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Solid-liquid interfaces are at the heart of many modern-day technologies and provide a challenge

to many materials simulation methods.

A realistic first-principles computational study of such

systems entails the inclusion of solvent effects. In this work we implement an implicit solvation
model that has a firm theoretical foundation into the widely used density-functional code VASP.
The implicit solvation model follows the framework of joint density functional theory. We describe
the framework, our algorithm and implementation, and benchmarks for small molecular systems.
We apply the solvation model to study the surface energies of different facets of semiconducting
and metallic nanocrystals and the Sx2 reaction pathway. We find that solvation reduces the surface
energies of the nanocrystals, especially for the semiconducting ones and increases the energy barrier

of the Sn2 reaction.

PACS numbers: 71.15.Mb, 68.08.-p, 82.20.Yn

I. INTRODUCTION

Recently, scientists have determined that the under-
standing of nanoparticle synthesis and electrochemical
interfaces is crucial to designing novel materials for en-
ergy technology and improving the performance char-
acteristics of batteries and catalysts*™# The physics of
solid-liquid interfaces plays a major role in the syn-
thesis of nanoparticles, chemical reactions at electrode
surfaces” and in many other phenomena important to
energy applications. The thermodynamics and kinet-
ics of nanoparticle interfaces determine the particle mor-
phologies and surface states, which in turn affect the self-
assembly as well as optical and electronic properties of
these materials98

A comprehensive understanding of nanoparticle syn-
thesis and electrochemical interfaces via experiments
presents a challenge due to the heterogeneity of the inter-
face and the complexities of the solid and liquid materials
involved ® Computational studies provide an alternative
method to improve our fundamental understanding of
solid/liquid interfaces and to predict properties of novel
materials interfaces 210712

There are two main ways to achieve a computational
treatment of solid/liquid interfaces. If a complete ab-
initio treatment of the solute/solvent system is desired,
all solvent molecules must be considered explicitly. Thus,
to reach the equilibrium state we need to relax the elec-
tronic and ionic degrees of freedom of both the solute
and the solvent molecules. This treatment is quite ex-
pensive, as the number of solvent molecules in the system
required to capture the essential equilibrium properties
is huge and because of the statistical averaging required
for the solvent molecules.

An alternative approach is to treat the solute quantum-
mechanically and to treat the solvent as a continuum,
which means that the solute is immersed in a bath
of solvent and the average over the solvent degrees of

freedom becomes implicit in the properties of the sol-
vent bath. Implicit solvation models for plane wave
density-functional theory (DFT) codes were pioneered
by Fattebert and Gygi? independently developed and
placed into the rigorous framework of joint density func-
tional theory (JDFT) by Arias et al.,)¥ and extended
by Marzari et al. to include a model for cavitation and
dispersion.!¥ These methods provide a much more com-
putationally tractable way to vary the electronic and the
geometric degrees of freedom of the solute so that the
ground state of the combined solute/solvent system con-
forms with the equilibrium properties of the solvent bath.
Since the solute electronic structure is still being treated
quantum-mechanically, this approach can be quite accu-
rate assuming all interactions between the solute and the
solvent are considered in proper detail.

For polar or ionic solute systems in contact with po-
lar fluids, the electrostatic interaction between the solute
and the solvent is the most significant solvation effect.
For nonpolar solutes and solvents, the van der Waals
interaction can dominate over electrostatics. For large
molecules, the energy required to form a cavity in the
solvent is the most important contribution to the sol-
vation energy. Thus, any solvation theory which can be
generally applicable to nanoparticles, molecules, and sur-
faces must consider all of these effects. In this work,
we review an implicit solvation model which places a
quantum-mechanical solute in a cavity surrounded by a
continuum dielectric description of the solvent. Describ-
ing the dielectric response as a functional of the solute
electronic charge density leads to a self-consistent deter-
mination of the cavity by considering the polarization
of the solvent by the electronic structure of solute, the
effects of cavitation and dispersion, and the correspond-
ing response of the solute system to the presence of the
solvent. This implicit solvation model provides a com-
putationally efficient and accurate technique for under-
standing solute/solvent interfaces.



