26. EXAMPLES OF QUOTIENT RINGS

In this lecture we will consider some interesting examples of quotient rings.
First we will recall the definition of a quotient ring and also define homo-

morphisms and isomorphisms of rings.

Definition. Let R be a commutative ring and I an ideal of R. The quotient ring
R/I is the set of distinct additive cosets a + I, with addition and multipli-
cation defined by

(a+I)+(b+1)=(a+b)+Iand (a+I)(b+1)=ab+ 1.

Definition. Let R and S be rings.
(i) A mapping ¢ : R — S is called a ring homomorphism if

w(a+b) = ¢(a) + ¢(b) and p(ab) = p(a)p(b) for all a,b € R.

(ii) A ring isomorphism is a bijective ring homomorphism.

(iii) The rings R and S are called isomorphic if there exists a ring iso-

morphism ¢ : R — S.

Example 1: Let R = Z and I = nZ for some n > 1. Let us show that the
quotient ring R/I = Z/nZ is isomorphic to Z,, (as a ring).

Proof. In the course of our study of quotient groups we have already seen
that
Z/nZ = {0+ nZ,1 +nZ,...,(n—1)+nZ} as a set.
Moreover, by Proposition 22.3, Z/nZ is isomorphic to Z,, as a group with
addition, and an explicit isomorphism is given by the map ¢ : Z/nZ — Z,
where
x4+ nZ) = [z], (% % %)

This means that the map ¢ : Z/nZ — Z,, given by (***) is

(a) well-defined

(b) bijective

(c) preserves group operation (addition), that is,
t((x+nZ)+ (y+nZ)) =((x+y) +nZ) for all z,y € Z

We claim that ¢ is actually a ring isomorphism. In view of (a), (b) and (c)
it remains to check that ¢ also preserves multiplication, which can be done
directly (using the definition of multiplication in both Z/nZ and Z,):

W(z +nZ)(y +n)) = ay +nZ) = eyl = [lalyls = (e + nZ)ily +n2).
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Remark: We could give a proof without referring to Proposition 22.3, by
checking conditions (a), (b) and (c¢) directly, which is not difficult.
Example 2: Let R = R[z], the ring of polynomials with real coefficients
and I = (22 +1)R = {(2®> +1)f : f € R}, the principal ideal of R generated
by x? 4+ 1. Let us prove that the quotient ring R/I = R[z]/(x? 4+ 1)R[z] is
isomorphic to C (complex numbers).

We start with a very important result about polynomials which is an

analogue of division with remainder for integers:

Theorem 26.1 (Long division of polynomials). Let F' be a field, and let
fyg € Flx] with g # 0. Then there exist unique polynomials q,r € F[x] such
that f = qg + r and deg(r) < deg(g).

Remark: By definition, a nonzero polynomial h € F[z] has degree n if
h = apx™ + ...+ ag with a; € F and a, # 0. The degree of the zero

polynomial is defined to be —oo.

Proof for Example 2. We shall use the shortcut notation
[fl=f+1 for fe€F[x].

With this notation, the formulas for addition and multiplication can be
rewritten as [f] + [g] = [f + g] and [f] - [g] = [fg]. Observation 25.1 can be
restated by saying that

fl=1f1 = f-fel (% % %)
In other words, [f] = [f'] <= f'— f is divisible by 22 + 1.

Lemma 26.2. For every f € Rlx] there exist unique a,b € R such that
[f] = la+ bal.

Proof. We apply Theorem 26.1 with ¢ = x? + 1. Thus, we can write f =
(2 +1)g + r where deg(r) < deg(z? + 1) = 2. Hence deg(r) < 1, so we can
write 7 = a + bz for some a,b € R. Since f —r = (22 + 1)q € I, by (***)
we have [f] = [r] = [a + bz]. This proves the existence part of the Lemma.
The uniqueness of a and b follows from the uniqueness of the remainder in
Theorem 26.1. [l

Lemma 26.3. The equality [x]> = —[1] holds in R/I.

