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The physics of quantum degenerate atomic Fermi gases in uniform as well as in harmonically
trapped configurations is reviewed from a theoretical perspective. Emphasis is given to the effect of
interactions which play a crucial role, bringing the gas into a superfluid phase at low temperature.
In these dilute systems interactions are characterized by a single parameter, the s-wave scattering
length, whose value can be tuned using an external magnetic field near a broad Feshbach resonance.
The BCS limit of ordinary Fermi superfluidity, the Bose-Einstein condensation (BEC) of dimers and
the unitary limit of large scattering length are important regimes exhibited by interacting Fermi
gases. In particular the BEC and the unitary regimes are characterized by a high value of the
superfluid critical temperature, of the order of the Fermi temperature. Different physical properties
are discussed, including the density profiles and the energy of the ground-state configurations, the
momentum distribution, the fraction of condensed pairs, collective oscillations and pair breaking
effects, the expansion of the gas, the main thermodynamic properties, the behavior in the presence
of optical lattices and the signatures of superfluidity, such as the existence of quantized vortices, the
quenching of the moment of inertia and the consequences of spin polarization. Various theoretical
approaches are considered, ranging from the mean-field description of the BCS-BEC crossover to
non-perturbative methods based on quantum Monte Carlo techniques. A major goal of the review
is to compare the theoretical predictions with the available experimental results.
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I. INTRODUCTION

An impressive amount of experimental and theoreti-
cal activity has characterized the last ten years of ultra-
cold atom physics. The first realization of Bose-Einstein
condensation (BEC) in dilute vapours of alkali atoms
(Anderson et al., 1995; Bradley et al., 1995; Davis et

al., 1995) has in fact opened new stimulating perspec-
tives in this area of research. Most of the studies in
the first years have been devoted to quantum gases of
bosonic nature and were aimed to investigate the impor-
tant consequences of Bose-Einstein condensation which,
before 1995, had remained an elusive and inaccessible
phenomenon.

Major achievements of these studies have been, among
others, the investigation of superfluid features, includ-
ing the hydrodynamic nature of the collective oscillations
(Jin et al., 1996; Mewes et al., 1996), Josephson-like ef-
fects (Cataliotti et al., 2001; Albiez et al., 2005) and the
realization of quantized vortices (Matthews et al., 1999;
Madison et al., 2000; Abo-Shaeer et al., 2001); the ob-
servation of interference of matter waves (Andrews et al.,
1997); the study of coherence phenomena in atom laser

configurations (Mewes et al., 1997; Anderson and Kase-
vich, 1998; Bloch, Hänsch and Esslinger, 1999; Hagley
et al., 1999), the observation of four-wave mixing (Deng
et al., 1999) and of the Hanbury-Brown−Twiss effect
(Schellekens et al., 2005); the realization of spinor con-
densates (Stenger et al., 1998); the propagation of soli-
tons (Burger et al., 1999; Denschlag et al., 2000; Strecker
et al., 2002; Khaykovich et al., 2002) and the obser-
vation of dispersive schock waves (Dutton et al., 2001;
Hoefer et al., 2006); the transition to the Mott-insulator
phase (Greiner et al., 2002), the observation of interac-
tion effects in the Bloch oscillations (Morsch et al., 2001)
and of dynamic instabilities in the presence of moving
optical lattices (Fallani et al., 2004); the realization of
low dimensional configurations, including the 1D Tonks-
Girardeau gas (Kinoshita, Wenger and Weiss, 2004; Pare-
des et al., 2004) and the Berezinskii-Kosterlitz-Thouless
phase transition in 2D configurations (Hadzibabic et al.,
2006; Schweikhard, Tung and Cornell, 2007).

On the theoretical side the first efforts were devoted
to implement the Gross-Pitaevskii theory of weakly in-
teracting Bose gases in the presence of the trapping con-
ditions of experimental interest. This non-linear, mean-
field theory has proven capable to account for most of
the relevant experimentally measured quantities in Bose-
Einstein condensed gases like density profiles, collective
oscillations, structure of vortices etc. The attention of
theorists was later focused also on phenomena which can
not be accounted for by the mean-field description like,
for example, the role of correlations in low dimensional
and in fast rotating configurations as well as in deep op-
tical lattices (for general reviews on Bose-Einstein con-
densed gases see Inguscio, Stringari and Wieman, 1999;
Dalfovo et al., 1999; Leggett, 2001; Pethick and Smith,
2002; Pitaevskii and Stringari, 2003).

Very soon the attention of experimentalists and theo-
rists was also oriented towards the study of Fermi gases.
The main motivations for studying fermionic systems are
in many respects complementary to the bosonic case.
Quantum statistics plays a major role at low tempera-
ture. Although the relevant temperature scale providing
the onset of quantum degeneracy is the same in both
cases, being of the order of kBTdeg ∼ ~

2n2/3/m where n
is the gas density and m is the mass of the atoms, the
physical consequences of quantum degeneracy are differ-
ent. In the Bose case quantum statistical effects are as-
sociated with the occurrence of a phase transition to the
Bose-Einstein condensed phase. Conversely, in a non-
interacting Fermi gas the quantum degeneracy tempera-
ture only corresponds to a smooth crossover between a
classical and a quantum behavior. Differently from the
Bose case the occurrence of a superfluid phase in a Fermi
gas can be only due to the presence of interactions. From
the many-body point of view the study of Fermi superflu-
idity opens a different and richer class of questions which
will be discussed in this review paper. Another impor-
tant difference between Bose and Fermi gases concerns
the collisional processes. In particular, in a single com-
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FIG. 1: Gallery of molecular BEC experiments. Bimodal spatial distributions were observed for expanding gases at JILA
(Greiner, Regal and Jin, 2003) with 40K, at MIT (Zwierlein et al., 2003) and at ENS (Bourdel et al., 2004) with 6Li. They
were instead measured in situ at Innsbruck (Bartenstein et al., 2004a) and at Rice University (Partridge et al., 2005) with 6Li.

ponent Fermi gas s-wave scattering is inhibited due to
the Pauli exclusion principle. This effect has dramatic
consequences on the cooling mechanisms based on evap-
oration, where thermalization plays a crucial role. This
has made the achievement of low temperatures in Fermi
gases a difficult goal that was eventually realized with the
use of sympathetic cooling techniques either employing
two different spin components of the same Fermi gas or
adding a Bose gas component as a refrigerant.

First important achievements of quantum degeneracy
in trapped Fermi gases were obtained by the group at
JILA (De Marco and Jin, 1999). In these experiments
temperatures of the order of fractions of the Fermi tem-
peratures were reached by working with two spin com-
ponents of 40K atoms interacting with negative scatter-

FIG. 2: Transition temperature in units of the Fermi energy
EF as a function of the interaction strength along the BCS-
BEC crossover, calculated using BCS mean-field theory (from
Sá de Melo, Randeria and Engelbrecht, 1993). The diamond
corresponds to the theoretical prediction by Burovski et al.

(2006a) based on a Quantum Monte Carlo simulation at uni-
tarity.

ing length. According to the Bardeen-Cooper-Schrieffer
(BCS) theory this gas should exhibit superfluidity at suf-
ficiently low temperature. However, due to the extreme
diluteness of the gas, the critical temperature required
to enter the superfluid phase was too small in these ex-
periments. Quantum degeneracy effects were later ob-
served in 6Li Fermi gases (Truscott et al., 2001; Schreck
et al., 2001) using sympathetic cooling between 6Li and
the bosonic 7Li isotope. Fermion cooling using different
bosonic species has also proved very efficient for instance
in the case of 40K-87Rb (Roati et al., 2002) as well as
6Li-23Na (Hadzibabic et al., 2003).

It was soon realized that a crucial tool to achieve su-
perfluidity is provided by the availability of Feshbach res-
onances. These resonances characterize the two body in-
teraction and permit one to change the value and even the
sign of the scattering length by simply tuning an exter-
nal magnetic field. Feshbach resonances were first inves-
tigated in bosonic sytems (Courteille et al., 1998; Inouye
et al., 1998). However, inelastic processes severely limit
the possibility of tuning the interaction in Bose conden-
sates (Stenger et al., 1999). Strongly interacting regimes
of fermionic atoms were achieved by O’Hara et al. (2002)
and Bourdel et al. (2003) working at the resonance where
the scattering length takes a divergent value. In this case
three-body losses are inhibited by the Pauli exclusion
principle, leading to a greater stability of the gas (Petrov,
Salomon and Shlyapnikov, 2004). The resonant regime,
also called unitary regime, is very peculiar since the gas
is at the same time dilute (in the sense that the range of
the interatomic potential is much smaller than the inter-
particle distance) and strongly interacting (in the sense
that the scattering length is much larger than the inter-
particle distance). All the length scales associated with
interactions disappear from the problem and the system
is expected to exhibit a universal behavior, independent
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of the details of the interatomic potential. Bertsch (1999)
and Baker (1999) first discussed the unitary regime as
a model for neutron matter based on resonance effects
in the neutron-neutron scattering amplitude (for a re-
cent comparison between cold atoms and neutron matter
see Gezerlis and Carlson, 2007). The critical tempera-
ture of the new system is much higher than in the BCS
regime, being of the order of the quantum degeneracy
temperature, which makes the realization of the super-
fluid phase much easier. Thanks to Feshbach resonances
one can also tune the scattering length to positive and
small values. Here, bound dimers composed of atoms of
different spin are formed and consequently the system,
that was originally a Fermi gas, is transformed into a
bosonic gas of molecules. The possibility of tuning the
scattering length across the resonance from negative to
positive values, and vice-versa, provides a continous con-
nection between the physics of Fermi superfluidity and
Bose-Einstein condensation, including the unitary gas as
an intermediate regime.

On the BEC side of the Feshbach resonance molecules
can be created either by directly cooling the gas at pos-
itive values of the scattering length a, or by first cool-
ing the gas on the BCS side and then tuning the value
of a through the resonance. At low enough tempera-
tures, Bose-Einstein condensation of pairs of atoms was
observed through the typical bimodal distribution of the
molecular profiles (see Fig. 1) (Greiner, Regal and Jin,
2003; Jochim et al. 2003; Zwierlein et al., 2003; Bourdel
et al., 2004; Partridge et al., 2005). Condensation of pairs
was later measured also on the fermionic side of the res-
onance (Regal, Greiner and Jin, 2004b; Zwierlein et al.,
2004). Other important experiments have investigated
the surprisingly long lifetime of these interacting Fermi
gases (Strecker, Partridge and Hulet, 2003; Cubizolles et

al., 2003), the release energy (Bourdel et al., 2004) and
the density profiles (Bartenstein et al., 2004a) along the
crossover.

Many relevant experiments have also focused on the
dynamic behavior of these interacting systems, with the
main motivation of exploiting their superfluid nature.
The first observation of anisotropic expansion (O’Hara
et al., 2002) and the measurements of the collective os-
cillations (Bartenstein et al., 2004b; Kinast et al., 2004),
although nicely confirming at low temperatures the pre-
dictions of the hydrodynamic theory of superfluids, can
not be however considered a proof of superfluidity since a
similar behavior is prediced also in the collisional regime
of a normal gas above the critical temperature. The mea-
surement of the pairing gap observed in radio-frequency
excitation spectra (Chin et al., 2004) was an important
step toward the experimental evidence of superfluidity,
even though it was not conclusive since pairing correla-
tions are present also in the normal phase. A convincing
proof of superfluidity was actually provided by the obser-
vation of quantized vortices which were realized on both
sides of the Feshbach resonance (Zwierlein et al., 2005b).

More recent experimental work (Zwierlein et al. 2006a;

TABLE I: Ratio Tc/TF of the transition temperature to the
Fermi temperature in various Fermi superfluids.

Tc/TF

Conventional superconductors 10−5-10−4

Superfluid 3He 10−3

High-temperature superconductors 10−2

Fermi gases with resonant interactions ∼0.2

Partridge et al. 2006a and 2006b) has concerned the
study of spin polarized configurations with an unequal
number of atoms occupying two different spin states.
In particular the Clogston-Chandrasekar limit, where
the system looses superfluidity, has been experimentally
identified at unitarity (Shin et al., 2006). These config-
urations provide the unique possibility of observing the
consequences of superfluidity through sudden changes in
the shape of the cloud as one lowers the temperature, in
analogy to the case of Bose-Einstein condensates (Zwier-
lein et al., 2006b). Another rapidily growing direction of
research is the study of Fermi gases in periodic poten-
tials (Modugno et al., 2003). First experimental results
concern the effect of the periodic lattice on the bind-
ing energy of molecules across the Feshbach resonance
(Stöferle et al., 2006) and some aspects of the superfluid
to Mott insulator transition (Chin et al., 2006). A moti-
vation of the investigations in this field is the possibility
of implementing an important model of condensed mat-
ter physics, the Hubbard hamiltonian, in analogy to the
Bose-Hubbard counterpart already realized in bosonic
systems (Greiner et al., 2002). Fermi gases in periodic
potentials are of high interest also in the absence of inter-
actions. For example they give rise to long-living Bloch
oscillations that were observed in spin polarized Fermi
gases (Roati et al., 2004).

On the theoretical side the availability of interacting
Fermi gases with tunable scattering length has stimulated
an impressive amount of work. Differently from the case
of dilute Bose gases, where the Gross-Pitaevskii equa-
tion provides an accurate description of the many-body
physics at low temperature and small densities, an analog
theory for the Fermi gas along the BCS-BEC crossover is
not available. The theoretical efforts started in the con-
text of superconductors with the work by Eagles (1969),
where it was pointed out that for large attraction between
electrons the equations of BCS theory describe pairs of
small size with a binding energy independent of density.
A thorough discussion of the generalization of the BCS
approach to describe the crossover in terms of the scatter-
ing length was presented in the seminal paper by Leggett
(1980) (see also Leggett, 2006). This work concerned
ground-state properties and was later extended to finite
temperatures by Nozières and Schmitt-Rink (1985) and
by Sá de Melo, Randeria and Engelbrecht (1993) to calcu-
late the critical temperature for the onset of superfluidity.
These theories describe the properties of the many-body
configurations along the BCS-BEC crossover in terms of
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a single parameter related to interactions, the dimension-
less combination kF a where kF is the Fermi wavevector.
In Fig. 2 we report theoretical predictions for the criti-
cal temperature, showing that Tc is of the order of the
Fermi temperature in a wide interval of values of kF |a|.
For this reason one often speaks of high-Tc Fermi super-
fluidity (see Table I). Furthermore, the results shown in
Fig. 2 suggest that the transition between BCS and BEC
is indeed a continous crossover.

The first application of the concept of bound pairs to
the case of Fermi gases with resonant interactions was
proposed by Timmermans et al. (2001) and Holland
et al. (2001). These extensions of the BCS mean-field
theory are however approximate and, even at zero tem-
perature, the solution of the many-body problem along
the crossover is still an open issue. Different methods
have been developed to improve the description of the
BCS-BEC crossover in uniform gases as well as in the
presence of harmonic traps. These methods include the
solution of the four-body problem to describe the inter-
action between molecules on the BEC side of the reso-
nance (Petrov, Salomon and Shlyapnikov, 2004), appli-
cations of the BCS mean-field theory to trapped config-
urations with the help of the local density approxima-
tion, extensions of the mean-field approach using dia-
grammatic techniques (Pieri, Pisani and Strinati, 2004;
Chen et al., 2005; Haussmann et al., 2006) and the de-
velopment of theories based on the explicit inclusion of
bosonic degreees of freedom in the Hamiltonian (Ohashi
and Griffin, 2002; Bruun and Pethick, 2004; Romans and
Stoof, 2006). At the same time more microscopic calcula-
tions based on quantum Monte Carlo (QMC) techniques
have become available providing results on the equa-
tion of state at zero temperature (Carlson et al., 2003;
Astrakharchick et al., 2004a; Juillet, 2007) and on the
critical temperature for the superfluid transition (Bul-
gac, Drut and Magierski, 2006; Burovski et al., 2006a;
Akkineni, Ceperley and Trivedi, 2006). In addition to
the above approaches, aimed to investigate the equilib-
rium properties of the system, a successful direction of
research was devoted to the study of dynamic proper-
ties, like the expansion and the collective oscillations,
by applying the hydrodynamic theory of superfluids to
harmonically trapped Fermi gases (Menotti, Pedri and
Stringari, 2002; Stringari, 2004), the pair-breaking exci-
tations produced in resonant light scattering (Törmä and
Zoller, 2000) and the dynamic structure factor (Minguzzi,
Ferrari and Castin, 2001). A large number of theoreti-
cal papers has been recently devoted also to the study
of spin polarization effects, with the aim of revealing the
consequences of superfluidity on the density profiles and
on the emergence of new superfluid phases.

Since the number of papers published on the subject
of ultracold Fermi gases is very large we decided to limit
the presentation only to some aspects of the problem
which naturally reflect the main interests and motiva-
tions of the authors. In particular, we have tried to
give special emphasis on the physical properties where

an explicit comparison between theory and experiment
is available, focusing on the effects of the interaction and
on the manifestations of superfluidity exhibited by these
novel trapped quantum systems. Most of the results pre-
sented in this review are relative to systems at zero tem-
perature where the theoretical predictions are more sys-
tematic and the comparison with experiments is more
reliable. A more complete review, covering all the in-
teresting directions of theoretical research would require
a much bigger effort, beyond the scope of the present
paper. Some advanced topics related to the physics of
ultracold Fermi gases are discussed, for example, in the
Proceedings of the 2006 ‘Enrico Fermi’ Varenna School
(Ketterle, Inguscio and Salomon, 2007) and in the review
article by Bloch, Dalibard and Zwerger (2007).

II. IDEAL FERMI GAS IN HARMONIC TRAP

A. Fermi energy and thermodynamic functions

The ideal Fermi gas represents a natural starting point
for discussing the physics of dilute Fermi gases. In many
cases the role of interactions can in fact be neglected,
as in the case of spin polarized gases where interactions
are strongly suppressed at low temperature by the Pauli
exclusion principle, or treated as a small perturbation.

