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Solutions to Exercises 1.1

1. We have
1—1 1 1
= 5‘*’(—5)@
S —1 db=—=
oa—Qan =3
5. We have
2—i)? = (2+14)? (because 2 —i=2— (—i)=2+1)
=1
=~

= 4+4i+ (i)> =3+ 4.

Soa=3andb=4.

9. We have
_1
7
~ =
LB\ 13, (3 1\ 7 % 2
o 7)\27 ) T2\ 2) ' T’y
Soa:%andb:—%.

13. Multiplying and dividing by the conjugate of the denominator, i.e. by 2 —¢ =2+ we
get

144130 (14+130)(2+4)  14-2+14-i+ 13i- 2 4 13
2—i  (2-0)@2+4) 441
28 + 14i +26i — 13 15 40

Soa=3and b=8.

17. Multiplying and dividing by the conjugate of the denominator, i.e. by = — iy = x + iy
we get,

r+iy  x+iy (x4iy)
T—iy T —iy (z +1iy)
(z + iy)?
x? + 2zyi + y%i?

z? + y?
22 — y? + 2xyi
—rr
x2 — 9 2x
22 +52 + 22 +yy2i'
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2 2
— 2
Soa= x2 y2 and b= 2a:y2'
ety T4 +y
21. Let z; = z; +iy;, where x;,y; are real numbers and j = 1,2, 3.
(a) We have

21+ 2= (z1+32) +i(y1 +y2) = (@2 +71) +i(y2 +31) = 22 + 21.
(b) We have
2122 = (2102 — y1y2) + i (T1y2 + 22y1) = (L2701 — yoy1) + i (Y271 + Y172) = 2221
(c) The associative property
(r1 + x2) + 23 = 71 + (T2 + 73)

is valid for real numbers and so it holds for the real and imaginary parts of z 1zg, 23.
Consequently we have
(21 + 22) + 23 = 21 + (22 + 23).

(d) Note that

(z122)23 = ((z122 — Y1) + i (T1y2 + 221)) (3 + 1 y3)
= (2122 —y1y2)es — (z1y2 + 2ay1)ys + i ((z122 — y1y2)ys + (212 + 22y1)23)

and also that

z1(z23) = (21 +iy1)((zaws — yays) + i (vays + x3y2))
= w1(v273 — Yay3) — Y1(T2ys + T3Y2) + (901(1‘23/3 + 23y2) + y1(z23 — y2!/3))-

We simply check now that the real and imaginary parts of the complex numbers (z;22)z23
and z1(z223) coincide. Thus (z122)z3 = 21(2223).
(e) Notice that

2’1<22 + 2’3) = (1’1 + iyl)(l'g +ya +1 (QL'3 + yg))
= zi(z2+y2) —yi(ws +y3) +i (z1(zs+ y3) + y1(22 + 12))

while

2129 + 2123 = (.’El + iyl)(.QJQ + iyg) + (xl + iyl)(xg + iyg))
= 11%2 — Y1y + i (T1y2 + ay1) + 2123 — Y1y3 + i (T1y3 + T3Y1).

The real and imaginary parts of these numbers are equal so the distributive property
z1(22 + 23) = 2122 + 2123

holds.
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25.
(2+3i)z=(2—1)z—1
{2+43i)—(2—1i)}z=—i
(2+3i—2+i)z=—i
diz = —1
1
z2=——
49
1
z2=—=
4
1
Soz=—-.
0z 1
29.
iz+21=4
iz+2i=4 (Conjugating both sides)
iz+2i=4 (Using problem 34)
1z=4—2
4 -2
z=—
i
4 — 24 <—l>
z2=——"|—
i —i
_ —di+ 277
B 1
z=—-2—4
So z=—2— 4.

33. We are given

(1—’i)21+22:3—|—2i
21+ (2—d)ze =241

From the first equation we obtain

29=3+2i—(1—1)xn
=3+4+20— 2 +iz
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We then substitute the expression for z5 into the second equation to get

21+ (2—9) (3420 —2z1 +iz1) =2+1
21 46441 — 221 + 2z — 31 — 2i% 4+ iz — %2 =2+
21 +6+4i—221 +2iz1 —3i+2+iz1+21=2+1
3izi +8+i=2+1

3izy =2+i—8—i

3iz; = —6
=6

z1 = E
Z1 = —21

Thus

29 = 3+ 20 — 24 + 2>

=3+20—2i—2
=1
So z1 = 2¢ and 29 = 1.
37. We have
2 +4x4+5=0
—4 442 -4 x5
T = 5 (By the quadratic formula)
4+
N 2
A2
)
=-2+1
41. We have
ap2" 4+ ap12" 14+ taz+ag = apt+an_ 12"+ faz+ag
= @ 2"+ U1 2" @ 2+ @
[Since ag,ai, -+ ,an—1,a, are all real]

= "+ apn_12" 1+ + a1z +ap
[by using the property that 2™ = ()"
= a4, "+ a, 1"+ a1(Z) + ao.

45. We already know that z = 1 4 i is a root of p(z) = z* 4 4, then then by problem 48,
Z=1—1is also a root of p(z). Thus h(z) = (z —1—i)(z — 1 +1i) = 22 — 2z + 2 divides p(z)
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and we get

p(z) =2 +4
= (22 =224 2)(22+22+2)
=(z—-1-0)(z—1+49)(z+1—-i)(z+141)

Hence, p(z) = (z—1—1i)(z—1+1)(2+1—14)(z+1+1i) and its roots are 1414, 1—i, — 1414, —1—1.
49. Let z = x + iy such that 22 = —3 + 45. We have

(z+iy)®> = -3+ 4i
(2% — 9?) + 2zyi = —3 + 4i

By comparing the real and imaginary parts we get the following equations

22—y =3
20y =4
From the first equation we have
y? =2 +3

We now consider the second equation and substitute the expression for y?

20y =4
Ty =2
T (Squaring both sides)
23 (z? +3) =4 (Substituting the expression for 3?)
ot 4327 =4
ot +327 —4=0
w+3u—4=0 (Put u = 22)
(u+4)(u—1)=0

u=1 (Negative root is discarded since u = 22 is non-negative)
r? =1
==l

Now from the relation zy = 2, we compute the value of y

2
y=-
x

=12

We thus conclude that 1+ 2¢ and —1 — 2¢ are the two square roots of —3 + 4.



6 Chapter 1 Complex Numbers and Functions

Solutions to Exercises 1.2

1. Note that z = 1—i, —z = —(1—i) = —1+i¢and Z = 1 — ¢ = 1+i. Thus 2z has coordinates
(1,—1), —z has coordinates (—1,1) and Z has coordinates (1,1). Also |z| = V12 + 12 = /2.

5. Note that z=1—¢=1+4. Hence —z = —(1+i)=—-1—dand Z=1+4=1—4. Thus
z has coordinates (1, 1), —z has coordinates (—1,—1) and Zz has coordinates (1,—1). Also

2| = V12 +12 = /2.

9. We use the property that |ab| = |a||b| twice below:
V2 V2 VIO
(1 +4)(1 —i)(1+30)] = [1+4||(1 —3) (1 +3d)| = |1 + 4| [1 — 4] [1 + 3i] = 2V/10.

|z1]
2]

13. Using the properties |2 | = and [Z| = |z| we have

i

il il 1 VB
72—

Tl AT VBT s
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17. The equation |z —i| = —1 does not have any solution because |z| is a distance from the
point z to the origin. And clearly a distance is always non-negative.

21. Let z = z + iy and we have

|z —1] <4

|z +1y —1] <4

((z — 1) +iy|? < 42 (Squaring both sides)
(x—1)> 45> <16

The inequality |z — 1| < 4 represents a closed disc with radius 4 units and centre at z = 1
as shown below.

S

25. Let z = z + iy and we have

0<|]z—1-i <1
O<|z+iy—1-—i] <1
0<|(x—1)+i(y—1)* <12
0<(z—1)2*+@w-1*<1

The inequality 0 < |z — 1 —i| < 1 represents a puntured open disc with radius 1 units,
centre at z = 1 4+ ¢ and puctured at z = 1 + ¢ as shown below.
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D<lp-1-i<1

29. (a) Let z = x + iy and we have

Re(z) = a
Re(z +1y) =a
r=a

Thus the equation Re(z) = a represents the vertical line x = a.
(b) Let z = x + iy and we have

Im(z) =0
Im(x +1iy) =b
y=2>

Thus the equation Im(z) = b represents the horizontal line y = b.
(c) Let z =z + iy and let 21 = x1 + iy1, 220 = x2 + iy2 be distinct points. We have

2=z +t(z2—21) (t is a real variable)
z+iy = (z1 +iy1) + t(z2 + iy — 21 — QY1)
x+iy ={z1 +t(xe —x1)} +i{y1 +t(y2 — 1)}
By comparing the real and imaginary parts we get
x=ux1 +t(xy —x1)
y=uy1+ty2— 1)
From the first equation we have

x—1x1 =t(xg —x1)

r — T
=1

T2 — 21
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From the second equation we have

y—y1=t(y2 — 1)
y—uy
Y2 — 1

=t

Now by eliminating ¢ from both the equations, we get

rT—T1  Y—Un
T2 — T Y2 — 1
r — T o — X1

y—un Y2 — Y1

which represents the equation of a line passing through distinct points (x1,y1) and (22, y2).

33. We know that

2% = |z|?
- (1) =1 (Dividing both sides by |z|?)
z
Thus we get that 2z 1= i-
2|2

37. (a) We get the estimate
|cos B + i sin 6| < |cos@| + |i sinf)]
by the triangle inequality. Now we notice that
|i sinf| = |i| |sin @] = 1|sinf| = |sinb)|.

So,
|cos@| + |i sinf] = |cos O] + |sinb)|.

We know from algebra that |sinf| <1, and | cos#| < 1 Therefore we have
|cosf| + |sinf| <141 =2,

and this justifies the last step of the estimation above.

(b) By definition of the absolute value we know that if z = = + iy then |z| = /2% + y2.
Therefore if z = cosf + i sin @ then |z| = y/(cos#)2 + (sin#)2. But from trigonometry we
know the formula

(cosB)? + (sinf)? = 1

is true for any number 6. Therefore we have

|cos @ +i sinf| = \/(cos0)2 + (sin6)2 = 1.
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41. We want to know something about | 1| given some information about |2 — 1|. Notice

4\ is given by the reciprocal of any lower bound for
|z —4|. So, first we can find some information about |z — 4]. For this we use some ideas
from the example 8 in this section. We notice that z — 4 = (z — 1) — 3. Therefore by the
inequality |21 — 22| > ||z1| — |22|| we have

|z =4[ =1(z-1) =3 =[]z 1] = 3|

Now since we know |z—1| < 1 we get that ||z—1|—3] > |1—3| = 2. Hence |z—4| > 2. Finally
taking reciprocals of the sides of the inequality we will reverse the sign of the inequality
and get the needed upper estimate:

1

|z — 4|

<

l\.')\r—t

45. (a) By triangle inequality we have

n

n
> wjwi| < [wjw;].
j=1

j=1
And now we use the properties |z122] = |21||22| and |Z] = |z| and get
[wjw;| = [vj]lw;| = [vj]|w;-

Using this identity in the triangle inequality above and recalling the assumption that we
already proved () we have

n

n
> wjwi| <) [wjw;]
j=1

j=1
n n n

= ujllw| < D o2 D w2
=1 =1 =1

(b) Using the hint we start from the obvious inequality

i (sl — )

Expanding the right hand side of this inequality we have

n 2 n

0 < 3 (lul = lwil) = (Iogl? = 2Augluy] + g )
j=1 j=1
n

n
= 3 (Il g l?) =2 ol
j=1

J=1
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Therefore
n 1 n
> lvsllwsl < 537 (jogl2+ oy 2) = (Z o5l + Z w;l?)
j=1 j=1 j=1
1 n n
= A+ =1=VI-Vi= 1> [u | D> lwl*
j=1 j=1
(c) Using the hint we can consider v = (vq, va, ..., v,) and w = (w1, wa, ..., wy,) and look

at them as at vectors. If we define [[v]| = /> "7, [vj* and [Jw]| = {/3°7_; [w;[?. Then it

turns out we need to prove the following inequality:

n
> lojlwi] < Jlolflw]).
j=1
In order to do so we define new vectors U = mu and W = ”Tle. So, the coordinates of
these vectors are correspondingly U; = HUTJH and W; = ﬁ Then we have
n n
Y0k =[5 |T W Z\ wl? = Tl =

=1

and similar we get > 7, \Wj\z = 1. Therefore we can apply part (b) to the vectors V' and

W. We have
ST < DIV D 2.
=1 =1 =1

The left side is equal to

Sl el 1

3 i = 3 ol
J gl

Z ol Tl = Tolllel &

The right side is equal to

n

OOl AN e DI Fr B
] ; .
2 ol \| 2 ] o2 250wl 24

n

1 n
- 12 Z 12
HvHIIwH Z'”ﬂ' il

J=1

Hence we can rewrite the inequality we received in the form:

1 n
ol 2 allel <1
j=1

So, if we multiply both sides by ||v||||w|| we get the needed inequality.
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Solutions to Exercises 1.3

1. We need to present the number given in its polar form in the form with the real and
imaginary parts z = x 4 iy. We have

o (oo T i T — 3e0s T 4 i3ein T
z = COS 12 7 S1In 12 = I COS 12 7 9 S1nN 12

In Cartesian coordinates z is represented by (3 cos %, 3sin %r) as shown below.

z = 3cos {5 +i3sin 3

5. Let 2 = —3 — 3. Then we have r = \/(=3)2 + (=3)2 = v/9 - 2 = 3y/2. Also, we can find
the argument by evaluating

r -3 V2 , y =3 V2
cos=—=——=—— and sinf===—=——.
r o 3v2 2 r 2 2
From the Table 1 in the Section 1.3 we see that 6 = %’r. Thus, argz = % + 2km. Since %”
is not from the interval (—7, 7] we can subtract 27 and get that Argz = ‘%r — 27 = —3?{.
So, the polar representation is
3 3
—3-3i=3V2 <cos (—”) +i sin <—W>> .
4 4
9. Again we can denote z = —%. Then we have r = (—%)2 = % We can evaluate
—1/2
cos@zle:() and sin@zyzi/:—
ro1/2 r 1/2

And, from the Table 1 in the Section 1.3 we find 8 = 37” (Also we could plot the complex

number (—%) as a point in the complex plane and find the angle from the picture.) Therefore
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arg z = 2% + 2mk. Since 2T is not from the interval (—m, 7] we can subtract 2 and get that
Arg z = 37” — 27w = —3. So, the polar representation is

b )

13. We have z =z + iy = 13+ ¢2. Since z > 0 we compute

Y

2
Argz =tan"!(Z) = tan™!(-=) ~ 0.153.
rgz = tan (:U) an (13)

Hence we express argz =~ 0.153 4+ 27k for all integer k.

17. First, we need to express the number z = —v/3 + 4 in the polar form. We compute
r=+3+1=2 And since —v/3 < 0, and 1 > 0 we see that Arg z = tan~" (#) =

-3
tan—1 (—?) = %’r. Since we need to find the cube of the number z we can use the De

Moivre’s Identity to get the polar representation:

VB = (2o () s @)))3

3 3T L 3T
= cos | — isin{—)|.
6 6
Where in the last identity we used the fact that Arg (—v/3 +14)% = BT — 27 = 3T should
be in the interval (—m, 7).
21. First, we find the modulus and the argument of the number z = 1 + i. We have

r = +V12+12 = /2. And, since for z = z + iy = 1 + il we get x > 0 we compute

Arg z = tan™! (%) = tan~! (l) = tan"1(1) = 7- Hence z can be expressed in the polar

1
form
141= \/§(COS (E) + ¢ sin (E)>
4 4
After this we can use De Moivre’s identity to get
30
(9" = (V2 (eos (T) +isin (3)))

= (V2)¥ (Cos <?ﬁ”> + i sin <?ﬁ”)>

= 2B (0+4-1) =24

Thus Re ((1+41)*) =0, and Im ((1+)*") = 2%.
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25. (a) Set 21 = —1 = z3. Then Arg(z122) = Arg(1l) = 0, whereas Arg(z1) + Arg(zq) =
7w+ m = 2m. Thus Arg(z122) # Arg(z1) + Arg(z2).

(b) Set z; = 0 and 22 = —1. Then Arg <zl> = Arg(0) = 0, whereas Arg(z1) — Arg(z2) =
2

0 —m = —m. Thus Arg <Zl> # Arg(z1) — Arg(22).
<2

(c) Set z = —1. Then Arg(z) = Arg(l) = 0, whereas —Arg(z) = —Arg(—1) = —n. Thus

Arg(2) # —Arg(2).
(d) Set z = —1. Then Arg(—z) = Arg(1) = 0, whereas Arg(z)+m = Arg(—1)+n=n+7 =
27. Thus Arg(—z) # Arg(z) + 7.

29. We know that for any complex numbers z; = ri(cosf; + i sinf;), and zo = ro(cos by +
i sinfy) we have

2129 = ri1f[cos(01) + i sin(61)]ra[cos(02) + ¢ sin(fs)]
= ryra[cos(by + 62) + isin(6r + 62)].

We can use this property several times to get the identity above step by step.

2122)23 " Zn
r1(cos(fy) + i sin(y)) ra(cos(02) + i sin(62)))z3 - - - zp,

2129 Zn (
(
(r172)(cos(fy + B) + isin(fy + 02))z324 - - - 2,
(
(

ri72)(cos(01 + 02) + isin(f; + 02))r3(cos(03) + i sin(f3))z4 - - - zp,
r1ro73)(cos(fy + 02 + 03) + isin(01 + Oy + 03)) 2425 - - - 2p,

= (rire - rp_1)(cos(by + 02+ -+ 0p_1) +isin(by + 602+ -+ 60,-1))zn
= (rirg---rp_1)(cos(0y + 02+ -+ 0p_1) +isin(f; + 024 -+ 0p_1))
7 (cos(0y) + i sin(6,,))
= (Tl To - Tp_1 rn)
(cos(O1 + 02+ -+ 0p_1+0,) +isin(0; +0+ -+ 0,1+ 6y)).

33. We have

2 =1

9 ™ L. T

2% =cos — +181n —
2 2

So by the formula for the n-th roots with n = 2, we find the roots to be

7r+, LT
Z1 = €OsS — + i sin —
4 4

57 s 57
= — in —
Z9 = COS 1 18 1
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21

37. In order to solve this equation we need to find the 7-th root of (—7). Thus we express

(=7) in the polar form. —7 = 7(cos(w) + i sin(m)). Hence by the formula for the n-th root
with n = 7 we have that the solutions are

2 = VT(cos(m/T) +isin(n/7)), 2 = W(cos(?m/?) + i sin(37/7)),

23 = /7 (cos(bm/7) +i sm(57r/7) , 24 = VT (cos(Tm/7) + i sin(77 /7)),

zs = V7 (cos(9m/7) +1isin(97/7)), 26 = V7 (cos(11w/7) + i sin(117/7)), and
2y = \W(cos(137r/7) +1 sm(137r/7))

€
24
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41. We have
=1
24 = \/5 <cos547:r +isin57r> .

4

So by the formula for the n-th roots with n = 4, we find the roots to be

21 = %(cos%—i—isin%)

Z9 = %(cosllzzr+isinll3g>
23 = %(cosllg—i-zsmil(;r)
24 = %(cosfér—i—zsin?g) .

1

22

24

z3

45. We have

(z+2)°=3i

w3:3<cosg+isin%) (Set w =z + 2)
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So by the formula for n-th roots for n = 3, we find the roots to be

wy = %(COS% —I-isin%)

RCE)R
I— +17

9 9
w3 = V3 Cosi—l—isin—ﬂ
6 6
= —V/3i

Since z = w — 2, the solutions of the original problem are

21:w1—2

22:'11]2—2

Z3:’LU3—2
=2 V3.

49. We have

Now let

24241 -i=0

—14/12—4(1 -1
z = (1=9) (Using the quadratic formula)

2
—1+v-3+4
2

w? = —3 +4i

3 4
2 _ Y .

4
w? = 5(cos f + sin ) (where g < 0 <7 and cosf = —g, sinf = g)
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So the principal square root is

0 0
w—\/5<cos2+isin2>

0 1 0 6 1— cosf
Now we use the half-angle identity i.e. cos 3= iW, sin 3= i\/T and

compute

3 3
Y 1— = 1+ 5
=V
w 5 +1 5
=1+ 2.
Thus the original solutions are
—14+w
z1 = =1
2
B
Z9 = 5 v -1 -3

53. We have

A (14022 4+i=0
w— (1+du+i=0 (Set u = 2?)
—(1412) £ 144)2 —44
_ (1+14) (1+7) ! (Using the quadratic formula)

2
. —(1+i)£v/—2i
a 2

—(1+d)£(—-1+74
u = (1+7) 5 (=1+9) (The principal square root of —2i is —1 + 4, see problem 51)

u=—1,—1.



Since z = /u, we get

\/ 3 s 3w
= 4/cos — + isin —
2 2

3m .. 37
:cosz+zsmz
1 1
AR

u=—V—i
= —23
1 1

\/5 Zﬂ.

57. By De Moivre’s identity for n = 3 we have

cos 30 + isin30 = (cosf + isinh)>

Now by comparing the real and imaginary parts we get

61. We have 2" = 1 and by the formula for n-th roots we get

2" = cos0 4+ ¢sin0

<2k77> . <2k7r>
wp =cos| — ) +esmn | —
n n

cos 360 = cos®  — 3cosfsin® 0

sin 30 = 3 cos® O sin 6 — sin® 6.

Section 1.3 Polar form

= cos® 0 + 3i cos® Osin 0 + 3i? cos @ sin’ O + % sin® 0

= (cos® @ — 3 cos O sin” ) + i(3 cos? @ sin f — sin® 6)

(where k =0,--- ,n—1).

19

65. We prove the binomial formula for complex numbers by induction on n. The statement
for n = 1 can be easily verified. By induction hypothesis, we assume that the statement is
true for n and we prove it for n + 1.

(a+b)"* = (a+b)".(a+b)

_ (Zn: <:L>an—m.bm> (a +b)

m=0
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By expanding the product we see that the coefficient of a1~ in (a + b)"*! is equal to

the sum of the coefficient of a”~*b" in (a + b)" i.e. (’}) and the coefficient of a"™1~*b*~! in
(a+b)™ie. (,”)). Thus we get

ot wts (S (1) (1)) o

m=1
n
="t 4 Z n+1 grHl=mpm | gt ase [ n n _ n+1
m m m—1 m
m=1
n+1
1 1 1
= <n + )a”+1_mbm <By convention (n i > =1= <n + )> .
=\ m 0 n+1

We have thus proved the statement for n 4 1 which shows that the binomial theorem holds
true for complex numbers.



Section 1.4 Complex Functions

Solutions to Exercises 1.4

1. We are given f(z) =iz + 2+ i. Now

fA+d)=i(1+4d)+2+i=1+2i
f(=1+i)=i(-14+i)+2+i=1
f(=1—i)=i(-1—-di)+2+i=3

fA—9)=i(l—4)+2+i=3+2i.

5. Let S be the square with vertices 1 +14¢,—1 +4,—1 — 7,1 — ¢ which is shown below.

~14+4 144

—1—4 1—14

Then f[S] is also a square with vertices 1, 3,3 + 2i, 1 + 2¢ which is shown below.

L+ 20 3+ 2

9. Observe that

f(z):(—l—i)z+3+z‘:\/§<— - i>z+3—|—2—\[e T4 (341)

1
V2 V2
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3
Thus f(z) is obtained by rotating z clockwise by ZW’ then stretching by a factor of v/2 and
then translating 1 unit up and 3 units to the right.

13. We are given f(z) = 22 — 2z 4. Now set z = x + iy and we get
fz+iy) = (x+iy)? —2(x+iy)+i = 2*+2ixy—y* —20—2iy+i = (2* —y*—2x)+i(2xy—2y+1)

Therefore u(z,y) = 22 — y? — 2z and v(z, y) = 22y — 2y + 1.

17. We are given f(z) = 3 Arg(z). Now set z = x + iy and we get

f(x+iy) = 3 Arg(xz + iy)

Therefore
3tan~t (¥) if >0
u(z,y) = ¢ 3tan~! (4) + 37 if 2 <0,y >0
3tan™! () =37 if 2 <0,y<0
and v(x,y) = 0.

21. Let f(z) = az + b and we have

f1)=3+i
a+b=3+1
a=3+1—0b
Also we have
f(3i) = —-2+6i

3ia+b=—-2461¢
3i(3+i—b)+b=—-2461 (Substituting the expression for a)
3494 (1-3)b=—2+6i
(1-3i)b=1-3i
b=1

Soa=3+4+i—1=2+4i. Thus f(z) = (2+14)z+ 1.

25. We are given S = {z € C : Re(z) > 0, Im(z) > 0} as shown by the shaded region
below.
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An arbitrary point of S is of the form z = x + iy, where x > 0 and y > 0. Then under the
mapping f(z) = —z + 2i, we have

f(z) =—(x+iy) +2i=—x+i(2—y)

We hence note that Re(f(z)) ranges in the interval —oo < Re(f(z)) < 0 and Im(f(2))
ranges in the interval —oo < Re(f(z)) < 2. So

fIS] ={z € C:Re(z) <0, Im(z) < 2}

as shown by the shaded region below.

29. S is a square with vertices 1 +4,—1 4+ ¢,—1 — 4,1 — ¢ which is shown below.
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1+ 1+4

—1-4 1—1¢

We see that the transformation f is given by

F(2) =3(z+1)e % = —3(z+ 1)i

Also note that

f(141i)=3—6i
f(=1+i)=3
f(=1—i)=-3

f1—i)=—3—6i

f[S] is a square with vertices given by (3, —6), (3,0), (—3,0), (—3, —6) which is shown below.
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-3 — 61

33. We are given S = {z € C: 0 < |2]| < 3,

region below.

2
il < Arg(z) < %} as shown by the shaded

w

4

{o/< |2 €3,% < Arg(2)
y
y

If we write z = r(cos @ + i sinf), then f(z) =

1 = L(cos(—0) + i sin(—0)). Hence the polar
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coordinates of w = f(z) = p(cos ¢+ sing) are + < p < oo, and —2F < Argw < —%. Asr
increases from 0 to 3, p decreases from oo to %; and as ¢ goes from % up to %’T, ¢ decreases
from (—%) to (—2F). Thus
1 2w T
flS]={z€C: 3 < |z] < o0, Y < Arg(z) < _§}

as shown by the shaded region below.

37. We are given S = {z+iy : —2 < z < 0} and is represented by the shaded region below.

E

Now consider a vertical strip Ly, = {x + iy : x = xo} of S. Let z be an arbitrary point of
Ly, and assume x > 0. Then under the mapping f(z) = 22, we have

f(2) = (w0 +iy)* = (x5 — ¥*) + i(2x0y)
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We set u = Re(f(z)) = 23 — y* and v = Im(f(2)) = 2xy. By eliminating y, we get an
algebraic relation between u and v, i.e.

Thus we get
. 2 ’1)2
f[Lato] = {U+ZU U =T — 4—1'(2)}

which is a leftward-facing parabola with vertex at (z2,0) and v-intercepts at (0, £2z3). Also

it is not hard to see that f[Lo] = (—00,0]. Since S = |J Ly, we get
—2<0<0
f151= U FlLal
—2<z0<0
2
v
= (—00,0] U U utiviu=af— —
—2§wo<0{ 4300}
2
v
= vy <4 — — .
{u +iiv:u<4 16}

2

In other words f[S] is the region enclosed within the parabola u = 4 — 11)_6 as represented
by the shaded region below.

41. We are given S = {z +iy : 0 < y < 2}. Now consider a horizontal strip Ly, = {x + iy :
y = yo} of S. Let z be an arbitrary point of L,, and assume yo > 0. Then under the
mapping f(z) = 22, we have

f(2) = (z +iyo)? = (2 — y@) + i(2zy0)
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We set u = Re(f(z)) = 2% — y3 and v = Im(f(2)) = 2zyp. By eliminating z, we get an
algebraic relation between u and v, i.e.

Thus we get
2

v
L :{ U= — 2}
FlLy,) u+ v u 4y§ Yo

which is a rightward-facing parabola with vertex at (—y2,0) and v-intercepts at (0, +-2y2).
Also it is not hard to see that f[Lo] = [0,00). Since S = |J Ly,, we get

0<yo<2
f1S1="UJ flLyl
0<yo<2
2
. v
= [0,00) U U {u—i—w:uz w2 —yg}
0<y0<2 Yo

02
- v >__4}
{u—l—w u_16

2

In other words f[S] is the region enclosed within the parabola u = ;)_6 — 4 as represented
by the shaded region below.

45. We are given S = {z € C\ {0} : g < Arg(z) < %TW} U {0}. We consider the strip

L., ={z:|z] = ro, % < Arg(z) < ?%T} of S. Let z be an arbitrary point of L,,, then under

2

the mapping f(z) = iz we get

f(2) =i (ro(cos 0 + isin 0))* = r2 (cos (29 + g) + isin (29 + g)) .
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3
As 0 increases from % to ZW, 20 + g increases from 7 to 27. Thus

flLro) = {z € C: |2| = rg,m < Arg(z) < 2m}

and f(0) =0. Since S ={0}U U Ly, we get

0<ro<oo

FI81={7}u |J flLw]={z € C\ {0} : 7 < Arg(z) < 27} U {0}

0<rg<oo

In other words f[S] is the lower half complex plane including the real axis as shown by the
shaded region below.

49. (a) We compute
flg(z)) =ag(z) +b=ua(cz+d)+b=acz+ad+ b= (ac)z + (ad + b).

This means that f(g(z)) is also linear.
(b) First, we express the number a in the polar form a = r(cos@+i sin ). If we substitute
this value to the function f(z) we obtain

f(z) =r(cos@+isinf)z + b= ((cosh + i sinf)(rz)) + b.

So, if we take gi1(z) = 2z + b, g2(2) = (cos@ + i sinf)z, and g3(z) = rz we can find a
representation for f(z):

f(z) = gi1((cosb +isinb)(rz)) = g1(92(rz)) = g1(92(93(2)))-

And we notice that g; is a translation, g, is a rotation, and g3 is a dilation.

53. If a real number z is positive then we can express it in the polar form z = r =
r(cos(0) + 4 sin(0)) for 7 > 0. And it follows that Argz = 0. If a real number z is negative
then we can express it in the polar form z = —r = r(cos(w) + ¢ sin(rw)) for r > 0. And it
follows that Argz = w. So, it follows that the image of the set S is two numbers 0 and .
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57. We need to solve the equation % = z which is equivalent to 22 = 1. The solutions of
the last equation are the square roots of 1 which are +1 and —1. Hence the fixed points
are +1.

61. (a) We know that w is in f[L]. This means that there is z = m + in with integers m
and n such that 22 = w. By the way we can compute

w = 2Z2=(m+in)?=m?+2imn+ (in)? =m?—n?+2imn
Now take mi; = —n and n; = m. Then for z; = m; + i n1 we compute
22 = (my+in)?=m? —n?+2iming = (—n)2 —m? + 2i (—m)n
= —(m?—n?+2imn) = —w.

Hence —w is also from f[L].

If we take z0 = Z = m — in then we find

4 = @)?=2=w

Hence w is from f[L].

Finally, we can compute —Rew + i Imw = —(Rew — i Imw) = —w. Since we already
proved v = w is from f[L]. And, for u from f[L] we have (—u) is from f[L] as well. We

can conclude that —Rew + i Imw = —u is from f[L].
(b) This part follows from the formula given in the proof of the part (a). That is for
z=m+1in

w = 22=m+in)?=m?+2imn+ (in)? = (m? —n?) +i(2mn).

We notice that (m? — n?) is integer and (2mn) is integer. So, w = 22 is also from L.
(¢) By the part (b) it follows that w is in L. Hence the function f maps the number w to
f(w) which is already in f[L]. And this is what we needed to prove.
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Solutions to Exercises 1.5

1. Note that

sin(g) | o L

lim |ap| = lim
n—o00 n—oo n

n—oo

Therefore the sequence {a,}72; converges to 0.

5. Note that
. . cosn — in . cosn| + [in . 14+n
lim \an]: Iim |————| < hmwg Iim —— =0
n—o0 n—o0 n n—oo n n—oo n

Therefore the sequence {a,}7> ; converges to 0.
9. (a) Let L = lim a,. Then given ¢ > 0 we have |a, — L| < € for n > N.. Then
n—oo
|ap+1 — L| < € for n > N, — 1. Therefore lim a, = L = lim an41.
n—oo n—oo

(b) We are given a; =i and

3
Int1 = 24 ay
lim any; = lim 3
n—00 n—o0 2 + an,
lim apqq = #
n—00 2+ lim a,
n—oo
=91 (by part (a))
L?4+2L-3=0
(L+3)(L-1)=0
L=1-3

We shall now show that L = —3 is absurd.

Claim : Re(a,) >0

Proof. We shall prove the statement by induction on n. Since Re(a;) = 0, the statement
is true for n = 1. Hence assume that the statement is true for some n > 1. Then we have

Re(an+1):Re< 5 >

24 ay,
3

Re (2 + ay)
3

2+ Re(ay)

>0

which completes the proof.

