

2− 3i

=
−13(2 + 3i)

13
= −(2 + 3i) or

−(2 + 3i)

13
.



Section 5.2 Definite Integrals of Trigonometric Functions 117

We have

|2 + 3i| =
√

13 > 1 and

∣∣∣∣−(2 + 3i)

13

∣∣∣∣ =

√
13

13
< 1.

So only z1 = −(2+3i)
13 is inside C1(0). We compute the residue using Proposition 5.1.3(ii):

Res (z1) =
1

2(1− 3
2 i)z1 + 7

=
1

−2(1− 3
2 i)
−(2+3i)

13 + 7
=

1

6
.

Hence ∫ 2π

0

dθ

7 + 2 cos θ + 3 sin θ
= 2π

1

6
=
π

3
.

13.a. The solution will vary a little from what is in the text. Note the trick based on
periodicity.
Step 1: Double angle formula

a+ b cos2 θ = a+ b

(
1 + cos 2θ

2

)
=

2a+ b+ b cos 2θ

2
,

so
1

a+ b cos2 θ
=

2

2a+ b+ b cos 2θ
.

Step 2. Change variables in the integral: t = 2θ, dt = 2dθ. Then

I =

∫ 2π

0

dθ

a+ b cos2 θ
=

∫ 4π

0

dt

2a+ b+ b cos t
.

The function f(t) = 1
2a+b+b cos t is 2π-periodic. Hence its integral over intervals of length 2π

are equal. So

I =

∫ 2π

0

dt

2a+ b+ b cos t
+

∫ 4π

2π

dt

2a+ b+ b cos t
= 2

∫ 2π

0

dt

2a+ b+ b cos t
.

Step 3. Now use the method of Section 5.2 to evaluate the last integral. Let z = eit,
dz = ieitdt, dt = −i dz

z , cos t = z+1/z
2 . Then

2

∫ 2π

0

dt

2a+ b+ b cos t
= −4i

∫
C1(0)

dz

bz2 + (4a+ 2b)z + b

= 8π
∑
j

Res

(
1

bz2 + (4a+ 2b)z + b
, zj

)
,

where the sum of the residues extends over all the poles of 1
bz2+(4a+2b)z+b

inside the unit

disk. Solve

bz2 + (4a+ 2b)z + b = 0,
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and get

z =
−(4a+ 2b)±

√
(4a+ 2b)2 − 4b2

2b
=
−(2a+ b)± 2

√
a(a+ b)

b

= z1 =
−(2a+ b) + 2

√
a(a+ b)

b
or z2 =

−(2a+ b)− 2
√
a(a+ b)

b
.

It is not hard to prove that |z1| < 1 and |z2| > 1. Indeed, for z2, we have

|z2| =
2a+ b

b
+

2
√
a(a+ b)

b
= 1 +

2a

b
+

2
√
a(a+ b)

b
> 1

because a, b are > 0. Now the product of the roots of a quadratic equation αz2 +βz+γ = 0
(α 6= 0) is always equal to γ

α . Applying this in our case, we find that z1 · z2 = 1, and since
|z2| > 1, we must have |z1| < 1.

We compute the residue at z1 using Proposition 1(ii), Sec. 5.1:

Res

(
1

bz2 + (4a+ 2b)z + b
, z1

)
=

1

2bz1 + (4a+ 2b)

=
1

−(2a+ b)2 + 4
√
a(a+ b) + (4a+ 2b)

=
1

4
√
a(a+ b)

.

Hence ∫ 2π

0

dθ

a+ cos2 θ
= 2π

1

4
√
a(a+ b)

=
2π√

a(a+ b)
.
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Solutions to Exercises 5.3

1. Use the same contour as in Example 5.3.3. Several steps in the solution are very similar to
those in Example 5.3.3; in particular, Steps 1, 2, and 4. Following the notation of Example
5.3.3, we have IγR = I[−R,R] + IσR . Also, limR→∞ IσR = 0, and

lim
R→∞

I[−R,R] = I =

∫ ∞
−∞

dx

x4 + 1
.

These assertions are proved in Example 5.3.3 and will not be repeated here. So all we need
to do is evaluate IγR for large values of R and then let R→∞. We have

IγR = 2πi
∑
j

Res

(
1

z4 + 1
, zj

)
,

where the sum ranges over all the residues of 1
z4+1

in the upper half-plane. The function
1

z4+1
have four (simple) poles. These are the roots of z4 + 1 = 0 or z4 = −1. Using the

result of Example 5.3.3, we find the roots to be

z1 =
1 + i√

2
, z2 =

−1 + i√
2

, z3 =
−1− i√

2
, z4 =

1− i√
2
.

In exponential form,

z1 = ei
π
4 , z2 = ei

3π
4 , z3 = ei

5π
4 , z4 = ei

7π
4 .

Only z1 and z2 are in the upper half-plane, and so inside γR for large R > 0. Using
Proposition 5.1.2(ii) we write

Res

(
1

z4 + 1
, z1

)
=

1
d
dz z

4 + 1
∣∣
z=z1

=
1

4z3
1

=
1

4
e−i

3π
4 ;

Res

(
1

z4 + 1
, z2

)
=

1
d
dz z

4 + 1
∣∣
z=z2

=
1

4z3
2

=
1

4
e−i

9π
4 =

1

4
e−i

π
4 .

So

IγR = 2πi
1

4

(
e−i

3π
4 + e−i

π
4

)
=

πi

2

(
cos

3π

4
− i sin

3π

4
+ cos

π

4
− i sin

π

4

)
=

πi

2
(−i
√

2) =
π√
2
.

Letting R→∞, we obtain I = π√
2
.

5. The integral converges absolutely, as in Step 1 of Example 5.3.3. We will reason as in
that example, and omit some of the details. Here IγR = I[−R,R] + IσR ; limR→∞ IσR = 0,
and

lim
R→∞

I[−R,R] = I =

∫ ∞
−∞

dx

(x2 + 1)3
.
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All we need to do is evaluate IγR for large values of R and then let R →∞. The function
f(z) = 1

(z2+1)3
has poles of order 3 at z1 = i and z2 = −i, but only z1 is in the upper

half-plane. You can evaluate the integral IγR using the residue theorem; however, an equal
good and perhaps faster way in this case is to use Cauchy’s generalized integral formula
(3.8.10). Write

IγR =

∫
γR

1

(z2 + 1)3
dz =

∫
γR

1

[(z + i)(z − i)]3
dz =

∫
γR

1

(z + i)3

dz

(z − i)3
.

Let g(z) = 1
(z+i)3

. According to Cauchy’s Integral Formula ,

IγR = 2πi
g′′(i)

2!
.

Compute:
g′(z) = −3(z + i)−4, g′′(z) = 12(z + i)−5,

so

g′′(i) = 12(2i)−5 =
12

25
(−i).

Finally,

IγR = π
12

25
=

3π

8
.

Letting R→∞, we obtain I = 3π
8 .

9. We use the same technique as in the solution of Exercise 5. This time, we have that

g(z) =
1

(z + i)n+1
.

Cauchy’s Integral Formula gives IγR = 2πi
g(n)(i)

n!
.

Now

g(n)(i) =
dn

dzn
1

(z + i)n+1

∣∣∣∣
z=i

=
(−1)n(n+ 1)(n+ 2) · · · 2n

(z + i)(2n+1)

∣∣∣∣
z=i

=
(−1)n(2n)!

n!

1

22n+1i2n+1

= − i(2n)!

22n+1n!
.

Therefore, by Proposition 5.3.4∫ ∞
−∞

dx

(1 + x2)n+1
= 2πiRes

(
1

(1 + x2)n+1
, i

)
= 2πi

g(n)(i)

n!

= −2πi
i(2n)!

22n+1(n!)2

=
(2n)!

22n(n!)2
π.
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13. Once again we follow Example 5.3.6 closely. First, we need to check that the integral
is convergent, but it has been noted before (just above Example 5.3.6) that the integrals of
the form

∞∫
−∞

eax

ebx + c
dx with 0 < a < b and c > 0

are, indeed convergent.
To calculate the poles of f(x) = ex

3e2x+1
, we set

ebx + 1 = 0 ⇔ ebx = eiπ

⇔ bx = iπ + 2πik, for k ∈ Z

We use a contour as in Figure 5.18 and use the notation of Example 5.3.6. Setting k = 0,
we have the pole x = iπ

b . Therefore, we pick our rectangular contour to go from y = 0 to
y = 2iπ

b . That way, we do not include all poles, but only the x = iπ
b one.

In this notation, we note that limR→∞ |I2| = 0 and limR→∞ |I4| = 0. Check Example 5.3.6
or the solution of Exercise 9 for details.

We do the calculation for I3. There we have u+ vi = x+ 2iπ
b , from x = R to x = −R.

Therefore

I3 =

∫ −R
R

eax+ 2aiπ
b dx

ebx+2iπ + 1
=

∫ −R
R

eaxe
2aπi
b dx

ebx + 1
= −e

2aπi
b I1

Then we apply the residue theorem to get

Res

(
f(x),

iπ

b

)
= lim

x→ iπ
b

(
x− iπ

b

)
eax

ebx + 1
= −e

aiπ
b

b

Finally, since

I1 + I2 + I3 + I4 = 2πiRes

(
f(x),

iπ

b

)
= −2πie

aiπ
b

b
,

letting R→∞, we get that I1

(
1− e

2aπi
b

)
= −2πie

aiπ
b

b , meaning that

∞∫
−∞

eaxdx

ebx + 1
=
−2πie

aiπ
b

b

1− e
2aπi
b

=
−2πi

b

1

e
−aπi
b − e

aπi
b

=
−2πi

b

1(
cos
(
aπ
b

)
− i sin

(
aπ
b

))
−
(
cos
(
aπ
b

)
+ i sin

(
aπ
b

))
=

π

b sin
(
aπ
b

) .
This implies that

∞∫
−∞

eaxdx

ebx + 1
=

π

b sin aπ
b
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when 0 < a < b.

17. Let x = et, dx = et dt. Then

I =

∫ ∞
0

xα

(x+ 1)2
dx =

∫ ∞
−∞

eαt

(et + 1)2
etdt.

Use a rectangular contour γR as in Figure 5.18 with α = 1. Then the vertical sides of the
rectangle have length 2π and we have a pole of order 2 at πi which lies in the center of
the rectangle. Refer to Example 5.3.6 for notation: limR→∞ |I2| = 0, limR→∞ |I4| = 0, and
limR→∞ I1 = I, the desired integral. For I3, z = x+ iπ, x varies from R to −R, dz = dx, so

I3 =

∫ −R
R

e(α+1)(x+2πi)

(e(x+2πi) + 1)2
dx

= −
∫ R

−R

e(α+1)xe2πiα

(ex + 1)2
dx

= −e2απi

∫ R

−R

e(α+1)x

(ex + 1)2
dx

= −e2απiI1.

We have

IγR =

∫
γR

e(α+1)z

(ez + 1)2
dz = I1 + I2 + I3 + I4 = (1− e2απi)I1 + I2 + I4.

Letting R→∞ and using that I1 → I and I2, I4 → 0 as R→∞, we get

lim
R→∞

IγR = (1− e2απi)I.

To find the constant value of IγR for large R, we calculate the residue at z = πi, since we
have poles at z = πi+ 2kπi for k ∈ Z, and only z = πi is contained inside the contour. The
value of this integral is

2πiRes

(
e(α+1)z

(ez + 1)2
, πi

)
= 2πi lim

z→πi

d

dz

(z − πi)2 e(α+1)z

(ez + 1)2

= 2πi lim
z→πi

[
(α+ 1)e(α+1)z

( e
z+1
z−πi)

2
−

2 e(α+1)z d
dz ( e

z+1
z−πi)

( e
z+1
z−πi)

3

]
= 2πi

[
(α+ 1)eiπ(α+1) − 2 · 1

2
eiπ(α+1)

]
= 2πi αeiπ(α+1),

since

lim
z→πi

d

dz

(
ez + 1

z − πi

)
=

1

2
.

It follows that

I =
2πiαeiπ(α+1)

(1− e2απi)
=

πα

sin(πα)
.
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21. Let ax = et, adx = et dt. Then

I =

∫ ∞
0

ln(ax)

x2 + b2
dx =

1

a

∫ ∞
−∞

t
e2t

a2
+ b2

etdt = a

∫ ∞
−∞

xex

e2x + a2b2
dx.

Use a rectangular contour as in Figure 5.18, whose vertical sides have length π (i.e., α = 2).
Refer to Example 5.3.6 for notation: limR→∞ |I2| = 0, limR→∞ |I4| = 0, and limR→∞ I1 = I,
the desired integral. For I3, z = x+ iπ, x varies from R to −R, dz = dx, so

I3 = a

∫ −R
R

(x+ iπ)ex+iπ

e2x+2πi + a2b2
dx

= −a
∫ R

−R

(x+ iπ)ex(−1)

e2x + a2b2
dx

= a

∫ R

−R

xex

e2x + a2b2
dx+

=BRi︷ ︸︸ ︷
2πi

∫ R

−R

ex

e2x + a2b2
dx = I1 +BRi,

where BR is a real constant, because the integrand is real-valued. We have

IγR = I1 + I2 + I3 + I4 = 2I1 + I2 + I4 + iBR.

Letting R→∞, we get

lim
R→∞

IγR = 2I + iB,

where

B = lim
R→∞

BR =

∫ ∞
−∞

ex

e2x + a2b2
dx.

At the same time

IγR = 2πiRes

(
2zez

e2z + a2b2
, z0

)
,

where z0 is the root of e2z + a2b2 = 0 that lies inside γR (there is only one root, as you will
see):

e2z + a2b2 = 0 ⇒ e2z = e2 ln(ab)+iπ

⇒ 2z = 2 ln(ab) + iπ + 2kπi

⇒ z = ln(ab) + i
π

2
(2k + 1).

Only z = 2 ln 2 + iπ2 is inside the contour. So

IγR = 2πiRes

(
azez

e2z + a2b2
, ln(ab) + i

π

2

)
= 2πi

a(ln(ab) + iπ2 )eln(ab)+iπ
2

2e2(ln(ab)+iπ
2

)

=
π

b

(
ln(ab) + i

π

2

)
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Thus

2I + 2πiB =
π

b
ln(ab) + i

π2

2b
.

Taking real and imaginary parts, we find

I =
π ln(ab)

2b
and B =

π

4b
.

This gives the value of the desired integral I and also of the integral

π

4b
= B =

∫ ∞
−∞

ex

e2x + a2b2
dx.

25. The integral converges by the comparison test for convergence (
∫∞

1
1
x3
dx converges).

The integrand has poles at x = −1, eπi and e−πi. We calculate that

Res

(
1

x3 + 1
, eπi

)
= lim

x→eπi
x− eπi

x3 + 1
=

1

3e
2πi
3

Using the given, we get that∫
γ2

1

x3 + 1
dx =

∫ 2π
3

0

Ret

(Ret)3 + 1
dt =

1

R2

∫ 2π
3

0

et

e2t +R−3
dt→ 0

as R→∞, because ∣∣∣ ∫ 2π
3

0

et

e2t +R−3
dt
∣∣∣ ≤ ∣∣∣ ∫ 2π

3

0

1

et
dt
∣∣∣ <∞.

Therefore

lim
R→∞

I2 = lim
R→∞

∫
γ2

1

x3 + 1
= 0.

Moreover, in γ3, we have x = te
2πi
3 , for t from R to 0 and therefore dx = e

2πi
3 dt.

Thus ∫
γ3

1

x3 + 1
dx = e

2πi
3

∫ 0

R

1(
te

2πi
3

)3
+ 1

dt = −e
2πi
3

∫
γ1

1

x3 + 1
dx.

The Cauchy residue theorem gives us

I1 + I2 + I3 = 2πi Res

(
1

x3 + 1
, eπi

)
=

2πi

3e
2πi
3

and therefore, since I3 = −e
2πi
3 I1 and I2 → 0,∫ ∞
0

1

x3 + 1
dx = lim

R→∞
I1

=
1

1 + e
2πi
3

2πi

3e
2πi
3

=
2π

3
√

3
.
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25. (a) Since 0 < a < 1, the integral converges, by the comparison test. Indeed, since
a > 0, by the comparison test, we have that∣∣∣ ∫ ∞

1

xa−1

x+ 1
dx
∣∣∣ ≤ ∣∣∣ ∫ ∞

1

1

x2−adx
∣∣∣ <∞.

Moreover, since a < 1, Let x = et. Then dx = etdt and∣∣∣ ∫ 1

0

xa−1

x+ 1
dx
∣∣∣ ≤ ∣∣∣ ∫ 1

0

1

x1−adx
∣∣∣ <∞.

Remember that if c > 0,
∫∞
c

1
xb
dx converges if and only if b > 1, where as

∫ c
0

1
xb
dx converges

if and only if b < 1.

Let x = et. Then dx = et dt and∫ ∞
0

xa−1

x+ 1
dx =

∫ ∞
−∞

e(a−1)t

et + 1
etdt =

∫ ∞
−∞

eat

et + 1
dt.

The result then follows from Exercise 13.

