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1 Introduction

This course provides an introduction to conceptual and axiomatic mathe-
matics, the writing of proofs, and mathematical culture, with sets, groups
and knots as the main topics.

Here is a rapid overview of the three main topics we will consider.

1.1 Set theory

We will start with the rock–bottom foundations of mathematics, and learn
how to count, avoid paradoxes and show there are different sizes of infinity.

Notation. Here are some basic sets (of numbers) we are all familiar with:

• N = {0, 1, 2, 3, . . .} denotes the natural numbers;

• Z = {. . . ,−2,−1, 0, 1, 2, . . .} denotes the integers;

• Q = {p/q : p, q ∈ Z, q 6= 0} denotes the rational numbers;

• R denotes the real numbers, x = n+ 0.x1x2x3 . . ., which include π,
√

2,
etc.; and

• C = {x+ iy : x, y ∈ R} denotes the of complex numbers.
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It is also useful to have shorthand notation for the set of positive elements:
N+ = Z+ and R+.

The subset of elements of A that have a multiplicative inverse in A are
usually denoted by A∗. Thus C∗, R∗ and Q∗ are obtained from C, R and Q
by discarding the single element x = 0. On the other hand, Z∗ = {±1}.
Counting. But what is 3? One answer: 3 is 3 firetrucks without the
firetrucks. In other words, numbers are abstractions of the idea of cardinality.
We will see later how to inductively define all these notions using set theory.

Infinite sets. There are many equivalent definitions of an infinite set: A
set A is infinite if it is:

(a) Not bijective to a natural number.
(b) Contain a copy of all the natural numbers.
(c) Bijective to a proper subset of itself (Hilbert’s Hotel).

The set of all natural numbers, all integers, all even numbers, etc. are all
the same size.

Theorem 1.1 |R| > |Z|.

Is there anything in between? This question has no answer! (It is indepen-
dent.)

Critique. The idea of infinity is now commonplace in mathematics, but it
was not always the case. Gauss rejected the idea of a completed infinity like
N (as opposed to a potential infinity, like arbitrarily large numbers).

One might think that the Greeks required infinity, because they worked
with lines and lines have infinitely many points. But in fact it is a profoundly
modern idea, and a controversial one, to say that a line consists of the set
of points on it. A more geometric point of view is that lines and points are
primitive or atomic notions. A point can be on a line (incident to a line), but
it is absurd (?) to imagine a continuous object like a line to be an amalgam
of individual points.

1.2 Group theory.

A group is an algebraic structure that captures the idea of symmetry without
an object.

Informally, a set G is group if we can form a · b, there is an element 1 ∈ G
such that 1 · a = a · 1 = a, and there exist inverses: a−1 · a = 1.

Examples:
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1. R∗, Z. The integers under multiplication are not a group.

2. The symmetries of a triangle.

3. The advancing of a clock by one hour. H12 = 1. If we allow flipping
the clock over, then FH = H11 = H−1.

4. The symmetries of a cube.

5. Permutations of 4 objects, drawn as wiring diagrams. The inverse is
the mirror image. There are 24 elements to this group.

6. The cube also has 24 symmetries. It has 6 faces, 12 edges, 8 vertices.
Is it an accident that these all divide 24?

7. The rhombic dodecahedron has 24 symmetries too. But it has 12 faces,
24 edges and 14 vertices. How is the 14 possible?

Cultural asides: The rhombic dodecahedron is the three–dimensional
analogue of the hexagon, i.e. it is the Voronoi cell for the densest
possible sphere packing; compare honeycombs.

The Euler characteristic, V −E+F , is 2 for these and all other convex
polyhedra (and, more generally, subdivisions of the 2-sphere).

8. Further examples of nonabelian groups and subgroups. Parallel park-
ing. Slide puzzle. Quantum mechanics, non–commuting numbers and
quantum computing.

1.3 Knot theory

A knot is a closed loop in space, considered as a flexible object that cannot,
however, pass through itself. The study of knots is part of the field of topology.

It is tricky to show that there is more than one type of knot! (There is a
magic trick for tying a trefoil. We will prove that this trick is impossible!)

Are there infinitely many knots? Can the trefoil be converted to a figure
eight? How can you tell knots apart?

One of the goals of this course is to show that a group can be associated
to a knot, and group theory can be used to tell knots apart. This is the basic
idea behind algebraic topology.
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1.4 Logic, proofs, basic concepts

Before studying set theory we make some remarks about logic and proofs,
assuming informally that we already know a certain amount of mathematics.

Logic.

1. First order logic. Truth table for AB, A+ B, A+B, AB, A ⇐⇒ B,
A =⇒ B, B =⇒ A.

2. False =⇒ anything. If 1 + 1 = 3, then 15 is a prime number. If
Lincoln is still alive, then Trump is Clinton’s brother, and 21 is prime.

3. Contrapositive: P =⇒ Q is equivalent to Q =⇒ P . Example: if
n ∈ Z is a square, then n ≥ 0. Equivalently, if n < 0, then n is not a
square.

4. The converse of P =⇒ Q is Q =⇒ P . For example, all square in
Z are positive, but the converse is false: not all positive numbers are
squares.

5. Tautology: an NP–complete problem. A tautology is a logical formula
that is true no matter what values are assigned to its variables. As an
example, we have

B + AC + C + ABC = 1.

A nice way to check this is with a Karnaugh map.

No polynomial–time algorithm is known to determine if a given expres-
sion is a tautology. Common belief is that none exists. This is one of
the 6 remaining Clay Prize Problems, each of which is worth a million
dollars.

6. Quantifiers: (∀x ∈ A)P (x); (∃x ∈ A)P (x). Examples: ∀x ∈ R, x2 ≥ 0;
∀i, j ∈ Z, i + j = j + i. Note: ∃x ∈ R : x2 = 2. Uniqueness is not
asserted! (Sometimes people use ∃!x for uniqueness.)

7. Negation of quantifiers: ∼ (∀x)P (x) is the same as (∃x) ∼ P (x); simi-
larly for ∃.

8. Example: (∀x ∈ R)(∃y ∈ R) : xy = 1. False (correct if we use R∗).
The negation is true: (∃x) : (∀y) xy 6= 1. In fact, just take x = 0.
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A

B

C

B+AC+C+ABC = 1
__ _

Figure 1. Verifying a tautology. Each of the 8 cells gives one of the possibly
assignments of T/F to A,B,C.

9. General principle: to establish “If A then B”, or “For all x satisfying
A, we have B”, you must give a proof. To disprove a statement of that
type, you must give a counterexample. (E.g. x = 0 above.)

Linguistic fallacies. It is an interest exercise to listening for misused logic
in common langauge, e.g. in advertising.

A typical linguist fallacy is “All aspirin is not alike.” What the speaker
is trying to do is negate the statement “All aspirin are alike”. But they have
confused two inequivalent statements:

∼ (∀x)P (x) and (∀x)(∼ P (x)).

The correct negation of (∀x)P (x) is (∃x) ∼ P (x). The correct informal
statement is, “Some aspirin are different”.

Equivalence relations.

1. Ordered pairs and the product A×B. Relations.

2. Equivalence relations: the same thing can have many names. Example
on Z: a ∼ b if a− b is even.

3. The definition of Q by an equivalence relation on fractions. Why this
is beneficial (e.g. define addition).

4. The definition of Z/10. This forms a group under addition. What
about under multiplication?
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5. Equivalence relation: what is the rule behind the sequence 8, 5, 4, 9, 1,
7, 6, 10, 3, 2, 0? (Alphabetical order). Consider equivalence relation on
the numbers 0 – 10 of having the same first letter. It can be represented
as a directed graph: an arrow from a to b means (a, b) ∈ R.

6. Equivalence relations and sets that are not well-defined. Examples:

{x ∈ Z/10 : x is prime.} (Not well defined)
{x ∈ Z/10 : x can be represented by a prime.} (1,2,3,5,7,9)
{x ∈ Z/10 : x can be represented by infinitely many primes.}
(1,3,7,9)

The last is an important statement in number theory!

Induction. Principle of induction: if S ⊂ N satisfies 0 ∈ S and n ∈ S =⇒
(n + 1) ∈ S, then S = N. Alternatively, if we can prove n + 1 ∈ S once we
know {0, 1, . . . , n} ⊂ S, then S = N. Here are some examples of its use.

For all n ∈ N, S(n) = 1 + 2 + · · ·+ n = P (n) = n(n+ 1)/2. Proof: True
for n = 0, 1 and S(n+ 1) = S(n) + 1 which implifies to P (n+ 1).

Every n > 1 is a product of primes. Proof: True for n = 1 (the empty
product) and n = 2 (which is prime). Suppose true up to n. If n+1 is prime,
then we are done; otherwise, n+ 1 = rs with r, s ≤ n, and each of r and s is
a product of primes, so n+ 1 is as well.

Proof by induction that people can live arbitrarily long: let P (n) be the
assertion: it is possible to live n microseconds. Then P (n) =⇒ P (n + 1).
(?)

The (Google) job interview. Each candidate holds a playing card to his
forehead, so the others can see it but he cannot. Each time the second hand
on the clock crosses 12, each candidates must call out if he or she can deduce
that the card they hold is the ace of spaces.

But in fact all the cards are aces of spades!
The examiner tells them all, before they start, “At least one of you holds

an ace of spades.”
(1) What happens? (2) What did the examiner tell them that they did

not already know?
(There are many variations on this theme.)

Proof by contradiction. One frequent use of the contrapositive is called
proof by contradiction.
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Example: there are infinitely many prime numbers. Proof (Euclid). Sup-
pose not. Let p1, . . . , pn be all the primes, and consider N = p1 · · · pn + 1.
Then N must be divisible by some prime, but it leaves a remainder of 1 when
divided by any pi. This contradicts the fact that any N > 1 is a product of
primes.

Logically, what we are doing to prove A is we show that A =⇒ B where
B is false. The only way this formula can hold is if A is true; equivalently,
B =⇒ A and thus A is true.

This method of proof is similar to tracing down a variation in a game of
chess. I.e. we suppose our opponent ‘plays A’, and show we can win in that
case.

Coda: Writing proofs. When you hit a home run, you just have to step
once on the center of each base as you round the field. You don’t have to
circle first base and raise a cloud of dust so the umpire can’t quite see if you
touched the base but will probably give you the benefit of the doubt.

2 Set theory

We are now ready to investigate the first of our three topics, the theory
of sets. Set theory forms the foundation of all mathematics, hence its cen-
tral importance. It is also provides the basic language in which all rigorous
mathematical disciplines can be expressed.

2.1 The axioms of set theory.

Here is a quick summary of all the axioms we will need.

• Axiom I (Extension). A set is determined by its elements. That is, if
x ∈ A =⇒ x ∈ B and vice-versa, then A = B.

• Axiom II (Specification). If A is a set then {x ∈ A : P (x)} is also a
set.

• Axiom III (Pairs). If A and B are sets then so is {A,B}.

• Axiom IV (Unions). If A is a set, then
⋃
A = {x : ∃B,B ∈ A & x ∈ B}

is also a set.
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• Axiom V (Powers). If A is a set, then P(A) = {B : B ⊂ A} is also a
set.

• Axiom VI (Infinity). There exists a set A such that 0 ∈ A and x+1 ∈ A
whenever x ∈ A.

• Axiom VII (The Axiom of Choice). For any set A there is a function
c : P(A)− {∅} → A, such that c(B) ∈ B for all B ⊂ A.

The two axioms we have omitted are more technical: the Axiom of Foun-
dation (or Regularity) and the Axiom of Replacement. We will not need or
use them, but for the record we briefly explain them.

The Axiom of Replacement says that if we can define, for every set a, a
new set f(a), then for any set A, f(A) = {f(a) : a ∈ A} is a set. (As an
example, we might have f(a) = P(A).)

The Axiom of Foundation says that there is no sequence of sets xi such
that xi+1 ∈ xi for all i. Thus every set is ‘founded’ on the empty set.

Suppose you think of a set A as defining a game. Player 1 must choose
x1 ∈ x0 = A, then player 2 must choose x2 ∈ x1, and so on. The game ends
when a player has no move, i.e. when xi = ∅. Then Foundation insures that
the game always ends after finitely many moves, no matter what set we start
with.

This means that one can think of a set as a branching network of 1-way
streets. Every street leads to a dead end, but the number of streets can still
be huge, because infinitely many streets can leave a given intersection. (One
might even consider a set as a metaphor for life, choice and mortality.)

2.2 Discussion of the Axioms

To have a well–defined domain of discourse, the elements of sets are also sets.
The only primitive relation that can hold between sets is membership; that
is, for any two sets A and B we can ask if A ∈ B. More elaborate concepts
must be defined in terms of these. For example, the statement

A ⊂ B

means ∀x(x ∈ A) =⇒ (x ∈ B). Here the quantified variable x ranges over
all sets.
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Axiom I (Extension). A set is determined by its elements. That is, if
x ∈ A =⇒ x ∈ B and vice-versa, for all sets x, then A = B.

There is a subtle point in Axiom I: what does the conclusion, A = B,
mean anyway? In fact the idea of equality is a notion in logic rather than
set theory. It means that for any logical sentence P (x), P (A) has the same
answer as P (B). For example, if A = B, and A ∈ Y , then B ∈ Y .

Axiom II (Specification). If A is a set then {x ∈ A : P (x)} is also a set.
More precisely, this axiom asserts that given A and P (x), there exists a

unique set B such that x ∈ B iff x ∈ A and P (x) is true. We will use the
informal language ‘is a set’ in the sequel for this more precise notion.

Examples. The intersection of two sets is defined by

A ∩B = {x ∈ A : x ∈ B}.

Similarly, the difference is defined by

A−B = {x ∈ A : x 6∈ B}.

Thus R−Q = the irrationals; while Q− R = ∅.

{x ∈ Z : ∃y ∈ Z, y + y = x} = the even numbers.

{x ∈ Z : x/n ∈ Z ∀n > 0} = {0}.
{x ∈ Z : x2 < 0} = ∅.

The empty set exists. We provisionally assume that at least one set A
exists (later we will assume much more). Given that, we can now form

0 = ∅ = {x ∈ A : x 6= x},

but nothing else for sure. (E.g. A might be ∅.)
Odd perfect numbers as a set. A number n > 0 is perfect if it is the sum
of its divisors, other than n itself. Thus 6 = 1+2+3 and 28 = 1+2+4+7+14
are perfect. It is unknown if there is an odd perfect number. Nevertheless,
we can form the set

A = {n ∈ N : n is an odd perfect number}.

We just cannot decide whether this set is empty or not!
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The Barber of Seville; Russell’s paradox. If X = {A : A 6∈ A}, is
X ∈ X? Either answer leads to a contradiction.

In our axiom system, the set X cannot be formed, since A ranges in the
‘universe’ of all sets. Indeed, in our system there is no universe, i.e. there
is no set U that contains all sets. In fact, this paradox proves there is no
universe, for otherwise X would be a set.

One can think of the axioms in general as ways of reining in the size of
sets, to keep them from getting to large that paradoxes result.

One solution to the classic paradox — who shaves the barber of Seville?
— is of course that the barber is a woman. In the Gödel-Bernays theory, you
are allowed to form X, but X is not a set; it is called a class.

Historical aside: Frege and Russell. In a famous episode, Bertrand
Russell wrote to Frege, just as Vol. 2 of his Grundgesetze was about to go to
press in 1903, showing that Russell’s paradox could be derived from Frege’s
Basic Law V. The system of the Grundgesetze is thus inconsistent. Frege
wrote a hasty, last-minute Appendix to Vol. 2, deriving the contradiction
and proposing to eliminate it by modifying Basic Law V. Frege opened the
Appendix with the exceptionally honest comment:

Hardly anything more unfortunate can befall a scientific writer
than to have one of the foundations of his edifice shaken after the
work is finished. This was the position I was placed in by a letter
of Mr. Bertrand Russell, just when the printing of this volume
was nearing its completion.

(This letter and Frege’s reply are translated in Jean van Heijenoort 1967.)

Axiom III (Pairs). If A and B are sets then so is {A,B}.
This is our first axiom that allows us to make sets bigger. From this

axiom and ∅ = 0, we can now form {0, 0} = {0}, which we call 1; and we
can form {0, 1}, which we call 2; but we cannot yet form {0, 1, 2}.
Axiom IV (Unions). If A is a set, then⋃

A = {x : ∃B,B ∈ A & x ∈ B}

is also a set.
From this axiom and that of pairs we can form

⋃
{A,B} = A∪B. Thus we

can define x+ = x+1 = x∪{x}, and form, for example, 7 = {0, 1, 2, 3, 4, 5, 6}.
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Intersections. If A 6= ∅, we can define
⋂
A = {x : ∀B ∈ A, x ∈ B}. Since

A has at least one element B0, we have
⋂
A ⊂ B0 and thus the intersection

is a set. Note:
⋂
∅ is undefined!

Examples:
⋂
{A} = A,

⋂
{A,B} = A ∩B.

Axiom V (Powers). If A is a set, then

P(A) = {B : B ⊂ A}

is also a set.
We can also defined Pk(A) ⊂ P(A) to be the subsets B ⊂ A with exactly

k elements.
Examples: |P(52)| = 252, while |P5(52)| =

(
52
5

)
= 2, 598, 960. The latter

set can be thought of as the set of possible poker hands. Exactly 4 of these
are royal flushes.

Pascal’s triangle. This well–known figure is a convenient way of organizing
the coefficients of (1 + x)n, or equivalently the values of

(
n
k

)
. Each new row

is determined from the preceding one by adding together adjacent entries.
To explain this, note that Pk(n + 1) can be partitioned into the subsets

that contain n + 1, and those that do not. The first type of set has k − 1
elements from n, while the second type has k of them.

Thus
(
n+1
k

)
=
(
n
k−1

)
+
(
n
k

)
.

Axiom VI (Infinity) . There exists a set A such that 0 ∈ A and x+ 1 ∈ A
whenever x ∈ A.

For precision we emphasize that 0 = ∅ and x+ 1 = x ∪ {x}.
Definition of the natural numbers. Let us call a set A as above ‘induc-
tive’. The smallest inductive set is unique, and we refer to it as the set of
natural numbers:

N = {0, 1, 2, 3, . . .}.
Here is precise proof that the smallest inductive set is unique. First, given

A as provided by the Axiom, we can define

N =
⋂
{B ∈ P(A) : 0 ∈ B and x ∈ B =⇒ x+ 1 ∈ B}.

Now consider any other inductive set C. Then B = C ∩ A is also inductive,
so N ⊂ C by the definition above. This is what is means to say N is the
smallest inductive set.

Justifying induction. The principle of induction now follows from the
definition of N. Namely, we have seen that the only inductive subset of N is

11



N itself. On the other hand, if we know P (0) and we know that P (n) =⇒
P (n+ 1), then

A = {n ∈ N : P (n)}

is an inductive subsets of N, so it is equal to N.