Thus the claim rules out the possibility of L = —3. Hence lim a, = 1.
n—oo
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13. We have
o0 . . o0
3—1 3—1 1 1
— = - - convergent since |l =—<1
nz:;(uz)n (1+i) (T;(lez)”) < & 1+i| 2 >
3—1 1
= ((1 n 2))3 ; (geometric series formula)
i
1 (k)
_(3—1) (141)
(1493
(3 —1)
i(1414)?
_ 3
2 2
N, 1

17. Let Sy = > -

. denote the N-th partial sum. Then we have
n=2 (n_}'l)(n -1 +7J)

i 1 _i(nﬂ)—(n—lﬂ)
e nti)n—14i) = (n+i)(n—1+1)
S
ot (n—1)4+i n+i
1 1
144 N+i
Note that
lim Sy = lim =
Nooe N T i NS N+ 1+

e 1
The series - -
L) —1+7)
e 1 . 1

P (n+i)(n—1+1i) Noeo N 144

is convergent since the partial sums Sy converge and

00 n
21. The series ( ) is convergent because it is a geometric series and the modulus
n=0

14 3i V10
of the common ratio is —Z ' = e < 1.
o [1+2in\"
25. We apply root test to the series ) ( + m) . Note that
n=0 n
1
142 ™ 142 1 1
p= lim ’( + m) — lim ’ IR im =21 = Jim (fa+ o =21
n—o00 n n—o00 n n—oo | n n—o00 n

Since p > 1 we conclude that the series >

n=0

< (14 2in\"
< + m) is divergent.
n
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29. Note that

Using the root test on > >, e"1-1) gives

lim Ver(-n) = lim e!™™ =0 < 1.

n—oo n—oo

Similarly, for $°°°  e™=17") we have

lim Ver(=1-n) = lim e ™" =0 < 1,

n—o0 n—oo

so both of these series converge. Thus,

e —ie ™" > >
— _ n(l-n) _ . n(—1-n)
D D DL i) e
n=1 n=1 n=1
converges.
[e'e} Zn
33. Note that > on is a geometric series and it converges iff
n=0
z
- <1
5|
|z] <2

Now if z satisfies the inequality |z| < 2 we get

X _n
z 1 . .
TR AN (geometric series formula)
ZE ()
2
2
22

o
37. Note that >

1
m is a geometric series and it converges iff
n=1 - <

<1
2 —-10z] > 1

1
= =1> 7 (dividing both sides by 10)
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Now if z satisfies the inequality > — we get

5

o0 o0
Z2—10,2 2—10z <Z 2 —102)" >
n=1 n=0

(geometric series formula)
2 — 10,2

2102

1—10,2

i
41. We are given that the n-th partial sum s, = —. Thus
n

j 1

lim s,| = | lim = lim — =0.

n—o0 n—oo N n—oo n
Therefore the series converges to 0.
45. We have

(74 3i)n
a =-——"a
n+1 1+ 2in2 n

ant1 (74 3i)n
a,  1+2in2
an+1| ’ (7+3i)n

| 14 2in?2

nv/58 V58

T Vit dnd 1
n

lim Gntl| _ lim o8

n—oo an n—oo 4 n 1
oy _
n4

Hence by the ratio test we conclude that the series > a, converges.
n=0

an
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Solutions to Exercises 1.6
1. (a) We have

e = cosm+isinT = —1.
(b) We have
e¥™ = cos(2m) +isin(27) = 1.
(c) We have
: : 3
3¢ 12000 — 371, 2000m — 3071 (¢og(2007) + isin(2007)) = 3¢~ -1 = =,
e

(d) We have

en(3)+201: 5 B eln(3) . o201i% 3 (cos (201%) +isin (201%))

= =73.

3 N 3 3

5. (a) We have '
cosf — isinf = cos(—0) + isin(—6) = e~ .

(b) We have
sin @ + i cos @ = cos (g — 9) + 4 sin (g — 9) = ei(%*‘g)_
(c) We have
S DR B
cosf +isinf et '
(d) We have
cosf +isinf e _ Li0-3i0 _ ~2i0
cos(30) +isin(30) 3 B '
9. (a) We have
et =elt =el. el =¢-(cosl +isinl) = ecos(1) + iesin(1).

(b) We have
3ie*? = 3iel ™ = 3ie' - 7 = 3ie(cos(—1) + isin(—1)) = 3esin(1) + i3e cos(1).

(c) We have

el %2 — P17 — €(1+z)+(171) — 2.

(d) We have
el

— == eUFD=0=0) — 21 — (05(2) 4 isin(2).
e

13. (a) We have

—3—3i =32 (—\}5 - z\%) =32 (cos <5I> +isin (T)) = 3207

35
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(b) We have

(c) We have

1 4 4 4r
—1-+3i=2 (—2 —z?) =2 (cos <;> + 4 sin (;)) = 26Z%.

(d) We have

—3e% = 3(— cos(2) — isin(2)) = 3(cos(mw + 2) + isin(7 + 2)) = 3€'"2).

17. Consider a vertical line segment of S,

. s
Lm:{xo—kzy:()gygi}.
An arbitrary point z = z¢ + iy of L, is mapped to
f(z) = e = ™0t = %0 . oW,
T
Now as y varies from 0 to 5 the image f(z) traces a quarter circle having radius e®. Thus

we get
— x0 36 . < < ™
f(LxO)—{e e”:0<4 2}.

Therefore

21. Consider a vertical line segment of S,
Lyy={x0+iy:0<y<m}
An arbitrary point z = x¢ + ity of L, is mapped to
F(2) = & = o+ — o0 iy

Now as y varies from 0 to 7, the image f(z) traces a semicircle having radius €*. Thus we
get
flLazo] = {ezoew :0<0< 7'('} .
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Therefore

= U {emoew :0§0§7T}

—oo<rp<oo

={z € C:Im(z) >0} \ {0}.

25. (a) We have

ef=2—-2

()

. T L T
e —2\/§<COS<4)+zsm<4)>
z _ Jn(2v2)  iTF

e = e
ezfln(Z\/i)fi?T" =1

- In(2v2) - i% —i2%knr  (keZ)

2 =n(2v2) +i <2k+ 7) T (ke

4
(b) We have
e =i
22 .. T
e”” = cos — +18In —
2 2
s
622 _ €Z§
s
622—12 -1
s

29. Let z = z + iy and we have

] <1 <= " <1 (|em+iyl = ¢”, see Exercise 33.)
— <0
< Re(z) <0
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Solutions to Exercises 1.7

1. (a)

i) 1 o—i(0)
2
el +el
2
= cosh(1)
= cos(0) cosh(1) — isin(0) sinh(1)

Ccost =

sint =

23
el _ ol
T2
ol _ -1
=i =
(=)
= isinh(1)
= sin(0) cosh(1) 4 ¢ cos(0) sinh(1)
(b)
T
S—
cos
= cos(%) cosh(0) — isin(%) sinh(0)
T
N
sin

= sin(%) cosh(0) + ¢ cos(%) sinh(0)

gilmti) | g—i(mti)
2
el . 6_1 4oemim, 61
2
(cosm +isinm)-e ! + (cosm —isinT) - e

cos(m +1) =

1

2

el + e 1 . el —e 1 .
= — — —— | sin
5 COST — 1 5 sin 7w

= cos(m) cosh(1) — ésin(m) sinh(1)
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i(m+i) _ g—i(m+i)
24
i, 6_1 7€—i7r Lol
24
(cosm+isinm)-e”

sin(m + 1) =

e

1 1

— (cosm —isinm) - e
24

. el + e 1 . n el —e 1
=|—5 —)sinm+i{ ——— Jcosm
= sin(7) cosh(1) + 7 cos(m) sinh(1)

(5 +2mi) | o—i(5+2mi)

cos<g + 2772') =

2
egi Lo 2w + e—gz . e2m
B 2
T . o —2r s s i T 2
(cos§ +ising)-e “" + (cos§ —ising)-e

2

627r + 6—27r T 627r _ 6—27r T

=|———|cos—- —i| ——— |sin—

() ()
= cos(g) cosh(2m) — isin(%) sinh(27)

oi(5+2mi) _ —i(5+2mi)

23

27

(cos§ +ising)-e 2

2 — (cos§ —ising)-e

627T + 6727r T ' 627r _ 6727r T
= — |sin—+17| —— | cosS —
2 2 2 2

= sin(%) cosh(2m) + i COS(%) sinh(2m)

5.
cos(1 + i) = cos(1) cosh(1) — isin(1) sinh(1)
sin(1 4 ¢) = sin(1) cosh(1) 4 i cos(1) sinh(1)
tan(l+14) = sin(1 +19)

Q

cos(1+1)
_ sin(1) cosh(1) + icos(1)sinh(1)
~ cos(1) cosh(1) — isin(1) sinh(1)

[cos(1 + )| = y/cos?(1) + sinh?(1)

[sin(1+4)| = /sin?(1) + sinh(1)

39
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9.

13.

tanz =

Complex Numbers and Functions

sin(2z) = sin(2(z + iy))
= sin(2z + i2y)
= sin(2x) cosh(2y) + i cos(2z) sinh(2y)

sin 2

sin(x + iy)
cos(z + 1y)
sin(z) cosh(y) + i cos(x) sinh(y)
cos(z) cosh(y) — isin(x) sinh(y)
(sm(aj) cosh(y) + i cos(x) sin (y)> . (cos(a:) cosh(y) + isin(z) sinh(y))
cos(z) cosh(y) — isin(x) sinh(y) cos(z) cosh(y) + i sin(x) sinh(y)
sin(z) cos(z) cosh? iy — sin(x) cos(x) sinh? y 4 i(sinh(y) cosh(y) sin?(z) + sinh(y) cosh(y) cos?(z))
cos? x + sinh? y

sin(z) cos(x) + i sinh(y) cosh(y)
cos? x + sinh? y

( sin(z) cos(z) > +i<sinh(y) cosh(y)>

cos? z + sinh? y cos? z 4 sinh? y

17. Consider the horizontal strip

Lyoz{m—i—iyo:— §x§g}

b 3

The mapping f(z) = sinz maps an arbitrary point of L, to

f(z + iyg) = sin(z + 1yp) = sinx cosh yg + i cos x sinh g

Set u = sinx cosh yg and v = cos x sinh yy5. Observe that

2 2
u N v 1
( cosh o > ( sinh yo )

Now as x varies in the interval —5 < x < Z, the point (u,v) traces an upper semi-ellipse
with u-intercepts (% coshyo,0) and v-intercept (0,sinhyg). Thus

2 2
u v
= ) . = >
J1Ly,] {u—HU (coshy0> + <sinhy0> 1, v> 0}



Thus

21.
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e

a<yo<pB

U

asyo<p

U

a<yo<pB

SLyo

pive (— ) (=) =1 o
v cosh yg sinhyy ) U=

U 2 vo\2 U 2 v 2
v > < i
{u+zv (cosha) + (sinha) 21, (coshﬁ) * (sinhﬁ) - 1}

sin z = sin(x + iy)

etl@tiy) _ o—i(z+iy)
27

e—y—i—im _ ey—z‘x

21

e Y.e®—e¥.e”
27

e Y(cosx +isinz) — eY(cosx — sinx)

)

ey _|_ e_y . + . ey — e_y
= | ——— |sinx 1| ———— ) COST
2 2

= sin x coshy + 7 cos x sinh

T

|sin z| = | sin(x + iy)|

= | sinz cosh y + i cos x sinh y|

= \/ sin? x cosh? y 4 cos? zsinh? y

= \/sin2 z(1 + sinh?y) + (1 — sin® z) sinh? y

= \/sin® z + sinh? y.

41
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25.
cosf = Le e
cos® = Le ¥ ’
N 2
N 8
cos3 0 — cos(30) + i sin(36) + cos(0) + isin(f) + cos(f) — isin(f) + cos(30) — isin(30)
N 8
cosd g — 8 36 + 3cos 0
N 4
29.

sin 21 cos 22 + COS 21 Sin 2

- eizl _ e—izl eizg 4 6—i22 N eizl 4 e—izl eizz o e—izz
B 2i 2 2 2i

6i(z1+z2) + ez’(zl—zg) _ ei(zg—zl) o e—i(z1+z2) + ei(z1+z2) _ 6i(z1—z2) + ez’(zg—zl) o 6—1’(214—22)

43
etlz1tz2) _ o—i(z1+22)
27
= sin(z1 + 22)

33.
eizl _ efizl eiZQ _ e*iZQ
2 si i =2
S1n 21 S1N 29 < % ) < % >
eilzit22) _ gi(zi—22) _ p—i(z1—22) 4 o—i(z1+22)
T 2
ei(zlfm) +€7i(21722) ei(zl+22) +67i(zl+22)
- 2 N 2
= cos(z1 — 22) — cos(z1 + 22).
37.

cosh(z + mi) = cos(i(z + i))
= cos(iz — )
= —cos(iz)

= —cosh z
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sinh(z 4+ i) = —isin(i(z + 7))
= —isin(iz — 7)
= isin(iz)

— —sinh z.

41.

1+ 2sinh? z = 1 + 2(—isin(iz))?
=1 — 2sin®(iz)
= 2cos?(iz) — 1
=2cosh?z — 1

2cos?(iz) — 1

= cos(2iz)

= cosh(2z)

= cos(2iz2)

= cos?(iz) — sin?(i2)
= (cos(iz))? + (—isin(iz))?

= cosh? z + sinh? 2.

45.

cosh z1 cosh z9 + sinh 21 sinh 29

= cos(iz1) cos(ize) + (—isin(iz1))(—isin(iza))
= cos(iz1) cos(izz) — sin(iz1) sin(izz)

= cos(iz1 — i22)

= cos(i(z1 — 22))

= cosh(z; — 22).

49.

2 sinh z7 cosh z9

= 2(—isin(iz1))(cos(izq))

= —i(2sin(iz1) cos(iza))

= —i(sin(iz1 +iz2) + sin(iz; —i22))
= —isin(i(z1 + 22)) — isin(i(z1 — 22))
= sinh(z1 + 29) + sinh(z1 — 29).

53. (a) Let
S=1+z+---+2"



44 Chapter 1 Complex Numbers and Functions

Then

2S=z+22+4- - +2

n+1

By subtracting the second equation from the first, we get

S—28=0+z+-+2") —(z+ 22+ 42"
(1—2)8=1—z"!
1— Zn+1
(b)
” - 1 — ein+1)0
L+e” +--+e" = o (By Problem 53(a).)
—e
1— ei(n+1)9 e—%
N 1— et o
(1 _ ei(n+1)9) . e—%

((ei(n—i-l)ﬂ ~1) 1) . e "

0

0

e 2 —e2

i1

<62_

_ z(n+1)9 .e

¥

i

(c) From part (b), we get

2sin

ei(n-l—l)@) ce”

0

2

i0

2

1+ei9+---+ei”9:

[4

2sin 5

8 ez‘(n—l—%)e)

2

i(cosg —isinﬁ—cos

0
Sln§

0

(n—i— %)0 — isin(n+ %)9)

2

2sin 5

(=5547)

o0
251n2

cosg — cos(n + %)9

0
251115

)
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By taking the real and imaginary parts of the above identity, we get

1 1
Re(1+ei9+...+eme): 1 w

2 QSing
1 sin(n+ 1)6
14+ cos@+---+cosnf = — ('792)
2 2sm§
1 sin(n + 1)0
*+0089+-'-+Cosn0:(_702)
2 281n§

cos% —cos(n+3)0

0
251n§

Im(1+e"9+...+ein9):

Cosg — cos(n+ %)9
0
2

sinf + --- +sinnf =

2sin

45
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Solutions to Exercises 1.8

1. (a)
log(2i) = In(|2:]) + i arg (27)

:ln2+i<g+2k7r) (k € 7).

(b)
log(—3 — 3i) = In(| — 3 — 3i|) + ¢ arg (—3 — 37)

=In(3v2) +3 (5; + 2k7r> (k € Z).

()
log<5e’%> = 1n<\5e’%]> +iarg (5¢'7)
—In5+i (g +2/€7r> (k € 7).

(d)

log(—3) = In(| — 3|) + iarg (—3)
=In3+i(m+ 2km) (keZ).

5. If we know log z, to find Log z, it suffices to choose the value of log z with the imaginary
part lying in the interval (—m,7].

Log (—3 — 3i) = In(3v2) — i (37T>

Log (21) :1n2+i<

NN

4
ity (T
Log (5€'7) —ln5+z<7)
Log (—3) =In3 +in.

9. Note that
logl =In|1|+iarg (1) = i2k7 (keZ)

If we know log z, to find logg z, it suffices to choose the value of log z with the imaginary
part lying in the interval (6,6 + 2x]. Thus

logg 1 = 2.
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13. We have
e’ =3
eF — eLogS
eszogS -1
z — Log3 = i2km (keZ)
z = Log3 + i2km (keZ)
=1In3 +i2km (kez)
17. We have
e +5=0
e?* = -5
€2Z _ eLog(—5)
622— Log (=5) _ 1
2z — Log (—5) = i2km (kez)
1
2=3 Log (—5) + ik (keZ)
:%1n5+i<g+kﬂ) (k € Z).
21.
Log(—1) =In|—1|+iArg(-1) =im
Log (i) = In |i| +i Arg (i) = i (g)
Log (—i) = In| — i| + i Arg (—i) = —i (;r) .
Note that
, . (T . (T ,
Log (—1)(i) = Log (—i) = —i (5) £i(m) +i (5) = Log (—1) + Log ().
25.

3
Log z 4+ Log (2z) = g

3
In|z| +iArg () +In|2z| + i Arg (22) = g
3
In [22%| +i2 Arg (2) = % (Arg(z) = Arg(2z))
By comparing the real and imaginary parts, we get two relations

3T

In |22%] = =~

nf2t| =

2Arg(2)=0
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From the first relation we get

3
In|22% =
nj2e?| = =
2|2|? = s
37
2] = =
V2
From the second relation we get
2Arg(z) =0
Argz=0
%Tﬂ
e
Thus z = |z|. (cos( Arg z) + isin( Arg z)) = .
|2]. (cos( Arg z) (Argz)) 7
29.
5i — ez’Log5
_ oilln[5]+i Arg (5))
_ e'iln5
33.
(3i)1 =314
=381

Thus (37)* = 81 has a unique value.

37. Set z = —1. Then

Logz= Log—1= Log(—1)=1In|— 1] +iArg(—1) =ix
Again

Logz = Log(—1) =In|—1|+iArg(—1) =imr = —im

Thus we see that

Log (~1) # Log (1)

41. By problem 38, the image of the punctured plane C\ {0} under the mapping f(z) =
logs, 2z is S3x ={z =2+ 1y : 3mn <y < 5}

45. The domain of the map is

S:{z:r-ew: <r<l, -w<0<m}.

N | —

The mapping f(z) = Log z maps an arbitrary point z = r - € of S to

f(z) = Log (r-€®) =In|r-e®| +iArg (- €?) = Inr + 6.
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Set w = In7 and v = 6. As r varies between % < r <1, u varies between —In2 < u <0
and as @ varies between —7 < 6 < 7, v also varies between —7w < v < w. Thus

fIS]={u+iv: —In2<u<0, -7 <v <}

49. (a) We have

sinw
tanw =
Ccos W
eiw _ efiw 9
tanw = - . - -
22 €Zw _|_ e—zw
) W _ p—iw
ttanw = ———
e’LlU + e—Z'Ll)
eiw _ e—iw
l+itanw =1+ ———
elw _I_ e*l’u)
2eiw
= eiw + efiw
(b) From part (b), we have
eiw _ e—iw
ttanw = —
e’Lw _I_ e*’L’w
w —tw
. e —e
l—¢tanw=1— ———
ezw _'_ efzw
Qe
= eiw + e—iw

(c) From parts (a) and (b) we get

1+ itanw _ 2¢iw e 4 e—tw
1—tanw  \ e 4 e—iw Qe iw

IT+itanw 49,
1—tanw
1414 ;
—H,Z:eww (Set z = tanw)
1—1z
1+iz ;
1 =1 2w
Og<1—iz> og(e )
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53. (a)

P P
24 = equgZ

_  E(nsl+iarg (=)

p )
_ eq(ln\z|+z( Arg (z)42km)) (k‘ c Z)
p )
_ eq(Log z+i2km) (k‘ c Z)
P L i2kpm
_(B)ress 2 e g
22npm
(b) Set E,, =e o . Now
i2(n+q)pm i2npmw | - i2npm . i2npm
Eyg=e 1 —e 0 TEPT _¢oTq LT — g 1=F,
2}
Since E, = E), 14, there can be at most ¢ values for z«.

(c) Lets suppose that E; = Ej for some 0 < j <1< ¢—1. Thus

2jpm i2lpm
e 49 —= e 41
i2(l—j)pm
e q =
(] — i
20 = j)pm = i2km (for some integer k)
q
pl—3) _
q
i
(d) It is impossible for u to be an integer since ged(p,q) = 1 and 0 < (I — j)
q

Therefore FE,, are distinct for 0 < n < ¢ — 1 and hence 24 has q distinct values.

< q.
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Solutions to Exercises 2.1

1. We notice that the set {z : |z| < 1} is the closed disk of radius one centered at the
origin. The interior points are {z : |z| < 1}, or the open unit disk centered at the origin.
And, the boundary is the set {z : |z| = 1}, or the unit circle centered at the origin.

5. We see that the set {z: Rez > 0} is a right half-plane. Since the inequality Rez > 0
is strict, this set is open. Really, if some 2 is in from the set {z : Rez > 0}. Then
for any number 0 < r < Rez and any complex number z such that |z — zp| < r we have
Rez > Rezyp —r > 0. Therefore z is also from the same set {z : Rez > 0}. This justifies
that the set {z: Rez > 0} is open. Also, it is clear from its picture that any two points
from the set {z : Rez > 0} can be connected even by a straight line segment, the simplest
polygonal line. So, the set {z: Rez > 0} is also connected. Since it is simultaneously open
and connected this set is a region.

9. We see that the set A = {z: 2z #0, [Argz| < 7} U {0} is an infinite sector with the
vertex z = 0 included but the rays {z: z # 0, Argz = £7} are not included. Since any
open disc with the center at the origin z = 0 is not contained in the set A it follows this
set is not open. On the other hand since the rays {z: z # 0, Argz = £7} are not in this
set A it follows the set A is also not closed. It is clear from the picture that any two points
from the set A can be connected by a straight line segment. So, the set A is connected.
Since it is not open the set A is not a region.

13. One of simple examples is the following. Let us take the sets A = {0} and B = {1}.
Each of these sets is a point. Any single point is a connected set but it is obviously that
AUB = {0} U{1} consists of only two points and they cannot be connected by a polygonal
line inside AU B.

17. To prove this statement we need to show that if C\ S is closed then any point z of the
set S is an interior point of S. Let us assume this is not true and there it is a point zg of .S
which is not an interior point. This means that every neighborhood of zy contains at least
one point not from S. Thus, every neighborhood of zy contains at least one point from the
complement of S, the set C\ S. And zp is not from C\ S. By definition of boundary of
a set it follows that zp is from the boundary of the set C\ S. But we know that the set
C\ S is closed and thus it contains all its boundary. And, thus zp must be in C\ S which is
impossible since zg is from the set S. This gives a contradiction to our assumption. Hence
the assumption was wrong and the set S is open.

21. To show that the set A U B is a region we need to show that is open and connected.

Let 2y is a point of AU B. Thus, zg is either from A or from B. If 2y is from A then
since A is open it follows some neighborhood of zj is contained in A and thus also in AU B.
Similar if 2z is from B then some neighborhood of 2y is contained in B and thus in AU B.
It implies that zg is an interior point of A U B. Hence the set AU B is open.

To show that AU B is connected we need to show that any two points z; and 29 of AUB
can be connected by a polygonal line. Let the point z3 is some point from the non-empty
intersection of A and B. Then z3 and z; are from the same set A or B. Therefore they can
be connected by a polygonal line [1. Also z3 and 2o are from the same set A or B. And they
can be connected by a polygonal line l5. Now it is obvious that z; and 2o are connected by
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the polygonal line I; U ls passing through z3. Hence A U B is connected.
Since A U B is simultaneously open and connected it is a region.



Section 2.2  Limits and Continuity 53

Solutions to Exercises 2.2

1. Using properties of limits and the fact that lim,_,; z = ¢ we have

lim322 422 -1 = 3limz?+2limz—1
zZ—r1 zZ—r zZ—r
2
= S(Iimz) +2limz—1
Z—1 Z—r1

= 3242 —1=-34+2i—1=—4+2i.

5. First we add to fractions under the sign of limit. We use the identity 22 +1 = (2 —4)(2 +i). We
have

1 - z+i 1
z—i 2241 (z—d)(z+1) (2—i)(z+1)
_ z+1—1
(=) (z+i)

We again use the properties from the Theorem 2.2.7 and the fact that lim,_,; z = to get

. 1 1 ) z+i—1
lim - = lim
iz —1 2241 =i (z —1) (2 +1)
lim, ,;(z+i—1)
lim,_; z — ¢lim,_;(z +9)
2t —1
(lim,—y; 2 — 4)2i

1
[since ll_}Ian(Z)ZO & llﬁmc%:oo]
_o2i-1
2 T

9. We evaluate using properties of limits and the fact that Argz is always real to get

: 2 _ : 2
JmArga = lim | e

2
(ngg | Arg z|> .

We know that in general Arg z is discontinuous on the ray (—oo, 0]. But it turns out that the function
f(z) = | Arg z| is continuous on the open ray (—oo,0). Really if z is from the open ray (—oo,0) and
z approaches to zp from the second quadrant then Argz approaches to w. Therefore | Arg z| also
approaches m. Now if z approaches to zy from the third quadrant then Argz approaches to —.
But | Arg z| approaches 7 again. So, in either case | Arg z| approaches m. Therefore we conclude

lim |Argz| =n.
zZ—r 20

If we take zg = —3 we have

Z—20

2
lim (Argz)? = ( lim3 | Arg z|>
2——

= 71'2.
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13. Since z approaches co (thus z # 0) we can divide by z both the numerator and the denominator.

We have
z+1 ol T lime e g

7 7
im — = = —
z—o00 3t 2 + 2

Soo3i+2  BitlmoZ 3i 32 3

17. We have

, -1 1)
Im — = —|(lm .
z—1 (Z — 1)2 z—1z—1

Now we notice that if f(z) approaches 0 if z approaches 1 then g(z) = ﬁ approaches co. Also if

lim, 1 g(2) = oo then lim, .1 g(2)? = co. Using these properties we compute

( - 1 )2
lim = o0o.
z—1 z — 1

Since multiplying by a non-zero constant does not change approaching to co we have

e N
z1—>rnl (Z — 1)2 -

21. We know that a real exponential function f(x) = e* has the properties

lim f(z) =0,

Tr—r+00

and

lim f(z) = +oo.

r—r—00

So, we see that even for real z the function f(z) has different limits in the positive and negative
directions. Hence, it also cannot have a unique limit when z approaches infinity in the complex
plane C.

25. Approaching zy = 0 from the positive xz-axis and the negative z-axis, respectively, thus

lim lim — =1,
v Tal oot Ja
x—0

. . ¥
Since lim —
y=0

z z
lim —, therefore the limit lim — does not exist.
{7 v T =
z—0—

02|

x—0+

29. We need to show that

. . 1
1) lm f(z)=L & lmf () L
Suppose the left statement is true. This means that for any € > 0 there is an R > 0 such that
2| > R it follows |f(2) — L| < e. Now let € > 0 be any. Let us denote § = & where R is chosen as
above. Then it follows that for any |z| < § we have || > R. Thus it follows |f(1) — L| < e. Hence

lim, o f (1) = L.
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Now we suppose that the right statement is true. Again we pick any € > 0. We can choose § > 0
such that if |2| < § then |f(2) — L| < e. Let us denote R = %. If |z| > R then |1| < £ = 4. So,

) -1 = ‘f<1> —L’ -

Hence lim,_, o f (2) = L.

33. If z # —1 — 3i then the function h(z) = ﬁ is continuous in z. The discontinuity at
zp = —1 — 3¢ is not removable because zg —1 = —-1—-3i—1=—-1—47and 2o+ 1+ 3¢ =0. And we
have

z2—1 . 1

= (=1-—4)

lim ——— lim & ———
z2—=—1-3i z + 1+ 31 z—=—1-3i 2+ 1+ 34

= (=1 —4i)oo = co.

37. We use the definition of sin z using the exponential function. We have
1z e—iz
2i

. e
sz =

From the Example 2.2.19 we know that e is continuous everywhere in C. Since ¢* = f(g(z)) for
g(z) =iz and f(z) = €'* and both functions are continuous it follows from Theorem 2.2.13 that e**
is also continuous. Similar we show that the function e™** is continuous. Then by Theorem 2.2.13
e — et 1, 1
sing = ——— = —e” — —e
27 27 27
is continuous in C.

41. (a) First, assume that f is continuous and A is open. Let zo be from f~1[A]. This means
that f(zo) is in A. Since A is open there is € > 0 such that the e-neighborhood is a subset of
A, or B:(f(20)) C A. Since f is continuous at zp there is a > 0 such that if |z — zp| < § then
|f(2) — f(20)] <e. Thus f(2) is in A. And therefore z which is in f~1[f(z)] is in f~*[A]. Therefore
the whole §-neighborhood of zq is in f~*[A]. And it follows that f~1[A] is open.

Second, assume that f~1[A] is open whenever A is open. Let zy be any complex number and
€ > 0 be any too. Then by assumption the e-neighborhood B.(f(z0)) of f(z0) is open too. Therefore
F71B:(f(20))] is open. In particular, there is § > 0 such that Bs(z0) C f~1[Bc(f(20))]. It follows
that for any z such that |z — z9| < § we have |f(z) — f(20)| < . Hence f is continuous.

(b) First, assume that f~![A] is closed whenever A is closed. To show that f is continuous
by part(a) it is enough to show that f~1[B] is open whenever B is open. So, let open B be given.
Since the complement of an open set is closed (problem 17 Section 2.1) we have A = C\ B is closed.
Therefore, by assumption f~1[A] is closed too. Now we use the identity

fBl=C\ f[A4]

which is true for any set B and A = C\ B. Really, if z is in f~![B]. Then f(z) is in B = C\ A.
Therefore f(z) is in the complement of f~![A]. On the other hand if z is in C\ f~'[A] then f(z)
cannot be in A = C\ B. And, thus f(z) is in B. So, f~1(z) is in f~![B]. Since f~1[A] is closed
it follows from (2) and Problem 17 Section 2.1 that the complement set f~![B] is open. Thus f is
continuous.

Second, assume that f is continuous and B is closed. Then A = C\ B is open. Therefore by
part (a) it follows that f~![A] is open. By (2) it follows that f~1[B] = C\ f~![A]. f~'[A] is open.
Then by Problem 17 Section 2.1 it follows that its complement, f~1[B] is closed.
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Solutions to Exercises 2.3
1. If we take g(z) = 32% + 22 and h(z) = z — 1 then we have
f(z) =3(z = 1)* +2(2 = 1) = g(h(2)).
By the chain rule and the formula that (2")" = nz"~! for a positive integer n we have

f'(z) = g () =06(z—-1)+2)1=6(z—1)+2=062z—4.

5. By the quotient rule and the formula for the derivative of a polynomial it follows

( 1 )’ . WE+) -1+ 0327 322
23 +1

(23 +1)2 T (@B (B

9. We have f(z) = 22/3 = (21/3)2. So, if we take g(z) = 2'/3 and h(z) = 22 then f(2) = h(g(z)).
So, by the chain rule and the formulas for the derivatives of polynomial and n-th root we get

1 ., 1 2 _
P2 = ()9 (2) = 2g() 5207908 = 2218227208 = 2o

13. If we take f(z) = 2'% and 2o = 1 then the limit is the definition of the derivative of f at zg

since f(z9) = 1'°° = 1. By the formula for the derivative of 2" for a positive integer n we have
| / 100—1 99
lim —— = f'(20) =100z, ~ ~ =100 - 1°° = 100.
z—1 z—1

17. If 2o is from the region {z : |z| < 1} then the function f coincides with the function g(z) = z
on some neighborhood of zp. Since g(z) is differentiable everywhere then the limit used in the
definition of differentiability of f coincides with the corresponding limit for g which we know is
equal to g’'(z9) = 1. So, inside the region {z : |z| < 1} we have f'(z) = 1.

Now if zy is from the region {z : |z| > 1} then the function f coincides with the function
h(z) = 22 on some neighborhood of zy. So, using the same argument as above we get that inside
this region {z : |z| > 1} we have f(z) = (22)" = 2z.

The question of differentiability remains for zy from the circle {z : |z| = 1}. We have f(zo) = zo.
So, if zg # 1 then zp # 22 and since f coincides with h(z) = 2?2 inside the region {z : |z| > 1}. And
h(z) is continuous everywhere. So, if z approaches zy inside the region {z : |z| > 1} then f(z) = h(z)
approaches h(zy) = 23 which we know is not equal to f(z0). So, f is not continuous at a such zp.
Now if zg = 1 then both g and h coincide at this point. Now let C; be any path which approaches
zo = 1 inside the region {z : |z| < 1} (for example C; = {z: z=7r, 0 <r < 1}) and Cs be any
path which approaches zy = 1 inside the region {z : |z| > 1} (for example Co = {z: z=7r, r > 1}).
Since g and h are differentiable everywhere we have

o SO Se) _ g)—gl0)
z ZO_ITUCl z- ZO z i)?lz{;'c'l - ZO
and
lim f(z) = f(20) — lim h(z) — h(zo)
sone, G0 sone, FTA0

= h/(ZO) = 220 = 2.
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Since we have different limits when we approach zg = 1 from different directions, it follows
that the derivative of f(z) does not exist at zp = 1. Finally, we see that the derivative of f exist
everywhere except the circle {z: |z| =1 } and

Lo 1 e <1,
f(z)_{Qz if |2 > 1,

21. We take g(z) = 2P/9 and f(z) = 2% in Theorem 4 and get h(z) = f(g(z)) = (2P/9)9 = 2P there.
Since f(z) # 0 for any z # 0 and zg/q £ 0 for zg # 0 and not on the negative real axis we have
f'(9(20)) # 0. We also know that

g(z) _ e%(Log(z)—&-iQkﬂ')
for some integer k. So, g is a composition of two continuous functions on its domain. Therefore g is
also continuous. Now we can use Theorem 4 to get

izp/q B h'(z) pzP~ 1 B pzP~ 1 B pzPz 1

dz  f9(2)  qg(z)amt qe/ala=l) T gapa-p/a
[if we divide the numerator and the denominator by z*

and multiply them by zP/92]
— ﬂzp/q.
qz
25. (a) Since (i? +1)" = i% + 1 = 0, we have

(2 +1)"  7(*+1)°(22)

T 62° - =0
(b) We have
3 9.2 o (i : 2 _ L
i 2 +(1-3i)z —I—(Z 3)z+2+z:3z +2(1—-3i)z+i—3 _ 3
2—i z—1 1

z=1
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Solutions to Exercises 2.4

1. If (z,y) # (0,0) then we can compute the derivatives directly since 22 + y? # 0. We have

(zy)e(2® + y?) — 2y(2® + y2)o
(22 + 12)2
y(=? +y%) — 2%y
(1'2 +y2)2 .