Following the approach of Refs. [10] and [I3], we
briefly review the theoretical underpinnings and frame-
work of these implicit solvation models in Sec.[[Tl We then
describe in Sec. [[II] the implementation of an implicit
solvation model derived from joint density functional
theoryt0345l in VASP, a widely used and multi-featured
plane-wave DFT code. Though this model was previ-
ously implemented in the open source codes DFT+-+16
and JDFTxX? implementation in VASP places this the-
ory into the self-consistent field framework for the first
time. Due to the plane-wave basis, this implementation
is more scalable for large periodic systems than solva-
tion models which employ Gaussian type orbitals. Ad-
ditional advantages of this new implementation include
higher performance, better MPI parallel scaling, and the
interoperability with an extensive library of standardized
ultrasoft pseudopotential and projector-augmented wave
potentials. In Sec. [V] we benchmark the accuracy of
this implementation by calculating molecular solvation
energies, and comparing against both experimental and
JDFTx-calculated values. Finally, in Section [V]we apply
the model to metal and semiconductor nanocrystal inter-
faces and reaction pathways. We find that the implicit
solvation model that we have implemented into VASP
provides an efficient and accurate approach to determine
solvation energies of molecular and extended systems.
Also, the solvation modifications are freely available as a
patch to the original VASP source codel8

II. THEORETICAL FRAMEWORK OF
IMPLICIT SOLVATION MODEL

Following Refs. [I3] and [19], the free energy, A, of the
combined solute/solvent system can be written as a sum
of two terms, a universal functional F' of the total elec-
tron density and the thermodynamically averaged atomic
densities of the solvent species, and a term describing the
electrostatic energy contribution

A = Flngor, {Ni(7)}] +

—|—/d37“ Vext (7) (Z ZiN;(T) — ntot(ﬂ) - (1)

Here nyot(7) is the total electron density, which is the
sum of the electron density of the solute and the sol-
vent, i.e. Ngot(F) = Nsolute(T) + Nsolv (7). N;(7) are the
thermodynamically averaged atomic densities associated
with the chemical species ¢ in the solvent, Ve () is the
external potential due to the solute nuclei and F is a
universal functional. The functional F' is universal in the
sense that it depends only on the electron density and
the solvent atomic densities.

Next we use the variational principle for the thermo-
dynamic free energy of the electron-nuclear system in a
fixed external electrostatic potential Vext () to determine

the ground-state free energy of the system

Ay = min
neot,{ N3 (7) }

—|—/d37‘ Vext (7) (Z ZiNi(T) —ntot(?)> }(2)

Although the above formalism provides an exact DFT
treatment of the combined solute/solvent system, it is
difficult to solve in practice due to the minimization in-
volved over the immense number of solvent degrees of
freedom. In order to make it amenable to a computa-
tional treatment, the free energy is first minimized over
the solvent electron density and then over the solute elec-
tron density to determine the ground state free energy

Minimizing Eq. with respect to the solvent electron
density ngoly, we obtain

121 = G[nsolute("?)a{Ni(f')}vvex‘ﬂ(f‘)]
_/dBT ‘/:sxt(mnsolute(F)u (3)

{F[ntom {NVi(M)}]

where

Glonaee(7): {N: (7}, Vet (7)) = i {F[nm GH

- /d3T Vet () <Z ZiNy(7) — n801V(F)> } (4)

G is a universal functional of the electron density of the
solute nsolute(7), the average atomic densities of the var-
ious species in the solvent {N;(7)}, and the external po-
tential of the solute nuclei Vi (7). The functional G can
be separated as following

G[nsolute (7:‘)> {Nz (’F‘)}a V:axt (Fﬂ = AKS [nsolute(F)7 Vvext (F)]"_
+ Adiel [nsolute(F)v {Nz (F)}a V:ext (m]v (5)

where Akg is the usual Kohn-Sham density functional
for the solute and Agier is the term that encapsulates all
the interactions of the solute with the solvent and the
internal energy of the solvent. To further simplify the
expression, the functional Agje) is minimized with respect
to the average atomic densities of the solvent, N;(7),

Adiel [nsolute ('F)v Vext (F)] =

{J{]nbr?l)} Adiet[nsotute(7), {N: (P}, Vext ()], (6)

Combining Egs. (2) to @ leads to the ground state free
energy of the solute/solvent system,

Ag= min

Nsolute (7)

- / d37ﬂ V;ext (’F‘)nsolute(fj + Adiel [nsolute (7:‘)7 Vvext (F)] }

{AKS [nsolute (F), Vvext (F)] (7)