(b) The definition of Gamma is

Γ(z) =

∫ ∞
0

e−ttz−1dt,

for Re z > 0. Therefore,

Γ(a)Γ(a− 1) =

∫ ∞
0

e−tta−1dt

∫ ∞
0

e−ss(1−a)−1ds =

∫ ∞
0

∫ ∞
0

e−(t+s)ta−1s−adsdt.

(c) Let x = s+ t and y = t
s . Then t = xy

y+1 , s = x
y+1 , and

∂(t, s)

∂(x, y)
=
∂t

∂x

∂s

∂y
− ∂s

∂x

∂t

∂y

We calculate that:

∂t

∂x
=

y

y + 1

∂t

∂y
=

x

(y + 1)2

∂s

∂x
=

1

y + 1

∂y

∂s
= − x

(y + 1)2

Therefore∣∣∣∂(x, y)

∂(t, s)

∣∣∣ =
∣∣∣∂x
∂t

∂y

∂s
− ∂x

∂s

∂y

∂t

∣∣∣ =
∣∣∣ y

y + 1

(
− x

(y + 1)2

)
− x

(y + 1)2

1

y + 1

∣∣∣ =
x

(y + 1)2
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since x, y > 0 in the integral. We use the change of variables formula to get

∫ ∞
0

∫ ∞
0

e−(t+s)ta−1s−adsdt =

∫ ∞
0

∫ ∞
0

e−(t+s) t

s

a

t−1dsdt

=

∫ ∞
0

∫ ∞
0

e−xya
(

xy

y + 1

)−1 ∣∣∣∂(x, y)

∂(t, s)

∣∣∣dydx
=

∫ ∞
0

∫ ∞
0

e−xya
y + 1

xy

x

(y + 1)2
dydx

=

∫ ∞
0

∫ ∞
0

e−xya−1 1

(y + 1)
dydx

=

∫ ∞
0

e−x
(∫ ∞

0
ya−1 1

(y + 1)
dy

)
dx

=

∫ ∞
0

e−x
( π

sin πa

)
dx

=
π

sin πa

∫ ∞
0

e−xdx

=
π

sin πa
.

(d) We know that Γ is holomorphic for Re z > 0. Therefore, if 0 < z < 1, Γ(z)Γ(1− z) is
also holomorphic.
On the other hand, the function f(z) = π

sin πz is also holomorphic for 0 < z < 1, since
sin πa 6= 0 there. Since the two functions are equal on the real line, we conclude, using the
identity principle, that

Γ(z)Γ(1− z) =
π

sin πz

for all 0 < z < 1.

(e) Exercise 25 in Section 4.2 gives an outline of the proof for the formula

Γ(z1)Γ(z2)

Γ(z1 + z2)
= 2

∫ π
2

0
(cos2z1−1 θ)(sin2z2−1 θ)dθ
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By picking z1 = 3
4 and z2 = 1

4 , we get that

2

∫ π
2

0

√
cot θ dθ = 2

∫ π
2

0
(cos2 3

4 −1 θ)(sin2 1
4
−1 θ) dθ

= 2

∫ π
2

0
(cos2z1−1 θ)(sin2z2−1 θ)dθ

=
Γ(z1)Γ(z2)

Γ(z1 + z2)

=
Γ(3

4)Γ(1
4)

Γ(3
4 + 1

4)

=
Γ(1

4)Γ(1− 1
4)

Γ(1)

= Γ

(
1

4

)
Γ

(
1− 1

4

)
=

π

sin π 1
4

=
2π√

2
.

Therefore ∫ π
2

0

√
cot θ dθ =

π√
2
.
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Solutions to Exercises 5.4

1. By (5.4.2), we have that∫ ∞
−∞

cos 4x

x2 + 1
dx = Re

(∫ ∞
−∞

e4ix

x2 + 1
dx

)
.

Consider the contour integral

IγR =

∫
γR

e4iz

z2 + 1
dz =

∫
σR

e4iz

z2 + 1
dz +

∫ R

−R

e4ix

x2 + 1
dx = IσR + IR,

where γR and σR are as in Figure 5.21. For R > 1, the integrand has one simple pole at
z = i. By Proposition 5.1.3(ii), we have that

Res

(
e4iz

z2 + 1
, i

)
=
e−4

2i
.

Thus, by the residue theorem, for all R > 1, we have

IγR = IσR + IR = 2πi
e−4

2i
= πe−4.

We claim that IσR → 0 as R→∞. On the contour σR, we have that z = R(cos θ+ i sin θ),
0 ≤ θ ≤ π. Thus, sin θ ≥ 0 on the contour. We then have that∣∣e4iz

∣∣ =
∣∣∣e4iR(cos θ+i sin θ)

∣∣∣ = e−4R sin θ ≤ 1.

We can then estimate the integral IσR by noting that∣∣∣∣ e4iz

z2 + 1

∣∣∣∣ ≤ 1

|z2 + 1|
≤ 1

|z|2 − 1
=

1

R2 − 1
,

so by the ML-inequality,

|IσR | =
∣∣∣∣∫
σR

e4iz

z2 + 1
dz

∣∣∣∣ ≤ πR

R2 − 1
→ 0 as R→∞.

Thus, as R→∞, IR → IγR = πe−4. We then have that∫ ∞
−∞

cos 4x

x2 + 1
dx = Re

(∫ ∞
−∞

e4ix

x2 + 1
dx

)
= Re

(
πe−4

)
= πe−4.

5. The degree of the denominator is 2 more than the degree of the numerator; so we can
use the contour in Figure 5.21 and proceed as in Example 5.4.1.
Step 1: The integral is absolutely convergent.∣∣∣∣ x2 cos 2x

(x2 + 1)2

∣∣∣∣ ≤ x2

(x2 + 1)2
≤ 1

x2 + 1
,



Section 5.4 Improper Integrals of Products of Rational and Trigonometric Functions 129

because
x2

(x2 + 1)2
=

(x2 + 1)− 1

(x2 + 1)2
=

1

x2 + 1
− 1

(x2 + 1)2
≤ 1

x2 + 1
.

Since
∫∞
−∞

1
x2+1

dx <∞ (you can actually compute the integral = π), we conclude that our
integral is absolutely convergent.
Step 2:∫ ∞

−∞

x2 cos 2x

(x2 + 1)2
dx =

∫ ∞
−∞

x2 cos 2x

(x2 + 1)2
dx+ i

∫ ∞
−∞

x2 sin 2x

(x2 + 1)2
dx =

∫ ∞
−∞

x2e2ix

(x2 + 1)2
dx

because ∫ ∞
−∞

x2 sin 2x

(x2 + 1)2
dx = 0,

being the integral of an odd function over a symmetric interval.
Step 3: Let γR and σR be as in Figure 5.21. We will show that∫

σR

z2e2iz

(z2 + 1)2
dz → 0 as R→∞.

|IσR | =
∣∣∣∣∫
σR

z2e2iz

(z2 + 1)2
dz

∣∣∣∣ ≤ l(σR) max
z on σR

∣∣∣∣ z2e2iz

(z2 + 1)2

∣∣∣∣ = πR ·M.

For z on σR we have ∣∣e2iz
∣∣ ≤ e−2R sin θ ≤ 1.

So ∣∣∣∣ z2e2iz

(z2 + 1)2

∣∣∣∣ ≤ ∣∣∣∣ z2

(z2 + 1)2

∣∣∣∣ ≤ ∣∣∣∣z2 + 1− 1

(z2 + 1)2

∣∣∣∣
≤

∣∣∣∣ 1

z2 + 1

∣∣∣∣+

∣∣∣∣ 1

(z2 + 1)2

∣∣∣∣
≤ 1

R2 − 1
+

1

(R2 − 1)2
.

So

|IσR | =
πR

R2 − 1
+

πR

(R2 − 1)2
,

and this goes to zero as R→∞.
Step 4: We have ∫

γR

z2e2iz

(z2 + 1)2
dz = 2πRes

(
z2e2iz

(z2 + 1)2
, i

)
,

because we have only one pole of order 2 at i in the upper half-plane.

Res

(
z2e2iz

(z2 + 1)2
, i

)
= lim

z→i

d

dz

[
(z − i)2 z2e2iz

(z2 + 1)2

]
=

d

dz

[
z2e2iz

(z + i)2

]∣∣∣∣
z=i

= i
e−2

4
,
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after many (hard-to-type-but-easy-to-compute) steps that we omit. So IγR = 2πi(i e
−2

4 ) =

−π e−2

2 . Letting R → ∞ and using the fact that IγR → I, the desired integral, we find

I = −π e−2

2 .

9. In the integral the degree of the denominator is only one more than the degree of the
numerator. So the integral converges in the principal value sense. Let us check if the
denominator has roots on the real axis:

x2 + x+ 9 = 0⇒ x = −1

2
± i
√

35

2
.

We have no roots on the real axis, so we will proceed as in Example 5.4.5, and use Jordan’s
Lemma. Refer to Example 5.4.5 for further details of the solution. Consider∫

γR

z

z2 + z + 9
eiπz dz =

∫
γR

f(z)eiπz dz,

where γR is as in Figure 5.24. By Corollary 5.4.4,∣∣∣∣∫
σR

f(z)eiπz dz

∣∣∣∣→ 0, as R→∞.

Apply the residue theorem:∫
γR

f(z)eiπz dz = 2πiRes
(
f(z)eiπz, z1

)
,

where z1 = −1
2 + i

√
35
2 is the only (simple) pole of f(z)eiπz in the upper half-plane. By

Proposition 5.1.3(ii) we have

Res
(
f(z)eiπz, z1

)
=

zeiπz

d
dz (z2 + z + 9)

∣∣∣∣∣
z=z1

=
z1e

iπz1

2z1 + 1
=
−(1

2 +
√

35
2 i)

√
35

e−π
√
35
2

= −e
−π
√

35
2

2
√

35
− ie

−π
√
35
2

2
.

So ∫
γR

f(z)eiπz dz = 2πi

(
−e
−π
√
35
2

2
√

35
− ie

−π
√
35
2

2

)

= πe−π
√
35
2 + iπ

e−π
√
35
2

√
35

But

lim
R→∞

∫
γR

f(z)eiπz dz =

∫ ∞
−∞

x cosπx

x2 + x+ 9
dx+ i

∫ ∞
−∞

x sinπx

x2 + x+ 9
dx.
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Taking real and imaginary parts, we get∫ ∞
−∞

x cosπx

x2 + x+ 9
dx = πe−π

√
35
2 and

∫ ∞
−∞

x sinπx

x2 + x+ 9
dx = π

e−π
√
35
2

√
35

.

13. Use an indented contour γr,R as in Fig. 5.31, with an indentation around 0, and consider
the integral

Ir,R =

∫
γr,R

1− eiz

z2
dz =

∫
γr,R

g(z) dz,

where g(z) = 1−eiz
z2

. Note that g(z) has a simple pole at 0. To see this, consider its Laurent
series expansion around 0:

g(z) =
1

z2

(
1−

(
1 + (iz) + (iz)2/2! + (iz)3/3! + · · ·

))
= − i

z
+

1

2
+ i

z

3!
− · · ·

Moreover, Res (g(z), 0) = −i. By Corollary 5.4.8,

lim
r→0+

∫
σr

g(z) = iπ(−i) = π.

(Keep in mind that σr has a positive orientation, so it is traversed in the opposit direction
on γr,R. See Figure 5.31.) On the outer semi-circle, we have∣∣∣∣∫

σR

g(z) dz

∣∣∣∣ ≤ πR

R2
max

z on σR
|1− eiz| = π

R
max

z on σR
|1− eiz|.

Using an estimate as in Example 5.4.1, Step 3, we find that for z on σR,∣∣eiz∣∣ ≤ e−R sin θ ≤ 1.

Hence maxz on σR |1−eiz| ≤ 1+1 = 2. So |IσR | ≤ 2π
R → 0, as R→∞. Now g(z) is analytic

inside and on the simple path γr,R. So by Cauchy’s theorem,∫
γr,R

g(z) dz = 0.

So

0 =

∫
γr,R

g(z) dz =

→0︷ ︸︸ ︷∫
σR

g(z) dz−

→π︷ ︸︸ ︷∫
σr

g(z) dz+

→I︷ ︸︸ ︷∫
[−R,−r]

g(z) dz +

∫
[r, R]

g(z) dz .

As r → 0+ and R→∞, we obtain

P.V.

∫ ∞
−∞

1− cosx

x2
dx = Re (I) = Re (π) = π.
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17. Use an indented contour as in Figure 5.31 with an indentation around 0. We have

P.V.

∫ ∞
−∞

sinx

x(x2 + 1)
dx = Im

(
P.V.

∫ ∞
−∞

eix

x(x2 + 1)
dx

)
= Im (I).

Ir,R =

∫
γr,R

eiz

z(z2 + 1)
dz =

∫
γr,R

g(z) dz,

where g(z) = eiz

z(z2+1)
. Note that g(z) has a simple pole at 0, and Res (g(z), 0) = 1. By

Corollary 2,

lim
r→0+

∫
σr

g(z) = iπ(1) = iπ.

(As in Exercise 13, σr has a positive orientation, so it is traversed in the opposit direction
on γr,R. See Figure 5.31.) As in Example 1, |IσR | → 0, as R →∞. Now g(z) has a simple
pole at i inside γr,R. So by the residue theorem,∫

γr,R

g(z) dz = 2πRes (g(z), i) = 2πi
ei(i)

i(2i)
= −πe−1.

So

−πe−1 =

∫
γr,R

g(z) dz =

→0︷ ︸︸ ︷∫
σR

g(z) dz−

→iπ︷ ︸︸ ︷∫
σr

g(z) dz+

→I︷ ︸︸ ︷∫
[−R,−r]

g(z) dz +

∫
[r, R]

g(z) dz .

As r → 0+ and R→∞, we obtain

−πe−1 = I − iπ.

Solving for I and taking imaginary parts, we find

I = i(π − πe−1) Im (I) = π − πe−1,

which is the value of the desired integral.

21. (a) We have that
∫∞
−∞

sinx
x dx = π, so since sinx

x is even,
∫∞

0
sinx
x dx = π

2 . Trivially, for

a = 0, we have
∫∞

0
sin ax
x dx = 0. For a > 0, let u = ax to get

2

π

∫ ∞
0

sin ax

x
dx =

2

π

∫ ∞
0

sinu
u
a

du

a
=

2

π

∫ ∞
0

sinu

u
du = 1.

For a < 0, letting u = ax changes the limits of integration, yielding

2

π

∫ ∞
0

sin ax

x
dx =

2

π

∫ −∞
0

sinu
u
a

du

a
= − 2

π

∫ ∞
0

sinu

u
du = −1.

(b) We have that

(sin ax)(cos bx) =
1

2

(
sin
(
(a+ b)x

)
+ sin

(
(a− b)x

))
.
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Thus, the integral becomes∫ ∞
0

(sin ax)(cos bx)

x
dx =

∫ ∞
0

sin
(
(a+ b)x

)
+ sin

(
(a− b)x

)
2x

dx

=

∫ ∞
0

sin
(
(a+ b)x

)
2x

dx+

∫ ∞
0

sin
(
(a− b)x

)
2x

dx

=
π

4

(
sgn (a+ b) + sgn (a− b)

)
=
π

4
+
π

4
sgn (a− b),

from which the claimed formula follows.

25. (a) For w > 0, consider

J =

∫
C

eiwz

e2πz − 1
dz,

where C is the indented contour in Figure 5.32. The integrand is analytic inside and on C.
So

(1) 0 = J =

∫
C

eiwz

e2πz − 1
dz = I1 + I2 + I3 + I4 + I6 + I6,

where Ij is the integral over the jth component of C, starting with the line segement [ε, R]
and moving around C counterclockwise. As ε → 0+ and R → ∞, I1 → I, the desired
integral.

For I3, z = x+ i, where x varies from R to ε:

I3 =

∫ ε

R

eiw(x+i)

e2π(x+i) − 1
dx = −e−w

∫ R

ε

eiwx

e2πx − 1
dx.

As ε→ 0+ and R→∞, I3 → −e−wI.

For I2, z = R+ iy, where y varies from 0 to 1:

|I3| ≤ 1 · max
z=R+iy
0≤y≤1

∣∣∣∣ eiwz

e2πz − 1

∣∣∣∣ ;
∣∣∣∣ eiwz

e2πz − 1

∣∣∣∣ =

∣∣∣∣∣ eiw(R+iy)

e2π(R+iy) − 1

∣∣∣∣∣
=

∣∣∣∣ eiwR

e2πR − 1

∣∣∣∣→ 0, as R→∞.

So I2 → 0, as R→∞.

For I5, z = iy, where y varies from 1− ε to ε:

I5 =

∫ ε

1−ε

eiw(iy)

e2π(iy) − 1
i dy = −i

∫ 1−ε

ε

e−wy

e2πiy − 1
dy.
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For I4, the integral over the quarter circe from (ε, ε + i) to (0, i − iε), we apply Corollary
5.4.8, to compute the limit

lim
ε→0

∫
γ4

eiwz

e2πz − 1
dz = −iπ

2
Res

(
eiwz

e2πz − 1
, i

)
= −iπ

2

eiw(i)

2πe2π(i)
= −ie

−w

4
.