Other inductive sets. In Axiom VI, there are in fact other possibilities
for A besides N. For example, if we let ω = N (this is the standard notation
for N as an ordinal), then we can form the inductive set

2ω = {0, 1, 2, . . . , ω, ω + 1, ω + 2, . . .}.

We can similarly form nω, ω2, ωω, and an infinite tower of ω’s. These count-
able ordinals have a rich structure worth a separate investigation.

Negative numbers? Note that there is no set x such that x + 1 = 0,
since x+ 1 is always nonempty. While it is tempting to thinking of Z as an
inductive set, this is not quite correct, since the notion of addition in Z is
necessarily different (at least if 0 is represented by the empty set set).

Arithmetic. We can proceed to define, by induction, the usual arithmetic
operations on N. For example, we have already define x+ 1. Having defined
x+ n, we let x+ (n+ 1) = (x+ n) + 1. Similarly, we define 2x = x+ x and
(n+ 1)x = nx+ x.

Ordering numbers. We can now also define, for i, j ∈ N, i < j iff i ∈ j.
What is i ∩ j? i ∪ j?

2.3 Functions and relations

We are now in a position to develop most mathematical notions. To proceed
systematically, we start with the definition of A×B.

Ordered pairs. The ordered pair of two sets a and b is defined by

(a, b) = {{a}, {a, b}}.

Then (a, b) = (a′, b′) iff a = a′ and b = b′. The product of two sets is defined
by

A×B = {(a, b) : a ∈ A, b ∈ B}.

Note that A×B ⊂ P(P(A ∪B)), so it is a set.

Set theory as a programming language. The point of the definitions of
N and (a, b) is not so much that they are natural or canonical, but that they
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work. In other words set theory provides a very simple language in which
the rest of mathematics can be implemented.

Relations and graphs. A relation R between A and B is a subset R ⊂
A×B.

A relation can be visualized as a directed graph with vertices A ∪B and
with an edge from a to b exactly when (a, b) ∈ R.

Examples: The relation i < j on {0, 1, 2} is a directed triangle. The
relation b|a on {1, 2, . . . , 10}.

A relation is reflexive if there is a loop at each vertex; it is symmetric if all
edges go in both directions; it is an equivalence relation if each component is
a complete graph. This is a good way to visualize the fact that an equivalence
relation is the same as a partition.

Functions. A function f : A→ B is a relation between A and B such that
for each a ∈ A, there is a unique b such that (a, b) ∈ f . We write this as
b = f(a). Functions are also called maps.

The set of all f : A→ B is denoted BA. Why? How many elements does
35 have? (Answer: 243.)

A function is surjective (or onto) if f(A) = B; it is injective (or one–to–
one) if f(a) = f(a′) =⇒ a = a′.

A function is bijective if it is both injective and surjective.

Graphs. Traditionally a function f : [0, 1]→ [0, 1] was given by a formula,
such as f(x) = x2, and then one can draw its graph as a subset of the
square. From a modern perspective, f is the same as its graph, and any
graph defines a function. One can also picture relations directly by their
‘graphs’. See Figure 2 for some examples.

Composition. We define (f ◦ g)(x) = f(g(x)).
If f : A→ B is bijective, then there is a unique map g : B → A such that

g ◦ f(x) = x∀x ∈ A. This map is called f−1. (We will later see that there is
a map with the same name that sends B into P(A) and is defined for all f .)

Examples. Consider the map f : A→ A given by f(x) = x2, for A = N, Z,
R+ and C. It is injective for N, bijective for R+, and surjective for C. It is
neither injective nor surjective on Z.

The function sin : R → [−1, 1] is surjective, but not injective. Its re-
striction, sin : [−π/2, π/2] → [0, 1], is bijective. Its restriction, sin : [0, 1] →
[−1, 1], is injective but not surjective.

Multivalued functions. It is sometimes useful to think of a number such
as 9 as having 2 square-roots, 3 and −3. This notion is nicely capture by
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Figure 2. Relations on [0, 1]× [0, 1]: the graph of y = 2xmod 1; y ≤ x; and an
equivalence relation.

making the square–root into a relation:

R = {(x, y) : y2 = x} ⊂ R× R.

One can treat a relation as a set–valued function, defined by

R(a) = {b : (a, b) ∈ R}.

Then for x ≥ 0, R(x) = {+
√
x,−
√
x}, where as usual

√
x ≥ 0; while

R(x) = ∅ for x < 0.
From this perspective, the square–root is like a subroutine that returns a

list.

Different sets that are the same. There is a natural bijection between
A× A and A2.

There is a natural bijection between P(A) and 2A.
It is common in mathematics (outside of set theory and logic) to use these

(and many other) identifications without mention!

Equivalence relations. Given an equivalence relation R on a set A, we can
now give a precise meaning to the set A/R where any two points x, y ∈ A
with xRy are identified. Namely, for any x ∈ A we define its equivalence
class by

[x] = {y ∈ A : (x, y) ∈ R} ∈ P(A).

The fact that R is an equivalence relation shows that x ∈ [x] and that for
any x, y, either [x] = [y] or [x] and [y] are disjoint.
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We can now define:

A/R = {[x] : x ∈ A} ⊂ P(P(A)).

We have a natural surjective map π : A → A/R sending x to [x], such that
π(x) = π(y) iff x is equivalent to y.

The collection P = A/R forms a partition of A. Conversely, any partition
P of A (into nonempty, disjoint sets) determines an equivalence relation,
namely:

R =
⋃
{B ×B : B ∈ P}.

Example: Z/10. This set consists of 10 subsets of Z, namely 10Z, 1 + 10Z,
. . . 9 + 10Z.

Is it true that the map π : Z→ Z/10 sends x and y to the same point iff
they have the same last digit? Not quite: π(−3) = π(7).

Constructing the integers. We have now built up the natural numbers
via set theory, and can proceed to the real numbers, functions on them, etc.,
with everything resting on the empty set.

For example, we can define Z to be a quotient of N. The idea is that every
n ∈ Z can be thought of as a difference of two positive numbers, n = b− a.
The only issue is that these two numbers are not unique; but if n = b′ − a′,
then a + b′ = a′ + b. Using this condition to define an equivalence relation
on pairs (a, b), we then let:

Z = N× N/ ∼ .

Similarly, rational numbers are equivalence classes of pairs of integers, and
real numbers can be described in terms of raitonal numbers by Dedekind
cuts.

As an exercise, let us see how to define multiplication in Z: we have

(a− b)(c− d) = ac+ bd− bc− ad,

so we define
(a, b) · (c, d) = (ac+ bd, bc+ ad).

One should verify that the equivalence class on the right only depends on
the equivalence class on the left.

P(X) as an algebra. For a more complete discussion of functions, it is
useful to observe that the power set comes with lots of additional structure.
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First, we remark that Z/2 has natural laws of addition and multiplication.
The multiplicative laws are obvious, and for addition the main thing to keep
in mind is that 1 + 1 = 0.

Mimicking this idea, we can give P(X) laws of addition and multiplica-
tion. The law of multiplication is easy:

AB = A ∩B.

Note that 1 = X serves as the multiplicative identity; also, observe that
A2 = A for all A ∈ P(A).

Addition is less obvious. It is defined using the symmeteric difference:
that is,

A+B = (A ∪B)− (A ∩B).

In different notation, one also writes:

A+B = A4B = (A−B) ∪ (B − A).

Note that 0 = ∅ satisfies 0 + A = A, and that A + A = 0, that is, −A = A.
Also, X + A = the complement of A, i.e.

X + A = X − A

where the term X − A means the difference of sets.
(Why not set A + B = B ∪ A? Then we would have A + A = A; which

gives A = 0, if we have cancellation. Our definition permits cancellation,
while A ∪B does not.)

It can now be checked that these operations make P(X) into a ring; for
example, A(B + C) = AC + AC. In fact P(X) is an algebra over the field
with 2 elements, F2 = Z/2.

The source of this algebraic structure is clear if we consider the isomor-
phism

χ : P(X)→ 2X ,

denote the map that sends A to its indicator function χA : X → F2. These
functions can be added and multiplied since they take values in a field, and
we get the laws of addition and multiplication just formulated from the laws
of addition and multiplication on F2.

Functions, unions and intersections. Now let f : X → Y be a function.
We set f(A) = {f(a) : a ∈ A}. In this way we obtain a map f : P(X) →
P(Y ).
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Is this map a ring homomorphism?
In general, f(A∩B) 6= f(A)∩f(B). We only have f(A∩B) ⊂ f(A)∩f(B).

However, if f is injective, then equality holds. We always have, however,
f(A ∪B) = f(A) ∪ f(B).

If f : A → B is a function, for any subset X ⊂ B we define f−1(X) =
{a ∈ A : f(a) ∈ X}. Thus we have f−1 : P(B)→ P(A). This map preserves
intersection and unions: e.g. f−1(X∩Y ) = f−1(X)∩f−1(Y ). Thus we obtain
a ring homomorphism:

f−1 : P(Y )→ P(X).

Abusing notation, one also writes f−1(b) for f−1({b}).
The ubiquity of f−1. The fact that f−1 preserves set-theoretic operations
means that a good theory of maps often turns on properties of f−1 rather
than f .

For example, in topology a continuous function can be defined as one
such that f−1(U) is open for every open set U . Similarly, in real analysis a
measurable function is one such that f−1(U) is measurable for every open
set U . In differential topology, we find that forms pullback as well, that
d(f ∗ω) = f ∗(dω), etc.

Another reason for this ubiquity is that functions naturally pull back. In
particular, the indicator functions satisfy

χA ◦ f = f ∗(χA) = χf−1(A).

This pullback operation preserves the algebra structure of the space of func-
tions. That is, it is obvious that:

(χA ◦ f) · (χB ◦ f) = (χA ·χB) ◦ f and (χA ◦ f) + (χB ◦ f) = (χA +χB) ◦ f.

Aside: Category theory. A pervasive modern perspective in mathematics
is that morphisms between mathematical objects are just as important as the
object themselves. This perspective is made precise by category theory. In
the case at hand, the objects are sets, and the morphisms are maps.

In particular, two objects in set theory are isomorphic if there is a bi-
jection between them. This means that they are essential the same set, but
with (possibly) different names for its elements. We now make this discussion
more precise.
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2.4 Cardinality and the Axiom of Choice

We say sets A and B have the same cardinality if there is a bijection between
A and B. We will write this relation as |A| = |B|. It is an equivalence
relation.

Finite sets. A set A is finite iff there is a bijection f : A → n for some
n ∈ N. That is, A is finite iff |A| = |n| for some n ∈ N.

Theorem 2.1 (Pigeon-hole principle) If A is finite, then any injective
map f : A→ A is surjective.

Proof. By induction on |A| = n. It suffices to treat the case where A = n;
and the case A = 0 is obvious, because any map to the empty set is surjective.
Suppose we know the pigeon–hole principle for A = n, and we wish to prove
it for A = n + 1. Let f : (n + 1) → (n + 1) be an injective map, and let
x = f(n). We can the find a permutation σ of n + 1 — that is, a bijection
— such that σ(x) = n. Then the map σ ◦ f sends n ⊂ n+ 1 into n. Clearly
σ◦f |n is injective, and hence f(n+1) contains n by our induction hypothesis.
On ther other hand, n = σ(f(x)), so f is surjective as well.

Here is an ‘obvious’ but important result that follows.

Corollary 2.2 Given n,m ∈ N, we have |n| = |m| if and only if n = m.

Proof. If n > m and we have a bijective map f : n → m, then we can
compose it with the proper inclusion m ⊂ n to get a violation of the pigeon–
hole principle.

Application: inversion mod p. Here is a typical use of the pigeon–hole
principle to prove a result that is not at all obvious.

Theorem 2.3 For any prime p and a > 0 not divisible by p, there is an
integer b such that ab = 1 mod p.

(I.e. b = 1/a).

Proof. The map b 7→ ab is 1− 1 on (Z/p)∗, so it is onto. (If ab = a′bmod p,
then p(a− a′)b, so p|(a− a′) since gcd(b, p) = 1.)
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Example: 1/10 = 12 mod 17; in fact 10 ∗ 12 = 120 = 7 ∗ 17 + 1.

Infinite sets. A set is infinite iff it is not finite. The next result is very
similar to Corollary 2.2.

Theorem 2.4 N is infinite.

Proof. Otherwise, there would for some n be an injective map N ↪→ n,
and hence an injective map n + 1 ↪→ n. This contradicts the pigeon–hole
principle.

The next theorem was at one time considered shocking.

Theorem 2.5 |N| 6= |R|.

Proof. Suppose x(n) is a list of all real numbers, and write their fractional
parts as

{xn} = 0.x1(n)x2(n) . . .

in base 10. Now choose any sequence of digits yi with yn(n) 6= xn(n). We
can also arrange that yi keep changing, e.g. they are not all equal to 0 or 9
from some point on. Then

y = 0.y1y2y3 . . .

disagrees with xn in its nth digit, so it is not on the list.

Note that we have finessed the objection that 0.9999 . . . = 1.0000.

Theorem 2.6 (Cantor) A and P(A) do not have the same cardinality.

Proof. Given f : A → P(A), let B = {a : a 6∈ f(a)}. Suppose B = f(a).
Then a ∈ B iff a 6∈ B. This is a contradiction so f does not exist.

What is a sequence? We remark that it is common and natural to think
of AN as the set of sequences (a0, a1, . . .) with ai ∈ A. This is just another
way of presenting a the function f : N→ A with f(i) = ai.

If we think of P(N) ∼= 2N as sequences (ai) of binary digits, then the proof
that |N| 6= |P(N)| is almost the same as digit diagonalization.

Corollary 2.7 There are many different sizes of infinity.
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The real numbers. We will see below that |P(N)| = |R|. Thus the real
numbers are an example of the ‘second kind’ of infinity, the continuum. In
any case, it is easy to see, using decimal sequences of 0’s and 1s, that |[0, 1]| ≥
|P(N)|.
The Axiom of Choice. Next we show that every infinite set contains a
copy of N. The proof uses (and requires) a new axiom.

Axiom VII (The Axiom of Choice). For any set A there is a function
c : P(A)− {∅} → A, such that c(B) ∈ B for all B ⊂ A.

In concrete cases it is possible to find explicit choice functions. For the
natural numbers, we can let c(A) = min(A). For the rational numbers, we
can take this ‘simplest’ rational number x = p/q in A, say with q minimal,
|p| minimal given q, and with x ≥ 0 to break ties.

Theorem 2.8 A is infinite iff there is an injective map f : N→ A.

Proof. If A is finite then any subset of A is finite, so there is no injection of
N into A.

Now assume A is infinite; we will construct f . Pick some a ∈ A. Then
define, by induction, f(0) = a and f(n+ 1) = c(A− {f(0), . . . , f(n)}). The
resulting map is injective by construction.

Corollary 2.9 (Cantor’s definition of infinity) A set A is infinite iff there
exists a map f : A→ A which is injective but not surjective.

Proof. Use the map f(n) = n+ 1 on a copy of N inside A, and set f equal
to the identity elsewhere. Then f is injective but not surjective.

Hilbert’s hotel. The set N (or any infinite set) serves to illustrate Hilbert’s
hotel. The hotel is full, and yet but just shuffling the residents around we
can create an empty room.

Note that there is a bijection between N and any infinite subset of N,
such that the odd numbers or the squares.

There was once a University with a long line of offices had become a
little top–heavy: the professors could only occupy the offices with numbers
1, 4, 9, 16, . . . , n2 . . . because the rest were taken up by the Deans. Outraged,
the president required that each professor be assigned his own Dean, and the
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rest fired. The Dean in office n was assigned to the professor in room n2,
and now the Dean’s were fully employed as personal assistants to professors.

No one had to be fired. In fact the professors in offices 16, 81, 256, ...
were still left without assistants, so more Deans were hired.

Other applications of AC. Every vector space has a basis. The Hahn–
Banach theorem. Every set can be well–ordered. Choice of coset representa-
tives for G/H. Existence of non-measurable sets.

The Banach-Tarski paradox. As a consequence of AC, you can cut a
grapefruit into 5 pieces and reassemble them by rigid motions to form 2
grapefruits. (Now you’ve gone too far.)

Explicit choice for Q and R. One can construct an explicit choice function
for subsets of Q, by choosing the rational number of ‘least complexity’. No
one has ever found a concrete choice function for subsets of R.

Relative size. It is natural to say |A| ≥ |B| if there is a surjective map
from A to B. But it is equally natural to require that there is an injective
map from B to A. The result above is used to show these two definitions are
equivalent.

Small point: if |B| = 0 then the surjective definition does not work.
Let us say |A| ≤ |B| if

(1) there is an injection f : A ↪→ B; or
(2) there is a surjection g : B � A, or A = ∅.

Theorem 2.10 (1) and (2) are equivalent.

Proof. Given the inclusion f we obtain from f−1 a surjection from f(A)
back to A, which we can extend to the rest of B as a constant map so long
as A 6= ∅. Conversely, using the Axiom of Choice, we take f to be a section
of g, i.e. set f(a) = c(g−1({a})).

Theorem 2.11 If |A| is finite and |B| ≤ |A| then B is finite.

Proof 1. If B is infinite, then there exists an injective map N→ B, so there
is an injective map N→ A, so A is infinite.

Proof 2. We can assume B is nonempty. If A is finite then we have an
n ∈ N and a bijective map f : n→ A and hence a surjective map F : n→ B
(send the points of A − B to a single point of B). Then we can consider
the least n for which such a surjection exists. For the least n, F must be
bijective.
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Theorem 2.12 (Schröder-Bernstein) If |A| ≤ |B| and |B| ≤ |A| then
|A| = |B|.

Proof. We will assume A and B are disjoint — this can always be achieved,
if necessary, by replacing A,B with A× {0}, B × {1}.

Suppose we have injections f : A → B and g : B → A. Then we obtain
an injection

F = f ∪ g : A ∪B → A ∪B.
To clarify the proof, say F (x) is the child of x, and x is the parent of F (x).
Since F is injective, a child can have only one parent, and every element of
A∪B is a parent. However some parents are no-one’s child; let us call them
godparents.

For any x ∈ A∪B, either x is descended from a unique godparent (possibly
x itself), or x has no godparent; it has an infinite line of ancestors (or x is
descended from itself.)

Now partition A into 3 pieces, A0, AA and AB. A0 is the elements x ∈ A
with no godparent; AA consists of those x whose godparent is in A; and AB
is those whose godparent is in B. Similarly define B0, BA, BB.

There is a bijection A0 ↔ B0 defined by sending a to its child F (a). It is
injective because F is, and it is surjective because every x ∈ B0 has a parent,
which must lie in A0.

There is a bijection AA ↔ BA defined by sending each a ∈ AA to its
child F (a). The inverse map sends children to their parents. There are no
godparent in BA, so the inverse is well-defined.