The ideal Fermi gas in the harmonic potential

Vho =
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2 (1)

is a model system with many applications in different
fields of physics, ranging from nuclear physics to the
more recent studies of quantum dots. For this reason
we will mainly focus on the most relevant features of the
model, emphasizing the large N behavior where many
single-particle states are occupied and the semiclassical
approach can be safely used. The simplest way to intro-
duce the semiclassical description is to use a local den-
sity approximation for the Fermi distribution function of
a given spin species:

f(r,p) =
1

exp[β (p2/2m+ Vho(r) − µ)] + 1
, (2)

where β = 1/kBT and µ is the chemical potential fixed
by the normalization condition

Nσ =
1

(2π~)3

∫

drdp f(r,p) =

∫ ∞

0

g(ǫ)dǫ

exp[β(ǫ− µ)] + 1
,

(3)
Nσ being the number of atoms of the given spin species
which is supposed to be sufficiently large. The semiclas-
sical approach accounts for the Fermi pressure at low
temperatures. In Eq. (3) we have introduced the single-
particle density of states g(ǫ) whose energy dependence is
given by g(ǫ) = ǫ2/2(~ωho)

3 where ωho = (ωxωyωz)
1/3 is

the geometrical average of the three trapping frequencies.
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In terms of the density of states one can easily calculate
the relevant thermodynamic functions. For example, the
energy of the gas is given by the expression

E(T ) =

∫ ∞

0

dǫ
ǫg(ǫ)

eβ(ǫ−µ) + 1
. (4)

At T = 0 the chemical potential µ coincides with the
Fermi energy

EHO
F ≡ kBT

HO
F = (6Nσ)1/3

~ωho , (5)

and the energy takes the value E(0) = 3/4EHO
F Nσ.

Eq. (5) fixes an important energy (and temperature)
scale in the problem, analog to the expression EF =
(~2/2m)(6π2nσ)2/3 of the uniform gas, where nσ is the
density of a single spin component.

It is worth noticing that the Fermi energy (5) has the
same dependence on the number of trapped atoms and on
the oscillator frequency ωho as the critical temperature
for Bose-Einstein condensation given by the well known
formula kBTBEC ≃ 0.94~ωhoN

1/3.
An important quantity to investigate is also the release

energy Erel defined as the energy of the gas after a sud-
den switching off of the confining potential. The release
energy is directly accessible in time-of-flight experiments
and, as a consequence of the equipartition theorem ap-
plied to the ideal gas with harmonic confinement, is al-
ways equal to Erel = E/2, where E(T ) is the total energy
(4) of the gas. At low T the energy per particle deviates
from the classical value 3kBT due to quantum statistical
effects as clearly demonstrated in the JILA experiment
(De Marco and Jin, 1999; De Marco, Papp and Jin, 2001)
reported in Fig. 3.

B. Density and momentum distributions

The Fermi energy (5) can be used to define typical
length and momentum scales characterizing the Fermi
distribution in coordinate and momentum space respec-
tively:

R0
i =

√

2EHO
F /mω2

i ; p0
F =

√

2mEHO
F . (6)

The Thomas-Fermi radius (i = x, y, z)

R0
i = aho (48Nσ)1/6 ωho/ωi , (7)

gives the width of the density distribution at T = 0,
which can be calculated by integrating the distribution
function in momentum space:

nσ(r) =
8

π2

Nσ

R0
xR

0
yR

0
z

(8)

×
[

1 −
(

x

R0
x

)2

−
(

y

R0
y

)2

−
(

z

R0
z

)2
]3/2

.

In Eq. (7) aho =
√

~/mωho denotes the harmonic oscil-
lator length. The Fermi wavevector

k0
F ≡ p0

F

~
=

1

aho
(48)1/6N1/6

σ , (9)

fixes instead the width of the momentum distribution

nσ(p) =
8

π2

Nσ

(p0
F )3

[

1 −
(

p

p0
F

)2
]3/2

. (10)

This result is obtained by integrating the T = 0 dis-
tribution function in coordinate space. Equations (8)
and (10), which are normalized to the total number of
particles Nσ, hold for positive values of their arguments
and are often referred to as Thomas-Fermi distributions.
Equation (10) is the analogue of the most familiar mo-
mentum distribution 3Nσ/(4πp

3
F )Θ(1 − p2/p2

F ) charac-
terizing a uniform Fermi gas in trems of the Fermi mo-
mentum pF . The broadening of the Fermi surface with
respect to the uniform case is the consequence of the
harmonic trapping. Notice that the value of k0

F de-
fined above coincides with the Fermi wavevector k0

F =

[6π2nσ(0)]1/3 of a uniform gas with density nσ(0) calcu-
lated in the center of the trap. It is worth comparing
Eqs. (8) and (10) with the analogous results holding for
a trapped Bose-Einstein condensed gas in the Thomas-
Fermi limit (Dalfovo et al., 1999). The shapes of Fermi
and Bose profiles do not look very different in coordi-
nate space. In both cases the radius of the atomic cloud
increases with N although the explicit dependence is
slightly different (N1/5 for bosons andN1/6 for fermions).
Notice however that the form of the density profiles has

FIG. 3: Evidence for quantum degeneracy effects in trapped
Fermi gases. The average energy per particle, extracted from
absorption images, is shown for two-spin mixtures. In the
quantum degenerate regime the data agree well with the ideal
Fermi gas prediction (solid line). The horizontal dashed line
corresponds to the result of a classical gas. From De Marco,
Papp and Jin (2001).
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a deeply different physical origin in the two cases. For
bosons it is fixed by the repulsive two-body interactions,
while in the Fermi case is determined by the quantum
pressure.

In momentum space the Bose and Fermi distributions
differ instead in a profound way. First, as a consequence
of the semiclassical picture, the momentum distribution
of the Fermi gas is isotropic even if the trapping poten-
tial is deformed [see Eq. (10)]. This behavior differs from
what happens in the BEC case where the momentum dis-
tribution is given by the square of the Fourier transform
of the condensate wavefunction and is hence sensitive to
the anisotropy of the confinement. Second, the width of
the momentum distribution of a trapped Bose-Einstein
condensed gas decreases by increasing N while, accord-
ing to Eqs. (6) and (10), the one of a trapped Fermi gas
increases with the number of particles.

It is finally useful to calculate the time evolution of the
density profile after turning off the trapping potential.
For a non-interacting gas the distribution function fol-
lows the ballistic law f(r,p, t) = f0(r − pt/m,p), where
f0 is the distribution function at t = 0 given by (2). By
integrating over p one can easily calculate the time evo-
lution of the density and one finds the following result
for the mean square radii

〈r2i 〉 =
E(T )

Nσ

1

3mω2
i

(1 + ω2
i t

2) . (11)

The asymptotic isotropy predicted by Eq. (11) is the con-
sequence of the absence of collisions during the expansion
and reflects the isotropy of the momentum distribution
(10).

III. TWO-BODY COLLISIONS

A. Scattering properties and binding energy

Interaction effects in quantum degenerate, dilute Fermi
gases can be accurately modeled by a small number of
parameters characterizing the physics of two-body col-
lisions. In the relevant regime of low temperature and
large mean interparticle distance, the spatial range R0 of
the interatomic potential is much smaller than both the
thermal wavelength λT =

√

2π~2/mkBT and the inverse

Fermi wavevector k−1
F :

R0 ≪ λT R0 ≪ k−1
F . (12)

Under the above conditions the main contribution to
scattering comes from states with ℓ = 0 component of
angular momentum, i.e. s-wave states. Another con-
straint comes from the antisymmetry of the wavefunc-
tion of identical fermions which excludes s-wave scatter-
ing between spin-polarized particles. As a consequence,
only particles with different spin can interact.

In this Section we briefly recall some results of the
theory of elastic scattering in the s-wave channel (see,
e.g., Landau and Lifshitz, 1987).

If one neglects small relativistic spin interactions, the
problem of describing the collision process between two
atoms reduces to the solution of the Schrödinger equation
for the relative motion. For positive energy ǫ, the s-wave
wavefunction in the asymptotic region r ≫ R0 can be
written as ψ0(r) ∝ sin[kr + δ0(k)]/r, where r = |r1 − r2|
is the relative coordinate of the two atoms, δ0(k) is the
s-wave phase shift and k =

√
2mrǫ/~ is the wavevector of

the scattering wave with mr the reduced mass of the pair
of atoms (mr = m/2 for identical atoms). The s-wave
scattering amplitude, f0(k) = [−k cot δ0(k) + ik]−1, does
not depend on the scattering angle and when k → 0
it tends to a constant value: f0(k → 0) = −a. The
quantity a is the s-wave scattering length, which plays a
crucial role in the scattering processes at low energy. By
including terms to order k2 in the expansion of the phase
shift δ0(k) at low momenta one obtains the result

f0(k) = − 1

a−1 − k2R∗/2 + ik
, (13)

defining the effective range R∗ of interactions. This
length scale is usually of the same order of the range R0,
however in some cases, e.g. close to a narrow Feshbach
resonance (see Sec. III B), it can become much larger than
R0 providing a new relevant scale. In the limit a → ∞,
referred to as “unitary limit”, the scattering amplitude
(13) at wavevectors k ≪ 1/|R∗| obeys to the universal
law f0(k) = i/k, independent of the interaction.

For positive scattering lengths close to the resonance
(a ≫ R0) shallow s-wave dimers of size a exist whose
binding energy ǫb does not depend on the short-range
details of the potential and is given by

ǫb = − ~
2

2mra2
. (14)

The binding energy of molecules of two fermionic 40K
atoms formed near a Feshbach resonance was first mea-
sured by Regal et al. (2003a) using radio frequency spec-
troscopy.

In the many-body treatment of interactions it is con-
venient to use an effective potential Veff instead of the
microscopic potential V . Different model potentials can
be considered as the description of low-energy processes
is independent of the details of V (r). In many applica-
tions one introduces the regularized zero-range pseudo-
potential defined as (Huang and Yang, 1957)

Veff (r) = gδ(r)
∂

∂r
r , (15)

where the coupling constant g is related to the scattering
length by the relationship g = 2π~

2a/mr. This potential
has a range R0 = 0 and results in the scattering ampli-
tude f(k) = −1/(a−1 + ik). For a > 0, a bound state
exists having the binding energy (14) and corresponding
to the normalized wavefunction

ψb(r) = e−r/a/(
√

2πar) . (16)
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Notice that the differential operator (∂/∂r)r in (15) elim-
inates the singular 1/r short-range behavior of the wave-
function. The use of the pseudopotential (15) in the
Schrödinger equation is equivalent to the following con-
tact boundary condition imposed on the wavefunction
ψ(r) (Bethe and Peierls, 1935)

[

d(rψ)/dr

rψ

]

r=0

= −1

a
. (17)

Another model potential which will be considered in
this review in connection with quantum Monte-Carlo
simulations is the attractive square-well potential defined
by

Veff (r) =

{

−V0 (r < R0)

0 (r > R0) .
(18)

The s-wave scattering parameters can be readily calcu-
lated in terms of the range R0 and of the wavevector
K0 =

√

2mrV0/~2. The scattering length is given by
a = R0[1 − tan(K0R0)/(K0R0)] and the effective range
by R∗ = R0 −R3

0/3a
2 − 1/K2

0a.

B. Fano-Feshbach resonance

The recent experimental achievements in the field of
ultra-cold Fermi gases are based mainly on the possibil-
ity of tuning the scattering length a, in particular to val-
ues much larger than the mean interatomic distance, by
changing an external magnetic field. This situation ex-
ists near the so called Fano-Feshbach resonances (Fano,
1961; Feshbach, 1962). These resonances take place when
the energy associated with the scattering process between

FIG. 4: Magnetic field dependence of the scattering length
in 6Li, showing a broad Feshbach resonance at B0 ≃ 834 G
and a narrow Feshbach resonance at B0 ≃ 543 G (can not be
resolved on this scale). From Bourdel et al. (2003).

two particles (referred to as open channel) becomes close
to the energy of a bound state of the pair in a different
spin state (closed channel).

If the magnetic moments of the pairs of atoms in the
two channels are different, one can go from a situation
where the bound state in the closed channel is just below
the threshold of the continuum spectrum in the open
channel to a situation where the same bound state is
just above threshold.

The transition between the two situations takes place
at some value (denoted by B0) of the magnetic field. In
the absence of coupling, the existence of the bound state
in the closed channel has no effect on the scattering in
the open channel. However, in the presence of small cou-
pling induced for example by exchange interactions, the
scattering length will be large and positive if the state is
below threshold and large and negative in the opposite
case. As a function of the magnetic field B the scattering
length can be parametrized in the following form

a = abg

(

1 − ∆B

B −B0

)

, (19)

where ∆B is the width of the resonance and abg is the
background scattering length away from the resonance.

An important distinction concerns broad and narrow
resonances, which in a Fermi gas involves the comparison
of kF and the effective range of interactions |R∗|. Broad
resonances correspond to kF |R∗| ≪ 1. In this case, the
effective range is irrelevant at the many-body level and
the properties of the gas near the resonance can be de-
scribed only in terms of kF |a| (Partridge et al., 2005).
On the contrary, for narrow resonances corresponding to
kF |R∗| & 1, the effective range is negative and becomes a
relevant scale of the problem (Bruun and Pethick, 2004;
Bruun, 2004; De Palo et al., 2004).

Most experiments on ultracold fermions make use of
broad Feshbach resonances. This is certainly the case for
the 40K resonance at B0 ≃ 202 G used in the experiments
at JILA (Loftus et al., 2002) and even more so for the
extremely wide 6Li resonance at B0 = 834 G used in the
experiments at Duke (O’Hara et al., 2002), Paris (Bour-
del et al., 2003), Innsbruck (Jochim et al., 2003), MIT
(Zwierlein et al., 2003) and Rice (Partridge et al., 2005).
In both cases the value of |R∗| close to the resonance
is of the order of or smaller than a few nanometers and
therefore kF |R∗| . 0.01 for typical values of the density.
Different is the case of the resonance in 6Li at B0 ≃ 543
G used at Rice (Strecker, Partridge and Hulet, 2003),
where estimates give instead kF |R∗| & 1. In Fig. 4 we
report the predicted behavior of the scattering length in
6Li as a function of the external magnetic field showing
both the broad and the narrow resonance. Notice that
for small values of the external magnetic field the scatter-
ing length approaches the value a = 0, where 6Li atoms
are expected to behave as a non-interacting gas.
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C. Interacting dimers

The properties of shallow dimers formed near a Fesh-
bach resonance are very important in the physics of ul-
tracold Fermi gases. Consisting of fermionic atoms, these
dimers are bosonic molecules and interact with each other
as well as with single atoms.

The scattering between atoms and weakly-bound
dimers was first investigated by Skorniakov and Ter-
Martirosian (1956) in connection with neutron-deuteron
scattering and, more recently, by Petrov (2003) in the
context of degenerate Fermi gases (see also Brodsky et

al., 2006; Levinsen and Gurarie, 2006; Taylor, Griffin and
Ohashi, 2007; Iskin and Sá de Melo, 2007b). The solu-
tion of the three-body Schrödinger equation for a pair of
like fermions interacting with a third particle can be ob-
tained exactly using the contact boundary condition (17)
between particles with different spin. From the behav-
ior of the scattering solution at large separation distance
between the dimer and the free atom one can extract
the atom-dimer scattering length, which is found to be
proportional to a:

aad ≃ 1.18a . (20)

Fermi statistics plays here a crucial role since three-body
bound states (Efimov states) are not permitted due to
the Pauli principle.

Petrov, Salomon and Shlyapnikov (2004) have also
solved the problem of the collisions between two dimers.
By using again the zero-range approximation they calcu-
lated the dimer-dimer scattering length finding the value

add ≃ 0.60a . (21)

The above result was later derived also using diagram-
matic techniques by Brodsky et al. (2006) and by Levin-
sen and Gurarie (2006). It is worth pointing out that by
applying Born approximation one would find the results
aad = 8a/3 and add = 2a (Pieri and Strinati, 2006).

The weakly-bound dimers formed near a Feshbach
resonance are molecules in the highest roto-vibrational
state. Due to collisions they can fall into deeper bound
states of size on the order of the interaction range R0. In
this process a large energy of order ~

2/mR2
0 is released

and converted into kinetic energy of the colliding atoms,
which then leave the system. In the case of atom-dimer
collisions one can estimate the probability for the three
atoms to approach each other within distances ∼ R0.
This probability is suppressed by the Pauli principle, be-
cause two out of the three atoms have the same spin. A
description of the relaxation process is provided by the
equation: ṅa = −αadnand, where na and nd are respec-
tively the densities of atoms and dimers and ṅa is the rate
of atom losses. For the coefficent αad the following de-
pendence on a has been obtained (Petrov, Salomon and
Shlyapnikov, 2004):

αad ∝ (~R0/m)(R0/a)
s . (22)

with s = 3.33. In the case of relaxation processes caused
by dimer-dimer collisions, the coefficient entering the
dimer loss equation ṅd = −αddn

2
d satisfies the same law

(22) with s = 2.55. It is crucial that both αad and αdd

decrease with increasing a. This dependence ensures the
stability of Fermi gases near a Feshbach resonance. It is
the consequence of the fermionic nature of the atoms. In
the case of bosons, instead, the relaxation time increases
with increasing a and the system becomes unstable ap-
proaching the resonance.

According to the above results, the dimer-dimer relax-
ation rate should dominate over the atom-dimer one in
the limit R0/a→ 0. Experiments on atom losses both in
potassium (Regal, Greiner and Jin, 2004a) and in lithium
(Bourdel et al., 2004) close to the Feshbach resonance
give relaxation rate constants αdd ∝ a−s with values of
the exponent s in reasonable agreement with theory.

An interesting situation takes place in the case of het-
eronuclear dimers, consisting of fermionic atoms with
different masses m1 and m2, where m1 > m2 (see
Sec. IXD). The theory (Petrov, 2003; Petrov, Sa-
lomon and Shlyapnikov, 2005) predicts that at mass ratio
m1/m2 ≃ 12.3 the exponent s in the dimer-dimer relax-
ation rate αdd ∝ a−s changes its sign, violating thus the
stability condition of the gas near resonance. For mass ra-
tios larger than 13.6, short-range physics dominates and
the universal description in terms of the scattering length
a is lost.

IV. THE MANY-BODY PROBLEM AT

EQUILIBRIUM: UNIFORM GAS

A. Hamiltonian and effective potential

The ideal gas model presented in Sec. II provides a
good description of a cold spin polarized Fermi gas. In
this case interactions are in fact strongly inhibited by the
Pauli exclusion principle. When atoms occupy different
spin states interactions instead deeply affect the solution
of the many-body problem. This is particularly true at
very low temperature where, as we will discuss in this
Section, attractive interactions give rise to pairing effects
responsible for the superfluid behavior.