For I6, the integral over the quarter circe from (0, iε) to (ε, 0), we apply Corollary 5.4.8,
to compute the limit

lim
ε→0

∫
γ6

eiwz

e2πz − 1
dz = −π

2
Res

(
eiwz

e2πz − 1
, 0

)
= −π

2
i
eiw(0)

2πe2π(0)
= − i

4
.

Plug these findings in (1) and take the limit as R→∞ then as ε→ 0, and get

lim
ε→0

[∫ ∞
ε

eiwx

e2πx − 1
dx− e−w

∫ ∞
ε

eiwx

e2πx − 1
dx− i

∫ 1−ε

ε

e−wy

e2πiy − 1
dy

]
− ie

−w

4
− i

4
= 0

or

lim
ε→0

[∫ ∞
ε

eiwx

e2πx − 1
dx− e−w

∫ ∞
ε

eiwx

e2πx − 1
dx− i

∫ 1−ε

ε

e−wy

e2πiy − 1
dy

]
= i(

e−w

4
+

1

4
).

(Note: The limits of each individual improper integral does not exist. But the limit of
the sum, as shown above does exist. So, we must work wth the limit of the three terms
together.) Take imaginary parts on both sides:

(2) lim
ε→0

Im

[∫ ∞
ε

eiwx

e2πx − 1
dx− e−w

∫ ∞
ε

eiwx

e2πx − 1
dx− i

∫ 1−ε

ε

e−wy

e2πiy − 1
dy

]
=
e−w + 1

4
.

Now

Im

[∫ ∞
ε

eiwx

e2πx − 1
dx− e−w

∫ ∞
ε

eiwx

e2πx − 1
dx− i

∫ 1−ε

ε

e−wy

e2πiy − 1
dy

]
=

∫ ∞
ε

sinwx

e2πx − 1
(1− e−w) dx+

∫ 1−ε

ε
Im

(
(−i)e−wy

e2πiy − 1

)
dy;(3)

Im

(
(−i)e−wy

e2πiy − 1

)
= −Re

(
(−i)e−wy

e2πiy − 1

)
= −Re

(
e−wy

e2πiy − 1

)
= −e−wy Re

(
1

e2πiy − 1

)
= −e−wy Re

(
e−iπy

eiπy − e−iπy

)
= −e−wy Re

(
cosπy − i sinπy

2i sinπy

)
=
e−wy

2
.
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Plugging this in (3) and using (2), we get

lim
ε→0

[∫ ∞
ε

sinwx

e2πx − 1
(1− e−w) dx+

∫ 1−ε

ε

e−wy

2
dy

]
=
e−w + 1

4
.

Evaluate the second integral and get

lim
ε→0

[∫ ∞
ε

sinwx

e2πx − 1
(1− e−w) dx+

e−w(1−ε) − e−wε

2(−w)

]
=
e−w + 1

4
.

lim
ε→0

∫ ∞
ε

sinwx

e2πx − 1
(1− e−w) dx+ lim

ε→0

e−w(1−ε) − e−wε

2(−w)
=
e−w + 1

4
.

(1− e−w) lim
ε→0

∫ ∞
ε

sinwx

e2πx − 1
dx+

1− e−w

2w
=
e−w + 1

4
.

So

(1− e−w) lim
ε→0

∫ ∞
ε

sinwx

e2πx − 1
dx =

e−w + 1

4
− 1− e−w

2w
;

lim
ε→0

∫ ∞
ε

sinwx

e2πx − 1
dx =

1

1− e−w

[
e−w + 1

4
− 1− e−w

2w

]
∫ ∞

0

sinwx

e2πx − 1
dx =

−1

2w
+

1

4

ew + 1

ew − 1
.

(b) Setting B0 = 1 we have

z coth z =
∞∑
n=0

22n B2n

(2n)!
z2n, |z| < π

z

2
coth

z

2
=

∞∑
n=0

22n B2n

(2n)!
(
z

2
)2n, |z

2
| < π

z

2

e
z
2 + e−

z
2

e
z
2 − e−

z
2

=
∞∑
n=0

B2n

(2n)!
z2n, |z| < 2π

1

2

e
z
2 + e−

z
2

e
z
2 − e−

z
2

=
B0

z
+

∞∑
n=1

B2n

(2n)!
z2n−1, |z| < 2π

1

2

e
z
2 + e−

z
2

e
z
2 − e−

z
2

− B0

z
=

∞∑
n=1

B2n

(2n)!
z2n−1, |z| < 2π

1

4

ez + 1

ez − 1
− 1

2z
=

1

2

∞∑
n=1

B2n

(2n)!
z2n−1, |z| < 2π

(c) Replace sinwx in the integral in (a) by its Taylor series

sinwx =
∞∑
k=1

(−1)k−1w
2k−1x2k−1

(2k − 1)!
,
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using part (b) and interchanging order of integration we get∫ ∞
0

1

e2πx − 1

∞∑
n=0

(−1)n
(wx)2n+1

(2n+ 1)!
dx =

1

2

∞∑
n=1

B2n

(2n)!
w2n−1

∞∑
n=0

(−1)n

(2n+ 1)!
w2n+1

∫ ∞
0

x2n+1

e2πx − 1
dx =

1

2

∞∑
n=1

B2n

(2n)!
w2n−1

∞∑
n=1

(−1)n−1

(2n− 1)!
w2n−1

∫ ∞
0

x2n−1

e2πx − 1
dx =

1

2

∞∑
n=1

B2n

(2n)!
w2n−1.

Comparing the coefficients of w, we obtain∫ ∞
0

x2n−1

e2πx − 1
dx =

(−1)n−1

4n
B2n (n = 1, 2, . . .).
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Solutions to Exercises 5.5

1. As in Example 5.5.1, take w > 0 (the integral is an even function of w),

1√
2π

∫ ∞
−∞

e−
x2

2 coswxdx =
1√
2π

∫ ∞
−∞

e−
x2

2 eiwx dx (because

∫ ∞
−∞

e−
x2

2 sinwxdx = 0)

=
1√
2π

∫ ∞
−∞

e−
1
2

(x−iw)2− 1
2
w2
dx

= e−
1
2
w2 1√

2π

=J︷ ︸︸ ︷∫ ∞
−∞

e−
1
2

(x−iw)2 dx =
e−

1
2
w2

√
2π

J.

To evaluate J , consider the integral

I =

∫
γR

e−
1
2

(z−iw)2 dz,

where γR is a rectangualr contour as in Figure 5.33, with length of the vertical sides equal
to w. By Cauchy’s theorem, I = 0 for all R.

Let Ij denote the integral on γj (see Example 5.5.1). Using the estimate in Example
5.5.1, we see that I2 and I4 tend to 0 as R → ∞. On γ3, z = z + iw, where x varies from
R ro −R: ∫ −R

R
e−

1
2

(x+iw−iw)2 dx = −
∫ R

−R
e−

1
2
x2 dx,

and this tends to −
√

2π as R→∞, by (1), Sec. 5.4. Since I = 0 for all R, it follows that

J = lim
R→∞

Iγ1 = − lim
R→∞

Iγ3 =
√

2π.

Consequently,
1√
2π

∫ ∞
−∞

e−
x2

2 coswxdx = e−
w2

2

for all w > 0. Since the integral is even in w, the formula holds for w < 0. For w = 0 the
formula follows from (5.5.1).

5. (a) Let f(x) = cos 2x, then f ′(x) = −2 sin 2x and f ′′(x) = −4 cos 2x. If x ∈ (0, π
4 ), then

f ′′(x) < 0 and the graph concaves down. So any chord joining two points on the graph of
y = cos 2x above the interval (0, π

4 ) lies under the graph of y = cos 2x. take the two points
on the graph, (0, 1) and (π4 , 0). The equation of the line joining them is y = − 4

πx + 1.
Since it is under the graph of y = cos 2x for x ∈ (0, π4 ), we obtain

− 4

π
x+ 1 ≤ cos 2x for 0 ≤ x ≤ π

4
.

(b) Let Ij denote the integral of e−z
2

over the path γj in Figure 5.45. Since e−z
2

is entire,
by Cauchy’s theorem, I1 + I2 + I3 = 0.
(c) For I1, z = x,

I1 =

∫ R

0
e−x

2
dx→

∫ ∞
0

e−x
2
dx =

√
π

2
, as R→∞,
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by (5.5.1). On γ2, z = Reiθ z2 = R2(cos 2θ + i sin 2θ),∣∣∣e−z2∣∣∣ =
∣∣∣e−R2(cos 2θ+i sin 2θ)

∣∣∣ = e−R
2 cos 2θ ≤ e−R2(1− 4

π
θ).

Parametrize the integral I2 and estimate:

|I2| =

∣∣∣∣∣
∫ π

4

0
e−R

2e2iθRieiθdθ

∣∣∣∣∣
≤ R

∫ π
4

0

∣∣∣e−R2e2iθeiθ
∣∣∣ dθ ≤ R ∫ π

4

0
e−R

2(1− 4
π
θ)dθ

≤ Re−R
2

∫ π
4

0
eR

2 4
π
θdθ

= Re−R
2 1

R2

π

4
eR

2 4
π
θ

∣∣∣∣π4
0

=
π

4R
e−R

2
[
eR

2 − 1
]
,

which tends to 0 as R→∞.

(d) On γ3, z = xei
π
4 , where x varies from R to 0, dz = ei

π
4 dx. So

I3 = −ei
π
4

∫ R

0
e−x

2ei
π
2 dx = −ei

π
4

∫ R

0
e−x

2idx

= −ei
π
4

∫ R

0
(cosx2 − i sinx2)dx.

As R→∞, I3 converges to

−ei
π
4

∫ ∞
0

(cosx2 − i sinx2)dx.

(e) Let R→∞ in the sum I1 + I2 + I3 = 0 and get

√
π

2 − e
iπ
4

∫∞
0 (cosx2 − i sinx2)dx = 0;

ei
π
4

∫∞
0 (cosx2 − i sinx2)dx =

√
π

2 ;∫∞
0 (cosx2 − i sinx2)dx =

√
π

2 e
−iπ

4 ;∫∞
0 (cosx2 − i sinx2)dx =

√
π

2

(√
2

2 − i
√

2
2

)
.

The desired result follows upon taking real and imaginary parts.

9. We will integrate the function f(z) = 1
z(z−1)

√
z−2

around the contour in Figure 5.48.

Here
√
z − 2 is defined with the branch of the logarithm with a branch cut on the positive

real axis. It is mulitple valued on the semi-axis x > 2. Aproaching the real axis from above
and to right of 2, we have limz→x

√
z − 2 =

√
x− 2. Aproaching the real axis from below

and to right of 2, we have limz→x
√
z − 2 = −

√
x− 2. Write

I = I1 + I2 + I3 + I4,
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where I1 is the integral over the small circular part; I2 is the integral over the interval above
the x-axis to the right of 2; I3 is the integral over the larger circular path; I4 is the integral
over the interval (neg. orientation) below the x-axis to the right of 2. We have I1 → 0 as
r → 0 and I3 → 0 as R → ∞. (See Example 5.5.3 for similar details.) We have I2 → I as
R→∞ and I4 → I as R→∞, where I is the desired integral. So

2I = 2πi [ Res (0) + Res (1)] ;

Res (0) = lim
z→0

1

(z − 1)
√
z − 2

= − 1√
−2

= − 1

e
1
2

log0(−2)
= − 1

e
1
2

(ln 2+iπ)

= − 1

i
√

2
=

i√
2

;

Res (1) =
1√
−1

= −i;

I = iπ

[
i√
2
− i
]

= π

[
1− 1√

2

]
.

13. (a) In Figure 5.51, let
γ1 denote the small circular path around 0 (negative direction);
γ2 the line segment from r to 1− r, above the x-axis (positive direction);
γ3 the small semi-circular path around 1 above the x-axis (negative direction);
γ4 the line segment from 1 + r to R− 1, above the x-axis (positive direction);
γ5 the large circular path around 0 (positive direction);
γ6 the line segment from R to 1 + r, below the x-axis (negative direction);
γ7 the small semi-circular path around 1 below the x-axis (negative direction);
γ8 the line segment from 1− r to r, below the x-axis (negative direction).

We integrate the function

f(z) =
zp

z(1− z)
on the contour γ, where zp = ep log0 z (branch cut along positive x-axis). By Cauchy’s
theorem, ∫

γ
f(z) dz = 0 ⇒

8∑
j=1

Ij = 0.

Review the integrals I3, I4, I7, and I8 from Example 5.5.3, then you can show in a similar
way that I1, I3, and I7 tend to 0 as r → 0. Also I5 → 0 as R → ∞. We will give some
details. For I1,

|I1| =

∣∣∣∣∫
γ1

zp

z(1− z)
dz

∣∣∣∣
= 2πr

rp

r(1− r)
= 2π

rp

(1− r)
→ 0 as r → 0.

For I2 and I5, we have

I2 + I5 →
∫ ∞

0

xp

x(1− x)
dx, as r → 0 and R→∞.
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For I3 and I6, we have

I3 + I6 → −
∫ ∞

0

ep log0 x

x(1− x)
dx = −e2pπi

∫ ∞
0

xp

x(1− x)
dx, as r → 0 and R→∞.

To evaluate I4 and I7, we use a trick that will allow us to apply Lemma 5.4.3. Note that on
γ4, log0 z = Log z, and on γ7, log0 z = log π

2
z. This allows us to replace log0 by a branch of

the log which is analytic in a neighborhood of the contour of integration and ths allows us
to apply Lemma 5.4.3. According to this lemma, as r → 0,

I4 =

∫
γ4

epLog z

z(1− z)
→ iπepLog (1) = iπ;

and

I7 =

∫
γ4

e
p log π

2
z

z(1− z)
→ iπe

p log π
2

(1)
= iπe2πpi.

So as r → 0,

I4 + I7 =

∫
γ4

epLog z

z(1− z)
→ iπ(1 + e2πpi).

Adding the integrals together and then taking limits, we get

(1− e2pπi)I + iπ(1 + e2πpi) = 0

I = −iπ 1+e2πpi

1−e2πpi

I = −iπ e−πpi+eπpi
e−πpi−eπpi = π cot pπ.

(b) Use x = et, do the substitution, then replace t by x, and get, from (a),

P.V.

∫ ∞
−∞

epx

1− ex
dx = π cot pπ (0 < p < 1).

(c) Change variables x = 2u, dx = 2 du, then

π cot pπ = 2P.V.

∫ ∞
−∞

e2pu

1− e2u
du

= 2P.V.

∫ ∞
−∞

e2pue−u

e−u − eu
du = −P.V.

∫ ∞
−∞

e(2p−1)u

sinhu
du

−π cot

(
π
w + 1

2

)
= P.V.

∫ ∞
−∞

ewu

sinhu
du (w = 2p− 1).

But

− cot

(
π
w + 1

2

)
= tan

πw

2
,

so

P.V.

∫ ∞
−∞

ewu

sinhu
du = tan

πw

2
.
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Replace u by x and get

P.V.

∫ ∞
−∞

ewx

sinhx
dx = π tan

πw

2
.

(d) If |a| < b, take t = bx and w = a, then

P.V.

∫ ∞
−∞

eax

sinh bx
dx =

π

b
tan

πa

2b
.

(e) Replace a by −a in (d) and get

P.V.

∫ ∞
−∞

e−ax

sinh bx
dx = −π

b
tan

πa

2b
.

Subtract from (d) and divide by 2:∫ ∞
−∞

sinh ax

sinh bx
dx =

π

b
tan

πa

2b
(b > |a|).

Note that the integral is convergent so there is no need to use the principal value.

17. We use a contour like the one in Figure 5.34. Let
γ1 denote the small circular path around 0 (negative direction);
γ2 the line segment from r to R, above the x-axis (positive direction);
γ3 the large circular path around 0 (positive direction);
γ4 the line segment from R to r, below the x-axis (negative direction). We integrate the
function

f(z) =

√
z

z2 + z + 1

on the contour γ, where
√
z = e

1
2

log0 z (branch cut along positive x-axis). By the residue
theorem, ∫

γ
f(z) dz = 2πi

∑
j

Res (f, zj) ⇒
4∑
j=1

Ij = 2πi
∑
j

Res (f, zj),

where the sum is over all the residues of f in the region inside γ. The poles of f in this
region are at the roots of z2 + z + 1 = 0 or

z =
−1±

√
−3

2
; z1 =

−1

2
+ i

√
3

2
, z2 =

−1

2
− i
√

3

2
.

We have

|z1| =
√

(−1
2 )2 + (

√
3

2 )2 = 1, z1 = ei
2π
3

log0(z1) = ln |z1|+ i arg 0(z1) = 0 + i2π
3 = i2π

3

Res (z1) =
√
z1

2z1+1 = e
1
2 log0(z1)

2z1+1

Res (z1) = ei
π
3

2ei
2π
3 +1

.
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Similarly,

|z2| =
√

(−1
2 )2 + (−

√
3

2 )2 = 1, z2 = ei
4π
3

log0(z2) = ln |z2|+ i arg 0(z2) = 0 + i4π
3 = i4π

3

Res (z2) =
√
z2

2z2+1 = e
1
2 log0(z2)

2z2+1

Res (z2) = ei
2π
3

2ei
4π
3 +1

.