Similarly there is a bijection AB ↔ BB, sending a ∈ A to its parent
F−1(a) in BB. Putting these three bijections together shows |A| = |B|.

Application: |Z| = |N. Clearly N ⊂ Z, while we can inject Z into N by
f(x) = 10x + sign(x), where sign(0) = 0 and sign(x) = x/|x| otherwise. By
the Schröder–Bernstein theorem, we have a bijection between Z and N.

Historical aiside: Brouwer’s skepticism. It is interesting that even this
simple and useful result, whose proof does not use the axiom of choice, was
one controversial.

Brouwer did not use the Cantor–Bernstein theorem, which ac-
cording to him ‘must be regarded as an open problem ... but the
proof of this theorem is considered inconclusive by many mathe-
maticians’, hence he defined ‘as large as’ by ‘A can be injected
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into B and B can be injected into A’.
—Dirk van Danlen, LEJ Brouwer, p. 237.

Countable sets. We say A is countable if |A| ≤ |N|. Finite sets are
countable.

Theorem 2.13 If A is countable and infinite, then |A| = |N|.

Proof. Infinite implies |N| ≤ |A|, and countable implies |A| ≤ |N|; apply
SB.

Theorem 2.14 The product N2 is countable; that is, |N2| = |N|.

Proof. Define a bijection f : N2 → N by f(n) = (a, b) where 2a(2b+ 1)− 1.

Alternatively: it is obvious that |N| ≤ |N2|, and there are many injections
f : N2 → N, e.g. f(a, b) = 10a(10b + 1). The number a is the number of
trailing zeros in the decimal expansion of n = f(a, b). We can then apply
Schröder–Bernstein to conclude |N| = |N2|.

Corollary 2.15 A countable union of countable sets is countable.

Proof. We will treat the case of a countably infinite union of nonempty,
countable sets; the other cases are easier. Let A =

⋃
i∈NBi, and let fi :

N → Bi be a surjection, certifying the countability of Bi. We can then If
X =

⋃
Ai we can send the jth element of Ai to (i, j) ∈ N× N.

Examples.

1. The set of things that can be described in words is countable. Thus
most real numbers have no names.

2. The integers Z can be constructed from 2× N; they satisfy |Z| = |N|.

3. The rationals Q are Q = Z×Z∗/ ∼, where (a, b) ∼ (c, d) if ad− bc = 0.
The Q is countable.

4. The ring of polynomials Z[x] is countable.
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Corollary 2.16 Most real numbers are transcendental.

Warning. While a countable sum of countable sets is countable, the same
is not true for products. Indeed, 2N is a countable product of finite sets, but
it naturally isomorphic to P(N).

Uncountable sets. Now let us examine some larger infinite sets.

Theorem 2.17 |R| = |P(N)|.

Proof. We can associate to each subset A ⊂ N a unique real number defined
in base 10 by

xA = 0.x1x2x3 . . . =
∑
n∈A

10−(n+1),

where xn = 1 if n ∈ A and zero otherwise. Conversely, a real number x is
uniquely determined by the set

Ax = {y ∈ Q : y < x} ⊂ Q.

Thus |P(N)| ≤ |R| ≤ |P(Q)| = |P(N)|.

Peano curves. The next result was, again, considered shocking at one time.

Theorem 2.18 We have |R2| = |R|.

Proof. Using the preceding results, we have

|R2| = |P(N)2| = |P(2× N)| = |P(N)| = |R|.

In fact one can find a continuous surjective map

f : [0, 1]→ [0, 1]2.

That is, a sufficiently erratic ant can walk through every point in San Marco
square in the course of a day.

Still larger infinite sets. A third level of infinity is still within reach of
our imaginations.

24



Figure 3. Approximations to a Peano curve.

Theorem 2.19 We have |RR| = |P(P(N))|. Thus the functions on R rep-
resent a third kind of infinity.

Proof. We use the fact that |R2| = |R| and that a function f : R → R can
be identified with its graph. Thus we have

|RR| ≤ |P(R2)| = |P(R)| = |P(P(N))| = |2R| ≤ |RR|.

By the Schröder–Bernstein theorem, equality must hold throughout.

The continuum hypothesis. Using the Axiom of Choice, one can prove
that for any two sets A and B, |A| ≤ |B| or |B| ≤ |A|.

Is there a set A such that |N| < |A| < |R|? It is now known that this
question cannot be answered using the axioms of set theory (assuming these
axioms are themselves consistent). Some logicians have argued that CH is
obviously false (Cohen, Woodin), while others have argued that it must be
true (Woodin).

Finite sets, reprise. As an important exercise, to bring us back to earth,
we remark that:

A finite union of finite sets is finite.

By induction, one can reduce to showing: if A and B are finite, so is A ∪B.
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3 Group Theory

We now turn to group theory. Just as numbers are an abstract way of
capturing the notion of cardinality, groups are an abstract way of capturing
the notion of symmetry.

3.1 Definitions and examples.

Binary operations. Let A be a set.
A binary operation on A is just a map ∗ : A × A → A, sending each

ordered pair of elements (a, b) in A to its product a ∗ b ∈ A.
An isomorphism between (A, ∗) and (A′, ∗′) is a bijection f : A→ A′ such

that
f(a ∗ b) = a ∗′ b

for all a, b ∈ A. If we drop the requirement that f is a bijection, then f is
called a homomorphism.

Example. The map f : R→ R+ given by f(x) = exp(x) is an isomorphism
between (R,+) and (R+, ∗).

Define (a, b) ∗ (c, d) = (a + c, b + d) on N × N. The map f : N × N → Z
given by f(a, b) = a− b is a homomorphism between (N× N, ∗) and (Z,+),
but not an isomorphism.

Groups. A group 〈G, ∗〉 is a set G with a binary operation such that the
following axioms hold.

1. There exists an identity element e ∈ G such that e ∗ a = a ∗ e = a for
all a ∈ G.

2. For every a ∈ G there exists an inverse a′ ∈ G such that a∗a′ = a′∗a =
e.

3. The product is associative: for all a, b, c ∈ G, we have (a ∗ b) ∗ c =
a ∗ (b ∗ c).

Theorem 3.1 The identity element in G, and the inverse of a given element
in G, are both unique.
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Proof. If e and e′ are both identities, then e = e ∗ e′ = e′ by the first axiom.
If a′ and a′′ are two inverses for a, then by axioms (1) and (3) we can

simplify a′ ∗ a ∗ a′′ in 2 different ways, to obtain

a′ = a′ ∗ (a ∗ a′′) = (a′ ∗ a) ∗ a′′ = a′′.

Theorem 3.2 For any a, b ∈ G, the equation a∗x = b has a unique solution
x ∈ G.

Proof. Clearly x = a′ ∗ b is a solution, and conversely any solution must
satisfy x = a′ ∗ a ∗ x = a′ ∗ b.

Theorem 3.3 In any group G, we have (a ∗ b)′ = b′ ∗ a′.

Proof. (a ∗ b) ∗ (b′ ∗ a′) = a ∗ (b ∗ b′) ∗ a′ = a ∗ e ∗ e′ = a ∗ a′ = e.

Warning: it is not always true that (a ∗ b)′ = a′ ∗ b′!
Order of an element. For any element a ∈ G, we let ai = a ∗ a ∗ · · · a, the
product with i terms, if i > 0; a0 = e; a−i = (ai)′.

Then aiaj = ai+j. The order of a is the least n > 0 such that an = e, or
infinity if no such n exists.

Theorem 3.4 If a has finite order n, the a′ = an−1.

Examples of groups and non–groups.

1. Consider G = Z with the following operations.

(a) a ∗ b = a+ b. This is a group.

(b) a ∗ b = ab. Not a group (most elements have no inverse).

(c) a ∗ b = ab/2. Not a group (ab/2 6∈ Z). One says G is not closed
under the group operation.

(d) a ∗ b = a+ b− 2. This is a group! We have e = 2, a′ = 4− a.

(e) a∗b = ab+1. This is not associative. We have (a∗b)∗c = abc+c+1,
while a ∗ (b ∗ c) = abc+ a+ 1.
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2. The group Z/n = {0, 1, 2, . . . , n − 1}. We define a ∗ b = a + bmodn.
That is, we form the sum and take the remainder after division by n.

In this group, a′ = n− a.

The map f : Z → Z/n, the sends a number to its remainder after
division by n, is an example of a group homomorphism. It is defined
so that

n|x− f(x)

for all x ∈ Z. There is a unique value of f(x) with 0 ≤ f(x) < n
satisfying this condition. To check this is a homomorphism, observe
that if n|a and n|b then n|a+ b. Thus

n|(x+ y)− (f(x) + f(y)),

so f(x+ y) = f(x) + f(y).

Remark: We also have f(xy) = f(x)f(y). This is the basis of modular
arithmetic.

3. Casting out nines. You can take any whole number and reduce it
modn. This gives a map Z→ Z/n compatible with addition.

Now notice that 1 = 10 = 100 = . . . = 1 mod 9. Thus reduction mod 9
is the same as adding up the digits. This is the famous trick of ‘casting
out nines’ to check arithmetic.

Example: We are all familiar with the fact that the 2-digit multiples
of 9 add up 9: 18, 27, . . . 81. Similarly, 522 is divisible by 9; 741 is
divisible by 3, as is 174 and 147.

4. Finite examples. Consider G = {0, 1, 2, 3, 4}.

(a) a ∗ b = a+ bmod 5. This is a group.

(b) a ∗ b = ab. This is not a group; the identity is 1, but 0 ∗ a = 0 for
all a.

(c) 〈(Z/5) − {0}, a ∗ b = ab〉. This is a group; 2 ∗ 3 = 1, 4 ∗ 4 = 1,
1 ∗ 1 = 1.

(d) 〈(Z/10) − {0}, a ∗ b = ab〉. This is not a group; 2 ∗ 5 = 10 = 0 is
not in G.
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(e) Theorem. If we let G = (Z/n)∗ consists of those residue classes a
such that (a, n) = 1, then G forms a group under multiplication.
In particular (Z/p)− {0} is a multiplicative group for any prime
p.

5. Continuous examples. The groups R, Rn, R∗.

6. Multiplication of complex numbers. Multiplication of complex numbers
is based on the fact that i2 = −1; it is given, for a, b, c, d ∈ R, by

(a+ ib)(c+ id) = (ac− bd) + i(bc+ ad).

The absolute value of a complex number z = x + iy is defined by
|z|2 = x2 + y2. The complex conjugate of z is z = x − iy. The polar
coordinates of a complex number are given by

z = (r, θ) = (|z|, arg z),

where θ ∈ R/2πZ.

Note that |z|2 = zz. From this it follows a key property:

|zw| = |z| · |w|.

From this we find that multiplication by a complex number sends tri-
angles to similar triangles, which in turn shows that

arg(zw) = arg(z) + arg(w).

In other words, multiplication in polar coordinates is given by

(r, θ) · (r′, θ′) = (rr′, θ + θ′).

Euler’s famous formula states that

eiθ = cos θ + i sin θ.

In particular, z = r exp(iθ), and exp(πi) = −1.

The complex numbers of unit length, denoted S1, form a group under
multiplication, and we have

S1 ∼= R/2πZ,

the isomorphism given by z 7→ arg(z).
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7. Finite groups of complex numbers. Recall that i2 = −1. Thus G =
{1, i,−1,−i} forms a subgroup of C∗ isomorphic to Z/4.

We also have eiθ = cos θ + i sin θ, the unit vector at angle θ. Since
eiαeiβ = ei(α+β), we see (a) all nth roots of unity are of the form e2πik/n;
and (b) altogether these form a cyclic group Un ∼= Z/n.

8. Commutative groups. A group is commutative if a ∗ b = b ∗ a for all
a, b ∈ G. All the groups we have seen so far are commutative. But not
all groups are commutative.

One also says such groups are abelian. (What’s purple and commutes?)

9. Products of groups. If G and H are groups then so is G×H, with the
obvious group law, (g1, h1) ∗ (g2, h2) = (g1g2, h1h2).

10. The Klein 4-group, V4 ∼= Z/2×Z/2, is an example of an abelian group
that is not cyclc. (In the redundant notation V4, V stands for vier.)

11. Symmetric groups. For any set A, let Sym(A) be the set of all bijections
f : A→ A, with the group law f ∗ g = f ◦ g. Then Sym(A) is a group.

12. Now consider Sym(R). Let f(x) = x + 1, g(x) = 2x. Then f ◦ g(x) =
2x+1, while g ◦f(x) = 2x+2. Thus f ∗g 6= g ∗f . (On the other hand,
f ∗ h = h ∗ f if h(x) = x+ t, and g ∗ h = h ∗ g if h(x) = ax, a 6= 0.)

13. The symmetric groups. We let Sn = Sym({1, 2, . . . , n}), n ∈ N.

14. Symmetries of a triangle. The group S3 is not commutative. It can
be thought of as the symmetries of a triangle with vertices labeled
{1, 2, 3}. It contains, besides the identity element, two rotations and
three reflections. A rotation r and a reflection f do not commute: in
fact, we have frf = r−1.

As a Corollary, Sn is non-commutative for n ≥ 3. In fact S3 is the
smallest nonabelian group.

15. What about S2? This group just has two elements, 〈e, a〉, and a∗a = e.
What about S1? This is the trivial group, with just the identity map.
What about S0 = Sym(∅)?! This is also trivial — and nonempty!
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Matrices. If you have matrices A = (aij) and B = (bij), of dimension I × J
and I ′ × J ′ respectively; then if J = I ′ you can form the product

(AB)ik =
J∑
j=1

aijbjk.

The result is an I ×K matrix.
We always have (AB)C = A(BC) when the products are all defined,

because (ABC)il =
∑

j,k aijbjkckl.

Determinant and GLn(R) Square matrices of rank n. The identity matrix.
The powers of a diagonal matrix. Not every square matrix is invertible; those
that are form the group GLn(R). They are characterized by det(A) 6= 0.

It is a famous fact that det(AB) = det(A) det(B). In other words, we
have a homomorphism

det : GLn(R)→ R∗.

The group SL2(Z). This is one of the most important groups in mathe-
matics; it is essential to the study of elliptic curves and modular forms; it
links analysis, geometry and number theory.

The group SL2(Z) consists of all matrices A = ( a bc d ) with a, b, c, d ∈ Z
and det(A) = ad− bc. The inverse is given by A′ =

(
d −b
−c a

)
.

The diagonal matrices in SL2(Z) are ( 1 0
0 1 ) and

( −1 0
0 −1

)
. The matrix

A = ( 0 1
−1 0 ) has order 2. The matrix A = ( 1 −1

1 0 ) has order 6. These give
finite subgroups H ⊂ SL2(Z). The matrix A = ( 1 1

0 1 ) has infinite order.
The matrix A = ( 2 1

1 1 ) also has infinite order, and is related to the Fibonacci
numbers. This is a hint of the relationship with number theory.

Classification of groups. Recall that 〈G, ∗〉 and 〈H,#〉 are isomorphic if
there is a bijection f : G→ H such that f(a ∗ b) = f(a)#f(b).

One of the main problems in group theory is to classify groups up to
isomorphism. Let us address this problem for groups of small order. (The
order of G is its number of elements, |G|.)

The groups Z/6 and S3 both have order 6, but they are not isomorphic.
Because Z/6 is commutative, but S3 is not! Or, because Z/6 has an element
of order 6, but S3 does not.

The table of a group. One can completely describe a finite group by given
its multiplication table. That is, we write G = (g1, g2, . . . , gn), with g1 = e,
and then make a table whose (i, j) entry is gi ∗ gj.
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A couple of useful principles. (i) The first row and column are copies of
the edges of the table. (ii) Every row and every column lists a permutation
of the group.

Note that commutativity corresponds to symmetry of the table. Note
that e’s on the diagonal tell you the elements that satisfy a = a′. The
examples of G = Z/3 and G = S3 are shown below.

∗ e a b

e e a b

a a b e

b b e a

Table 4. Multiplication table for a group of order 3.

∗ e r r2 f rf r2f

e e r r2 f rf r2f

r r r2 e rf r2f f

r2 r2 e r r2f f rf

f f r2f rf e r2 r

rf rf f r2f r e r2

r2f r2f rf f r2 r e

Table 5. Multiplication table for S3 = 〈r, f : r3 = f 2 = e, frf = r−1〉.

Theorem 3.5 Let G be a group with n = |G|.

1. If n = 1 then G ∼= Z/1, i.e. G is the trivial group.
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2. If n = 2 then G ∼= Z/2.

3. If n = 3 then G ∼= Z/3.

4. If n = 4 then G ∼= Z/2× Z/2 or Z/4.

Proofs. The first two statements are almost obvious. For example, whenG =
〈e, a〉, the only question is, what is a ∗ a? But it must be e, since a needs an
inverse.

Suppose |G| = 3. Write G = 〈e, a, b〉, and start filling in the group table.
What goes in position (a, b)? It can’t be a, because there’s already an a in
that row, and it can’t be b, because there’s a b in that column! So it must
be e. Similarly b ∗ a = e and we quickly see a3 = e and G ∼= Z/3.

Now suppose |G| = 4. Every element has order 2, 3 or 4. Suppose there
is an element of order 4; then we have Z/4. Suppose 3 is the maximal order.
Then the group is 〈e, a, a2, b〉, but what is ab? It must be a power of a,
contradiction. So finally we can assume every element has order two. Then
the group table is easy to complete, and we find the group is V4.

Subgroups. Let H ⊂ G be a subset of a group 〈G, ∗〉. Then H is a subgroup
of G if (a) ∗(H ×H) ⊂ H and (b) 〈H, ∗|H ×H〉 is a group. Part (a) say H
is closed under the product ∗.

We always have H = {e} and H = G as subgroups of G. The first is
called the trivial group.

Theorem 3.6 Let H be a subset of G. Then H is a subgroup iff

1. e ∈ H;

2. a, b ∈ H =⇒ a ∗ b ∈ H; and

3. a ∈ H =⇒ a′ ∈ H.

Proof. Just check: (0) we have ∗(H ×H) ⊂ H; and (1) identity exists, (2)
inverses exist; and (3) associativity is inherited.
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In brief, H is a subgroup if it is closed under multiplication and inverse,
and it contains the identity element.

Examples. We have Q ⊂ R as a subgroup; R2 ⊂ R3; {1, i,−1,−i} ⊂ C∗;
Q+ ⊂ R∗; {a + b

√
2 : a, b ∈ Z} ⊂ R; {3n : n ∈ Z} ⊂ R∗; {f : f |[0, 1] =

0} ⊂ RR, under addition.

Theorem 3.7 For any nonempty set of subgroups Hi ⊂ G, the intersection
H =

⋂
Hi is also a subgroup.

Proof. Since e ∈ Hi for all i, we have e ∈
⋂
Hi. If a, b ∈

⋂
Hi, then

a, b ∈ Hi for every Hi, and hence a ∗ b ∈ Hi and a′ ∈ Hi, so a ∗ b and a′ also
belong to

⋂
Hi.