Let us consider a two-component system occupying
two different spin states hereafter called, for simplicity,
spin-up (σ =↑) and spin-down (σ =↓). We consider the
grand canonical many-body Hamiltonian written in sec-
ond quantization as

Ĥ =
∑

σ

∫

dr Ψ̂†
σ(r)

(

−~
2∇2

2mσ
+ Vσ,ext(r) − µσ

)

Ψ̂σ(r)

+

∫

drdr′V (r − r′)Ψ̂†
↑(r)Ψ̂

†
↓(r

′)Ψ̂↓(r
′)Ψ̂↑(r) , (23)

where the field operators obey the fermionic anticommu-

tation relations {Ψ̂σ(r), Ψ̂†
σ′ (r′)} = δσ,σ′δ(r − r′). The

one-body potential Vσ,ext and the two-body potential V
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account for the external confinement and for the inter-
action between atoms of different spin, respectively. The
number of atoms Nσ =

∫

dr < Ψ̂†
σ(r)Ψ̂σ(r) >, as well as

the trapping potentials and the atomic masses of the two
spin species can in general be different. In this Section
we consider the uniform case (V↑,ext = V↓,ext = 0) with
N↑ = N↓ = N/2 and m↑ = m↓ = m. The densities of
the two spin components are in this case uniform and the
Fermi wavevector is related to the total density of the gas,
n = 2n↑ = 2n↓, through the expression kF = (3π2n)1/3.
The density n determines the Fermi energy

EF = kBTF =
~

2

2m
(3π2n)2/3 (24)

of the non-interacting gas. In the following we will al-
ways use the above definition of EF . Notice that in the
presence of interactions the above definition of EF differs
from the chemical potential at T = 0.

In our discussion we are interested in dilute gases where
the range of the interatomic potential is much smaller
than the interparticle distance. Furthermore, we assume
that the temperature is sufficiently small so that only
collisions in the s-wave channel are important. Under
these conditions interaction effects are well described by
the s-wave scattering length a (see Sec. III A). In this re-
gard one should recall that the gaseous phase corresponds
to a metastable solution of the many-body problem, the
true equilibrium state corresponding in general to a solid-
phase configuration where the microscopic details of the
interactions are important. In Eq. (23) we have ignored
the interaction between atoms occupying the same spin
state, which is expected to give rise only to minor correc-
tions due to the quenching effect produced by the Pauli
principle.

As we have already discussed in connection with two-
body physics, a better theoretical understanding of the
role played by the scattering length can be achieved by
replacing the microscopic potential V with an effective
short-range potential Veff . The regularized zero-range
pseudo-potential has been introduced in Eq. (15). Sim-
ilarly to the two-body problem, the regularization ac-
counted for by the term (∂/∂r)r permits to cure the ul-
traviolet divergences in the solution of the Schrödinger
equation that arise from the vanishing range of the
pseudo-potential. In general, this regularization is cru-
cial to solve the many-body problem beyond lowest order
perturbation theory, as happens, for example, in the BCS
theory of superfluidity (Bruun et al., 1999).

The effect of the zero-range pseudo-potential is ac-
counted for by the boundary condition (17) which, in
the many-body problem, can be rewritten as (Bethe and
Peierls, 1935; Petrov, Salomon and Shlyapnikov, 2004)

Ψ(rij → 0) ∝ 1

rij
− 1

a
, (25)

where rij = |ri − rj | is the distance between any pair
of particles with different spin (i, j), and the limit is

taken for fixed positions of the remaining N − 2 par-
ticles and of the center of mass of the pair (i, j). For
realistic potentials, the above short-distance behavior is
expected to hold for length scales much larger than the
effective range |R∗| of the interaction and much smaller
than the mean interparticle distance: |R∗| ≪ rij ≪ k−1

F .
This range of validity applies in general to atomic gas-
like states both with repulsive (a > 0) and attractive
(a < 0) interactions. If the many-body state consists in-
stead of tight dimers of size a ≪ k−1

F described by the
wavefunction (16) the boundary condition (25) is valid
in the reduced range: |R∗| ≪ rij ≪ a. In any case, at
short distances, the physics of dilute systems is domi-
nated by two-body effects. Under the conditions of di-
luteness and low temperature discussed above, the solu-
tion of the many-body problem with the full Hamilto-
nian (23) is completely equivalent to the solution of an
effective problem where the Hamiltonian only contains
the kinetic energy term and the many-body wavefunc-
tion satisfies the Bethe-Peierls boundary condition (25).

An approach which will be frequently considered in this
review is based on microscopic simulations with quan-
tum Monte Carlo techniques. In this case the contact
boundary conditions (25) are difficult to implement and
one must resort to a different effective interatomic po-
tential. A convenient choice is the attractive square-well
potential with range R0 and depth V0 defined in Eq. (18)
[other forms have also been considered in the literature
(Carlson et al., 2003)]. The interaction range R0 must
be taken much smaller than the inverse Fermi wavevec-
tor, kFR0 ≪ 1, in order to ensure that the many-body
properties of the system do not depend on its value. The
depth V0 is instead varied so as to reproduce the actual
value of the scattering length.

The above approaches permit to describe the many-
body features uniquely in terms of the scattering length
a. These schemes are adequate if one can neglect the
term in k2 in the denominator of Eq. (13). When the
effective range |R∗| of the interatomic potential becomes
of the order of the inverse Fermi wavevector, as happens
in the case of narrow Feshbach resonances, more complex
effective potentials should be introduced in the solution
of the many-body problem (see e.g. Gurarie and Radzi-
hovsky, 2007).

B. Order parameter, gap and speed of sound

The phenomenon of superfluidity in 3D Fermi systems
is associated with the occurrence of off-diagonal long-
range order (ODLRO) according to the asymptotic be-
havior (Gorkov, 1958)

lim
r→∞

〈Ψ̂†
↑(r2 + r)Ψ̂†

↓(r1 + r)Ψ̂↓(r1)Ψ̂↑(r2)〉 = |F (r1, r2)|2 ,
(26)

exhibited by the two-body density matrix. By assuming
spontaneous breaking of gauge symmetry one can intro-
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duce the pairing field

F (R, s) = 〈Ψ̂↓(R + s/2)Ψ̂↑(R − s/2)〉 , (27)

[notice that ODLRO can be defined through Eq. (26)
also without using the symmetry breaking point of view
(Yang, 1962)]. The vectors R = (r1 + r2)/2 and s =
r1 − r2 denote, respectively, the center of mass and the
relative coordinate of the pair of particles. In a Fermi
superfluid ODLRO involves the expectation value of the
product of two field operators instead of a single field
operator as in the case of Bose-Einstein condensation.
The pairing field in Eq. (27) refers to spin-singlet pairing
and the spatial function F must satisfy the even-parity
symmetry requirement F (R,−s) = F (R, s), imposed by
the anticommutation rule of the field operators.

The use of the Bethe-Peierls boundary conditions (25)
for the many-body wavefunction Ψ implies that the pair-
ing field (27) is proportional to (1/s − 1/a) for small
values of the relative coordinate s. One can then write
the following short-range expansion

F (R, s) =
m

4π~2
∆(R)

(

1

s
− 1

a

)

+ o(s) , (28)

which defines the quantity ∆(R), hereafter called the or-
der parameter. The above asymptotic behavior holds
in the same range of length scales as the Bethe-Peierls
conditions (25). For uniform systems the dependence on
the center of mass coordinate R in Eqs. (27)-(28) drops
and the order parameter ∆ becomes constant. Moreover,
in the case of s-wave pairing, the function (27) becomes
spherically symmetric: F = F (s). The pairing field F (s)
can be interpreted as the wavefunction of the macroscop-
ically occupied two-particle state. The condensate frac-
tion of pairs is then defined according to

ncond =
1

n/2

∫

ds |F (s)|2 , (29)

where
∫

ds|F (s)|2 is the density of condensed pairs. The
quantity ncond is exponentially small for large, weakly
bound Cooper pairs. It instead approaches the value
ncond ≃ 1 for small, tightly bound dimers that are al-
most fully Bose-Einstein condensed at T = 0.

Another peculiar feature characterizing superfluidity
in a Fermi gas is the occurrence of a gap ∆gap in the
single-particle excitation spectrum. At T = 0 this gap
is related to the minimum energy required to add (re-
move) one particle starting from an unpolarized sys-
tem according to the relationship E(N/2 ± 1, N/2) =
E(N/2, N/2)±µ+∆gap. Here, E(N↑, N↓) is the ground-
state energy of the system with N↑(↓) particles of ↑ (↓)
spin and µ is the chemical potential defined by µ =
±[E(N/2± 1, N/2± 1)−E(N/2, N/2)]/2 = ∂E/∂N . By
combining these two relations, one obtains the following
expression for the gap (see, e.g., Ring and Schuck, 1980)

∆gap =
1

2
[2E(N/2 ± 1, N/2) (30)

− E(N/2 ± 1, N/2± 1) − E(N/2, N/2)] .

The gap corresponds to one half of the energy required
to break a pair. The single-particle excitation spectrum,
ǫk, is instead defined according to the relation Ek(N/2±
1, N/2) = E(N/2, N/2)±µ+ǫk, where Ek(N/2±1, N/2)
denotes the energy of the system with one more (less)
particle with momentum ~k. Since ∆gap corresponds to
the lowest of such energies Ek, it coincides with the min-
imum of the excitation spectrum. In general the order
parameter ∆ and the gap ∆gap are independent quanti-
ties. A direct relationship holds in the weakly attractive
BCS regime (see Sec. IVD) where one finds ∆gap = ∆.
The role of the gap in characterizing the superfluid be-
havior will be discussed in Sec. VII D.

Let us finally recall that a peculiar property of neu-
tral Fermi superfluids is the occurrence of gapless den-
sity oscillations. These are the Goldstone sound modes
associated to the gauge symmetry breaking and are often
referred to as the Bogoliubov-Anderson modes (Bogoli-
ubov, Tolmachev and Shirkov, 1958; Anderson, 1958).
These modes are collective excitations and should not be
confused with the gapped single-particle excitations dis-
cussed above. At small wavevectors they take the form
of phonons propagating at T = 0 with the velocity

mc2 = n∂µ/∂n (31)

fixed by the compressibility of the gas. The description of
these density oscillations will be presented in Sec. VII D.
The Bogoliubov-Anderson phonons are the only gapless
excitations in the system and provide the main contri-
bution to the temperature dependence of all thermody-
namic functions at low temperature (kBT ≪ ∆gap). For
example the specific heat C and the entropy S of the gas
follow the free-phonon law C = 3S ∝ T 3.

C. Repulsive gas

There are important cases where the many-body prob-
lem for the interacting Fermi gas can be solved in an exact
way. A first example is the dilute repulsive gas. Interac-
tions are treated by means of the pseudo-potential (15)
with a positive scattering length a. Standard pertur-
bation theory can be applied with the small parameter
kFa ≪ 1 expressing the diluteness condition of the gas.
At T = 0, the expansion of the energy per particle up
to quadratic terms in the dimensionless parameter kFa
yields the following expression (Huang and Yang, 1957;
Lee and Yang, 1957)

E

N
=

3

5
EF

(

1 +
10

9π
kFa+

4(11 − 2 log 2)

21π2
(kF a)

2...

)

,

(32)
in terms of the Fermi energy (24). The above result
is universal as it holds for any interatomic potential
with a sufficiently small effective range |R∗| such that
n|R∗|3 ≪ 1. Higher order terms in (32) will depend not
only on the scattering length a, but also on the details of
the potential (see Fetter and Walecka, 2003). In the case
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of purely repulsive potentials, such as the hard-sphere
model, the expansion (32) corresponds to the energy of
the “true” ground state of the system (Lieb, Seiringer and
Solovej, 2005; Seiringer, 2006). For more realistic poten-
tials with an attractive tail, the above result describes
instead the metastable gas-like state of repulsive atoms.
This distinction is particularly important in the presence
of bound states at the two-body level, since more stable
many-body configurations satisfying the same condition
kFa ≪ 1 consist of a gas of dimers (see Sec. IVE). The
weakly repulsive gas remains normal down to extremely
low temperatures when the repulsive potential produces
ℓ > 0 pairing effects bringing the system into a super-
fluid phase (Kohn and Luttinger, 1965; Fay and Layzer,
1968; Kagan and Chubukov, 1988). In the normal phase
the thermodynamic properties of the weakly repulsive gas
are described with good accuracy by the ideal Fermi gas
model.

D. Weakly attractive gas

A second important case is the dilute Fermi gas inter-
acting with negative scattering length (kF |a| ≪ 1). In
this limit the many-body problem can be solved both at
T = 0 and at finite temperature and corresponds to the
most famous BCS picture first introduced to describe the
phenomenon of superconductivity (Bardeen, Cooper and
Schrieffer, 1957). The main physical feature is the in-
stability of the Fermi sphere in the presence of even an
extremely weak attraction and the formation of bound
states, the Cooper pairs, with exponentially small bind-
ing energy. The many-body solution proceeds through
a proper diagonalization of the Hamiltonian (23) by ap-
plying the Bogoliubov transformation to the Fermi field
operators (Bogoliubov, 1958). This approach is non per-
turbative and predicts a second order phase transition
associated with the occurrence of ODLRO.

Exact results are available for the critical temperature
and the superfluid gap (Gorkov and Melik-Barkhudarov,
1961). For the critical temperature the result is

Tc =

(

2

e

)7/3
γ

π
TF e

π/2kF a ≈ 0.28TF e
π/2kF a , (33)

where γ = eC ≃ 1.781, C being the Euler constant. The
exponential, non analytical dependence of Tc on the in-
teraction strength kF |a| is typical of the BCS regime.
With respect to the original treatment by Bardeen,
Cooper and Schrieffer (1957), the preexponential term
in Eq. (33) is a factor ∼2 smaller as it accounts for the
renormalization of the scattering length due to screening
effects in the medium. A simple derivation of this result
can be found in the book by Pethick and Smith (2002).

The spectrum of single-particle excitations close to the
Fermi surface, |k − kF | ≪ kF , is given by

ǫk =
√

∆2
gap + [~vF (k − kF )]2 , (34)

where vF = ~kF /m is the Fermi velocity, and is minimum
at k = kF . The gap at T = 0 is related to Tc through
the expression

∆gap =
π

γ
kBTc ≈ 1.76kBTc . (35)

Furthermore, the ground-state energy per particle takes
the form

E

N
=
Enormal

N
−

3∆2
gap

8EF
, (36)

where Enormal is the perturbation expansion (32) with
a < 0 and the term proportional to ∆2

gap corresponds
to the exponentially small energy gain of the superfluid
compared to the normal state.

Since the transition temperature Tc becomes exponen-
tially small as one decreases the value of kF |a|, the ob-
servability of superfluid phenomena is a difficult task
in dilute gases. Actually, in the experimentally rele-
vant case of harmonically trapped configurations the pre-
dicted value for the critical temperature easily becomes
smaller than the typical values of the oscillator temper-
ature ~ωho/kB.

The thermodynamic properties of the BCS gas can
also be investigated. At the lowest temperatures kBT ≪
∆gap they are dominated by the Bogoliubov-Anderson
phonons. However, already at temperatures kBT ∼ ∆gap

the main contribution to thermodynamics comes from
fermionic excitations. For more details on the thermody-
namic behavior of a BCS gas see, for example, the book
by Lifshitz and Pitaevskii (1980). At T & Tc the gas,
due to the small value of Tc, is still strongly degenerate
and the thermodynamic functions are well described by
the ideal-gas model.

E. Gas of composite bosons

Thanks to the availability of Feshbach resonances it
is possible to tune the value of the scattering length in
a highly controlled way (see Sec. III B). For example,
starting from a negative and small value of a it is pos-
sible to increase a, reach the resonance where the scat-
tering length diverges and explore the other side of the
resonance where a becomes positive and eventually small.
One would naively expect to reach in this way the regime
of the repulsive gas discussed in Sec. IVC. This is not the
case because in the presence of a Feshbach resonance the
positive value of the scattering length is associated with
the emergence of a bound state in the two-body problem
and the formation of dimers as discussed in Sec. III C.
The size of the dimers is of the order of the scatter-
ing length a and their binding energy is ǫb ≃ −~

2/ma2.
These dimers have a bosonic nature, being composed of
two fermions, and if the gas is sufficiently dilute and cold
they consequently give rise to the phenomenon of Bose-
Einstein condensation. The size of the dimers can not
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however be too small, as it should remain large com-
pared to the size of the deeply-bound energy levels of the
molecule. This requires the condition a ≫ |R∗| which,
according to the results of Sec. III C, ensures that the
system of weakly-bound dimers is stable enough and that
the transition to deeper molecular states, due to collisions
between dimers, can be neglected.

The gas of dimers and the repulsive gas of atoms dis-
cussed in Sec. IVC represent two different branches of
the many-body problem, both corresponding to positive
values of the scattering length (Pricoupenko and Castin,
2004). The atomic repulsive gas configuration has been
experimentally achieved by ramping up adiabatically the
value of the scattering length, starting from the value
a = 0 (Bourdel et al., 2003). If one stays sufficiently
away from the resonance, losses are not dramatic and
the many-body state is a repulsive Fermi gas. Conversely,
the gas of dimers is realized by crossing adiabatically the
Feshbach resonance starting from negative values of a,
which allows for a full conversion of pairs of atoms into
molecules, or by cooling down a gas with a fixed (posi-
tive) value of the scattering length.

The behavior of the dilute (kFa ≪ 1) gas of dimers,
hereafter called BEC limit, is properly described by
the theory of Bose-Einstein condensed gases available
both for uniform and harmonically trapped configura-
tions (Dalfovo et al., 1999). In particular, one can im-
mediately evaluate the critical temperature Tc. In the
uniform case this is given by the text-book relationship
Tc = (2π~

2/kBm)(nd/ζ(3/2))2/3, where nd is the density
of dimers (equal to the density of each spin species) and
ζ(3/2) ≃ 2.612. In terms of the Fermi temperature (24)
one can write

Tc = 0.218TF , (37)

showing that the superfluid transition, associated with
the Bose-Einstein condensation of dimers, takes place
at temperatures of the order of TF , i.e. at tempera-
tures much higher than the exponentially small value
(33) characterizing the BCS regime. The chemical po-
tential of dimers, µd, is defined through the relationship
2µ = ǫb + µd involving the molecular binding energy ǫb
and the atomic chemical potential µ.