Let us now compute the integrals. For I1,

|I1| =

∣∣∣∣∫
γ1

√
z

z2 + z + 1
dz

∣∣∣∣
= 2πr

√
r

1− r2 − r
→ 0 as r → 0.

For I2, we have

I2 →
∫ ∞

0

√
x

x2 + x+ 1
dx = I, as r → 0 and R→∞.

A simple estimate shows that I3 → 0 as R→∞. For I4,
√
z = e

1
2

(ln |z|+2πi) =
√
xeiπ. So

I4 → −
∫ ∞

0

e
1
2

log0 x

x2 + x+ 1
dx = −eπi

∫ ∞
0

√
x

x2 + x+ 1
dx = I, as r → 0 and R→∞.

Adding the integrals together and then taking limits, we get

2I = 2πi

(
ei
π
3

2ei
2π
3 + 1

+
ei

2π
3

2ei
4π
3 + 1

)

I = πi

(
ei
π
3

2ei
2π
3 + 1

+
ei

2π
3

2ei
4π
3 + 1

)

= πi

(
2ei

5π
3 + ei

π
3 + 2ei

4π
3 + ei

2π
3

4ei
6π
3 + 2ei

2π
3 + 2ei

4π
3 + 1

)
=

π√
3
.

Use

ei
π
3 =

1

2
+
i

2

√
3, ei

2π
3 = −1

2
+
i

2

√
3,

ei
3π
3 = −1, ei

4π
3 = −1

2
− i

2

√
3,

ei
5π
3 =

1

2
− i

2

√
3, ei

6π
3 = 1

21. (a) Letting γ(t) =
√
α(t− β), a ≤ t ≤ b, we have γ′(t) =

√
α, and

1√
α

∫
γ
e−z

2
dz =

1√
α

∫ b

a
e−(
√
a(t−β))

2√
α dt =

∫ b

a
e−α(t−β)2 dt.
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Since Reα > 1, we must have |Argα| < π
2 , and since Arg

√
α = 1

2 Argα, |Arg
√
α| < π

4 .
(b) Let ε = 1

2

(
π
4 − Arg

√
α
)
. Then ε > 0 by (a) and π

4 − ε > Arg
√
α. Thus, the line

at angle θ = Arg
√
α must eventually pass under the line at angle θ = π

4 − ε in the right
half-plane, and symmetrically, the other end of the line must eventually pass above the line
at angle θ = −3π

4 − ε in the left half-plane.
(c) We have that ∣∣∣e−z2∣∣∣ = eRe (−R2e2iθ) = e−R

2 cos(2θ).

Since we are letting R→∞, we may assume R is sufficiently large as required in (b). Then,
on γ2, we have that z = Reiθ. By Figure 5.53, 0 ≤ θ, and by (b), θ ≤ π

4 − ε <
π
4 . Then

0 ≤ 2θ < π
2 , and cos(2θ) > 0. Since `(γ2) < π

4R, by the ML-inequality,

|I2| ≤
π

4
Re−R

2 cos(2θ) → 0 as R→∞.

Similarly, |I4| → 0 as R→∞.
(d) Since the integrand is entire,∫

γ
e−z

2
dz = 0 = I1 + I2 + I3 + I4.

Letting R→∞ and using (a) gives us

√
α

∫ ∞
−∞

e−α(t−β)2 dt+

∫ −∞
∞

e−x
2
dx = 0.

But
∫ −∞
∞ e−x

2
dx = −

∫∞
−∞ e

−x2 dx = −
√
π. Solving for the desired integral gives us∫ ∞

−∞
e−α(t−β)2 dt =

√
π

α
.
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Solutions to Exercises 5.6

1. Note that f(z) = 1
z2+9

has two simples poles at ±3i. Since f(z) does not have poles on
the integers, we may apply Proposition 1 and get

∞∑
k=−∞

1

k2 + 9
= −π [ Res (f(z) cotπz, 3i) + Res (f(z) cotπz, −3i)]

= −π
[

lim
z→3i

cotπz

z + 3i
+ lim
z→−3i

cotπz

z − 3i

]
= −π

[
1

6i
cot(3πi)− 1

6i
cot(−3πi)

]
=

π

3
[i cot(3πi)] =

π

3
coth(3π),

because cot(iz) = −i coth(z). You can prove the last identity by using (25) and (26) of
Section 1.6.

5. Reason as in Exercise 1 with f(z) = 1
4z2−1

, which has two simples poles at ±1
2 . Since

f(z) does not have poles on the integrers, we may apply Proposition 1 and get

∞∑
k=−∞

1

4k2 − 1
= −π

[
Res

(
f(z) cotπz,

1

2

)
+ Res

(
f(z) cotπz, −1

2

)]

= −π

[
lim
z→ 1

2

cotπz

4(z + 1
2)

+ lim
z→− 1

2

cotπz

4(z − 1
2)

]
= −π

2

[
cot
(π

2

)
− cot

(
−π

2

)]
= 0,

because cot
(
π
2

)
= 0.

9. Reason as in Exercise 1 with f(z) = 1
(z−2)(z−1)+1 , which has two simples poles where

z2 − 3z + 3 = 0 or

z =
3±
√
−3

2
; z1 =

3 + i
√

3

2
, z2 =

3− i
√

3

2
.

Since f(z) does not have poles on the integrers, we may apply Proposition 1 and get

∞∑
k=−∞

1

(k − 2)(k − 1) + 1
= −π [ Res (f(z) cotπz, z1) + Res (f(z) cotπz, z2)]

Let’s compute:

Res (z1) = lim
z→z1

cotπz

(z − z2)
=

cotπz1

(z1 − z2)

z1 − z2 = i
√

3,

cot(πz1) = cot

(
π

3 + i
√

3

2

)
= − tan

(
iπ

√
3

2

)
= −i tanh

(
π

√
3

2

)
.
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(Prove and use the identities cot
(
z + 3π

2

)
= − tan(z) and tan(iz) = i tanh z.) So

Res (z1) =
−i tanh

(√
3

2 π
)

i
√

3
= −

tanh
(√

3
2 π
)

√
3

.

A similar computation shows that Res (z2) = Res (z1), hence

∞∑
k=−∞

1

(k − 2)(k − 1) + 1
=

2π√
3

tanh

(√
3

2
π

)

13. In the proof of Proposition 5.6.2, we apply (5.6.1) to all z ∈ Z except for z = 0, since
f may no longer be analytic at z = 0. Thus, we must include zj = 0 in the right sum of
(5.6.5) rather than in the left sum, which now excludes k = 0, giving us (5.6.6).

17. (a) Apply the result of Execrise 13 with f(z) = 1
z2n

:

∞∑
k=−∞
k 6=0

1

k2n
= −πRes

(
cot(πz)

z2n
, 0

)
,

because f has only one pole of order 2n at 0. The sum on the left is even, so

∞∑
k=1

1

k2n
= −π

2
Res

(
cot(πz)

z2n
, 0

)
.

(b) Recall the Taylor series expansion of z cot z from Exercise 31, Section 4.4,

z cot z =
∞∑
k=0

(−1)k
22kB2k

(2k)!
z2k

(πz) cot(πz) =
∞∑
k=0

(−1)k
22kB2kπ

2k

(2k)!
z2k

cot(πz) =
∞∑
k=0

(−1)k
22kB2kπ

2k−1

(2k)!
z2k−1.

So
cot(πz)

z2n
=
∞∑
k=0

(−1)k
22kB2kπ

2k−1

(2k)!
z+2k−2n−1.

The residue at 0 is a−1, the coefficient of 1
z , which is obtained from the series above when

2k − 2n− 1 = −1 or n = k. Hence

Res

(
cot(πz)

z2n
, 0

)
= (−1)n

22nB2nπ
2n−1

(2n)!
.

Using (a), and the fact that the summand is even, we get

∞∑
k=1

1

k2n
= (−1)n−1 22n−1B2nπ

2n

(2n)!
.
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Solutions to Exercises 5.7

1. The roots of the polynomial are easy to find using the quadratic formula:

z2 + 2z + 2 = 0 ⇒ z = −1± i.

Thus no roots are in the first quadrant. This, of course, does not answer the exercise. We
must arrive at this answer using the method of Example 1, with the help of the argument
principle.

First, we must argue that f has no roots of the positive x− axis. This is clear, because
if x > 0 then x2 +x+ 2 > 2 and so it cannot possibly be equal to 0. Second, we must argue
that there are no roots on the upper imaginary axis. f(iy) = −y2 + 2y + 2 = 2− y2 + 2y.
If y = 0, f(0) = 2 6= 0. If y > 0, then Im (f(y)) = 2y 6= 0. In all cases, f(iy) 6= 0 if y ≥ 0.

The number of zeros of the polynomial f(z) = z2 + 2z + 2 is equal to the number of
times the image of σR wraps around the origin, where γR is the circular path in the first
quadrant, in Fig. 4. This path consists of the interval [0, R], the circular arc σR, and the
interval on the imaginary axis from iR to 0. To find the image on γR, we consider the image
of each component separately.

Since f(x) is real for real x, we conclude that the image of the interval [0, R] is also an
interval, and it is easy to see that this interval is [2, R2 + 2R + 2]. So its initial point is
w0 = 2 and its terminal point is w1 = R2 + 2R+ 2.

The image of the arc σR starts at the point w1 = R2 + 2R + 2 and ends at f(iR) =
−R2 +2iR+2 = w2, which is the image of the terminal point of σR. We have Im (w2) = 2R
and Re (w2) = 2−R2 < 0 if R is very large. Hence the point f(w2) is in the second quadrant.
Also, for very large R, and |z| = R, the mapping z 7→ f(z) is approximately like z 7→ z2.
So f(z) takes σR and maps it “approximately” to the semi-circle (the map w = z2 doubles
the angles), with initial point w1 and terminal point w2.

We now come to the third part of the image of γR. We know that it starts at w2 and
end at w0. As this image path go from w2 to w0, does it wrap around zero or not? To
answer this question, we consider f(iy) = 2 − R2 + 2iy. Since Im (f(iy) > 0 if y > 0, we
conclude that the image point of iy remains in the upper half-plane as it moves from w2 to
w0. Consequently, the image curve does not wrap around 0; and hence the polynomial has
no roots in the first quadrant-as expected.

5. We follow the steps in the solution of Exercise 1, but here the roots of z4+8z2+16z+20 =
0 are not so easy to find, so we will not give them.

Argue that f has no roots of the positive x − axis. This is clear, because if x > 0
then x4 + 8x2 + 16z + 20 > 20 and so it cannot possibly be equal to 0. Second, we must
argue that there are no roots on the upper imaginary axis. f(iy) = y4 − 8y2 + 16iy + 20 =
y4 − 8y2 + 20 − 8iy. If y = 0, f(0) = 20 6= 0. If y > 0, then Im (f(y)) = −8y 6= 0. In all
cases, f(iy) 6= 0 if y ≥ 0.

The number of zeros of the polynomial f(z) = z4 +8z2 +16z+20 is equal to the number
of times the image of σR wraps around the origin, where γR is the circular path in the first
quadrant, in Fig. 4. This path consists of the interval [0, R], the circular arc σR, and the
interval on the imaginary axis from iR to 0. To find the image on γR, we consider the image
of each component separately.
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Since f(x) is real for real x, we conclude that the image of the interval [0, R] is also an
interval, and it is easy to see that this interval is [20, R4 + 8R2 + 16R + 20]. So its initial
point is w0 = 2 and its terminal point is w1 = R4 + 8R2 + 16R+ 20.

The image of the arc σR starts at the point w1 = R4 + 8R2 + 16R+ 20 on the real axis
and ends at f(iR) = R4−8R2 +20+16iR = w2, which is the image of the terminal point of
σR. We have Im (w2)) = 16R > 0 and Re (w2) = R4−8R2+20 > 0 if R is very large. Hence
the point f(w2) is in the first quadrant. Also, for very large R, and |z| = R, the mapping
z 7→ f(z) is approximately like z 7→ z2. So f(z) takes σR and maps it ”approximately” to
a circle (the map w = z4 multiplies angles by 4), with initial point w1 and terminal point
w2. So far, the image of [0, R] and σR wraps one around the origin.

We now come to the third part of the image of γR. We know that it starts at w2 and
end at w0. As this image path go from w2 to w0, does it close the loop around 0 or does
it unwrap it? To answer this question, we consider f(iy) = R4 − 8R2 + 20 + 16iy. Since
Im (f(iy) = 16y > 0 if y > 0, we conclude that the image point of iy remains in the upper
half-plane as it moves from w2 to w0. Consequently, the image curve wraps around 0; and
hence the polynomial has one root in the first quadrant.

9. Apply Rouché’s theorem with f(z) = 11, g(z) = 7z3 + 3z2. On |z| = 1, |f(z)| = 11 and
|g(z)| ≤ 7 + 3 = 10. Since |f | > |g| on |z| = 1, we conclude that N(f) = N(f + g) inside
C1(0). Since N(f) = 0 we conclude that the polynomial 7z3 + 3z2 + 11 has no roots in the
unit disk.

13. Apply Rouché’s theorem with f(z) = −3z, g(z) = ez. On |z| = 1, |f(z)| = 3 and

|g(z)| =
∣∣ecos t+i sin t

∣∣ = ecos t ≤ e.

Since |f | > |g| on |z| = 1, we conclude that N(f) = N(f + g) inside C1(0). Since N(f) = 1
we conclude that the function ez − 3z has one root in the unit disk.

17. Apply Rouché’s theorem with f(z) = 5, g(z) = z5 + 3z. On |z| = 1, |f(z)| = 5 and
|g(z)| ≤ 4. Since |f | > |g| on |z| = 1, we conclude that N(f) = N(f +g) inside C1(0). Since
N(f) = 0 we conclude that the function z5 + 3z + 5 has no roots in the unit disk. Hence

1
z5+3z+5

is analytic in the unit disk and by Cauchy’s theorem∫
C1(0)

dz

z5 + 3z + 5
= 0.

21. (a) Let g(z) = z and f(z) = zn − 1. Then

1

2πi

∫
CR(0)

z
nzn−1

zn − 1
dz =

1

2πi

∫
CR(0)

g(z)
f ′(z)

f(z)
dz =

n∑
j=1

m(zj)g(zj) =
n∑
j=1

zj ,

where zj are the roots of f(z) and m(zj) are their orders. But m(zj) = 1 since f ′(zj) 6= 0.
The zj are precisely the n roots of unity. Let S =

∑n
j=1 zj . Let ζ = 1

z , dζ = − 1
z2
dz, as z runs

through CR(0) in the positive direction, ζ runs through C1/R(0) in the negative direction.
Let C1/R(0)∗ denote the circle with radius 1/R with negative orientation.
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Then

1

2πi

∫
CR(0)

z
nzn−1

zn − 1
dz =

1

2πi

∫
C 1
R

(0)∗

n

ζn( 1
ζn − 1)

dζ

−ζ2
=

n

2πi

∫
C 1
R

(0)

dζ

(1− ζn)ζ2
.

(b) Evaluate the second integral in part (a) using Cauchy’s generalized integral formula and
conclude that

n

2πi

∫
−C 1

R
(0)

dζ

(1− ζn)ζ
=

n

2πi

∫
−C 1

R
(0)

(1− ζn)−1

ζ − 0
dζ = n

d

dζ

1

1− ζn

∣∣∣∣
ζ=0

=
−n2ζn−1

(1− ζn)2

∣∣∣∣
ζ=0

= 0.

Using (a), we find S = 0.

A different way to evaluate S is as follows: From (a),

S =
n

2πi

∫
CR(0)

zn

zn − 1
dz

=
n

2πi

∫
CR(0)

zn − 1

zn − 1
dz +

n

2πi

∫
CR(0)

1

zn − 1
dz

=
n

2πi

∫
CR(0)

1 · dz +
n

2πi

∫
CR(0)

1

zn − 1
dz

= 0 + 0 = 0.

The first integral is 0 by Cauchy’s theorem. The second integral is zero because CR(0)
contains all the roots of p(z) = zn − 1 (see Exercise 38, Sec. 3.4).

25. (i) Given z in the simple closed path C, consider the circle Tf(z) centered at the point
f(z) with radius |f(z)|. Since |g(z)| = |g(z)| < |f(z)| for z ∈ C, it follows that the distance
|g(z)| from f(z) + g(z) to f(z) is at most |f(z)| and thus f(z) + g(z) lies inside Tf(z). The
part of the image f [C] that lies in the interior of the circle Tf(z) is the image of a subarc
γj as described in the discussion after Proposition 5.7.4. Since the interior of the circle
Tf(z) is a simply connected region that does not contain the origin, there is a branch of the
logarithm in this region, which defines a branch of the argument. Thus there is an argument
function defined on Tf(z). Note now that in view of the picture below

0

y

x

f (z)

f (z) + g(z)
.θ
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the difference between the argument of f(z) and the argument of f(z) + g(z) is θ which is
at most π

2 in absolute value. This proves that

arg f(z)− π

2
< arg

(
f(z) + g(z)

)
< arg f(z) +

π

2
.