Uy ==

Similar
(zy)y(@® + y*) — zy(z® + y2)y
(1‘2 _|_ y2)2
x(2® +y?) — 2zy?
(22 + y2)2

Uy —

Now if (z,y) = (0,0) then we can notice that for any z; # 0 we have

x10
u(z1,0) = 207 =0.
Therefore 0 0.0 0
1 (0,0) = lim L0 Zu(0.0) 0
z1—0 z1—0 z1—0 T

Therefore the partial derivative of u with respect to z exists at (0,0) and is equal to 0.
Similarly, we notice that for any y; # 0 we have

Oy1
U(O,yl): 02+y2 =0
Therefore 0 0.0 0
U, (0,0) = lim wOyy) =u(0.0) ) 0 g,
y1—0 y1—0 110 Y

Hence u,, exists at (0,0) and is equal to 0.
To show that u(x,y) is not continuous at (0,0) we pick a point (x,z) for any number x # 0. We

compute
x2 1
wE,w) = rE T g
Therefore if z approaches zero then (x,z) approaches (0,0) but u(z,z) = 1/2 does not approach

1(0,0) = 0. Therefore u is discontinuous at (0,0).
5. Since f and g are differentiable at © = z¢ and y = yy correspondingly we have
f(@) = f(zo) + f'(z0)(x — m0) + e1(2)|z — o
and
9(y) = 9(yo) + 9'(wo) (y — wo) + €2(v)|y — wol
where €1(z) — 0 as ¢ — z¢ and e3(y) — 0 as y — yo. Therefore we have
u(z,y) = flz)g(y)
= (f(zo) + f'(zo)(z — x0) + e1(z)|z — 20])(9(y0) + 9’ (¥0) (¥ — ¥o)

+e2(y)|y — vol)
= f(x0)g9(yo) + 9(yo) f'(zo)(x — z0) + f(y0)g' (z0) +m(z,y),
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where

m(z,y) = f'(x0)g'(y0)(x —20)(y — vo)
+e1(@)|z — wol(9(y0) + 9" (¥0) (¥ — vo) + e2(y) |y — yol)
+e2(Y)|y — yol (f(x0) + f'(z0)(x — x0)).
To show that that u is differentiable at zg = (o, yo) it is enough to check that
m(z)

lim =
zZ—2z20 |Z — Zo‘

(x—z0)(y—yo) _

o] 0. To see it we will use the squeeze theorem and the

First, we show that lim,_,
inequality ab < “231’2. To prove the inequality we start from the obvious inequality (a — b)* > 0
which is equivalent to a? — 2ab + b? > 0 or if we add 2ab to both sides we get a? 4+ b? > 2ab and if
we divide by 2 we get “2J2rb2 > ab which is the needed inequality. Now for a = x — xp and b = y — yg

we get

)2 2 2
(x — o)y —yo) < (z = zo) ;_ (v = o) = |2 220| by Pythagorian theorem.

We also can put a = —(x — ) and b = y — yo to receive similar

(z —20)* + (y — y0)? _ |z — zo[?
2 2 ’

—(z —20)(y — o) <
If we multiply the whole inequality by (—1) then we need to reverse the inequality and we get

|z — 20]?

(r —20)(y —v0) > — 5

If we combine the inequalities (1) and (1) we conclude that

2
Z— 20
R o)) <

|z — 20|

2

If we divide these inequalities by |z — zg| we get

[z =20l _ (@ —z0)(y—y0) _ |z~ =l

2 - |z — 20| -2
We have lim,_,, — 222l — 0 and lim,_,, 2=zl _ So, by squeeze theorem
0 2 0 2
i &)W =) _

z— 20 ‘z — 2|

We notice that

lim (g(yo) + ¢’ (o) (¥ — yo) + e2(y) |y — vol)

Z—20

= lim (9(yo) + ¢ (o) (v — wo) + e2(1) |y — wol) = 9(wo).

Y—Yyo
Now we find that

lim E1@)lz — 2ol(g(yo) + 9 (o) (y — vo) +2(y)|y — yol)
z2—20 Iz - Zo|

1| it I (9(yo) + 9" (o) (v — yo) + e2(y) |y — wol) = 0g(yo) = 0

Z—2z20 |Z — Zo‘ Z— 20
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|z—x0]|

o=zl is bounded by 1 and €1 (z) — 0 if z — z.
Similarly, we find that

since

e2(y)y — yol(f (xo) + f'(20)(y — o))

lim
zZ—20 |Z — Zo|
— i 2O =00 i (700) 4 ) = a0)) = 0720) =0

Finally adding the limits (1)-(1) we conclude that

m(z)

lim =0.
Z—r20 ‘Z — Zo|

9. Project Problem: Is it true that if u,(x,y) = 0 for all (z, y) is a region Q, then u(z,y) = ¢(x);
that is, u depends only on x? The answer is no in general, as the following counterexamples show.
For (x,y) in the region Q shown in Figure 8, consider the function

w(@,y) = 0 if z > 0,
= sgny if x <0,

where the signum function is defined by sgny = —1,0,1, according as y < 0,y = 0, or y > 0.
Show that wu,(z,y) = 0 for all (z,y) in  but that u is not a function of = alone.

Note that in the previous example u, does not exist for z = 0. We now construct a function
over the same region 2 for which the partial exist, u, = 0, and u is not a function of x alone. Show
that these properties hold for

(2.1) 0 ifx >0,
u(z,y) =
Y e_l/’”zsgny if £ <0.

Come up with a general condition on € that guarantees that whether u, = 0 on € then u depends
only on z. [Hint: Use the mean value theorem as applied to vertical line segments in 2.]
For any point in the region (z,y) € €, the partial derivative u,(z, y) at this point can be denoted

as
: U(l‘,y+h) *U(Z,y)
) = iy M

By the definition of the function u(x,y),
If z > 0, then uy(x,y) = 0;
If  <0and y <0 ory >0, since the region does not contain the boundary, thus u,(z,y) = 0;
Otherwise, consider the line segments along the y-axis. Since the region 2 does not contain the
origin, for y > 0,x = 0, we have

uy(0,y) = ilLlE% h h—0 h

Similarly, for y < 0,x = 0, we have

uy(7,y) = illlg%) h h—0 h

Hence, it implies that the partial derivative satisfies uy(z,y) = 0 for all (z,y) € Q, but u(z,y)
depends on both z and y.
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Consider the u, in the previous example. Since

. w0+ h,y) — u(0,
u,(0,) = lim ( y})L 0.9)

If y > 0 (similar applying to y < 0), then

lim M: lim 0-1 lim 2207
h—0-+ h h—0+ h h—0— h

which implies that u, does not exist for z = 0.

Now, consider the new function from this example. For the partial derivative u,(x,y),

If z > 0, then uy(z,y) = uy(x,y) = 0;

If < 0, then we can also obtain that u,(x,y) = 0, whenever y > 0 or y < 0 since el/z” >
0,Vz € R\{0}. And for u,, since e!/*" is differentiable at R\{0}, thus u, also exists.

But u is not a function of x alone. Therefore, the properties hold for this new u(z,y). Assume
that the region (2 is convex or path-connected.

Fix any z = z, such that we can obtain a vertical line segment in 2. Then for any (zq,y1), (zo,¥y2) €
Q, since the region (2 is convex, then the vertical line segment joins (xg,y1) and (zo,y2) is contained
in . By mean value theorem, we have

u(zo,y1) — u(z0,Y2) = uy(w0, &) (Y1 — y2),

for some £ between y; and yo. Since u, = 0 on €, then u(zo,y1) = w(xo,y2). Since zo and then
(z0,y1), (xo,y2) € Q are all arbitrarily chosen, thus u depends only on z.
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Solutions to Exercises 2.5

1. For z = = + iy we get z = u(z,y) + w(x,y) for u(z,y) = x and v(z,y) = y. Differentiating u
with respect to x and y, we find

ou 1 ou
or oy
Differentiating v with respect to z and y, we find
ov ov
or oy
Comparing these derivatives we see clearly that g—g = g—; and %Z = f%. Hence the Cauchy-Riemann

equations are satisfied at all points. The partial derivatives are clearly continuous everywhere, so
by Theorem 2.4.4, u(x,y) and v(z,y) are differentiable everywhere.. Appealing to Theorem 2.5.1,
we conclude that z is analytic at all points, or, entire. We compute the derivative as f/(x + iy) =
Ug (2, y) + vz (2, y), giving

f(z)=1+4i0=1.

5. Let f(2) =€, 2 =x +iy. Then

e = W

= e"(cos(—y) + i sin(—y))
€” cos(y) — i e” sin(y)

u(z,y) +iv(z,y)

for u(z,y) = e* cos(y) and v(z,y) = —e® sin(y). Differentiating, we have
0 ou o
a—z = e” cos(y), ay = —e"sin(y),
0 0
a—z = —e”sin(y), 8; = —e” cos(y).

If the Cauchy-Riemann equations are to be satisfied, we must have e* cos(y) = 0 and e” sin(y) = 0.
However, this implies that sin(y) = cos(y) = 0, and sin and cos are never simultaneously zero. Thus,
the Cauchy-Riemann equations cannot be satisfied at any point, and f(z) is nowhere analytic.

9. For z = x + 1y we get
ze* = (x4iy)e” TV
= (x4 iy)e®(cosy + i siny)
e’(xcosy —ysiny + i(ycosy + xsiny))
= u(z,y) +iv(z,y)

for u(xz,y) = e*(xcosy — ysiny) and v(z,y) = e*(ycosy + xsiny). Differentiating v using the
product rule with respect to x, we find

0
a—z = 5 (e"xcosy — e®ysiny)

9z e P
(836(6 Jr+e 895(33)> cosy—%(e Yy siny

= (ex+e")cosy — e"ysiny

e®(xcosy + cosy — ysiny).
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Also differentiating u with respect to y, we find

0
“o_ 2 (e®x cosy — e®ysiny)

oy dy
. 0 (0 . 0, .
= e xa—y(cosy) —e <(‘3y<y) siny + yay(smy)>
= —¢e®zsiny — €” (siny + y cosy)

= €"(—xsiny —siny — ycosy)

Similarly, we compute the derivatives v with respect to x and y

0 0
8—2 = %(exycosy—i—e”a?siny)
0 0 0
= %(em)ycosy—l- (835<61)x+6x8x(x)> siny
= eycosy+ (e’z + €”)siny
e’ (ycosy + siny + xsiny)
and
Ov a(IcoerIS')
— = — (e e®x sin
By Ay Y Y Y
0 0 0
= e (83/(?/) cosy—|—ya—y(cosy) +xay(siny))
= e"(cosy—ysiny + xcosy).
Comparing these derivatives we see that g—; = g—z and ‘g—“ = —%. Hence the Cauchy-Riemann

equations are satisfied at all points. Appealing to Theorem 2.5.1, we conclude that ze® is analytic
at all points, or entire. We compute the derivative as f'(z) = u.(z,y) + iv.(x, y), getting

d
d—zez = e"(zcosy+cosy —ysiny) + ie”(—xsiny —siny — ycosy).
z

13. Let z = x + 4y. This implies f(2) = |z|> = 2% + 3?. Hence, u(x,y) = 2% + y? and v(z,y) = 0.
Therefore,
U (2,y) = 22, uy(2,y) = 2y, and v,(z,y) = vy(z,y) = 0.

The fact that u,(z,y) = vy(z,y) and uy(z,y) = —vy(z,y) implies z = 0 and y = 0. Since the
function f(z) = |z|? is not differentiable in any neighborhood of z = 0, it cannot be analytic even
at the point z = 0.

17. From the Example 2.5.4, sin z is entire and j—z sin z = cos z. By Exercise 2.5.10, cos z is entire
and % cos z = —sin z. By Theorem 2.3.5, we have

— sinzcos z = cos z— sin z 4 sin z— cos z = cos® z — sin? 2.
z dz dz

Since sin z and cos z are entire, sin z cos z is also entire.

21. By Exercise 2.5.12, cosh z is entire and (f—z cosh z = sinh z. Applying Theorem 2.3.11, we have

% cosh(z” + 3i) = sinh(z* + 3i) d% (2% + 3i) = 2zsinh(z* + 3i).
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Since cosh z and z? are entire, cosh (22 + 31’) is also entire.

25. By (2.5.13) and Theorem 2.3.11, we have

| d 1
— =)=
dz 2 dz 2(z —1)3/2

and this is analytic for all z —i € C\ (—o0, 0], that is, for all z € C\ {z: Rez <0, Imz = i}.
29. By L’Hospital’s rule,

. Log(z+1) LLog(z+1) 1
lim = 3 = =
z2—0 Z &Z 2=0 z+ 1 2=0

33. Since f = u + iv is analytic in a region 2, then for any (z,y) € Q, we have

Uz($7y) = vy(x»y)7 and uy(;v,y) = —’Uz((E,y).
We have two cases:

(1) If Ref is constant on 2, then u,(z,y) = uy(z,y) = 0 on Q which implies that v,(z,y) =
vy(x,y) = 0 on Q. Therefore, f is constant on €.

(2) If Imf is constant on €, then v,(z,y) = vy(x,y) = 0 on Q which implies that u,(z,y) =
uy(x,y) = 0 on Q. Therefore, f is constant on .

Hence, f is constant on {2 if either Ref or Imf are constant on 2.

37. We want to rotate the line to the subset of real axis and use Exercise 33. In order to rotate the
line, we first choose a complex number ¢ € f[Q2]. Then f[Q2] — ¢ is a subset of a line passing through
the origin. We may then choose an angle 6 to complete the rotation so that

9(2) = €”(f(2) = ¢)

is a real-valued function on Q. Since ¢ and @ are constant, g(z) is also analytic with Imf = 0.
Therefore, by Exercise 33, g(z) is constant in Q, and f(z) = e"¥g(2) + ¢ is constant in Q.

41. Letting f(z) = 2™ = r™(cos(nf) + isin(nd)), we have that u(r,0) = r™ cos(nf) and v(r,0) =
r"™ sin(nf). Thus, we have

Ou ne1 ou "

5, =" cos(nf), 20 = """ sin(n@),
Ov el . ov

o = sin(n#), 50 =" cos(nd).

We can see that the polar Cauchy-Riemann equations hold everywhere for n > 0 and for z # 0 for
n < 0, and these partial derivatives are continuous where they are defined, so f(z) is analytic on C
for n > 0 and on C\ {0} for n < 0, and we have that

f'(z) = e (u, +iv,) = e ¥ (nr™~* cos(n) + inr™ " sin(nf))

_ esznrnflezne _ 77,’)"”7161(”71)0 _ ,nznfl.
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Solutions to Exercises 3.1

1.Given z; = 1+ and 29 = —1 — 24, apply (3.1.2) to obtain the parametrization of the line
segment [z1, 23]

yt)=(1—t)z1 +tzg = (1 —t)(1 4+4) + t(—1 — 24), 0<t<1,
or
V) =t(=2—3i)+1+4, 0<t<1.
5. The parametrization is given by v(t) = e for —F <t < .
9. The parametrization is given by v(t) = —3 + 2i + 5¢e* for -5 <t<0.
13. From Exercise 10, we have that

5i—3it 0<t<1
V(t) =

2% 1<t<d
By (3.1.3), we have

2¢z (4=1) 0<t<3

7*(t)=7(b+a—t):{52_31-(4_@ 3<t <A

17. This is a negatively-oriented circle with center —¢ and radius %

21. By the chain rule, we have

d : . N d . . N o N o o
$(2 + i) cos(3it) = (2 + z)% cos(3it) = —3i(2 + 1) sin(3it) = (3 — 6i) sin(3it).

25. In complex form, we have

v(t) = 2(t) + iy(t) = (a — b) cost + bcos(a - bt> —|—i<(a — b)sint — bsin(a - bt))

— (a— b)(cost + isint) + b<cos<“b_bt) _ isin(a - bt))

= (a—b)e' + be~i45 ¢

29. We first verify the endpoints.

_0,7( >:1+z 7< >=—1+i;7(1)=0.

Note 1(t) = 3t(1 + ) for 0 < ¢t < % represents the subset of the line y = z. Observe

Y2(t) =3+i—6t for § <t < % represents the subset of the line y = 1. Notice v3(t) =

(=1+14)(3—3t) for 2 <t < 1 represents the subset of the line y = —z.

Wl
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Solutions to Exercises 3.2

1. We have
2T ) 1 . 2m 1 .
/ egm dr = 7.63196 — 7.(6617r o 1) =0.
0 31 0 3%
5. Write
r4+i  x+i(x+i
x—i  x—i\z+i
B 2242z —1+1i
N 22 +1
_ 2 + 2ix
B x224+1 z241
So

=0, odd integrand

1 : 1 1 1

2
/$+Z,da: . / 1dm—/ — Qi/ S da
1T 1 1 xe4+1 1 xe4+1

‘ 1

1

= x—2tan” "z =2 —.

-1

9. Proceed as in Example 2:
£ B+2)x if —1<x<0,
€T =
iz? if0<z<1;
hence an antiderivative
H2A224C if —1<2<0,
F(z) =

z3 ifo<z<l.

[SUIEN

Setting F(0+) = F(0—), we obtain 0 = 3420+ C or C' = 0. Hence a continuous antider-
vative of f is '
#xQ if —1<2<0,
F(z)=12
tad ifo<az<l.

By Theorem 3.2.7, we have that

1 B
i
dr = F(1) — F(~1) = + __3_2
L R O R
13. Parameterize C1(0) by () = € where 0 < t < 27. It follows that /(t) = ie’. Then,

21
/ (22 +1i)dz = / (2e™ 4 i)ie' dt = 0.
C1(0) 0
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17. For the given ~(t), we have /(t) = ie®® — 2ie~®. Thus, the integral becomes

27 . 4 '
/ (2 +22) dz = / <e’t + 2e7 " + 2eit + 2€_it) (ie" — 2ie™") dt
y 0

27 27
= / (" +2e7")d(e" +2¢7") 42 / el + 2= (ie" — 2ie™") di
0 0

(eit + 26_it)2 ?
2

27
+2 / (e7" 4 2¢™) (ie" — 2ie™™) dt
0

0

2 ) ) 2
=2 / (2¢*" — 272" — 3) dt = 2i / (4sin(2t) — 3) dt
0 0

= 2i[~2cos(2t) — 3t|o" = —12mi.

21. Write

I = / zdz
[21, 22, 23, 24, 21]

= / zdz+/ zder/ zdz+/ zdz
[21, 22] [22, 23] [23, z4] (24, 21]

= L+ DL+ I3+ 14,

where 21 = 0, 20 = 1, 23 = 1 + 4, and z4 = . To evaluate I;, parametrize [z1, z2] by
z=m(t)=t,0<t<1,dz=dt. So

! 1
11:/ zdz:/tdt:.
[z1,z2] 0 2

To evaluate [, parametrize [z, 23] by 2 = v(t) = 14it, 0 <t <1, dz = idt. So

1+,
—— 4.
2

|
~
—~
—_
+
&
I

1 . 1
12:/ zdz:/ (1+z’t)idt:i(t+3t2)‘ —
[22, 23] 0 2 0

To evaluate I3, parametrize [z3, z4] by z =v3(t) = (1 —t) +i,0 <t <1, dz = —dt. So

1

1
13:/ zdz:—/((1—t)+i)dt:—(1+i)+1:——i.
[23, 24] 0 2 2

To evaluate Iy, parametrize [z4, 21] by z = v4(t) = (1 —t)i, 0 <t < 1, dz = —idt. So

I / zdz i/li(l t)dt =1 L_1
4= = - - =1l--=_.
[z4, 21] 0 2 2

Finally, adding the four integrals, we obtain I = 0.
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25. We apply the definition of the path integral, with (¢) = ae’t +be”'3t 0 < t < 2m,
v (t) = aie® — i%be_z%t, a=8,b=05:

2 . g . ab _.a
/ zdz = / (ae’t + be*Z5t> <aie” — iez2t> dt
v 0 2

2w 2 2
- / <m2e2“ - i%e‘mt +iabe13)t _ z'a;ei(l—‘é)ﬁ dt = 0.
0

29. We have f(2) =2z, v(t) = (1 —t)2+i) +t(-1—i) = (-3 —-20)t+2+¢,0<t <1,
dz = (=3 — 2i)dt. So

/[ ](:U2+y2)dz = /1((—3—2i)t+2—|—z’)((—3+2i)t+2—i)(—3—2i)dt
21,22 0

= (=3—2i) /1 (13¢% + (=3 — 2i)(2 — i)t + (2 + i) (=3 + 2)t + 5)dt
0

(13 (=3-20)(2—14) (2+4)(=3+2i) 8
= (—3—21)<3—|— 5 + 5 —|—5>:—4—31.

33. We have that +/(t) = ie’’ = —sint + i cost, so we have

/(1) = /|- sint[? + [cos® = 1.

Thus, the arc length is
/6
aw:/ Lat =T
0 6

37. Let y(t) = 2¢% for 0 < t < 2m. It follows that |z| = 2. This implies that |z — 1] >
lz| — 1] =1, so )Zfll) < 1. We also have that £(y) = 4r. Thus, fCQ(O) il d,z‘ < 4.

z

41. (a) Suppose m = n. Then

iy i . T
/ MY dy = / 1dz = 27.
—TT —TT

Otherwise, with m # n, we have

T ) T 1 ) 4
/ eiMT o —InT 10 / ez(mfn):p dr = |: ez(mfn)x = 0.
-7 - Z(m - TL) -7

(b) For all integers m and n, we have

eMTeTMT — (cos ma + i sinma)(cos nx — i sinnx)

= cosmx cos nx + sin mx sin nx + i(cos nx sin mx — cos ma sinnx).
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Now suppose m and n are non-negative integers with m # n. Without loss of generality,
we may assume n # 0. Then we also have m # —n and

s ™ ezmxe—znr + ezmmeznm
cosmx cosne dx = Re 5 dzx

—T —Tr

1 T , T 1
=5 Re (/ eMTeT " dy —i—/ eMmrem® da:) =3 Re(0+0) =0.

—T —T

Similarly,
T ™ imx ,—inxr __ ,iMmx inT
/ sinmz sin nx dr = Re € ¢ € ¢ dx
o e 2
1 T ) T ) 1
=3 Re </ eMTe™"M dy — / eMmrem® da:> =3 Re(0—0) =0.

Now for any m and n, we have

T s ime ,ine imx ,—inx
. M nNT _ oMt e
cosmzsinnx dr = Im 5 dx

—T —T

1 T T . 1
=3 <Im / e dx — Im eMreT e d:c> = 5(0 —-0)=0,

—Tr —Tr

since Im [T _e™%e~M* dz = 0 whether m = n or m # n.
Finally, with m = n # 0, we have

™ s mmx ,—imex iMmT ,imax
e"ve +e"""e
/ cos? mx dx = / Re dx

- - 2

1 T A T 1
=5 Re </ e"M*eT MY dy +/ e'Mmretme dl‘) = §Re (2m +0) = 7.

—T —T

Similarly,

™ ™ imx ,—imax 1mx ,imx
. e — eMTe
/ sin? ma de = / Re dx

- -7 2

1 T . LA 1
=3 Re (/ eMTeT"MY dy —/ eMmeretme dx) = iRe (2 —0) = 7.

—T —T
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Solutions to Exercises 3.3
1. An antiderivative of f(z) = z%+z—1is simply F(z) = $2°+ 122 — 2+ C where C is an arbitrary
complex constant. The function F' is entire and so we can take Q = C.

5. To find an antiderivative of
partial fractions, write

m, we proceed as we would have done in calculus. Using

1 A B
EEEEESY) o R
1 _ A(z+1)+B(z—-1)
(z—1)(z+1) (z=1)(z+1)
1 = A(z+1)+B(z-1).

Taking z = —1, it follows that B = —%. Taking z = 1, it follows that A = % Hence

1 1 1

G-D+1) 20-1) 20+1)

An antiderivative of this function is

F(z) = =(Log(z—1) — Log (z + 1)) + C,

N |

where C' is an arbitrary complex constant. (You could also use a different branch of the logarithm.)
The function Log(z — 1) is analytic in C\ (—oo, 1], while the function Log(z + 1) is analytic in
C\ (=00, —1]. So the function F(z) = %(Log (z—1)— Log (2+1)) +C, is analytic in C\ (—o0, 1] and
we may take 0 = C\ (—oo, 1]. In fact, the function Log(z—1)— Log (2+1) = Log i;} is analytic in
a larger region C\ [—1,1]. There are at least two possible ways to see this. One way is to note that
the linear fractional transformation w = ij& takes the interval [—1, 1] onto the half-line (—o0,0].
All other values of z outside the interval [—1, 1] are mapped into C\ (—oc, 0] and so the composition
Log iﬁ is analytic everywhere on C\ [—1, 1]. Another way to show that Log(z — 1) — Log (z + 1)
is analytic in C\ [—1,1] is to use Theorem 4, Sec. 2.3. Let g(z) = Log(z — 1) — Log(z + 1) and
f(2) = €*. The function g(z) is continuous on C\ [—1, 1], because the discontinuities of Log (z —1)
and Log (z 4+ 1) cancel on (—oo, —1). The function f(z) = e* is obviously entire. The composition
f(g(2)) is equal to the function ;‘r%, which is analytic except at the points z = +1. According to

Theorem 4, Sec. 2.3, the function g(z) is analytic in C\ [—1,1].

9. An antiderivative of zsinh 22 is %cosh 22 4+ C, as you can verify by differentiation. The an-
tiderivative is valid for all z.

13. Using Exercise 12, we find that an antiderivative of the function log,z — log% z is zlogy z —
zlog% z. This antiderivative is valid except on the branch cuts of the two logarithms, that is, on

Q=C\ ([0,00)U{it:0<t<o0}).

17. The integrand is entire and has an antiderivative in a region containing the path. So, by
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Theorem 3.3.4,

1 1, ;= - , .
/zzdz = 228 = - ((e'% +3e*%)% — ("0 4+ 3e*0)%)
gl 3 Lo 3

1/ ;8= P m gim 7r

= 3 (elST + 9T ¢34 2761 T 5 4 2767 T — (4)3)
1 (Vi 2 Vi 2 .
1

= 3 ((714\@ — T3 4+i(~13V2 — 27))

21. Since sin z is continuous on the complex plane with entire antiderivative — cos z, we have, by
Theorem 3.3.4,

i
2e' 2

= cos 2 — cos(2i).

/sinzdz = —cosz
¥

25. The function z Log z has an antiderivative %22( Logz — %), and this antiderivative is analytic
on the region C \ (—o0, 0], which contains the closed path [z1, 22, 23, z1]. Thus, by Theorem 3.3.4,

/ zLogzdz = 0.
[21, 22, 23, 21]

2

29. (a) Differentiating, we have

d 1 1
el o¢+1:7 1 a+171: a.
dzoz—i—lz a+1(a+ )z §

b) By part (a), an antiderivative of 1 = 27t is 227 =2 z, and this is analytic on C\ (—o0, 0].
Vz
Since 7y is contained in this region, by Theorem 3.3.4, we have

/%dz:%/g

33. (a) Parametrize Cr(20) by v(t) = 20 + Re®,0 < t < 27. Then /() = iRe" and we have

= 2/2i.
—1

2 2m
/ Imzdz = / Im (Re™ + zp)iRe™ dt = / (Rsint + Im zq)iRe™ dt
¥ 0 0

=0
——

2m 27 2m
= / iR*e" sint dt + / iTm (z0)Re™ dt = / iR?sint(cost + isint) dt + [Im (zo) Re"] iﬂ
0 0 0

27 27 27 1 27 1 1
=iR? / sintcost dt — R? / sin® t dt = iR? / —sin(2t) dt — R? / - — —cos(2t) ) dt
0 0 0o 2 0 2 2

=0 =0

R? R? R?
= —i—[cos(2t)]2" ——[t]2" + —[sin(2t)]2" = —7R2.
4 2 4
(b) If Im z had an analytic antiderivative on an open subset 2 of C, there would be some zy € {2

and R > 0 such that Cr(z9) C Q. By Theorem 3.3.4, we should have fcR(Zo) Imz dz = 0, but by
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(a), we have fcR(ZO) Imz dz = —7mR? # 0, a contradiction. Therefore, no such antiderivative can
exist.

(c) If Rez had an analytic antiderivative on an open subset £ of C, then, since z has an entire
antiderivative, we would also have an antiderivative for Imz = # on £, but by (b), such an
antiderivative cannot exist. Thus, Re z cannot have such an antiderivative.
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Solutions to Exercises 3.4

1. Let 71,...,74 be the four sides of the square, parametrized as
z1(t) = t, yi(t) =0,
za(t) =1, ya2(t) =1,
z3(t) =1—1t, ys(t) = 1,
z4(t) =0, ya(t) =1

0<t<1

Then the left integral from (3.4.1) becomes
/ Pdr+Qdy
N

:/ ;z:yderyder/ xydz+ydy+/ xyda:+ydy+/ xy dr +y dy.
71 72 3

Y4

Parametrizing each integral, we obtain
1
/ myd:ﬂ+ydy:/ 0+0dt=0,
Y1 0
1
/ :cydx+ydy:/ 0+tdt=—
0

1
vy dx+ydy 7/0 1-t)(1)(-1)+0dt =—7

1

/, :
1

/xyd:z:+ydy7/ 0+ (1 —-t)(-1)dt=—-.
Ya 0

2

Thus,
1
/xydx+ydy: ——.
8 2
The right integral from (3.4.1) becomes

1,1 1 1
// (m—ap)dxdy://—xdxdy:—/xdx/ dy:—l.
p\0z Oy o Jo 0 0 2

These two integrals are equal, verifying Green’s Theorem.

5. The area of D is most straightforwardly expressed as

ff o

For the first integral, we have P = =0, so by Green’s Theorem, we have

/ydw—//O—— ) dedy = [[ dzay

For the second, we have P = 0,Q = z, which by Green’s Theorem gives

Lxdy://l)(l—O)dxdy:/Ddxdy.

73
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Finally, the third integral is equal to the average of the first two, so it is also equal to the area of D.
9. (a) For t # 0, we have

d 1 1 1
fl(t) = &752 Sin; = Ztsmz — COS ;,

and this is defined for all t # 0. At ¢t = 0, by the definition of the derivative, we have

M = lim xsinl = 0.
x—0 x—0 x—0 x
Thus, f/(t) is defined for all ¢ € R.

(b) To show that the given curve is a path, first note that the curve is continuous: the graph
of f(¢) is clearly continuous for ¢ # 0, and lim;_,o f(¢) = 0 = f(0) by the squeeze theorem, so the
portion of the curve from f(t) is continuous. Furthermore, since f(0) = 0 and f(£) = 0, the curve is
continuous at the piece boundaries. The straight line segment is clearly continuous. Then, to show
that the curve is piecewise-continuously differentiable, note that we can parametrize the part of the
curve from f(t) by y(t) =t +if(t), 0 <t < 1. We then have v/(t) = 1 + f'(t), and as f'(t) exists
from part (a) and is continuous on (07 %), this piece of the curve is continuously differentiable. The
straight line segment from (O, %) to (0,0) is clearly continuously differentiable. Thus, the curve is
piecewise-continuously differentiable, and, thus, a path. Since f(0) = 0 and the straight line ends at
(0,0), the curve is clearly closed. To see that the path intersects itself an infinite number of times,
note that for any n € N, ¢,, := rle € [0, %] and f(t,) = 0. Thus, the piece of the curve from f(t)
intersects the straight line segment at an infinite number of points (¢, 0).
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Solutions to Exercises 3.5
1. This is both convex and star-shaped.
5. This is neither convex nor star-shaped.

9. The integrand is analytic on C\ {—2,2}, and the path of integration and its interior lie
inside a star-shaped region on which the integrand is analytic (take, for example, B s (0)).
By Theorem 3.5.4, the integral over the square, traced once, is zero. Since the integral over
the given path is ten times this, it is also zero.
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Solutions to Exercises 3.6

1. Each path is continuously deformable to a point in 2 and ) is connected. So the two
paths are homotopic.

5. The region € is simply connected, so the two paths are homotopic.

9. Given the path v, consider the homotopy H(t,s) = v((1 — s)t). Then H(t,0) = ~(t)
and H(t,1) = v(0). Obviously H is continuous, so v is homotopic to a point.

13. (a) The first figure is convex, the second and third are not.

(b) We have trivially that H(¢,0) = yo(t) and H(t,1) = v1(¢). Since vo(t) and ~1(t) are
continuous in ¢, and s and 1 — s are continuous in s, H(t, s) is continuous in both variables.
Furthermore, since 7o(tp) and 7 (tp) are in Q for all 0 < tp < 1 and  is convex, we have
that H(to,s) = (1 — s)vo(to) + sy (to) € Q for all 0 < s < 1. Thus, H(t,s) is a continuous
mapping from the unit square into €2 and is a homotopy from ~g to 1.

(c¢) The same mapping (3.6.17) and the same reasoning as (b) shows this.

(d) Let 71 (t) = 21 in part (c).

(e) Using (3.6.17), we have

H(t, S) — (1 _ 8) (62m't + e47rin) + 386271'1'15_
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Solutions to Exercises 3.7

1. By Example 3.7.4, we have

(a)
2 1
/ Z,dz:2i/ = 4.
CZ—’L CZ—Z

(b)
/ 2Z.dz:2z'/ ! =0
cc—1 cZ—1
5. We have
/[ Z _3+-Z] dZ:%/ —(3+2i)/ - dz.
clz—2 z4+1 cz—2 2t
Thus,
(a)
21 2
/[ Lot q dz = 2i(2mi) — 0 = —4n.
clz—2 z+1i
(b)
2 3+ 2i
/c [z —Z 2 zJ; z‘Z] dz = 2i(2mi) — (3 + 20)(2mi) = —6mi.
(c)

2 2
/[ ! —3+,Z}dz—0—0—0.
clz—2 241

There is one overlooked combination, where 2 is outside C' and —i is inside C:

21 2
/c [z —Z2 B thr ” dz =0 — (3 +2i)(2mi) = 4m — 6mi.

9. Since 1 lies in the interior of ~,

d
/ i = 2m1.
7z—l

is analytic on C7(0) and its interior, then the integral can be computed as

/ c dz = 0.
C1(0) Z+2

z

13. Since
Z+
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17. The function f(z) = Ze—; has a discontinuity at z = —i. Hence, it is analytic inside

an on the simple path () = i + €, 0 < ¢t < 27 (circle, centered at i with radius 1). By

Theorem 3.6.7,
eZ
/ -dz = 0.
N 2 +1

21. The path [21, 29, 23, 21] is contained in a region that does not intersect the branch
cut of Logz. Hence the function f(z) = 22 Log z is analytic inside an on the simple path
[21, 22, 23, z1], and so by Theorem 5,

/ 22 Log zdz = 0.
[#1, 22, 23, z1]

25. The path C3(0) contains both roots of the polynomial 22 — 1. We will evaluate the
integral by using the method of Example 5. We have

z A . B
22—-1 z—-1 2z+1

= z=A(z+1)+B(z—1).