Importantly, this minimization procedure leads to a
free energy of the combined solute-solvent system writ-
ten as a functional of only the electron density of the
solute, mgolute(7), and the external potential of the so-
lute nuclei, Vixt(7), properties determined solely by the
solute. All the solvent effects are contained in the func-
tional Agie1, which is obtained by the minimization over
the solvent electron density and the thermodynamically
average atomic densities of the solvent. Thus, the func-
tional Agjel describes a continuum model for the solvent,
which has an equilibrium structure fully determined by
the properties of the solute, upon the solute electronic
structure. The minimization of the functionals in Eq.
with respect to the solute degrees of freedom leads to the
ground state free energy of the joint system. Up to this
point, the theory is exact, although the exact form of
Agiel is unknown. Approximations must be made to the
functional Ag;e for practical calculations.

As a first approximation, we consider the electrostatic
interaction between the solute and the solvent, which af-
fects the equilibrium polarization of the solvent dipoles.
Assuming that the solvent polarization depends linearly
on the electric field for the range of fields encountered in
the vicinity of the solute, the solvent polarization can be
described by the local relative permittivity of the solvent,
€(7). We must then include in the functional Agie; a term
to account for the electrostatic interaction between the
solute electronic structure and the corresponding bound
charge distribution induced in the solvent 1213

However, an electrostatic-only approach is insufficient
to describe solvation of molecules and nanoparticles,
where cavitation and dispersion may play a significant
role. Since the non-electrostatic effects are concentrated
in the first solvation shell, to describe these effects?V
we adopt a version of the empirical model proposed
by Marzari et al.’# and placed into the joint density-
functional theory framework by Arias et al™® that de-
scribes the corrections as an interface term that is pro-
portional to the solvent-accessible area. Thus, we also
include in Agie1 an additional term to describe the free
energy contributions of cavitation and dispersion,

Acav = T/dT|VS|, (8)

where 7 is the effective surface tension parameter, which
describes the cavitation, dispersion and the repulsion in-
teraction between the solute and the solvent that are not
captured by the electrostatic terms alone and S(7) is the
cavity shape function described below.

Decoupling the electrostatic term from the Kohn-Sham
functional Axg and combining it with the interaction

term and the cavitation term, we obtain

A[nsolute (’I?), ¢(f)] :ATXC [nsolute (F)}

+ /d3T (ZS(F) (Nsolute(f) - nsolute(m)

\V4 2
—/dsre(f')i‘ 8ﬁ|
+ Acava (9)

where ATxc is the free energy density functional describ-
ing the kinetic and exchange-correlation energy of the
solute and Nyolute(7) is the solute nuclear charge density.

We make an important distinction between the poten-
tials ¢(7) and Ve (7). ¢(7) is the combined electrostatic
potential due to the electronic (ngoute(7)) and nuclear
(Nsolute (7)) charges of the solute system in a polarizable
medium. Ve (7) is the potential due to the nuclei in the
solute, and is usually described by pseudopotentials or
the projector-augmented wave method. Outside a spec-
ified cutoff radius it has the form %, where Z.g is the
effective charge of the respective atom. Since the solvent
described by ¢(7) does not penetrate the core region of
the pseudopotentials, we can approximate the contribu-
tion of the nuclear charges to the combined electrostatic
potential ¢(7) of the solute by a sum over terms of the
form %

So far, we have described a solute system surrounded
by a dielectric medium quantified by the relative per-
mittivity of the solvent system, (7). However, we must
also determine the form of the dielectric cavity formed in
the solvent by the solute. Implicit solvation models offen
differ in their approximations for this cavity. A common
way to construct the cavity is to place spheres around the
solute atoms and then take the union of these overlap-
ping spheres?!! Inside the so-formed cavity the relative
permittivity is assumed to be that of vacuum, outside it
takes the value of the solvent, and the induced charges
are placed on the surface of this cavity. One might also
assume a diffuse dielectric cavity such that the relative
permittivity changes continuously.