The inclusion of interactions between molecules, fixed
by the dimer-dimer scattering lenght add according to
the relationship add = 0.60a [see Eq. (21)], is provided
to lowest order in the gas parameter nda

3
dd by the Bo-

goliubov theory for bosons with mass 2m and density
nd = nσ. At T = 0, the bosonic chemical potential is
given by µd = 2π~

2addnd/m. Higher order corrections
to the equation of state are provided by the Lee-Huang-
Yang expansion (Lee, Huang and Yang, 1957)

E

N
=
ǫb
2

+
kFadd

6π

[

1 +
128

15
√

6π3
(kF add)

3/2

]

EF , (38)

here expressed in units of the Fermi energy (24). The
validity of the expression (38) for a Fermi gas interacting

with small and positive scattering lengths, was proven by
Leyronas and Combescot (2007). At very low tempera-
tures the thermodynamics of the gas can be calculated
using the Bogoliubov gapless spectrum ǫd(k) of density
excitations

ǫd(k) = ~k
(

c2B + ~
2k2/16m2

)1/2
, (39)

where cB =
√

π~2addnd/m2 is the speed of Bogoliubov
sound. The single-particle excitation spectrum is instead
gapped and has a minimum at k = 0: ǫk→0 = ∆gap +
k2/2m where

∆gap =
|ǫb|
2

+ (3aad − add)
π~

2nd

m
. (40)

In the above equation, the large binding-energy term
|ǫb|/2 = ~

2/2ma2 is corrected by a term which depends
on both the dimer-dimer (add) and the atom-dimer (aad)
scattering length. This term can be derived from the
definition (30) using for E(N↑, N↓) an energy functional
where the interactions between unpaired particles and
dimers are properly treated at the mean-field level, the
coupling constant being fixed by aad and by the atom-
dimer reduced mass. Since aad = 1.18a [see Eq. (20)], the
most important contribution to Eq. (40) comes from the
term proportional to the atom-dimer scattering length.

In the BEC limit the internal structure of dimers can
be ignored for temperatures higher than the critical tem-
perature since in this regime one has

|ǫb|/kBTc ∼ 1/(kFa)
2 ≫ 1 . (41)

The above condition ensures that at thermodynamic
equilibrium the number of free atoms is negligible, be-
ing proportional to eǫb/2kBT .

F. Gas at unitarity

A more difficult problem concerns the behavior of the
many-body system when kF |a| & 1, i.e. when the scat-
tering length becomes larger than the interparticle dis-
tance, which in turns is much larger than the range of the
interatomic potential. This corresponds to the unusual
situation of a gas which is dilute and strongly interact-
ing at the same time. In this condition, it is not obvious
whether the system is stable or collapses. Moreover, if the
gas remains stable, does it exhibit superfluidity as in the
BCS and BEC regimes? Since at present an exact solu-
tion of the many-body problem for kF |a| & 1 is not avail-
able, one has to resort to approximate schemes or numer-
ical simulations (see Secs.VA-VB). These approaches,
together with experimental results, give a clear indica-
tion that the gas is indeed stable and that it is superfluid
below a critical temperature. The limit kF |a| → ∞ is
called the unitary regime and has been already intro-
duced in Sec. III A when discussing two-body collisions.
This regime is characterized by the universal behavior of
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the scattering amplitude f0(k) = i/k which bears impor-
tant consequences at the many-body level. As the scat-
tering length drops out of the problem, the only relevant
lenght scales remain the inverse of the Fermi wavevector
and the thermal wavelength. All thermodynamic quanti-
ties should therefore be universal functions of the Fermi
energy EF and of the ratio T/TF .

An important example of this universal behavior is pro-
vided by the T = 0 value of the chemical potential:

µ = (1 + β)EF , (42)

where β is a dimensionless parameter. This relation
fixes the density dependence of the equation of state,
with non-trivial consequences on the density profiles and
on the collective frequencies of harmonically trapped
superfluids, as we will discuss in Secs. VI-VII. The
value of β in Eq. (42) has been calculated using fixed-
node quantum Monte-Carlo techniques giving the result
β = −0.58± 0.01 (Carlson et al., 2003; Astrakharchik et

al., 2004a; Carlson and Reddy, 2005;). The most recent
experimental determinations are in good agreement with
this value (see Table II in Sec. VI). The negative value
of β implies that at unitarity interactions are attractive.
By integrating Eq. (42) one finds that the same propor-
tionality coefficient (1 + β) also relates the ground-state
energy per particle E/N and the pressure P to the cor-
responding ideal gas values: E/N = (1 + β)3EF /5 and
P = (1 + β)2nEF /5, respectively. As a consequence the
speed of sound (31) is given by

c = (1 + β)1/2vF /
√

3 , (43)

where vF /
√

3 is the ideal Fermi gas value. The super-
fluid gap at T = 0 should also scale with the Fermi
energy. Fixed-node quantum Monte Carlo simulations
yield the result ∆gap = (0.50 ± 0.03)EF (Carlson et al.,
2003; Carlson and Reddy, 2005). A more recent QMC
study based on lattice calculations (Juillet, 2007) gives
for β a result consistent with the one reported above and
a slightly smaller value for ∆gap (see also Carlson and
Reddy, 2007).

At finite temperature the most relevant problem, both
theoretically and experimentally, is the determination of
the transition temperature Tc which is expected to de-
pend on density through the Fermi temperature

Tc = αTF , (44)

α being a dimensionless universal parameter. Quan-
tum Monte-Carlo methods have been recently used to
determine the value of α. Bulgac, Drut and Magierski
(2006) and Burovski et al. (2006a) carried out simula-
tions of fermions on a lattice where the sign problem,
typical of fermionic quantum Monte-Carlo methods, can
be avoided. These in principle “exact” studies require an
extrapolation to zero filling factor in order to simulate
correctly the continuum system and the reported value of
the critical temperature corresponds to α = 0.157±0.007

(Burovski et al., 2006a). Path integral Monte-Carlo sim-
ulations, which work directly in the continuum, have also
been performed by Akkinen, Ceperley and Trivedi (2006)
using the restricted path approximation to overcome the
sign problem. The reported value α ≃ 0.25 is signifi-
cantly higher compared to the previous method.

Since at unitarity the gas is strongly correlated, one
expects a significantly large critical region near Tc. Fur-
thermore, the phase transition should belong to the same
universality class, corresponding to a complex order pa-
rameter, as the one in bosonic liquid 4He and should
exhibit similar features including the characteristic λ sin-
gularity of the specific heat.

The temperature dependence of the thermodynamic
quantities is expected to involve universal functions of the
ratio T/TF (Ho, 2004). For example, the pressure of the
gas can be written as P (n, T ) = PT=0(n)fP (T/TF ) where
PT=0 is the pressure at T = 0 and fP is a dimension-
less function. Analogously the entropy per atom takes
the form S/NkB = fS(T/TF ) involving the universal
function fS related to fP by the thermodynamic relation
dfP (x)/dx = xdfS(x)/dx. The above results for pressure
and entropy imply, in particular, that during adiabatic
changes the ratio T/TF remains constant. This implies
that the adiabatic processes, at unitarity, follow the law
Pn−5/3 = const, typical of non-interacting atomic gases.

The scaling laws for the pressure and the entropy also
hold at high temperatures, T ≫ TF , provided that the
thermal wavelength is still large compared to the effective
range of interaction, ~

√

m/kBT ≫ |R∗|. In this regime
of temperatures the unitary gas can be described, to
first approximation, by an ideal Maxwell-Boltzmann gas.
Corrections to the equation of state can be determined
by calculating the second virial coefficient B(T ) defined
from the expansion of the pressure P ≃ nkBT [1+nB(T )].
Using the method of partial waves (Beth and Uhlenbeck,
1937; Landau and Lifshitz, 1980) and accounting for the
unitary contribution of the s-wave phase shift δ0 = ∓π/2
when a→ ±∞, one obtains the result

B(T ) = −3

4

(

π~
2

mkBT

)3/2

. (45)

It is worth noticing that the negative sign of the second
virial coefficient corresponds again to attraction. Equa-
tion (45) takes into account effects of both Fermi statis-
tics and interaction. The pure statistical contribution
would be given by the same expression in brackets, but
with the coefficient +1/4 of opposite sign.

V. THE BCS-BEC CROSSOVER

A. Mean-field approach at T = 0

As discussed in Sec. IVF, there is not at present an
exact analytic solution of the many-body problem along
the whole BCS-BEC crossover. A useful approximation
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is provided by the standard BCS mean-field theory of su-
perconductivity. This approach was first introduced by
Eagles (1969) and Leggett (1980) with the main motiva-
tion to explore the properties of superconductivity and
superfluidity beyond the weak-coupling limit kF |a| ≪ 1.
The main merit of this approach is that it provides a
comprehensive, although approximate, description of the
equation of state along the whole crossover, including
the limit 1/kFa → 0 and the BEC regime of small and
positive a. At finite temperature the inclusion of fluc-
tuations around the mean field is instead crucial to pro-
vide a qualitatively correct description of the crossover
(Nozières and Schmitt-Rink, 1985; Sá de Melo, Randeria
and Engelbrecht, 1993). In this Section we review the
mean-field treatment of the crossover at T = 0, while
some aspects of the theory at finite temperature will be
discussed in Sec. VC.

The account of the BCS mean-field theory we give
here is based on the use of the pseudo-potential (15) and
follows the treatment of Bruun et al. (1999). Let us
start considering a simplified Hamiltonian without ex-
ternal confinement and where, in the interaction term
of Eq. (23), only pairing correlations are considered and
treated at the mean-field level

ĤBCS =
∑

σ

∫

dr Ψ̂†
σ(r)

(

−∇2

2m − µ
)

Ψ̂σ(r) (46)

−
∫

dr
{

∆(r)
[

Ψ̂†
↑(r)Ψ̂

†
↓(r) − 1

2 〈Ψ̂
†
↑(r)Ψ̂

†
↓(r)〉

]

+ h.c.
}

.

We also restrict the discussion to equal masses m and
to unpolarized systems: N↑ = N↓ = N/2. The direct
(Hartree) interaction term proportional to the averages

〈Ψ̂†
↑(r)Ψ̂↑(r)〉 and 〈Ψ̂†

↓(r)Ψ̂↓(r)〉, is neglected in Eq. (46)
in order to avoid the presence of divergent terms in the
theory when applied to the unitary limit 1/a → 0. The
order parameter ∆ is defined here as the spatial integral
of the short-range potential V (s) weighted by the pairing
field (27)

∆(r) = −
∫

ds V (s)〈Ψ̂↓(r + s/2)Ψ̂↑(r − s/2)〉

= −g(sF )′s=0 . (47)

The last equality, which is obtained using the regular-
ized potential (15), is consistent with the definition of
the order parameter given in Eq. (28). The c-number

term
∫

dr∆(r)〈Ψ̂†
↑(r)Ψ̂

†
↓(r)〉/2 + h.c. in the Hamiltonian

(46) avoids double counting in the ground-state energy,
a typical feature of the mean-field approach.

The Hamiltonian (46) is diagonalized by the Bogoli-

ubov transformation Ψ̂↑(r) =
∑

i

(

ui(r)α̂i + v∗i (r)β̂†
i

)

,

Ψ̂↓(r) =
∑

i

(

ui(r)β̂i − v∗i (r)α̂†
i

)

which transforms par-

ticles into quasi-particles denoted by the operators α̂i

and β̂i. Since quasi-particles should also satisfy fermionic

anti-commutation relations, {α̂i, α̂
†
i′} = {β̂i, β̂

†
i′} = δi,i′ ,

the functions ui and vi obey the orthogonality relation
∫

dr [u∗i (r)uj(r) + v∗i (r)vj(r)] = δij . As a consequence

of the Bogoliubov transformations the Hamiltonian (46)
can be written in the form

ĤBCS = (E0 − µN) +
∑

i

ǫi

(

α̂†
i α̂i + β̂†

i β̂i

)

, (48)

which describes a system of independent quasi-particles.
The corresponding expressions for the amplitudes ui and
vi are obtained by solving the matrix equation

(

H0 ∆(r)

∆∗(r) −H0

)(

ui(r)

vi(r)

)

= ǫi

(

ui(r)

vi(r)

)

, (49)

whereH0 = −(~2/2m)∇2−µ is the single-particle Hamil-
tonian. The order parameter ∆(r) is in general a com-
plex, position dependent function. Eq. (49) is known
as the Bogoliubov-de Gennes equation (see de Gennes,
1989). It can be used to describe both uniform and
nonuniform configurations like, for example, quantized
vortices (see Sec. VIII C)) or solitons (Antezza, et al.
2007).

In the uniform case the solutions take the simple form
of plane waves ui(r) → eik·ruk/

√
V and vi → eik·rvk/

√
V

with

u2
k = 1 − v2

k =
1

2

(

1 +
ηk

ǫk

)

; ukvk =
∆

2ǫk
. (50)

where ηk = ~
2k2

2m − µ is the energy of a free particle
calculated with respect to the chemical potential. The
spectrum of quasi-particles (ǫi → ǫk) which are the el-
ementary excitations of the system, has the well-known
form

ǫk =
√

∆2 + η2
k , (51)

and close to the Fermi surface coincides with the result
(34) holding in the weak coupling limit with ∆gap = ∆.
In this regime, the minimum of ǫk corresponds to the
Fermi wavevector kF . The minimum is shifted towards
smaller values of k as one approaches the unitary limit
and corresponds to k = 0 when the chemical potential
changes sign on the BEC side of the resonance. Fur-
thermore, one should notice that while the BCS the-
ory correctly predicts the occurrence of a gap in the
single-particle excitations, it is instead unable to describe
the low-lying density oscillations of the gas (Bogoliubov-
Anderson phonons). These can be accounted for by a
time-dependent version of the theory (see, for example,
Urban and Schuck, 2006). The vacuum of quasi-particles,

defined by α̂k|0〉 = β̂k|0〉 = 0, corresponds to the ground
state of the system whose energy is given by

E0 =
∑

k

(

2
~

2k2

2m
v2

k − ∆2

2ǫk

)

. (52)

The above energy consists of the sum of two terms: the
first is the kinetic energy of the two spin components,
while the second corresponds to the interaction energy.
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One should notice that both terms, if calculated sepa-
rately, exhibit an ultraviolet divergence which disappears
in the sum yielding a finite total energy.

The order parameter ∆ entering the above equations
should satisfy a self-consistent condition determined by
the short range behavior (28) of the pairing field (27).
This function takes the form

F (s) =

∫

dk

(2π)3
ukvke

ik·s = ∆

∫

dk

(2π)3
eik·s

2ǫk
. (53)

By writing (4πs)−1 =
∫

dkeik·s/[(2π)3k2] and comparing
Eq. (28) with Eq. (53) one straightforwardly obtains the
important equation

m

4π~2a
=

∫

dk

(2π)3

(

m

~2k2
− 1

2ǫk

)

, (54)

where one is allowed to take the limit s → 0 since
the integral of the difference in brackets is convergent.
Eq. (54), through the expression (51) of the elementary
excitations, provides a relationship between ∆ and the
chemical potential µ entering the single-particle energy

ηk = ~
2k2

2m −µ. A second relation is given by the normal-
ization condition

n =
2

V

∑

k

v2
k =

∫

dk

(2π)3

(

1 − ηk

ǫk

)

, (55)

which takes the form of an equation for the density. One
can prove that the density dependence of the chemi-
cal potential arising from the solution of Eqs. (54) and
(55) is consistent with the thermodynamic relation µ =
∂E0/∂N , with E0 given by Eq. (52).

Result (54) can be equivalently derived starting from
the contact potential g̃δ(r) [rather than from the regu-
larized form (15)] and using the renormalized value

1

g̃
=

m

4π~2a
−
∫

dk

(2π)3
m

~2k2
(56)

of the coupling constant, corresponding to the low-energy
limit of the two-body T-matrix (Randeria, 1995). In this
case one must introduce a cut-off in the calculation of the
order parameter ∆ = −g̃〈Ψ̂↓Ψ̂↑〉 = −g̃

∫

dk∆/[2ǫk(2π)3],
as well as in the integral in Eq. (56), in order to avoid
the emergence of ultraviolet divergences.

In the case of weakly attractive gases (kF |a| ≪ 1 with
a < 0) the chemical potential approaches the Fermi en-
ergy µ ≃ EF and Eq. (54) reduces to the equation for
the gap of standard BCS theory. In the general case
the value of µ and ∆ should be calculated by solving
the coupled equations (54) and (55). By expressing the
energy in units of the Fermi energy EF these equations
only depend on the dimensionless parameter 1/kFa which
characterizes the interaction strength along the BCS-
BEC crossover. In the following we will be referring to
Eqs. (54) and (55) as to the BCS mean-field equations.

Analytical results for the energy per particle are ob-
tained in the limiting cases 1/kFa→ ±∞ corresponding,

respectively, to the BEC and BCS regimes. In the BCS
limit the mean field equations give the result:

E0

N
=

3

5
EF

(

1 − 40

e4
eπ/kF a + ...

)

(57)

while in the BEC limit one finds

E0

N
= − ~

2

2ma2
+

3

5
EF

(

5kFa

9π
− 5(kFa)

4

54π2
+ ...

)

. (58)

While the leading term in the energy per particle is cor-
rectly reproduced in both limits (yielding, respectively,
the non-interacting energy 3EF /5 and half of the dimer
binding energy −~

2/2ma2), the higher order terms are
wrongly predicted by this approach. In fact, in the BCS
limit the theory misses the interaction-dependent terms
in the expansion (32). This is due to the absence of the
Hartree term in the Hamiltonian (46). In the BEC limit
the theory correctly reproduces a repulsive gas of dimers.
However, the term arising from the interaction between
dimers corresponds, in the expansion (58), to a molecule-
molecule scattering length equal to add = 2a rather than
to the correct value add = 0.60a (see Sec. III C). Further-
more, the Lee-Huang-Yang correction in the equation of
state of composite bosons [see Eq. (38)] is not accounted
for by the expansion (58).

Finally, at unitarity (1/kFa = 0) one finds E0/N ≃
0.59(3EF/5) which is 40% larger than the value predicted
by quantum Monte Carlo simulations (see Sec. IVF).

It is worth noticing that the energy per particle, as well
as the chemical potential, change sign from the BCS to
the BEC regime. This implies that there exists a value
of kF a where µ = 0. This fact bears important con-
sequences on the gap ∆gap characterizing the spectrum
(51) of single-particle excitations. If µ > 0, ∆gap coin-
cides with the order parameter ∆. This is the case, in
particular, of the BCS regime, where one finds the result

∆gap = ∆ =
8

e2
EF exp

[

π

2kFa

]

. (59)

Notice that result (59) does not include the
Gorkov−Melik-Barkhudarov [see Eqs. (33),
(35)]. At unitarity one finds (Randeria, 1995)
∆gap = ∆ ≃ 0.69EF . When µ < 0 the gap is

instead given by ∆gap =
√

∆2 + µ2. In particular
in the BEC limit, where µ ≃ −~

2/2ma2, one finds
∆ = (16/3π)1/2EF /

√
kF a ≪ |µ|. In the same limit the

gap is given by ∆gap = ~
2/2ma2 + 3aπ~

2n/m.
The momentum distribution of either spin species nk =

〈â†k↑âk↑〉 = 〈â†k↓âk↓〉 is another direct output of the BCS
mean-field theory. For a given value of kF a along the
crossover it is readily obtained from the corresponding
values of µ and ∆ through the expression

nk = v2
k =

1

2

(

1 − ηk
√

η2
k + ∆2

)

. (60)
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In the BCS regime, nk coincides approximately with
the step function Θ(1 − k/kF ) characteristic of the non-
interacting gas, the order parameter ∆ providing only a
small broadening around the Fermi wavevector. By in-
creasing the interaction strength the broadening of the
Fermi surface becomes more and more significant. At
unitarity, 1/kFa = 0, the effect is of the order of kF ,
consistently with the size of ∆ being proportional to the
Fermi energy. In the BEC regime nk takes instead the
limiting form

nk =
4(kF a)

3

3π(1 + k2a2)2
, (61)

which is proportional to the square of the Fourier trans-
form of the molecular wavefunction (16).