Proof. This is because [z]> — (—[1]) = [#?] + [1] = [2* + 1] = [0] (since
2 +1€l). O



We are now ready to prove that R/I and C are isomorphic as rings.
Define a map ¢ : C — R/I by
o(a+bi) = [a+ bz] for all a,b € R

We claim that ¢ is a ring isomorphism.

1. ¢ is well defined since every complex number is uniquely written as
a + bi with a,b € R.

2. Next we claim that ¢ is bijective. This follows directly from Lemma 26.2:
the existence part of Lemma 26.2 implies that ¢ is surjective, and the unique-
ness part of Lemma 26.2 implies that ¢ is injective (verify the details).

3. Next we check that ¢ preserves addition: for every a,b,c,d € R we
have

o((a+bi) + (c+di)) = p((a+c)+ (b+d)i) =[(a+c) + (b+ d)x] =
[(a+bx) + (c+ dx)] = [a + bx] + [c + dx] = ¢(a + bi) + o(c + di).

4. Finally, we check that ¢ preserves multiplication. This is a bit trickier

and uses Lemma 26.3. For every a, b, c,d € R we have

o((a+bi) - (c+di)) = p(ac — bd + (ad + be)i) = [ac — bd + (ad + be)x]
while

w(a + bi)p(c+ di) = [a+ bzx]lc + dx] = [(a + bx)(c + dz)] =

lac + (ad + be)x + bdz?] = [ac + (ad + be)z] + [bd][x?].

Since [2?] = [#]?> = —[1] by Lemma 26.3, we have
[ac+ (ad+be)x] + [bd][z?] = [ac+ (ad+be)x] —[bd][1] = [(ac—bd)+ (ad+bc)x].
Thus, ¢((a+ bi) - (c+ di)) = p(a + bi)p(c + di).

Combining 1-4, we conclude that ¢ is a ring isomorphism. ([l

Another way to prove the isomorphism in Example 2 is by using FTH for

rings which is formulated below.

Definition. Let ¢ : R — S be a ring homomorphism. The set Kery =
{r € R:¢(r) =0g} is called the kernel of ¢.

Theorem 26.4 (FTH for rings). Let R and S be commutative rings and
p: R— S aring homomorphism. Then

(i) Kerp is an ideal of R

(ii) The quotient ring R/Ker ¢ is isomorphic to ¢(R).

Proof. Part (i) is an easy exercise, and part (ii) is proved similarly to FTH
for groups. O
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Exercise: Define the map ¢ : R[z] — C by ¥(f) = f(i). Thus, 9 is the
evaluation map which sends every polynomial f € R[z] to its value at z = 1.
Prove that 1 is a surjective ring homomorphism and Kerv = (22 + 1)R][z]
and deduce that R[x]/(2% + 1)R[x] = C using FTH.

Example 3: Again let R = R[z] and I = (22 — 1)R[z]. Prove that the

quotient ring R/I has zero divisors and therefore cannot be a field.

Proof. We will use the same general notations as in Example 2: [f] = f+ 1
for f € R. Consider the elements a = [z — 1] and b = [x + 1] of R/I. Then
a # [0] since z — 1 ¢ I (as 2% — 1 does not divide = — 1) and similarly b # [0]
since z + 1 € I. On the other hand, ab= [z — 1]z + 1] =[(z — 1)(z + 1)] =

[#2 — 1] = [0]. Therefore, a and b are both zero divisors. O

Definition. If A and B are rings, their direct sum A & B is defined as
follows: as a set A@® B = {(a,b) : a € A,b € B}, and ring operations on

A & B are defined componentwise:
(al, bl) + (a2, bg) = ((11 + a9, b1 + b2) and ((Ll, bl) . (CLQ, b2) = (alag, blbz).
The following facts are easy to check:

(i) The zero element of A @ B is the pair (04,0p).
(ii) If A and B are both commutative, then A @ B is also commutative
(iii) If A and B are both rings with unity, then A@® B is also a ring with
unity, and the unity of A @ B is the pair (14, 15).

Exercise: Prove that the quotient ring R/I = R[z]/(z?> — 1)R[z] from
Example 3 is isomorphic to R & R.