In this work, we assume a diffuse dielectric cavity
that is a local functional of the electronic charge den-
sity of the solute, i.e for the relative permittivity e(#) =
€(Nsolute(7)). This assumption leads to a diffuse cavity
that is implicitly determined by the electronic structure
of the solute. The smooth transition into the cavity
also ensures that the derivatives of the energy functional
are continuous, thereby simplifying the implementation
of the geometric optimization of the solute system. We
assume the following functional dependence! of the rel-
ative permittivity of the solvent on the solute electronic
charge density

6(7/lSCJ1|J'c<>('F)) =1+ (Gb - 1)S(nsolut0(7_j))v (10)

where €, is the relative permittivity of the bulk solvent
and S (nsolute (7)) is the cavity shape function, given by

_ ler c 1Og(nsolute/nc)
S(nsolute (7)) = 3 f {0\@ } . (11)
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FIG. 1: Smooth variation of the relative permittivity e from

the vacuum value of one to the value of the solvent, e.g. 80
for water.

The parameter n. determines at what value of the elec-
tron density the dielectric cavity forms, and o is the pa-
rameter that determines the width of the diffuse cavity.
Figure[J]illustrates the dependence of the permittivity on
the solute electronic charge density. The above functional
form of the relative permittivity ensures that the value
of the relative permittivity varies smoothly from one in
the bulk of the solute to €, in the bulk of the solvent.
This gradual variation emulates the first solvation shell
effects, i.e the value of the relative permittivity of the
solvent close to the solute is smaller than the equilibrium
bulk value due to the higher electric field near the solute
surface, a phenomenon known as dielectric saturation.

As shown by Refs. [10] and [I3], the functional in
Eq. @D can be optimized by first minimizing with re-
spect to the electrostatic potential, ¢(#), and then with
respect to the solute electronic charge density, ngolute (7).
Minimization with respect to ¢(7) leads to a generalized
Poisson equation?

V- [e(nsolute<F))v¢] =
— A7 {Nsolute(f) - nSOhIte(F)} ) (]‘2)

where Ngolute(7) consists of the effective core charges
approximated by Gaussians as described below and
Nsolute(T) is the valence electronic charge density. Mini-
mization of Eq. @D with respect to the electronic charge
density, nsoute(7), yields the typical Kohn-Sham Hamil-
tonian with the following additional terms in the local
part of the potential

2
Vi, = de(nsotuie () [VEI© _dIVS]
dnsolute(F) 8m dnsolute(m

Corrections to the Hellman-Feynman force terms
should also be made due the modifications of the Kohn-
Sham potential. The force corrections consist of two
terms,

(13)

stolute 3 / dnsolute 3
Ap————d soly ————d°r. 14
/ 10) iR, r+ [ Via iR, r (14)

The first term is due to the change in the electrostatic
potential A¢, which is the difference between the solution
to Eq. and the electrostatic potential when the rel-
ative permittivity is one. The second term is due to the
augmentation of the electronic charge density with the
pseudo-charge density at the atom locations to prevent
the fluid from entering in the core region, as described in
the following section.

III. IMPLEMENTATION OF IMPLICIT
SOLVATION MODEL

The implicit solvation model reviewed above has been
implemented into the Vienna Ab-initio Software Package
(VASP)*? a widely-used plane-wave DFT code. Com-
bined with VASP’s parallel scalability to large system
sizes and the availability of established and tested li-
braries of ultrasoft pseudo-potentials (USPP)2#4% and
projector-augmented wave (PAW) potentials,2% the MPI
compatible implementation extends the capabilities of
the software to study large solvated metallic and semi-
conducting systems in an efficient manner.

The VASP code solves the Kohn-Sham equations
through self-consistent iterations to find the electronic
ground state. To include the description of the solvent
effects, we modify the local potential of the Kohn-Sham
Hamiltonian and the expression for the total free en-
ergy. The solution to the generalized Poisson equation,
given by Eq. , must become part of the self consis-
tent loop as the valence charge density changes in each
self-consistent iteration.

The generalized Poisson equation is solved in each
electronic step to obtain the electrostatic potential of
the combined solute electronic charge density and ionic
charge density in the polarizable medium that describes
the solvent. Since VASP is a plane-wave DFT code,
we take advantage of fast Fourier transformation (FFT)
methods and approximate the nuclear point charges by
Gaussians of finite width /¥

., Zy (7 — Rp)?
Niolute () = Z W exp (‘W , (15)
I

where o is the width of the Gaussian, RI and Z; are the
positions and charges, respectively, of the nuclear species
I in the solute. As long as the width, o is sufficiently
small such that the Gaussians do not interfere with the
solvent, the interaction energy does not depend on the
Gaussian width. Figure[2]illustrates for the CO molecule
that the solvation energy is independent of the choice of
o over a range of values of . For small values of o, i.e.
when o is of the order of the grid spacing or smaller, de-
viations occur because of the reduced numerical accuracy
of the integration of the Gaussians. For large values of
o, the deviations are caused by the Gaussians reaching
into the region of the solvent.
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FIG. 2: Solvation energy as function of the Gaussian ionic

width for CO molecule for two different atomic separations,
where the Gaussian width, o, is specified in units of the grid
size.