It is important to notice that at large wavevec-
tors the momentum distribution (60) decays as nk ≃
m2∆2/(~4k4) for k ≫ m|µ|/~. The large-k 1/k4 tail
has important consequences for the kinetic energy of the
system defined as Ekin = 2

∑

k nk~
2k2/2m, which di-

verges in 2D and 3D. This unphysical behavior arises
from the use of the zero-range pseudopotential (15) which
describes correctly only the region of wavevectors much
smaller than the inverse effective range of interactions,
k ≪ 1/|R∗|. It reflects the fact that the kinetic energy
is a microscopic quantity that in general can not be ex-
pressed in terms of the scattering length.

Let us finally discuss the many-body structure of the
ground-state wavefunction. The BCS ground state, de-
fined as the vacuum state for the quasi-particles α̂k and

β̂k, can be written explicitly in terms of the amplitudes
uk, vk giving the well known result

|BCS〉 =
∏

k

(

uk + vkâ
†
k↑â

†
−k↓

)

|0〉 , (62)

where |0〉 is the particle vacuum. It is important to stress
that the BCS mean-field Eqs. (54)-(55) can be equiva-
lently derived from a variational calculation applied to
the state (62) where the grand-canonical energy is min-
imized with respect to uk, vk, subject to the normaliza-
tion constraint u2

k +v2
k = 1. The BCS state (62) does not

correspond to a definite number of particles. In fact, it
can be decomposed into a series of states having an even
number of particles |BCS〉 ∝ |0〉 + P̂ †|0〉 + (P̂ †)2|0〉 + ...,

where P̂ † =
∑

k vk/ukâ
†
k↑â

†
−k↓ is the pair creation op-

erator. By projecting the state (62) onto the Hilbert
space corresponding to N particles one can single out
the component |BCS〉N ∝ (P̂ †)N/2|0〉 of the series. In
coordinate space this N -particle state can be expressed
in terms of an antisymmetrized product of pair orbitals
(Leggett, 1980)

ΨBCS (r1, ..., rN ) = Â
[

φ(r11′ )φ(r22′ )...φ(rN↑N↓
)
]

. (63)

Here Â is the antisymmetrizer operator and the func-
tion φ(r) = (2π)−3

∫

dk(vk/uk)eik·r depends on the rel-
ative coordinate rii′ = |ri − ri′ | of the pair of parti-
cles, i (i′) being labels for the spin-up (down) parti-
cles. It is worth noticing that in the deep BEC regime,

corresponding to |µ| ≃ ~
2/2ma2 ≫ ∆, the pair or-

bital becomes proportional to the molecular wavefunction
(16): φ(r) = (

√
nσ/2)e−r/a/(

√
2πar), and the many-

body wavefunction (63) describes a system where all
atoms are paired into bound molecules. Wave functions
of the form (63) are used in order to implement more
microscopic approaches to the many-body problem (see
Sec. V B).

In conclusion, we have shown how BCS mean-field the-
ory is capable of giving a comprehensive and qualitatively
correct picture of the BCS-BEC crossover at T = 0. The
quantitative inadequacies of the model will be discussed
in more details in Sec. VB 2.

B. Quantum Monte Carlo approach at T = 0

1. Method

A more microscopic approach to the theoretical inves-
tigation of the ground-state properties of the gas along
the BCS-BEC crossover is provided by the fixed-node dif-
fusion Monte Carlo (FN-DMC) technique. This method
is based on the Hamiltonian (23) where, as in Sec. VA,
we consider uniform and unpolarized configurations of
particles with equal masses. A convenient choice for the
effective interatomic potential Veff (r) consists of using
the square-well model (18) where, in order to reduce
finite-range effects, the value of R0 is taken as small
as nR3

0 = 10−6. The depth V0 = ~
2K2

0/m of the po-
tential is varied in the range 0 < K0R0 < π to re-
produce the relevant regimes along the crossover. For
K0R0 < π/2, the potential does not support a two-body
bound state and the scattering length is negative. Vice-
versa, for K0R0 > π/2, the scattering length is positive
and a molecular state appears with binding energy ǫb.
The value K0R0 = π/2 corresponds to the unitary limit,
where |a| = ∞ and ǫb = 0.

In a diffusion Monte Carlo (DMC) simulation one in-
troduces the function f(R, τ) = ψT (R)Ψ(R, τ), where
Ψ(R, τ) denotes the wavefunction of the system and
ψT (R) is a trial function used for importance sampling.
The function f(R, τ) is evolved in imaginary time, τ =
it/~, according to the Schrödinger equation

− ∂f(R, τ)

∂τ
= − ~

2

2m

{

∇2
Rf(R, τ) −∇R[F(R)f(R, τ)]

}

+ [EL(R) − Eref ]f(R, τ) . (64)

In the above equation R denotes the position vec-
tors of the N particles, R = (r1, ..., rN ), EL(R) =
ψT (R)−1HψT (R) denotes the local energy, F(R) =
2ψT (R)−1∇RψT (R) is the quantum drift force, and Eref

is a reference energy introduced to stabilize the numer-
ics. The various observables of the system are calculated
from averages over the asymptotic distribution function
f(R, τ → ∞) (for more details see e.g. Boronat and Ca-
sulleras, 1994). As an example, the DMC estimate of the
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energy is obtained from

EDMC =

∫

dREL(R)f(R, τ → ∞)
∫

dRf(R, τ → ∞)
. (65)

A crucial requirement, which allows for the solution of
Eq. (64) as a diffusion equation, is the positive definite-
ness of the probability distribution f(R, τ). The con-
dition f(R, τ) ≥ 0 can be easily satisfied for the ground
state of bosonic systems by choosing both Ψ and ψT pos-
itive definite, corresponding to the nodeless ground-state
function. In this case the asymptotic distribution con-
verges to f(R, τ → ∞) = ψT (R)Ψ0(R), where Ψ0(R)
is the exact ground-state wavefunction, and the average
(65) yields the exact ground-state energy E0. The case of
fermionic ground-states or of more general excited states
is different, due to the appearance of nodes in the wave-
function Ψ. In this case an exact solution is in general not
available. An approximate treatment is provided by the
FN-DMC method which enforces the positive definiteness
of f(R, τ) through the constraint that ψT and Ψ change
sign together and thus share the same nodal surface. The
nodal constraint is kept fixed during the calculation and
the function f(R, τ), after propagation in imaginary time
according to Eq. (64), reaches for large times the asymp-
totic distribution f(R, τ → ∞) = ψT (R)ΨFN (R), where
ΨFN (R) is an approximation to the exact eigenfunction
of the many-body Schrödinger equation. It can be proved
that, due to the nodal constraint, the fixed-node energy
obtained from Eq. (65) is an upper bound to the ex-
act eigenenergy for a given symmetry (Reynolds et al.,
1982). In particular, if the nodal surface of ψT were
exact, then EDMC would also be exact. The energy cal-
culated in a FN-DMC simulation depends crucially on a
good parametrization of the many-body nodal surface.

The calculations are carried out using a cubic simu-
lation box of volume V = L3 with periodic boundary
conditions. The number of particles in the system ranges
typically from N = 14 to N = 66 and finite-size analysis
are performed to extrapolate the results to the thermo-
dynamic limit. The most general trial wavefunction used
in studies of ultracold fermionic gases has the form (Carl-
son et al., 2003; Chang et al., 2004; Astrakharchik et al.,
2004a; Chang and Pandharipande, 2005; Astrakharchik
et al., 2005a)

ψT (R) = ΨJ(R)ΨBCS(R) , (66)

where ΨJ contains Jastrow correlations between all the
particles, ΨJ(R) =

∏

i,j fσσ′(|riσ − rjσ′ ), where riσ de-
notes the position of the i-th particle with spin σ, and
the BCS-type wavefunction ΨBCS is an antisymmetrized
product of pair wavefunctions of the form (63). The pair
orbital φ(r) is chosen of the general form

φ(r) = α
∑

kα≤kmax

eikα·r + φs(r) , (67)

where α is a variational parameter and the sum is per-
formed over the plane-wave states satisfying periodic

boundary conditions, kα = 2π/L(ℓαxx̂ + ℓαy ŷ + ℓαz ẑ)
(the ℓ’s are integer numbers), up to the largest closed
shell kmax = 2π/L(ℓ2maxx + ℓ2maxy + ℓ2maxz)

1/2 occupied
by the N/2 particles. A convenient functional form of the
Jastrow correlation terms fσσ′(r) and of the s-wave or-
bital φs(r) is discussed by Astrakharchik et al. (2005a).
The Jastrow function in Eq. (66) is chosen positive defi-
nite, ΨJ(R) ≥ 0, and therefore the nodal surface of the
trial function is determined only by ΨBCS.

An important point concerns the wavefunction ΨBCS

which can be used to describe both the normal and the
superfluid state. In fact, if one chooses in Eq. (67)
φs(r) = 0, it can be shown (Bouchaud, Georges and
Lhuillier, 1988; Bouchaud and Lhuillier, 1989) that ΨBCS

coincides with the wavefunction of a free Fermi gas, i.e.,
the product of the plane-wave Slater determinants for
spin-up and spin-down particles. In this case the trial
wavefunction (66) is incompatible with ODLRO and de-
scribes a normal Fermi gas similarly to the wavefunction
employed in the study of liquid 3He at low temperatures
(Ceperley, Chester and Kalos, 1977). On the contrary,
if φs(r) 6= 0, the wavefunction (66) accounts for s-wave
pairing and describes a superfluid gas. In particular, in
the deep BEC limit 1/kFa ≫ 1, the choice α = 0 and
φs(r) given by the molecular solution of the two-body
problem in Eq. (67) reproduces the mean-field wavefunc-
tion (63). As an example, at unitarity, the normal-state
wavefunction [φs(r) = 0 in Eq. (67)] yields the value
E/N = 0.56(1)3EF/5 for the energy per particle, to be
compared with the result E/N = 0.42(1)3EF/5 obtained
with the superfluid-state wavefunction.

Another important remark concerns the gas-like nature
of the many-body state described by the wave function
ΨFN(R). In the limit of a zero-range interatomic po-
tential this state corresponds to the true ground-state of
the system, because bound-states with more than two
particles are inhibited by the Pauli exclusion principle
(Baker, 1999). The situation is different for a finite-
range potential. In the case of the square-well poten-
tial (18) one can easily calculate an upper bound to the
ground-state energy using the Hartree-Fock state |HF〉 =
∏

k≤kF
â†k,↑â

†
k,↓|0〉. One finds the result 〈HF|H |HF〉/N =

3EF /5 − πV0nR
3
0/3, showing that at large n the inter-

action energy is unbounded from below and the kinetic
energy can not prevent the system from collapsing. How-
ever, for realistic short-range potentials having a large
depth V0 ∼ ~

2/mR2
0, this instability sets in at very high

densities on order nR3
0 ∼ 1. Such large density fluc-

tuations are extremely unlikely, so that one can safely
ignore this collapsed state when performing the simula-
tions. Thus, for small enough values of R0, the gas-like
state corresponding to the wavefunction ΨFN is expected
to describe the ground state of the system with zero-
range interactions.
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2. Results

The results of the FN-DMC calculations are reported
in Figs. 5-9. In Fig. 5 we show the energy per particle
as a function of the interaction strength along the BCS-
BEC crossover (Astrakharchik et al., 2004a; Chang et al.,
2004). In order to emphasize many-body effects on the
BEC side of the resonance we subtract from E/N the
two-body contribution ǫb/2 arising from the molecules.
Notice that ǫb refers here to the dimer binding energy
in the square-well potential (18), which, for the largest
values of 1/kFa, includes appreciable finite-range correc-
tions compared to −~

2/ma2. Nevertheless, no appre-
ciable change is found in the difference E/N − ǫb/2 if
the value of R0 is varied, demonstrating the irrelevance
of this length scale for the many-body problem. Both
in the BCS and in the BEC regime the FN-DMC ener-
gies agree respectively with the perturbation expansion
(32) and (38). In particular, in the inset of Fig. 5 we
show an enlarged view of the results in the BEC regime
indicating good agreement with the add = 0.60a result
for the dimer-dimer scattering length as well as evidence
for beyond mean-field effects. In Fig. 5 we compare the
FN-DMC results with the ones from the BCS mean-field
theory of Sec. VA. The mean-field results reproduce the
correct qualitative behavior, but are affected by impor-
tant quantitative inadequacies.

The quantum Monte Carlo and mean-field results for
the momentum distribution nk and for the condensate
fraction of pairs ncond are reported in Fig. 6 and 7, re-

FIG. 5: (color online). Energy per particle along the BCS-
BEC crossover with the binding-energy term subtracted from
E/N . Symbols: quantum Monte Carlo results from As-
trakharchik et al. (2004a). The dot-dashed line corresponds
to the expansion (32) and the dashed line to the expansion
(38) holding, respectively, in the BCS and in the BEC regime.
The long-dashed line (red) refers to the result of the BCS
mean-field theory. Inset: enlarged view of the BEC regime
−1/kF a ≤ −1. The solid line corresponds to the mean-field
term in the expansion (38), the dashed line includes the Lee-
Huang-Yang correction.

spectively (Astrakharchik et al., 2005a). In both cases
the mean-field predictions are in reasonable agreement
with the findings of FN-DMC calculations. Significant
discrepancies are found in the momentum distribution
at unitarity (Fig.6) (see also Carlson et al., 2003), where
the broadening of the distribution is overestimated by the
mean-field theory consistently with the larger value pre-
dicted for the pairing gap. The momentum distribution
in harmonic traps is discussed in Sec. VI C.

An important remark concerns the condensate frac-
tion ncond defined in Eq. (29) which, in the BEC regime,
should coincide with the Bogoliubov quantum depletion
ncond = 1 − 8

√

nda3
dd/3

√
π characterizing a gas of in-

teracting composite bosons with density nd = n/2 and
scattering length add = 0.60a. This behavior is indeed
demonstrated by the FN-DMC results (Fig.7), but is
not recovered within the mean-field approximation. At
−1/kFa ∼ 1 on the opposite side of the resonance, the
FN-DMC results agree with the condensate fraction cal-
culated using BCS theory including the Gorkov−Melik-
Barkhudarov correction. This result is expected to repro-
duce the correct behavior of ncond in the deep BCS regime
and is significantly lower as compared to the mean-field
prediction.

Condensation of pairs has been observed on both sides
of the Feshbach resonance by detecting the emergence
of a bimodal distribution in the released cloud after the
conversion of pairs of atoms into tightly bound molecules
using a fast magnetic-field ramp (Regal, Greiner and Jin,
2004b; Zwierlein et al., 2004; Zwierlein et al., 2005a).
The magnetic-field sweep is slow enough to ensure full
transfer of atomic pairs into dimers, but fast enough to
act as a sudden projection of the many-body wavefunc-
tion onto the state of the gas far on the BEC side of the
resonance. The resulting condensate fraction is an out-

FIG. 6: (color online). QMC results of the momentum dis-
tribution nk for different values of 1/kF a (solid lines). The
dashed lines (red) correspond to the mean-field results from
Eq. (60). Inset: nk for 1/kF a = 4. The dotted line (blue)
corresponds to the momentum distribution of the molecular
state Eq. (61).
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of-equilibrium property, whose theoretical interpretation
is not straightforward (Perali, Pieri and Strinati, 2005;
Altman and Vishwanath, 2005), but it strongly supports
the existence of ODLRO in the gas at equilibrium also
on the BCS side of the Feshbach resonance (negative a)
where no stable molecules exist in vacuum.

Another quantity that can be calculated using the FN-
DMC method is the spin-dependent pair correlation func-
tion (Astrakharchik et al., 2004a; Chang and Pandhari-
pande, 2005) defined as

gσσ′ (|s− s′|) =
4

n2
〈Ψ̂†

σ′(s
′)Ψ̂†

σ(s)Ψ̂σ(s)Ψ̂σ′(s′)〉 . (68)

This function measures the relative probability of finding
a particle with equal or opposite spin at distance |s− s′|
from a given particle. The results for g↑↑(r) are shown
in Fig. 8 for different values of the interaction strength.
Notice that in all cases g↑↑(r) must vanish at short dis-
tances due to the Pauli exclusion principle. This ten-
dency of fermions to avoid each other (anti-bunching),
as opposed to the bunching effect exhibited by bosons,
has been recently revealed in the experiment by Jeltes
et al. (2007) using helium atoms. In the BCS regime,
where the effects of interaction in the ↑-↑ spin chan-
nel are negligible, one expects that the pair correlation
function is well described by the non-interacting gas re-
sult g↑↑(r) = 1 − 9/(kF r)

4[sin(kF r)/kF r − cos(kF r)]
2.

Quite unexpectedly this result holds true even at uni-
tarity. Only when one approaches the BEC regime the
effect of indirect coupling, mediated through interactions
with the opposite spin component, becomes relevant and
g↑↑(r) deviates significantly from the behavior of the non-
interacting gas. In particular, for the largest value of
1/kFa reported in Fig. 8 (1/kFa = 4), we show the

FIG. 7: (color online). Condensate fraction of pairs ncond

[Eq. (29)] as a function of the interaction strength: FN-DMC
results (symbols), Bogoliubov quantum depletion of a Bose
gas with add = 0.60a [dashed line (red)], BCS theory includ-
ing the Gorkov−Melik-Barkhudarov correction [dot-dashed
line (blue)] and mean-field theory using Eq. (53) [solid line
(green)].

pair distribution function of a gas of weakly interacting
bosons of mass 2m, density n/2 and scattering length
add = 0.60a calculated within Bogoliubov theory. For
large distances, r ≫ add, where the Bogoliubov approxi-
mation is expected to hold, one finds a remarkable agree-
ment.