Setting z = 1, we get 1 = 2A or A = % Setting z = —1, we get —1 = —2B or B = %
Hence
z 1 1
= + 7
22—-1 2(z—1) 2(z+1)

and so

1 1 1 1 1 1
/ %dz = / dz + / dz = =2mi + -2mi = 2mi,
Co(0) 27— 1 2 Co(0) Z — 1 2 Co(0) Z +1 2 2

where we have applied the result of Example 4 in evaluating the integrals.

29. Write v = (71, 72), where 7 is the circle centered at ¢ and 7, is the circle centered at
—1. Then

1 1 1
dz = dz+/ dz=1 + I.
L(z+1)2(22+1) L (z +1)2(22 + 1) o (2 1D2(z2 4 1) b
The partial fraction decomposition of the integrand is

1 1 1 1 1

G122+ 26+10)  26+12 da+i) Az—i)

We have
I—l/ dz 1/ dz _1/dz 1/dz
T2 w2+l 2+ 4 ) 240 4,21
_ ! ()4—1 0 L 0 L 27 =
= 3 5 1 T = 1,
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where the first 3 integrals are 0 because the integrands are analytic inside an on 1, and
the fourth integral follows from Example 4. Similarly,

I_l/dz+1/ dz 1/dz 1/dz:
221l 2,02 4, zti 4), e

1 1 1 1 )

where the first, third, and fourth integrals follow from Example 4, and the second integral
follows from Example 4, Sec. 3.2. Thus, the desired integral is equal to

h+b=%.

33. Let p(z) = apz™ + -+ + a1z + ag. Then we have

1
1 [ k)
2mi Jo z — 20
1 " 1 1 1
= Qn—— z dZ+"'+a17_ i dZ—i—ao—, dZ
21t Jo z — 2o 2mi Jo z — 2 2mi Jo z — 2o
=apz) + - +a1zo +ap [by Exercise 32]
= p(20)-
37. The integrand factors as
I 1
21 (z—e’%) (z—ei%)<z—ei%ﬂ) (z—ei%y
and all of these roots are distinct and inside C2(0). By Exercise 36, we have
1
=0.

1
/02(0) 2 +1 B /02(0) (z — e’%> (2 — ei%) (z — ei%> (z — ei%ﬂ)
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Solutions to Exercises 3.8

1. Apply Cauchy’s formula with f(z) = cosz at z = 0. Then

/ % gy = / 082 12 = 2mif(0) = 2mi.
cio) 2 e #— 0
5. Apply Cauchy’s formula with f(z) = —Log z at z = 4. Then

L L
/ 082 dz—/ 982 4> — —2miLogi = —2mi <1n1+ﬂ> — 72,
C1(9) C1 (i) 2

—z+1 z—1

1 1
2 2

9. We apply the generalized Cauchy formula with f(z) =sinz at z = 7 with n = 2. Then

sin z 271 . .
/ m dz = ? (2)(7'(') = TFZ(—SH]T(') =0.
b :

13. Follow the solution in Example 2. Draw small nointersecting negatively oriented circles
inside 7, 1 centered at 0 and -2 centered at . Then

[Erentra) g [ et gy [ Ereste) g,
v 71 72

2(22+1) 2(22+1) 2(22+1)
Apply Cauchy’s formula with f(z) = Zfrfii(fz) at z = 0. Then (recall v; is negatively
oriented)
z 4 cos(mz) _ .0+ cos0 ,
L = —————dz = -2 = 27— = —2mri.
1 /71 Y z i f(0) Lo i
Apply Cauchy’s formula with f(z) = Zt((:zii(gz) at z = 4. Then
L — / z+ (;OS(TK’Z) gy — / Z+ cios(7rz). &
A R R N PR )
.1+ cosTi

= =2mif(i) = —2mi = +7i(i + cosh ).

i(2i)
So I + Iy = —m — im(2 — cosh 7).
17. Factor the denominator as 2% —32+2 = (2 +2)(z — 1)%. Apply the generalized Cauchy

formula (6), with f(z) = z41r2 at z =1, with n = 1. Then

dz —1 21
Y _onif!(1) = 2miy = — .
/c o Grae D ) =2y =

3
2

21. Let ¢ = ¢,0 <t < 27. Then d¢ = ie' dt, and we can reexpress the integral as

1 21 it 1 1 d
© _at ¢

Flz)= — . - el
(2) 2 Jy et —z 27 Jeyoy C— 2 i
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Since |z| < 1, z is within C(0), by Cauchy’s Theorem, we have

1 1

F(z = —
( 27t Joy0) € — 2

¢ = 1.

25. Define g(z) = fol cos(zt) dt and let ¢ = ¢ for 0 < t < 1. Then g(z) becomes g(z) =
f[o 1 cos(z(€) d¢. Let ¢(z,¢) = cos(z(). Then ¢(z, () is continuous in ¢ € [0, 1] and analytic

in z € C. Furthermore, the derivative % = ( cos(2() is continuous in ¢ € [0,1]. By Theorem

3.8.5, g(z) is analytic in C, i.e., entire.
If 2=0, g(z) = fol dt = 1. For z # 0, we have

1 .

1 1 sin z

g9(z) = / cos zt dt = —sin zt = .
0 z t=0 z

Thus

) 1 if z =0,
g(z) =14
Sz f 2 £ 0,

z

is an entire function.

29. For z inside C, by Cauchy’s formula,

- L[ S©

_% CC—Z

dc.

But f(¢) = g(¢) for ¢ on C. So, for all z inside C,

1o =50 [ 2= o [ M 4=y,

by Cauchy’s formula applied to g.

33. Since f is analytic at z = 2y, then there exists an open set in which f is analytic.
Choose R > 0 such that Cr(zo) and its interior are contained in D. Now consider

1 £(0)
271 Jon) (€~ 2)(C —70)

for |z — 29| < R. Then

(i) For z = zy. Since f(z) is analytic at z = zg, then f(() is analytic inside and on Cr(2)
with the existence of f’(zo).

1 f(Q) o o
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(ii) For z # zp. Since 2_‘(() is analytic inside and on C¢(zp) and gf (¢ 2) is analytic inside and
on C¢(z) for some sufficiently small e > 0, then by Cauchy’s Integral Formula:

IA(S) f(©

1 f(Q) 1 = 1 ¢~
— ————d({ = — d¢ + — d
21 Cr(z0) (C—Z)(C—ZQ) C 2 i/e(ZO)C—ZD C+27T7J C’E(z)C—Z C
_ [f(C)} [ f(Q) ]
¢— (=20 ¢~ (=2
_ f(2) = f(=0)
 z—z
Combining the two statements above, we can obtain:
_ 1 f(©) _ ) f'(20) if 2 = zo
o) = o Cn(z0) (¢ = 2)(¢ — 20) = {”“ if 2 # 0.

Since when z # 29, we have ¢(z) = %ﬁém) is clearly analytic at zg. For z = zq, first
denote 0)
F(z0) = o,
R ()

d
thus F'(z,() is analytic with respect to z. Thus d—F(z, () exists for all |z — z9| < R. Given
z

any fixed » > 0 with 0 < |z — z9| <7 < R. Since F is analytic inside and on C,(zp) which
implies that F' is continuous on C,(zp) and its interior, then there exists M > 0 such that
M is the maximum of |F(z, ()| for all z on C,(zp) and its interior and ¢ € Cr(zp), thus for
0<|z—2]<3:
2M |z — 20|

72 '

JAGOETCHN

F(z, ‘<
Po—— =0, Q)| =

Integrating the expression inside the absolute value on the left, we have

#) o) L[ dp

zZ— 20 270 Jop(z) 4%

2 R2M — 2MR|z —
T ]22 z0] ]Z 20| N

d(‘

r r

as |z — zg| — 0. Thus lim #z) = #z0) _ 1/ d f(©) d¢ exists, which
(0)

im0 z—z9 2w o) dz (¢ — 2)(¢ — 20)
implies that ¢(z) is analytic at z = 0. Since r < R is arbitrarily chosen, we have ¢(z) is
analytic for |z — 29| < R. Therefore, ¢ is analytic at zo.
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Solutions to Exercises 3.9

1. We have |f(z)| = |z|. Obviously, if z belongs to the unit disk, |z| < 1, then the largest
value of |f(z)| is 1 and its smallest value is 0. Hence |f(z)| attains its maximum value at
all points of the boundary, and it attains its minimum value at the point z = 0, inside
the region. The fact that the minimum is attained inside the region does not contradict
Corollary 3, because f(z) vanishes at z = 0 inside of Q.

5. The function f(z) = %5 is continuous for all z such that 2 < |z| < 3 and does not
vanish inside this annular region. Thus according to Corollary 3, | f| attains its maximum
and minimum at the boundary; that it at points where |z| = 2 or |z| = 3. Using the triangle
inequality, we have

1 < 1
2242 7 |22 42

1 1
ERTIRFEET

12242/ < |22 +2 =

Y

]22 +2| > ‘]2\2 — 2}

On the part of the boundary |z| = 2, we have

1 2 z 2
3 Rz =M z2+2‘_]2|2—2]
On the part of the boundary |z| = 3, we have
3 3 z 3 3
TR A 22+2‘ B2—2] 7

Thus the smallest value of [f(z)| is 2. It is attained at a point z with |z| = 3. For this
value of z, we must have |22 + 2| = 11. The only possibilities are z = +3.
The largest value of |f(z)| is 1. It is attained at a point z with |z| = 2. For this value

of z, we must have |22 + 2| = 2 or 22 = —4. The only possibilities are z = +2i.

9. We have

If(2) = [In|z| +iArgzf;
If)F = (nfe])? + (Arg2)*.

The largest value (respectively, minimum value) of |f(z)| is attained when |f(z)|? attains
its largest value (respectively, minimum value). The largest value of |f(2)|? = (In]z|)? +
(Argz)? is clearly attained when [z| = 2 and Argz = F. So |f(2)| attains its maximum
value \/(In2)? + (%)% when z = 2¢'1.

The smallest value of |f(2)|? = (In|z])? + (Arg 2)? is clearly attained when |z| = 1 and
Arg z = 0. So |f(z)| attains its smallest value 0 when z = 1.

13. (a) To verify the identity
2™ = (Z _ w)(zn—l + Zn—2w + Zn—3w2 RS an—Q _{_wn—l)’

expand the right side. All terms cance except for z" — w™.
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(b) If p(2) = pn2™ + pn_12"" L + -+ + p12 + po is a polynomial of degree n > 2, and if
p(20) = 0, then ppzll + pn_12{ "+ -+ + p120 + po = 0. From (a),
p(z) =p(z) =p(20) = pPa(z" = 25) +Pa1(Z" =27 4+ +pa(z = 20)

= (2= 20)4(2),

where q(2) = (2" 4+ 2" 220+ 2" 322 4+ 22072 + 207 1) is a polynomial of degree n — 1
in z.

17. Suppose that f is entire and that it omits an open nonempty set, say, there is an open
disk Bgr(wg) with R > 0 in the w-plane such that f(z) is not in Br(wyg) for all z. Let
g9(z) = m. Then g(z) is also entire, because f(z) # wy for all z. In fact, since f(z) is
not in Br(wyp), its distance to wy is always greater than R. That is, |f(z) — wo| > R. But
this implies that |g(z)] < }%, which in turn implies that g is constant, by Liouville’s theorem.
Since g(z) # 0, this constant is obviously not 0. So C = m, hence f(z) = & + wp is

constant.

21. Suppose that f(z) = f(z + iy) is periodic in z and y, and let 77 > 0 and 75 > 0 be
such that f((z +T1) +i(y+ 1)) = f(x +iy) for all z = x + iy. Because f is periodic
in both x and y, its values repeat on every 17 x Th-rectangle. This means that, if we take
the rectangle R = [0, T1] x [0, T»] and consider the values of f on this rectangle, then these
are all the values taken by f(z), for z in C. The reason is that the complex plane can be
tiled by translates of R in the x and y direction, where in the x drection we translate by
T1 units at a time, and in the y direction we translate by 75 units at a time. Now since f
is continuous, it is bounded on R; that is | f(z)| < M for some constant M and all z in R.
But since f takes on all its values in R, we concude that |f(z)| < M for all z in C, and thus
f must be constant by Liouville’s theorem.

If f is constant in x or y alone, f need not be constant. As an example, take f(z) = sin z
then f is 2m-periodic in the z variable. By considering f(iz) = sin(iz), we obtain a function
that is periodic in y alone. Both functions are entire and clearly not constant.

25. Let g(z) = ¢/3), for all |z| < 1. Since f is analytic on |z| < 1 and continuous on
|z| <1, then g is also analytic on |z| < 1 and continuous on |z| < 1. Since f is real-valued
for all |z| = 1, we have that |g(z)| =1 for all |z] = 1. Since ¢ is nonvanishing in |Z| < 1, by
Exercise 23, we have g(z) is constant on |z| < 1. Thus

g(z) = e®) = A, where |A] = 1.

This implies that f(z) = ¢+ 2k(z)w for some ¢ € R and k : C — Z. Since f(z) is continuous
on |z| <1, we must have that k(z) = ko and f(z) is constant on |z| < 1.
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Solutions to Exercises 4.1

sinnx

1. The sequence of functions f,(z) = converges uniformly on the interval 0 < x < 7,

with limy, oo fn(z) = 0 for all 0 < z 7% m. To see this, let M, = max|0 — f,(z)| =
max | f,(z)|, where the maximum is taken over all z in [0, 7]. Then M, =< L. Since
M, — 0, as n — oo, it follows that f, converges uniformly to f = 0 on [0, 7]. In fact, we
have uniform convergence on the entire real line.

5. (a) and (b) First, let us determine the pointwise limit of the sequence of functions
nx

fu(z) = P p— For z in the interval 0 < x < 1, we have
néz? —x
nx nx x
fulz) = = = — 0, as n — oo.
" n?x? —r+1 n2@2-%+4 n@@-%5+%

Does the sequence converge to 0 uniformly for all z in [0, 1]? To answer this question we
estimate the maximum possible difference between 0 and f,,(z), as = varies in [0, 1]. For
this purpose, we compute M,, = max |f,(z)| for = in [0, 1]. We have

Tl/—n3$2 1
fé(m):(l—x+n2x2)2; fg(x):0—>n—n3x2:o_>x:ﬁ;
1 1 1 1
=) = - M, > =
fn<n> 2_%>2 = My >3

Since M,, does not converge to 0, we conclude that the sequence does not converge uniformly
to 0 on [0, 1].

(c) The sequence does converge uniformly on any interval of the form [a, b], where 0 < a <
b < 1. To see this, pick n so that 0 < % < a. Then, f,(x) <0 for all a < z (check the sign
of f/(z) if L < z. Hence f,() is decreasing on the interval [a, b]. So, if M,, = max|f,(z)|
for z in [a, b], then 0 < M,, <|fn(a)|. But f,(a) — 0, by part (a), so thus M,, — 0, and so
fn(x) converges uniformly on [a, b].

1
9. (a) We have f,(0) = e — 0, as n — oo. For any 0 < |z2]| <1,
n
) nz+1 %—I—#_
nh—{gofn( )_nh—>ooz+ 2n2 it %+2 =0

Therefore, for all z € C with |z| < 1, the sequence { f,,(2)} converges pointwisely to f(z) = 0.
(b) Let n > 1, we have for all z with |z| < 1:

1 1 1 1
nz + ‘ n|z]—|— < n+1l o0,

[fn(2) = |_‘z+2n2 — |zl T 2m2-1)  2(n-1)

as n — oo. Therefore, for all z € C with |z| < 1, the sequence {f,(z)} converges uniformly
to f(z) =
13. If |z| <1, then

n

2 ‘< 1
nn+1)| ~ n(n+1)
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Apply the Weierstrass M-test with M,, = —— =

1 1 . .
AT T n T T Since > M, is a convergent

n

oo
z
telescoping series, it follows that the series E ( , converges uniformly for all |z| < 1.
n
n=1

Ty
%)

(3

Apply the Weierstrass M-test with M,, = (%)n Since > M, is convergent (a geometric

17. If |z| < 2, then

oo n
2
series with < 1), it follows that the series E (Z _g ) converges uniformly for all |z| < 2.

n=0

21. If 2.01 < |z — 2| < 2.9, then

(z—2)" 2.9\"
Eo < () =4
3n -\ 3
and . .
¥ (2 _pB,.
(z—2)7| — \2.01

Apply the Weierstrass M-test with M,, = (A, + By,). Since ) M, is convergent (two geo-

(z —2)" N 2n
converges
3n (z—2)" 8

o0
metric series with ratios < 1), it follows that the series Z
n=0

uniformly in the annular region 2.01 < |z — 2| < 2.9.

25. (a) For |z — | < &, we have

1 1
= ) T
o=|(=-3) 3 <

o0 n o0
2
Since g (3) is convergent, we conclude from the Weierstrass M-test that g z" con-

n=0

+1<2
z 5 3

n=0
verges uniformly on |z — %‘ < %.

o0
b) We claim that 2™ does not converge uniformly on |z — 2| < 1: We have that, for
2 2

n=0
|Z - %| < %7
12| 1 n 1 < 1 + 1 <1
zZl=\lz—= - z—= -
2 2|~ 2 2 ’
. 1
and we know that the series Z 2" converges pointwise to s(z) = ! in |z| < 1. Its nth
—z
=0
1-— z”ﬁl
partial sum is s,(2) = - Take z = x to be a real number with |z| < 1. Then
-z
anrl anrl
|s(z) — sn(2)] = T T 1o e x — 1.
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Therefore, the maximum difference M,, between each partial sum and the series sum is
unbounded on |z| < 1, so the sequence of partial sums, and, hence, the series, does not
converge uniformly on |z| < 1.

29. (a) Let § > 1 be a positive real number. To show that the series

=Y

n=1

(principal branch of n*)

converges uniformly on the half-plane Hs = {z : Rez > § > 1}, we will apply the Weier-
strass M-test. For all z € Hs, we have

‘nz‘ _ ‘e(:c—&-iy)lnn _ exlnn =n® > n6.
So
1 1
e | S g = M

Since Y M, =) % is a convergent series (because § > 1), it follows from the Weierstrass

M-test that that Y, # converges uniformly in Hy.

(b) Each term of the series > o | L is analytic in H = {z: Rez > 1} (in fact, each term
is entire). To conclude that the series is analytic in H, it is enough by Corollary 2 to show
that the series converges uniformly on any closed disk contained in H. If S is a closed disk
contained in H, S is clearly disjoint from the imaginary axis. Let Hs (6 > 0) be a half-plane
containing S. By part (a), the series converges uniformly on Hg, consequently, the series
converges uniformly on S. By Corollary 2, the series is analytic in H. (Note the subtilty
in the proof. We did not show that the series converges uniformly on H. In fact, the series
does not converge uniformly in H.)

(¢c) To compute ('(z), according to Corollary 2, we can differentiate the series term-by-

term. Write
1 1

—zlnn

n?  ezlnn

Using properties of the exponential function, we have
d1 d

dzn®  dz

1

—zlnn _ -
= lnnnz.

—zlnn — _1npe

So, for all z € H,

. In
(=) == —

n=1
33. To show that f, {fn} converges uniformly on €2, it is enough to show that
max | fa(2) — fn ()

can be made arbitrarily small by choosing m and n large. In other words, given € > 0, we
must show that there is a positive integer N such that if m, n > N, then

gleaé( [fa(2) = fm(2)] <e.
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This will show that the sequence {f,} is uniformly Cauchy, and hence it is uniformly
convergent by Exercise 30.

Since each f;, is analytic inside C' and continuous on C, it follows that f, — f,, is also
analytic inside C' and continuous on C. Since C is a simple closed path, the region interior
to C' is a bounded region. By the maximum principle, Corollary 2, Sec. 3.7, the maximum
value of |f,, — fm| occurs on C. But on C' the sequence {f,} is a Cauchy sequence, so there
is a positive integer N such that if m, n > N, then

gleac)’( [fa(2) = fm(2)] <e.

Hence
gleaf)zi |fn(z) - fm(z)| < gleac)'( ’fn(z) - fm(z)| <g,

which is what we want to prove.

The key idea in this exercise is that the maximum value of an analytic function occurs
on the boundary. So the uniform convergence of a sequence inside a bounded region can be
deduced from the uniform convergence of the sequence on the boundary of the region.
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Solutions to Exercises 4.2
1. By ratio test, for z #£ 0:

+1 2n + 1 2n +1
)P w2 g,

n
_ 1 _1\n+1 Z
o= Y

Therefore, the series converges absolutely when |z| < 1 and diverges when |z| > 1. The
radius of convergence is 1; the disk of convergence is |z| < 1; and the circle of convergence
is |z = 1.

5. By ratio test, for z # %

T ) K Mz =2)
p= nlbnéo‘ il iz 2| Ak 2 |7 [2¢z = 1].
Then the series converges absolutely when |2iz — 1| < 1, thus
1 (=) 1
2ilz—= )| £1 = - — —.
1(2« 2@)' = T2 T2
The series diverges when ‘z — %‘ > % The radius of convergence is %; the disk of
convergence is ‘2 — (_Qi) < %; and the circle of convergence is ‘z — % = %

9. We compute the radius of convergence by using the Cauchy-Hadamard formula

1 N o
= limsup {/ (1 - emZ) ‘ = lim sup ‘1 — e

To understand why the lim sup is equal to 2, recall that the lim sup is the limit of the sup

= 2.

of the tail of the sequence {‘1 — g

oo o
} , as N tends to co. The terms €4 take values
n=

from the set {ig + ?,:I:i, :I:l}. So the largest value of ‘1 — e

repeats infinitely often, which explains the value of the limsup. Thus, R = %

is 2, and this value

13. We have known the geometric series below:

> 1

E 2”27, |Z|<17
1—2z

n=0

then by differentiating term-by-term:
o o0 1
-1 _ -1 _
Z’I’LZ” —ann —m, |Z|<1
n=0 n=1

2 . . .
5, where |z| <1, i.e., the radius of convergence is 1.

It follows that Z o = ﬁ
—z

n=1
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17. We have
00 00 i\ T 00 n
2(37«”—2) 2(3(2_5)) Z( Z>
= = Z— =
n=0 3" n=0 3 n=0 3
ad i
= Zw” <w =z— 3)
n=0
1 1 1
= = . z—=-|l <1
T
_ 3
C O 34i-32
which is valid for ’z — %‘ <1
21.  If >°0° jan(z — )™ has a radius of convergence Ry > 0 and Y 7 bn(z — 20)"

has a radius of convergence Re > 0, then both series converge absolutely for |z — zg| <
min{ Ry, Ra}. Then, by Theorem 1.5.28, we have

(Zanz—zo )(Zb z— zp) ) chz—zo , |z — 20| <min{Ry, Ro},

where

n
Cn = Zak 2 — 20)"by (2 — 20)" Zakbn k(2 —20)" (Z—Zo)"zakbnfk
k=0
= (aobn 4+ a1bp—1+ -+ ap—1b1 + anb())(z - ZO) s

and this series is absolutely convergent on this region. It is possible for this Cauchy product
to have a radius of convergence R larger than min{R;, Ry}, but it is guaranteed to be at
least this large.

25. (a) In the formula, take z = zp = %, then

1 2 ™ P
[r ()} = 2T°(1) /2 cos' 1 fsint "t 0dh = 2/2 o =2= =1,
2 0 0 2

50 T(4) = V.
let u?

(b) In (): =t, 2udu = dt, then

F(Z) = / et dt = / u2(z71)67u2 (2u>du = 2/ u2z71€7u2du.

(c) Using (b)
[(z1)(z2) = / ugzl_le_uzdu2/ V¥ e gy
0

2
0
o D
= 4/ / e~ (W) 2011, 2201 ) o,
o Jo



Section 4.2 Power Series 91

(d) Switching to polar coordinates: u = rcosf, v = rsinf, u?> + v = r?, dudv = rdrd®; for
(u, v) varying in the first quadrant (0 < u < oo and 0 < v < ), we have 0<6< 7, and
0 < r < o0, and the double integral in (c) becomes

[(z1)(2z2) = / / - (1 cos 0)?* 71 (rsin 0)?*2 " Lrdrdf

=F(Z1+22)

= 2/2(COS@)Qzl—l(SiHQ)ng—lde2/ (2(z1+z2) 1 2 g
’ 0

(use (b) with z; 4 22 in place of z)

™

= 2T'(z1 + 22)/2 (cos 0)?*171(sin #)?*2 714,
0

implying (d).
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Solutions to Exercises 4.3

1. According to Theorem 1, the Taylor series around zy converges in the largest disk,
centered at zgp = 0, in which the function is analytic. Clearly, e*~! is entire, so radius of
convergence is R = oo.

1
5. Since the function f(z) := 2t - is analytic for all z # 4, and the Taylor series around
—1

zo = 2 4 i converges in the disk centered at zp in which the function is analytic, thus the
largest disk around zy on which f is analytic has radius:
p=lz0—il=12+i—i|=2.
Therefore, the radius of convergence of f(z) at zg is p = 2.
9. We have that
2 2 2 1
3—iz 34+i—i(z—(-1)) 3+z‘1_w’

7

so the Taylor series expansion around zy = —1 can be written
2i 14 3i o= (14 3i\"
= — (=1))"
3—iz 5 T;o< 10>(z (=),

with |31 (2 — (—1))| < 1if and only if |z — (—=1)| < v/10. Therefore, the radius of conver-
gence is v/10.

z
1—=2
around zyp = 0 has radius of convergence equal to the distance from zg = 0 to the nearest
point where f fails to be analytic. Thus R = 1. (This will also come out of the computation

of the Taylor series.) Now, for |z| < 1, the geometric series tells us that
1 SO
— = pE
n=0
Multiplying both sides by z, we get, for |z| < 1,

Py [e.9]
1 - Z 2
—Z n=0

13. Arguing as we did in Exercises 1-9, we find that the Taylor series of f(z) =

17. Because the function is entire, the Taylor series will have an infinite radius of conver-
gence. Note that the series expansion around 0 is easy to obtain:

Zn—i—l

oo o0 oo
4 Zn z Zn
e’ = E — = zef =z E — = g
n! n! n!
n=0 n=0

n=0

But how do we get the series expansion around zy = 17 In the previous expansion, replacing

z by z — 1, we get
o0
3 (Z_l)n—i-l
(z—1)e" = g —_

|
ne0 n:
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The expansion on the right is a Taylor series centered at zy = 1, but the function on the
left is not quite the function that we want. Let f(z) = ze*. We have

(z—1e t=elze” —e* P =e71f(2) —e* L.
So f(z e[ (z—1)e* L+ ezfl}. Using the expansion of (z — 1)e*~! and the expansion of

e* ! Z;’;O =D" e find

n!

0o 5 n41 00 5 00 P n 00 2 —1)"
s = oy E e R s e e

n=0 s n=0 n n=1 (n ) n=0 s

> (z—1)" = (z—1)"
- 6[;((n—1))!++1+;( n!)}
= e[l—i—;(z— ) <(n_1)|+n!>] 6[14‘;(2’ 1) <n| ny)]
= e[l—i—Z(z—l)"n;—'l]

n=1 )

21. (a) To obtain the partial fractions decomposition

1 1 1

(1-2)2-2) 1—-2z 2-2

we proceed in the usual way:

1 A B
(1—-2)(2—2) 1—z+2—z
AR—2z)+B(1—2z2)

1—2)2-2)

1 = A(2—z)+B(1—z)
Take z=2 = 1=-B, B=-—
Take z=1 = = A.

Thus we obtain the desired partial fractions decomposition. Expanding each term in the
partial fractions decomposition around zg = 0, we obtain

1 o0
= d o2 el <1
n=0

1 1 I /2\" 2 ) )
—~ =- =—> (=), &<, <2
2z 2(1-2) 22<2> I3l < 1 or 2]

n=0

So, for |z| < 1,

FErToEr ‘Z< o)
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(b) We an derive the series in (a) by considering the Cauchy products of the series expan-

sions of -1 and 51, as follows. From (a), we have

1 1 > 2 =
— n _ n
n=0 n=0 n=0

where ¢, is obtained from the Cauchy product formula (see Exercise 21, Sec. 4.3):

n
Cpn = Zakbn—ka
k=0
1
bn— = k1
n n
1 1 k
Cn = Z on—k+1 = on-+1 22 :
k=0

k=0

(¢) To show that the Cauchy product is the same as the series that we found in (a), we
must prove that

1 «— 1
k — —
on+1 22 B (1 2n+1>'
k=0
But this is clear since

n

dooh=142422 4 p2n=2m o
k=0

and so
1 . k 1 +1 1
2n+1 22 = 2n+1 (2” B 1) =|1- 2n+1 :
k=0

The radius of the Maclaurin series is 1. This follows from our argument in (a) or from
Theorem 1, since the function has a problem at z = 1.

25. By the Exercise 24,

for all |2| < 2.
29. (a) Since even functions are characterized by the fact that f(z) — f(—z) = 0, and since

oo

f=2) =D ea(=2)" =) (=1)"cn2",
n=0
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we have that f is even if and only if

f(z) = f(=2) =0
)

icnz” — i(—l)”cnz” = i (1—=(=1)")ecpz" =0
n=0 n=0 n=0

)
(1—-(-1)")¢, =0 foralln=0,1,2,...

)

2cop41 =0 foralln=0,1,2,...

)

cont1 =0 foralln=0,1,2,....

(b) Similarly, f is odd if and only if

f(z) + f(=2) =0
)

chz" + Z(—l)”cnz" = Z I+ (=1)")cpz" =0
n=0 n=0 n=0

)

(I1+(-1)")e, =0 foralln=0,1,2,...

i)

2c0p, =0 foralln=0,1,2,...

)

cop, =0 foralln=0,1,2,....

33. (a) The sequence of integers {l,} satisfies the recurrence relation I, = l,—1 + l,—2

for n > 2, with l[p = 1 and I; = 3. As suggested, suppose that [,, occur as the Maclaurin

coefficient of some analytic function f(z) = > 07 1,2", |2| < R. To derive the given

identity for f, multiply the series by z and 22, and then use the recurrence relation for the
coefficients. Using lp = 1 and [y = 3, we obtain

f(z)= ilnz" =1+32+ ilnz";
n=0 n=2

zf(z) = i l,2"t = i lp—12" =gz + iln_lz”;
n=0 n=1 n=2

z2f(z) =z + Z 12"
n=2

z2f(z) = i 1,272 = i lp—22".
n=0 n=2
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Using the recurrence relation and the preceding identities, we obtain

flz) = 1+32+Zln2”

n=2
= 14324 (In-1+1n2)2"
n=2
2f(2)—= 22f(z)

o0 o0
= 1+324 ) ln12"+ ) lno2"
n=2 n=2

= 1+3z+zf(z)—z+zz_f(z) =142z 4 2f(2) + 22f(2).

Solving for f(z), we obtain

1+22
Z) = ——s5.
f( ) 1 — 22
(b) To compute the Maclaurin series of f, we will use the result of Exercise 22:
1 1 S Zn+1 _ Zn+1
- G- —Z 0o <ol @ # 2 Ja] < |l

(1= 2)(22—2) =21-24 (2122)"F

To derive this identity, start with the partial fractions decomposition

1 1 [1 1 }_ 1 1 1
(z1—2)(z2—2) z1—22|22—2 21—2 21 — 29 ZQ(].*%) 21(1—2) |

Apply a geometric series expansion and simplify:

1 1 1l S 200 1<, 2w
(21— 2)(z2—2) 21— 2 [@Z(@) _az(m)]

n=0 n=0
B 1 &, 1 1\,
a 21—2272(,23“ B z?“)z
. 1 - (Z?Jrl — Zngl) n
21— 29 — (z129)" L
Now, consider the function
1 -1 -1

l—z2-22 22+42-1 (z21-2)(2—2)

where z; and zy are the roots of 22 + z — 1:
-14++5 -1-+5
—————— and z=—"—
2 2
arranged so that z1| < |z2]. These roots satisfy known relationships determined by the
coefficients of the polynomial 22+ z — 1. We will need the following easily verified identities:

zZ1 =

21— 29 = V5 and 2120 = —1.
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We will also need the following identities:

d(a-2) = < ) (24 —2Y5)
_ < ) %+f
n+1
_ - w( f)

Similarly,
. D145\, 1+V5
B2-2) = (-1) ( . ) 2+—5")
L(1+v5) 545
(1) ( )
2 2
1+v5\" 145 145\
o (B570) VR - o (15)
2 2 2
We are now ready to derive the desired Maclaurin series. We have
1 -1 B -1
1—2z—22 22+z—1_(21—z)(z2—z)
n+1 n+1 0
Zl — %9 SN — —1 Z< 1)n+1 (Zn—l-l n+1\ n
Z n+1 - F B 1 — 2 )Z
\/gnzo
*\/5
-1 n+1 n+1 n+1
— (21 — 2 -z z
\/5( 1— 22) z:: 2 )
1 oo
14+ — (_1) n+1 n+1 :
\@; ( )
22 2 i(_l)n(znﬂ e Z )",
1—2z—22 V5 ! 2

97
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So

1+2z
1—2z—22

D (=1 (225 — 227 — 24T 4 2T 2"

f(z) =
1
V5
~ 14 \}5 SO (=) (82 = 29) + 2 (21 — 2)) 2"
0o . . 1+\/g n+1 1_\/5 n+1 i
Z(l)(l)\/5<2> +<2> 2
1+\/g n+1 1_\/5 n+1 i
2 2 =

n+1 n+1
14++5 i 1-+5 i
I, = 5 + 5 , n>0.

37. We use the binomial series expansion from Exercise 36, with o = % Accordingly, for
2 <1,

Thus

—
+
&
NI
|
| M8
N
3 o=
~_
N
\.3

where, for n > 1,

: B %(%_1)...(%_n+1)_%—73,._7(2273)
n B n! o n!
_ (_Un_lw_(_l)n_l 1 1-3-5--(2n—3)-2-4---(2n — 2)
N n! a 2nn] 2.4 (2n—2)
9! Y
— (_1)n—1 1 (2n 2)' _ (_1)n—1 1 (Zn 2).
2mnl2-1-2-2---2- (n — 1) 27271 1.2. - (n — 1)
= = (-1t I 2n-2) (1)1 1 (2n—-2)! 2n(2n-—1)
- 270l 27 (n — 1)1 9l 27 (n — 1)1 2n(2n — 1)
= (*1)71_1 ! (2n)' (— )”_1M — (71)71—1% 2n
2nn! 27n!(2n — 1) 221 (n))2 2 (2 —1)\ n )
Thus

1 >° —1n_1 n
(1+z)2=222(n(271_1)<2n )z" 2] < 1.

n=0

41. (a) and (b) There are several possible ways to derive the Taylor series expansion of
f(z) = Log z about the point zg = —1 + i. Here is one way. Let zg = —1 + i, so |z0| = V2.
The function Log z is analytic except on the negative real axis and 0. So it is guaranteed by
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Theorem 1 to have a series expansion in the largest disk around zy that does not intersect
the negative real axis. Such a disc, as you can easily verify, has radius Im zp = 1. However,
as you will see shortly, the series that we obtain has a larger radius of convergence, namely
|z0| = V/2 (of course, this is not a contradiction to Theorem 1).