(ii) As in the discussion after Proposition 5.7.4, we pick points z1, . . . , zn−1 (and we set zn =
z0) such that the image of each subarc of C between f(zj) and f(zj+1) (j = 0, 1, . . . , n− 1)
is contained in a simply connected region and choose argument functions arg j+1 on this
region such that

arg 1f(z1) = arg 2f(z1), arg 2f(z2) = arg 3f(z2), . . . arg nf(zn) = arg nf(z0),

Then by part (i) we have

arg 1f(z0)− π

2
< arg 1

(
f(z0) + g(z0)

)
< arg 1f(z0) +

π

2
.

and also
arg nf(zn)− π

2
< arg n

(
f(zn) + g(zn)

)
< arg nf(zn) +

π

2
.

which is the same as

arg nf(z0)− π

2
< arg n

(
f(z0) + g(z0)

)
< arg nf(z0) +

π

2
.

Adding the preceding inequality to

− arg 1f(z0) +
π

2
> − arg 1

(
f(z0) + g(z0)

)
> − arg 1f(z0)− π

2
.

we obtain that

arg nf(z0)− arg 1f(z0)−π < arg n
(
f(z0)+g(z0)

)
− arg 1

(
f(z0)+g(z0)

)
< arg nf(z0)− arg 1f(z0)+π

or equivalently ∣∣∣∆C arg
(
f + g

)
−∆C arg f

∣∣∣ < π.

(Here ∆C arg f = arg nf(z0)− arg 1f(z0).) Since the function ∆C is integer-multiple of 2π,
if follows that

∆C arg
(
f + g

)
−∆C arg f = 0

hence the number of zeros of f inside C is the same as that of f + g inside C.

29. We are going to find the number zero of the the polynomial p(z) = z5 +z4 +6z2 +3z+1
in the unit disk by using Hurwitz’s theorom. To do so, it suffices to show the next parts.
(a) Consider the polynomial p(z) = p(z) − 1

n we will show that pn(z) → p(z) converges
uniformly on the closed unit disk. First of all, we say that

fn → f uniformly ⇔ Mn = Max|fn − f | → 0 as n→ 0

Now let pn(z) = p(z)− 1
n . Then

Mn = Max|pn(z)− p(z)| = 1

n
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Since limn→∞
1
n = 0, we have that pn → p converges uniformly.

(b) Let pn(z) = z5 + z4 + 6z2 + 3z+ 1− 1
n . Applying the Rouché’s Theorem on |z| = 1 with

f(z) = 6z2, g(z) = z5 + z4 + 3z + 1− 1
n , we get

|g(z)| = |z5 + z4 + 3z + 1− 1

n
| ≤ |z|5 + |z|4 + 3|z|+ |1− 1

n
| < 6 = 6|z|2 = |f(z)|

Since |g(z)| < |f(z)| on |z| = 1 , we have that N(f) = N(f + g) = N(pn). But since
f(z) = 6z2 has 2 zeros f + g = pn has 2 zeros.
(c) In part (a), we showed that pn → p converges uniformly. Also, it is clear that p(z) =
z5 + z4 + 6z2 + 3z + 1 is not identically zero. Then, by Hurwitz’s Theorem pn and p has
the same number of zeros. But, by part (b), we showed that pn has two zeros. Therefore,
p has two zeros.

33. For this question we are going to apply Lagrange Inversion formula. Consider the
equation the is given as z = a+ wez, then we have

w = f(z) = (z − a)e−z.

Let z0 = a , and evaluating this, we get

w0 = f(z0 = a) = (a− a)e−a = 0.

Also, it is clear that f(z) = (z − a)e−z is analytic at z0 = a and f ′(z0) 6= 0. Indeed,

f ′(z) = e−z − (z − a)e−z

⇒ f ′(a) = e−a 6= 0.

Now we apply Lagrange Inversion formula. But first we define φ(z) that is given in with
(5.7.13), we get

φ(z) =
z − z0

f(z)− w0
.

Considering z0 = a and w0 = 0 in φ(z), we get

φ(z) =
z − a

(z − a)e−z
= ez.

⇒ [φ(z)]n = enz.

Now differentiate it n− 1 times , we get

d

dz
[φ(z)]n = nenz

d2

dz2
[φ(z)]n = n2enz

...

dn−1

dzn−1
[φ(z)]n = nn−1enz.



Section 5.7 The Counting Theorem and Rouché Theorem 151

Evaluating the last equation for z0 = a, we get

dn−1

dzn−1
[φ(z)]n

∣∣∣∣
z0=a

= nn−1ean.

Now if we plug all these values, and z0 = a and w0 = 0 into the formula that is given by
(5.7.14), we obtain

z = g(w) = z0 +
∞∑
n=1

1

n!

dn−1

dzn−1
[φ(z)]n

∣∣∣∣
z0=a

(w − 0)n or;

z = g(w) = a+
∞∑
n=1

nn−1

n!
enawn.
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Solutions to Exercises 6.1
1. (a) The function u(x, y) = xy is harmonic on Ω = C, because

uxx = 0, uyy = 0, and so ∆u = 0.

(b) To find the conjugate gradient of u, apply Lemma 6.1.7: for z = x+ iy,

φ(z) = ux − iuy = y − ix = iz.

Clearly, φ is analytic in Ω as asserted by Lemma 6.1.7

5. We will directly verify Laplace’s equation. For u = x2 − y2 + 2x− y we evaluate partial
derivatives

uxx = (ux)x = (2x+ 2)x = 2

and

uyy = (uy)y = (−2y − 1)y = −2.

Since uxx + uyy = 2− 2 = 0 Laplace’s equation is satisfied and u is a harmonic function.

9. Here we verify Laplace’s equation again. For u = 1
x+y we evaluate partial derivatives

uxx = (ux)x =

(
− 1

(x+ y)2

)
x

=
2

(x+ y)3

and

uyy = (uy)y =

(
− 1

(x+ y)2

)
y

=
2

(x+ y)3
.

Since uxx + uyy = 4
(x+y)3

6= 0, Laplace’s equation is not satisfied and u is not a harmonic

function.

13. To use Theorem 6.1.2, we can first notice that the following identity is true

(x+ i y)2 = x2 + 2i xy + (iy)2 = x2 − y2 + i 2xy.

Using the polar form for z = x+ iy we have

ez
2

= ex
2−y2+i 2xy = ex

2−y2(cos(2xy) + i sin(2xy)).

Since u = Re (ez
2
) we conclude from Theorem 6.1.2 that u is harmonic.

17. To find a harmonic conjugate v for u = x+ 2y, we use the Cauchy-Riemann equations
as follows. We want u + i v to be analytic. Hence v must satisfy the Cauchy-Riemann
equations

(1)
∂u

∂x
=
∂v

∂y
, and

∂u

∂y
= −∂v

∂x
.
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Since ∂u
∂x = 1, the first equation implies that

1 =
∂v

∂y
.

To get v we will integrate both sides of this equation with respect to y. Doing so we fix a
value of x. Therefore the result of integration with respect to y is a function of y plus some
constant which eventually may depend on x. Thus integrating with respect to y yields

v(x, y) = y + c(x),

where c(x) is a function of x alone. Plugging this into the second equation in (1), we get

2 = −
(
0 +

d

dx
c(x)

)
,

or equivalently

d

dx
c(x) = −2.

If we integrate this equation with respect to x we get that c(x) = −2x + C where C is
any real constant. Substituting the expression for c(x) into the expression (2) for v we get
v(x, y) = y + c(x) = y − 2x + C. Now we check the answer by using Cauchy-Riemann
equations. We have ux = 1, uy = 2, vx = −2, and vy = 1. Since ux = vy and uy = −vx we
conclude that v is a harmonic conjugate of u.

21. By the Cauchy-Riemann equations, we have representations for the derivative as follows:

f ′(z) = ux + ivx = vy − iuy.

We know that φ = ux − iuy and that −uy = vx which in turn implies that

f ′(z) = ux − iuy = φ.

25. This function is harmonic because ∆u = uxx + uyy = ex cos(y)− ex cos(y) = 0. By the
Maximum modulus principle Corollaries, u must attain its maximum and minimum values
on ∂Ω. Evaluating we will find that u will attain its maximum and minimum on the vertices
of the square. The maximum will happen at π and the minimums will happen at iπ and
−iπ.

29. From the fact that u is harmonic, we have

uxx + uyy = 0.

Then, becasue u2 is harmonic we can calculate that

(u2)xx = 2(uuxx + uxux)

and
(u2)yy = 2(uuyy + uyuy).
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Now plugging that into Laplace’s equation we get

uuxx + uxux + uuyy + uyuy = 0

u(uxx + uyy) + u2
x + u2

y = 0

u2
x + u2

y = 0.

Since u is real valued, we have that ux = uy = 0 which implies that u is constant.

33. Taking partial derivatives we find that

∂x(u(x,−y)) = (∂xu)(x,−y)

∂xx(u(x,−y)) = −(∂xxu)(x,−y)

∂y(u(x,−y)) = (∂yu)(x,−y)

∂yy(u(x,−y)) = (∂yyu)(x,−y)

using the fact that we will get a double negative in the double partial with respect to y.
Thus we have that ∆u = (∂xxu)(x,−y) + (∂yyu)(x,−y) = 0.

37. We show that if u and eu are harmonic on a region Ω, then u is identically constant.
Let φ = eu. Then φx = euux and φxx = eu(ux)2 + euuxx. Similarly, φy = euuy and

φyy = eu(uy)
2 + euuyy. Using ∆φ = 0 and ∆u = 0, we get

eu[(ux)2 + (uy)
2] = 0⇒ (ux)2 + (uy)

2 = 0⇒ ux = 0 and uy = 0.

Hence u is constant.
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Solutions to Exercises 6.2
1. (a) We have

ux = a, uxx = 0, uy = o, uyy = 0

which implies that ∆u = 0.
(b) We have the data that

u(3, 0) = 10

u(5, 0) = 40

Plugging this into our equation for u this gives us

3a+ b = 10

5a+ b = 40.

Solving this system of equations we get u(x, y) = 15x− 35.
(c) For the isotherms, we solve u(x, y) = T which implies

x =
T + 35

15
.

To determine heat flow, we want to solve

v =

∫ z

z0

−uydx+ uxdy =

∫ 1

0
15iydy.

Thus we get
v(x, y) = 15iy = c

for a constant c which gives

y =
c

15i
.

5.(a) Doing the differentiation we get first

2rrx = 3x =⇒ rx =
x

r
.

Differentiating a second time we get

rxx =
r − xrx
r2

=
r − x2

r

r2

=
r2

r −
x2

r

r2

=
r2 − x2

r3

=
x2 + y2 − x2

r3

=
y2

r3
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giving us the desired result.

(b) Taking the first derivative we get

θx = arctan
(y
x

)
=

1

1 + y2

x2

−y
x2

= − y

x2 + y2

= − y

r2
.

Differentiating a second time we get

θxx =
(−y
r2

)
x

=
2yrrx
r4

=
2yr xr
r4

=
2xy

r4

giving us the desired result.

(c) Follow the same steps as above.

(d) Substituting what we found in the previous steps we will find that

θxx + θyy =
2xy

r4
− 2xy

y4
= 0

and

θxrx + θyry = − y

r2

x

r
+
x

r2

y

r
= 0

giving us the desired result.

(e) Using the chain rule in two dimensions and the fact that our function u is of the form
u(r, θ) = r(x, y)θ(x, y), we get that

∂u

∂x
=
∂u

∂r

∂r

∂x
+
∂u

∂θ

∂θ

∂x
.

Differentiating again we get

∂2u

∂x2
=

∂

∂x

∂u

∂r

∂r

∂x
+
∂u

∂r

∂2r

∂x2
+

∂

∂x

∂u

∂θ

∂θ

∂x
+
∂u

∂θ

∂2θ

∂x2
.

Notice now that we have another chain rule for ∂
∂x

∂u
∂r and ∂

∂x
∂x
∂θ . Doing so gives us the

desired result. Change x yo y to get similar results for the double partial with respect to y.
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(f) Using the identity from (d), and the results from (a),(b), and (c) we get that

∂2u

∂x2

∂2u

∂y2
=
∂2u

∂r2

(∂r
∂x

)2
+
∂2u

∂r2

(∂r
∂y

)2
+
∂u

∂r

∂2r

∂x2
+
∂u

∂r

∂2r

∂y2
+
∂2u

∂θ2
(
∂θ

∂x
)2 +

∂2u

∂θ2

(∂θ
∂y

)2

=
∂2u

∂r2

[(∂r
∂x

)2
+
(∂r
∂y

)2]
+
∂u

∂r

[∂2r

∂x2
+
∂2r

∂y2

]
+
∂2u

∂θ2

[(∂θ
∂x

)2
+
(∂θ
∂y

)2]
=
∂2u

∂r2

[(x
r

)2
+
(y
r

)2]
+
∂u

∂r

[y2

r3
+
x2

r3

]
+
∂2u

∂θ2

[(−y
r2

)2
+
( x
r2

)2]
=
∂2u

∂r2

[ 1

r2
(x2 + y2)

]
+
∂u

∂r

[ 1

r3
(x2 + y2) +

∂2u

∂θ2

[ 1

r4
(x2 + y2)

]
=
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
.

9.We want to solve the system of equations

c1ln(R1) + c2 = T1

c1ln(R2) + c2 = T2.

Subtracting the first equation from the second gives us

c1(ln(R2)− ln(R1)) = T2 − T1

which implies c1 = T2−T1
ln(

R2
R1

)
. Substituting this value into the first equation we find

T2 − T1

ln
(
R2
R1

) ln(R1) + c2 = T1

which implies that c2 = T1 − T2−T1
ln
(
R2
R1

) ln(R1). Thus we have that

u(r) = c1 ln(r) + c2

=
T2 − T1

ln
(
R2
R1

) ln(r) + T1 −
T2 − T1

ln
(
R2
R1

) ln(R1)

= T1 +
T2 − T1

ln
(
R2
R1

) (ln(r)− ln(R1))

= T1 + (T2 − T1)
ln
(
r
R1

)
ln
(
R2
R1

) .
This gives us that the polar form of the Laplacian is

∆u = urr +
1

r
ur = 0

because uθθ = 0.
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Solutions to Exercises 6.3
1. Using Proposition 6.3.1 the solution will be

u(reiθ) = 1− r cos(θ) + r2 sin(2θ)

= 1− r cos(θ) + 2r2 sin(θ) cos(θ)

= 1− x+ 2xy

5. We must solve 1− x+ 2xy = T which gives us the result of y = T+x−1
2x .
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Exercises 6.4 For exercises 1-4, we will use the fact that the Fourier series is written
as

f(θ) = a0 + a1 cos(θ) + b1 sin(θ) + a2 cos(2θ) + b2 sin(2θ) + a3 cos(3θ) + b3 sin(3θ) + · · ·

One can compute these coefficients as integrals to confirm the result.

1. Here we have that

f(θ) = 1− cos(θ) + sin(2θ)

= 1 + (−1) cos(θ) + (0) sin(θ) + (0) cos(2θ) + (1) sin(2θ) + · · ·

This gives us that a0 = 1, a1 = −1, and b2 = 1, where the rest of the coefficients are 0.

5. Using the integral definition of the Fourier coefficients we will find that

a0 = π

an = 0

bn =
−2

n
where we use integration by parts and the facts that

cos(nθ) =
(sin(nθ)

n

)′
and sin(nθ) =

(
− cos(nθ)

n

)′
.

9. (a)

(b) Deriving the Fourier coefficients we get

a0 =
1

2π

∫ 2π

0

1

2
(π − θ)dθ

=
1

4π

[
πθ − 1

2
θ2

]2π

0

= 0

an =
1

2π

∫ 2π

0
(π cos(nθ)− θ cos(nθ))dθ

=
1

2π

[
1

n2
(n(π − θ) sin(nθ)− cos(nθ))

]2π

0

= 0
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bn =
1

2π

∫ 2π

0
(π − θ) sin(nθ)dθ

=
1

2π

[
− 1

n2
(sin(nθ) + n(π − θ) cos(nθ))

]2π

0

=
1

n

This implies that f(θ) =
∑∞

1
sin(nθ)
n .

13. Using the integral definition of the Fourier coefficients we will find that

a0 =
2

π

an = −
4 cos

(
nπ
2

)
π(n2 − 1)

bn = 0

which gives the desired result.
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Solutions to Exercises 7.1

1. An analytic function f(z) is conformal where f ′(z) 6= 0. If f(z) = z2+1
ez , then

f ′(z) = e−z(−z2 + 2z − 1).

We have
f ′(z) = 0⇒ z2 − 2z + 1 = 0⇒ z = 1.

Thus f is conformal at all z 6= 1.

5. The function f(z) = z + 1
z is analytic at all z 6= 0, and then f ′(z) = 1− 1

z2 . So

f ′(z) = 0⇒ 1− 1

z2
= 0⇒ z2 = 1⇒ z = ±1.

Thus f(z) is conformal at all z 6= 0,±1.

9. The function sin z is entire. Its derivative cos z is nonzero except for z = π
2 + kπ. Hence

f(z) = sin z is conformal at all z 6= π
2 + kπ. In particular, f(z) is conformal at z = 0, π+ i a, iπ. At

these points, f(z) rotates by an angle arg cos z and scales by a factor of | cos z|. For z = 0, we have
cos 0 = 1. Thus f rotates by an angle arg 1 = 0 and scales by a factor of 1. Thus at z = 0, sin z
acts like the identity map z 7→ z.