The lattice of subgroups. Thus the subgroups of G form a lattice, closed
under intersection. Drawing this lattice is one way to start to visualize G

Example: In V4, there are 3 nontrivial subgroups; in Z/4, there is just one.
In S3, there are 4 nontrivial subgroups: the cyclic group 〈r〉, and the

three reflection subgroups of order 2: 〈f〉, 〈rf〉 and 〈r2f〉. (It is not hard to
show that any reflection and rotation together generate the whole group.)

Generators of a group. For any set S ⊂ G, we can consider the collection
H of all subgroups H with S ⊂ H ⊂ G. Note that H has at least one
element, namely G itself.

We define subgroup generated by S to be 〈S〉 =
⋂
H.

The group 〈S〉 can also be built up from the inside.

Theorem 3.8 The group generated by S consists of all elements of the form
g =

∏n
1 s

ni
i , with si ∈ S and ni ∈ Z.

In the expression above, repetitions in the list (si) are allowed. For an abelian
group we do not need these, and we can write

〈S〉 =

{∑
S

ns · s : ns ∈ Z and ns = 0 for all but finitely many s

}
.

Proof. Clearly 〈S〉 must contain these elements, and it is easy to see that
the collection of elements on the right forms a subgroup of G.
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The Cayley graph. Given generators ai for G, we draw a directed graph
with a vertex for each g ∈ G and an edge from g to aig, colored by ai. If ai
has order two, the arrow is dropped.

Examples: 〈Z, 1〉; 〈Z/n, 1〉; 〈V4, a, b〉; generators i, j; the star, i.e. Z/5
with generator 2.

Examples: (S3, f, r) vs. (Z/6, 2, 3). Two triangles running opposite direc-
tions in one case, the same direction in the other. Visualizing commutativity.

3.2 Cyclic groups and greatest common divisor

A group is cyclic if it is generated by a single element. In this section classify
these groups and explore their structure.

If G = 〈a〉 then G is a cyclic group and a is a generator for G.
A cyclic group can have more than one generator. In Z, the only gener-

ators are ±1. The generators of Z/10 are {1, 3, 7, 9}.
Classification. Recall that the order of an element a ∈ G is the least n ≥ 1
such that an = e. If no such n exists, we say a has infinite order.

Theorem 3.9 Every cyclic group is isomorphic to Z/n or Z.

Proof. Suppose G = 〈a〉, and a has order n. Then the elements of G are
simply (e, a, a2, . . . , an−1), and an = e. It is then readily verified that the
map f : Z/n→ G given by f(i) = ai is an isomorphism.

Similarly, if a has infinite order, then the map f : Z → G given by
f(i) = ai is an isomorphism.

Divisibility, primes etc. The additive group of the integers has a rich
structure, connected with multiplicative number theory. To present this con-
nection, we first recall some elementary notions related to factorization in
the integers.

The first and most important fact is that given any integers p, q, with
q 6= 0, we can write

p

q
= a+

r

q
,

where a ∈ Z and 0 ≤ r < q. The number r = pmod q is the remainder of
division of p by q, and the residue of p modulo q.
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If r = 0 we say q divides p and write q|p. This just means that p = aq for
some a ∈ Z. The set of all divisors q ≥ 1 of a will be denoted by Div(a). It
always contains 1.

GCD. Given a, b ≥ 1, the greatest common divisor is given by

gcd(a, b) = max Div(a) ∩Div(b).

Note that the set at the right is nonempty, since it always contains 1.
Similarly, a and b have at least one common multiple — namely ab —

and hence they have a least common multiple, denote by lcm(a, b).
Example: gcd(2, 3) = 6, while lcm(12, 15) = 60. We have gcd(3, 5) = 1;

gcd(10, 7) = 1; gcd(21, 15) = 3; gcd(84, 120) = 12.
One way to find these numbers is to use the prime factorization of a and

b, say a =
∏
pep and b =

∏
pfp , where the product is over all primes, and all

but finitely many exponents are zero. Then

gcd(a, b) =
∏

pmin(ep,fp) and lcm(a, b) =
∏

pmax(ep,fp).

For example, 12 = 22 · 3, while 15 = 3 · 5, so lcm(12, 15) = 24 · 3 · 5 = 60.

The group Z. Next we turn to the additive group (Z,+). We will see that
the lattice of subgroups of Z knows about the multicative structure of N.

Theorem 3.10 Every subgroup H ⊂ Z is cyclic; that is, H = aZ for a
unique a ∈ N.

Proof. This is clear when H is trivial, so suppose H 6= {0}. Let q > 0
be the smallest positive element of H. Given p ∈ H, write p = aq + r with
0 ≤ r < q. Then r = p− aq ∈ H, but r < q so r = 0 and thus p = aq. This
shows H = qZ.

Theorem 3.11 We have aZ ⊂ bZ iff b|a.

Proof. Immediate.
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Group theory of the lcm. Given that subgroups of Z are cyclic, it is easy
to show:

Theorem 3.12 The group aZ ∩ bZ is generated by n lcm(a, b).

Proof. Let us write G = aZ ∩ bZ = cZ with c > 0. Note that the elements
of G are exactly the common divisors of a and b. Since c is the least positive
element of G, it is also the least common divisor of a and b.

The lattice of subgroups. The lattice of subgroups of Z has Z as the
largest subgroup, then pZ for p prime as the next largest subgroups, and so
on. The smallest subgroup is 0.

Group theory of the gcd. We can now give an alternative characterization
of the greatest common divisor.

Theorem 3.13 The subgroup of Z generated by a, b ≥ 0 is given by 〈a, b〉 =
gcd(a, b)Z.

Proof. Let H = 〈a, b〉 = cZ. Then c|a and c|b, so c is a common divisor of
a, b, and thus c ≤ gcd(a, b). On the other hand, clearly a, b ∈ gcd(a, b)Z, so
cZ ⊂ gcd(a, b)Z, and thus gcd(a, b)|c. Thus c = gcd(a, b).

Corollary 3.14 There exist r, s ∈ Z with gcd(r, s) = 1 such that ar + bs =
gcd(a, b).

Proof. Since gcd(a, b) ∈ 〈a, b〉, there exist r, s as above. Sincegcd(a, b) is
the least positive element of 〈a, b〉, the numbers r and s must be relatively
prime.

Remark: gcd(0, a) = a. Consistent with the result above, it is natural to
set Div(0) = N and then gcd(0, a) = a for any a ≥ 0.

The Euclidean algorithm. It is clear that 〈a, b〉 = 〈a, b − na〉 for any n.
Thus gcd(a, b) = gcd(a, b− na) as well.

Thus we can recursive compute gcd(a, b) for a > b > 0: namely, we define
gcd(a, 0) = a, and otherwise:

gcd(a, b) = gcd(b, amod b).

Examples:
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gcd(120, 84) = gcd(84, 36) = gcd(36, 12) = gcd(12, 0) = 12.
gcd(84, 35) = gcd(35, 14) = gcd(14, 7) = gcd(7, 0) = 7.
gcd(112, 45) = gcd(45, 22) = gcd(22, 1) = gcd(1, 0) = 1.

The Euclidean algorithm is much faster than factoring!
Since lcm(a, b) = ab/ gcd(a, b), computing the GCD also allows computa-

tion of the LCM.

The golden ratio: the first irrational number. The golden rectangle
has aspect ratio x > 1 satisfying 1 : (x− 1) = x : 1, i.e. x2 − x− 1 = 0. By
geometry, the Euclidean algorithm for x never terminates, so x is irrational.

Given this infinite divisibility, it is interesting that Democritis should
have advocated the atomic theory.

The finite cyclic groups.
We can now find the generators of Z/n.

Theorem 3.15 An element a ∈ Z/b generates Z/b iff gcd(a, b) = 1.

Proof. Proof. The element a generates Z/b iff ar = 1 mod b for some r ∈ Z,
iff ar + bs = 1 for some r, s ∈ Z, iff gcd(a, b) = 1.

Example: the generators of Z/9 are {1, 2, 4, 5, 7, 8}.

Theorem 3.16 More generally, for any a ∈ Z/b we have 〈a〉 = 〈gcd(a, b)〉
and the order of a in Z/b is b/ gcd(b, a).

Proof. Let c = gcd(a, b). Notice that, since c|b, the group 〈c〉 just consists
of the multiples of c up to b, so it has order b/c.

Now we will show 〈a〉 = 〈c〉. We have ar+ bs = c for some r, s ∈ Z. Since
ar = cmod b, we have 〈c〉 ⊂ 〈a〉. On the other hand, c divides a, so a = nc
and thus 〈a〉 ⊂ 〈c〉. Thus 〈a〉 = 〈c〉.

Corollary 3.17 Every subgroup of Z/b is cyclic.

Proof. Let H ⊂ Z/b be a nontrivial subgroup, with least element c. Since
〈c〉 contains gcd(b, c) ≤ c, we must have c = gcd(b, c) and hence c|b. Now for
any other x ∈ H we can write x = nc + r with 0 ≤ r < c; since c was the
last element of H, r = 0 and therefore H = 〈c〉.
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Corollary 3.18 The subgroups of Z/b correspond bijectivitly to the divisors
of b.

Under this bijection, b = 0 mod b gives the trivial group.

Corollary 3.19 Every subgroup of a cyclic group is cyclic.

Examples. In the group G = Z/18 the possible subgroups are 〈0〉, 〈1〉, 〈2〉,
〈3〉, 〈6〉 and 〈9〉, ordered by divisibility.

What is the order of a = 1024 in Z/9999? Every divisor of a = 210 is a
power of 2, and 9999 is odd, so gcd(1024, 9999) = 1 — and thus a generates,
ord(a) = 9999.

Relative primality. We say a, b > 0 are relatively prime if there is no prime
p that divides both a and b. Putting together the preceding results, we have
the following equivalent characterizations of this condition:

The numbers a, b > 0 are relatively prime iff:

1. No prime p that divides both a and b.

2. We have gcd(a, b) = 1.

3. There exist r, s ∈ Z such that ar + bs = 1.

4. We have 〈a, b〉 = Z.

5. The element a is a generator of Z/b.

6. There exists a matrix in SL2(Z) with (a, b) as one of its rows or columns.

The high road. For a more pristine development of the theory of cyclic
groups, it is useful to note that all the results for Z/n follow from the cor-
responding results for Z. The reason is that we have a surjective homomor-
phism

f : Z→ Z/n,

given by f(i)imodn. For any subgroup H ⊂ Z/n, its preimage H0 = f−1(H)
is a subgroup of Z containing nZ.

For example, to show H is cyclic, just use the fact that H0 = 〈a0〉 is
cyclic; then a = f(a0) generates H.
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To classify the subgroups of Z/n, we just need to classifying the subgroups
H = aZ of Z that contains nZ. But these just correspond to integers a ≥ 1
such that a|n, i.e. they correspond to the divisors of n

Automorphisms. An automorphism of a group G is a bijective homomor-
phism φ : G→ G. The set Aut(G) of all automorphisms itself forms a group,
under composition.

Theorem 3.20 Aut(Z/n) ∼= (Z/n)∗.

Proof. An automorphism φ is determined by φ(1) = k. It has to send 1 to
an element k that also generates Z/n. If k and n are both divisible by some
number d > 1, then all multiples of k would be divisible by d, so we’d get a
proper subgroup. Thus we must have gcd(k, n) = 1. Then k does generate.

What is the group law? φk(φ`(1)) = k`, so the group law is indeed
multiplication.

Examples. In Z/100, is multiplication by 3 an automorphism? (Yes). What
is its order? (This is tricky! 320 = 3486784401 = 1 mod 100.)

In how many ways is Z/10 isomorphic to Z/2× Z/5? Answer: there are
4 generators for Z/10, so there are 4 isomorphisms.

3.3 Symmetric groups

In this section we study the finite symmetric groups Sn, which can be thought
of as permutations of the set An = {1, 2, . . . , n}.
The symmetric groups. We have seen that for any set A, the set of
bijective maps f : A→ A forms a group.

Note also that any bijection φ : A→ B gives rise to an isomorphism

Sym(A) ∼= Sym(B),

sending f to the permutation φ ◦ f ◦ φ−1.
The group of permutations of the numbers {1, 2, . . . , n} is denoted by

Sn and referred to as the symmetric group on n elements. If |A| = n then
Sym(A) ∼= Sn.

Every finite group is a permutation group. We can now easily prove:

Theorem 3.21 (Cayley) Every finite group G is isomorphic to a subgroup
of Sn for some n.
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Proof. To each element g ∈ G we associate the permutation σg ∈ Sym(G)
with σg(a) = ga. To see σg is a permutation, note that it is invertible, in fact
σ−1g = σg−1 . Also σg(e) = g so the map g 7→ σg is 1− 1.

Let H = {σg : g ∈ G} ⊂ Sym(G). Then it is easy to verify that H
is a subgroup of S(G). Clearly σgh = σg ◦ σh, so the map g 7→ σg is an
isomorphism to its image.

Finally we note that Sym(G) itself is isomorphic to Sn where n = |G|.
Any bijection between G and {1, 2, . . . , n} gives such an isomorphism.

Example. The group G = Z/3 is isomorphic to the subgroup of rotations
inside S3

∼= S(G).

Remark. This theorem shows if |G| = n then we can find G inside Sn, a
group of size n! If we allow permutation groups of infinite sets, then the same
theorem works for infinite groups.

Notation for permutations. We can express any element σ ∈ Sn as a
2× n matrix with the first row listing 1, 2, . . . , n and the second row listing
f(1), f(2), . . . , f(n). This is just like ordered pairs only you have to read
vertically!

Example. Let α = ( 1 2 3 4 5
2 3 4 5 1 ), β = ( 1 2 3 4 5

2 1 5 3 4 ). Then α−1 is obtained by
writing α upside-down and reordering: α−1 = ( 1 2 3 4 5

5 1 2 3 4 ). Similarly, β−1 =
( 1 2 3 4 5
2 1 4 5 3 ). And the product is given by αβ = ( 1 2 3 4 5

3 2 1 4 5 ).
The standard generators for S3 are r = ( 1 2 3

2 3 1 ) and f = ( 1 2 3
1 3 2 ).

Cycles. Suppose σ ∈ Sym(A). We define an equivalence relation by a ∼ b
if σi(a) = b for some i ∈ Z. The equivalence classes are the orbits of σ.

Example: for σ = ( 1 2 3 4 5 6 7 8 9
4 8 5 1 3 9 6 7 2 ), the orbits are {1, 4}, {2, 6, 7, 8, 9},

{3, 5}.
A cycle is a permutation with at most one interesting orbit. We use

the shorthand (a1 . . . an) for the permutation that sends ai to ai+1 and fixes
everything else. The length of the cycle is n.

Properties of cycles. If a = (a1 . . . an) then a′ = (an . . . a1). If b =
(b1 . . . bm) and {ai} and {bj} are disjoint, then ab = ba.

Cycle notation. If A is finite, then every permutation σ ∈ Sym(A) is a
product of disjoint cycles, σ = µ1 · · ·µ`. This expression for σ is unique up
to permuting the cycles.

Proof. On each orbit Ai of σ, define µi(x) = σ(x) for x ∈ Ai and µi(x) = x
elsewhere. Then µi is a cycle, and clearly σ is their product.
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Example. The permutation σ above is (14)(28769)(35). We can write this
is any order and cyclically permute the elements of any cycle. So we also
have σ = (53)(76928)(14).

Note: We leave out the trivial cycles in this product.

Powers of permutations. For disjoint cycles, we have

(µ1 · · ·µn)k = µk1 · · ·µkn.

Since a cycle of length L has order L, this shows:

Proposition 3.22 The order in Sn of a product of disjoint cycles is the least
common multiple of their lengths.

Products of cycles. How to take the product of cycles that might not be
disjoint. Examples: (12)(23) = (123), (23)(12) = (213). More examples:
(12345)(35)(13) = (1)(23)(45).

The dihedral group Dn ⊂ Sn. The symmetries Dn of a regular n-gon
Pn are generated by a rotation r and a flip f , satisfying frf = r−1 and
rn = f 2 = e. We can regard these elements as permutations of the n vertices
Pn, which we label 1, 2, . . . , n. Then r = (123 . . . n), and the flip fixing 1 is
given by f = (2n)(3, n− 1) · · · . (It has a slightly different shape depending
on whether n is odd or even).

Any element of Dn can be written in the form ri or rif , for 0 ≤ i < n.
The elements with f in them all have order two! In fact rifrif = fr−irif =
f 2 = e.

Similarly we can multiply any two elements and write the result in the
standard form: e.g.

rafrbf = rar−bf 2 = ra−b.

Theorem 3.23 The dihedral group is generated by r and any flip rif .

Extended example: D4 as a subgroup of S4. What are the symmetries
of the square? Numbering the vertices counter-clockwise, we have r = (1234),
the counter-clockwise rotation. We also have flip on the ascending and de-
scending diagonals, a = (24) and d = (13); and the vertical and horizontal
flips, v = (14)(23) and h = (12)(34).

It is then not hard to work out the group table.
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The lattice of subgroups of D4. To practice some cycle computations, lets
look at the subgroup 〈v, h〉 generated by two orthogonal flips in D4. Their
product vh should be a rotation! Indeed, vh = (14)(23)(12)(34) = (13)(24) =
r2. Now r2 commutes with any flip, so 〈v, h〉 is a Klein 4-group. Similarly
〈a, d〉 is a Klein 4-group. On the other hand, 〈r〉 is isomorphic to Z/4.

What about the group 〈v, a〉 — generated by two flips that are not or-
thogonal? This contains av = (24)(14)(23) = (1234) = r, and r and any flip
generate D4. In fact we have found all the subgroups of order 4.

The lattice of groups is:

D4

〈a, d〉 〈r〉 〈v, h〉
〈a〉 〈d〉 〈r2〉 〈v〉 〈h〉

〈e〉

Here r2 forms the intersection of any pair of subgroups of order 4.

General theory of the symmetric group.

Theorem 3.24 The transpositions generate Sn.

Proof 1. Any cycle is a product of transpositions and any permutation is a
product of cycles. Example: (12345) = (12)(23)(34)(45).

Proof 2. Draw the picture of the map as a braid!

Theorem 3.25 In fact Sn is generated by σ = (123 . . . n) and τ = (12).

Idea of proof. By conjugating τ by σ we get all adjacent transpositions,
and these suffice.

Parity. Let us say an element of Sn is even if it can be expressed as a
product of an even number of transpositions; otherwise it is odd. The parity
of an element defines a homomorphism

π : Sn → Z/2.

But first we must show it is well–defined!
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Theorem 3.26 Every element of Sn is either even or odd but not both.

Lemma 3.27 Let N(σ) be the number of orbits of σ. Then for any trans-
position τ , N(τσ) = 1 +N(σ) mod 2.