Consider the function Logz in Bj(zp), where it is analytic. (The disk of radius 1,
centered at zp is contained in the upper half-plane.) For z € Bj(z9), we have % Logz = %
Instead of computing the Taylor series of Log z directly, we will first compute the Taylor
series of %, and then integrate term-by-term within the radius of convergence of the series

(Theorem 3, Sec. 4.3). Getting ready to apply the geometric series result, we write

- 1 - 1zo_z) (20 £ 0)

zZ0 — (Zo — Z) Zo(l — 20

1 1 _1§: 20—2\"
T2 I—M_zgnzo 20

20

IS

1 00 (Z B Zg)n
20 n:O( ) z0 ’

where the series expansion holds for

S <1& 20— 2| < |20]-

20

Thus the series representation holds in a disk of radius |zo| = v/2, around zp. Within this
disk, we can integrate the series term-by-term and get

1 LD [ T N ) LI
(=L DS e e

n=0 0

Reindexing the series by changing n + 1 to n, we obtain

z1 o0 (_1)n+1 n
fdgzzin(z—zo) |z — 20| < |20] = V2.
% G = nzg

Now we have to decide what to write on the left side. The function Log z is an antiderivative
of % in the disk of radius 1, centered at zy. (Remember that Log z is not analytic on the
negative real axis, so we cannot take a larger disk.) So, for |z — zg| < 1, we have

z1q 2
/ —d( = Log(| = Logz — Log z.
20 C 20
Thus, for |z — 29| < 1, we have
oo
(71)71—&—1 n
L =1L —(z—
ogz 0og 20 —|—nzz:1 e (z Zo) )

even though the series on the right converges in the larger disk |z — zo| < v/2.
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Solutions to Exercises 4.4

1. We have that
11 1%( 1)”_%(
? n=0

1 B 1)
1+ 2z zl—i-%_znzo 2l

and this converges provided ‘—%| < 1, that is, when 1 < |z|.
5. Since ‘Z%‘ < 1, we can use a geometric series in = as follows. We have

1 1 1
1r22 ;1—;—21
_ 1y <—1>n:1 o~ (=D" :i (=1)"
22\ 22 AT S e
= (1t

where in the last series we shifted the index of summation by 1. Note that (—1)"~!

(—1)"*! and so the two series that we derived are the same.

9. Since the function f(z) := z + — can be written as:
z
1 1 1 1
S N | I R G | T
2t + (2 )+1—|—(z—1) + (2 )+Z_11+z£1

Then the Laurent series expansion for f(z) in the annulus 1 < |z — 1] is:

R Z(—m(z_ll)nﬂ,
n=0

zZ+ - =
z
where 1 < |z —1].
z
13. Since the function f(z) := ————————— can be written as:
1(z) (z+2)(z+3)
z _ —2 n 3
(z+2)(2+3) 2+2 z+3
(1) For the annulus 2 < |z|:
1 1 1 > 1
= — = —1)"aom .
z+2 2142 nZ:;)( ) Zntl
(2) For the annulus |z| < 3:
31+ 3 = 3ntl
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Then in the annulus 2 < |z| < 3, we have the Laurent series for f(z):

[e.9]

CE RIS SV

n=1
where 2 < |z| < 3.

17. First, derive the partial fractions decomposition

2+ (1—i)z+2 1 2

(z—i)(z24+2) = z—i z+2

The first step should be to reduce the degree of the numerator by dividing it by the denom-
inator. As in Exercise 13, we handle each term separately, the constant term is to be left
alone for now. In the annulus 1 < |2| < 2, we have || <1 and || < 1. So to expand L,
factor the z in the denominator and you’ll get

e=i 21D

z

1 1 1 1
z

where ‘é‘ < lor 1< |z|]. Apply a geometric series expansion: for 1 < |z],

~1

1
i—i ;1—1 72 z:z}IJrl

n=0
0 1
= n
n=1 o
To expand +2, in the annulus 1 < |z| < 2, because ‘%‘ < 1, we divide the denominator by
2 and get

2 2 1
z+2 200+5 1-3F

Expand, using a geometric series, which is valid for |z| < 2, and get

21 =, —Z\p, _ R 1 n2"
et DD O DD T
Hence, for 1 < |z| < 2,
1 2 N z
1 — =1- 1)
+z—2 z42 Zz” +Z( )2”
n= n=0
21. The function f(z) ! h lated larities at 1 and ;
. e function f(z) = ——————= has isolated singularities at z = 1 and z = —i.
(z—D(z+1) &
If we start at the center zg = —1, the closest singularity is —i and its distance to zg is

V2. Thus f(2) is analytic in the disk of radius v/2 and center at zg = —1, which is the
annulus |z + 1| < v/2. This is one of the Laurent series that we seek. Moving outside this



102 Chapter 4 Series of Analytic Functions and Singularities

disk, we encounter the second singularity at z = 1. Thus f(z) is analytic in the annulus
V2 < |z 41| < 2, and has a Laurent series representation there. Finally, the function is
analytic in the annulus 2 < |z + 1| and so ha a Laurent expansion there.

We now derive the three series expansions. Using a partial fractions decomposition, we
have

1 A A
&= s ~ o1 o400
where A =1 — £ = 1(1 —4). We have, for [z + 1| < 2,
1 1 11
z—1 —2+(z+1) 21—zt

B 15"2 24+ 1\"
) 2 '
n=0

For |z + 1| < v/2, we have %‘ < 1, and so

I 1 -1 1
z4+i (=14 (z+1) 1-i1-2H
-1 i z+1\"
o1 1—i) °
n=0
Thus, for |z + 1| < v/2, we have
1 A A
fz) = < = -
(z—=1(z+1i) =z—1 z+i
A 2+ 1\" A X z+1\"
- _22( 2 ) +1—¢Z<1—z‘>
n=0 n=0
l—i=z+1\" 1S /z+1\"
T4 Z< 2 > +22<1—¢> ‘
n=0 n=0
For v/2 < |z + 1|, we have ‘% < 1, and so
I 1 1 1
z+i o (-1 +(2+1)  z+11-12
1 i 1—i "_i (1—di)
o2+ z+1) (z 4+ 1)ntt
n=0 n=0
1 i(l—i)”
i (z+1)"
So, if V2 < |z 4+ 1| < 2, then
1 A A

1) = (z—=1)(z+1) T 21 2+

L—iga (24 1\" 1—iga (1—i)"
- Ty Z( 2 ) T Z(z+1)n+1'

n=0
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Finally, for 2 < |z + 1|, we have

I 1 1 1
- - 2
z—1 —2+(z4+1)  z24+11- 2
1 = 2 \" 1=
- X () sl

So, if 2 < |z + 1|, then

fz) = =

103

25. In this problem, the idea is to evaluate the integral by integrating a Laurent series
term-by-term. This process is justified by Theorem 1, which asserts that the Laurent
series converges absolutely and uniformly on any closed and bounded subset of its domain
of convergence. Since a path is closed and bounded, if the path lies in the domain of
convergence of the Laurent series, then the series converges uniformly on the path. Hence,
by Corollary 1, Sec. 4.2, the series can be differentiated term-by-term. We now present the

details of the solution. Using the Maclaurin series of sin z, we have for all z # 0,

. 1_ - (_1)n —(2n+1)
St _7;)(2n+1)!z '

Thus

/ 1 / i (D" _on+1) d i =k / ~(2n+1) g
S1ln — adz = < Z = — z Z.
C1(0) z €1(0) 2n + 1)! (27”L + 1)! C1(0)

n=0 ( n=0

We now recall the important integral formula: for any integer m:

/ gy 2wi if m :.—17
c 0 otherwise,

where C' is any positively oriented simple closed path containing 0 (see Example 4, Sec.

3.4). Thus,

Z_(2n+1) dz _ 27T’L lf n = 0,
€1(0) 0 otherwise.

Hence all the terms in the series

i =k / —(@nt1) g,
(2n+1)! Jey (o)

n=0
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are 0, except the term that corresponds to n = 0, which is equal to 27i. So

1
/ sin — dz = 2mi.
C1(0) z

29. We follow the same strategy as in Exercise 25 and use the series expansion from
Exercise 5. We have

>  1yn-—1
/ Log (1 + 1) dz = / ZL% dz
C4(0) z C4(0) n z

n=1
X (—1)n1 1
-y B ) / L
= Jao #"
= 2mi,

where we have used the fact that fc4 ( dz =27 if n = 1 and 0 otherwise.

1
0) zn

33. (a) Parametrizing ((0) = €, -1 < 0 < 7, we have

z T (e i ;
L_ e§<<7%) df—l — i 65(6 f—e e)e—znO do
271 C1(0) Cn 27 —r
T (™ , 1 (™ . .
_ e 51n9€—m9 do = / ez(zsm9—n0) do
27 J_, 2 J_,
1 s

(cos(z sinf — nf) + isin(zsinf — n9)> do.

:% .

Now, exploiting symmetry, note that zsin 6 — né is odd, so sin(zsin @ — nf) is also odd and
that portion of the integral vanishes. Furthermore, cos(zsinf — nf) is even, so we have

1 ™
2m ) .

! cos(zsinf — nf) df = 1/ cos(zsin @ — nf) db.
0

2 J_, T

(cos(z sin @ — nf) + isin(zsinf — nH)) do

(b) If z = x is real, we have that |cos(x sinf — nf)| < 1 for all 6, so by the ML-inequality,
we have

L /OW cos(zsin 0 — nf) de‘ <aym=1

™
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Solutions to Exercises 4.5
1. Since
(1—2%)sinz = (1—2)(1+ 2)sinz

and all zeros of sin z are of the form kn for k € Z, we have that the zeros of this function
are at 1, —1, kw for k € Z. By the expansion of sin z around zero, we have that

. AP (4 2 A
Slnz—zfgjLﬁf..._z 7f+7.,...

and the zero of sin z at zero has order one. Similarly, by symmetry of sin z, all zeros of sin z
have order one. We also see that the zeros —1 and 1 of the original function have order one,
so all zeros have order one.

5. Since all zeros of sin z are isolated, which are kw, k € Z:

(1) At z =0, we have the Taylor expansion:

22 24

sinzzz(l—g—i—ﬁ—"-) =: z\(2),

where A(0) # 0. Therefore we have
sin” z _ 2T\ (2) _ AN ().

24 z4

sin’ z

7l has zero of order 3 at 0.
z

where \7(0) # 0. Then
(2) At z =knm, k € Z\{0}, we have

sin” 2 K N(z)  AN(2)

24 247 24 7 0.
sin”(2)
Then ——— has zero of order 7 at km, k € Z\{0}.
z

52
9. Let f(z):=1— - ~cosz, and we know f(z) is entire. Then the Taylor expansion for
f(z) at 0 is:

22 22 22 2t 28

B 2t 20 4 1 22

——ate = ata)

=: 24\(2).

, 1 22 . . . . .

Since A\(z) = ~a + Bl — ' 18 a power series which converges for all z, then A(z) is entire.

1 2
And \(0) = ~u # 0. Therefore, f(z) =1— % — cos z has the zero of order 4 at zy = 0.
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13. Clearly, the function
1—22 z-1

sin z z+1

f(z) =

has isolated singularities at —1 and kw, where k is an integer. These singularities are all
simple poles. To prove the last assertion, it is easier to work with each part of the function
separately. First, show that 15;222 has a simple pole at the zeros of sin z, which follows
immediately from the fact that the zeros of sin z are simple zeros. Second, show that j:
has a simple pole at z = —1, which follows immediately from the fact that —1 is a simple
zero of z + 1. Now to put the two terms together, you can use the following fact:

If f(2) has a pole of order m at zy and g(z) is analytic at zo, then f(z) + g(z) has a
pole of order m at zy.

This result is easy to prove using, for example, Theorem 8.

17. Write

1 sin%
ztan— =z

1°
z COSZ

The problem points of this function are at 0 and at the zeros of the equation cos% = 0.
Solving, we find

1 = 2

Tt EEEas e
Since, as k — 00, 2z — 0, the function f(z) is not analytic in any punctured disk of the
form 0 < |z|. Thus 0 is not an isolated singularity. At all the other points z, the singularity
is isolated and the order of the singularity is equal to the order of the zero of cosz at zg.
Since the zeros of cos z are all simple (this is very similar to Example 1), we conclude that
f(2) has simple poles at z.

, k an integer.

1 1
21. The function f(z) := — — sin — is analytic when z # 0, then z = 0 is the isolated
z

singularity of f(z). Thus the Laurent series expansion for f(z) about 0 can be written as:

-3 -5 -3 -5 -7
e A AU R . AT A
fz) == (Z 3 " )*3! 5T '
Since a,, # 0 for infinitely many n < 0, therefore z = 0 is an essential singularity of f(z).
25. Determining the type of singularity of f(z) = lerl at oo is equivalent to determining

the type of singularity of

1 1 z
f — :17:
z s +1 1+2

at z = 0. Since f (%) has a removable singularity at 0, we conclude that f has a removable
singularity at z = co. Note that this is consistent with our characterization of singularities
according to the behavior of the function at the point. Since f(z) — 0 as z — oo, we
conclude that f has a removable singularity and may be redefined to have a zero at oc.

1
29. In order to determine the type of singularity of f(z) := sin— at oo, it is equivalent

1 1
to determine the type of singularity of f <> = sinz at 0. It is clear that f <> has a
z z
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removable singularity at 0, since

z—0 z z—0

lim f<1> = lim sin z = 0.

Therefore, f(z) has a removable singularity at oco. And since f(z) — 0, as z — oo, the
function has a zero at oco.

33. (a) Suppose that f is entire and bounded. Consider g(z) = f(%) Then g is analytic
at all z # 0. So z = 0 is an isolated singularity of g(z). For all z # 0, we have |g(z)| =
|f(1)] £ M < oo, where M is a bound for |f(z)|, which is supposed to exist. Consequently,
g(z) is bounded around 0 and so 0 is a removable singularity of g(z).

(b) Since f is entire, it has a Maclaurin series that converges for all z. Thus, for all z,
f(z) =3, ganz". In particular, we can evaluate this series at % and get, for z £ 0 ,

9(:) = f) =) .
n=0

By the uniqueness of Laurent series expansion, it follows that this series is the Laurent
series of g. But g has a removable singularity at 0. So all the terms with negative powers
of z must be zero, implying that g(z) = ap and hence f(z) = ag is a constant.

37. (a) If f has a pole of order m > 1 at zp, then
I
(z — zo)™

where ¢ is analytic at zp and ¢(z9) # 0. (See (6), Sec. 4.6.) So if n is a positive integer,
then

f(z) = ¢(2),

1 1

[f(2)]" = ng”(z) = sz),

where v is analytic at zp and ¥ (z9) # 0. Thus [f(2)]™ has a pole at 2z of order mn if n > 0.

If n <0, then
n —mn 1 _ —mn
[f ()" = (2 = 20) () (2 = z0) """ 9(2),
where v is analytic at zp and 1(z9) # 0. Thus [f(2)]™ has a zero at zy of order —mn if
n < 0.
(b) If f has an essential singularity at zo then |f(z)] is neither bounded nor tends to infinity
at zp. Clearly, the same holds for |[f(2)]"| = |f(2)|™: It is neither bounded nor tends to oo

near zg. Thus [f(z)]" has an essential singularity at zp.

41. Let f be such a function. Since f is entire, f is continuous on C, so

1 1
f(O)—f(lim ) = lim f() = lim 0=0
n—oo n n—o00 n n—oo
and we have that zg = 0 is a zero of f. Furthermore, this zero is not isolated, since any
neighborhood of zero contains a number of the form % for sufficiently large n. By Theorem

4.5.4, since f is analytic on C and has a non-isolated zero, f vanishes everywhere on C.
Thus, the only such function is f(z) = 0 for all z € C.
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Solutions to Exercises 4.6

1. No: by the Schwarz-Pick Theorem, for any analytic function g from the unit disc to
itself, we must have, for all ¢ in the unit disc,

but this would imply that ¢’ (%) < 1_— =

5. By Schwarz’s lemma, we have that | f/(0)| < 1 and |(f~1)"(0)| = \f/%O)I <1,so|f(0)] =1.
Since this equality holds, Schwarz’s lemma gives that f(z) = cz with |¢| < 1. But then

f7H(z) = 1z, so we also have that ’%} <1,s0 |c] =1

9. If p has no zeros inside the unit disk, then by Corollary 3.9.10, p(z) = A is constant.
Since p has modulus 1 on the unit circle, we have that |A| = 1.

Now suppose that p has zeros a1, as,...,a,, inside the unit circle, counted according
to multiplicity. Then we can write p(z) = (a1 — 2)(ag — 2) -+ (am — 2)q(z), where ¢ is
a polynomial with no zeros inside the unit circle. Multiplying p by a product of linear

. 1-a;z .
transformations of the form ¢g,(z) = -2 gives us
J

1—a1z1—asz 1—a,z

F(2) = p(2) [ ] ¢a,(2) = (a1 = 2) a2 = 2) -+ (am — 2)a(2)
j=1

a1 —2z as — =2 A, — 2
=q(2)(1 —a12)(1 —@z2) - - (1 — T 2).

Then F' is a polynomial with no zeros inside the unit circle, and since each ¢,; has modulus
1 on the unit circle, F' also has modulus on the unit circle. Thus, by Corollary 3.9.10,
F(z) = A is a constant, and we have |A] = 1. But since F' is a constant polynomial, we
must have that each a; = 0, and ¢(z) = A is a constant. Thus, p(z) = (—1)"Az" = A'2",
where A" = (—1)"A and |A'| = 1.

13. No: apply Schwarz’s lemma to g(z) = @ to yield that |¢'(0)] < 1, that is, |f/(0)] < 3.
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Solutions to Exercises 5.1

1. We write
_ 142 1

Then it is clear that f has one simpe pole at zg = 0. The Laurent series expansion of f(z)
at zp = 0 is already given. The residue at 0 is the coefficient of % in the Laurent series a_1.
Thus a_; = Res(f, 0) = 1.

z

5. We have one pole of order 3 at zyp = —3i. We write

<Z_1>3 - ;3[(2—1-32')4-(_3@'_1)]3

z+ 31 (z + 31)
= (2—1—131)3 (2 +30)% +3(2 + 30)*(—1 — 3i) + 3(2 + 3¢)(—1 — 3i) + (—3i — 1)°]
_ (-=1-3i) _(-1-3i) (=3i—1)>
= 1+3 2+ 3i (2 + 3i)2 G+30)p
Thus .
. z—1 )
a—1 =3(—1—3i) = Res ((z - 3@') ,—3Z> )
9. Write

z+1_ 1 z+1
2—1 sinmzz—1

f(z) = csc(mz)
Simple poles at the integers, z =k, z # 1. For k # 1,

1 z+1

k) = 1l —k
Res (f, k) zl—%(z )sinﬂzz—l
= limz+1lim(z_k)

2=k z— 1 2k sinmz
k:+1hm 1

k—1z20kmcosmz
k+1 1 (=DFk+1
k—1mcoskr 7w k-1

(L’Hospital’s rule)

At zg = 1, we have a pole of order 2. To simplify the computation of the residue, let’s
rewrite f(z) as follows:

1 z+1 1 (z—1)+2
sintzz—1  sinmz z—1
1 2

sinmz + (z—1)sinmz

We have
Res (f,1) = Res( , 1)+ Res(

sinz (z—1)sin7z’
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1 1
Res (- ,1) =lim(z —1)— =—— (Use 'Hospital’s rule.);
sin 7z z—1 sin 7z T
2 d2(z—-1
Res(—————,1) = lim d20:z-1)
(z—1)sinmz z—1dz sinmz
— 9lim sinmz — (z — 1)wcosmz
z—1 (sinmz)?
_ g iy FCOSTE —meos T + (2 — 1)wsinmz _o
z—1 2msinmwz cosmz

So Res(f, 1) =—1.
13. The easiest way to compute the integral is to apply Cauchy’s generalized formula with

22432-1
22-3 7

f(z) =

which is analytic inside and on C(0). Hence

22 4+32—-1 1 2mi
—————dz =2mif(0) =2mwi( = | = —.
/6’1(0) 2(22 — 3) ( ) ( )

Note that from this value, we conclude that

2 —1
243z 0>:

Res ( z(22-3) 7

1
3
because the integral is equal to 27 times the residue at 0.

1
z2(z=1)(z—2)--- (2 — 10)
poles of f(z) inside C% (0). Since C% (0) is the circle positively oriented centered at the

17. The function Let f(z) = , then z = 0 and z = 1 are simple

3
origin with radius 3 with

Res (£(2),0) = limy 2/ (2) = limy 7 .1. (z—10) 1%'
Res (f(2),1) = lim (= = 1) f(2) = lim 2(z - 2) 1 (z—10) _é-

Then the path integral can be evaluated by

dz .
/Cg(m oD o0y riIRes(f(),0) + Res (7(2), 1)

_ 9 ( 1 1) B 1872
100 " ot) T T 00
dz 187i

Therefore, the path integral - '
ererore, the path integra /03(0> 2(z—1)(z —2)--- (2 — 10) 10!
2
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21. The function

has a pole of order 6 at 0. To compute the residue at 0, we find the coefficient a; in the
Laurent series expansion about 0. We have

It is clear that this expansion has no terms with odd powers of z, positive or negative.

Hence a_1 = 0 and so
2

/ € dz = 2riRes (0) = 0.
C1(0)

26

25. Same approach as in Exercise 21:

sinz ii(—l)k 22k+1
26 26 prt (2k +1)!
_ 1 23 20
I T}

Coefficient of %: a_1= %, SO

. .
/ B2 dz = 2miRes (0) = ——.
Cc1(0) #

29. (a) The Order of a pole of csc(rz) = =L is the order of the zero of

sinmz

1

CSC(T(Z) = SImmTmnz.

Since the zeros of sinmz occur at the integers and are all simple zeros (see Example 1,
Section 4.6), it follows that csc 7wz has simple poles at the integers.
(b) For an integer k,

—k
Res (cscmz, k) = lini(z —k)csemz = lirrllc &
= z—k SIn Tz
1
= lim —— ("Hospital’s rule)

z—k TCOSTZ
(=DF

™

(c) Suppose that f is analytic at an integer k. Apply Proposition 1(iii), then

Res (f(2) csc(mz), k) = fk).
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33. A Laurent series converges absolutely in its annulus of convergence. Thus to multiply
two Laurent series, we can use Cauchy products and sum the terms in any order. Write

F9) = S ane -0 3 bl - 20"
= Z en(z — 20)",

where ¢, s obtained by collecting all the terms in (z — 29)", after expanding the product.

Thus -
Cp = Z (Ijbnfj;
j=—00
in particular
c_1 = Z a;jb_1_;,
j=—00
and hence -
Res (f(2)9(2), 20) = Z ajb_j-1.
Jj=-—00
37. (a) We have, Exercise 35(a), Section 4.5,
1 z(q_1
Jo(Z):i eQ(C é))%
211 C1(0) C

Thus - . .
/ J()(i)e_St dt = L / / e—t(s—%((—%)) £ dt
0 271 0 01(0) C

(b) For ¢ on C1(0), we have

(—==¢-(=2iIm(Q),

1
¢
which is 0 if Im ({) = 0 (i.e., ( = £1) or is purely imaginary. In any case, for all ¢ € C1(0),
and all real s > 0 and ¢, we have

et(sé(Cé))’ = |e®| R
So, by the inequality on integrals (Th.2, Sec. 3.2),
et Joo G = e
-, [ g

efts

IN



Section 5.1 Cauchy’s Residue Theorem

Thus the iterated integral in (a) is absolutely convergent because

1,1[“1/' ot(s—e-1) dS o, j/“>J[ ot(s=hc-1) 4¢
2mi Jo  Joyo) ¢ 0o |Jer(o) ¢

o0 1
< / eBdt == < 0
0 S

(c) Interchange the order of integration, and evaluate the integral in ¢, and get

/Ooojo(t)e—stdt = 2m/01 / )dtdg

_ L o t(s=3c-D)
2mi Jey 0y ( —%(C—%))
1 1

C1(0) _C2 + 28( +1

IN

because, as t — o0,

e_t(s_%(c_%)) ' = e_ts — 0

(d) We evaluate the integral using the residue theorem. We have simple poles at

—s+t+vs?2+1

C:—IZSZE S2+1.

113

Only s —v/s%2 + 1 is inside Cp(1). To see this, note that because s > 0 and v's2 +1 > 1, we

have s ++v/s2+1 > 1. Also

s<VsZ4+l<lds = —-1-s5<—-Vs24+l<—s5 = -—-1<s—1+s24+1<0.

By Proposition 5.1.3(ii)

1 1
Res ( ——————,5—Vs2+1)] = ————
(—C2 +2sC+1 ) =20+ 2s |7
_ 1
o2V 41

Thus, for s > 0,

o0 " 211 1 1
/lmmﬂm:‘ _ .
0 T 2v/s2+1  s2+1

(e) Repeat the above steps making the appropriate changes.
Step (a’): Use the integral representation of .J,, and get

o ~1le-1 d¢
I, = / Jo(t)e st dt = / / 9) 95 4
0 Q 2mi cl(o) ¢l
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Step (b’) is exactly like (b) because, for ¢ on C1(0), we have |[¢("!| = |¢| = 1.
Step (c¢’): As in (c), we obtain

1 1
In -
i Joy o) (—¢2 4 2s¢ + 1)¢"

dc.

Let n =
runs thro

= (. Then d¢ = —2dn. As ¢ runs through C1(0) in the positive direction,
zdn 1
gh C1(0) in the negative direction. Hence

= D=

. — 1 ndn
Tomi)o (S 25y + D miJoyo nP 2 =1

Step (d’): We evaluate the integral using the residue theorem. We have simple poles at

—s VA1
c:%:—si 2+ 1.

Only —s + Vs + 1 is inside Cp(1). (Just argue as in (d).) By Proposition 1(ii)

n" n"
Res (2, —s+ Vs + 1) =
n*+2sn—1 20+ 28|, o v
B (\/32 +1-— s)n
B 2V/sZ + 1

Thus, for s > 0,



Section 5.2 Definite Integrals of Trigonometric Functions 115

Solutions to Exercises 5.2

1. Let z = e, dz = ie?df, do = _j dz, cosf = Z+21/Z. Then

/2“ df _/ —Ldz
o 2—cosf 01(0)2_%

/ dz
= 1 Q=7
C1(0) 22 — 5 —

1
; —Tt2—3
where the sum of the residues extends over all the poles of 22%1 inside the unit disk.
T3
We have
52

1
T H%-5=0 & 22— 4241=0.

The roots are z = 24 +/3, and only z; = 2 — /3 is inside C}(0). We compute the residue
using Proposition 1(ii), Sec. 5.1:

22 1,1 1 1
R - —42z—- = = .
es <( 5 + 2z 2) , 21> a2 3
Hence
/% o 2
0o 2—cosh /3
. , A 0 o 24 1
5. Let z = €, dz = ie'df), df = _’Zdz, cosf = Z+21/Z, and cos26 = € 9*‘25 Wz ;zz
Then
/2“ cos 20 g - —i/ %(ZQ‘FZ%) dz
o H+4cosb 01(0)5_,_4% 2
B z/ A1 dz
N 2 Jey (o) 5224223 + 22 2

1

/ 2441
= 575 5 dz
2 Jeoy (o) 2%(22° + 52 + 2)

. 4
7 241
= ——2mY R :
2 mzj: eS <z2(2z2+5z+2)’2]>
4
22 +1
= E R .
i - ° <z2(222—|—5z—|—2)’2])7
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where the sum of the residues extends over all the poles of % inside the unit disk.
We have a pole of order 2 at 0 and possible more poles at the roots of 222 + 5z + 2. Let’s

compute the residue at 0.

Res( ! ) T S et S

22(222+52+2)’ 2=0 dz (222 + 5z + 2)
423222 452+ 2) — (2t +1)(42 4 5) 5
B (222 + bz + 2)2 &

For the nonzero poles, solve
222 + 52 +2=0.

—5+3
4

The roots are z = . Only 1 = —% is inside C7(0). We compute the residue using

Proposition 5.1.3(ii):

R < 241 ) 2t +1 1
€S 7Z =
2222 +52+2) 22 %(222_,_52,_,_2)‘21
_ ()t+1 17
P@(=3)+5) 12

Hence
™ cos20 17 5 w
——dl=7 = — = | = —.
o O+4cosf 12 4 6

9. Let z =€, dz =iedp, df = _izdz, cosf = z+21/z, sinf = 2_21/’2. Then

/27r do B _1// dz
o T7+2cosf+3sinf €1(0) Z(7+(z+1/z)+%z2—%

~ dz
= —
/01(0) (1—30)22 4+ T2+ (1 4 24)

1
= 2 Ri y 25 |
™2 Res ((1—§z)z2+7z+(1+§¢) Zj)

1
(1-34)22+72+(1+31)

inside the unit

where the sum of the residues extends over all the poles of

disk. Solve 3 3
(1—51')22—1—724— (1+§i> — 0.
You’ll find
—TE 1941 - S0+ 3i) T+ 19401+
z = g
2(1 — i) 2(1— i)
- T4£436  —T£6
- 2-3i  2-3i
—-13 -1
= - or .
2 — 31 2—3:
—13(2 + 3i —(2+3i

13 13
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We have
—(24+ 3¢ V13
243 = VI3 > 1and | —2F30] VI3
13 13
So only 21 = 7(21;:31') is inside C1(0). We compute the residue using Proposition 5.1.3(ii):
1
Res(z1) =
(1) 2(1— 2i)zy + 7
j— 1 —
—2(1— 3= L7 6
Hence

/% do ™
- =21 - = —.
o T7+2cosf+3sinf 6 3

13.a. The solution will vary a little from what is in the text. Note the trick based on
periodicity.
Step 1: Double angle formula

1 20 2a + b+ bcos 260
a+bcos20:a+b< +C208 ): o —; o8 )

SO
1 2

a+bcos20  2a+b+bcos20
Step 2. Change variables in the integral: ¢ = 26, dt = 2df. Then

I_/27r de _/47r dt
~Jo a-+bcos20 ), 2a+0b+bcost

is 2w-periodic. Hence its integral over intervals of length 27

The function f(t)
are equal. So

I_/27r dt +/47r dt _2/27r dt
~Jo 2a+b+bcost  Jor 2a+b+bcost )y 2a+b+bcost’

Step 3. Now use the method of Section 5.2 to evaluate the last integral. Let z = e,

dz = ie'tdt, dt = _izdz, cost = Z+21/Z. Then

_ 1
~ 2a+b+bcost

2/2” dt B _4@_/ dz
o 2a+b+bcost cr(0) 022 + (da +2b)z + b
1
= 87> R :
”2]: es <b22+(4a+2b)z+b’zj)’

where the sum of the residues extends over all the poles of
disk. Solve

1 . .
D7 (A0t 20775 inside the unit

bz? + (4a +2b)z + b =0,
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and get
—(4a + 2b) £ \/(4a +2b)2 — 40> —(2a + b) £ 2\/a(a + b)
- 2 - b
—(2a+0b) +2+/a(a +b) —(2a +b) — 2y/a(a +b)
= Z1 = b or zo = b .

It is not hard to prove that |z;| < 1 and |z2| > 1. Indeed, for z2, we have

2 2,/ b 20 2 b
2] = ab+b+ a(;+):1+ba+a(;+)

>1

because a, b are > 0. Now the product of the roots of a quadratic equation az?+Bz4~ = 0
(a #0) is always equal to 2. Applying this in our case, we find that z; - zp = 1, and since
|z2| > 1, we must have |z| < 1.

We compute the residue at z; using Proposition 1(ii), Sec. 5.1:

1 1
R p—
o (sz + (da+2b0)z + b Zl) 2021 + (da + 2b)
1
T —(2a+b)2+4\/a(a + b) + (4a + 2b)
B 1
4y/a(a +b)

Hence

/2” do ) 1 2
_—— i = .
0 a-+cos?f 4y/a(a+b) \/a(a+Db)
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Solutions to Exercises 5.3

1. Use the same contour as in Example 5.3.3. Several steps in the solution are very similar to
those in Example 5.3.3; in particular, Steps 1, 2, and 4. Following the notation of Example
5.3.3, we have I, = I[—R, R+ Isp,. Also, limp_yo0 I5, = 0, and

*  dx
lim [ =1= .
A ler /_Oo P

These assertions are proved in Example 5.3.3 and will not be repeated here. So all we need
to do is evaluate I, for large values of R and then let R — oo. We have

1
I'YR = 271'12 Res <M7 Zy) s
J

1

where the sum ranges over all the residues of in the upper half-plane. The function

2441
f%ﬂ have four (simple) poles. These are the roots of 24 + 1 = 0 or z* = —1. Using the
result of Example 5.3.3, we find the roots to be
1+ —14: —1—1 1—1
zZ1 = zZ9 = z3 = Z4 =

V2’ V2

In exponential form,

2 = €'t 29 = ei%ﬂ, 23 = ei%ﬂ, Z4 = T
Only z; and zo are in the upper half-plane, and so inside g for large R > 0. Using
Proposition 5.1.2(ii) we write

R ( 1 ) 1 IR
€S —_— 1, 21 = —_— = = _¢ .
4 ’ d 3 ’
zr+1 624 + 1‘z:Z1 4z 4
1 1 1 1 .on 1 .=
Res < 22) = — = ="¢ "1 = e 'z,
4 ’ d 3
2+ 41 £z4+1‘2222 dzy 4 4
So
1 ;O A
L, = 27712 (6_137 + 6_21)
i 3= .. 37 n ™ .., T
= — |cos— —isin — -+ cos — — ¢sin —
2 4 4 4 4

™

Letting R — oo, we obtain I = Nt

5. The integral converges absolutely, as in Step 1 of Example 5.3.3. We will reason as in
that example, and omit some of the details. Here I,, = I|_g g + Iop; limp—o0 I, = 0,

and
> dz

Al ferm =1= /oo (22 +1)%
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All we need to do is evaluate I, for large values of R and then let R — oco. The function
flz) = @2%)3 has poles of order 3 at z; = i and zo = —i, but only z; is in the upper
half-plane. You can evaluate the integral I,, using the residue theorem; however, an equal

good and perhaps faster way in this case is to use Cauchy’s generalized integral formula
(3.8.10). Write

I / 1 d / 1 d / 1 dz
= T T dR = : : z = - 7"
e (241 v [(Z+)(z =9 vr (2402 (2 —14)
Let g(z) = ﬁ According to Cauchy’s Integral Formula ,
(s
9" (i)
L, =2mi T
Compute:

J(2) =30+ ¢'(z) =120+

SO 12
g"(i) =12(20) 7 = (=),
Finally,
12 3T
ha=m =%

Letting R — oo, we obtain I = ‘%T.