For z = π + i a, we have cos(π + i a) = − cos(ia) = − cosh a. Thus f rotates by an angle
arg (− cosh a) = π and scales by a factor of cosh a.

For z = iπ, we have cos iπ = coshπ. Thus f rotates by an angle arg (coshπ) = 0 and scales by
a factor of coshπ.

13. The lines x = a and y = b are clearly orthogonal and they intersect at the point a + ib. Their
images by a mapping f(z) are two curves that intersect at the point f(a + ib). The image curves
will be orthogonal at the point f(a+ ib) if f(z) is conformal at a+ ib. Hence it is enough to check
that f(z) is analytic and f ′(z) 6= 0 at z = a + ib, in order to conclude that the image curves are
orthogonal at f(a + ib). In the case of f(z) = ez, the image curves will always be orthogonal,
because f ′(z) 6= 0 for all z. Indeed, the image of the line x = a (or z = a + iy, −∞ < y < ∞)
is the circle w = ea+iy = eaeiy, with center at 0 and radius ea. The image of the line y = b (or
z = x+ ib,−∞ < x <∞) is the ray at angle b, w = exeib. The ray and the circle intersect at right
angle at the point ea+ib.

17. (a) We have

J
(1

z

)
=

1

2

(
1

z
+

1
1
z

)
=

1

2

(
z +

1

z

)
= J(z).

(b) Fix R > 1 and let SR = {z : |z| = R, 0 ≤ Arg z}. Write the image of a point z = Reiθ on SR
as w = u+ iv. Then

w = J(Reiθ) =
1

2

(
Reiθ +

1

R
e−iθ

)
=

1

2

(
R(cos θ + i sin θ) + +

1

R
(cos θ − i sin θ)

)
=

1

2

(
R+

1

R

)
cos θ + i

1

2

(
R− 1

R

)
sin θ.

So

u =
1

2

(
R+

1

R

)
cos θ and v =

1

2

(
R− 1

R

)
sin θ;

u
1
2

(
R+ 1

R

) = cos θ and
v

1
2

(
R− 1

R

) = sin θ.
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As θ varies from 0 to π, w traces the upper part of the ellipse

u2[
1
2

(
R+ 1

R

)]2 +
v2[

1
2

(
R− 1

R

)]2 = cos2 θ + sin2 θ = 1.
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Solutions to Exercises 7.2

1. Consider the linear fractional transformation (LFT)

φ(z) = i
1− z
1 + z

.

(a) We have

φ(1) = 0, φ(0) = i, φ(i) = i
1− i
1 + i

= 1.

(b) Let L1 denote the line through z1 = 1 and z2 = 0, and L2 the line through z2 = 0 and z3 = i.
We know that the image of a line by a LFT is either a line or a circle. So to determine whether
φ[Lj ] is a line or a circle, it suffices to check whether the images of three points on Lj are colinear.
Another way to determine the image of a line by a LFT is to check whether the image is bounded
or unbounded. If it is unbounded, then it is necessarily a line. For example, the point z = −1 is on
L1. Since φ(−1) =∞, we conclude that φ[L1] is a line through the points φ(z1) = 0 and φ(z2) = i;
that is, φ[L1] is the imaginary axis in the w-plane.

Since L2 is perpendicular to L1 and φ is conformal at z = 0, the point of intersection, φ[L1] and
φ[L2] must be orthogonal at φ[0], their point of intersection. Now φ[L2] goes through the points i
and 1. In order for φ[L2] to be perpendicular to the imaginary axis, φ[L1], it must be a circle that
goes through the points 1 and i. To get a third point on this circle, take z = −i on L2. Then

φ(−i) = i
1 + i

1− i
= −1.

5. The inverse of the LFT

w = φ(z) = i
1− z
1 + z

=
i− iz
1 + z

=
iz + i

z + 1

is given by (2), where a = b = i, c = d = 1:

z = ψ(w) =
z − i
−z + i

.

Let us check the images of wj :

ψ(w1) = ψ(0) = 1 = z1;

ψ(w2) = ψ(i) = 0 = z2;

ψ(w3) = ψ(1) = i = z3.

9. Suppose c 6= 0 and consider the equation

φ(z) = z or
az + b

cz + d
= z

(
z 6= −d

c

)
.

This equation is equivalent to
cz2 + (d− a)z − b = 0,

which has at most two solutions. Thus in this case we have at most two distinct fixed points. If
c = 0, the LFT takes the form φ(z) = αz+β, where α 6= 0. This linear function is either the identity
(α = 1) or has one fixed point, which is obtained by solving z = αz + β, z = β

1−α . In all cases, the
LFT has at most two fixed points.

13. The circle in the first figure is centered at 1 + i and has radius 1. To map it to the circle shown
in the second figure, use the translation

f1(z) = z − 1− i.
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To map the inside of the unit circle to its outside, and its outside to its inside, as shown in the
mapping from the second to the third figure, use an inversion

f2(w1) =
1

w1
.

Note that if |z| = 1, then |f2(z)| = |1/z| = 1, so f2 maps the unit circle to the unit circle. Since it
takes boundary to boundary, and 0 to ∞, it will act as we claimed. Finally, to map the unit disk to
the upper half-plane, use the LFT

f3(w2) = i
1− w2

1 + w2

(see Example 7.2.3(a)). The desired mapping is

w = f3 ◦ f2 ◦ f1(z) = i
1− w2

1 + w2
= i

1− 1
w1

1 + 1
w1

= i
w1 − 1

w1 + 1
= i

z − 1− i− 1

z − 1− i+ 1
= i

z − 2− i
z − i

.

17. (a) We have

f1(z) = sin(z), f2(w1) =
i− w1

i+ w1
.

(b) For the boundary, consider the point z = 0 and notice that f1(0) = 0 and f2(0) = 1. For the
interior, consider the point z = i and notice that

f1(i) = sin(i) =
1− e2

2ei
=
(e2 − 1

2e

)
i,

which is in the interior of the region in the w1 plane as Im(f1(i)) ≥ 0. Notice

f2

(e2 − 1

2ei

)
=

2e− e2 + 1

2e+ e2 − 1
,

which is on the interior of the unit disk.
(c) The composition is given by

g(z) = f2(f1(z)) =
i− sin(z)

i+ sin(z)
.

21. Consider the LFT

f1(z) = i
1− z
1 + z

.

We know from Example 1(a) that f1 takes the unit disk onto the upper half-plane. What does it do
to the upper semi-disk? The lower boundary of the semi-disk, the interval [−1, 1] is perpendicular
to the upper semi-circle at the point 1. Since f1 is conformal at z = 1, the images of the interval
[−1, 1] and semi circle intersect at right angle. Since they both go through the point −1, which is
mapped to∞, we conclude that these images are perpendicular lines. Using f1(0) = i and f1(i) = 1,
we conclude that [−1, 1] is mapped to the upper half of the imaginary axis, and the semi circle is
mapped to the right half of the real axis. Finally, testing the image of an interior point, say i/2,
we find that f1( i2 ) = 4

5 + 3
5 i, which is a point in the first quadrant. With this we conclude that

the upper semi-disk is mapped to the first quadrant, since boundary is mapped to boundary and
interior points to interior points.
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To go from the first quadrant to a horizontal strip, we use a logarithmic mapping, because the
logarithm maps the punctured plane onto a fundamental strip of width 2π (see Sec. 1.7.) For
our purpose, it is easy to check that Log z will work: The semi-line (0,∞) is mapped to the line
(−∞, ∞) and the semi-line, z = iy, 0 < y <∞, is mapped to Log (iy) = ln y + iπ2 , which describes
the horizontal line shown in the figure. The composition mapping is

w = Log (i
1− z
1 + z

).

25. (a) Take −1 < α < 1 and let φα(z) = z−α
1−αz . Since α is real, we have φα(z) = z−α

1−αz . We
know from Proposition 4.6.2 that φα maps the unit disk onto itself and takes the unit circle onto
itself. As it is explained in Example 7.2.9, in order to center C1, it is enough to choose α so that
φα(a) = −φα(b). Equivalently,

a− α
1− αa

= − b− α
1− αb

;

(a− α)(1− αb) = −(b− α)(1− αa);

(a+ b)α2 − 2(1 + ab)α+ a+ b = 0 ⇒ α2 − 2
1 + ab

a+ b
α+ 1 = 0.

Note that a+ b 6= 0. Solving this quadratic equation in α, we obtain with roots

α1 =
1 + ab

a+ b
+

√(
1 + ab

a+ b

)2

− 1 and α2 =
1 + ab

a+ b
−

√(
1 + ab

a+ b

)2

− 1.

We next proceed to show that α1 > 1 and 0 < α2 < 1. So we must choose α2 in constructing φα.
(b) We have |a| < 1, 0 < b < 1 and 0 ≤ |a| < b < 1. Since 1− b > 0, if 0 ≤ a < 1, then multiplying
1− b by a, we get 1 − b > a(1− b). If −1 < a < 0, then 1− b > a(1− b), because the right side is
negative, while the left side is positive. In all cases, 1 + ab > a+ b > 0. Consequently,(

1 + ab

a+ b

)2

> 1;

hence the discriminant of the quadratic equation in α in part (a) is positive and so we have two
distinct roots, α1 and α2.
(c) From the inequality 1 + ab > a+ b > 0, we conclude that 1+ab

a+b > 1 and so α1 > 1. The product
of α1 ·α2 = 1, as can be checked directly or by using a well-known property that the product of the
roots of the quadratic equation ax2 + bx + c = 0 is c

a . Since 1 < α1, we conclude that 0 < α2 < 1,
in order to have the equality α1 · α2 = 1.
(d) Now arguing exactly as we did in Example 4, we conclude that φ(z) = z−α

1−αz with

α =
1 + ab

a+ b
−

√(
1 + ab

a+ b

)2

− 1

will map C2 onto C2, C1 onto a circle centered at the origin with radius r = φ(b), and the region
between C2 and C1 onto the annular region bounded by φ[C1] and the unit circle.

29. From the figure, the first mapping is a translation:

f1(z) = z − 3

2
i.

The second mapping is a linear fractional transformation that maps the shaded half plane to the
disk of radius 2 and center at the origin. This mapping is the inversion

f2(w1) =
1

w1
.
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To see this, recall that the mapping is conformal except at 0. So it will map perpendicular lines and
circles to the same. The image of a circle centered at the origin, with radius R, is another circle
centered at the origin with radius 1/R. Thus the circle in the second figure is mapped onto the circle
with center at the origin and radius 2. The region inside the circle is mapped outside the region of
the image circle and vice versa. In particular, the shaded half-plane is mapped inside the circle with
radius 2. We must show that the image of the lower half-plane, which is also mapped inside the
circle of radius 2, is the the smaller disk shown in the 3rd figure. To this end, we check the image of
the horizontal boundary of this lower half-plane, which is the line through − 3

2 i. This line is mapped
to a circle (the image of the line is contained in a bounded region, so it has to be a circle and not a
line). Moreover, this circle makes an angle 0 with the real axis (the real axis is mapped to the real
axis by an inversion). Since f2(∞) = 0 and f2(− 3

2 i) = 2
3 i, we conclude that the image of the lower

clear half-plane is the clear smaller disk as shown in the 3rd figure.
To construct the last mapping of the sequence, we will appeal to the result of Exercise 25. Let

us prepare the ground for the application of this result, by rotating the picture in the 3rd figure
by −π2 , and then scaling by 1

2 . This amounts to multiplying by 1
2e
−π2 or −i2 . So we introduce the

mapping f3(w2) = 1
2e
−π2 w2. This will map the outer circle in the 3rd figure to the unit circle and

the inner circle to a circle of radius 1
6 and center at 1

6 . In the notation of Exercise 25, we have a = 0
and b = 1

3 . According to Exercise 25, the mapping that will center the inner circle is

φα(w3) =
w3 − α
1− αw3

,

where α is the smaller of the roots of

α2 − 2
1
1
3

α+ 1 = 0⇒ α2 − 6α+ 1 = 0.

Thus α = 3− 2
√

2. Composing all the mappings together, we obtain:

f(z) =
w3 − α
1− αw3

=
−i
2 w2 − α

1− α−i2 w2

=
−iw2 − 2α

2 + iαw2
=
−i
w1
− 2α

2 + i αw1

=
−i− 2αw1

2w1 + iα

=
−i− 2α(z − 3

2 i)

2(z − 3
2 i) + iα

=
−2αz − i(1− 3α)

2z + i(−3 + α)

=
−2(3− 2

√
2)z − i(1− 3(3− 2

√
2))

2z − i2
√

2

=
−(3− 2

√
2)z + i(4− 3

√
2)

z − i
√

2
.

33. (a) If w = u+ iv and z = x+ iy, then

u+ iv = w =
1

z
=

1

x+ iy

x− iy
x− iy

=
x

x2 + y2
+ i

−y
x2 + y2

.

Thus, u(x, y) = x
x2+y2 and v(x, y) = −y

x2+y2 .

(b) When z = 1
w , we obtain that

x+ iy =
1

u+ iv

u− iv
u2 + v2

=
u

u2 + v2
+ i

−v
u2 + v2

.



Section 7.2 Linear Fractional Transformations 167

Thus,

x(u, v) =
u

u2 + v2
and y(u, v) =

−v
u2 + v2

.

37. Let S be a line that passes through the origin. We know that S is of the form

A(x2 + y2) +Bx+ Cy +D = 0

where B2 + C2 − 4AD > 0 where A = 0 as S is a line. Moreover, S passes through the origin and
so D = 0 by part (d) of Exercise 34. By Exercise 35, we get that f [S] is of the form

D(u2 + v2) +Bu− Cv +A = 0.

But, D = 0 and A = 0 and so f [S] is also a line that passes through the origin. (b) The image of
f(z0) of any nonzero point z0 ∈ S uniquely determines the line of f [S] because we know f [S] passes
through the origin, which will allow us to compute the slope of f [S] and thus the equation of f [S].
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Solutions to Exercises 7.3
1. Transform the problem to the upper half-plane as in Example 7.3.1 using the linear fractional
transformation

φ(z) = i
1− z
1 + z

.

The LFT φ takes the unit disk onto the upper-half plane, the upper semi-circle onto the positive
real axis, and the lower semi-circle onto the negative real axis. Thus the problem in the upper half
of the w-plane becomes:

∆U = 0, U(α) = 70 if α > 0, U(α) = 50 if α < 0.

The solution in the w-plane is U(w) = aArg (w) + b, where a and b must be chosen in according to
the boundary conditions: aArg (w)+b = 70, when Arg = 0 and aArg (w)+b = 50, when Arg = π.
Thus b = 70 and a = − 20

π . Hence U(w) = − 20
π Argw + 70 and so

u(z) = U(φ(z)) = −20

π
Arg

(
i
1− z
1 + z

)
+ 70.

5. The mapping f1(z) = z4 takes the shaded region in Figure 7.56 onto the upper semi-disk of
radius 1. The upper semi-disk is mapped onto the first quadrant by

f2(w1) = i
1− w1

1 + w1
.

Thus the mapping

w = φ(z) = i
1− z4

1 + z4

takes the shaded region in Figure 7.56 onto the first quadrant. It is also a conformal mapping, being
the composition of such mappings. We now determine the image of the boundary. The rays at angle
0 and π/4 are mapped onto the interval [−1, 1] by f1. The quarter of a circle is mapped to the upper
semi-circle by f1. The mapping f2 takes the interval [−1, 1] onto the upper half of the imaginary
axis, and the semi-circle onto the right half of the real axis.

Thus the problem in the first quadrant of the w-plane becomes:

∆U = 0, U(α) = 100 if α > 0, U(iα) = 0 if α > 0.

The solution in the w-plane is U(w) = aArg (w) + b, where a and b must be chosen in according to
the boundary conditions: aArg (w)+b = 100, when Arg = 0 and aArg (w)+b = 0, when Arg = π

2 .
Thus b = 100 and a = − 200

π . Hence U(w) = − 200
π Argw + 100 and so

u(z) = U(φ(z)) = −200

π
Arg

(
i
1− z4

1 + z4

)
+ 100.

9. To solve the given problem, we can proceed as in Example 7.3.8 and make the necessary changes.
A much quicker way is based is to use the solution in Example 7.3.8 and superposition, as follows.
Let u1(z) denote the solution in Example 7.3.8. Let u2(z) = 100. It is clear that u2 is harmonic
for all z. Thus u2 − u1 is harmonic in the shaded region of Fig. 18. On the real axis, we have
u2(z) − u1(z) = 100 − 0 = 100. On the upper semi-circle, we have u2(z) − u1(z) = 100 − 100 = 0.
Thus 100− u1 is the solution, where u1 is the solution in Example 7.3.8.

13. This problem is very similar to that in Example 7.3.3. The first step is to map the region to
an annular region bounded by concentric circles. This can be done by using the linear fractional
transformation

φ(z) =
4z − 1

4− z
.
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Then

φ(z) =
4z − 1

4− z
=
z − 1

4

1− z
4

= φ 1
4
(z).