Proof. Multiplication by τ either joins two orbits together, or breaks one
orbit into two. So in either case, the number of orbits changes by one.

Proof of the Theorem. If σ can be expressed as both an even and odd
product of permutations, then N(σ) = N(e) = N(e) + 1 mod 2, which is
obviously impossible. (Thus N is even iff N(σ) = N(e) mod 2.)

The alternating group. The even permutations form the alternating group
An ⊂ Sn. It satisfies |An| = |Sn|/2, provided n ≥ 2 so there is at least one
odd element.

The alternating group A4 turns out to be the symmetry group of a tetra-
hedron (see below). For n ≥ 5, the group An is a simple group. This means
that for any other group G, any homomorphism f : An → G is either trivial
or injective. The simple groups are the basic building blocks of all groups.
The groups Z/p are also simple, but the An are much more interesting be-
cause they are nonabelian.

Other perspectives on parity. There are many different ways of looking
at the idea of the parity of a permutation, some of which we briefly recount.

Parity and orientation. One can also view parity in terms of orientation
of an (n−1)–simplex. The permutations which preserve orientation are even,
the rest are odd. Alternatively, one can regard permutations as matrices, and
then det(Aσ) = +1 when σ is an even permutation, and −1 otherwise. For
this, we just have to notice that transpositions have negative determinant.

Examples: The group S2 acts on a directed segment; the subgroup A2

preserves the arrow. The group S3 acts on a triangle; the subgroup A3 keeps
the front face forward. The group S4 acts on a tetrahedron; the subgroup A4

doesn’t turn the tetrahedron inside-out.
Parity and determinants. Essentially the same distinction can be drawn

by associating to g ∈ Sn a linear transformation A(g) : Rn → Rn that sends
(xi) to (xσ(i)). Then detA(g) = ±1, and An is the subgroup where the
determinant is +1.

Parity and braids. Draw g ∈ Sn as a braid. Then g can be written as
a product of transpositions with one transposition for each crossing in the
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picture! As one moves the strands around, the parity never changes. Thus
An is a proper subgroup of Sn.

Example: D4. The rotation r = (1234) = (12)(23)(34) is odd, as are the
flips a and d. Thus D4 ∩ A4 = {e, r2, v, h}. (Note that the square of any
element in Sn is an even permutation.)

Why symmetric? A function f(x1, . . . , xn) is said to be symmetric if
f(xi) = f(xσ(i)) for any σ ∈ Sn. Thus the symmetric functions are those in-
variant under the symmetric group. That seems to be where the terminology
comes from.

Fermions. The Pauli exclusion principle states that two electrons (or
more generally, fermions) cannot occupy the same state. More technically,
electrons are symmetric under An but anti-symmetric under odd permuta-
tions. (Thus f(x1)f(x2) can be the wave function for a pair of bosons but
not for a pair of fermions; the latter might typically have instead the form
f(x1)g(x2)− f(x2)g(x1), where f 6= g.)

This principle is what forces electrons to occupy higher and higher shells
around an atom, and thus gives rise to chemistry.

Sliding puzzles. The famous Sam Lloyd puzzle with small sliding squares,
sometimes cannot be done!

The original puzzle consisted of 15 numbered squares in a box that holds
16. Starting with 14 and 15 reversed, Lloyd offered a $1000 reward for
sliding the numbers around until they are all in order. ‘Puzzle fever’ reached
its height around 1880, in both America and Europe. Then mathematicians
proved the problem has no solution!

The reason has to do with the alternating group. Imagine the squares of
the puzzle sit on a checkerboard. Each move of the puzzle is a transposition.
But each move also moves the blank square from a white to a black square,
vice-versa. So if we start and end with the blank on the same square, we have
made an even number of moves, hence an even number of transpositions. But
half the elements of Sn cannot be expressed in this way! So if the puzzle is
assembled randomly, there is a 50% chance that it cannot be solved.

A particularly clear example is the 2×2 puzzle, where the pieces can only
be moved cyclically.

It is remarkable that Lloyd was unable to patent his puzzle. To earn a
patent, one has to submit a working model. The patent officer asked if, in
fact, the model could be manipulated so the numbers come out in order.
Lloyd confessed that it could not. The officer then declared that the model
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did not to work, so no patent was granted.

3.4 Cosets and group actions

In this section we prove one of the simplest but most important results about
finite group, Lagrange’s theorem:

Theorem 3.28 If H ⊂ G is a subgroup of a finite group, then the order of
H divides the order of G.

Example: in studying the subgroups of D4, we only needed to find sub-
groups of orders 8, 4, 2 and 1.

Corollary 3.29 The order of any element of g dividies |G|.

Corollary 3.30 If |G| = p is prime, then G is isomorphic to Z/p.

Proof. Take any a ∈ G other than the identity; then n = |〈a〉| > 1 must
divide p, so n = p.

In particular, |G| = 5 implies G ∼= Z/5. Thus we have completed the
classification of groups of order ≤ 5.

Multiplicative notation for sets. Given x ∈ G and A ⊂ G, we write

xA = {xa : a ∈ A}.

We also write AB = {ab : a ∈ A, b ∈ B}. For example, if H is a subgroup,
then HH = H, HG = G. If xH = H then xh = e for some h and hence
x = h′ ∈ H.

Cosets The proof of Lagrange’s theorem relies on the idea of cosets, which
is important in its own right.

Let G be a group, and fix a subgroup H ⊂ G. A left coset of G is a subset
of the form

xH ⊂ G.

Note that xH is just the image of H under the bijection given by multipli-
cation by x. This shows:

All cosets have the same size, i.e. |xH| = |H|. .
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Note that
hH = H

for any h ∈ H. Consequently:

The cosets form a partition of G.

Indeed, if xH meets yH, then xh1 = yh2 for some h1, h2 ∈ H; but then:

xH = xh1H = yh2H = yH.

We denote this partition by:

G/H = {xH : x ∈ G}.

This is also the quotient of G by the equivalence relation:

x ∼ y ⇐⇒ xH = yH ⇐⇒ y−1x ∈ H.

Proof of Theorem 3.28. The left cosets of G give a partition of G into
|G/H| subsets, each of cardinality H; thus |H| · |G/H| = |G|. In particular,
|H| divides |G|.

Examples of cosets. In G = Z/6, there are 3 cosets of 〈3〉. The right and
left cosets agree, as they would in any abelian group.

n G = S3, let H = 〈r〉. Then the cosets are H and fH. (In fact you
can tell which coset x is in by whether or not it reverses the orientation of a
triangle.) Note that the right and left cosets agree.

Let H = 〈f〉. Then the left cosets are H, rH, r2H. (The coset is
determined by where the element maps the vertex fixed by f .)

Now consider the right cosets. These are different! rH = {r, rf} while
Hr = {r, fr} = {r, r2f}.

These cosets are nicely pictured on the Cayley graph.

The index of a subgroup. The index of H ⊂ G is given by

[G : H] = |G/H|.

For finite groups, we have [G : H] = |G|/|H|, but the index make sense of
infinite groups as well. For example, if G = Z and H = 3Z, then [G : H] = 3.

Group actions. An action of G on a set A is a map G × A → A, usually
written as left multiplication, such that
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(gh)a = g(ha), and
ea = a.

To give a group action is the same as to give a homomorphism G→ Sym(A).
Examples. The group Sym(A) actions on A by σa = σ(a). Any subgroup

G ⊂ Sym(A) acts on A. The dihedral group acts on the vertices of a square,
and on its edges, and on its diagonals.

Transitivity. A group action is transitive if for any x, y ∈ A, there is a
g ∈ G such that g(x) = y. This g need not be unique.

Examples. The group Sn acts transitively on {1, . . . , n}. But so does the
cyclic group Z/n generated by σ = (123 . . . n).

Let A be the set of all 6 edges obtained from a square by adding in the
diagonals. Then D4 acts on A, but not transitively; it has two orbits.

Stabilizer. The stabilizer or isotropy subgroup of a given point x ∈ A is
just defined by

Hx = {h ∈ G : h · x = x}.
Coset space. The group G acts naturally on the set G/H, by g(xH) =

gxH. The stabilizer of the identity coset is H itself. We will see that this
abstract picture models any transitive group action.

Theorem 3.31 Let G act transitively on a set A, and let H ⊂ G be the
stabilizer of x ∈ A. Then |A| = |G|/|H|.

Proof. Define a map f : G/H → A by f(gH) = gHx. Since Hx = x, this
map is well–defined. By transivity, f is surjective. Finally, f is one-to-one.
For if f(gH) = f(kH), then gx = kx, so k−1gx = x and thus k−1g ∈ H,
which implies that gH = kH.

Thus A and G/H are in bijection, and since |G/H| = |G|/|H|, we have
the theorem.

Examples in the plane: The group D3 acts on a triangle with the stabilizer
of a vertex given by Hv = {e, f}. The number of vertices is |D3|/|Hv| =
6/2 = 3. Similarly for D4.

The group D4 also acts on the diagonals of a square. The stabilizer of
the ascending diagonal is 〈a, d〉; it has order 4.

The Burnside counting theorem. When G acts on A, the orbits of G are
the sets of the form Ga, a ∈ A. They form a partition of A, which is often
denote by G\A.

Assuming G and A are finite, we have
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Theorem 3.32 (The Burnside counting theorem I) The number of or-
bits of G is given by

|G\A| = 1

|G|
∑
a∈A

|Ga|.

Proof. First, we observe that if a and b are in the same orbit of G then
|Gb| = |Ga|. Therefore the theorem is true when G acts transitively on A;
it reduces to the theorem we have just proved above. For the general case,
decompose the sum over A into a sum over orbits; the action of G on each
orbit is transitive, and the sum over a given orbit is 1.

Let Ag = Fix(A) be the set of points of A fixed by g ∈ G. The sum can
be re-arranged to prove:

Theorem 3.33 (The Burnside counting theorem II) The number of or-
bits of G is given by

|G\A| = 1

|G|
∑
g∈G

|Ag|,

Proof. First, we observe that if a and b are in the same orbit of G then
|Gb| = |Ga|. Therefore the theorem is true when G acts transitively on A;
it reduces to the theorem we have just proved above. For the general case,
decompose the sum over A into a sum over orbits; the action of G on each
orbit is transitive, and the sum over a given orbit is 1.

This is the most useful form. It can be used, for example, to show that
there are 57 ways to color a cube using 3 colors (up to rotation). (Here
|A| = 36 and G ∼= S4.)

3.5 Geometric examples of groups

The Platonic solids. A Platonic solid S is a polyhedron in space such that
all faces, edges and vertices are equivalent. In other words, the symmetry
group of S must act transitively on the vertices, edges and faces.

As a consequence, the number of vertices, faces and edges must divide
the order of the symmetry group.

There are exactly 5 Platonic solids: the tetrahedron, the cube, the octa-
hedron, the dodecahedron and the icosahedron.
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The tetrahedron. The symmetry group of a tetrahedron is A4; it can be
described as the orientation-preserving permutations of the vertices.

The cube. The symmetry group of a cube has 24 elements, since there
are 6 faces each with stabilizer of order 4.

In fact G is isomorphic to S4, acting on the long diagonals! To see this,
note that a rotation fixing a face gives the permutation σ = (1234), and
a rotation fixing an edge gives the permutation (12). These two elements
together generate S4.

The cube is dual to the octahedron.
Relating the tetrahedron and the cube. There are 2 ways that a tetrahe-

dron can be inscribed in a cube. An element of S4 is even if it preserves these
two sub-tetrahedra, and odd if it interchanges them.

The dodecahedron. How large is the symmetry group of a dodecahedron?
A face has stabilizer of order 5, and there are 12 faces, so |G| = t× 12 = 60.
Similarly there are 30 edges (since each has stabilizer 2) and 20 vertices (since
5 faces come together at each).

It turns out we have G ∼= A5. To see this, one can find 5 cubes whose
vertices lie on the vertices of a dodecahedron. There are 20 vertices all
together, and each belongs to two cubes — which works out, since 5 cubes
have 5 · 8 = 40 vertices all together.

It is important to note that not every symmetry of an inscribed cube
extends to a symmetry of the dodecahedron. In fact we have S4 ∩ A5 = A4

under the embedding.
The dodecahedron is dual to the icosahedron.
A non-Platonic solid. The rhombic dodecahedron is not a Platonic solid.

All its 12 faces are equivalent, and their stabilizer is of order 2, so |G| = 24.
There are 14 vertices, but they are not all equivalent! In fact they fall into
two classes of sizes 6 + 8 = 14, and each of those divides 24.

Higher Platonic solids. (Daniel Allcock.) There are 6 4D Platonic solids,
described in Coxeter’s book, Regular Polytopes. (A (d+ 1)-dimensional solid
is Platonic if its symmetries act transitively on faces of the same dimension,
and each d-dimensional face is also Platonic, and its symmetries arise from
those of the full polyhedron.)

They are: the simplex, the cube, the dual cube, a solid with 120 do-
decahedral faces, its dual (with 600 tetrahedral faces), and a solid with 24
octahedral faces (self-dual). Their symmetry groups in the last two cases are
(2A5×2A5)/2 (of order 60 ·120) and a degree two extension of (2A4×2A4)/2
(of order 24 · 24).
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G |G| V E F V − E + F

Tetrahedron A4 12 4 6 4 2

Cube S4 24 8 12 6 2

Octahedron S4 24 6 12 8 2

Dodecahedron A5 60 20 30 12 2

Icosahedron A5 60 12 30 20 2

Rhombic Dodecahedron S4 24 6+8=14 12 12 2

Table 6. The Platonic solids and one of their cousins.

In dimensions 5 or more, there are only 3 Platonic solids: the simple, the
cube and the dual to the cube.

Kepler’s Cosmology. Kepler believed that the orbits of the planets were
determined by the Platonic solids. Each eccentric orbit determines a thick-
ened sphere or orb, centered at the Sun, that just encloses it. The 5 Platonic
solids thus correspond exactly to the gaps between the 6 planets known at
that time. Between the orbits of Saturn and Jupiter you can just fit a cube;
between Jupiter and Mars, a tetrahedron; between Mars and Earth, a do-
decahedron; between Earth and Venus an icosahedron, and between Venus
and Mercury, an octahedron.

This theory is discussed in the Mysterium Cosmographicum, 1596. Using
the astronomical data of Copernicus, Kepler found a reasonable agreement
between his theory and observations.

Predicted Actual

Jupiter/Saturn 577 635

Mars/Jupiter 333 333

Earth/Mars 795 757

Venus/Earth 795 794

Mercury/Venus 577 723

Table 7. Kepler’s data.
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See ‘Kepler’s Geometrical Cosmology’, J. V. Field, University of Chicago
Press, 1988.

Quaternions. Hamilton made the amazing discovery that you get a rea-
sonable algebra by adjoining not one but 3 square-roots of unity to R! But
you have to give up commutativity.

In this ‘quaternion algebra’, every number is of the form a+ bi+ cj+ dk,
where i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i and ki = −ik = j.

Then G = {±1,±i,±j,±k} gives a non-commutative group of order 8,
called the quaternion group.

More Cayley graphs: groups of order 8. The dihedral group (D4, f, r).
Th group Z/2× Z/4.

The quaternion group Q with generators i, j; 8 points on S3! (Put
±1,±i,±j on the vertices of an octahedron. Then put k in the center of
the octahedron and −k at infinity!)

Plane isometries. Finally we mention the important group Isom(E2) of
isometries of the Euclidean plane. This group consists of all maps f : E2 →
E2 such that d(f(P ), f(Q)) = d(P,Q).

Our groups Dn — the symmetries of a polygon – can be thought of as
special cases of plane isometries. Some other subgroups of Isom(E2): Z2, the
symmetries of a checkerboard with a rook (written R) on each square.

Types of isometries. Other than the identity, there are four types of plane
isometry. An isometry preserves orientation if handwriting stays the same
way.

Orientation preserving, with a fixed-point P : rotation.
Orientation preserving, with no fixed-point: translations.
Orientation reversing, with a fixed-point: reflection.
Orientation reversing, with no fixed-point: glide-reflection.

3.6 Abelian groups

Going beyond the case of cyclic groups, which we know are always isomorphic
to Z or Z/n, in this section we describe the classification of finitely–generated
abelian groups. In particular we classify all finite abelian groups.

Orders of elements in products. The main result will describe every
finitely–generated abelian group as a product of cyclic groups. Before stating
this result, we note the following easy fact:
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Proposition 3.34 Let (g, h) be an element of the product group G × H.
Then

ord(g, h) = lcm(ord(g), ord(h)).

Proof. We have (g, h)n = (gn, hn) = (e, e) iff ord(g)|n and ord(h)|n, and
the order of (g, h) is the least n ≥ 1 for which this equality holds.

Corollary 3.35 If gcd(a, b) = 1, then G = Z/a× Z/b ∼= Z/ab.

Proof. Consider the element g = (1, 1). Then ord(g) = lcm(a, b) =
ab/ gcd(a, b) = ab, so g generates G and thus G is cyclic.

Thus even if a group is a product, it may be cyclic!

Examples. We have Z/2 × Z/3 ∼= Z/6. However, G = Z/2 × Z/4 is not
isomorphic to Z/8; indeed every element in Z/a × Z/b has order at most
lcm(a, b), which is less than ab if gcd(a, b) > 1.

We may now state the main result.

Theorem 3.36 (Fundamental Theorem of Abelian Groups) Let G be
a finitely-generated abelian group. Then there are prime numbers pi and ex-
ponents ei and an integer b such that

G ∼= Z/pe11 × · · · × Z/penn × Zb.

This expression is unique up to the ordering of the factors. The primes need
not be distinct!

The proof is best given after one has the notion of a factor group, so it
is omitted for now. The statement by itself is nevertheless very useful and
easy to apply.

Corollary 3.37 If G is an abelian group and |G| is square–free, then G is
cyclic.

Proof. If n = |G| = p1 . . . pm is a product of distinct primes, then the only
possibility for G is

∏
Z/pi, which is cyclic because lcm(p1, . . . , pm) = n.
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Prime factorization. We can think of the preceding theorem as saying that
the groups of the form G = Z/pe are ‘prime’: they cannot be ‘factored’ as
G = G1 ×G2 except in trivial ways. So the fundamental theorem of abelian
groups is like the prime factorization of integers.

The Classification Theorem can be proved in a similar way too: given a
finite abelian group, we factor it as much as possible.

Examples.

1. If n has the prime factorization n = pe11 . . . penn , then

Z/n ∼= Z/pe11 × · · · × Z/penn .

Notice that lcm(pe11 , . . . , p
en
n ) = n.

2. Any two generator group G ⊂ R3 is isomorphic to Zn, n = 0, n = 1 or
n = 2. Proof: G has no torsion (other than the identity).