9. We use the same technique as in the solution of Exercise 5. This time, we have that

1
96 = i
9™ ()
Cauchy’s Integral Formula gives I, = 2mi T
n!
Now
dr 1 o (=D)*n+1)(n+2)---2n

mGy=>__ =
g (Z) dam (Z+’i)"+1 o

=i

(Z 4 Z')(Qn—i-l)
(—1)m@2n)! 1
n! 22n+1i2n+1
i(2n)!
C92n+1pl”

Therefore, by Proposition 5.3.4

b dx ) 1 .
/Oo 7(1+x2)“+1 = 2mi Res ((1+x2)”+1’2>
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13. Once again we follow Example 5.3.6 closely. First, we need to check that the integral
is convergent, but it has been noted before (just above Example 5.3.6) that the integrals of

the form
o0

eax

/de with0 <a <bandc>0
e ¢

— 00

are, indeed convergent.
To calculate the poles of f(x) = 36267;“, we set

T4 1=0 & LT=¢"
& br =im+ 2mik, forkeZ

We use a contour as in Figure 5.18 and use the notation of Example 5.3.6. Setting & = 0,
we have the pole x = %r. Therefore, we pick our rectangular contour to go from y = 0 to
Yy = %. That way, we do not include all poles, but only the z = %r one.

In this notation, we note that limp_,~ [I2| = 0 and limpg_,~ [14] = 0. Check Example 5.3.6

or the solution of Exercise 9 for details.

We do the calculation for I3. There we have u + vi = = + %, from z = R to x = —R.
Therefore ‘ ,
—R gzt 2% g, —R a2 gy 2ami
I3—/R €bm+2m+1_/R W——ebh

Then we apply the residue theorem to get

Finally, since

. .oaim
zw) 2mie b

L+ 1+ Is+ Iy = 2mi Res <f(a:), b

letting R — oo, we get that I (1 — e%bﬂ) = —QMETZ’, meaning that

aim

o .oa
b

A

ebz + 1 1 . eQabTri

—00

—2m 1
b (cos (%) — isin (%)) — (cos (%) + isin (%))

This implies that

/ e*®dx B T
ebr +1 bsin 9F
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when 0 < a < b.

17. Let x = €, dv = et dt. Then

]_/Ooxadx_/ooeatetdt
o (@12 (et 12

Use a rectangular contour vy as in Figure 5.18 with @ = 1. Then the vertical sides of the
rectangle have length 27 and we have a pole of order 2 at w¢ which lies in the center of
the rectangle. Refer to Example 5.3.6 for notation: limp_,« [I2| = 0, limp_,c [14] = 0, and
limg_,o I1 = I, the desired integral. For I3, z = x 4 im, x varies from R to —R, dz = dz, so

dx

—R (a+41)(z+2mi)
Iy = / =

R (ele+2m) 4 1)2

R o(at+l)z2mia
- /R (e* + 1)

= _g2ami /R eLJFl)I dx
-R (E‘r + 1)2

_ 7e2amIl.

dzx

We have

(a+1)z
(& .
I = 7d —I +I +_[ I =(1-— 2ami I I I .
" /YR(ez-i-l)z Z 1 2 3 4 ( e )1+ 2+ 14

Letting R — oo and using that I; — I and I3, I4 — 0 as R — oo, we get

. 207
P}gréolm =(1—e**")I.
To find the constant value of I, for large R, we calculate the residue at z = i, since we
have poles at z = wi + 2kmi for k € Z, and only z = i is contained inside the contour. The
value of this integral is

e(aJrl)z > d (Z o 7”')2 e(aJrl)z
55 T

2miRes | —— — 27 lim —
i fes ((eZ+1) TRz (e 1)

Nz d (ef+1
— 27 lim {(O‘ + Delotls 267D dz(im)]
z—mi (277‘;%)2 (%)3
. 1 .
— 2 [(a + 1)@t — 9. 2ez7r(a+1):|
= 2miaemet)
since
. dfef+1 1
lim — ) = =,
zomi dz \ 2z — T 2
It follows that '

_ 2miqe et o

I =

(1 —e2om) — sin(ma)’
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21. Let ax = €', adx = e dt. Then

oo o o xX
I —/ hgl(aw) dx = 1/ 57 ! eldt = a/ S LR—
0 2+ b2 a et + b2 oo e?m + CL2b2

—00 a2

Use a rectangular contour as in Figure 5.18, whose vertical sides have length 7 (i.e., a = 2).
Refer to Example 5.3.6 for notation: limp_,o [I2| = 0, limp o0 | 14| = 0, and limp_,o0 [1 = I,
the desired integral. For I3, z = x + i¢m, x varies from R to —R, dz = dx, so

I3 = a/_R —<$+iﬂ)€x+m dz
R eZet2mi 4 g2p2
R . T
-1
_ —a/ (x +im)e”( )dx

_r €2 4+ a?ph?

=BRi
R T R T
xre . € .
= a/_R‘de+2ﬁz/_R62x_|_a2de$:h+BR%

where Bp is a real constant, because the integrand is real-valued. We have
IL,=5L+1+ I3+ 1y =211 + I+ 14 +iBp.
Letting R — oo, we get
Rli_r}noo I, =2I+iB,
where

oo 61’
B = lim B = ———dux.
Jm Br= [ e

At the same time

, 2ze?
I'YR = 2mi Res <e23—|—a,2b27 ZO> 5

where zg is the root of €?* 4 a?b? = 0 that lies inside v (there is only one root, as you will
see):
622 + a2b2 -0 = 622 — 82 In(ab)+im
= 2z =2In(ab) +im + 2kmi
= z:ln(ab)+ig(2k—|—l).

Only z = 2In2 + 47 is inside the contour. So

aze”

e 4 a2’
. _a(In(ab) + iZ)em@D) i3
- 9¢2(In(ab)+i3)

= 7 (m(ab) +i7)

L, = 27riRes( ln(ab)—i—ig)




124 Chapter 5 Residue Theory

Thus 9
oI + 2miB = %ln(ab) + Z;Lb

Taking real and imaginary parts, we find
_ mlin(ab) ™

5% and = e

This gives the value of the desired integral I and also of the integral

™

(0.9} el’
— =B = ———dx.
4b /_oo e 1 q2p2 **

25. The integral converges by the comparison test for convergence ( floo x—lg,dx converges).

The integrand has poles at = —1,e™ and e~™. We calculate that

1 , — €™ 1
Res | ——,¢™ | = lim r_¢ _ —
3 +1 g—semi I3 +1 3e73

Using the given, we get that

27 27
1 3 Ret 1 [3 et
de = —— dt=—= ————dt >0
me3+1 v /0 (Ret)3 +1 R2/0 2t T g3t

as R — oo, because

27

T et 1
\/0 Wdt)S\A | <o

1
lim Ir = lim / : =0
R—o0 R— o0 Ny T +1

Moreover, in 3, we have x = te%, for t from R to 0 and therefore da = e°5" dt.

Thus 0
1 s 1 st} 1
/ 3 dl' = GQT Wdt = —BQT 3 diU
vs +1 R (teT) +1 7T +1

Therefore

The Cauchy residue theorem gives us

1 N\ 2mi
I + I + Iy = 27i Res <x3+1=6m) - 7

e s
and therefore, since I3 = —e%h and I, — 0,
>~ 1
/ 3 dr = lim 11
0 o+ 1 R—o0

1 271

= o7d 2mi

14+e3 3e3

2
3v3
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25. (a) Since 0 < a < 1, the integral converges, by the comparison test. Indeed, since
a > 0, by the comparison test, we have that

oo .a—1 o)
‘/ T d:z:‘ﬁ’/ 1d$‘<oo.
1 ﬂj+1 1 Izia

Moreover, since a < 1, Let # = e'. Then dx = e'dt and

1 ,.a—1 1
1
‘/x dac’ﬁ’/ i dx’<oo.
0.’IJ+1 Ox_a

Remember that if ¢ > 0, [° ﬁdaz converges if and only if b > 1, where as [ #daz converges
if and only if b < 1.

Let © = €. Then dz = et dt and

oo ,.a—1 oo (a—1)t () at
/ T = / e eldt = / —__at.
0o x+1 oo €1 |
The result then follows from Exercise 13.
(b) The definition of Gamma is

for Re z > 0. Therefore,
IM'a)l'(a—1)= / e_tta_ldt/ e ssIm) 1 gs = / / e~ sl g=aqgds.
0 0 o Jo

(c)Let z =s+tand y = L. Then t = 2%, s = 47, and

Otss) _ 0105 05 0t
d(z,y) Oxdy Oxdy

We calculate that:

o Yy
dr  y+1
ot x
dy — (y+1?
ds 1
or  y+1
oy x
s (y+1)?
Therefore
‘a(x,y)’: O0rdy 0z 0y :‘ y <_ x )_ x 1y a
a(t,s) ot 9s s Ot y+1\ (y+1)2 (y+1)2y+11  (y+1)2
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since x,y > 0 in the integral. We use the change of variables formula to get

/ / e~ (tts)pa—lg—aqsqy
0 0

/ e~ (t+s) t t~Ldsdt
0 S

1
e Ly I(x,y)
/0 ©Y <y+1> o

Ooefm U+l T

(d) We know that I' is holomorphic for Re z > 0. Therefore, if 0 < z < 1, T'(2)I'(1 — 2) is

also holomorphic.

On the other hand, the function f(z) =

s
sin 7wz

is also holomorphic for 0 < z < 1, since

sin wa # 0 there. Since the two functions are equal on the real line, we conclude, using the

identity principle, that

forall 0 < 2z < 1.

(e) Exercise 25 in Section 4.2 gives an outline of the proof for the formula



By picking z; =

Therefore

3

4
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and z9 = i, we get that

2/2\/cot9d9
0

Wl

(0052% -1 9)(sin2i_1 ) db

\V]

NIE]

(cos?*17L g)(sin®*27! )dh

)T'(22)
1+ 22)

!

™ o— S—

!
=

=3 H|
N N
[ LS TJUI PN VIR N

+

IS

S~—

veot 0 db = \%

127
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Solutions to Exercises 5.4

1. By (5.4.2), we have that

00 4 00 4ix
/ 0(2)5 v dsze(/ ; dac).
oo T4+ 1 oo T4+ 1

Consider the contour integral

6412 e4zz R 64151:
L= | X dq.= dz+/ dr=1, +1In,
TR [YRZ2+1 /ORzQJrl _pr2+1 or TR

where yp and og are as in Figure 5.21. For R > 1, the integrand has one simple pole at
z = i. By Proposition 5.1.3(4i), we have that

4diz —4

€ (&
Res | —5—,i) = —.
es(z2+1’l) 2i

Thus, by the residue theorem, for all R > 1, we have

—4

Ly = I, +Ip = 2m‘e2—, = e
1

—4

We claim that I,, — 0 as R — co. On the contour o, we have that z = R(cos# + isinf),
0 <8 < 7. Thus, sinf > 0 on the contour. We then have that

’e4zz| _ ‘64ZR(cos9+zsm9) €—4Rsm6 <1

We can then estimate the integral I,, by noting that

e 1 _ 1 1
2417 241 T |f-1 R-1

4iz
/ 26 dz
op -+ 1

Thus, as R — oo, Igp — I, = me~%. We then have that

fe'e) 4 o0 dix
/ C(Q)S :c dz = Re </ 57 dx) = Re (7re_4) = e L.
oo T4+ 1 oo T4+ 1

5. The degree of the denominator is 2 more than the degree of the numerator; so we can
use the contour in Figure 5.21 and proceed as in Example 5.4.1.
Step 1: The integral is absolutely convergent.

so by the ML-inequality,

TR
<
- R2-1

| Iop| = —0 as R — oo.

22 cos 2z

(.Z‘Q + 1)2

x? 1

<
T (24 1)2 T 2241
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because
2 (@+1)-1 1 1 1

= = — < .
(22 +1)2 (22 +1)2 z2+1  (2241)2 ~ 22+1

Since [ * L _dz < 0o (you can actually compute the integral = 7), we conclude that our

—00 241
integral is absolutely convergent.
Step 2:
/°° xzcos2xd /°° $2C082xd +,/°° x251n2xd /OO xle2ix d
——dx = ——dx +1 ——dx = ——dx
oo (@2 +1)2 oo (@2 +1)2 oo (@2 +1)2 oo (@2 +1)2
because

[e’s) 2 o3 2
/ x2sm J;dsz,
oo (224 1)

being the integral of an odd function over a symmetric interval.
Step 3: Let yg and og be as in Figure 5.21. We will show that

22621',2
/ m dZ — 0 as R — oo.
z
OR

520212 520212
= S < - = . M.
1oy, | /UR EEE dz| <l(oR)  max EEIE TR-M
For z on op we have
‘€2iz‘ < e—2Rsin9 <1.
So
22e2i% 22 224+1-1
(224 1)2 (2241)2| — | (22 +1)2
1 n 1
22+ (22 +1)2
< 1 n 1
- R2-1 (R?-1)%
So
0 | = TR i TR
T R2Z-1 0 (R2-1)%

and this goes to zero as R — oo.

Step 4: We have
2 2z 22z
z7e z%e
——— dz =21 R —,
/m (T ((zm)?’ >

because we have only one pole of order 2 at i in the upper half-plane.

2 2z d 2 2iz
Res (( ) _ hmd[@_m“]

22+ 1)’ z—i dz (22 +1)2
d |: Z2€2iz :|
B dz (Z + Z)z z=1
e?

= 177

4
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after many (hard-to-type-but-easy-to-compute) steps that we omit. So I, = 27?2'(2'%) =
—7['%. Letting R — oo and using the fact that I,, — I, the desired integral, we find
I=-n¢]

= T3
9. In the integral the degree of the denominator is only one more than the degree of the
numerator. So the integral converges in the principal value sense. Let us check if the
denominator has roots on the real axis:

1, v35

2
= :—7:t
°4+x+9=0==x 5 7 5

We have no roots on the real axis, so we will proceed as in Example 5.4.5, and use Jordan’s
Lemma. Refer to Example 5.4.5 for further details of the solution. Consider

< Tz Tz
—e'™dz = z)e'* dz,
/m 224249 R (2)

where g is as in Figure 5.24. By Corollary 5.4.4,

/U f(2)e™ dz

— 0, as R — oo.

Apply the residue theorem:

(2)e'™ dz = 27iRes (f(z)eim, z1),
TR

2

where z; = —% 1V s the only (simple) pole of f(z)e™ in the upper half-plane. By
1.3(ii) we have

Proposition 5.

Res (f(z)eim, 2) =

z1€ 521) /3
= = [
221 +1 V35

So
_ /35 _ /35
/ f(2)e™dz = 2mi e i e
R 2v/35 2
= We_”% +i7re_7r@
V35
But

oo . o0 :
hm/ f(z)emdzz/ ;ﬂcomdxﬂ/ _osinTe
R—oo [, oo T+ +9 o X+ +9
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Taking real and imaginary parts, we get

Ve
*°  zcosmx _ . ¥/35 *°  xsinmx e 2

—————cdr=me "2z and ————dr =7 .
o TF T+ 9 o TP+ T +9 V35

13. Use an indented contour v, g as in Fig. 5.31, with an indentation around 0, and consider

the integral
1— eiz
IT,R = / 2 dz = / g(Z) dz,
Yr,R z Yr R

where g(z) = 1;§iz. Note that g(z) has a simple pole at 0. To see this, consider its Laurent
series expansion around 0:
1 . . .
g(z) = ] (1 — (1 + (iz) + (22)2/2! + (12)3/3! + .- ))
7 n 1 n oz
= —— — J— — .-
z 2 3!

Moreover, Res(g(z), 0) = —i. By Corollary 5.4.8,

lim g9(z) =in(—i) =m.

r—=0t Jg,

(Keep in mind that o, has a positive orientation, so it is traversed in the opposit direction
on v, r. See Figure 5.31.) On the outer semi-circle, we have

/0 ) g(2) dz

Using an estimate as in Example 5.4.1, Step 3, we find that for z on op,

TR . T X
< _ ot — _zz.
< ppomax |l-e¥f =5 max [l -—e”|

|€iz‘ < e—Rsin@ <1.

Hence max. on o |1— €| <1+1=2. So |I,,| < 2 — 0, as R — co. Now g(z) is analytic
inside and on the simple path 7, g. So by Cauchy’s theorem,

/ g(z)dz = 0.
Yr,R

So

—0 —T —I

0:/%Rg(z)dz:/URg(z)dz—/UTg(z)dz+/[_R7_T]g(z)dz+/[T’ oL

Asr — 0" and R — oo, we obtain

22

o0 1_
P.V./ ST gy = Re(I) = Re(n) =

—0o0
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17. Use an indented contour as in Figure 5.31 with an indentation around 0. We have

*  sinz 0 e
P.V. ———dx =1 P.V. —d = Im (7).
/_Ooaf:(x2+1) v m< /_Oox(:n2+1) az) m (1)

8
Ir,R:/ dz:/ g(z)dz,
Yr,R 2(22 + 1) Yr,R
e

where g(z) = EEEuE Note that ¢g(z) has a simple pole at 0, and Res(g(z), 0) = 1. By

Corollary 2,
lim g(z) =im(1l) = im.

r—=0% Jo,
(As in Exercise 13, o, has a positive orientation, so it is traversed in the opposit direction
on v, r. See Figure 5.31.) As in Example 1, |I,,| — 0, as R — oo. Now g(z) has a simple

pole at 4 inside 7, r. So by the residue theorem,
et

i(24)

= —qme !

/ g(z)dz = 2w Res (g9(z), i) = 2mi
VR

So

—0 — T —I

—me! = /W g(z)dz = /UR g(z)dz — /U g(z)dz +/[_R’ . g(z)dz + /[T . g(2)dz.

Asr — 0% and R — oo, we obtain

—me ! =T —in.
Solving for I and taking imaginary parts, we find
I =i(r —me™t) Im (1) =7 —me™ !,

which is the value of the desired integral.

21. (a) We have that [* S22 dz = 7, so since 2% s even, [~ 2% dz = J. Trivially, for

X
azO,wehavefOOO%dx:O. For a > 0, let u = ax to get

2 [ sinax 2 [*sinudu 2 [*sinu
— de = — —— == du = 1.
™ Jo xr m™Jo a a ™ Jo u

For a < 0, letting v = ax changes the limits of integration, yielding

2 [ sinax 2 [T sinudu 2 [ sinu
™ 0 X Vs 0 P a Vs 0 u

(b) We have that

(sinax)(cosbr) = %(sin ((a+b)z) +sin ((a — b)x))
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Thus, the integral becomes

/ (sin ax)(cos bx) / sin ((a + b)x) + sin ((a — b)) I
0 T 0 2x
/Oosm (a+b)x) d$+/°°sm((a—b)x) .
0 0 2x
T T T
Z(sgn (a+b)+ sgn(a b))—Z+ngn(a—b),

from which the claimed formula follows.

eiwz
J = / p— dz,
cent
where C' is the indented contour in Figure 5.32. The integrand is analytic inside and on C.
So

25. (a) For w > 0, consider

eiwz
(1) OZJ:/e2m21d2211+12+l3+14+l6+167
c _

where I; is the integral over the jth component of C, starting with the line segement [e, R]
and moving around C counterclockwise. As ¢ — 07 and R — oo, I — I, the desired
integral.

For I3, z = x + i, where x varies from R to e:

€ eiw(x—i—i) R et
_ _ o -w
_[3 = /}% mdﬂ: = —€ /6 7e2ﬂx — 1d$

Ase— 0" and R — oo, I3 — —e 1.
For Is, z = R + iy, where y varies from 0 to 1:

|I3] <1- max
z=R+1y
0<y<1

Wz ‘
’

627rz -1 ;

eiw(R—i—iy)
e2m(R+iy) _ 1

esz

e2rR _

’—>0, as R — oo.

So I, —+ 0, as R — oo.
For I5, z = iy, where y varies from 1 — € to e:

€ etw(iy) ' ) l1—e  o—wy
Is = /15 e2m(iy) — 1Zdy - _Z/E e2miy — 1 dy'
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For I, the integral over the quarter circe from (¢, € 4 i) to (0, i — i€), we apply Corollary
5.4.8, to compute the limit

Wz Wz
iy [ e = iThes ()
0 ., 2™ — 1 2 ez — 1
7 R eiw(i) B oW
T2 2mer ) T

For I, the integral over the quarter circe from (0, i€) to (e, 0), we apply Corollary 5.4.8,
to compute the limit

Wz

lim eidz = —gRes <61, 0>

2nz _ 27z _
e—0 v € 1 €

T eiw(O) i

T2'ope2 @) T g
Plug these findings in (1) and take the limit as R — oo then as € — 0, and get

oo eiw:p e ez’wz 1—e e~ Wy e~ w i
li ——dr—e " | ———dz—i ———dy| —i— -~ =0
ei%u e — 100 ¢ /E e — 10" Z/e e2miy — 1 y} 41

) 00 eiwx 7 e’} eiwx ' 1—e e~ Wy eTw 1

(Note: The limits of each individual improper integral does not exist. But the limit of
the sum, as shown above does exist. So, we must work wth the limit of the three terms
together.) Take imaginary parts on both sides:

00 wx 00 iwx 1—e —wy —w 1
(2) lim Im / 267dm - e_w/ 267dx - ’L/ _c dy| = u.
e—0 . e —1 e —1 . ey —1 4

Now
00 iwx 00 iwx 1—e —wy
Im [/ Qipdxe_w/ ;xdffi/ ;id@/}
e e —1 e e —1 c e ™y — 1

0 : 1—e -\ —
B sin wx —w (—i)e Y ‘

(e (e
Im <e27riy —1) = “Rel a7

or

_ _uiRe <cos7ryfisin7ry> e
24 sin my
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Plugging this in (3) and using (2), we get

. * sinwz _ I=¢ g—wy eV +1

e—0 €

Evaluate the second integral and get

00 —w(l—e) _ —we —w 4 q
nm[/ n 4y ]J 1
€ w

e—0 e2rr — 1 2(— 4
> ginwx emwll—e) _gmwe w4
li —(1—e"")d li = .
50 . e — 1( ) dz+ 50 2(—w) 4
* sinwx 1l—e™ e %41
1—e ™)l - = .
(1—e )eg% . eQWfE—ldm—i_ 2w 4
So
00 —w 1 1—e W
(1—-e")lim ST g = © L ¢ ;
e—0 J, e2rr 1 4 2w
. * sinwx 1 eW4+1 1—ev
lim —dxr = —
e—0 ), e —1 l—ew 4 2w
* sinwz -1 1e%+1
o1 = 5.t :
o €™ —1 2w 4de?—1
(b) Setting By = 1 we have
= B
zcothz = 222”(2753!22", |z| <
n=0
z z > B z z
—coth- = 92n 220 (Zyan %)
2 Y D anita) o Bl
n=0
zei e s > Bon o,
a z z == 3 < 2
2e2 —¢ 2 Z (2n)!z 12 T
n=0
1 eg + 6_% BO > Bgn om—1
2 _ = = , |zl < 2w
203 —e 3 z ; (2n)! 12
le2+e’ 2 B > B
5 f = — = 22n| T lel<m
e2 —e 2 z n:l( n)
ler+1 1 1< Boy o, 4
- - — = = , <2
der—1 22 2;(2n)!z 2] < 2m

(c) Replace sinwz in the integral in (a) by its Taylor series

o0 _ _
w2k 1$2k 1

sinwx = Z(—l)k_lm,

k=1

135
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using part (b) and interchanging order of integration we get

S B (wz)?n 1 <~ By
—1\" d —_ 2n—1
/0 ezm—1;)( Ve ™ 2;(271)!“)
i (=" w2+ /Oo i de = }i Ban w1
= (2n+ 1)! g € —1 2~ (2n)!
i (=t w21 /OO z? ! de — li Ban w21
— (2n—1)! g e —1 2 £ (2n)! '

Comparing the coefficients of w, we obtain

00 x2n71 (_1)n71
/0 eQﬂ_x_ldiL': in BQn (?7,21, 2, )
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Solutions to Exercises 5.5
1. As in Example 5.5.1, take w > 0 (the integral is an even function of w),

o 2 z X o 12
e 2 coswrdr = / 2 " dx (because / e 2 sinwxdxr =0)
/ 7

—00 —00

Bl 5
3

l )2 __ 1,2
. / e 5(z—iw)?—sw dr
\V 4T0
=J
1
1,2 1 12 e 2Y
= e 2% 6—5(1‘—7,11)) dr =

Ver ) N

2

J.

To evaluate J, consider the integral

1= ¢~ 3 (z—iw)? dz,
YR
where ~g is a rectangualr contour as in Figure 5.33, with length of the vertical sides equal
to w. By Cauchy’s theorem, I = 0 for all R.
Let I; denote the integral on ; (see Example 5.5.1). Using the estimate in Example
5.5.1, we see that Iy and I tend to 0 as R — co. On 73, z = z + 1w, where = varies from

R ro —R: A "
- 1 . . 1
/ e~ al@riv—iw)® go. —/ e 2% dx,
R —R

and this tends to —v/27 as R — oo, by (1), Sec. 5.4. Since I = 0 for all R, it follows that
J= lim I, = Rli_r}réol73 = V2.

R—o00

Consequently,

w2

o T2

L
2 coswzdr =e

vl

for all w > 0. Since the integral is even in w, the formula holds for w < 0. For w = 0 the
formula follows from (5.5.1).

5. (a) Let f(x) = cos2x, then f'(z) = —2sin2z and f"(x) = —4cos2z. If z € (0, %), then
f"(z) < 0 and the graph concaves down. So any chord joining two points on the graph of
y = cos 2z above the interval (0, 7) lies under the graph of y = cos 2z. take the two points
on the graph, (0, 1) and (%, 0). The equation of the line joining them is y = —;x + 1.
Since it is under the graph of y = cos 2z for = € (0, §), we obtain

4
——x+ 1 <cos2z forogscgz.
s 4
(b) Let I denote the integral of e~ over the path v; in Figure 5.45. Since e is entire,

by Cauchy’s theorem, I1 + Is 4+ I3 = 0.

(¢) For I, z =u,
R 00
I, = / e dy — / e dy = \g,as R — o0,
0 0

)
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by (5.5.1). On 79, 2 = Re? 22 = R?(cos 20 + i sin 26),

_p2 o _p2 _p2(1_4
’6 _ ‘6 R (c0529+151n29)’ —e R® cos 26 <e R4(1 TFG)'

Parametrize the integral I5 and estimate:

I _p2.2i0 .
|| = / e e Rie? dp
0

I
R/ e
0

g2 [T pea
Re B / 7040
0

R2¢2i0 o0

IN

/4 e~ R -39 gp
0

IN

_R2 1 T RQi@

% ™ _R2 R2
R4 ~IR¢ [6 _1}’

= Re
B 4R

which tends to 0 as R — oo.
(d) On 3, z = ze'T, where z varies from R to 0, dz = ¢'1dz. So

T R 2 iX . R 2.
I3 = —€Z4/ e T dy = —614/ e T tdx
0 0
= —624/ (cos2® — isinz?)dz.
0
As R — oo, I3 converges to
I oo
—614/ (cos2? — isinz?)dz.

0

(e) Let R — oo in the sum I + Iy + I3 = 0 and get

@ — €' [¥(cosa? —isina?)dz = 0;
't [*(cosa® —isina )d:v—%,
Jo~ (cosa? — isina?)dz = %e i,

fom(00Sx2 — jisin 22 )dx = £ <72 72)

~.

The desired result follows upon taking real and imaginary parts.

9. We will integrate the function f(z) = m around the contour in Figure 5.48.

Here v/z — 2 is defined with the branch of the logarithm with a branch cut on the positive
real axis. It is mulitple valued on the semi-axis > 2. Aproaching the real axis from above
and to right of 2, we have lim,_,, vz — 2 = v/x — 2. Aproaching the real axis from below

and to right of 2, we have lim,_,, vz — 2 = —v/x — 2. Write

I=0L+1L+ I35+ 14,
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where I is the integral over the small circular part; I is the integral over the interval above
the z-axis to the right of 2; I3 is the integral over the larger circular path; I is the integral
over the interval (neg. orientation) below the z-axis to the right of 2. We have I — 0 as
r — 0 and I3 — 0 as R — oo. (See Example 5.5.3 for similar details.) We have Iy — I as
R — oo and Iy — I as R — oo, where [ is the desired integral. So

2I = 2mi[Res(0) + Res(1)];

1 1
Res(0) = i S
=0 = e vis s V=
1 1
o eslogo(=2)  ,3(n2+im)
_ L _ i
NN
Res (1) L
es = — = —1
=1 !
; 1
R N R

13. (a) In Figure 5.51, let

~1 denote the small circular path around 0 (negative direction);

v the line segment from r to 1 — r, above the z-axis (positive direction);

3 the small semi-circular path around 1 above the z-axis (negative direction);
4 the line segment from 1+ r to R — 1, above the x-axis (positive direction);
5 the large circular path around 0 (positive direction);

v6 the line segment from R to 1 + r, below the z-axis (negative direction);

7 the small semi-circular path around 1 below the z-axis (negative direction);
~s the line segment from 1 — r to r, below the z-axis (negative direction).

We integrate the function
Zp

f(z):m

on the contour 7, where 2P = eP!°%0* (branch cut along positive z-axis). By Cauchy’s
theorem,

8
/f(z)dz:O = ZIj:O'
g j=1

Review the integrals I, Iy, I7, and Ig from Example 5.5.3, then you can show in a similar
way that Iy, I3, and I7 tend to 0 as » — 0. Also I5 — 0 as R — oo. We will give some
details. For I,

L] =

= 2ur =27 —0asr—0.
r
For I and I5, we have

IQ+I5—>/ ————dx, asr — 0 and R — oo.
0o z(l-2)
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For I3 and Ig, we have

eplogox ) 00 P
I3+ Ig — — / :_erm/ (7dx, asr — 0 and R — oo.
0

z(1—x) z(1—x)

To evaluate 14 and I, we use a trick that will allow us to apply Lemma 5.4.3. Note that on
Y4, logy 2 = Log 2z, and on v7, logy z = logw z. This allows us to replace log, by a branch of
the log which is analytic in a ne1ghborhood of the contour of integration and ths allows us
to apply Lemma 5.4.3. According to this lemma, as r — 0,

Log z
epLog ] ]
I = / - s imePlos(D) — i
Y4

z2(1 —2)
and 1
plogn z
(& . ! x (1 . ]
I = / R gz (L) _ ime P,
v 2(1—2)
Soasr— 0,

epLogZ .
L+1I; = / ——— —in(1 + ™).
V4

z2(1—=z)

Adding the integrals together and then taking limits, we get

(1 — ™) +im(1 + e*™P) =0

. . 1+627rp7,
I — _Zﬂ-l 62771”
- . e—Trpi+€7Tpi -
I = —ZWW = 7TCOtp7T.

(b) Use z = €', do the substitution, then replace ¢ by z, and get, from (a),

0 pT
P.V./ . —dx = mcot pm (0<p<1).
—e

—0o0

(c) Change variables = 2u, dz = 2 du, then

* e
mcotpmr = 2P.V./ —du
1—e2u
— o0

oo 2pu,—u oo (2p—1)u
= 2P.V./ eedu:—P.V./ ‘ du

e U — et sinh u
1 (o] wu
—7rcot<7rw+ > = P.V./ C du (w=2p—1).
2 oo Sinhu
But
< w + 1) W
—cot| = tan —,
2
SO

oo
P.V./ .e du = tan H.
—oo Sinhu 2
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Replace u by x and get

o0 wx
P.V./ € dz = wtan %

oo Sinh

(d) If |a|] < b, take t = bz and w = a, then

o0 axr
P.V./ € dr=Ttan %
—0o0

sinhbr 0T v Moy

(e) Replace a by —a in (d) and get

x©  eaz T Ta
PV /Oo Sin bx dﬂ? = —g tan %

Subtract from (d) and divide by 2:

> sinh azx T Ta
/OO nhba dx = gtan?b (b > |al).

Note that the integral is convergent so there is no need to use the principal value.

17. We use a contour like the one in Figure 5.34. Let
v denote the small circular path around 0 (negative direction);
v the line segment from r to R, above the z-axis (positive direction);
3 the large circular path around 0 (positive direction);
4 the line segment from R to r, below the z-axis (negative direction). We integrate the
function
vz

&)= ot

on the contour v, where /z = e 1080 2 (branch cut along positive z-axis). By the residue
theorem,

4
/f(z)dz:Zm'Z Res(f, z;) = ZI]- :2772'2 Res (f, zj),
v J Jj=1 J

where the sum is over all the residues of f in the region inside «. The poles of f in this
region are at the roots of 22 + 2z +1 =0 or

L _TlEV=3 -1, V3 -1 V3

y o AT i RT i

We have

] = (T2 + ()2 =1, zn=¢7
logy(z1) = In|z1| +iargo(z1) = 0+ i2F = i%F

1
_VJZL ez logo(=1)
Res (’Zl) — 22141 T 2z1+1

s
Res (z1) = — &>
(21) 2 F 41
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Similarly,

_ _ P
2ol = (52 + ()2 =1, 2 =ef

logg(z2) = In|z| +iargo(z2) = 0+ 4 = i4F

N eglogo(zz)
Res (22) = 5577 = S5, 11
27

Res (z2) = e

2e 17?-1—1'
Let us now compute the integrals. For Iy,
z
n = |[ Y dz’

w2tz +1

r
= 27TTL—>OELST‘—>O.
1—r2—7r

For I5, we have
Ig—>/ —————drx =1, asT — 0and R — oo.
T + z+1
A simple estimate shows that Is — 0 as R — oo. For Iy, \/z = ez (0 lzl+2mi) — Vze™. So

logom oo \/:E
Iy — — / dr = —e™ —————dx =1, asr — 0 and R — oo.
22 +ar+1 0o T24+x+1

Adding the integrals together and then taking limits, we get

el et
21 = 2mi = + —
2¢'3 +1  2e'3 41

PRk s Pl j2m
[ 2e'3 +e'3 +2e'3 +¢e'3
= ™ - s

T
46" F + 2615 + 215 +1 V3

Use
fus 1 1 21 2
izt i _ - °
65_2+2\/§, e’ 3 +2\/§,
.37 Am 1 (]
(e p— 3= —— — — V3
e s e D) s
;5m 1 1 ;87
==~ /3 =1
92 2V €

21. (a) Letting (¢
1
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Since Rea > 1, we must have | Arga| < 3, and since Argy/a = 3 Arga, |Arg/a| < Z.