For DFT implementations that use pseudopotentials
such as VASP22 PWSCF 2% ABINIT,2” JDFTx,X" etc.,
the electronic charge density corresponds only to the va-
lence charge density which tapers off close to the atomic
cores. Since the solvent effects described by the permit-
tivity are assumed to be a functional of the local elec-
tronic charge density, the possibility exists that, due to
the reduced valence charge density near the cores, the
relative permittivity could become greater than one in
the region of the atomic cores. Following Ref. [10], in or-
der to ward off such unphysical solvent penetration into
the atomic core regions, pseudo-charges centered at the
atomic cores are added to the valence charge density.
This is strictly a numerical device and has no effect on
the interaction energies as these pseudo charges are only
used in the computation of the relative permittivity of
the solvent. In principle, one could also replace these
pseudo-charges with the partial core charges from an ap-
propriately chosen pseudopotential, as is done in the cur-
rent JDFTx implementation of the same fluid model **

The generalized Poisson equation, Eq. , is solved
using a pre-conditioned conjugate gradient algorithm.
We use a pre-conditioner of the form %, where G is
the nonzero reciprocal lattice vector. This choice of pre-
conditioner gives the exact solution to the Poisson equa-
tion in Fourier space when the permittivity is constant.

The solution procedure using the conjugate gradient
algorithm is made efficient through the use of FFTs for
the evaluation of the gradient and divergence terms in
Eq. . First, the gradient term, V¢, is evaluated
in Fourier space. It is then transformed to real space
and multiplied with the spatially varying permittivity,
€(), which is given as a functional of the charge density.
Then the divergence of the term €(7#)V¢ is computed in
the Fourier space using a FFT, leading to the complete
Fourier space representation of the right hand side of
Eq. .

For the shape function parameters n. and ¢ in Eq.
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FIG. 3: Comparison of solvation energies for different
molecules in water calculated with VASP and JDFTx. The
JDFTx calculations employed norm-conserving pseudopoten-
tials and the VASP calculations ultrasoft pseudopotentials
and the PAW method.

and the effective surface tension 7 in Eq. we use the
values of Ref. [15] that were obtained by a fit of the model
to experimental solvation energies for molecules in water.
The specific values are n. = 0.0025A_3, o = 0.6, and
7 = 0.525meV /A’

The implementation of this solvation model in VASP
is parallelized over multiple processors using MPI. To
demonstrate the efficiency of the implementation, we cal-
culate the surface energy of a Pt (111) surface slab with
5 layers of Pt and a 10 A slab spacing. The vacuum
calculation on 64 cores converged in 39 seconds requir-
ing 28 self-consistent iterations and the same system sol-
vated in water, starting from the vacuum wave functions,
converged in 35 seconds requiring 16 self-consistent iter-
ations.

IV. VALIDATION OF IMPLICIT SOLVATION
MODEL

We validate the correct implementation of our solva-
tion model for the energies and forces by comparing the
solvation energies of several molecules with values ob-
tained for the same solvation model from the JDFTx
codel” and with experimental results. For the forces,
we compare the values from the implemented analytic
expressions with the values obtained by numerical differ-
entiation of the energy.

The calculations for the validation in this section as
well as the applications in Sec. [V]are performed with the
modified VASP code using USPP and the PAW method,
the PBE exchange-correlation functional. For the molec-
ular systems we use a cutoff energy of 800 eV, the I" point
for k-point sampling, and a cubic box of 10 A edge length.
The atomic positions are obtained from the computa-
tional chemistry comparison and benchmark database 28
The calculations of the surface energies use a cutoff en-
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FIG. 4: Experimental versus VASP calculated solvation en-
ergies for different molecules in water

ergy of 460 eV, a 16 x 16 x 1 mesh for k-point sampling,
and a vacuum spacing of 10 A. The geometry of the plat-
inum slabs for different crystal facets are taken from our
previous study given in Ref. [29]. For PbS, 100 surface
geometry had 5 layers, 110 had 10 layers and 111 had 9
layers(reconstructed surface with Pb termination). Fully
relaxed vacuum slab geometries were used for both Pt
and PbS solvation calculations. For the solvation model
parameters, we use the default values of our implementa-
tion as specified in the previous section and the relative
permittivity of water ¢, = 80, which is the default solvent
in the implementation.