3. How does an abelian group like Q fit into this scheme? The group
Q is not finitely-generated! However, it does have finitely-generated
subgroups. E.g. what is the subgroup 〈1/3, 1/7〉 ⊂ Q? It’s a cyclic
group, namely 〈1/21〉. (That’s because gcd(3, 7) = 1, and thus 3× 5−
7× 2 = 1, so 5/7− 2/3 = 1/21 ∈ G.)

4. How does the trivial group fit into this scheme? It is the ‘empty prod-
uct’, or Z0.

Abelian p-groups. A finite group G is a p-group if |G| = pe for some prime
p some e > 0. By the classification theorem, every abelian p-group has the
form

G ∼= Z/pe1 × · · · × Z/pek ,

where
∑
ei = e. Thus the number of abelian groups of order pe, up to

isomorphism, is given by p(e) = the number of partitions of e. For example,
the partitions of 3 are 3, 1 + 2 and 1 + 1 + 1, so there are 3 abelian groups of
order 8:

Z/8, Z/2× Z/4, and Z/2× Z/2× Z/2.

Finding all abelian groups of a given order n. In general, the isomor-
phism classes of abelian groups of order n correspond to the ways of factoring
n into a product of powers of primes.
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The only abelian group of order 6 is Z/2×Z/3. For order 12, there are 2
groups, 4×3 and 2×2×3. For order 360, there are 6 groups; 360 = 23×32×5,
and the factorizations are

2× 2× 2× 9× 5, 2× 2× 2× 3× 3× 5

2× 4× 9× 5, 2× 4× 3× 3× 5

8× 9× 5, 8× 3× 3× 5.

In general, to find the abelian groups of G order n, one first writes n as
a product of powers of distinct primes, n = pe11 · · · p

ek
k . Then, any G of order

n can be written as
G ∼= G1 × · · · ×Gk,

where Gi is a group of order peii . In other words, each factor is a p–group
(for some prime p). Then the number of possibilities for G can be expressed
in terms of the partition function: it is p(e1) · · · p(ek).
When are 2 finite abelian groups isomorphic? The factorization theo-
rem gives a canonical form for any finite abelian group. Moreover, any cyclic
group can be put into this form by replacing Z/n with

∏
p Z/pep . Using this

fact, it is easy to check if two products of cyclic groups are isomorphic. The
procedure is to replace each factor with a product of p–groups, and then see
if one gets the same result.

Example. Consider the groups of order 24 given by:

G1 = Z/2× Z/12,

G2 = Z/4× Z/6, and

G3 = Z/24.

Notice that 12, 6 and 24 are not powers of primes, so we need to factor these
cyclic groups further to put the groups into canonical form. For this first 2
groups we obtain the factorization 24 = 2 · 4 · 6 and 24 = 4 · 2 · 3, so G1

∼= G2;
while for the last group, we obtain 24 = 8 · 3, so G3 is not isomorphic to
either of the first two groups.

Decomposable groups. Let us say a group is decomposable if it is isomor-
phic to a nontrivial product A×B; otherwise it is indecomposable.

Theorem 3.38 A finite abelian group G is indecomposable iff G ∼= Z/pe for
some prime p and e ≥ 0.
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Proof. If G is indecomposable then in the classification, only one term can
occur, so G ∼= Z/pe. Conversely, if G = Z/pe and G = A×B, then |A| = pa

and |B| = pb, where a + b = e, and thus the order of every element in G is
at most lcm(pa, pb) = pmax(a,b). But G has an element of order pe, so a = 1
or b = 1 and hence the product is trivial.

3.7 Homomorphisms and factor groups

It is often said that in mathematics, the maps between objects are as im-
portant (or more important) than the objects themselves. In this section we
will study maps between groups in more detail.

Group homomorphisms. Let φ : G → H be a map between groups. We
say φ is a group homomorphism if

φ(ab) = φ(a)φ(b)

for all a, b ∈ G. The following important properties of homomorphisms are
easily verified:

φ(e) = e;
φ(a′) = φ(a)′; and
the image φ(G) is a subgroup of H.

Examples of homomorphisms.

1. Let φ : G→ H be defined by φ(a) = e for all a ∈ G. This is the trivial
homomorphism.

2. Let φ : Z→ Z/n be reduction mod n.

3. Define φ : Dn → Z/2 by φ(ri) = 0 and φ(fr) = 1.

4. Let φ : Sn → Z/2 by parity.

5. For any element a ∈ G, we obtain a homomorphism φ : Z → G by
φ(n) = an.

If a has order n, we also get a homomorphism φ : Z/n→ G. This map
is 1− 1.

6. Let φ : GLn(R)→ R∗ by φ(A) = det(A).
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7. For any real numbers a, b, let φ : R2 → R be given by φ(x, y) = ax+by.

8. Let φ : R→ C∗ be given by φ(θ) = exp(iθ).

9. Let φ : R∗ → R∗ be given by φ(x) = |x|.

10. Let φ : R∗ → R∗ be given by φ(x) = x2.

11. Let φ : C∞[0, 1]→ R be given by φ(f) =
∫ 1

0
f(x) dx.

12. Let φ : C∞[0, 1]→ C∞[0, 1] be given by φ(f) = f ′(x).

13. Let φ : S4 → Sym({x, y, z}) ∼= S3 map the symmetries of the cube into
the space of permutations of the coordinate axes.

(Equivalently, φ gives the action of S4 on pairs of opposite faces of a
cube, or on pairs of elements of {1, 2, 3, 4}.)

Kernels and normal subgroups. A subgroup K ⊂ G is normal, usually
written K �G, if gK = Kg for all g ∈ G. Equivalently, K is normal iff

gKg−1 = K

for all g ∈ G. It suffices to show gKg−1 ⊂ K for all g, since this implies the
reverse inclusion:

K = g(g−1Kg−1)g ⊂ gKg−1.

Examples. (1) K = 〈r〉 is normal in G = S3, but H = 〈f〉 is not, since
rHr−1 contains rfr−1 = r2f 6∈ H. (2) Any subgroup of an abelian group is
normal.

The kernel of a homomorphism φ : G→ H is defined by

Ker(φ) = {g ∈ G : φ(g) = e}.

The importance of normal subgroups comes from:

Theorem 3.39 The kernel of φ is a normal subgroup of G.

Proof. Recall that to show K = Ker(φ) is a subgroup, we must show it
contains the identity and is closed under inversion and multiplication. All
three properties follow from the basic facts about homomorphisms. As for
normality, just note that if a ∈ K then

φ(gag′) = φ(g)φ(a)φ(g)′ = φ(g)φ(g)′ = e,

so gKg−1 ⊂ K.
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Examples: the kernels in our various examples of homomorphisms are:

1. For the trivial homomorphism φ : G→ H, we have Ker(φ) = G.

2. For reduction mod n, we have Ker(φ) = nZ ⊂ Z.

3. For the parity map on Dn, we have Ker(φ) = 〈r〉.

4. For the parity map on Sn, we have Ker(φ) = An.

5. The map n 7→ an has kernel kZ ⊂ Z, where k = ord(a) if this is finite,
and otherwise k = 0.

6. The kernel of the determinant map is SLn(R).

7. The line 〈(bt,−at) : t ∈ R〉 is the kernel of the map (x, y) 7→ ax+ by.

8. The kernel of the exponential map is 2πZ ⊂ R.

9. The kernel of x 7→ |x| is (±1).

10. The kernel of x 7→ x2 is also (±1). (This shows different maps can have
the same kernel.)

11. The functions of mean zero are the kernel of the integration map.

12. The constant functions are the kernel of the derivative map.

13. The Klein four subgroup, generated by 180 degree rotations about the
coordinate axes, is the kernel of the map S4 → S3.

Solving equations. The kernel often intervenes when the solution to an
equation is not unique.

Theorem 3.40 Let φ : G→ H be a homomorphism, and suppose φ(x0) = y.
Then the set of all solutions to φ(x) = y in G is given by the coset

S = x0 Ker(φ).

Examples.

1. The kernel of the squaring map on R∗ is ±1. Thus, if x20 = y, the set
of all solutions to x2 = y is given by ±x0.
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The plus or minus sign in square–roots comes from the kernel
of the squaring map.

2. Define φ : C∞[0, 1] → C∞[0, 1] by φ(f) = f ′. Then Ker(φ) consists of
the constant functions, f(x) = C.

Now let us try to find all solutions to the equation φ(f) = f ′(x) = x.
One solution is given by f0(x) = x2/2. Thus all solutions are given by
f(x) = x2/2 + C.

The ubiquitous +C in indefinite integrals comes from the ker-
nel of the derivative map.

Theorem 3.41 A homomorphism φ is injective iff Ker(φ) = {e}.

Corollary 3.42 If φ : G→ H has trivial kernel, then G is isomorphic to a
subgroup of H.

Quotient groups. We have seen that Ker(φ) is a normal subgroup. Now
given a normal subgroup K ⊂ G, can we somehow find a homomorphism
φ : G→ H such that Ker(φ) = K? The answer is yes!

To see this, note that when K is normal, the product of two cosets of K
is another coset. Namely,

(aK)(bK) = a(Kb)K = a(bK)K = abK.

Thus we can define a binary operation on G/K by (aK)∗ (bK) = (aK)(bK),
and we have:

Theorem 3.43 If K is normal, then (G/K, ∗) is a group.

Proof. (1) The identity element is K; (2) we have (aK)′ = a′K; and
associative follows from:

((aK)(bK))(cK) = abcK = (aK)((bK)(cK)).
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Note that we also have a natural quotient homomorphism

π : G→ G/K,

given by φ(a) = (aK), and that

Ker(π) = K.

Thus we have explicitly realized every normal subgroup as a kernel.

Theorem 3.44 Let φ : G→ H be a homomorphism. Then φ(G) is naturally
isomorphic to G/K.

Proof. We can reduce to the case where φ(G) = H. The map ψ : G/K → H
given by ψ(aK) = φ(a) is well–defined, surjective and 1 − 1, so it is an
isomorphism.

Example: The integers mod n. Since the integers form an abelian group,
K = nZ is a normal subgroup of Z. The quotient

G/K = Z/nZ

is natural isomorphic to Z/n. (In fact this description of Z/n motivates the
notation.) This may change the way you think about Z/n! For example, in
Z/10, the number 3 is really the coset 3 + 10Z = {. . . ,−7, 3, 13, . . .}.
Lagrange’s theorem for quotients. Since |G/K| = |G|/|K|, the preced-
ing discussion yields:

Corollary 3.45 If φ : G→ H is a homomorphism, then |φ(H)| divides both
|H| and |G|.

Thus Lagrange’s theorem holds for both subgroups and quotient groups.

Examples.

1. If φ : Z/22→ S10 is a homomorphism, then its image must have order
1 or 2 (11 does not divide 10! = |S10|).

2. There is no nontrivial homomorphism φ : Z/12→ Z/5. In fact:
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3. There is a nontrivial map φ : Z/a→ Z/b iff gcd(a, b) > 1.

(Proof. Suppose φ is nontrivial, and let G = φ(Z/a), d = |φ(Z/a)| > 1.
Then d|a since G is a quotient group of Z/a, and d|b since G is a
subgroup of Z/b. Thus 1 < d ≤ gcd(a, b).

Conversely, if d = gcd(a, b) > 1, then we can then we can define φ(x) =
(b/d)x. If x is changed by a multiple of a, then φ(x) is changed by
a multiple of (b/d)a = b(a/d) = 0 mod b, so φ is well-defined; and
φ(1) = b/d 6= 0 mod b, so φ is nontrivial.)

Exercise. (Fraleigh, 3.2(21)). If G is abelian then G/H is abelian. What is
wrong with a proof that starts “let a and b be elements of G/H”?

Simple groups. A group G is simple if its only normal subgroups are G
and {e}. The group Z/p is simple whenever p is prime; Z/n is not simple if
n is composite. The smallest nonabelian simple group is A5.

A famous puzzle, appropriate for anniversary conferences: what is the
next term in this sequence:

2, 3, 5, 7, 11, 13, 17, 19, 21, 23, 29, 31, 37, 39, 41, 43, 47, 53, 59?

Answer: 60. These are the orders of the finite simple groups!

3.8 Generators and relations

In this section we give a glimpse of combinatorial group theory by explaining
how to define a group by generators and relations.

This perspective is important in topology and fits well with the Cayley
graph. For example, we will later use generators and relations to associate a
group to every knot; this is an example of algebraic topology.

Introduction to group presentations. One way to specify a group G is
to list a finite set of generators g1, . . . , gn for G, together with a finite set
of relations r1 = s1, . . . , rm = sm that we would like to hold between these
generators. The notation for such a finitely–generated group is:

G = 〈g1, . . . , gn : r1 = s1, . . . , rm = sm〉.

The relations are between elements of the group specified as products of
generators and their inverses. The group G is defined as the largest possible
group where the relations hold.
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It is customary to use the shorthand gi for g−1i .

Examples.

1. Consider the group

G = 〈a, b : a5 = b2 = (ab)2 = e〉.

This specifies a group with 3 properties: (i) G is generated by a, b; (ii)
the elements b and ab in G have order 2, while a has order 5; and (iii)
G is otherwise as large as possible.

To make (iii) precise we require that for any other group H, with ele-
ments α, β ∈ H such that

α2 = β5 = (αβ)2 = e,

there is a (unique) homomorphism φ : G→ H such that φ(a) = α and
φ(b) = β.

Using (iii) we can show that G ∼= D5. First we note that, since ba =
a−1b, every element of G can be written in the form aibj. Then, since a
and b have orders 5 and 2 respectively, we know |G| ≤ 10. On the other
hand, by (iii) there is a homomorphism φ : G→ D5 defined by φ(a) = r
and φ(b) = f . Since r and f generate D5, this map is surjective.
Therefore |G| = 10 and φ is a bijection; hence an isomorphism.

2. Consider the group
G = 〈a, b : ab = ba〉.

Because of the relation above, G is abelian; every element can be writ-
ten in the form g = aibj. The relation αβ = βα also holds for α = (1, 0),
β = (0, 1) in Z2. Thus we have a homomorphism

φ : G→ Z2

defined by φ(a) = α and φ(b) = β. Clearly φ(aibj) = (i, j), so the only
element of G sent to zero is the identity; thus φ is an isomorphism and
we have G ∼= Z2.

3. Consider the group
G = 〈a : a5 = e〉.

Arguing as above, we conclude that G ∼= Z/5.
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4. Let us return to our first example, the dihedral group. Write

D2n = 〈r, f : rn = f 2 = (rf)2 = e〉.

Note that the elements α = 0 and β = 1 in Z/2 satisfy αn = β2 =
(αβ)2 = e. Thus there is a unique homomorphism

π : D2n → Z/2

given by π(r) = 0 and π(f) = 1. It records whether or not a symmetry
of the regular n-gon reverses its orientation.

Free groups. So far we have implicitly assumed that a largest group with
given relations exists. We now turn to the proof, first in the case where there
are no relations. That is, we will construct the free group

Fn = 〈g1, . . . , gn〉.

The number n is called the rank of the free group.
It is characterized by two properties: (i) the elements (g1, . . . , gn) generate

Fn; and (ii) for any group G and any γ1, . . . , γn ∈ G, there is a (unique)
homomorphism

φ : Fn → G

such that φ(gi) = γi.

Example: the free group on one generator. The elements of F1
∼= 〈a〉

are given by an, n ∈ Z. Thus F1
∼= Z with a = 1. Given any group G and

α ∈ G, we have a unique map φ : F1 → G sending a to α, namely φ(an) = αn.

The free group on two generators. The first interesting example is
F2
∼= 〈a, b〉.
Given a finite alphabet A, the set of words W (A) consists of all finite

sequences of the form w = a1 · · · an, with ai ∈ A. There is a unique word of
length zero which we denote by e. Words are multiplied by concatenation:

ww′ = a1 · · · ana′1 · · · a′n′ .

To describe F2 = 〈a, b〉 we use the alphabet A = 〈a, b, a, b〉. Here a and
b play the roles of the inverse of a and b. We have a map g 7→ g on A that
interchanges a with a and b with b.
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Reduction. Whenever a product of the form gg occurs in a word w ∈ W (A),
we can ‘cancel’ these two letters (eliminate them) to achieve a shorter word.
Doing this repeatedly until no such products appear yields a unique reduced
word red(w). It has the property that

red(w1ggw2) = red(w1w2)

for any g ∈ A. For example, we have

red(ababbab) = red(abaab) = red(abb) = abb = ab2.

Multiplication in F2 is defined by w ∗ v = red(wv).

Theorem 3.46 With this binary operation, F2 is a group.

Proof. (i) The empty word e serves as the identity; (ii) the inverse of
w = g1 · · · gn is gn · · · g1; and (iii) associativity follows from properties of
reduction that can be easily proved by induction.

The Cayley graphs of F2 and Z2; the tree and the checkerboard.
It is instructive now to draw the Cayley graph of F2; it is an infinite tree
with degree 4 at every vertex. It is also useful to compare the Cayley graphs
of the free group 〈a, b〉 and of the free abelian group 〈a, b : ab = ba〉. The
relation gives loops in the second graph.

The universal property for free groups. To show F2 is as large as
possible, we need to show that for any group G and any α, β ∈ G, there is
a unique homomorphism φ : F2 → G satisfying φ(a) = α and φ(b) = β. To
this end, we first define Φ : A → G by sending (a, a, b, b) to (α, α−1, β, β−1).
Then we extend Φ to arbitrary words so that

Φ(g1 · · · gn) = Φ(g1) · · ·Φ(gn),

where the product on the right takes places in G. Then clearly

Φ(wv) = Φ(w)Φ(v).

Finally we observe that
Φ(red(w)) = Φ(w).
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Thus, if we define φ : F2 → G by simplying restrict Φ to the set of reduced
words, we have:

φ(w ∗ v) = Φ(red(wv)) = Φ(wv) = Φ(w)Φ(v) = φ(w)φ(v).

Thus φ is a homomorphism.

Example. For every n, we have a surjective map φ : F2 → Sn given by
φ(a) = (12) and φ(b) = (12 · · ·n). Surjectivity holds because these two
cycles generator Sn.

This map is certainly not injective, e.g. φ(a2) = e.

Construction of a group from a presentation. We can now define the
finitely–presented group

G = 〈g1, . . . , gn : r1 = s1, . . . , rm = sm〉.

First, we observe that the relation r = s is the same as the relation rs−1 = e.
Thus it suffices to treat the case where all the si = e. To construct G, we
take the free group Fn on g1, . . . , gn — using an alphabet with 2n letters this
time — and proceed to ‘kill’ the words r1, . . . , rm. More precisely, we let N
be the smallest normal subgroup of Fn containing r1, . . . , rm, and define

G = Fn/N.

(To verify that N exists, use the fact that the intersection of any collection
of normal subgroups is normal.)

The universal property, with relations. The main property of a finitely–
presented group

G = 〈g1, . . . , gn : r1 = · · · = rn = e〉

is the following.