(b) Let ¢ = 2(Z — Arg\/a). Then e > 0 by (a) and T —e > Arg,/a. Thus, the line
at angle § = Arg./a must eventually pass under the line at angle § = 7 — ¢ in the right
half-plane, and symmetrically, the other end of the line must eventually pass above the line

at angle 0 = —%’r — ¢ in the left half-plane.
(c) We have that
‘6722 _ eRe (—R2€2i0) — efR2 cos(29).

Since we are letting R — oo, we may assume R is sufficiently large as required in (b). Then,
on 72, we have that z = Re®. By Figure 5.53, 0 < 0, and by (b), § < T—¢< Then
0 <260 < 7, and cos(26) > 0. Since £(72) < 7R, by the ML-inequality,

us
1

I < TRe ™) 0 as R oc.

Similarly, |I4] — 0 as R — oc.
(d) Since the integrand is entire,

/e—22 dz2=0=1 + Iy + I3 + I4.
.

Letting R — oo and using (a) gives us

\/a/ e~ =B gt +/ e dz = 0.

[e.e]

But [ e dy = — [z e~ dx = — /7. Solving for the desired integral gives us

/ —alt-B)* gy _ \/?
oo a
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Solutions to Exercises 5.6

1. Note that f(z) = ﬁ has two simples poles at £3i. Since f(z) does not have poles on
the integers, we may apply Proposition 1 and get
= 1
Z w9 = 7 [Res (f(z)cotmz, 3i) + Res(f(z)cotmz, —3i)]
k=—o0
. cotmz . cotmz
= —x | lim - im -
|:Z~>3i z2+31  z2—=-3iz— 32]

61
[i cot(3mi)] = gcoth(?ﬂr),

= -7 [1 cot(3mi) — 61Z,cot(—37ri)]

m
3
because cot(iz) = —icoth(z). You can prove the last identity by using (25) and (26) of
Section 1.6.

5. Reason as in Exercise 1 with f(z) = ﬁ, which has two simples poles at :l:%. Since
f(2) does not have poles on the integrers, we may apply Proposition 1 and get

[e.9]

Z ﬁ = - [Res (f(z) cot z, ;) + Res (f(z) cot 7z, —;)]

k=—o00

I cot Tz 4o cotmz
= —7m|llm —— im ——
2—1 4(25 + %) 2——1 4(2 — %)

2

- L (5) e (-5)] =0

because cot(%) =0.

9. Reason as in Exercise 1 with f(z) = m, which has two simples poles where
22 —-32+3=0or

3+v-3 3+iv3 3—iv3
=5 3 AT z2 = .

i 2 2 2

Since f(z) does not have poles on the integrers, we may apply Proposition 1 and get

[e.e]

Z (k—2)(l€1—1)+1 = —7 [Res (f(z)cotmz, 2z1) + Res (f(z)cotmz, 22)]

k=—o0
Let’s compute:

t t
Res (1)  lim cotrz _ cotmz
2=z (2 —22) (21— 22)

Z1 — 29 = i\/g,
cot(mz1) = cot <7r3 +2Z\/§> = —tan <m\é§> — —itanh (7‘(’?) )
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(Prove and use the identities cot(z + %) = —tan(z) and tan(iz) = itanhz.) So

Res () — —1 tar:l;é{w) _ _tanh\gg‘égﬂ) |

A similar computation shows that Res(z2) = Res(z1), hence

o0

1 21 V3
2 (eI ES I (2”)

k=—o00

13. In the proof of Proposition 5.6.2, we apply (5.6.1) to all z € Z except for z = 0, since
f may no longer be analytic at z = 0. Thus, we must include z; = 0 in the right sum of
(5.6.5) rather than in the left sum, which now excludes k£ = 0, giving us (5.6.6).

17. (a) Apply the result of Execrise 13 with f(z) = % :

Zkzn——”R (cot( 2) )

k=—o00

k0

because f has only one pole of order 2n at 0. The sum on the left is even, so

ZkznZ“R <cot( )0>.

(b) Recall the Taylor series expansion of z cot z from Exercise 31, Section 4.4,

_ = 1 k22kB2k 2k
ZCOtZ_kZ_O(_ ) k! z
o0 2k 2k
2" B
(m2) cot(mz) = S (~1)F T KT 2k
2 (2k)!

i 2%B2k7r ! 2k—1
)l

cot 7TZ

k=0

So 00 k k
COt(Q?TZ) _ Z(_l)k%’z—iak—%l—l'

k=0

The residue at 0 is a_1, the coefficient of %, which is obtained from the series above when
2k —2n — 1= —1 or n = k. Hence

t 22nB n 2n—1
Res <CO (7rz)7 0) = (_1)71277r

z2n (2n)!

Using (a), and the fact that the summand is even, we get

Z _ . 22 —1 B2n7T2n
k2” (2n)!



146 Chapter 5 Residue Theory

Solutions to Exercises 5.7

1. The roots of the polynomial are easy to find using the quadratic formula:
224+2:42=0 = z=-1%i.

Thus no roots are in the first quadrant. This, of course, does not answer the exercise. We
must arrive at this answer using the method of Example 1, with the help of the argument
principle.

First, we must argue that f has no roots of the positive x — azis. This is clear, because
if z > 0 then 22 + 242 > 2 and so it cannot possibly be equal to 0. Second, we must argue
that there are no roots on the upper imaginary axis. f(iy) = —y?> +2y +2 =2 — y? + 2y.
Ify=0, f(0)=2+#0. If y > 0, then Im (f(y)) =2y # 0. In all cases, f(iy) #0if y > 0.

The number of zeros of the polynomial f(z) = 22 + 2z + 2 is equal to the number of
times the image of og wraps around the origin, where g is the circular path in the first
quadrant, in Fig. 4. This path consists of the interval [0, R], the circular arc og, and the
interval on the imaginary axis from ¢R to 0. To find the image on g, we consider the image
of each component separately.

Since f(x) is real for real x, we conclude that the image of the interval [0, R] is also an
interval, and it is easy to see that this interval is [2, R? + 2R + 2]. So its initial point is
wo = 2 and its terminal point is w; = R 4+ 2R + 2.

The image of the arc op starts at the point w1 = R? + 2R + 2 and ends at f(iR) =
—R?+2iR+2 = ws, which is the image of the terminal point of og. We have Im (ws) = 2R
and Re (ws) = 2—R? < 0if R is very large. Hence the point f(ws) is in the second quadrant.
Also, for very large R, and |z| = R, the mapping z — f(z) is approximately like z — 22
So f(z) takes or and maps it “approximately” to the semi-circle (the map w = z? doubles
the angles), with initial point w; and terminal point ws.

We now come to the third part of the image of vg. We know that it starts at wo and
end at wg. As this image path go from ws to wg, does it wrap around zero or not? To
answer this question, we consider f(iy) = 2 — R? + 2iy. Since Im (f(iy) > 0 if y > 0, we
conclude that the image point of 7y remains in the upper half-plane as it moves from ws to
wyp. Consequently, the image curve does not wrap around 0; and hence the polynomial has
no roots in the first quadrant-as expected.

5. We follow the steps in the solution of Exercise 1, but here the roots of 244822 +162+20 =
0 are not so easy to find, so we will not give them.

Argue that f has no roots of the positive x — axis. This is clear, because if x > 0
then 2% + 822 + 162 4+ 20 > 20 and so it cannot possibly be equal to 0. Second, we must
argue that there are no roots on the upper imaginary axis. f(iy) = y* — 8y? + 16iy + 20 =
y* —8y? +20 — 8iy. If y =0, f(0) =20 # 0. If y > 0, then Im (f(y)) = =8y # 0. In all
cases, f(iy) #0ify > 0.

The number of zeros of the polynomial f(z) = 2%+ 822+ 162+ 20 is equal to the number
of times the image of op wraps around the origin, where g is the circular path in the first
quadrant, in Fig. 4. This path consists of the interval [0, R], the circular arc og, and the
interval on the imaginary axis from ¢R to 0. To find the image on g, we consider the image
of each component separately.



Section 5.7 The Counting Theorem and Rouché Theorem 147

Since f(x) is real for real x, we conclude that the image of the interval [0, R] is also an
interval, and it is easy to see that this interval is [20, R* 4+ 8R? + 16R + 20]. So its initial
point is wg = 2 and its terminal point is w; = R* + 8R% + 16R + 20.

The image of the arc op starts at the point w; = R* + 8R? + 16 R 4 20 on the real axis
and ends at f(iR) = R* —8R?+4 20+ 16iR = wy, which is the image of the terminal point of
or. We have Im (ws)) = 16R > 0 and Re (wz) = R*—8R?+20 > 0if R is very large. Hence
the point f(ws9) is in the first quadrant. Also, for very large R, and |z| = R, the mapping
2+ f(2) is approximately like z ++ 22. So f(z) takes or and maps it ”approximately” to
a circle (the map w = z* multiplies angles by 4), with initial point w; and terminal point
way. So far, the image of [0, R] and or wraps one around the origin.

We now come to the third part of the image of vr. We know that it starts at wo and
end at wg. As this image path go from ws to wy, does it close the loop around 0 or does
it unwrap it? To answer this question, we consider f(iy) = R* — 8R? + 20 + 164y. Since
Im (f(iy) = 16y > 0 if y > 0, we conclude that the image point of iy remains in the upper
half-plane as it moves from ws to wg. Consequently, the image curve wraps around 0; and
hence the polynomial has one root in the first quadrant.

9. Apply Rouché’s theorem with f(z) = 11, g(z) = 72% + 322. On |z| =1, |f(2)| = 11 and
lg(z)] <7+ 3 =10. Since |f| > |g| on |z| = 1, we conclude that N(f) = N(f + g) inside
C1(0). Since N(f) = 0 we conclude that the polynomial 7z + 322 + 11 has no roots in the
unit disk.

13. Apply Rouché’s theorem with f(z) = —3z, g(z) =e*. On |z| =1, |f(2)] = 3 and

|g(z)\ _ ‘ecost—&-isint' _ ecost <e.
Since |f| > |g| on |z| = 1, we conclude that N(f) = N(f + ¢) inside C1(0). Since N(f) =1
we conclude that the function e® — 3z has one root in the unit disk.

17. Apply Rouché’s theorem with f(z) =5, g(2) = 2° +32. On |2| = 1, |f(2)| = 5 and
lg(2)| < 4. Since |f| > |g| on |z| = 1, we conclude that N(f) = N(f+g) inside C;(0). Since
N(f) = 0 we conclude that the function z° 4+ 3z + 5 has no roots in the unit disk. Hence

m is analytic in the unit disk and by Cauchy’s theorem

/ dz
5 =0
C1(O)z +3Z—|—5

21. (a) Let g(z) = z and f(z2) = 2" — 1. Then

1 annfl dz = ! 9(2) I dz = Zm(zj)g(zj) - sz’
j=1

277”' Cr(0) zn—1 N Tm CR(O) f(Z) =

where z; are the roots of f(z) and m(z;) are their orders. But m(z;) = 1 since f’(z;) # 0.
The z; are precisely the n roots of unity. Let S = Z?Zl zj. Let ¢ = %, d¢ = —z%dz, as z runs
through Cr(0) in the positive direction, ¢ runs through C,z(0) in the negative direction.
Let Cy/p(0)* denote the circle with radius 1/R with negative orientation.
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Then

1 nz"1 1 n d¢ n d¢

b V4 dZ _- —_- T o -
21 Cr(0) z"—1 211 C%(O)* Cn(cin — 1) —C2 21 C%(O) (1 — C")CQ

(b) Evaluate the second integral in part (a) using Cauchy’s generalized integral formula and
conclude that

n d¢ n (1— ¢t d 1
o - d¢ = n—
2mi €y (0) (1—=¢m¢  2mi /o © ¢—0 ¢ "acT—¢n

_nQC'n—l

A v

¢=0

1
R
Using (a), we find S = 0.

A different way to evaluate S is as follows: From (a),

n 2"

s = d

271 Cr(0) zn—1 “
n 2" =1 n 1

= - dz + - d
271 Jooy 7 =17 2mi Jop =1

1

- 1-dz + - —d:
211 Jop(0) 21t Jopo) 2" — 1

= 0+0=0.

The first integral is 0 by Cauchy’s theorem. The second integral is zero because Cgr(0)
contains all the roots of p(z) = 2" — 1 (see Exercise 38, Sec. 3.4).

25. (i) Given z in the simple closed path C, consider the circle T' (z) centered at the point
f(z) with radius |f(z)|. Since |g(z)| = |g(2)| < |f(2)| for z € C, it follows that the distance
l9(2)| from f(2) + g(z) to f(z) is at most |f(2)| and thus f(2) + g(z) lies inside T(;). The
part of the image f[C] that lies in the interior of the circle Ty, is the image of a subarc
7, as described in the discussion after Proposition 5.7.4. Since the interior of the circle
Ty () is a simply connected region that does not contain the origin, there is a branch of the
logarithm in this region, which defines a branch of the argument. Thus there is an argument
function defined on T}(;). Note now that in view of the picture below
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the difference between the argument of f(z) and the argument of f(z) + g(z) is 6 which is
at most 5 in absolute value. This proves that

arg f(2) — 5 < arg (£(2) +9(2)) < arg f(2) + 7.

(ii) As in the discussion after Proposition 5.7.4, we pick points z1, ..., z,—1 (and we set z,, =
zp) such that the image of each subarc of C between f(z;) and f(zj41) (j =0,1,...,n—1)
is contained in a simply connected region and choose argument functions arg ;i on this
region such that

arg 1 f(z1) = argaf(z1), argaf(ze) = argsf(z2), ... arg,f(z,) = arg,f(2o0),

Then by part (i) we have

arg1f(z0) — g < argl(f(zo) —i—g(zo)) < argqf(z0) + g
and also . -
arg n f(zn) — b < argn(f(zn) + g(zn)) < argnf(zn) + 9

which is the same as
T T
arg , f(z0) — 5 < argn(f(zo) + g(zo)) < arg,f(20) + 5
Adding the preceding inequality to

—arg1f(20) + 5 > —arg1 (F(z0) + g(z0)) > —arg1f(z0) — -

we obtain that

arg o f(20) — arg 1 f(20)—m < argn(f(20)+9(20)) — arg 1(f(20)+9(20)) < argnf(z0)— arg1f(z0)+m
or equivalently
}Acarg (f+9)— Acargf’ <.

(Here A arg f = arg, f(20) — arg1f(20).) Since the function A¢ is integer-multiple of 27,
if follows that
Ac arg (f—i—g) —Acarg f=0

hence the number of zeros of f inside C' is the same as that of f + ¢ inside C.

29. We are going to find the number zero of the the polynomial p(z) = 254+ 2% +622 +32+1

in the unit disk by using Hurwitz’s theorom. To do so, it suffices to show the next parts.

(a) Consider the polynomial pz) = p(z) — L we will show that p,(2) — p(z) converges

uniformly on the closed unit disk. First of all, we say that
fo— f umiformly < M, = Max|f,— f|—>0 as n—0
Now let p,(z) = p(2) — L. Then

My, = Maz|pn(2) — p(2)| =

S|
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Since limy, o % = 0, we have that p, — p converges uniformly.
(b) Let pp(2) = 2%+ 2* + 622 +32+1— . Applying the Rouché’s Theorem on |z| = 1 with
f(2) =622 g(2) =25+ 2" +324+1— 1, we get

1 1
l9(2)] = [2° + 2" + 32 + 1 — = |2° + [2]* + 3l + (1 - Sl<6= 6% = |£(2)|

Since |g(z)| < |f(2)] on |z| = 1, we have that N(f) = N(f + g) = N(pn). But since
f(z) = 622 has 2 zeros f + g = p, has 2 zeros.

(c) In part (a), we showed that p, — p converges uniformly. Also, it is clear that p(z) =
2% 4+ 2% + 622 + 32 + 1 is not identically zero. Then, by Hurwitz’s Theorem p,, and p has
the same number of zeros. But, by part (b), we showed that p, has two zeros. Therefore,
p has two zeros.

33. For this question we are going to apply Lagrange Inversion formula. Consider the
equation the is given as z = a + we?, then we have

w=f(z)=(z—a)e .
Let zp = a , and evaluating this, we get
wo = f(z0=a) = (a—a)e”*=0.
Also, it is clear that f(z) = (z — a)e™* is analytic at 29 = a and f’(z9) # 0. Indeed,
flle)=e7"=(z—a)e”
= f'(a) = e * #£0.

Now we apply Lagrange Inversion formula. But first we define ¢(z) that is given in with

(5.7.13), we get
Z — 20

f(z) —wo

Considering zp = a and wg = 0 in ¢(z), we get

¢(2) =

zZ—a

O) = = ¢

(z —a)e =
= [p(2)]" = ™.
Now differentiate it n — 1 times , we get

a
dz
d2
dz2

[6(2)]" = ne™

B(=)]" = nZe"
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Evaluating the last equation for zg = a, we get

dn—l "
W[Gﬁ('z)]

— nn—lean.

zo=a

Now if we plug all these values, and zg = a and wg = 0 into the formula that is given by
(5.7.14), we obtain

o0

1 dnl
2= gw —zO+Z (2)]"

g —| (w—0)" or;

zo=a
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Solutions to Exercises 6.1

1. (a) The function u(x, y) = zy is harmonic on 2 = C, because
Uze = 0, Uyy = 0,and so Au = 0.
(b) To find the conjugate gradient of u, apply Lemma 6.1.7: for z = x + iy,
O(2) = up — luy =y —ix = iz.

Clearly, ¢ is analytic in 2 as asserted by Lemma 6.1.7

5. We will directly verify Laplace’s equation. For u = 22 — y? + 22 — y we evaluate partial
derivatives

Upry = (Ug)y = (2x4+2), =2
and
Uyy = (Uuy)y = (-2y—1), =-2.

Since uzg + Uyy = 2 — 2 = 0 Laplace’s equation is satisfied and u is a harmonic function.

9. Here we verify Laplace’s equation again. For u = ﬁ we evaluate partial derivatives

we = = (i) - G

and
(1)) ( 1 > 2
U = u = — = .
v v (z+y)?), (z+y)3
Since Ugy + Uyy = ﬁ # 0, Laplace’s equation is not satisfied and u is not a harmonic
function.

13. To use Theorem 6.1.2, we can first notice that the following identity is true
(x+iy)? =2® + 2izy + (iy)> = 2° — y* +i2zy.

Using the polar form for z = = + iy we have
e” = YiHi2my _ oty (cos(2zy) + i sin(2zy)).

Since u = Re (e*°) we conclude from Theorem 6.1.2 that u is harmonic.

17. To find a harmonic conjugate v for u = x + 2y, we use the Cauchy-Riemann equations
as follows. We want u 4+ i¢v to be analytic. Hence v must satisfy the Cauchy-Riemann
equations

ou Ov ou ov
1 g _ a_ %
(1) ox Oy’ and oy Ox
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Since % =1, the first equation implies that

_Ov

1= .
Oy

To get v we will integrate both sides of this equation with respect to y. Doing so we fix a
value of x. Therefore the result of integration with respect to y is a function of y plus some
constant which eventually may depend on x. Thus integrating with respect to y yields

v(z, y) =y +c(z),

where ¢(z) is a function of z alone. Plugging this into the second equation in (1), we get

2= (04 e@),

or equivalently

d
—c(x) = —2.
76
If we integrate this equation with respect to z we get that ¢(x) = —2x + C where C' is

any real constant. Substituting the expression for ¢(z) into the expression (2) for v we get
v(z,y) = y+c(x) =y —2x + C. Now we check the answer by using Cauchy-Riemann
equations. We have u, =1, uy = 2, v, = —2, and v, = 1. Since u, = v, and uy = —v; we
conclude that v is a harmonic conjugate of u.

21. By the Cauchy-Riemann equations, we have representations for the derivative as follows:
I'(2) = ug + ivy = vy — iuy,.
We know that ¢ = u, — iu, and that —u, = v, which in turn implies that
I'(2) = ug —iuy = ¢.

25. This function is harmonic because Au = gy + uyy = €” cos(y) — €” cos(y) = 0. By the
Maximum modulus principle Corollaries, © must attain its maximum and minimum values
on 0f). Evaluating we will find that u will attain its maximum and minimum on the vertices
of the square. The maximum will happen at 7 and the minimums will happen at iw and
—im.

29. From the fact that u is harmonic, we have
Ugg + Uyy = 0.
Then, becasue u? is harmonic we can calculate that
(%) e = 2(Uy + Uty

and
(U2)yy = 2(uuyy + uyuy).
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Now plugging that into Laplace’s equation we get

Ul + Ugply + Ullyy + Uyty = 0

ui—i—u?/:O.

Since u is real valued, we have that u, = u, = 0 which implies that u is constant.

33. Taking partial derivatives we find that
O (u(z, —y)) = (Ozu)(z, —y)

Orz(u(z, —y)) = —(Ozau)(z, —y)
Oy(u(z, —y)) = (Oyu)(z, —y)
Oyy(u(z, —y)) = (Oyyu)(z, —y)

using the fact that we will get a double negative in the double partial with respect to y.
Thus we have that Au = (Opau)(z, —y) + (Oyyu)(z, —y) = 0.

37. We show that if u and e" are harmonic on a region €2, then w is identically constant.
Let ¢ = e*. Then ¢, = e¢“u, and ¢y = €“(uz)? + € uy,. Similarly, ¢y = €"u, and
byy = €“(uy)? + €“uyy. Using Ag =0 and Au = 0, we get
e [(uzr)? + (uy)?] = 0 = (uz)? + (uy)* = 0= u, = 0 and u, = 0.

Hence u is constant.
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Solutions to Exercises 6.2
1. (a) We have
Uy = Ay Ugy = 0,Uy = 0, Uyy =0

which implies that Au = 0.
(b) We have the data that

Plugging this into our equation for u this gives us

3a+b=10
5a + b = 40.

Solving this system of equations we get u(x,y) = 152 — 35.
(c) For the isotherms, we solve u(x,y) = T which implies

T+ 35

15

To determine heat flow, we want to solve
z 1
v :/ —Uydr + uypdy :/ 153ydy.
20 0

Thus we get
v(z,y) =15y =c¢

for a constant ¢ which gives
c

Y= 1m0

5.(a) Doing the differentiation we get first
x
2rry =3 = 1y = —
r
Differentiating a second time we get

r—xry T—
Tox = =
r2 2

155
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giving us the desired result.
(b) Taking the first derivative we get

0, = arctan(—)

Differentiating a second time we get

giving us the desired result.
(c) Follow the same steps as above.
(d) Substituting what we found in the previous steps we will find that

2y  2zy
Oxx+9yy:77—?:0
and
yzx Yy
917’$+9yry = _7‘72; +7T2; =0

giving us the desired result.
(e) Using the chain rule in two dimensions and the fact that our function w is of the form
u(r,0) =r(z,y)0(zx,y), we get that

ou_onor ouon
dr  Ordx 000z

Differentiating again we get

0%u 0 Ouor n Ou 0°r n 0 Ou 00 N Ou 6%6

0x2  OxOrOx Ordx?  0x000xr 00 0x?
Notice now that we have another chain rule for 8%% and 6%%. Doing so gives us the
desired result. Change x yo y to get similar results for the double partial with respect to y.
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(f) Using the identity from (d), and the results from (a),(b), and (c) we get that

Dirichlet Problems

Pud?u  OPu0r\2  O*u 0or\2 Oud’r Oud’r 0%u, 00, 0%u/ 00
T - () S e i e (2
0x2 0y?  0Or?\ozx or2 \dy Or 0z2  Or 0y? 002 0x 962 \ 9y
0%ur/0r\2 ary\2 ourd’r O?r 0%ur/00\2 00
=5 (5) * (@) |+ 5 522 a?} + 55 (5) *(at) }
Pur 2 ou x? Purs—y\2 T2
-5 (5) + () Fa[**ﬁ}*w[(ﬁ) +() |
Ourl ourl o 5 Q%url, o o
= g [+ ] + 5 [ ) + G [ +7)
_Pu 1ou 15
T o2 T ror 2002
9.We want to solve the system of equations
caln(Ry) +co =T
Clln(RQ) +cy =Ts.
Subtracting the first equation from the second gives us
Cl(ln(Rg) — ln(Rl)) = TQ — T1

Ty

in(E ) Substituting this value into the first equation we find
n(E2
Ry

which implies ¢; =

T —T
2 ! ln(Rl) +co =T}
ln(gl)
To—T,

:Tl_

which implies that c; In(R;y). Thus we have that

(&)

u(r) = c1ln(r) + c2

T, —T T, —T
= 2R11n(r)—|—T1 2R11(R1)
ln(R—f) ln(R—f)
T, —T
=T+ 2 —L(In(r) — In(Ry))
ln<R2

This gives us that the polar form of the Laplacian is
1
Au=Up + —u, =0
r

because ugg = 0.
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Solutions to Exercises 6.3
1. Using Proposition 6.3.1 the solution will be

u(re®®) =1 — rcos(6) + r* sin(26)
=1 —rcos(h) + 2r? sin() cos(h)
=1—-—z+ 22y

5. We must solve 1 — x + 2zy = T which gives us the result of y = Tgif;l
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Exercises 6.4 For exercises 1-4, we will use the fact that the Fourier series is written
as
f(0) = ag + a1 cos(0) + by sin(0) + az cos(20) + by sin(260) + a3 cos(30) + b sin(360) + - - -
One can compute these coefficients as integrals to confirm the result.
1. Here we have that
f(0) =1 —cos(6) + sin(260)
=1+ (—1)cos(f) + (0)sin(d) + (0) cos(20) + (1) sin(26) + - - -
This gives us that ag = 1, a; = —1, and by = 1, where the rest of the coeflicients are 0.

5. Using the integral definition of the Fourier coefficients we will find that

ag =T
ap, =0
-2
by, = —
n

where we use integration by parts and the facts that

cos(nf) = <M>/ and sin(nf) = (— M>/‘

n n

9. (a)

(b) Deriving the Fourier coefficients we get

1 [*1
CLO—% . i(W—G)dH

1 |: 1 2:| 2

=— |70 — =0
4 2 ]

=0

2m
anp = — (7 cos(n@) — 6 cos(nh))do
27 0

27
-4 [;w —0)sin(nf) - cos<n9>>] i
=0
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2m
by = 2i (7 — 0) sin(nf)do
T Jo
! [ ! (sin(nf) + n(m — 0) cos(nd)) v
= — —(si T —
27 n? 0

S|

This implies that £(§) = 35° Snnf),

= 1 "

13. Using the integral definition of the Fourier coefficients we will find that

2

ag = —

T
4 nm
o — cos(Q)
m(n?—1)

b, =0

which gives the desired result.
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Solutions to Exercises 7.1

1. An analytic function f(z) is conformal where f'(z) # 0. If f(z) = Zifl, then
fl(2) =e*(=2* +22-1).

We have
fl(2)=0=2>-224+41=0=2=1.

Thus f is conformal at all z # 1.

5. The function f(z) = z + 1 is analytic at all z # 0, and then f'(z) =1— %. So
1
f(2)=0=21-5=0=2"=1= 2=+l
z
Thus f(z) is conformal at all z # 0, +1.

9. The function sinz is entire. Its derivative cosz is nonzero except for z = 3 + km. Hence
f(z) = sinz is conformal at all z # 7 4 km. In particular, f(z) is conformal at z =0, 7 +ia, im. At
these points, f(z) rotates by an angle arg cos z and scales by a factor of | cos z|. For z = 0, we have
cos0 = 1. Thus f rotates by an angle argl = 0 and scales by a factor of 1. Thus at z = 0, sinz
acts like the identity map z — z.

For z = m + ia, we have cos(m +1ia) = —cos(ia) = —cosha. Thus f rotates by an angle
arg (— cosha) = 7 and scales by a factor of cosha.

For z = im, we have cosim = coshm. Thus f rotates by an angle arg (coshm) = 0 and scales by
a factor of cosh .

13. The lines = a and y = b are clearly orthogonal and they intersect at the point a + ¢b. Their
images by a mapping f(z) are two curves that intersect at the point f(a + ib). The image curves
will be orthogonal at the point f(a + ib) if f(z) is conformal at a + ib. Hence it is enough to check
that f(z) is analytic and f/'(z) # 0 at z = a + b, in order to conclude that the image curves are
orthogonal at f(a + ib). In the case of f(z) = e*, the image curves will always be orthogonal,
because f'(z) # 0 for all 2. Indeed, the image of the line x = a (or z = a + iy, —00 < y < 00)
is the circle w = ™ = e%", with center at 0 and radius e®. The image of the line y = b (or
z =1 +ib,—00 < x < 00) is the ray at angle b, w = e®e?. The ray and the circle intersect at right

angle at the point e+,
1 1/1 1 1 1
z 2<z+i) 2<Z+z) ()

(b) Fix R>1and let Sgp = {z:|z| = R, 0 < Argz}. Write the image of a point z = Re?® on Sy
as w = u +v. Then

17. (a) We have

. 1 . 1
w = J(Re?) = 3 (Rew + Rew)

1
(R(cos@ +isinf) + —I—E(COSG — gsin 9))
1 1 1 .
(R+ R) cos 6 —&-25 (R— R) sin 6.

1 1 1 1 .
u:2<R+R)c059 and v=2<R—R)SIH97
v

u .
=cosf) and ——— =sinf.

T®+H) Y

N = N

So

N|—
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As 0 varies from 0 to 7, w traces the upper part of the ellipse

u? v?

5 +
L@+ LE-

5 =cos?0 +sin? 6 = 1.

|-
~—
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Solutions to Exercises 7.2

1. Consider the linear fractional transformation (LFT)

11—z
(i)(z):11+z.

(a) We have
. . 11—

(b(l) - 07 (;5(0) =1 ¢(l) - 7’1 ]
(b) Let Ly denote the line through z; = 1 and 23 = 0, and Lo the line through 2o = 0 and z3 = 1.
We know that the image of a line by a LFT is either a line or a circle. So to determine whether
¢[L;] is a line or a circle, it suffices to check whether the images of three points on L; are colinear.
Another way to determine the image of a line by a LFT is to check whether the image is bounded
or unbounded. If it is unbounded, then it is necessarily a line. For example, the point z = —1 is on
L;. Since ¢(—1) = oo, we conclude that ¢[L4] is a line through the points ¢(z1) = 0 and ¢(z2) = i;
that is, ¢[L4] is the imaginary axis in the w-plane.

Since Lo is perpendicular to Ly and ¢ is conformal at z = 0, the point of intersection, ¢[L;] and
@[L2]) must be orthogonal at ¢[0], their point of intersection. Now ¢[Ls] goes through the points i
and 1. In order for ¢[Ls] to be perpendicular to the imaginary axis, ¢[L1], it must be a circle that
goes through the points 1 and i. To get a third point on this circle, take z = —i on L. Then

1+
1—1

=1.

= 1.

B(~i) =i

5. The inverse of the LF'T L . .
1—=z2 1 — 12 12 +1

w:(b(z):ZlJrz - 1+2 - z+1
is given by (2), wherea =b=14, c=d=1:
z—1
z_w(w>_—z+i'
Let us check the images of w;:
¢(7,U1 :w(o): = 213

9. Suppose ¢ # 0 and consider the equation

b d
¢(z) =z or Zzzi_d:z (275—7).

This equation is equivalent to
2+ (d—a)z—b=0,

which has at most two solutions. Thus in this case we have at most two distinct fixed points. If
¢ = 0, the LFT takes the form ¢(z) = az+ 3, where a # 0. This linear function is either the identity
(a = 1) or has one fixed point, which is obtained by solving z = az + 3, z = £ Inall cases, the

l1-a*
LFT has at most two fixed points.

13. The circle in the first figure is centered at 1 + ¢ and has radius 1. To map it to the circle shown
in the second figure, use the translation

filz)=2z—-1—1.
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To map the inside of the unit circle to its outside, and its outside to its inside, as shown in the
mapping from the second to the third figure, use an inversion

falwr) = —.

w1
Note that if |2| = 1, then |f2(z)| = |1/2| = 1, so fo maps the unit circle to the unit circle. Since it
takes boundary to boundary, and 0 to oo, it will act as we claimed. Finally, to map the unit disk to
the upper half-plane, use the LE'T

1 —we
f3(wz) = 21 T ws
(see Example 7.2.3(a)). The desired mapping is
d—wy 11— w%
w = f30f20f1(2)—7,1+w2—711+wi1

w; — 1 z—1—-1-—1 z2—2—1
7 =1 =1 .
wy + 1 z—1—1+1 z—1

17. (a) We have
7 — w1
i —+ w1 ’

f1(z) =sin(z),  fao(wr) =

(b) For the boundary, consider the point z = 0 and notice that f1(0) = 0 and f2(0) = 1. For the
interior, consider the point z = ¢ and notice that

L2 e
J1(0) = sin(i) = 12; - (e 2 1)i’

which is in the interior of the region in the w; plane as Im(f; (7)) > 0. Notice

e -1 2¢e —e2 +1
f2( A ): 2 )
2ei 2e+e4—1

which is on the interior of the unit disk.
(¢) The composition is given by

- _ iosin(z)
9(z) = fa(f1(2)) = (o)
21. Consider the LFT
B 11—z
f1(2) = i1,

We know from Example 1(a) that f; takes the unit disk onto the upper half-plane. What does it do
to the upper semi-disk? The lower boundary of the semi-disk, the interval [—1, 1] is perpendicular
to the upper semi-circle at the point 1. Since f; is conformal at z = 1, the images of the interval
[—1, 1] and semi circle intersect at right angle. Since they both go through the point —1, which is
mapped to oo, we conclude that these images are perpendicular lines. Using f;(0) = ¢ and f1(¢) = 1,
we conclude that [—1, 1] is mapped to the upper half of the imaginary axis, and the semi circle is
mapped to the right half of the real axis. Finally, testing the image of an interior point, say i/2,
we find that fl(%) = % + %i, which is a point in the first quadrant. With this we conclude that
the upper semi-disk is mapped to the first quadrant, since boundary is mapped to boundary and
interior points to interior points.
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To go from the first quadrant to a horizontal strip, we use a logarithmic mapping, because the
logarithm maps the punctured plane onto a fundamental strip of width 27 (see Sec. 1.7.) For
our purpose, it is easy to check that Logz will work: The semi-line (0, 00) is mapped to the line
(—00, 00) and the semi-line, z = iy, 0 < y < oo, is mapped to Log (iy) = Iny + %, which describes
the horizontal line shown in the figure. The composition mapping is

).