The correctness of the VASP implementation of the
solvation model is verified by comparing the solvation en-
ergies of organic molecules with the values obtained from
the identical solvent model implemented in the JDFTx
code. Figure [3|shows that the solvation energies of both
codes are nearly identical, indicating that the method is
implemented correctly. The small discrepancies between
the VASP and JDFTx solvation energies (on the order of
10 meV) can be attributed to differences in the pseudopo-
tentials used and are well within common pseudopoten-
tial errors3Y Figure [4] compares the calculated solvation
energies to experimental data. The calculated solvation
energies are in good agreement with the experimental
values. The experimental and computed solvation ener-
gies obtained using JDFTx and VASP are also listed in
Table [Il

The implicit solvation model results in correction terms
for the forces, which are derived from the energy expres-
sion of Eq. @ and given by Eq. . We confirmed the
numerical accuracy of the forces by comparing the results
of the implemented analytic expressions with the values
obtained by numerical differentiation of the energy for
several molecules.

TABLE I: Molecular solvation energies; VASP, JDFTx and
experimental values. All energies are in eV

EPAW EUSPP

Molecules Eexpt Ejastx

VASP VASP
Acetone —-0.17 -0.19 -0.19 —0.20
Dimethyl ether —0.08 —0.07 —0.07 —0.07
Ethane +0.08 +0.03 +0.03 +0.03
Ethanol —0.22 -0.17 —0.18 —0.18
Methane +0.08 +0.01 +0.02 +0.01
Methanol —0.22 —0.20 —0.19 —0.19
Propane +0.09 +0.03 +0.03 +0.03
Propanol —0.21 —0.18 —-0.17 —0.17
Water —0.27 —-0.31 —0.31 —-0.31

V. APPLICATIONS

We apply the implemented solvation model to surfaces
of materials that are of current technological interest
and study the effect of various solvents on the surface
energies of the dominant facets of metal and semicon-
ductor nanocrystals. In addition, we determine the en-
ergy barrier for the nucleophilic substitution reaction of
chloromethane and compare the results with quantum
chemistry calculations.

A. Solvation effects on metal and semiconductor
nanocrystals

Optical, electronic, and magnetic properties of
nanocrystals strongly depend on their size and shape.
These properties are in turn affected by the functional
groups present on the surface and the type of solvent
in which they are dispersed. Here we consider platinum
and lead sulphide nanocrystals to ascertain how the pres-
ence of a solvent affects the surface energies of different
nanocrystal facets and what the implications are for the
nanocrystal shape. Platinum nanocrystals have a wide
range of applications in catalysis from fuel cells to cat-
alytic converters®*32 Lead sulphide nanocrystals have
exceptional optical properties®d and are considered as
emerging novel materials for inorganic-organic bulk hy-
brid solar cells** and tunable near infrared detectors>>

Figures [5] and [6] show how the presence of solvent af-
fects the surface energies of the low-energy facets of Pt
and PbS nanocrystals. In all cases, the solvent reduces
the surface energies with the more polar solvents result-
ing in higher reductions. The reduction in surface en-
ergies for Pt are up to 2 meV/A? and for PbS up to
7 meV /A2,

The more significant effect of solvation on the PbS sur-
faces than the Pt surfaces is due to the nature of bonding
in these systems. PbS exhibits a partially ionic bonding,
while the Pt bonding is purely metallic. The presence of
partially ionic bonds on the PbS surfaces lead to stronger
electric fields at the surface experiencing solvent screen-
ing. Due to the reasonably high electric fields present at
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the PbS surfaces, we also confirm that a linear dielectric
response to electric field strength is sufficient for captur-
ing the solvation energy of these materials. For the PbS
surfaces, the surface energy differences between the linear
and nonlinear model calculated with the JDFTx code™
is less than 2%. Ref. [I5] has confirmed that the effect of
nonlinearity is also negligible for metal surfaces.