Finally, in Fig. 9, we report the results for the pair
correlation function g↑↓(r). In the ↑-↓ spin channel in-
teractions are always relevant and give rise to a 1/r2 di-
vergent behavior at short distances, the coefficient be-
ing determined by many-body effects on the BCS side
of the resonance and at unitarity and by the molecular
wavefunction in the deep BEC regime. In the latter case
one finds (kF r)

2g↑↓(r) → 3π/(kFa) while at unitarity
one finds (kF r)

2g↑↓(r) → 2.7. The divergent behavior
of the pair-correlation function at short distances gives
rise to a sizable bunching effect due to interactions in
the ↑-↓ spin channel, as opposed to the anti-bunching ef-
fect due to the Pauli principle in the ↑-↑ spin channel
(Lobo et al., 2006a). The function g↑↓(r) has been the
object of experimental studies using spectroscopic tech-
niques (Greiner et al., 2004; Partridge et al., 2005). In
particular, Partridge et al. (2005) measured the rate of
molecular photoexcitation using an optical probe sensi-
tive to short-range pair correlations. They found that
the rate is proportional to 1/kFa in the BEC regime and
decays exponentially in the BCS regime.

Following the proposal by Altman, Demler and Lukin
(2004), pair correlations have also been detected using
the atom shot noise in absorption images (Greiner et al.,

FIG. 8: (color online). QMC results for the pair correlation
function of parallel spins, g↑↑(r), for different values of the
interaction strength: solid line (red) 1/kF a = 0, dashed line
(green) 1/kF a = 1, dotted line (blue) 1/kF a = 4. The thin
solid line (black) refers to the non-interacting gas and the
thin dotted line (black) is the pair correlation function of a
Bose gas with add = 0.60a and the same density as the single-
component gas corresponding to 1/kF a = 4.
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2005). The noise, related to the fluctuations of the col-
umn integrated density, is extracted from 2D absorption
images of the atom cloud by subtracting from each image
pixel the azimuthal average of the signal. Crucial is the
size of the effective image pixel (∼15µm) which should
be small enough to be sensitive to atom shot noise. Us-
ing this technique spatial ↑-↓ pair correlations have been
observed on the BEC side of the resonance by comparing
pixel-to-pixel the processed noise images relative to the
two spin components. These images are obtained imme-
diately after dissociating the molecules through a rapid
sweep of the scattering length across the resonance. Even
more spectacular is the observation of nonlocal pair cor-
relations between atoms that have equal but opposite
momenta and are therefore detected at diametrically op-
posite points of the atom cloud in time-of-flight expan-
sion. These correlations in momentum space are pro-
duced by dissociating the molecules and by allowing the
gas to expand before imaging. An important requirement
here, which for the moment has limited the application
of this technique to the BEC regime, is that the relative
momentum should be significantly larger than the center
of mass motion of the pairs, since this latter would de-
grade the correlation signal due to image blurring. This
method provides a novel, useful tool for detecting quan-
tum correlations in many-body systems (Fölling et al.,
2005).

FIG. 9: (color online). QMC results for the pair correlation
function of antiparallel spins, g↑↓(r), for different values of the
interaction strength: dashed line (green) 1/kF a = −1, solid
line (red) 1/kF a = 0, dotted line (blue) 1/kF a = 4. The thin
solid line (black) refers to the non-interacting gas.

C. Other theoretical approaches at zero and finite

temperature

The extension of the BCS mean-field approach dis-
cussed in Sec. VA to finite temperatures requires the in-
clusion of thermal fluctuations in the formalism (see, e.g.,
Randeria, 1995). This can be accomplished by expanding
the effective action determining the partition function of
the system to quadratic terms in the order parameter
∆ (Nozières and Schmitt-Rink, 1985; Sá de Melo, Ran-
deria and Engelbrecht, 1993). The method goes beyond
the saddle-point approximation which corresponds to the
mean-field theory at T = 0. The resulting predictions
for Tc are shown in Fig. 2. At unitarity one finds the
value Tc = 0.224TF , which is not too far from the most
reliable theoretical estimate based on quantum Monte
Carlo simulations (Burovski et al., 2006a) discussed in
Sec. IVF. In the BEC regime the region between the
transition temperature Tc and the higher temperature
scale T ∗ = ~

2/kBma
2, fixed by the molecular binding

energy, corresponds to the so called pseudogap regime,
where bound pairs exist but are not “condensed” and
form a normal phase (Chen et al., 2005). The presence
of pseudogap effects near unitarity has been investigated
by Stajic et al. (2004) and by Perali et al. (2004).

Diagrammatic methods based on the T -matrix ap-
proach have been proposed to extend the original treat-
ment by Nozières and Schmitt-Rink (1985) to the broken-
symmetry phase below Tc (Pieri, Pisani and Strinati,
2004) as well as to improve on it by including higher
order diagrams (Haussmann, 1993 and 1994; Chen et

al., 2005; Combescot, Leyronas and Kagan, 2006; Hauss-
mann et al., 2006). In particular, in the recent approach
by Haussmann et al. (2006) based on a ladder approxi-
mation, the fermionic degrees of freedom are accounted
for using interacting Green’s functions which are deter-
mined in a self-consistent way. This approach applies
to arbitrary temperatures and interaction strengths. At
unitarity it predicts the value Tc = 0.16TF for the tran-
sition temperature.

Fully non-perturbative numerical techniques have also
been applied to investigate the thermodynamics at fi-
nite temperature in the unitary regime. They are based
on the auxiliary field (Bulgac, Drut and Magierski, 2006
and 2007) and diagrammatic determinant (Burovski et

al., 2006a and 2006b) quantum Monte Carlo method
on a lattice and on the restricted path-integral Monte
Carlo method in the continuum (Akkineni, Ceperley and
Trivedi, 2006). The results of these approaches for the
critical temperature and the thermodynamic functions
have already been discussed in Sec. IVF and the ones
referring to harmonically trapped configurations are dis-
cussed in Sec. VI D. Lattice quantum Monte Carlo meth-
ods have also been recently applied to investigate the
ground-state properties at unitarity (Lee, 2006; Juillet,
2007).

An alternative approach to the theoretical treatment
of the BCS-BEC crossover is provided by the two-channel



22

model (also called Bose-Fermi model). In this approach
(Friedberg and Lee, 1989) the Hamiltonian includes in-
teraction terms involving both fermionic and bosonic de-
grees of freedom. A thorough account of the two-channel
model can be found in the recent work by Gurarie and
Radzihovsky (2007). This work discusses the compar-
ison with the single-channel Hamiltonian (23) and the
predictions of the model in the case of narrow Feshbach
resonances, where the many-body problem can be exactly
solved using a perturbative expansion (see also Diehl and
Wetterich, 2006). In the case of broad resonances this ap-
proach reduces to the single-channel Hamiltonian (23),
where interactions are accounted for by a contact po-
tential fixed by the scattering length. The two-channel
model is thus more general and can describe situations
where the effective range plays an important role. The
two-channel model was first introduced in the context of
fermions with resonantly enhanced interactions by Hol-
land et al. (2001) and by Timmermans et al. (2001)
and was later developed to describe properties of the
BCS-BEC crossover both at zero (Bruun and Pethick,
2004; Romans and Stoof, 2006) and at finite temper-
ature (Ohashi and Griffin, 2002 and 2003a; Diehl and
Wetterich, 2006; Falco and Stoof, 2007) as well as in
trapped configurations (Ohashi and Griffin, 2003b).

Analytical methods based on an expansion around
D = 4 − ǫ spatial dimensions have also been recently
applied to the unitary Fermi gas both at T = 0 (Nishida
and Son, 2006a and 2006b) and at finite temperature
(Nishida, 2006). The starting point of the method is
the observation (Nussinov and Nussinov, 2006) that a
unitary Fermi gas in D = 4 behaves as an ideal Bose
gas, i.e. that at T = 0 the proportionality coefficient in
Eq. (42) is 1 + β = 0. Results for the physical case of
D = 3 are obtained by extrapolating the series expan-
sion to ǫ = 1. A similar approach is based on a 1/N
expansion, where N is the number of fermionic species
(Nikolić and Sachdev, 2007; Veillette, Sheehy and Radzi-
hovsky, 2007). For N → ∞ the field-theoretical problem
can be solved exactly using the mean-field theory. Cor-
rections to the mean-field predictions can be calculated
in terms of the small parameter 1/N and the results can
be extrapolated to the relevant case of N = 2.

Other theoretical approaches that have been applied
to the physics of the BCS-BEC crossover include the
dynamical mean-field theory (Garg, Krishnamurthy and
Randeria, 2005) and the renormalization group method
(Nikolić and Sachdev, 2007; Diehl et al., 2007) and the
generalization of the BCS mean-field theory to include ef-
fective mass and correlation terms within a density func-
tional approach (Bulgac, 2007).

VI. INTERACTING FERMI GAS IN

HARMONIC TRAP

The solution of the many-body problem for non-
uniform configurations is a difficult task involving in

most cases numerical calculations which are more com-
plex than in uniform matter (an example of this type of
numerical studies will be given when discussing the struc-
ture of vortex configurations in Sec. VII D). However, in
the experimentally relevant case of quite large systems
(N ≃ 105-107) confined by a harmonic potential, the lo-
cal density approximation (LDA) provides a reliable and
relatively simple description. This approximation, which
is also often referred to as semiclassical or Thomas-Fermi
approximation, profits of the knowledge of the equation
of state of uniform matter to infer on the behavior of the
system in traps.

Let us also point out that on the BEC side of the res-
onance, where the interacting Fermi gas behaves like a
gas of weakly interacting dimers, systematic information
is available from our advanced knowledge of the physics of
dilute Bose gases in traps (see, e.g., Dalfovo et al., 1999).
Although the deep BEC regime is not easily achieved
in present experiments with ultracold Fermi gases, the
corresponding predictions nevertheless provide a useful
reference.

A. Local density approximation at T = 0: density

profiles

In this Section we will consider systems at zero tem-
perature where the equation of state of the uniform gas
is provided by the density dependence ǫ(n) of the energy
density. The LDA consists of assuming that, locally, the
system behaves like a uniform gas, so that its energy den-
sity can be expressed as ǫ(n) = nE(n)/N where E(n)/N
is the energy per atom of uniform matter. The energy of

FIG. 10: Experimental results of the double integrated den-
sity profiles along the BCS-BEC crossover for a gas of 6Li
atoms. The results at 850 G correspond to unitarity, while
the ones at 809 G and 882 G correspond respectively to the
BEC and BCS side of the resonance. The continuous curve at
unitarity, is the best fit based on Eq. (77). The dashed lines
correspond to the predictions for a non-interacting gas. From
Bartenstein et al. (2004a).
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the trapped system is then written in the integral form

E =

∫

dr {ǫ[n(r)] + Vho(r)n(r)} , (69)

and consists of the sum of the internal (also called release)
energy

Erel =

∫

dr ǫ[n(r)] , (70)

and of the oscillator energy

Eho =

∫

dr Vho(r)n(r) , (71)

provided by the trapping potential Vho(r), introduced in
Eq. (1), which is assumed to be the same for both spin
species. Furthermore, we also assume N↑ = N↓. In
Eqs. (69-71), n(r) = n↑(r) + n↓(r) is the total density
profile. Its value at equilibrium is determined by the
variational relation δ(E − µ0N)/δn(r) = 0, which yields
the Thomas-Fermi equation

µ0 = µ[n(r)] + Vho(r) , (72)

where µ(n) = ∂ǫ(n)/∂n is the local chemical potential de-
termined by the equation of state of the uniform system
and µ0 is the chemical potential of the trapped gas, fixed
by the normalization condition

∫

dr n(r) = N . Eq. (72)
provides an implicit equation for n(r).

The applicability of LDA is justified if the relevant en-
ergies are much larger than the single-particle oscillator
energy ~ωi, i.e. if µ0 ≫ ~ωi (i = x, y, z). While in the
case of Bose-Einstein condensed gases this condition is
ensured by the repulsive interaction among atoms, in the
Fermi case the situation is different. In fact, thanks to
the quantum pressure term related to the Pauli princi-
ple, even in the non-interacting case one can apply the
Thomas-Fermi relationship (72) using the density depen-
dence

µ(n) =
(

3π2
)2/3 ~

2

2m
n2/3 , (73)

for the local chemical potential yielding the equilibrium
profile (8).

Interactions modify the shape and the size of the den-
sity profile. The effects are accounted for by Eq.(72) once
the local chemical potential µ(n) is known. A simple re-
sult is obtained at unitarity, where the equation of state
has the same density dependence (73) as for the ideal
gas, apart from the dimensionless renormalization factor
(1+β) [see Eq. (42)]. By dividing Eq. (72) by (1+β), one
finds that the results at unitarity are obtained from the
ones of the ideal Fermi gas by simply rescaling the trap-
ping frequencies and the chemical potential according to
ωi → ωi/

√
1 + β and µ0 → µ0/(1+β). In particular, the

density profile at unitarity takes the same form (8) as in
the ideal gas, the Thomas-Fermi radii being given by the
rescaled law

Ri = (1 + β)1/4R0
i = (1 + β)1/4aho(24N)1/6ωho

ωi
. (74)

From the above results one also finds the useful ex-
pression Eho = (1 + β)1/2E0

ho for the oscillator energy
(71) of the trapped gas in terms of the ideal gas value
E0

ho = (3/8)NEHO
F (see Sec. II A).

In the BCS regime (a negative and small), the first
correction to the non-interacting density profile (8) can
be calculated using perturbation theory. Interactions
are treated at the Hartree level by adding the term
−4π~

2|a|n/2m to the expression (73) for the local chemi-
cal potential. The resulting density profile is compressed
due to the effect of the attractive interaction and the
Thomas-Fermi radii reduce according to the law

Ri =

√

2µ0

mω2
i

= R0
i

(

1 − 256

315π2
k0

F |a|
)

, (75)

holding if k0
F |a| ≪ 1, where k0

F is the Fermi wavevector
(9) of the non-interacting gas.

Another interesting case is the BEC limit where one
treats the interaction between dimers using the mean-
field term µd = gdn/2 in the equation of state. The cou-
pling constant gd = 2π~

2add/m is fixed by the molecule-
molecule scattering length add = 0.60a. In this limit the
density is given by the inverted parabola profile (Dalfovo
et al., 1999) and the Thomas-Fermi radii reduce to

Ri = aho

(

15

2
N
add

aho

)1/5
ωho

ωi
. (76)

In Fig. 10 we show the results for the density profiles
measured in situ in a harmonically trapped Fermi gas
at low temperatures. The plotted profile is the double
integrated density n(1)(z) =

∫

dxdy n(r), corresponding
to the quantity measured in the experiment (Bartenstein
et al., 2004a). Very good agreement between experiment
and theory is found at unitarity where one finds

n(1)(z) =
N

Rz

16

5π

(

1 − z2

R2
z

)5/2

, (77)

with Rz given by Eq.(74). The best fit to the experi-
mental curve yields the value β = −0.73+0.12

−0.09 (Barten-
stein et al., 2004c). The attractive nature of interactions
at unitarity is explicitly revealed in Fig. 10 through the
comparison with the density profile of a non-interacting
gas. For a systematic comparison between experimental
and theoretical results for the density profiles, see Perali,
Pieri and Strinati (2004).

A more recent experimental determination of β, also
based on the in situ measurement of the radius of the
cloud, gives the value β = −0.54(5) (Partridge et al.,
2006a). These measurements refer to a gas of 6Li atoms.
An important result consists in the agreement found with
experiments on 40K atoms, where β was determined by
extrapolating to low temperature the measured values
of the oscillator energy (Stewart et al., 2006). The fact
that the value of β does not depend on the atomic species
considered is a further important proof of the universal
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TABLE II: Experimental and theoretical values of the univer-
sal parameter β. The experimental results are taken from: (1)
Tarruell et al. (2007); (2) Kinast et al. (2005); (3) Partridge
et al. (2006a); (4) Bartenstein et al. (2004c), and (5) Stewart
et al. (2006). The theoretical results are from: (6) Carlson et

al. (2003); (7) Astrakharchik et al. (2004a); (8) Carlson and
Reddy (2005) and (9) Perali, Pieri and Strinati (2004).

β

Exp. (6Li) ENS (1) -0.59(15)

Duke (2) -0.49(4)

Rice (3) -0.54(5)

Innsbruck (4) -0.73+0.12
−0.09

Exp. (40K) JILA (5) -0.54+0.05
−0.12

Theory BCS mean field -0.41

QMC (6,7,8) -0.58(1)

T -matrix (9) -0.545

behavior exhibited by these systems at unitarity (see Ta-
ble II for a list of available experimental and theoretical
results of β).

B. Release energy and virial theorem

In addition to the in situ density profiles a valuable
source of information comes from the measurement of
the energy after switching off the confining trap (release
energy). This energy consists of the sum of the kinetic
and the interaction term

Erel = Ekin + Eint , (78)

and within LDA it is simply given by Eq. (70).

The release energy was first measured along the
crossover by Bourdel et al. (2004) on a gas of 6Li atoms.
The most recent experimental determination at unitar-
ity yields the estimate β = −0.59(15) (Tarruell et al.,
2007). This value agrees with the one extracted from in

situ measurements of the radii (see Table II).

A general relationship between the release energy (70)
and the potential energy (71) can be derived with the
help of the virial theorem. This theorem holds when
the energy density ǫ(n) has a polytropic (power law) de-
pendence on the density: ǫ(n) ∝ nγ+1. The polytropic
dependence characterizes the BEC limit, where γ = 1, as
well as the unitary limit, where γ = 2/3. The theorem
is derived by applying the number conserving transfor-
mation n(r) → (1 + α)3n[(1 + α)r] to the density of the
gas at equilibrium. By imposing that the total energy
variation vanish to first order in α, one easily gets the
result

3γErel = 2Eho , (79)

which reduces to Erel = Eho at unitarity.

C. Momentum distribution

The momentum distribution of ultracold Fermi gases is
an important quantity carrying a wealth of information
on the role played by interactions. A simple theoretical
approach for trapped systems is based on the BCS mean-
field treatment introduced in Sec. VA and on the local
density approximation (Viverit et al., 2004). The result
is given by the spatial integral of the particle distribution
function (60) of the uniform gas

n(k) =

∫

dr

(2π)3
nk(r) , (80)

where the r-dependence enters through the chemical po-
tential µ(r) and the order parameter ∆(r) which are de-
termined by the local value of the density n(r). The
momentum distribution n(k) is calculated for given val-
ues of the interaction strength k0

Fa. Two limiting cases
can be derived analitically: one corresponds to the non-
interacting gas, where nk(r) = Θ[1−k/kF (r)] depends on
the local Fermi wavevector kF (r) = [3π2n(r)]2/3 and the
integral (80) yields the result (10). The other corresponds
to the deep BEC regime, where, using Eq. (61), one finds
the molecular result n(k) = (a3N/2π2)/(1 + k2a2)2. A
general feature emerging from these results is the broad-
ening of the Fermi surface which, for trapped systems,
is caused both by the confinement and by interaction ef-
fects.