Using φ, we map the outer circle to the unit circle and the inner circle to the circle of radius 1
4 and

center at 0. As in Example 7.3.3, the solution is

U(w) = 100 + 100
ln |w|+ ln 4

ln(1/4)
= 100− 100

ln |w|+ ln 4

ln 4
= −100

ln |w|
ln 4

.

Thus the solution is

u(z) = −100

ln 4
ln

∣∣∣∣4z − 1

4− z

∣∣∣∣ .
17. (a) The solution of the Dirichlet Problem in Figure 7.6.7 is obtained by applying the Poisson
formula (7.3.5), with f(s) = s if −1 < s < 1, f(s) = −1 if s < −1 and f(s) = 1 if s > 1:

u(x+ iy) =
y

π

∫ 1

−1

s

(x− s)2 + y2
ds+

y

π

∫ −1

−∞

−1

(x− s)2 + y2
ds+

y

π

∫ ∞
1

ds

(x− s)2 + y2

= I1 + I2 + I3.

We compute each integral separately:

I1 = − y
π

∫ 1

−1

x− s
(x− s)2 + y2

ds+
y

π

∫ 1

−1

x

(x− s)2 + y2
ds

=
y

π

1

2
ln
(
(x− s)2 + y2

)∣∣∣1
−1

+
xy

π

∫ 1

−1

ds

(s− x)2 + y2

= − y

2π

[
ln
(
(x+ 1)2 + y2

)
− ln

(
(x− 1)2 + y2

)]
+

x

yπ

∫ 1

−1

ds(
s−x
y

)2
+ 1

= − y

2π
ln

(x+ 1)2 + y2

(x− 1)2 + y2
+
x

π

∫ 1

s=−1

du

u2 + 1
(Let u =

s− x
y

.)

= − y

2π
ln

(x+ 1)2 + y2

(x− 1)2 + y2
+
x

π
tan−1

(
s− x
y

) ∣∣∣1
s=−1

= − y

2π
ln

(x+ 1)2 + y2

(x− 1)2 + y2
+
x

π

[
tan−1

(
1 + x

y

)
+ tan−1

(
1− x
y

)]
.

Similarly, we find

I2 =
y

π

∫ −1

−∞

−1

(x− s)2 + y2
ds

= −1

2
+
y

π
tan−1

(
1 + x

y

)
;

I3 =
y

π

∫ ∞
1

ds

(x− s)2 + y2

=
1

2
− y

π
tan−1

(
1− x
y

)
.

Thus

u(x+ iy) = − y

2π
ln

(x+ 1)2 + y2

(x− 1)2 + y2
+

1 + x

π
tan−1

(
1 + x

y

)
+
−1 + x

π
tan−1

(
1− x
y

)
.
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(b) To solve the problem in Figure 7.68, we reduce to the problem in Figure 7.67 by using the
mapping sin z. This yields the solution

u(x+ iy) = − Im (sin z)

π
ln

( Re (sin z) + 1)2 + ( Im (sin z))2

( Re (sin z)− 1)2 + ( Im (sin z))2

+
1 + Re (sin z)

π
tan−1

(
1 + Re (sin z)

Im (sin z)

)
+
−1 + Re (sin z)

π
tan−1

(
1− Re (sin z)

Im (sin z)

)
= −cosx sinh y

π
ln

(sinx cosh y + 1)2 + (cosx sinh y)2

sinx cosh y − 1)2 + (cosx sinh y)2

+
1 + sinx cosh y

π
tan−1

(
1 + sinx cosh y

cosx sinh y

)
+
−1 + sinx cosh y

π
tan−1

(
1− sinx cosh y

cosx sinh y

)
,

where we have used the fact that Re sin z = sinx cosh y and Im sin z = cosx sinh y.

21. First we will show that

1− |ψ(z)|2 =
4y

x2 + (1 + y)2
.

Recall that ψ(z) = i−z
i+z . Finding the modulus we get

|ψ(z)| =
∣∣∣∣ i− zi+ z

∣∣∣∣ =

∣∣∣∣ i− x− iyi+ x+ iy

∣∣∣∣ =

∣∣∣∣−x+ i(1− y)

x+ i(1 + y)

∣∣∣∣ =

√
x2 + (1− y)2

x2 + (1 + y)2

∣∣∣∣.
Then we can conclude

1− |ψ(z)|2 = 1− x2 + (1− y)2

x2 + (1 + y)2

=
x2 + (1 + y)2 − x2 − (1− y)2

x2 + (1 + y)2

=
1 + 2y + y2 − 1 + 2y − y2

x2 + (1 + y)2

=
4y

x2 + (1 + y)2

as desired. Next we will show that

|eiφ − ψ(z)|2 = |ψ(s)− ψ(z)|2 = 4
(x− s)2 + y2

(1 + s2)(x2 + (1 + y)2)
.
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Calculating we see

|eiφ − ψ(z)|2 = |ψ(s)− ψ(z)|2

=

∣∣∣∣ i− si+ s
− i− z
i+ z

∣∣∣∣2
=

∣∣∣∣ (i− s)(i+ z)− (i− z)(i+ s)

(i+ s)(i+ z)

∣∣∣∣2
=

∣∣∣∣ −2i(s− z)
(i+ s)(i+ z)

∣∣∣∣2
=

∣∣∣∣−2i(s− x− iy)

sz + is+ iz − 1

∣∣∣∣2
=

∣∣∣∣ −2is+ 2ix− 2y

sx+ isy + is+ ix− y − 1

∣∣∣∣2
=

∣∣∣∣ −2y + i(2x− 2s)

sx− y − 1 + i(s+ sy + x)

∣∣∣∣2
=

(−2y)2 + (2x− 2s)2

(sx− y − 1)2 + (s+ sy + x)2

=
4((x− s)2 + y2)

(1 + s)2(x2 + y2 + 2y + 1)

= 4
(x− s)2 + y2

(1 + s)2(x2 + (1 + y)2)

which, once combined with the result derived above will give us the desired result.

25. To solve the Dirichlet problem in the upper half-plane with boundary function

f(x) =
1

x4 + 1
,

we appeal to the Poisson formula, which gives: for y > 0 and −∞ < x <∞,

u(x, y) =
y

π

∫ ∞
−∞

1

1 + s4

1

(s− x)2 + y2
ds.

We evaluate the integral by using the residue techniques of Section 5.3. Let

f(z) =
1

1 + z4

1

(z − x)2 + y2
.

By Proposition 5.3.4 we have

u(x, y) =
y

π

∫ ∞
−∞

1

1 + s4

1

(s− x)2 + y2
ds = 2πi

y

π

∑
j

Res (f, zj) = 2iy
∑
j

Res (f, zj),

where the sum extends over the residues of f in the upper half-plane. We have

z4 = −1⇒ z4 = eiπ ⇒ z1 = ei
π
4 , z2 = ei

3π
4 , z3 = ei

5π
4 , z4 = ei

7π
4 .

Only z1 and z2 are in the upper half-plane. At these points, f has simple poles and the residues
there are computed with the help of Proposition 5.1.3: We have

Res (f, z1) =
1

4z3

∣∣∣
z=z1

1

(z − x)2 + y2

∣∣∣
z=z1

=
1

4ei
3π
4

1

(ei
π
4 − x)2 + y2

= R1;
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Res (f, z2) =
1

4z3

∣∣∣
z=z2

1

(z − x)2 + y2

∣∣∣
z=z2

=
1

4ei
9π
4

1

(ei
3π
4 − x)2 + y2

=
1

4ei
π
4

1

(ei
3π
4 − x)2 + y2

= R2.

The equation (z − x)2 + y2 = 0 has two roots z = x ± iy, as you can check. Only x + iy is in the
upper half-plane, since y > 0. The residue of f at x+ iy is:

Res (f, x+ iy) =
1

z4 + 1

∣∣∣
z=x+iy

1

2(z − x)

∣∣∣
z=x+iy

=
1

(x+ iy)4 + 1

1

2iy
= R3.

Thus,

u(x, y) = 2iy
( 1

4ei
3π
4

1

(ei
π
4 − x)2 + y2

+
1

4ei
π
4

1

(ei
3π
4 − x)2 + y2

+
1

(x+ iy)4 + 1

1

2iy

)
.

This answer should be real-valued, because the Poisson integral involves real-valued functions only.
This is not obvious, but the integral can be simplified using Mathematica to yield an expression that
is obviously real-valued.

29. We appeal to the Poisson formula which gives: for y > 0 and −∞ < x <∞,

u(x, y) =
y

π

∫ ∞
−∞

sin a(x− s) 1

s2 + y2
ds.

This integral follows the approach in Example 5.4.1

sin
(
a(x− s)

) 1

s2 + y2
=

sin(ax) cos(as)

s2 + y2
− cos(ax) sin(as)

s2 + y2
.

Thus ∫ ∞
−∞

sin
(
a(x− s)

) 1

s2 + y2
ds =

∫ ∞
−∞

sin(ax) cos(as)

s2 + y2
ds−

∫ ∞
−∞

cos(ax) sin(as)

s2 + y2
ds

= sin(ax)

∫ ∞
−∞

cos(as)

s2 + y2
ds− cos(ax)

=0︷ ︸︸ ︷∫ ∞
−∞

sin(as)

s2 + y2
ds

= sin(ax)

∫ ∞
−∞

cos(as)

s2 + y2
ds,

where one of the integrals is 0 because the integrand is an odd function. We now appeal to Example
5.4.1 (doing the cases a > 0 and a < 0 separately):

u(x, y) =
y

π
sin(ax)

∫ ∞
−∞

cos(as)

s2 + y2
ds =

y sin(ax)

π

π

y
e−|a|y = e−|a|y sin(ax).

33. The conformal mapping that takes the first quadrant to the upper half-plane is w = φ(z) = z2.
It also maps the interval [0, 1] in the z-plane to the interval [0, 1] in the w-plane. To determine
the boundary values in the w-plane, we compose the inverse of φ with the boundary values in the
z-plane. This gives the value 0 for all points on the real axis outside the interval [0, 1], and for the
w in the interval [0, 1], the boundary value is (

√
w )2 = w. We thus obtain the boundary values in

the w-plane: f(w) = w if 0 < w < 1 and 0 otherwise. The solution in the w-plane is obtained by
applying the Poisson integral formula. We will use coordinates (α, β) in the w-plane. Thus

U(α, β) =
β

π

∫ ∞
−∞

f(s)

(α− s)2 + β2
ds =

β

π

∫ 1

0

s

(α− s)2 + β2
ds

=
β

π

[α
β

tan−1
(s− α

β

)
+

1

2
ln
(
β2 + (s− α)2

)]1
0

=
α

π

[
tan−1

(1− α
β

)
+ tan−1

(α
β

)]
+

β

2π
ln
β2 + (1− α)2

β2 + α2
,
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where the integral in s was evaluated by similar methods as in Exercise 17. The solution in the
z-plane is obtained by replacing α by Reφ(z) = Re z2 = x2 − y2 and β by Imφ(z) = Im z2 = 2xy.
Thus u(x, y) equals

x2 − y2

π

[
tan−1

(
1− (x2 − y2)

2xy

)
+ tan−1

(
x2 − y2

2xy

)]
+
xy

π
ln

(2xy)2 +
(
1− (x2 − y2)

)2
(2xy)2 + (x2 − y2)2

.
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Exercises 7.4

1. The outside angles at w1, w2, and w3 are θ1 = π
2 , θ2 = −π, and θ3 = π

2 , respectively. By
(7.4.7), we have

(z − 1)
1
2 (z + 1)

1
2 = i(1− z2)

1
2 .

Applying (7.4.2), we have

f(z) = A

∫
(z − 1)−

1
2 (z + 1)−

1
2 z dz +B

= A

∫
i(1− z2)−

1
2 z dz +B

= −Ai(1− z2)
1
2 +B

The fact that f(±1) = 0 implies that B = 0. The fact that f(0) = 1 and B = 0 implies
that A = i. Therefore, we conclude f(z) =

√
1− z2.

5. The outside angles at w1 and w2 are θ1 = −π
2 and θ2 = −π

2 , respectively. By (7.4.7),

we have (z − 1)
1
2 (z + 1)

1
2 = i(1− z2)

1
2 . Applying (7.4.2), we find

f(z) = A

∫
(z − 1)

1
2 (z + 1)

1
2 dz +B

= iA

∫
(1− z2)

1
2 dz +B

=
iA

2

[
z
√

1− z2 + sin−1 z
]

+B,

where in evaluating the last integral we used integration by parts. Using f(1) = −1, we
obtain

Aiπ

4
+B = −1.

Using f(−1) = 1, we obtain
−Aiπ

4
+B = 1.

Thus, B = 0 and A = 4i
π . Therefore, we conclude

f(z) = − 2

π

[
z
√

1− z2 sin−1 z
]
.

9. (a) Suppose θn < π and θ1 + θ2 + · · ·+ θn = 2π. It follows that

2π = θ1 + θ2 + · · ·+ θn < θ1 + θ2 + · · ·+ θn−1 + π,

so we conclude that π < θ1 + θ2 + · · · + θn−1 by subtracting π from both sides of the

inequality above. We conclude that θ1 + θ2 + · · ·+ θn−1 > π. We let βj =
θj
π .
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(b) Because A and B in (7.4.1) just dilate, rotate, and translate the mapping, A and B
do not affect the convergence of f(z) or the closure of the polygon. Hence, we can choose
A = 1 and B = 0. Let x0 = 1 + max1≤j≤n−1 xj and set

f(z) =

∫
[x0,z]

dζ

(ζ − x1)β1(ζ − x2)β2 · · · (ζ − xn−1)βn−1
.

(c) Let x0 = 1 + max1≤j≤n−1xj and z = x be real. We will use the limit comparison test
for the integrand to show that

lim
y→∞

f(y) =

∫ ∞
x0

dx

(x− x1)β1(x− x2)β2 · · · (x− xn−1)βn−1

is finite. Let a = max1≤j≤n−1xj and b = min1≤j≤n−1xj . Observe that

x− a+ a− b = (x− a)

(
1 +

a− b
x− a

)
≤ (x− a)(1 + a− b)

because x− a ≥ 1. This observation gives us

(1 + a− b)(x− a) ≥ x− a+ a− b = x− b ≥ x− xj ≥ x− a

for all 1 ≤ j ≤ n− 1. We see that (x− xj)βj ≈ (x− a)βj for all βj . Using this, we have∫ ∞
x0

dx

(x− x1)β1(x− x2)β2 · · · (x− xn−1)βn−1
≤ C

∫ ∞
x0

dx

(x− a)β1+β2+···+βn−1
,

where C is a constant. Specifically, we have

C =
∏

j:βj>0

(1 + a− b)βj .

Notice that

β1 + β2 + · · ·+ βn−1 =
θ1 + θ2 + · · ·+ θn−1

π
>
π

π
= 1

from part (a). Therefore, after a change in variables, we see that the integral on the right
converges. (d) Let

wn = lim
y→∞

f(y) =

∫ ∞
x0

dx

(x− x1)β1(x− x2)β2 · · · (x− xn−1)βn−1

from above. We want to show that lim|z|→∞ f(z) = wn for any z ∈ C. We will prove this

for z = Reiθ where R > 0 and 0 ≤ θ ≤ π. A similar argument will hold for z = Reiθ where
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R > 0 and π ≤ θ ≤ 2π. First, observe that

|f(Reiθ)− f(R)| =
∣∣∣∣ ∫

[x0,Reiθ]

dx

(x− x1)β1(x− x2)β2 · · · (x− xn−1)βn−1

−
∫

[x0,R]

dx

(x− x1)β1(x− x2)β2 · · · (x− xn−1)βn−1

∣∣∣∣
=

∣∣∣∣ ∫
[x0,Reiθ]

dx

(x− x1)β1(x− x2)β2 · · · (x− xn−1)βn−1

+

∫
[R,x0]

dx

(x− x1)β1(x− x2)β2 · · · (x− xn−1)βn−1

∣∣∣∣
=

∣∣∣∣∣
∫

[R,Reiθ]

dx

(x− x1)β1(x− x2)β2 · · · (x− xn−1)βn−1

∣∣∣∣∣
≤ RπM(R),

where M(R) is the maximum of the absolute value of the integrand on the upper semicircle
of radius R. Also, the length of the segment joining R to Reiθ is largest when it is the circum-
ference of the upper semicircle or Rπ. Next, we claim that limR→∞M(R)Rβ1+···+βn−1 = 1.
Notice that for R > max1≤j≤n−1 |xj | we have

M(R) = sup
|z|=R

∣∣∣∣ 1

(z − x1)β1 · · · (z − xn−1)βn−1

∣∣∣∣
= sup
|z|=R

 ∏
1≤j≤n−1
βj≥0

1

|z − xj |βj
∏

1≤j≤n−1
βj<0

1

|z − xj |βj



= sup
|z|=R

 ∏
1≤j≤n−1
βj≥0

1

|z − xj ||βj |
∏

1≤j≤n−1
βj<0

|z − xj ||βj |


=

∏
1≤j≤n−1
βj≥0

1

(R− xj)|βj |
∏

1≤j≤n−1
βj<0

(R+ xj)
|βj |,

since the first product becomes maximum for z = R and the second product becomes
maximum for z = −R and both of these numbers lie on the circle |z| = R. This implies
that

lim
R→∞

M(R)Rβ1+···+βn−1 = lim
R→∞

∏
1≤j≤n−1
βj≥0

R|βj |

(R− xj)|βj |
∏

1≤j≤n−1
βj<0

(R+ xj)
|βj |

R|βj |
.