Theorem 3.47 For any group H, the homomorphisms φ : G → H are in
bijection with the homomorphisms

ψ : Fn ∼= 〈g1, . . . , gn〉 → H

such that ψ(ri) = e for each relation ri.

Proof. The condition on relations says that Ker(ψ) contains R, which is
exactly what is needed for ψ to factor through G = Fn/R.
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In particular, if H is any other group with the same generators where the
same relations hold, we get a surjective homomorphism G → H, showing
that G is indeed the largest group with the given relations.

Example: The infinite dihedral group. Let D∞ = 〈f, r : rf = fr−1〉.
We can think of D∞ as acting on R as the boundary of an ‘infinite polygon’,
with vertices at the integers, by f(x) = −x, r(x) = x + 1. Then frf(x) =
−((−x) + 1) = x− 1 = r−1(x) as required.

Now let G = 〈a, b : a2 = b2 = e〉 = Z/2 ∗ Z/2. It is easy to draw the
Cayley graph of G; it’s a straight line, just like the boundary of an infinite
polygon.

Theorem 3.48 D∞ and G are isomorphic.

Proof. Define a map φ : G → D∞ by φ(a) = f , φ(b) = rf . Then clearly
φ(a2) = e and φ(b2) = rfrf = rr−1 = e, so φ is a homomorphism.

Now define a map ψ : D∞ → G by ψ(f) = a and ψ(r) = ba. Then
ψ(f 2) = a2 = e and

ψ(fr−1) = a(ba)′ = aa′b′ = b′ = b = (ba)a = ψ(rf),

so ψ is a homomorphism. We then compute ψ ◦ φ(a) = a,

ψ ◦ φ(b) = ψ(rf) = baa = b,

so ψ ◦ φ is the identity. Similarly φ ◦ ψ is the identity, so these two groups
are isomorphic.

Generators and relations for Sn.

Theorem 3.49 The symmetric group Sn has generators τi = (i, i + 1), i =
1, . . . n− 1, with relations

τ 2i = e;
τiτi+1τi = τi+1τiτi+1; and
τiτj = τjτi if |i− j| > 1.

Sketch of the proof. To check the main relation, let (i, i+1, i+2) = (i, j, k);
then we have: (ij)(jk)(ij) = (ik) = (jk)(ij)(jk). So there is a map of the
group above to Sn, and since adjacent permutations generate, it is onto.

Now by the picture of changing crossings, it is clear that any two diagrams
of the same permutation differ by these relations.
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Corollary 3.50 The parity of an element in Sn is well-defined.

Proof. The relations preserve parity. Alternatively, define a map from Sn
to Z/2 by sending each τi to one, and observe that the relations are satisfied.

Trivial groups. It is not always easy to tell whether or not a presentation
is just giving the trivial group. For example, 〈a : a12 = e, a25 = e〉 is trivial.
For a more interesting example, consider

G = 〈a, b : b2a = b, ba2b = a〉.

From the first relation we get b = a−1, so the second relation gives e = a and
hence G is trivial.

Remarkably: there is no algorithm to check if a given finitely–presented
group is trivial.

Classification of groups of order 10. We can use the idea of relations to
classify groups. Here is an example, in the case of groups of order 10.

Theorem 3.51 Any group of order 10 is isomorphic to Z/10 or D5.

Proof. To begin we note that the only abelian group of order 10 is Z/10.
So we can assume G is nonabelian.

Since |G| = 10, the elements of G have orders 1, 2, 5 or 10. If every
element has order 2, G is abelian, so we can exclude this case. If there is
an element of order 10, then G is cyclic, so we can exclude this case as well.
Thus G contains an element a of order 5.

Let H = 〈a〉 ⊂ G. Since |G/H| = 2, H is normal. Take any element
b ∈ G−H. Then we have

bab−1 = ak

for k = 2, 3 or 4. Moreover, the order n of b is 2 or 5. Since

bnab−n = ak
n

= a,

we have kn = 1 mod 5. But k5 = kmod 5, so the order of b must be 2 and k
must be 4. In other words, ba = ab and b2 = e.

This shows that G satisfies the defining relations for D5, so there is a
surjective map D5 → G. Since |G| = 10, this map is an isomorphism.
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G → Aut(H) ∼= (Z/5)∗, which is a group of order 4. Since G is nonabelian,
the image of this map is nontrivial; and since |G| = 10, the image has order
2. Thus we can find an element b ∈ G such that bab−1 = a4b = a−1b. Then
b has even order, so b has order 2, and hence G ∼= D10.

Proof variant. As above we have a normal subgroup H ⊂ G of order 5.
Hence we have a homomorphism φ : G → Aut(H) given by conjugation.
Now Aut(H) ∼= (Z/5)∗ ∼= Z/4, so |φ(G)| = 1 or 2. If |φ(G)| = 1 then G is
abelian, so G ∼= Z/10; otherwise, φ(G) = {1, 4}, and hence G ∼= D5.

4 Knot Theory

We now turn to the final topic of this course, knot theory. The ideas we
will discuss in this section belong to topology. Unlike algebra and set theory,
topology is concerned with continuous objects like circles and surfaces. How-
ever we will see that in the case of knot theory, the study of loops in space can
be reduced to a combinatorial theory, and that algebra and combinatorics
play a useful role in attacking this subject.

4.1 Knots and links

Introduction. What is a knot? It is a smooth closed curve in 3-space. A
knots is not allowed to cross itself. A knot can be moved a little so it is a
polygon. We do not allow wild knots.

Two knots K0 and K1 are equivalent if you can make a smoothly moving
family of knots Kt that connects them. You can imagine this motion taking
place in discrete steps, K0, . . . , Kn, where Ki and Ki+1 differ by a triangle
move.

A link is defined similarly as a finite number of disjoint closed loops.

Knot projections. A useful way to discuss knots is by projections: you
put the knot almost in a plane, with pairs of strands meeting at crossings.

Any knot (or link) can be given a knot projection; in fact a generic pro-
jection will work. You just have to avoid the directions tangent to the knot,
and the directions of lines passing through the knot in 3 points (taken with
multiplicities). Each locus we must avoid forms a one-dimensional set in the
2-sphere of projections π : R3 → R2.
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Examples of knots and links.

1. The unknot. There are several projections. Any knot projection with
0, 1 or 2 crossings is the unknot. Any knot projection you can draw
without anticipating crossings is the unknot.

2. The trefoil knot, 31.

3. The figure-eight knot, 41.

4. The (p, q)-torus knot/link. Start with q strands and form a braid of
the form βp, where β is a cyclic permutation; then close. If p and q are
relatively prime, you get a knot. The (1, 3) torus knot is the unknot;
(2, 3) is the trefoil.

In general the (p, q) torus link as q/ gcd(p, q) components. For example,
the (1, 2) torus link is the Hopf link.

5. The unlink on two components.

6. The Hopf link.

7. The Borromean rings, after the Renaissance family crest of the Bor-
romeas. (Exercise: these rings are not round!)

8. The Whitehead link.

History. Lord Kelvin conjectured that atoms are knots in ether. Tait
and Little undertook the tabulation of knots up to ten crossings, a 10 year
project completed around 1899. It was not until 1974 that the lawyer Ken
Perko found a mistake in their tables.

In recent times biologists have discovered that DNA is often knotted. The
classification of 3-dimensional spaces is intimately tied up with knot theory.

Showing two knots are the same. Suppose K1 and K2 are projections
that happen to correspond to the same knot. Then you can transform K1

to K2 be a sequence of Reidemeister moves (or their inverses). These moves
are:

I Transform one strand into a loop with one crossing. The singularity is
a cusp.
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II Transform two parallel strands by adding two crossings. The singularity
is a tangency.

III Transform three strands preserving the number of crossings. The sin-
gularity is a triple-point.

The Reidemeister moves can be remembered by the number of strands they
involve. Planar isotopy is also allowed. The Reidemeister moves also work
for links.

Proof. One way to approach the proof is to consider what kinds of singu-
larities can arise as you view a generic knot projection during isotopy. The
generic singularities are cusps, tangencies and triple points, accounting for
the 3 moves.

Examples.

1. Draw a trefoil with one crossing wrong. This can be undone by the
sequence III, I, II.

2. Tangle up the trefoil.

3. For each crossing of 63, change it and simplify the result.

4.2 Linking number and tricoloring

Oriented knots and links. A knot or link is oriented if we have chosen

a direction (usually indicated by an arrow) to traverse each component. A
link with n components has 2n possible orientations.

Factorization and prime knots. Given two oriented knots, there is a
natural way to join them together to form their sum K = K1#K2. If K1 is
the unlink, then K = K2. It turns out that any oriented knot can be unique
factored into prime knots . Knot tables list only prime knots.

Showing two links are different. Let L = K1 ∪K2 be a two component
oriented link. The linking number `(K1, K2) is defined as follows: at each

crossing between K1 and K2, count +1 if it is a right-hand turn to get onto
the overpass, otherwise −1. Add up and divide by two; this is `(K1, K2).

Theorem 4.1 The linking number is an invariant of an oriented pair of
knots K1, K2.
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Figure 8. Safe and unsafe crossings of oriented strands of a knot or link.

Even though it is defined using a projection, the answer for two different
projections is the same.

Proof. Type I moves don’t involve both components. A type two moves
creates a pair of crossings of opposite sign. And type III doesn’t really change
any pair of strands, only the configuration of all three.

Examples: the unlink, Hopf link, the Whitehead link, and the Borromean
rings.

Unoriented links. The absolute value of the linking number is independent
of orientation.

Tricoloring. We still haven’t shown there are any real knots. To do this,
let’s say a tricoloring of a knot or link projection is an assignment of colors

R,G,B to the arcs such that:

1) at least 2 colors are used; and at each crossing either
2a) all three strands have the same color or
2b) all three strands have different colors.

Theorem 4.2 If one projection of a knot or link can be tricolored, then they
all can.

Proof. Proof. We must check the Reidemeister moves.

(I) The entire loop must be a single color.
(II) If the parallel strands are colored R and G, then we color the
underloop B.
(III) If 3 colors appear at the central crossing, then a crossing
where 3 colors are the same either appears or disappears.

71



In all 3 cases, if 2 colors were used before, then 2 are used after (see especially
2, which can increase the number of colors from 2 to 3).

Examples of tricolorings.

1. The unknot cannot be tricolored.

2. The trefoil can be tricolored. Thus the trefoil is really knotted!

3. The figure 8 knot cannot be tricolored. To check this, focus on one
crossing. Either the two understrands are the same, or they are differ-
ent. In the first case one finds all the strands have the same color, and
in the second case one runs into a contradiction.

Thus tricoloring is not powerful enough to detect all knots.

4. The unlink on 2 comonents L can be tricolored with 2 colors — if drawn
with no crossings — and with 3 colors — if drawn with 2 crossings.

5. The Hopf link cannot be tricolored.

6. The Whitehead link cannot be tricolored. This shows it is not the
unlink.

The number of tricolorings is also an invariant of the knot or link.
For example, the trefoil can be tricolored in 6 different ways. The connect

sum T1#T2 of two trefoils can be tricolored in 24 different ways! (Each of the 6
tricolorings of T1 can be extended to a tricoloing on T1#T2 in 3 different ways
— including the monochromatic colors on T2. Then, the 3 monochromatic
colrings of T1 can each be extended to 2 different tricolorings on T1#T2. This
gives 6 · 3 + 3 · 2 = 24 tricolorings.

4.3 The fundamental group

In this section we introduce a very powerful invariant of a knot or link L,
namely the fundamental group GL.

We begin by describing how to compute this group and what its basic
properties are. Then we explain its topological meaning, and finally check
that it really is invariant under Reidemeister moves. Using this group, we
can clarify the idea of 3-coloring and find other ways to tell knots and links
apart.

72



The group GK. Let K be an oriented knot or link projection. We define a
finitely presented group GK as follows:

1. There is one generator for each strand a, b, c . . . of K; and

2. There is one relation for each crossing in the diagram. Assuming that
running along the orientation of the knot, strand a passes under strand
c to become strand b. Then we add the relation:

ac = cb if the crossing was safe, and
ca = bc if the crossing was unsafe.

Using Reidemeister moves, we will later prove:

Theorem 4.3 If K and K ′ are equivalent knots or links, then GK is iso-
morphic to GK′.

But first some examples.

The trivial knot. The unknot can be presented with one strand and no
crossings, so have

GK = 〈a〉 ∼= Z.

The trefoil knot. In practice it is useful to label the strands a, b, c, . . . so
they occur as consecutive letters in the alphabet as one runs around the knot
in the direction dictated by its orientation. Then first relation has the form
ax = xb or xa = bx, the second has the form yb = cy or by = yc, etc.

Now in the standard projection of the trefoil knot, we have just three
strands a, b, c, all distinct at each crossing, and all crossings are of the same
type. Assuming all crossings are safe, this gives:

GK = 〈a, b, c : ac = cb, ba = ac, cb = ba〉.

Is this group nontrivial? Yes, in fact there is a surjective homomorphism
from GK to Z defined by φ(a) = φ(b) = φ(c). This map exists because it
sends each relation in GK to the relation 1 + 1 = 1 + 1, which is true in Z.
The same reasoning applies to any knot.

Theorem 4.4 For any knot K, there is a surjective homomorphism φ :
GK → Z.
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Braid relation and the trefoil knot. Here is another presentation for
GK . First, we can drop the final relation cb = ba, because it follows from the
other two. Then, we can use the equation c = a′ba to eliminate c. What is
left is the presentation

GK = 〈a, b : aba = bab〉.
This is very close to the presentation we gave earlier for S3. In fact, to get
S3 one just needs to add the relations a2 = b2 = id. This shows:

Theorem 4.5 There is a surjective homomorphism from the trefoil knot
group GK to S3.

Corollary 4.6 The trefoil knot group GK is nonabelian, and hence K is not
equivalent to the unknot.

Tricolorings revisited. Let us now consider for a moment relations like
ac = cb where a, b, c are elements of Dn. The following fact is easily verified:

We have (rif)(rkf) = (rkf)(rj)f in Dn if and only if i + j =
2kmodn.

In particular, in S3 this relation holds iff i + j + k = 0 mod 3. And this in
turn holds iff all the integers i, j, k ∈ Z/3 are the same, or all are different.

Theorem 4.7 There is a surjective homomorphism φ : GK → S3 if and only
if K can be tricolored.

Proof. Suppose K can be tricolored, and let us label the colorings 0, 1, 2 ∈
Z/3. Define a map φ : GK → S3 on the generators of GK by φ(x) = rif if
the strand x has color i. Now at a typical crossing, we have a relation like
ac = cb where (a, b, c) are colored i, j, k. This relation is satisfied in S3 if and
only if i+ j+k = 0 mod 3, which happens iff all 3 colors are the same or all 3
are different. But the definition of a tricoloring is exactly that this coloring
condition holds at each crossing. Thus φ gives a homomorphism, and it is
surjective because at least two colors are used.

The converse is similar. Suppose we have a surjective homomorphism
φ : GK → S3. First, we observe that any two generators of GK are conjugate
in GK . This implies that their images in S3 are all conjugate. Thus if one
of them is a power of r, they all are; but then the map is not surjective.
Consequently, on every generator x we have φ(x) = rif for some i ∈ Z/3.
Using i to color the strand labeled x, we obtain a 3-coloring of K by the
same reasoning as above.

74



Links. The same method associates a group to a link. In particular, if H is
the Hopf link and L is the unlink on two components, then the group

GH = 〈a, b : ab = ba〉 ∼= Z⊕ Z

is abelian for the Hopf link, while

GL = 〈a, b〉 = Z ∗ Z

is free for the unlink.

Tricoloring links. One must be careful with links because not all genera-
tors of GL are conjugate. We find that L admits a tricoloring iff there is a
surjective homomorphism

φ : GL → S3

that sends every generator to a flip in S3. (The last condition is automatic
for a knot.)

The topological fundamental group. We now pause to explain the more
general mathematical theory underlying the definition of GK .

Let A be a reasonable connected space, like a curve or surface in R3.
Picking a basepoint a ∈ A, we wish to make the set of loops γ ⊂ A that
begin and end at a into a group. (Formally, a loop is a continuous function
γ : [0, 1]→ A such that γ(0) = γ(1) = a.)

Composition is defined in an obvious way: γ1 ∗γ2 means you first traverse
γ1, then traverse γ2. This makes sense because γ1 ends at a and γ2 starts
there.

The ‘trivial loop’, given by a constant function γ, serves as the identity.
As usual, the main problem is inverses. To create them, we declare that
γ0 ∼ γ1 if they can be interpolated by a family of continuous loops

γt ⊂ A,

all based at a. The space of equivalence classes of such loops is denoted by

π1(A, a)

and called the fundamental group of A.

Example: the trivial group. In R3 with basepoint a = (0, 0, 0), every
loop γ0 can be shrunk to the constant loop γ1 by setting γt = (1− t)γ0. Thus
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the fundamental group of R3 is trivial. When π1(A, a) is trivial, we say A is
simply–connected.

Example: the circle and Z. Let A = S1 ⊂ C with the basepoint a = 1.
Let w(γ) ∈ Z count the net number of times that γ winds counter–clockwise
around the origin. It turns out that the winding number

w : π1(S
1, a)→ Z

is an isomorphism.

Quotient spaces. Here is another useful way to look at π1(A, a). SupposeX
is a simply–connected space, and a group G acts freely on X in a reasonable
way such that A = X/G. Then, it turns out we have

π1(X/G) ∼= G.

For example, if we describe S1 as R/Z, then we get π1(S
1) = Z.

The torus. For a more interesting example, observate that the torus can
be described as T = R2/Z2, and thus

π1(T ) ∼= Z2.

It is useful to take two standard generators a, b of π1(T ) and draw a picture
of [a, b] = aba−1b−1 and verify that it is trivial, showing that π1(T ) is abelian.

The bouquet of two circles. Let Y be two circles A and B joined at
a single point p. Every loop based at p first winds some number of times
around A, then some number of times around B, etc. Writing down the
corresponding product of a’s and b’s, we obtain an isomorphism to the free
group

π1(Y, p) ∼= Z ∗ Z = 〈a, b〉.

We can also take the Cayley group T of G = 〈a, b〉 and regard Y as the
quotient T/G. Since a tree is simply–connected, this also shows π1(Y ) ∼= G.

Torus with a hole. If we remove a disk from the torus, to obtain a surface
with boundary T 0 = T −D, then we can no longer argue that [a, b] = id. In
fact, [a, b] represents a loop around ∂D, and it turns out that

π1(T
0) ∼= 〈a, b〉.
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A surface of genus two. Finally let S be a surface of genus two. We can
build S by gluing together two copies of T 0 along their boundaries. This
only introduce one relation into the fundamental group, and we have

π1(S) ∼= 〈a, b, c, d : [a, b] = [c, d]〉.

The knot group. We can now explain where GK comes from: for a suitable
basepoint p, we have

GK
∼= π1(R3 −K, p).