1—-=2
w Og(zlJrz

25. (a) Take —1 < o < 1 and let ¢o(2) = {=. Since « is real, we have ¢,(z) = . We
know from Proposition 4.6.2 that ¢, maps the unit disk onto itself and takes the unit circle onto
itself. As it is explained in Example 7.2.9, in order to center C, it is enough to choose « so that

da(a) = —do(b). Equivalently,

a—a b—a
l—aa  1—ab
(a—a)(1—ab) = —(b—a)(l— aa);
9 9 1+ab
(a+ba”—21+ab)a+a+b=0 = « 72a+ba+1:0.

Note that a + b # 0. Solving this quadratic equation in «, we obtain with roots

N _1+ab+ 1+ab 2_1 and o _1—|—ab_ 1+ab 2_1
P S a+b 27 a4 a+b '

We next proceed to show that a; > 1 and 0 < ag < 1. So we must choose as in constructing ¢g.
(b) We have |a| < 1,0<b<1land 0 <|a| <b< 1. Sincel—5b>0,if 0 <a < 1, then multiplying
1—bbya,weget1l—b>a(l—"0). If -1 <a<0,then1—>b>a(l—0), because the right side is
negative, while the left side is positive. In all cases, 1 + ab > a + b > 0. Consequently,

14+ ab\? 1.

<a+b> o
hence the discriminant of the quadratic equation in « in part (a) is positive and so we have two
distinct roots, a; and as.
(¢) From the inequality 1+ ab > a + b > 0, we conclude that 1;&17 > 1 and so oy > 1. The product
of a; - g = 1, as can be checked directly or by using a well-known property that the product of the
roots of the quadratic equation az? + bz + ¢ = 0 is <. Since 1 < ay, we conclude that 0 < ap < 1,
in order to have the equality a; - as = 1.

(d) Now arguing exactly as we did in Example 4, we conclude that ¢(z) = =% with

l—az

1+ ab 1+ ab 2

o= - -1
a+b a+b

will map Cy onto Cy, C; onto a circle centered at the origin with radius r = ¢(b), and the region
between Cy and C; onto the annular region bounded by ¢[C] and the unit circle.

29. From the figure, the first mapping is a translation:

3.
filz) =2z — b
The second mapping is a linear fractional transformation that maps the shaded half plane to the

disk of radius 2 and center at the origin. This mapping is the inversion

falwr) = —.

w1
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To see this, recall that the mapping is conformal except at 0. So it will map perpendicular lines and
circles to the same. The image of a circle centered at the origin, with radius R, is another circle
centered at the origin with radius 1/R. Thus the circle in the second figure is mapped onto the circle
with center at the origin and radius 2. The region inside the circle is mapped outside the region of
the image circle and vice versa. In particular, the shaded half-plane is mapped inside the circle with
radius 2. We must show that the image of the lower half-plane, which is also mapped inside the
circle of radius 2, is the the smaller disk shown in the 3rd figure. To this end, we check the image of
the horizontal boundary of this lower half-plane, which is the line through —%i. This line is mapped
to a circle (the image of the line is contained in a bounded region, so it has to be a circle and not a
line). Moreover, this circle makes an angle 0 with the real axis (the real axis is mapped to the real
axis by an inversion). Since f2(c0) =0 and fa(—2i) = 24, we conclude that the image of the lower
clear half-plane is the clear smaller disk as shown in the 3rd figure.

To construct the last mapping of the sequence, we will appeal to the result of Exercise 25. Let
us prepare the ground for the application of this result, by rotating the picture in the 3rd figure
by —%, and then scaling by % This amounts to multiplying by %e’% or _71 So we introduce the
mapping fs(ws) = %6_%11)2. This will map the outer circle in the 3rd figure to the unit circle and
the inner circle to a circle of radius % and center at %. In the notation of Exercise 25, we have a = 0
and b = % According to Exercise 25, the mapping that will center the inner circle is
w3 — &

¢a (w3) =

1— aws’
where « is the smaller of the roots of
1
o —27a+1=0=0a’—6a+1=0.
3
Thus a = 3 — 2v/2. Composing all the mappings together, we obtain:

w3 — « %ng—a

z) = = .
f(z) l-—aws 1-azws

—tws — 2o 1_7:—204
2 +iawy 240

—1 — 200w
2w + i
=i —2a(z—3i)  —2az —i(l - 3a)
2(z — 3i) + ia - 22+i4(-3+a)

—2(3 - 2v2)z —i(1 — 3(3 — 2v/2))
2z —i2v/2
—(3—2v2)z+i(4—3V2)
z— Z\@

33. (a) f w=wu+ v and z = x + iy, then

. 1 1 z—ay x )
Ut+w=w=—-= - = = — 5 T 11— 5
z xtwr—wy 2ty e +y
Thus, u(z,y) = =7,z and v(z,y) = 4=
(b) When z = 1, we obtain that
iy 1 w—iv U i —v
x4y = = 1 .
Y u+iwuz+v2 w2402 u2 + v?
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Thus,
z(u,v) = uQL—l—vQ and y(u,v) = 162_7:1)2
37. Let S be a line that passes through the origin. We know that S is of the form
A@?+y*)+ Bz +Cy+D =0

where B2 + C? — 4AD > 0 where A = 0 as S is a line. Moreover, S passes through the origin and
so D =0 by part (d) of Exercise 34. By Exercise 35, we get that f[S] is of the form

D(u? +v?) + Bu—Cv+A=0.

But, D =0 and A = 0 and so f[S] is also a line that passes through the origin. (b) The image of
f(20) of any nonzero point zy € S uniquely determines the line of f[S] because we know f[S] passes
through the origin, which will allow us to compute the slope of f[S] and thus the equation of f[S5].
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Solutions to Exercises 7.3

1. Transform the problem to the upper half-plane as in Example 7.3.1 using the linear fractional
transformation
d1—z
B) =i
The LFT ¢ takes the unit disk onto the upper-half plane, the upper semi-circle onto the positive
real axis, and the lower semi-circle onto the negative real axis. Thus the problem in the upper half
of the w-plane becomes:

AU =0, Ula)=70ifa>0, U(e)=>50if a <0.

The solution in the w-plane is U(w) = a Arg (w) + b, where a and b must be chosen in according to
the boundary conditions: a Arg (w)+b = 70, when Arg = 0 and a Arg (w)+b = 50, when Arg = .
Thus b =70 and a = —22. Hence U(w) = —22 Argw + 70 and so

)+70.

5. The mapping f1(z) = 2% takes the shaded region in Figure 7.56 onto the upper semi-disk of
radius 1. The upper semi-disk is mapped onto the first quadrant by

() = Ul = -2 g (i1

z
z

1 —w
fg(’u}l)—21+w1.
Thus the mapping
o) =i
w=¢(z) =1
1424

takes the shaded region in Figure 7.56 onto the first quadrant. It is also a conformal mapping, being
the composition of such mappings. We now determine the image of the boundary. The rays at angle
0 and 7 /4 are mapped onto the interval [—1, 1] by f1. The quarter of a circle is mapped to the upper
semi-circle by fi. The mapping fo takes the interval [—1, 1] onto the upper half of the imaginary
axis, and the semi-circle onto the right half of the real axis.

Thus the problem in the first quadrant of the w-plane becomes:

AU =0, U(a)=100if a >0, U(ia) =01if o > 0.

The solution in the w-plane is U(w) = a Arg (w) + b, where a and b must be chosen in according to
the boundary conditions: a Arg (w)+b = 100, when Arg = 0 and a Arg (w)+b = 0, when Arg = 7.
Thus b =100 and a = —222. Hence U(w) = —22 Argw + 100 and so

!
() = Ul =~ 2 g (115,

) -+ 100.

9. To solve the given problem, we can proceed as in Example 7.3.8 and make the necessary changes.
A much quicker way is based is to use the solution in Example 7.3.8 and superposition, as follows.
Let u1(z) denote the solution in Example 7.3.8. Let us(z) = 100. It is clear that wg is harmonic
for all z. Thus us — uy is harmonic in the shaded region of Fig. 18. On the real axis, we have
us(z) — uy(z) = 100 — 0 = 100. On the upper semi-circle, we have ug(z) — u1(z) = 100 — 100 = 0.
Thus 100 — u; is the solution, where w; is the solution in Example 7.3.8.

13. This problem is very similar to that in Example 7.3.3. The first step is to map the region to
an annular region bounded by concentric circles. This can be done by using the linear fractional

transformation
4 —1

o) = T
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Then L
4z —1 z — 1
o) =T, =1 =4
Using ¢, we map the outer circle to the unit circle and the inner circle to the circle of radius % and

center at 0. As in Example 7.3.3, the solution is

In|w|+1n4 In |w| 4+ In4 In |w|
U =100+ 100———~— =100 — 100 ———+— = —100 .
(w) + In(1/4) In4 In4
Thus the solution is
(5= 100 1421
B P e

17. (a) The solution of the Dirichlet Problem in Figure 7.6.7 is obtained by applying the Poisson
formula (7.3.5), with f(s) =sif -1 <s< 1, f(s)=—-1ifs<—1land f(s)=1if s> 1:

1 -1 >
. y s Y -1 - &
_ ¥ _ gsa Z — _ds+ 2 —5 5
u(® + iy) 77/_1(;E—8)2+y2 s+7r/_<>o($—5)2+y2 S+7T/1 (. —s)* +y?

= L4+

We compute each integral separately:

1 1
Yy Tr— S Yy €T
L = —= ———ds+ = —d
' W/l(x—8)2+y2 S+7r/1($—8)2+y2 ’
y1 2, 2 ‘1 xy/l ds
= 771 — - -
7T2n((:c ) +y)71+7r 1 (s=—x)2 492
1
Yy 2 2 2,2 z ds
= ——|n(z+1)"+y") —In((z—-1)"+y —l——/ —_—
y
(x+1)2+ /1 du —x
= L z Let u =
27r (x —1)2+ +7r e ur+1 (Let y )
(x+1)2+ x, _q4fs—x\|!
= —= Zt
27r (x—1)2+ +7r an Y s=—1
1 1 1-—
_ Y (9:+) +£[tan71 +x + tan-"! x }
27r (m—l) ™ Y
Similarly, we find
~1
Y -1
L = 4 —— 4
SN
_ 71+gt 1(1+x),
2 7 Y
e d
I = g/ ’
T (x—s)?+y

Thus
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(b) To solve the problem in Figure 7.68, we reduce to the problem in Figure 7.67 by using the
mapping sin z. This yields the solution

) Im(sinz)  (Re(sinz)+1)*+ ( Im (sin z))
- 1
ulz +1iy) ™ " (Re(sinz) — 1)2 4 (Im (sin 2)
1+ Re(sinz) <1+ Re ( smz)
+—————tan”
T Im (sin z)
+71+ Re(sinz)t - 1— Re(sinz)
T Im (sin z)
_ coszsinhy . (sinzcoshy + 1)% 4 (coszsinhy)?
N T sinz coshy — 1)2 + (cos 2 sinh y)?
1+sinzcoshy | 4 (1+sinxcoshy)
+——————tan _—
m cosx sinhy

+_1 + sinx coshy tan—1 (1 — sinxcoshy) 7

m coszsinhy

where we have used the fact that Re sinz = sinx coshy and Im sin z = cosz sinh y.

21. First we will show that

4y
1— W)= ———.
WO = Ty
Recall that ¢(z) = ;==. Finding the modulus we get
(2| i—z i—x— iy x+i(1y)’ z2+(1y)2’
A = = = = .
i+ z i+ +iy r+i(1+y) 22+ (14 y)?
Then we can conclude
a? +(1—y)?
1L—|p(z) =1~ IRV
+(1+y)
2+ (1+y)?—22—(1-y)?
x? + (1+y)?
12+ — 142y — P
22 + (14 y)?
_ 4y
2t (1+y)?
as desired. Next we will show that
(z —s)* +y?

e —p(2))? = |(s) —Y(2)]* = .
6 (" = W) (I = A a e
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Calculating we see

€ — () = [v(s) — v(2)
1—8 11—z
its itz
(i—8)(i+2)—(—2)(i+s)
(i+ )i+ 2)
—2i(s—z) |”
(i+s)(i+2)
—2i(s —x — 1y)
sz+is+iz—1
—2is + 29x — 2y
sr+isy+is+ir—y—1
—2y +i(2x — 2s)
st—y—1+1i(s+sy+x)
(—2y)% + (22 — 25)?
(s2 —y = 1)+ (s + sy + x)?
A(z —5)* +9°)
(1+s)2(22+9y2+2y+1)
(v —5)2 + 92
(1+5)?(2* 4+ (1+y)?)

2

2

‘ 2

2

which, once combined with the result derived above will give us the desired result.

25. To solve the Dirichlet problem in the upper half-plane with boundary function

1

f(x):m,

we appeal to the Poisson formula, which gives: for y > 0 and —oo < x < o0,

( )_E/OO 1 1 p
Y= oo 1+ 8% (s —1)2 + 42 *

We evaluate the integral by using the residue techniques of Section 5.3. Let

1 1

A e P el
By Proposition 5.3.4 we have
y [ 1 1 Y .
u(z, y) = ;[m T4t (522 152 ds = 2m;Z Res(f,z;) = QZyZ Res (f, z;),

J J

where the sum extends over the residues of f in the upper half-plane. We have

. . s . .
=l =" o g =€l =€l g = el 2y =€

.
e

171

Only z; and zy are in the upper half-plane. At these points, f has simple poles and the residues

there are computed with the help of Proposition 5.1.3: We have

1 1 1 1
R - =] = _
s (f7 Zl) 423 z=21 (Z — 37)2 + y2 z=z1 461-3% (6ZZ — X

EEe = Ry;
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1 1
423 lomzy (2 — )2 + 32

1 1 1 1
= 9z , ,B=x = T, i8¢ = Ry.
=z 4etn (T —x)2+y?  de't (&7 — )2 +y?
The equation (z — 2)? + 32 = 0 has two roots z = x % iy, as you can check. Only z + 4y is in the
upper half-plane, since y > 0. The residue of f at x + 7y is:
1 1 1 1

24 +1 -

Res (f,22) =

Res (f,z +iy) =

z=x+1y 2(2 — LU) z=x+1y o (37 —|— Zy)4 + 1 % -
Thus,

1 1 1 1 1
4t (€8T —1)2 4 y2 + 4etT (ei%" —x)2 492 + (x+iy)t+1 @)
This answer should be real-valued, because the Poisson integral involves real-valued functions only.

This is not obvious, but the integral can be simplified using Mathematica to yield an expression that
is obviously real-valued.

u(z, y) = 2%y(

29. We appeal to the Poisson formula which gives: for y > 0 and —oco < x < o0,

u(e, y):%/m sina(z — 5) —

—oo s? +y°

This integral follows the approach in Example 5.4.1

. 1 sin(ax) cos(as)  cos(ax)sin(as)
sin (a(z — s)) e Ty oy
Thus
< 1 °° sin(ax) cos(as) *° cos(ax) sin(as)
/_Dosm(a(x—s))mds = /_oo st—/_oowds

=0

—_—~
= sin(ax)/ os(as )d — cos(ax) /00 Mds
e 52+ 2

oo S22ty
= sin(ax)/ Zgbj_ ;ds,

where one of the integrals is 0 because the integrand is an odd function. We now appeal to Example
5.4.1 (doing the cases a > 0 and a < 0 separately):

0 .
u(z, y) = Yy sin(ax)/ c;)s(asg ds = ysin(az) T elaly — g—laly sin(ax).
™ s S*tYy ™ Y

33. The conformal mapping that takes the first quadrant to the upper half-plane is w = ¢(z) = 22.

It also maps the interval [0, 1] in the z-plane to the interval [0, 1] in the w-plane. To determine
the boundary values in the w-plane, we compose the inverse of ¢ with the boundary values in the
z-plane. This gives the value 0 for all points on the real axis outside the interval [0, 1], and for the
w in the interval [0, 1], the boundary value is (y/w )? = w. We thus obtain the boundary values in
the w-plane: f(w) = w if 0 < w < 1 and 0 otherwise. The solution in the w-plane is obtained by
applying the Poisson integral formula. We will use coordinates («, 3) in the w-plane. Thus

B[ f(s) B ! s
Ule, B) = w/m<a—s>2+ﬁ2ds‘w/o CEDIEN A

— g {% tan~? (%) + %111(52 +(s— a)g)];

= Sl (5 e ()] S5
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where the integral in s was evaluated by similar methods as in Exercise 17. The solution in the
z-plane is obtained by replacing a by Re¢(z) = Rez2? = 22 — y? and 8 by Im ¢(z) = Im 22 = 2.
Thus u(z, y) equals

22— (1= (2% —y?) (22— vy (22y)? + (1 - (2 —32)”
[tan () | tan ( )] LW .

T 2xy 2xy T

w2y (R )



174 Chapter 7 Conformal Mappings

Exercises 7.4

1. The outside angles at wi, ws, and w3 are 61 =

(7.4.7), we have

£792:

5 respectively. By

—7, and 03 = 7,

(z—1)2(z+1)2 =i(1 — 22)z.

Applying (7.4.2), we have

f(z)

The fact that f(£1) = 0 implies that B = 0.
V1-— 22

that A = i. Therefore, we conclude f(z) =

5. The outside angles at wy and wq are 0; =
3. Applying (7.4.2), we find

we have (z—l) (z+1)2 =i(1 - 2?)

:A/(z— 1)_é(z+1)_%zd2+B

The fact that f(0) = 1 and B = 0 implies

—% and 0o = — 7, respectively. By (7.4.7),

f(z)—A/<z_1)%<z+1)%dz+B

:iA/(1—22

A

2

where in evaluating the last integral we used integration by parts.

obtain
Al

)%dz—l—B

—[z 1—z2+sin’1z}+B,

—1, we

Using f(1) =

+ B =—1.

4

Using f(—1) = 1, we obtain

—Aim

Thus, B=0and A =

f(2)

2
T
9. (a) Suppose 0, <7 and 0; + 03+ --- + 6,
2 =01 +024+---+0, <

so we conclude that # < 61 + 65 + ---

+ 0,,_
inequality above. We conclude that 61 + 05 + - - -

+B=1.

%. Therefore, we conclude

[zx/ 1— 22sin~! z} )

= 27. It follows that

01 +02+ -+ 0p1 +m,

1 by subtracting 7 from both sides of the
4+ 0,1 >m. We let 5]‘ =2



Section 7.4 The Schwarz-Christoffel Transformation 175

(b) Because A and B in (7.4.1) just dilate, rotate, and translate the mapping, A and B
do not affect the convergence of f(z) or the closure of the polygon. Hence, we can choose
A=1and B=0. Let g = 1 + maxi<j<,—1; and set

_ d¢
f(Z) - /[a:o,z] (C _ $1)51 (C — 1;2)52 ca (C — J;n_l)ﬁn—l ’

(c) Let zg = 1 + maxj<j<p—12; and z = x be real. We will use the limit comparison test
for the integrand to show that

. 0 dx
ylirgo f(y) = /960 (x _ xl)ﬁl (fL‘ — xz)ﬁQ . (l‘ - xnil)ﬁn—l

is finite. Let @ = maxj<j<p—17; and b = minj<;<,—12;. Observe that

x—a+a—b:0ﬁ—@<1+a_b>

<(@—a)(l+a—b)
because x — a > 1. This observation gives us
l+a-b)(zr—a)>zx—a+a—-b=x—-b>rx—2;>c—a

for all 1 < j <n— 1. We see that (x — x,;)% = (z — a)% for all ;. Using this, we have

/°° dx < C/Oo dx
z (SU —_ gjl)ﬁl (.’E — x2>ﬁ2 e (x — xnil)ﬁn—l - zo (.’E — a)/81+62+"'+/8n—1 ’

0

where C' is a constant. Specifically, we have

=[] @+a-0".

J:B8;>0

Notice that

OL4+ 05+ b
Bt Bot oot Py = L > T

from part (a). Therefore, after a change in variables, we see that the integral on the right
converges. (d) Let

w—limf()—/OO da
n_y_)oo Y) = z ($—$1)’81($—$2)B2"‘(ZE—xnfl)Bn*l

0

from above. We want to show that lim,|_,, f(2) = w, for any z € C. We will prove this
for z = Re" where R > 0 and 0 < 0 < 7. A similar argument will hold for z = Re' where
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R > 0and m <60 < 27. First, observe that

Re®) _ (R :‘ dx
ety —gan=| [

(x —x1)Pr(x — 29)P2 -+ (T — py_1)Bn2

_/ dx
[z0,R)] (I’ - 3;'1)/31 (.CL' — 1'2)52 ce (,Qj — xn_l)ﬁn—l

dx
N ‘ /[a;o,Rew] (x —21)Pr(x —2g)B2 - (x — wppq )P
+/ dx
(R (T — 1)1 (2 — 22)P2 - (1 — 20y q)Pr
dx
N /[R,Rew] (- 161)/51 (x — 332)52 (= gjnil)ﬁnfl

< RmM(R),

where M (R) is the maximum of the absolute value of the integrand on the upper semicircle
of radius R. Also, the length of the segment joining R to Re® is largest when it is the circum-
ference of the upper semicircle or Rm. Next, we claim that limp_,oo M (R)R1++8n-1 = 1,
Notice that for R > maxi<j<p—1 |z we have

1
(Z — xl)ﬁl PPN (Z — xnil)ﬁn—l

1 1
AR

_ 2|8y
=R | 1<j<n1 1<jgn1 17 = %l
L B;2>0 B;<0

= sup H _ H |z — a;]1A]

|2 — a;]1P5]

M(R) = sup
|z|=R

Z=R | 1<j<n—1 1<j<n—1
L BjZO B]'<0
1
1ejent Bzl
6]'20 Bj<0
since the first product becomes maximum for z = R and the second product becomes
maximum for z = —R and both of these numbers lie on the circle |z| = R. This implies
that 51 151
RIB R NBj
lim M(RRPH 7 = him - [ ——— ] (Bt o)V +|9;7‘) .
R—o0 R—o0 1<j<n1 (R— ;z;j) j 1<j<n1 RIPj
B;>0 B;<0

But we have 8; > 0
li 7}2& 1
Rooo (R — @)%
and for 8; <0,
A 1851
tim ST
R—o0 RIB;!
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We conclude that limp_,oo M(R) = 1. Note that
RM(R) = R17(61+“'+5n71)(M(R)R51+'“+,3n—1).

The fact that 81 + -+ + Bp—1 > 1 by our discussion in part (c¢) implies that RM(R) — 0 as
R — co. This implies that |f(Re?) — f(R)| — 0 uniformly in # as R — co. The fact that
f(R) = wy, as R — oo implies that f(z) — wy, as |z| = oc.
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Solutions to Exercises 7.5

1. We provide two ways of solving this exercise. First, we may derive the Green’s function for €2
directly. The transformation
z—1
zZ) =
9(2) z+1

is a one-to-one analytic function taking €2 onto the unit disk. For fixed z € €2, the transformation

B(ec) = KO =0E) __EH1E=0

S 1-9()eQ)  FDETQ

is also a one-to-one analytic function taking Q onto the unit disk with ®(z,2z) = 0. Hence, the
Green’s function for € is

G(2,¢) = In[®(z, )

1=
=T
1 Jz—¢f
= —In— 5
2 [z+(
_}m(x—S)2+(y—t)2
2 (z4s)2+(y—t)2]

where z = z + iy and { = s + it are in €.

_ Alternatively, we know from Example 7.5.5 that the Green’s function for the upper half-plane
Qs

E—C 2 (@—92+(y+ 0?2

where z =z 4+ 1y and ( = s + it are in Q. The rotation map

O(z0)=m 224 _ Ly @9+ =t

p(z) =iz

is a one-to-one analytic function taking € onto . Hence, the Green’s function for € is

G(2,¢) = G(p(2),p(())
zlnlij;iCI
iz — (|
T |z — (|
=! 1z +¢|
1. (x—35)2+ (y—1t)?

:§ln(z+s)2+(y—t)27

where z = z + iy and ( = s + it are in .

5. We know from Example 7.5.5 that the Green’s function for the upper half-plane € is

p=dl 1, @t =1
I I PR R PR o

G(z,¢)=1In

where z =z 4+ 1y and ( = s + it are in Q. Observe that the map

oz) = ¢
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is a one-to-one analytic function taking € onto €. Hence, the Green’s function for € is

(e* cosy — e*cost)? + (e®siny — e sint)?

1
2 (e®cosy — e*cost)? + (e siny + e sint)2’
where z = z + iy and ( = s + it are in .

9. (a) Green’s function in the first quadrant, €, is derived in Exercise 3: For z and ¢ in Q,

1 2= ¢z + ¢
|Z-C||Z+C|

Write z = x 4+ iy, ( = s + it, where z, y, s, and t are positive. Then

G(z Q) =

L (G- ) (et P+ g 0?)
G0 = M s+ (y =) (e s+ (y+07)
= (=5 + - 7) + gl (o + 5 + o+

f% In((z—s)’+ (y+1t)?) — %ln (z+s)? + (—y +1)?).

The boundary of 2 consists of two half-lines: the positive real axis, and the upper part of the
imaginary axis. On the imaginary axis, the normal derivative is minus the derivative with respect
to s. Thus, on the imaginary axis,

0 9]
8nG( C) - _%G(Zv C) s=0
B 10 9 9 10
10 9 10 9 9
—|—§6—1n(($—5) +(y+t))+§a*1n((fﬂ+5) +(_y+t))s:o
_ (x —s) B (x+s)
=5+ —1)? (v+s)?+@Hy+1)°
B (z—s) (x4 s)
(—sP++1)? (z+5)°+(-y+1)?
B x B T B x n x
24+ (y—1)?2 22+ (y+1)?2 224 (y+)? 22+ (—y+1t)?
_ 2z B 2x
24 (y—t)2 224 (y+1)?
By a similar argument, we find that, on the real axis,
0 0
5-G(:Q) = 5G|
2y 2y

(r—5)2+y2 (z+s)2+y?
From (7.5.9) we have
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We have to figure our the symbols in this integral. For the part of the boundary that is on the
imaginary axis, ds = dt, and u({) = g(t). For the part of the boundary that is on the real axis,
u(¢) = f(s), and ds = ds (bad notation: on the left, ds stands for element of arc length; on the
right ds stands for element of integration with respect to the s variables.) Using the values of the
normal derivative, we get

= i/ooof(s) ((m—s;ﬂﬂ ) (w+s§2+y2>d5

2 o0 (e )

(b) Consider the special case in which g(¢) = 0. Call the solution in this u;. From part (a), we have

wle) = 7yr/ooof(s) ((Is;ﬂ/z - (I+S;+y2>d8’ FTetw

We will show how to derive this solution by reducing the problem to a Dirichlet problem in the
upper half-plane. Indeed, consider the Dirichlet problem in the upper half-plane with boundary
values u(z, 0) = f(z) if # > 0 and u(z, 0) = —f(—=) if < 0. Thus the boundary function is the
odd extension of f(x) to the entire real line. We will use the same notation for the odd extension
as for the function f. Then, by the Poisson integral formula on the real line,

_y 7 fs) _
U(ﬂf,y)—ﬂ/_oo(xis)erdes, y >0, —oo <z < o0.

To determine the values of w1 on the upper part of the imaginary axis, we set z = 0 and get

wo.p =2 [~ Sa0

T e 52+y2

because f is odd. So w is harmonic in the upper half-plane; is equal to 0 on the imaginary axis; and
is equal to f(z) on the z-axis. Therefore, its restriction to the first quadrant solves the Dirichlet
problem with boundary values 0 on the imaginary axis and f(x) on the positive real axis. Thus u
agrees with uq in the first quadrant. Because f is odd, we can write

(e, y) = g/‘” f(s)

)@=+

N R S (O R
= w/_oou:—s)z y?‘”w/o @2t

> 1 1
- %/o f<s>(<x+s>2+y2 " <xfs>2+y2)d8’

which is precisely the formula for u; that we obtained earlier by using Green’s function in the first
quadrant.

(¢) The case in Figure 7.115 in which f(s) = 0 is very similar to the case treated in part (b). We
just have to interchange x and y, s and ¢. The solution in this case is

va( 9) = g/o g(t)((y+t)12+z2 - (y*t)12+x2)dt’
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which is again the formula that you obtain by setting f = 0 in part (a).
(d) The Dirichlet problem in Figure 7.115 can be written as the “sum” of two Dirichlet problems:
the problem in which g = 0, and the problem in which f = 0. The first problem is solved in (9b)
(the solution is 1), and the second problem is solved in (9¢) (the solution is ug). It is easy to
straightforward to verify that © = u; 4+ ug is the solution of the problem in Figure 7.115. Adding
the two formulas that we have for u; and wug, we obtain the formula for v that we derived in (9a).
The point of this problem is that we were able to solve the Dirichlet problem in the first quadrant
by reducing the problem to two problems in the upper half-plane and then using the Poisson integral
formula on the real line.
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Solutions to Exercises 7.6

1. Applying Proposition 7.6.12 with
¢(z) =i(z — 1),

which is a one-to-one analytic function taking 2 onto the upper half-plane, the Nuemann function
for € is

N(z,¢) = In[é(z) — o(Q)] +In|¢(z) — ¢(C)]
=Inli(z —1) —i(¢ = 1)| +In|—i(Z — 1) —i(¢ = 1)]
=lnlz—(|+Inz+ (-2
1

= §1n((:1c—8)2—|—(y—t)Q)—|—%1n((3¢—|—8—2)2—i—(—y—i—t)2)7

where z = z + iy and { = s + it are in €.
5. Applying Proposition 7.6.12 with
¢(z) =sinz,

which is a one-to-one analytic function taking 2 onto the upper half-plane, the Nuemann function
for Q2 is

N(z,¢) = In|p(z) = ¢(C)| + In[o(2) — ¢(¢)]

=In|sinz —sin¢| + In[sin z — sin (]

1
=3 In ((sinz coshy — sin s cosh ¢)® + (cosz sinhy — cos ssinh ¢)?)

1
+ 5 In ((sin z coshy — sin s cosh ¢)® + (cos z sinhy + cos ssinh ¢)?)

where z = z + iy and ( = s + it are in .

9. Recall that Q is a region bounded by simple path " and G(z,() is the Green’s function for .
Fix z € Q. For € > 0, let Q. = Q\ Bc(z). Write

G(sz = U1(27<) + 111|Z - <|

for ¢ # z in Q, where (2, ¢) is harmonic on  with u1(z,{) = —In|z — (| on T'. Moreover, Au = h
on Q. So ui(z,¢) and h(¢) are bounded in B.(z). Now, we justify (7.6.8) as follows:

‘//Q G(z,Q)h(C) dA—//QG(z,g)h(g) dA‘ = ‘//Be(z) Gz, Oh(C) dA‘
< J[mtonoiaas [l dnola

§Cl// dA+Cg// 1H|Z*C|dA
B.(z) Be(z)

27 €
=027 + C’g/ / rinr drdd
0 0

27 21 2 T=€
= Cié¥r+ 02/ im |- g
0 §—0t 2 4 r=g

21 2
= C1€2m + Co2r (6 ne 6) ,

2 4
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which converges to 0 as ¢ — 0%. This shows that

J| 6tz om0 ar— [ aeoncan s oot

13. Let Q be a region bounded by simple path T', and let N(z,¢) be a Neumann function for Q. So
for fixed z € Q, the outward unit directional derivative of N(z,{) on I is a constant C' = =, where
L= [ ds.

13. (a) For a constant A, select

/N 5,7

R <)df£

- 27r o2’

for z € Q. Then, by part (c) of Exercise 12,

is also a Neumann function for 2. Moreover,

/FNO(Z,Q ds:/FN(z,C) ds—/FF(z) ds

:/N(Z,C) ds — F(z)L
r

That is, the integral of Ny(z,() over the boundary T is a constant.
(b) Let 21,29 € Q. For € > 0, denote Q2 = 2\ (Bs(zl) U Be(ZQ)), and its boundary is denoted by
I Applying Green’s sencond identity to N(z1,({) and N(z9, () over Q, we have

8]\7 22, ZlaC)
0*/ N Zl,C) / N 27 ds
/N 1’ ZQ»C) dS+A ( )N(Zl,C)aN(azi’C) ds+/a ( )N(Zl’c)aN(az,rjvc) ds
B zZ1 B z2
zlu C) 8N(Zl, C) BN(ZD C)
/N 22’ ds - /83 (z1) N(Z27C) on ds * /BB (z2) N(ZZ,C) on ds

Using the same argument as in Exercise 10, we can show that as ¢ — 07

/ N(zhg)% ds — 0,
dBe(21) n

[ NeoPd
9B, (22)

(227 )
/836(22) N(th on

(21

on

[ woitad
OB (z1)

ds — 0,
ds — =27 N (z1, 22),

ds — —2wN (22, 21)-
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Letting e — 07, we arrive at
O—/N 21, (¢ Z2 C) ds — 2w N(z1, 22) /N (22,¢C zl’C) ds + 27 N(zq, 21).

That is

27TN(21,22)—27TN(22721)=/N(Zl,C)% ds —/N(zz,g)% ds
r r

:C/FN(zhC) ds —C/FN(,ZQ,C) ds

No(z1,22) = N(z1,22) — F(z

Hence,

A

N(z1, 2 ——/Nzl, ds—Z—C

A

:N(zz,zl)——/N(zg, )ds——c
27 Jr 27

= N(ZQ,Zl) — F(Zg)
= N0(22721).

This proves that the Nuemann function Ny(z,¢) for  is symmetric.
(¢) Replacing N(z,¢) by No(z,¢) in (7.6.23), we have

// C)No(z,¢) A——/f Nozgds_[ // N(z,¢) A——/f ONz, Q) ds }
|52 ] neyaa- T2 [ 1) a]
= u(z)

where the last equality holds by (7.6.22) and (7.6.23).
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