But we have βi ≥ 0

lim
R→∞

Rβi

(R− xi)βi
= 1

and for βj < 0,

lim
R→∞

(xj +R)|βj |

R|βj |
= 1.



Section 7.4 The Schwarz-Christoffel Transformation 177

We conclude that limR→∞M(R) = 1. Note that

RM(R) = R1−(β1+···+βn−1)(M(R)Rβ1+···+βn−1).

The fact that β1 + · · ·+ βn−1 > 1 by our discussion in part (c) implies that RM(R)→ 0 as
R → ∞. This implies that |f(Reiθ)− f(R)| → 0 uniformly in θ as R → ∞. The fact that
f(R)→ wn as R→∞ implies that f(z)→ wn as |z| → ∞.
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Solutions to Exercises 7.5

1. We provide two ways of solving this exercise. First, we may derive the Green’s function for Ω
directly. The transformation

φ(z) =
z − 1

z + 1

is a one-to-one analytic function taking Ω onto the unit disk. For fixed z ∈ Ω, the transformation

Φ(z, ζ) =
φ(ζ)− φ(z)

1− φ(z)φ(ζ)
= − (z + 1)(z − ζ)

(z + 1)(z + ζ)

is also a one-to-one analytic function taking Ω onto the unit disk with Φ(z, z) = 0. Hence, the
Green’s function for Ω is

G(z, ζ) = ln |Φ(z, ζ)|

= ln
|z − ζ|
|z + ζ|

=
1

2
ln
|z − ζ|2

|z + ζ|2

=
1

2
ln

(x− s)2 + (y − t)2

(x+ s)2 + (y − t)2
,

where z = x+ iy and ζ = s+ it are in Ω.
Alternatively, we know from Example 7.5.5 that the Green’s function for the upper half-plane

Ω̃ is

G̃(z, ζ) = ln
|z − ζ|
|z − ζ|

=
1

2
ln

(x− s)2 + (y − t)2

(x− s)2 + (y + t)2
,

where z = x+ iy and ζ = s+ it are in Ω̃. The rotation map

ρ(z) = iz

is a one-to-one analytic function taking Ω onto Ω̃. Hence, the Green’s function for Ω is

G(z, ζ) = G̃(ρ(z), ρ(ζ))

= ln
|iz − iζ|∣∣iz − iζ∣∣

= ln
|z − ζ|
|z + ζ|

=
1

2
ln

(x− s)2 + (y − t)2

(x+ s)2 + (y − t)2
,

where z = x+ iy and ζ = s+ it are in Ω.

5. We know from Example 7.5.5 that the Green’s function for the upper half-plane Ω̃ is

G̃(z, ζ) = ln
|z − ζ|
|z − ζ|

=
1

2
ln

(x− s)2 + (y − t)2

(x− s)2 + (y + t)2
,

where z = x+ iy and ζ = s+ it are in Ω̃. Observe that the map

φ(z) = ez
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is a one-to-one analytic function taking Ω onto Ω̃. Hence, the Green’s function for Ω is

G(z, ζ) = G̃(φ(z), φ(ζ))

= ln

∣∣ez − eζ∣∣
|ez − eζ |

=
1

2
ln

(ex cos y − es cos t)2 + (ex sin y − es sin t)2

(ex cos y − es cos t)2 + (ex sin y + es sin t)2
,

where z = x+ iy and ζ = s+ it are in Ω.

9. (a) Green’s function in the first quadrant, Ω, is derived in Exercise 3: For z and ζ in Ω,

G(z, ζ) = ln
|z − ζ| |z + ζ|
|z − ζ| |z + ζ|

.

Write z = x+ iy, ζ = s+ it, where x, y, s, and t are positive. Then

G(z, ζ) =
1

2
ln

(
(x− s)2 + (y − t)2

)(
(x+ s)2 + (y + t)2

)(
(x− s)2 + (−y − t)2

)(
(x+ s)2 + (−y + t)2

)
=

1

2
ln
(
(x− s)2 + (y − t)2

)
+

1

2
ln
(
(x+ s)2 + (y + t)2

)
−1

2
ln
(
(x− s)2 + (y + t)2

)
− 1

2
ln
(
(x+ s)2 + (−y + t)2

)
.

The boundary of Ω consists of two half-lines: the positive real axis, and the upper part of the
imaginary axis. On the imaginary axis, the normal derivative is minus the derivative with respect
to s. Thus, on the imaginary axis,

∂

∂n
G(z, ζ) = − ∂

∂s
G(z, ζ)

∣∣∣
s=0

= −1

2

∂

∂s
ln
(
(x− s)2 + (y − t)2

)
− 1

2

∂

∂s
ln
(
(x+ s)2 + (y + t)2

)
+

1

2

∂

∂s
ln
(
(x− s)2 + (y + t)2

)
+

1

2

∂

∂s
ln
(
(x+ s)2 + (−y + t)2

)∣∣∣
s=0

=
(x− s)

(x− s)2 + (y − t)2
− (x+ s)

(x+ s)2 + (y + t)2

− (x− s)
(x− s)2 + (y + t)2

+
(x+ s)

(x+ s)2 + (−y + t)2

∣∣∣
s=0

=
x

x2 + (y − t)2
− x

x2 + (y + t)2
− x

x2 + (y + t)2
+

x

x2 + (−y + t)2

=
2x

x2 + (y − t)2
− 2x

x2 + (y + t)2
.

By a similar argument, we find that, on the real axis,

∂

∂n
G(z, ζ) = − ∂

∂t
G(z, ζ)

∣∣∣
t=0

=
2y

(x− s)2 + y2
− 2y

(x+ s)2 + y2
.

From (7.5.9) we have

u(z) =
1

2π

∫
Γ

u(ζ)
∂

∂n
G(z, ζ)ds.
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We have to figure our the symbols in this integral. For the part of the boundary that is on the
imaginary axis, ds = dt, and u(ζ) = g(t). For the part of the boundary that is on the real axis,
u(ζ) = f(s), and ds = ds (bad notation: on the left, ds stands for element of arc length; on the
right ds stands for element of integration with respect to the s variables.) Using the values of the
normal derivative, we get

u(z) =
y

π

∫ ∞
0

f(s)

(
1

(x− s)2 + y2
− 1

(x+ s)2 + y2

)
ds

+
x

π

∫ ∞
0

g(t)

(
1

x2 + (y − t)2
− 1

x2 + (y + t)2

)
dt.

(b) Consider the special case in which g(t) = 0. Call the solution in this u1. From part (a), we have

u1(z) =
y

π

∫ ∞
0

f(s)

(
1

(x− s)2 + y2
− 1

(x+ s)2 + y2

)
ds, z = x+ iy.

We will show how to derive this solution by reducing the problem to a Dirichlet problem in the
upper half-plane. Indeed, consider the Dirichlet problem in the upper half-plane with boundary
values u(x, 0) = f(x) if x > 0 and u(x, 0) = −f(−x) if x < 0. Thus the boundary function is the
odd extension of f(x) to the entire real line. We will use the same notation for the odd extension
as for the function f . Then, by the Poisson integral formula on the real line,

u(x, y) =
y

π

∫ ∞
−∞

f(s)

(x− s)2 + y2
ds, y > 0, −∞ < x <∞.

To determine the values of u1 on the upper part of the imaginary axis, we set x = 0 and get

u(0, y) =
y

π

∫ ∞
−∞

f(s)

s2 + y2
ds = 0,

because f is odd. So u is harmonic in the upper half-plane; is equal to 0 on the imaginary axis; and
is equal to f(x) on the x-axis. Therefore, its restriction to the first quadrant solves the Dirichlet
problem with boundary values 0 on the imaginary axis and f(x) on the positive real axis. Thus u
agrees with u1 in the first quadrant. Because f is odd, we can write

u(x, y) =
y

π

∫ ∞
−∞

f(s)

(x− s)2 + y2
ds

=
y

π

∫ 0

−∞

f(s)

(x− s)2 + y2
ds+

y

π

∫ ∞
0

f(s)

(x− s)2 + y2
ds

= − y
π

∫ 0

∞

f(−s)
(x+ s)2 + y2

ds+
y

π

∫ ∞
0

f(s)

(x− s)2 + y2
ds

=
y

π

∫ ∞
0

f(s)

(x+ s)2 + y2
ds+

y

π

∫ ∞
0

f(s)

(x− s)2 + y2
ds

=
y

π

∫ ∞
0

f(s)
( 1

(x+ s)2 + y2
+

1

(x− s)2 + y2

)
ds,

which is precisely the formula for u1 that we obtained earlier by using Green’s function in the first
quadrant.
(c) The case in Figure 7.115 in which f(s) = 0 is very similar to the case treated in part (b). We
just have to interchange x and y, s and t. The solution in this case is

u2(x, y) =
x

π

∫ ∞
0

g(t)
( 1

(y + t)2 + x2
+

1

(y − t)2 + x2

)
dt,
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which is again the formula that you obtain by setting f = 0 in part (a).
(d) The Dirichlet problem in Figure 7.115 can be written as the “sum” of two Dirichlet problems:
the problem in which g = 0, and the problem in which f = 0. The first problem is solved in (9b)
(the solution is u1), and the second problem is solved in (9c) (the solution is u2). It is easy to
straightforward to verify that u = u1 + u2 is the solution of the problem in Figure 7.115. Adding
the two formulas that we have for u1 and u2, we obtain the formula for u that we derived in (9a).

The point of this problem is that we were able to solve the Dirichlet problem in the first quadrant
by reducing the problem to two problems in the upper half-plane and then using the Poisson integral
formula on the real line.
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Solutions to Exercises 7.6

1. Applying Proposition 7.6.12 with

φ(z) = i(z − 1),

which is a one-to-one analytic function taking Ω onto the upper half-plane, the Nuemann function
for Ω is

N(z, ζ) = ln |φ(z)− φ(ζ)|+ ln |φ(z)− φ(ζ)|
= ln |i(z − 1)− i(ζ − 1)|+ ln |−i(z − 1)− i(ζ − 1)|
= ln |z − ζ|+ ln |z + ζ − 2|

=
1

2
ln
(
(x− s)2 + (y − t)2

)
+

1

2
ln
(
(x+ s− 2)2 + (−y + t)2

)
,

where z = x+ iy and ζ = s+ it are in Ω.

5. Applying Proposition 7.6.12 with

φ(z) = sin z,

which is a one-to-one analytic function taking Ω onto the upper half-plane, the Nuemann function
for Ω is

N(z, ζ) = ln |φ(z)− φ(ζ)|+ ln |φ(z)− φ(ζ)|
= ln | sin z − sin ζ|+ ln |sin z − sin ζ|

=
1

2
ln
(
(sinx cosh y − sin s cosh t)2 + (cosx sinh y − cos s sinh t)2

)
+

1

2
ln
(
(sinx cosh y − sin s cosh t)2 + (cosx sinh y + cos s sinh t)2

)
,

where z = x+ iy and ζ = s+ it are in Ω.

9. Recall that Ω is a region bounded by simple path Γ and G(z, ζ) is the Green’s function for Ω.
Fix z ∈ Ω. For ε > 0, let Ωε = Ω \Bε(z). Write

G(z, ζ) = u1(z, ζ) + ln |z − ζ|

for ζ 6= z in Ω, where u1(z, ζ) is harmonic on Ω with u1(z, ζ) = − ln |z− ζ| on Γ. Moreover, ∆u = h
on Ω. So u1(z, ζ) and h(ζ) are bounded in Bε(z). Now, we justify (7.6.8) as follows:∣∣∣ ∫∫

Ωε

G(z, ζ)h(ζ) dA−
∫∫

Ω

G(z, ζ)h(ζ) dA
∣∣∣ =

∣∣∣ ∫∫
Bε(z)

G(z, ζ)h(ζ) dA
∣∣∣

≤
∫∫

Bε(z)

|u1(z, ζ)h(ζ)| dA+

∫∫
Bε(z)

| ln |z − ζ|h(ζ)| dA

≤ C1

∫∫
Bε(z)

dA+ C2

∫∫
Bε(z)

ln |z − ζ| dA

= C1ε
2π + C2

∫ 2π

0

∫ ε

0

r ln r drdθ

= C1ε
2π + C2

∫ 2π

0

lim
δ→0+

[
r2 ln r

2
− r2

4

]r=ε
r=δ

dθ

= C1ε
2π + C22π

(
ε2 ln ε

2
− ε2

4

)
,
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which converges to 0 as ε→ 0+. This shows that∫∫
Ωε

G(z, ζ)h(ζ) dA −→
∫∫

Ω

G(z, ζ)h(ζ) dA as ε→ 0+.

13. Let Ω be a region bounded by simple path Γ, and let N(z, ζ) be a Neumann function for Ω. So
for fixed z ∈ Ω, the outward unit directional derivative of N(z, ζ) on Γ is a constant C = 2π

L , where
L =

∫
Γ
ds.

13. (a) For a constant A, select

F (z) :=
1

L

∫
Γ

N(z, ζ) ds− A

L

=
C

2π

∫
Γ

N(z, ζ) ds− AC

2π
,

for z ∈ Ω. Then, by part (c) of Exercise 12,

N0(z, ζ) = N(z, ζ)− F (z)

is also a Neumann function for Ω. Moreover,∫
Γ

N0(z, ζ) ds =

∫
Γ

N(z, ζ) ds−
∫

Γ

F (z) ds

=

∫
Γ

N(z, ζ) ds− F (z)L

= A.

That is, the integral of N0(z, ζ) over the boundary Γ is a constant.

(b) Let z1, z2 ∈ Ω. For ε > 0, denote Ωε = Ω \
(
Bε(z1) ∪Bε(z2)

)
, and its boundary is denoted by

Γε Applying Green’s sencond identity to N(z1, ζ) and N(z2, ζ) over Ωε, we have

0 =

∫
Γε

N(z1, ζ)
∂N(z2, ζ)

∂n
ds−

∫
Γε

N(z2, ζ)
∂N(z1, ζ)

∂n
ds

=

∫
Γ

N(z1, ζ)
∂N(z2, ζ)

∂n
ds+

∫
∂Bε(z1)

N(z1, ζ)
∂N(z2, ζ)

∂n
ds+

∫
∂Bε(z2)

N(z1, ζ)
∂N(z2, ζ)

∂n
ds

−
∫

Γ

N(z2, ζ)
∂N(z1, ζ)

∂n
ds+

∫
∂Bε(z1)

N(z2, ζ)
∂N(z1, ζ)

∂n
ds+

∫
∂Bε(z2)

N(z2, ζ)
∂N(z1, ζ)

∂n
ds

Using the same argument as in Exercise 10, we can show that as ε→ 0+∫
∂Bε(z1)

N(z1, ζ)
∂N(z2, ζ)

∂n
ds −→ 0,∫

∂Bε(z2)

N(z2, ζ)
∂N(z1, ζ)

∂n
ds −→ 0,∫

∂Bε(z2)

N(z1, ζ)
∂N(z2, ζ)

∂n
ds −→ −2πN(z1, z2),∫

∂Bε(z1)

N(z2, ζ)
∂N(z1, ζ)

∂n
ds −→ −2πN(z2, z1).
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Letting ε→ 0+, we arrive at

0 =

∫
Γ

N(z1, ζ)
∂N(z2, ζ)

∂n
ds− 2πN(z1, z2) −

∫
Γ

N(z2, ζ)
∂N(z1, ζ)

∂n
ds+ 2πN(z2, z1).

That is

2πN(z1, z2)− 2πN(z2, z1) =

∫
Γ

N(z1, ζ)
∂N(z2, ζ)

∂n
ds −

∫
Γ

N(z2, ζ)
∂N(z1, ζ)

∂n
ds

= C

∫
Γ

N(z1, ζ) ds − C
∫

Γ

N(z2, ζ) ds.

Hence,

N0(z1, z2) = N(z1, z2)− F (z1)

= N(z1, z2)− C

2π

∫
Γ

N(z1, ζ) ds− AC

2π

= N(z2, z1)− C

2π

∫
Γ

N(z2, ζ) ds− AC

2π

= N(z2, z1)− F (z2)

= N0(z2, z1).

This proves that the Nuemann function N0(z, ζ) for Ω is symmetric.
(c) Replacing N(z, ζ) by N0(z, ζ) in (7.6.23), we have

1

2π

∫∫
Ω

h(ζ)N0(z, ζ) dA− 1

2π

∫
Γ

f(ζ)N0(z, ζ) ds =

[
1

2π

∫∫
Ω

h(ζ)N(z, ζ) dA− 1

2π

∫
Γ

f(ζ)N(z, ζ) ds

]
+

[
F (z)

2π

∫∫
Ω

h(ζ) dA− F (z)

2π

∫
Γ

f(ζ) ds

]
= u(z),

where the last equality holds by (7.6.22) and (7.6.23).
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