In other words, GK is the group of flight plans for airplanes leaving from a
base located outside the knot and flying around it.

For each strand a of K, we have a path γa that starts at p, descends to the
plane of the knot projection, makes a right–hand turn around the directed
strand, and returns to p. The relations at a crossing are explained in Figure
9.

This algorithm we have given computes the Wiritinger presentation of
GK = π1(S

3 −K).

a

c

b

Figure 9. Proof that ac = cb at safe underpass.

The Carabiner Trick. The Hopf link L is less knotted than the unlink,
since G(L) ∼= Z ⊕ Z. As a trick, one can weave the commutator through
two unlinked carabiner, in such a way that the loop comes free when the
carabiner are linked! (Cf. homework on computing G(L).)

Changing presentations. To prove GK is a knot invariant, not just an
invariant of the knot projection, it is important to understand elementary
(or Tietze) moves on a presentation. There are just two:
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(1) 〈gi : ri〉 ⇐⇒ 〈gi : ri, s〉, where s is a consequence of the
given relations. That means s is a product of conjugates of the
ri.

(2) 〈gi : ri〉 ⇐⇒ 〈gi, h : ri, h = w(g1, . . . , gn)〉, where w(·)
is a word in the generators gi. This means we can add a new
generator so long as we add a relation putting it in the group
generated by the (gi).

Invariance of GK. We can now prove Theorem 4.3.

Proof. We must check the Reidemeister moves.
(I) A loop gives 〈a, b : aa = ba〉, so we can use Tietze move (2) to

eliminate b.
(II) Suppose the arc a is underpassed by (b, c, d). Then we get from the

2 crossings the relations ba = ac, ac = da. From this we derive b = d (Tietze
1), then eliminate c, d (Tietze 2). We are left with a, b and no relations,
which is the contribution of two parallel arcs.

(III) Let the topmost arc be c, NW to SE, over (a, b), which runs SW
to NE, with (d, x, e) passing W to E under a and c. The big diagonal safe
crossing gives the relation

ac = cb,

while the other two crossings give

R = 〈ad = xa, xc = ce〉.

See Figure 10. We can solve for x = cec′ and substitute this in ad = xa to
get ad = cec′a or equivalently:

R′ = 〈ada′ = cec′〉.

After the Reidemeister move we get a new arc y and relations

S = 〈dc = cy, by = eb〉.

We can again solve for y = b′eb and get dc = cb′eb or equivalent:

S ′ = 〈c′dc = b′eb〉.

To show the group hasn’t changed, we need to show S ′ is a consequence of
R′ and vice–versa. To do these we use the relation ac = cb, which holds
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a

b

d x e

d e

y
c

ac = cb
ad = xa
xc = ce

dc = cy
by = eb

Figure 10. Reidemeister move III.

both before and after the Reidemeister move. This relation is equivalent to
c′a = bc′, so R′ is equivalent to

R′′ = 〈c′ada′c = e〉

from which we get
R′′′ = 〈bc′dcb′ = e〉

which is equivalent to S ′. The equivalence can be reversed so the groups are
isomorphic.

The figure eight knot group. The relations for the figure 8 knot are
computed in Figure 11. Note that it is helpful to label the consecutive
strands by consecutive letters, (a, b, c, d); and then record the overcrossings
as shown at the right, as an intermediate step in the calculation. We have
the presentation

G = 〈a, b, c, d : ad = db, ab = ca, cb = bd, cd = ac〉.

This presentation can be simplified to:

G = 〈a, b : aba′ba = bab′ab〉.

To show the figure–eight knot is really knotted, one can check:

Theorem 4.8 There exists a surjective homomorphism φ : GK → A4.
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a

d

c
b

adcba

d a b c

ad=db, ab=ca, cb=bd, cd=ac

Figure 11. Computing relations for the figure eight knot.

Proof 1. Define φ(a) = (123) and φ(b) = (134). We have ab 7→ (123)(134) =
(234), ba 7→ (134)(123) = (124), so aba′ba 7→ (234)(321)(124) = id, and
similarly bab′ab 7→ (124)(431)(234) = id, so φ gives a homomorphism on GK

which is clearly surjective.

Proof 2. A better way to think of this is to draw a tetrahedron flattened
out in the plane, with A an equilateral triangle and B,C,D arrayed counter–
clockwise around it. Let us identify each fact with its counter-clockwise
twist of 120◦. Then conjugating by A cyclically permutes B,C,D; that is,
ABA′ = C, ACA′ = D and ADA′ = B. In particular the desired relation
AB = CA holds. One can similar check that the other 3 relations defining
GK hold as well.

There is also a surjective map to D5, as a ‘5-coloring’ argument shows.

Topology of the linking number. Now that we understand the meaning
of GK more geometrically, we can give a group–theoretic perspective on the
linking number of a pair of knots.

Theorem 4.9 The linking number for L = K1 ∪ K2 corresponds to the
abelianization of the element of π1(R3 −K1) represented by K2.

Compare Theorem 4.7, which gives a natural map GK → Z.
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Proof. The proof is a little tricky. Working with a link projection, one
can first change crossings of K2 with itself so K2 becomes the unknot. This
change does not change our projection-based calculation of the linking num-
ber (obviously), nor does it change the image of K2 in π1(R−K1) (obviously).

Now re-arrange the projection so K2 is a counter-clockwise round circle.
It is then clear that the number of outward-heading crossings of K1 with K2

is the same as the number of inward-heading crossings.
Count the crossings in 4 groups, TO, BO, TI, BI, where T/B means

K1 is on top/bottom, and O/I means it is headed out/in. Letting P be the
linking number in π1, and L the linking number from the diagram, we have

TO +BO = TI +BI

L = (TO +BI − TI −BO)/2 and

P = TO − TI.

Using the first equation we have P = BI −BO; averaging these two expres-
sions for P , we obtain P = L.

How good an invariant is the knot group? Since GK can be pretty
complicated, one might wonder if GK determines K. The fact that this is
essentially true is a contemporary theorem.

Theorem 4.10 (Gordon–Luecke) Let (GK , H(K)) be a knot group and a
subgroup H(K) ∼= Z generated by a meridian. Then K is equivalent to K ′,
or its mirror image, iff there is an isomorphism GK

∼= G(K ′) sending H(K)
to H(K ′).

The H(K) is needed for the square and granny knots, which have iso-
morphic groups. Often the H(K) is unnecessary.

4.4 Knot polynomials

Our final knot/link invariant will be a Laurent polynomial X(L) in one vari-
able A, discovered (in a different form) by Vaughn Jones in 1984.

While the knot group GK is a powerful invariant (in fact a complete
invariant of the knot), it is hard to work with; for example, it is hard to
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check in general if two different knot groups are isomorphic or not. (Even
proving that GK is nontrivial requires work.) The coloring invariants we can
define from it are easy to work with, but not powerful enough to tell many
knots apart.

It is trivial, however, to check if two polynomial agree. The Jones poly-
nomial also seems to be very good at telling knots apart; for example, there
only known example with trivial Jones polynomial is the unknot.

The Kaufmann bracket. To define the Jones polynomial, we begin with
the Kaufmann bracket 〈L〉. This is also a polynomial, defined for a knot
projection by:

(i) 〈O〉 = 1;
(ii) 〈L〉 = A〈Ls〉+ A−1〈Lu〉; and
(iii) 〈L ∪O〉 = −(A2 + A−2)〈L〉.

Here Lu and Lu are obtain from L by focusing on one undercrossing and
replacing it with safe, right on-ramps (Ls) or unsafe, left onramps (Lu). The
circle O denotes the unknot.

Example. For the unknot with one twist, 〈L〉 = −A3 (or−A−3, depending
on the direction of the twist).

Example. For the Hopf link, we have

〈H〉 = −A4 − A−4.

Exercise: why is 〈L〉 well-defined? Why doesn’t it depend, for example,
on the order in which we resolve crossings?

Reidemeister II. This move leaves 〈L〉 unchanged, as an easy computation
shows.

Reidemeister III. By resolving the middle crossing in two different ways,
then applying move II, we see that Reidemeister move III also leaves 〈L〉
unchanged.

In fact, equations (ii) and (iii) are chosen just to insure that I and II
leave the bracket invariant, and (i) is just a normalizing factor.

Reidemeister I. Now let L+ denote L with a safe loop added by Reide-
meister move I. Then we have

〈L+〉 = (−A3)〈L〉.

The writhe. To account for these changes, we use another invariant of a
projection that is affected by move I but not moves II or III. This is the
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writhe w(L) or ‘self-linking number’ of a knot or oriented link, obtained by
adding up the signs of all self-crossings.

Note that the writhe of a knot does not depend on an orientation — while
the writhe of a link does. It is not an invariant of the knot; for example, a
single twist gives the unknot writhe ±1.

The writhe is unaffected by moves II and III for the same reason that the
linking number is an invariant. But Reidemeister move I changes it: we have

w(L+) = w(L) + 1.

The polynomial X(L). We can combine the writhe with the bracket
polynomial to get an honest invariant of an oriented link, or unoriented knot,
namely:

X(L) = (−A3)−w(L)〈L〉.

The reason this works is that:

X(L+) = (−A3)−w(L
+)〈L+〉

= (−A3)−w(L
+)−1(−A3)〈L〉

= X(L).

The Hopf link revisited. Give both components the same orientation;
then both crossings are positive, so we must multiply the bracket by (−A3)−2 =
A−6, and we then obtain

X(H+) = −A−2 − A−10.

Knot without orientations. Reversing the orientation does not change
the writhe of a knot, and does not affect the bracket polynomial. Thus X(K)
is an invariant of unoriented knots.

Mirror images. If we replace K by its mirror image −K, then we 〈−K〉 is
just 〈K〉 with A replaced by A−1. Similarly, w(−K) = −w(K) — safe and
unsafe crossings are interchanged. Therefore X(−K)(A) is X(K)(A−1).

The positive trefoil. Consider the trefoil 3+
1 , with all 3 crossings safe

(positive). Then w(3+
1 ) = 3. The bracket polynomial is given by

〈3+
1 〉 = A−7 − A−3 − A5.
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Multiplying by (−A3)−3, we obtain

X(3+
1 ) = −A−16 + A−12 + A−4.

The fact that the polynomial is not symmetric proves that trefoils come in
two types, right and left handed! That is,

X(3−1 ) = A4 + A12 − A16.

(Note: Adams’ table shows 3−1 , the mirror image of 3+
1 .)

The figure eight knot. Start with the projection of 41 in Adams’ tables,
then change the crossings at the top. The two resulting knots are the Hopf
link with a safe twist and the positive trefoil. Using the rule for Reidemeister
move I, we find

〈41〉 = A〈Hs〉+ A−1〈3+
1 〉 = A(−A3)〈H〉+ A−1〈3+

1 〉.

We already computed 〈H+〉 = −A−4−A4 and 〈3+
1 〉 = A−7−A−3−A5, from

which we find:
〈41〉 = A−8 − A−4 + 1− A4 + A8.

In addition, w(41) = 0, so we get X(41) = 〈41〉.
Jones’ polynomial. In all our examples of X(K) we see only 4th powers
of A. To get a simpler expression, the Jones polynomial V (L) is defined

by replacing A with t−1/4. Thus

V (3+
1 ) = t+ t3 − t4,

and
V (41) = t−2 − t−1 + 1− t+ t2.

Skein relations. The Jones polynomial of an oriented knot or link can be
computed directly using the following properties: V (U) = 1 for the unknot,
and

(t1/2 − t−1/2)V (L0) = t−1V (Ls)− tV (Lu),

where Ls and Lu are unsafe crossings, and L0 is the oriented link obtained
when the crossing is removed.

Why does this definition suffice for computations? Because, by changing
enough crossing, any diagram becomes a diagram for the unknot. To find
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the changes to make draw the knot diagram so that as you run along the
knot, all crossings are undercrossings.

Computations with the Jones polynomial. By definition, for the un-
knot we have

V (U) = 1.

If we put one twist in the unknot, and then apply skein relations, we obtain
(L0, Ls, Lu) = (2U,U, U) which gives

V (2U) = −(t1/2 + t−1/2).

If we start with the positive Hopf linkH+ as Ls, then (L0, Ls, Lu) = (U,H+, 2U),
which gives

V (H+) = −t1/2(1 + t2).

If we start with the trefoil 3+
1 = Ls, we get (L0, Ls, Lu) = (H+, 3+

1 , U), which
gives

V (3+
1 ) = t+ t3 − t4.

If we start with the figure eight knot as 41 = Lu, we get (L0, Ls, Lu) =
(H,U, 41), giving

V (41) = t−2 − t−1 + 1− t+ t2.

Continuing in this fashion, one can compute the Jones polynomial for a
table of knots and links without too much difficulty. It is necessary however
to do links at the same time. The next case to be covered in the pattern
above is the closure 42+

1 of the (2, 4) torus knot with all crossings safe. This is
a link with two components with linking number two. We have (L0, Ls, Lu) =
(H+, 42+

1 , 3+
1 ), which gives

V (42+
1 ) = −t3/2 − t7/2 + t9/2 − t11/2

Computational complexity. The most straightforward computation of
X(K) takes 2c steps where c is the number of crossings of K.

Quantum field theory. One can think of the crossings of a knot as un-
dergoing fluctuations, to different states with different energies. Weighting
the states by their energies we get the partition function which is the knot

polynomial. The variable is then related to the temperature of the system
(statistical mechanics).
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Representations of the braid group. Jones’ discovery of V (K) emerged
from his study of operator algebras, which led to some interesting representz-
tions of the braid group,

φn : Bn → GLN(Z[t, t−1]).

Then Tr(φn(β)) is an invariant of the conjugacy class of the braid β. By
studying the behavior of these invariants under the Markov moves, he was
able to extract a knot invariant. The complexity of computing this trace is
polynomial if the number of strands n is fixed.

To apply this method one can appeal to:

Theorem 4.11 (Alexander) Every knot or link arises as the closure of a
braid.

Sketch of the proof.

An unsolved problem. The Jones polynomial, or its variant X(K), gives
different answers for every knot with 9 or fewer crossings.

The only known knot with X(K) = 1 is the unknot.

Alternating links. A link projection L is alternating if the crossings are
alternate over and under as one traverses any component of the link. It
reduced if there is no obvious way to simplify the projection by Reidemeister
move I or variants thereof; more precisely, if each component of R2 − L is
bounded by an embedded loop in the plane (it does not touch itself).

The width of a Laurent polynomial P (A) is the difference between the
largest and smallest degrees of A which occur in the polynomial.

Theorem 4.12 The number of crossings of L is given by 4 times the width
of 〈L〉. In particular, any two alternating diagrams of the same link have the
same number of crossings.

(The final statement was a long–standing conjecture.)

Proof. Let c be the total number of crossings of L, and consider the state
expansion of 〈L〉. It is a sum of terms of the form

As−u(−A2 − A−2)m−1,
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where s is the number of crossings made safe, u is the number made unsafe,
and m is the resulting number of circles or unknots that appear after the
crossings are resolved. Of courser s+ u = c.

Color the regions on the plane complementary to L (including the un-
bounded component) alternating colors. The total number of regions is
Rs + Ru = R = c + 2 (exercise). When we make all the crossings safe,
the m = Rs regions with one color become unknots, and when we make
them all unsafe, the remaining Ru regions become unknots. It can be shown
that these terms determine the width, and hence

W = c+ 2(Rs − 1) + c+ 2(Ru − 1) = 2c+ 2(R− 2) = 4c.

4.5 Immersed spheres

1. The time traveler. Suppose at noon we begin to travel in time,
making the dial move on the clock in side our time machine. It goes
around and around, maybe forward, maybe back — but at the end
the clock says 12:00 again. Now we have traveled a definite integral
numbers of half-days n – this is the winding number of the hand around
the clock. The actual return is to the present plus n/2 days. (Even
though n may be negative.)

2. Circle eversion. Can you turn the circle inside out? Consider chang-
ing closed immersed loops in the plane by the three Reidemeister moves.
Then it turns out to be possible to evert the circle — just apply II fol-
lowed by two I’s.

Now let’s rule out I’s, since they can’t be done continuously without
pinching. Then the circle cannot be everted!

3. Degree. To prove that C and −C are not equivalent, we must put
an arrows on our loops. Now given an arrow, we can walk around the
loop, with a clock whose hour hand points in the direction of travel. If
we start at an upward heading point, then we begin and end at 12:00.
The degree of the loop is the (signed) number of 12 hour periods our
clock has turned by the time we come back.
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The degree is always an integer. So if you move the loop gradually, this
integer can never change! But d(−C) = −d(C) so the circle cannot be
everted.

4. Smiles and frowns. One way to compute the degree is to count the
number of frowns, minus the number of smiles, where the time is 3pm.

5. Turning the sphere inside out. Incredibly, a 2-sphere can be turned
inside out through immersions.

5 Summary

1. Sets.

(a) Axioms. A ∈ B.

(b) Paradoxes. Let S = {A : A 6∈ A}. Then is S ∈ S? The barber of
Seville.

(c) 0 = {}, n+ 1 = n ∪ {n}.
(d) Sizes of infinity (Cantor): |P(A)| > |A|. A line (R) is bigger than

N.

(e) Schröder-Bernstein. |A| ≤ |B| and |B| ≤ |A| implies |A| = |B|.

2. Groups.

(a) Axioms.

(b) Isomorphism. Classification of groups of order up to 7.

(c) Cyclic groups. Every subgroup of Z is cyclic. 〈a, b〉 = gcd(a, b)Z.
(aZ) ∩ (bZ) = lcm(a, b)Z. a generates Z/n iff gcd(a, n) = 1.

(d) The Cayley graph.

(e) Lagrange: H ≤ G =⇒ |H| divides |G|. The order of any quotient
of G also divides |G|.

(f) Group actions. |A| = |G|/| Stab(a)|.
(g) Examples: Z/n, S3, Sn, An (sliding puzzle), Dn, V4, the quater-

nion group Q8, SL2Z, the free group on 2 generators.

(h) 5 Platonic solids, 3 groups: A4, S4, A5. Kepler.
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(i) Homomorphism and quotient groups.

(j) Normal subgroups and group presentations.

3. Knots.

(a) Isomorphism (equivalence).

(b) Knot and link projections and Reidemeister moves.

(c) The unknot, unlink, Hopf link, trefoil, figure eight and Borromean
rings.

(d) Tricoloring — an invariant.

(e) Linking number.

(f) The knot and link group.

(g) The fundamental group of space.

(h) The Wirtinger presentation for GK .

(i) The trefoil group maps to S3, the figure eight group maps to A4,
the Hopf link has G(L) = Z2, the unlink has G(L) = Z ∗ Z.

(j) The carabiner trick.

(k) Knot polynomials. The bracket and the writhe.

(l) Unsolved problem: does X(K) = 1 imply K is unknotted?

Turning the sphere inside out.

89