We observe that the facets with higher surface ener-
gies are more stabilized by solvation than the surfaces
with lower energies, an effect which is particularly no-
ticeable for the PbS surfaces. This phenomenon leads to
a more isotropic surface energy distribution in the pres-
ence of polar solvent than in vacuum, which can affect
the nanocrystal morphology2 We predict that the pres-
ence of polar solvent results in more spherical and less

€00

[CI-CH,~CI]~

e ¢

CH,Cl + CI”

FIG. 7: Nucleophilic substitution Sx2 reaction of a chlorine
ion with chloromethane.

TABLE II: Energy barriers for the nucleophilic substitution
Snx2 in vacuum and in water calculated with VASP, Gaus-
sian09, and constrained ab-initio molecular dynamics.

El\)/acuum (GV) Elx;vater (EV)

VASP 0.34 0.60
Fattebert and Gygi® 0.61
Gaussian 09° 0.32 0.63
Gaussian 09°¢ 0.32 0.69
ab-initio molecular dynamics® 0.82
Ref. [12]

bCavity of atom-centered spheres.
¢Static isodensity model of Ref. [39].

dRef. [40)

strongly faceted PbS nanocrystals.

B. Reaction pathways

Reaction pathways and barriers are also influenced by
the presence of solvents 3837 To demonstrate the im-
portance of solvation effects in determining the reaction
pathways and to illustrate the capability of the current
implementation, we consider the nucleophilic substitu-
tion SN2 reaction of CI~ and CH3Cl. This bimolecular
nucleophilic substitution plays an important role in phys-
ical organic chemistry and hydration increases the reac-
tion energy barrier, which increases the the transfer rate
by 20 orders of magnitude3¥

Figure m illustrates the pathway for the SN2 reaction
Cl~ 4+ CH3Cl = CICH3 + Cl—, where FE} is the energy
barrier. We calculate the energy barriers for this reaction
in vacuum and water using VASP and Gaussian094% The
VASP calculations employ a cubic box with 25 A edge
length, a cutoff energy of 800 eV, and our implemented
solvation model. The Gaussian09 calculations use the
aug-cc-pV5Z basis set and the static isodensity solvation
model 2 which is similar to the solvation model we im-
plemented in VASP.

Table [[] compares the energy barrier for the Sn2 re-
action obtained with VASP with various other methods.
We find that the energy barriers obtained from VASP and



Gaussian09 are in good agreement. We also observe that
the energy barrier in Gaussian09 only weakly depends
on the solvation model. The energy barriers obtained
with our solvation model in VASP and Gaussian09 also
compare well with the result of Fattebert and Gygil?
of 0.61 eV which neglected the contribution from the
cavitation!? For the case of this reaction energy barrier,
neglecting the cavitation energy is a good approximation
since the cavity does not change much during the reac-
tion. The reaction barrier obtained with constrained ab-
initio molecular dynamics simulations with explicit sol-
vent is 0.82 eV4Y, about 0.2 eV higher than the values
for the implicit solvation model. This difference may be
due to anharmonic contributions to the energy barrier.

VI. CONCLUSIONS

We implemented an implicit solvation model that
describes the effect of electrostaticsd cavitation, and
dispersion** on the interaction between a solute and sol-
vent into the plane-wave DFT code VASP. The model
was validated by comparing the values from the VASP
implementation with the values from the JDFTx imple-
mentation and experimental data. Our implementation
provides a computationally efficient means to calculate
the effects of solvation on molecules and crystal surfaces.
We apply the solvation model to determine the effects

of solvation on the different facets of metal and semi-
conductor nanocrystals and the energy barrier for the
nucleophilic substitution reaction of chloromethane. Sol-
vation significantly reduces the surface energies of the
semiconducting PbS nanocrystals and only weakly af-
fects the surface energies of the metallic Pt nanocrys-
tals. For the nucleophilic substitution reaction we obtain
energy barriers in good agreement with previous calcu-
lations. The strength of our solvation model implemen-
tation is its capability to handle large periodic systems
such as metal and semiconductor surfaces and its inter-
operability with standard ultrasoft pseudopotential and
projector-augmented wave potential libraries. The soft-
ware is freely available as a patch to the original VASP
code &
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