The momentum distribution has been measured along
the crossover in a series of studies (Regal et al., 2005;
Chen et al., 2006 and Tarruell et al., 2007). The ac-
cessible quantity in experiments is the column inte-
grated distribution ncol(k⊥) =

∫∞

−∞ dkzn(k), where k⊥ =

FIG. 11: (color online). Column integrated momentum dis-
tributions of a trapped Fermi gas. The symbols correspond
to the experimental results from Regal et al. (2005) and the
lines to the mean-field results based on Eq. (80) for the same
values of the interaction parameter 1/k0

F a. From top to bot-
tom 1/k0

F a = −71 (blue), 1/k0
F a = 0 (red) and 1/k0

F a = 0.59
(black).
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√

k2
x + k2

y. These experiments are based on the technique

of time-of-flight expansion followed by absorption imag-
ing. A crucial requirement is that the gas must expand
freely without any interatomic force. To this purpose the
scattering length is set to zero by a fast magnetic-field
ramp immediately before the expansion. The measured
column integrated distributions along the crossover from
Regal et al. (2005) are shown in Fig. 11 together with
the mean-field calculations of ncol based on Eq. (80) for
the same values of the interaction strength 1/k0

Fa (the
value of a corresponds here to the scattering length before
the magnetic-field ramp). There is an overall qualitative
agreement between the theoretical predictions and the
experimental results. However, the dynamics of the ramp
produces a strong quenching of ncol at large momenta
k ≫ k0

F which greatly affects the released kinetic energy
Erel = 2π

∫

dk⊥k⊥ncol(k⊥)(3~
2k2

⊥/4m). A theoretical
estimate of Erel, based on the equilibrium distributions
would predict a very large value, on the order of the en-
ergy scale ~

2/mR2
0 associated with the interatomic po-

tential [see discussion in Sec. V A after Eq. (61)]. On the
contrary, the measured energies from Regal et al. (2005)
do not depend on the details of the interatomic potential
because the magnetic-field ramp is never fast enough to
access features on order of the interaction range R0. A
good quantitative agreement for the measured momen-
tum distribution and kinetic energy is provided by the
approach developed by Chiofalo, Giorgini and Holland
(2006), which explicitly accounts for the time dependence
of the scattering length produced by the magnetic-field
ramp.

FIG. 12: Verifying the virial theorem at unitarity in a Fermi
gas of 6Li: 〈x2〉/〈x2(0)〉 versus E/E(0) showing linear scaling.
Here 〈x2〉 is the transverse mean square radius, proportional
to the oscillator energy. E is the total energy evaluated as in
Kinast et al. (2005). E(0) and 〈x2(0)〉 denote ground-state
values. From Thomas, Kinast and Turlapov (2005).

D. Trapped gas at finite temperatures

The local density approximation (72) for the density
profile can be successfully used also at finite temperature,
where the chemical potential depends on both the density
and the temperature and is defined according to the ther-
modynamic relationship µ(n, T ) = (∂ǫ(n, T )/∂n)s where
s = nS(n, T )/N is the entropy density. Since the transi-
tion temperature decreases when the density decreases,
the LDA predicts a sharp spatial boundary between a
superfluid core and a normal external region. The ef-
fect is particularly evident in the BEC regime where it
gives rise to a typical bimodal distribution character-
ized by a narrow Bose-Einstein condensate of molecules
sorrounded by a broader cloud of thermal molecules.
The experimental observation of this bimodal distribu-
tion (Greiner, Regal and Jin, 2003; Bartenstein et al.,
2004a; Zwierlein et al., 2003; Bourdel et al., 2004; Par-
tridge et al., 2005) represents the most spectacular and
direct evidence of the emergence of Bose-Einstein con-
densation from an interacting Fermi gas (see Fig. 1). In
this BEC regime the critical temperature for the super-
fluid transition is given by the well known expression

kBTBEC = ~ωho [Nd/ζ(3)]
1/3

, where Nd = N/2 is the
number of dimers and ζ(3) ≃ 1.202. In terms of the
Fermi temperature (5) this result reads

THO
BEC = 0.52THO

F , (81)

FIG. 13: Measured entropy in a trapped 6Li gas at unitarity
vs. total energy. The data reveal the occurrence of a char-
acteristic change of behavior in the slope at [E − E(0)]/N =
0.41EF , which is interpreted as the signature of the phase
transition to the superfluid regime. The solid lines are power-
law fits below and above the critical point, while the dashed
lines show the extended fits. From Luo et al. (2007).
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and should be compared with the corresponding result
(37) holding in uniform gases. By including interaction
effects to lowest order using a mean-field approach, one
predicts a positive shift of the transition temperature
(81), proportional to the dimer-dimer scattering length
add (Giorgini, Pitaevskii and Stringari, 1996). Due to
large interaction effects in the condensate and in the ther-
mal cloud, the bimodal structure becomes less and less
pronounced as one approaches the resonance and conse-
quently it becomes more difficult to reveal the normal-
superfluid phase transition by just looking at the density
profile.

Once one knows the density profiles of the interact-
ing Fermi gas as a function of temperature and interac-
tion strength, one can calculate the various thermody-
namic functions along the crossover using the LDA. For
example, the release energy and the entropy are given,
respectively, by Eq. (70) and by the integral S(T ) =
∫

drs[T, n(r)]. At unitarity the relevant thermodynamic
functions can be conveniently expressed in terms of the
universal functions fP (x) and fS(x) defined in Sec. IVF,
where the ratio x = T/TF is replaced by the local quan-
tity kBT 2m/~2[3π2n(r)]2/3 (Ho, 2004; Thomas, Kinast
and Turlapov, 2005). Furthermore, a useful result at uni-
tarity, which keeps its validity at finite temperature, is
the virial relationship Erel = Eho [see Eq. (79)]. Indeed,
since the energy has a minimum at constant N and S, by
imposing the stationarity condition at constant T/n2/3

one immediately finds the above identity.

The temperature dependence of the thermodynamic
functions in a trapped gas along the crossover has been
calculated in a series of papers using self-consistent
many-body approaches (Perali et al., 2004; Kinast et al.,
2005; Chen, Stajic and Levin, 2005; Stajic, Chen and
Levin, 2005; Hu, Liu and Drummond, 2006a and 2006b).
Other studies are based on quantum Monte Carlo tech-
niques (Burovski et al., 2006b; Bulgac, Drut and Magier-
ski, 2007). In particular, the transition temperature has
been determined using LDA and the Monte Carlo re-
sults for uniform systems already discussed in connec-
tion with Eq. (44) of Sec. IVF. The reported value is
Tc = 0.20(2)EF (Burovski et al., 2006b). Furthermore,
the values of the energy and entropy per particle at the
transition point have also been determined (Bulgac, Drut
and Magierski, 2007), yielding respectively the results
[E(Tc) − E(0)]/N = 0.32EF and S(Tc)/NkB = 2.15.

From the experimental point of view a major difficulty
in the study of the thermodynamic functions is the de-
termination of the temperature when one cools down the
system into the deeply degenerate regime. In fact, when
the system is very cold the measurement of the density
profile in the tails, which in general provides a natural
access to T , is not accurate, the number of thermally
excited atoms being small. This is not a severe prob-
lem in the deep BCS regime, where the non-interacting
Thomas-Fermi profile fitted to the whole spatial distribu-
tion of the expanded cloud provides a reliable thermom-
etry. Instead, in the most interesting strongly coupled

regime, a model-independent temperature calibration is
very difficult to obtain. Useful estimates of the tempera-
tures achievable through adiabatic transformations along
the BCS-BEC crossover can be obtained using entropy
arguments. For example, starting from an initial config-
uration in the molecular BEC regime with temperature
T and changing adiabatically the value of the scattering
length from positive to small negative values on the other
side of the Feshbach resonance, one eventually reaches
a final temperature in the BCS regime given by (Carr,
Shlyapnikov, and Castin, 2004)

(

T

TF

)

final

=
π2

45ζ(3)

(

T

TBEC

)3

initial

. (82)

This relationship has been obtained by requiring that
the entropies of the initial and final regimes, calculated
using the predictions of the degenerate ideal Bose and
Fermi gases respectively, be the same. The adiabatic
transformation results in a drastic reduction of T .

Many thermodynamic functions have already been
measured in trapped Fermi gases. Measurements of the
specific heat and a first determination of the critical tem-
perature Tc were reported by Kinast et al. (2005) who ex-
tracted the value Tc = 0.27TF at unitarity. The value of
Tc was determined by identifying a characteristic change
of slope of the measured energy as a function of tem-
perature and relied on a model-dependent temperature
calibration.

In order to overcome the difficulties of the direct mea-
surement of the temperature, recent experiments have
also focused on the study of relevant thermodynamic re-
lationships. One of these experiments concerns the verifi-
cation of the virial relation at unitarity (Thomas, Kinast
and Turlapov, 2005) that has been achieved by measur-
ing independently the mean-square radius, proportional
to the oscillator energy, and the total energy. The results
shown in Fig. 12 demonstrate that the virial relation is
verified with remarkable accuracy, confirming the univer-
sality of the equation of state at unitarity.

Another experiment concerns the measurement of the
entropy of the trapped gas (Luo et al., 2007). In this
experiment one starts from a strongly interacting config-
uration (for example at unitarity) and switches off adia-
batically the interactions bringing the system into a final
weakly interacting state, where the measurement of the
radii (and hence of the oscillator energy) is expected to
provide a reliable determination of the entropy. Since en-
tropy is conserved during the transformation, the mea-
surement of the radii of the final (weakly interacting)
sample determines the entropy of the initial (strongly in-
teracting) configuration. This procedure has been used
to measure the entropy as a function of the energy at
unitarity in a gas of 6Li atoms. The results are shown
in Fig. 13. These measurements give access to the tem-
perature of the gas through the relationship dE/dS = T .
They have been used to study the thermodynamic be-
havior near the critical point which can be identified
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as a change in the energy dependence S(E) of the en-
tropy. This method provides the experimental estimate
Tc = 0.29TF for the critical temperature in good agree-
ment with the analysis of the specific heat (Kinast et al.,
2005). Furthermore, the extracted values of the critical
entropy, S(Tc)/NkB = 2.7(2), and energy per particle,
[E(Tc) − E(0)]/N = 0.41(5)EF , reasonably agree with
the theoretical estimates reported above.

VII. DYNAMICS AND SUPERFLUIDITY

Superfluidity is one of the most striking properties ex-
hibited by ultracold Fermi gases, analog to superconduc-
tivity in charged Fermi systems. Among the most no-
ticeable manifestations of superfluidity one should recall
the absence of shear viscosity, the hydrodynamic nature
of macroscopic dynamics even at zero temperature, the
Josephson effect, the irrotational quenching of the mo-
ment of inertia, the existence of quantized vortices and
the occurrence of pairing effects. The possibility of ex-
ploring these phenomena in ultracold gases is providing
a unique opportunity to complement our present knowl-
edge of superfluidity in neutral Fermi systems, previously
limited to liquid 3He, where pairing occurs in a p-wave
state. In this Section we will first discuss the hydrody-
namic behavior exhibited by superfluids and its implica-
tions on the dynamics of trapped Fermi gases (expansion
and collective oscillations). The last part is devoted in-
stead to a discussion of pair-breaking effects and of Lan-
dau’s critical velocity. Other manifestations of superflu-
idity will be discussed in Sec. VIII.

A. Hydrodynamic equations of superfluids at T = 0

The macroscopic behavior of a neutral superfluid is
governed by the Landau equations of irrotational hydro-
dynamics. The condition of irrotationality is the conse-
quence of the occurrence of off-diagonal long-range order,
characterized by the order parameter ∆(r) [see Eqs. (26)-
(28)]. In fact the velocity field is proportional to the gra-
dient of the phase S of the order parameter according
to

v =
~

2m
∇S . (83)

At zero temperature the hydrodynamic equations of
superfluids consist of coupled and closed equations for
the density and the velocity field. Actually, due to the
absence of the normal component, the superfluid density
coincides with the total density and the superfluid cur-
rent with the total current. The hydrodynamic picture
assumes that the densities of the two spin components are
equal and move in phase [n↑(r, t) = n↓(r, t) ≡ n(r, t)/2
and v↑(r, t) = v↓(r, t) ≡ v(r, t)]. This implies, in par-
ticular, that the number of particles of each spin species

be equal (N↑ = N↓). In the same picture the current is
given by j = nv. The equations take the form

∂

∂t
n+ ∇·(nv) = 0 , (84)

for the density (equation of continuity) and

m
∂

∂t
v + ∇

(

1

2
mv2 + µ(n) + Vho

)

= 0 , (85)

for the velocity field (Euler’s equation). Here µ(n) is
the atomic chemical potential, fixed by the equation of
state of uniform matter. At equilibrium (v = 0) Eu-
ler’s equation reduces to the LDA equation (72) for the
ground-state density profile. The hydrodynamic equa-
tions (84-85) can be generalized to the case of superfluids
of unequal masses and unequal trapping potentials (see
Sec. IX C).

Despite the quantum nature underlying the superfluid
behavior, the hydrodynamic equations of motion have
a classical form and do not depend explicitly on the
Planck constant. This peculiarity raises the question
whether the hydrodynamic behavior of a cold Fermi gas
can be used to probe the superfluid regime. In fact, as
we will see, Fermi gases above the critical temperature
with resonantly enhanced interactions enter a collisional
regime where the dynamic behavior is governed by the
same equations (84)-(85). In this respect it is impor-
tant to stress that collisional hydrodynamics admits the
possibility of rotational components in the velocity field
which are strictly absent in the superfluid. A distinc-
tion between classical and superfluid hydrodynamics is
consequently possible only studying the rotational prop-
erties of the gas (see Sec. VIII). Let us also emphasize
that the hydrodynamic equations of superfluids have the
same form both for Bose and Fermi systems, the effects
of statistics entering only the form of µ(n).

The applicability of the hydrodynamic equations is in
general limited to the study of macroscopic phenomena,
characterized by long wavelength excitations. In partic-
ular, the wavelengths should be larger than the so-called
healing length ξ. The value of ξ is easily estimated
in the BEC limit where the Bogoliubov spectrum (39)
approaches the phonon dispersion law for wavelengths
larger than ξ ∼ (nadd)

−1/2. In the opposite BCS regime
the healing length is instead fixed by the pairing gap. In
fact, the Bogoliubov-Anderson phonon mode is defined
up to energies of the order ~ck ∼ ∆gap, corresponding
to ξ ∼ ~vF /∆gap. In both the BEC and BCS limits the
healing length becomes larger and larger as kF |a| → 0.
Near resonance instead the only characteristic length is
fixed by the average interatomic distance and the hydro-
dynamic theory can be applied for all wavelengths larger
than k−1

F . In Sec. VII D we will relate the healing length
to the critical Landau velocity and discuss its behavior
along the crossover.
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B. Expansion of a superfluid Fermi gas

In most experiments with ultracold atomic gases im-
ages are taken after expansion of the cloud. These mea-
surements provide information on the state of the gas in
the trap and it is consequently of crucial importance to
have an accurate theory describing the expansion. As
discussed in Sec. II B, in the absence of interactions the
expansion of a Fermi gas is asymptotically isotropic also if
before the expansion the gas is confined by an anisotropic
potential. Deviations from isotropy are consequently an
important signature of the role of interactions. In the ex-
periment of O’Hara et al. (2002) the first clear evidence
of anisotropic expansion of a cold Fermi gas at unitar-
ity was reported (see Fig. 14), opening an important de-
bate in the community aimed to understand the nature
of these novel many-body configurations. Hydrodynamic
theory has been extensively used in the past years to
analyze the expansion of Bose-Einstein condensed gases.
More recently (Menotti, Pedri and Stringari, 2002) this
theory was proposed to describe the expansion of a Fermi
superfluid. The hydrodynamic solutions are obtained
starting from the equilibrium configuration, correspond-
ing to a Thomas-Fermi profile, and then solving Eq. (85)
by setting Vho = 0 for t > 0. In general the hydrody-
namic equations should be solved numerically. However,
for an important class of configurations the spatial de-
pendence can be determined analytically. In fact, if the
chemical potential has the power-law dependence µ ∝ nγ

on the density, then the Thomas-Fermi equilibrium pro-
files have the analytic form n0 ∝ (µ0 − Vho)

1/γ and the

FIG. 14: (color online). Aspect ratio as a function of time
during the expansion of an ultracold Fermi gas at unitarity.
Upper (red) symbols: experiment; upper (red) line: hydrody-
namic theory. For comparison the figure also shows the results
in the absence of interactions. Lower (blue) symbols: experi-
ment; lower (blue) line: ballistic expansion. From O’Hara et

al. (2002).

scaling ansatz

n(x, y, z, t) = (bxbybz)
−1n0(

x

bx
,
y

by
,
z

bz
) , (86)

provides the exact solution. The scaling parameters bi
obey the simple time-dependent equations:

b̈i −
ω2

i

bi(bxbybz)γ
= 0 . (87)

The above equation generalizes the scaling law previously
introduced in the case of an interacting Bose gas (γ = 1)
(Castin and Dum, 1996; Kagan, Surkov and Shlyapnikov,
1996). From the solutions of Eq. (87) one can calculate
the aspect ratio as a function of time. For an axially
symmetric trap (ωx = ωy ≡ ω⊥) this is defined as the
ratio between the radial and axial radii. In terms of the
scaling parameters bi it can be written as

R⊥(t)

Z(t)
=
b⊥(t)

bz(t)

ωz

ω⊥
. (88)

For an ideal gas the aspect ratio tends to unity, while
the hydrodynamic equations yield an asymptotic value
6= 1. Furthermore, hydrodynamics predicts a peculiar
inversion of shape during the expansion caused by the
hydrodynamic forces which are larger in the direction of
larger density gradients. As a consequence an initial cigar
shaped configuration is brought into a disk shaped profile
at large times and vice-versa. One can easily estimate
the typical time at which the inversion of shape takes
place. For a highly elongated trap (ω⊥ ≫ ωz) the axial
radius is practically unchanged for short times since the
relevant expansion time along the z axis is fixed by 1/ωz.
Conversely, the radial size increses fast and, for ω⊥t ≫ 1
one expects R⊥(t) ∼ R⊥(0)ω⊥t. One then finds that the
aspect ratio is equal to unity when ωzt ∼ 1.

FIG. 15: Aspect ratio after expansion from the trap along the
crossover. The solid lines are the hydrodynamic predictions
at unitarity and for a gas in the deep BEC regime. The
Fermi momentum kF in the figure corresponds to the value
(9). From Altmeyer et al. (2007c).
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In Fig. 14 we show the predictions for the aspect ra-
tio given by Eqs. (87-88) at unitarity, where γ = 2/3,
together with the experimental results of O’Hara et al.

(2002) and the predictions of the ideal Fermi gas. The
configuration shown in the figure corresponds to an ini-
tial aspect ratio equal to R⊥/Z = 0.035. The compar-
ison strongly supports the hydrodynamic nature of the
expansion of these ultracold Fermi gases. The experi-
ment was repeated at higher temperatures and found to
exhibit a similar hydrodynamic behavior even at temper-
atures of the order of the Fermi temperature, where the
system can not be superfluid. One then concludes that
even in the normal phase the hydrodynamic regime can
be ensured by collisional dynamics. This is especially
plausible close to unitarity where the scattering length
is very large and the free path of atoms is of the order
of the interatomic distances. The anisotropic expansion
exhibited by ultracold gases shares important analogies
with the expansion observed in the quark gluon plasma
produced in heavy ion collisions (see, for example, Kolb
et al., 2001; Shuryak, 2004).

In more recent experiments (Tarruell et al., 2007; Alt-
meyer et al., 2007c) the aspect ratio was measured at
the coldest temperatures along the BCS-BEC crossover,
at a fixed expansion time. At unitarity the results (see
Fig. 15) well agree with the hydrodynamic predictions
but, as one moves towards the BCS regime, the aspect
ratio becomes closer and closer to unity thereby revealing
important deviations from the hydrodynamic behavior.
In the deep BCS regime the hydrodynamic theory pre-
dicts indeed the same behavior for the time dependence
of the aspect ratio as at unitarity, the equation of state
being characterized by the same power law coefficient
γ = 2/3. The deviations from the hydrodynamic pic-
ture follow from the fact that, since the density becomes
smaller and smaller during the expansion, the BCS gap
becomes exponentially small and the hydrodynamic pic-
ture can not longer be safely applied. Superfluidity is ex-
pected to be instead robust at unitarity since the energy
gap is much larger than the typical oscillator frequency
(whose inverse fixes the time scale of the expansion) and
that, as a consequence, pairs can not easily break during
the expansion.

A case which deserves special attention is the expan-
sion of the unitary gas for isotropic harmonic trapping.
In this case an exact solution of the many-body problem
is available (Castin, 2004) without invoking the hydro-
dynamic picture. One makes use of the following scaling
ansatz for the many-body wavefunction

Ψ(r1, ...rN , t) = N(t)ei
P

j
r2

j mḃ/2~bΨ0(r1/b, ...rN/b) ,
(89)

where Ψ0 is the many-body wavefunction at t = 0, b(t) is
a time-dependent scaling variable and N(t) is a normal-
ization factor. Eq. (89) exactly satisfies the Bethe-Peierls
boundary condition (25) if one works at unitarity where
1/a = 0. At the same time, for distances larger than the
range of the force where the Hamiltonian coincides with

the kinetic energy, the Schrödinger equation is exactly
satisfied by Eq. (89) provided b̈ = ω2

ho/b
3. One conse-

quently finds that the expansion of the unitary gas is ex-
actly given by the non-interacting law b(t) =

√

ω2
hot

2 + 1,
which coincides with the prediction of the hydrodynamic
equations (87) after setting ωi ≡ ωho.

C. Collective oscillations

The collective oscillations of a superfluid gas pro-
vide a unique source of information, being at the same
time of relatively easy experimental access and of rele-
vant theoretical importance. At zero temperature they
can be studied by considering the linearized form of
the time dependent hydrodynamic equations (84)-(85),
corresponding to small oscillations of the density, n =
n0 + δn exp(−iωt), with respect to the equilibrium pro-
file n0(r). The linearized equations take the form

− ω2δn =
1

m
∇ ·
[

n0∇(
∂µ

∂n
δn)

]

. (90)

In the absence of harmonic trapping the solutions cor-
respond to sound waves with dispersion ω = cq and, in a
Fermi superfluid, coincide with the Bogoliubov-Anderson
phonons. In the BEC limit one recovers the Bogoliubov
result c =

√

π~2addnd/m2 for the sound velocity, where
add is the dimer-dimer scattering length and nd = n/2
is the molecular density. In the BCS limit one instead
approaches the ideal gas value c = vF /

√
3. Finally, at

unitarity one has the result (43).
In the presence of harmonic trapping the propagation

of sound is affected by the inhomogeneity of the medium.

FIG. 16: Sound velocity in the center of the trap measured
along the BCS-BEC crossover (symbols). The theory curves
are obtained using Eq. (91) and are based on different equa-
tions of state: BCS mean field (dotted line), quantum Monte
Carlo (solid line) and Thomas-Fermi molecular BEC with
add = 0.60a (dashed line). The Fermi momentum kF in the
figure corresponds to the value (9). From Joseph et al. (2006).
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In a cylindrical configuration (ωz = 0) the sound veloc-
ity can be easily calculated using the 1D result mc21D =
n1D∂µ1D/∂n1D, where n1D =

∫

dxdyn is the 1D den-
sity and the 1D chemical potential µ1D is determined
by the Thomas-Fermi relation µ(n) + Vho(r⊥) = µ1D for
the radial dependence of the density profile. One finds
(Capuzzi et al., 2006)

c1D =

(

1

m

∫

dxdyn
∫

dxdy(∂µ/∂n)−1

)1/2

. (91)

On the BEC side, where µ ∝ n, one recovers the result
c1D = c/

√
2 in terms of the value (31) of uniform sys-

tems. This result was first derived by Zaremba (1998)
in the context of Bose-Einstein condensed gases. At uni-
tarity, where µ ∝ n2/3, one instead finds c1D =

√

3/5c.
The propagation of sound waves in very elongated traps
has been recently measured by Joseph et al. (2006). The
experimental results are in good agreement with the es-
timate of c1D based on the QMC equation of state and
clearly differ from the prediction of the BCS mean-field
theory (see Fig. 16).

In the presence of 3D harmonic trapping the lowest
frequency solutions of the hydrodynamic equations are
discretized, their frequencies being of the order of the
trapping frequencies. These modes correspond to wave-
lengths of the order of the size of the cloud. Let us
first consider the case of isotropic harmonic trapping
(ωx = ωy = ωz ≡ ωho). A general class of diver-
gency free (also called surface) solutions is available in
this case. They are characterized by the velocity field
v ∝ ∇(rℓYℓm), satisfying ∇ ·v = 0 and corresponding to
density variations of the form (∂µ/∂n)δn ∝ rℓYℓm. Yℓm

FIG. 17: Frequency of the radial quadrupole mode for an elon-
gated Fermi gas in units of the radial frequency (upper panel).
The dashed line is the hydrodynamic prediction

√
2ω⊥. The

lower panel shows the damping of the collective mode. The
Fermi momentum kf in the figure corresponds to the value
(9). From Altmeyer et al. (2007b).

is here the spherical harmonic function. By using the
identity (∂µ/∂n)∇n0 = −∇Vho, holding at T = 0 for the
density profile at equilibrium, one finds that these solu-
tions obey the dispersion law ω(ℓ) =

√
ℓωho, independent

of the form of the equation of state, as expected for the
surface modes driven by an external force. This result
provides a useful characterization of the hydrodynamic
regime. The result in fact differs from the prediction
ω(ℓ) = ℓωho of the ideal gas model, revealing the impor-
tance of interactions accounted for by the hydrodynamic
description. Only in the dipole case (ℓ = 1), correspond-
ing to the center of mass oscillation, the interactions do
not affect the frequency of the mode.

In addition to surface modes an important solution is
the ℓ = 0,m = 0 breathing mode whose frequency can
be found in analytic form if the equation of state is poly-
tropic (µ ∝ nγ). In this case the velocity field has the
radial form v ∝ r and one finds ω(m = 0) =

√
3γ + 2ωho.

For γ = 1 one recovers the well known BEC result√
5ωho (Stringari, 1996b) while, at unitarity, one finds

2ωho. It is worth stressing that the result at unitar-
ity keeps its validity beyond the hydrodynamic approx-
imation. The proof follows from the same arguments
used for the free expansion in Sec. VII B. In fact, the
scaling ansatz (89) solves the Schrödinger equation also
in the presence of isotropic harmonic trapping (Castin,
2004). The scaling function in this case obeys to the

equation b̈ = ω2
ho/b

3 −ω2
hob, which admits undamped so-

lutions of the form b(t) =
√

A cos(2ωhot+ φ) +B. Here,

A =
√
B2 − 1 and B (≥ 1) is proportional to the energy

of the system (at equilibrium B = 1). In a BEC gas
a similar result holds for the radial oscillation in cylin-

FIG. 18: (color online). Frequency of the radial compression
mode for an elongated Fermi gas in units of the radial fre-
quency (blue symbols). The curves refer to the equation of
state based on BCS mean-field theory [lower (black) line] and
on Monte Carlo simulations [upper (red) line]. The Fermi mo-
mentum kF in the figure corresponds to the value (9). From
Altmeyer et al. (2007a).
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drical geometry (Pitaevskii, 1996; Kagan, Surkov and
Shlyapnikov, 1996) and the corresponding mode was ex-
perimentally investigated by Chevy et al. (2002).

In the case of axisymmetric trapping (ωx = ωy ≡ ω⊥ 6=
ωz) the third component ~m of the angular momentum
is still a good quantum number and one also finds simple
solutions of Eq. (90). The dipole modes, corresponding
to the center of mass oscillation, have frequencies ω⊥

(m = ±1) and ωz (m = 0). Another surface solution is
the radial quadrupole mode (m = ±2) characterized by
the velocity field v ∝ ∇(x± iy)2 and by the frequency

ω(m = ±2) =
√

2ω⊥ , (92)

independent of the equation of state. This collective
mode has been recently measured by Altmeyer et al.

(2007b). The experimental results (see Fig. 17) show
that while the agreement with the theoretical prediction
(92) is very good on the BEC side, including unitarity, as
soon as one enters the BCS regime strong damping and
deviations from the hydrodynamic law take place, sug-
gesting that the system is leaving the superfluid phase.
For small and negative a the system is actually expected
to enter a collisionless regime where the frequency of the
m = ±2 quadrupole mode is 2ω⊥ apart from small mean-
field corrections (Vichi and Stringari, 1999). Another
class of surface collective oscillations, the so called scis-
sors mode, will be discussed in Sec. VIII A, due to its
relevance for the rotational properties of the system.

Differently from the surface modes, the m = 0 com-
pressional modes depend instead on the equation of state.
For a polytropic dependence of the chemical potential
(µ ∝ nγ) the corresponding solutions can be derived an-
alytically. They are characterized by a velocity field of
the form v ∝ ∇[a(x2 + y2) + bz2], resulting from the
coupling between the ℓ = 2 and ℓ = 0 modes caused
by the deformation of the trap (Cozzini and Stringari,
2003). In the limit of elongated traps (ωz ≪ ω⊥) the

two solutions reduce to the radial [ω =
√

2(γ + 1)ω⊥]

and axial [ω =
√

(3γ + 2)/(γ + 1)ωz] breathing modes.
Experimentally both modes have been investigated (Ki-
nast et al., 2004; Bartenstein et al., 2004b; Altmeyer et

al., 2007a). In Fig. 18 we show the most recent exper-
imental results (Altmeyer et al., 2007a) for the radial
breathing mode. At unitarity the agreement between
theory (

√

10/3ω⊥ = 1.83ω⊥) and experiment is remark-
ably good. It is also worth noticing that the damping of
the oscillation is smallest near unitarity.

When we move from unitarity the collective oscilla-
tions exhibit other interesting features. Theory predicts
that in the deep BEC regime (γ = 1) the frequencies of
both the axial and radial modes are higher than at unitar-
ity. Furthermore, the first corrections with respect to the
mean-field prediction can be calculated analytically, by
accounting for the first correction to the equation of state
µd = gdnd produced by quantum fluctuations. This is the
so called Lee-Huang-Yang (LHY) correction [see Eq. (38)]
first derived in the framework of Bogoliubov theory of

interacting bosons. The resulting shifts in the collective
frequencies are positive (Pitaevskii and Stringari, 1998;
Braaten and Pearson, 1999). As a consequence, when
one moves from the BEC regime towards unitarity, the
dispersion law exhibits a typical non monotonic behav-
ior, since it first increases, due to the LHY effect, and
eventually decreases to reach the lower value

√

10/3ω⊥

at unitarity (Stringari, 2004).

In general, the collective frequencies can be calculated
numerically along the crossover by solving the hydro-
dynamic equations once the equation of state is known
(Combescot and Leyronas, 2002; Hu et al., 2004; Heisel-
berg, 2004; Kim and Zubarev, 2004; Bulgac and Bertsch,
2005; Manini and Salasnich, 2005; Astrakharchick et al.,
2005b). Fig. 18 shows the predictions (Astrakharchik et

al., 2005b) obtained using the equation of state of the
Monte Carlo simulations discussed in Sec. VB and of the
BCS mean-field theory of Sec. VA. The Monte Carlo
equation of state accounts for the LHY effect while the
mean-field BCS theory misses it, providing a monotonic
behavior for the compressional frequency as one moves
from the BEC regime to unitarity. The accurate mea-
surements of the radial compression mode reported in
Fig. 18 confirm the Monte Carlo predictions, providing an
important test of the equation of state and first evidence
for the LHY effect. Notice that the LHY effect is visible
only at the lowest temperatures (Altmeyer et al., 2007a)
where quantum fluctuations dominate over thermal fluc-
tuations (Giorgini, 2000). This explains why previous
measurements of the breathing mode failed in revealing
the enhancement of the collective frequency above the
value 2ω⊥.

The behavior of the breathing modes on the BCS side
of the resonance exhibits different features. Similarly to
the case of the quadrupole mode (see Fig.17) one expects
that the system soon looses superfluidity and eventually
behaves like a dilute collisionless gas whose collective fre-
quencies are given by 2ω⊥ and 2ωz for the radial and
axial modes respectively. Experimentally this transition
is clearly observed for the radial mode (Kinast et al.,
2004, Bartenstein et al., 2004b), where it occurs at about
kF |a| ∼ 1. It is also associated with a strong increase of
the damping of the collective oscillation.

The temperature dependence of the collective oscilla-
tions has also been the object of experimental investiga-
tions. Kinast, Turlapov and Thomas (2005) have shown
that the frequency of the radial compression mode, mea-
sured at unitarity, remains practically constant when one
increases the temperature, suggesting that the system is
governed by the same hydrodynamic equations both at
the lowest temperatures, when the gas is superfluid, and
at higher temperature when it becomes normal. Con-
versely, the damping exhibits a significant temperature
dependence, becoming smaller and smaller as one lowers
the temperature. This behavior strongly supports the
superfluid nature of the system in the low temperature
regime. In fact a normal gas is expected to be less and
less hydrodynamic as one decreases T with the conse-
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quent increase of the damping of the oscillation. The
accurate determination of the damping of the collective
oscillations can provide useful information on the viscos-
ity coefficients of the gas whose behavior at unitarity has
been the object of recent theoretical investigations us-
ing universality arguments [see Son (2007) and references
therein].

D. Phonons vs pair-breaking excitations and

Landau’s critical velocity

In Sec. VII C we have described the discretized modes
predicted by hydrodynamic theory in the presence of har-
monic trapping. This theory describes correctly only
the low-frequency oscillations of the system, correspond-
ing to sound waves in a uniform body. When one con-
siders higher excitations energies the dynamic response
should also include dispersive corrections to the phononic
branch and the breaking of pairs into two fermionic exci-
tations. The general picture of the excitations produced
by a density probe in the superfluid state can then be
summarized as follows (for simplicity we consider a uni-
form gas): at low frequency the system exhibits a gapless
phononic branch whose slope is fixed by the sound veloc-
ity; at high frequency one expects the emergence of a
continuum of excitations starting from a given thresh-
old, above which one can break pairs. The value of the
threshold frequency depends on the momentum ~q car-
ried by the perturbation. A first estimate is provided
by the BCS mean-field theory discussed in Sec. VA,
according to which the threshold is given by the line
ωthr = Mink(ǫ+ + ǫ−), where ǫ± is the energy (51) of a
quasi-particle excitation carrying momentum ~(q/2±k).
The pair then carries total momentum ~q. It is easy to
see that the minimum is obtained for k · q = 0 which
gives ǫ+ = ǫ−. One can distinguish two cases: µ > 0 and
µ < 0. In the first case (including the unitary as well as
the BCS regimes) and for ~q < 2

√
2mµ, the minimum is

at ~
2k2/2m = µ − ~

2q2/8m, so that ~ωthr = 2∆. For
µ > 0 and ~q > 2

√
2mµ, as well as for µ < 0 (including

the BEC regime), the minimum is at k = 0, which leads

to ~ωthr = 2
√

(~2q2/8m− µ)2 + ∆2.
The interplay between phonon and pair breaking

excitations gives rise to different scenarios along the
crossover. In the BCS regime the threshold occurs at
low frequencies and the phonon branch very soon reaches
the continuum of single-particle excitations. The behav-
ior is quite different in the opposite BEC regime where
the phonon branch extends up to high frequencies. At
large momenta this branch actually looses its phononic
character and approaches the dispersion ~

2q2/4m, typi-
cal of a free molecule. In the deep BEC limit it coincides
with the Bogoliubov spectrum of a dilute gas of bosonic
molecules. At unitarity the system is expected to exhibit
an intermediate behavior, the discretized branch surviv-
ing up to momenta of the order of the Fermi momentum.
A detailed calculation of the excitation spectrum, based

on a time-dependent formulation of the BCS mean-field
equations is reported in Fig. 19 (Combescot, Kagan and
Stringari, 2006).

The results for the excitation spectrum provide a useful
insight on the superfluid behavior of the gas in terms of
the Landau criterion according to which a system can not
give rise to energy dissipation if its velocity, with respect
to a container at rest, is smaller than Landau’s critical
velocity defined by the equation

vc = minq(omegaq/q) , (93)

where ~ωq is the energy of an excitation carrying momen-
tum ~q. According to this criterion the ideal Fermi gas
is not superfluid because of the absence of a threshold
for the single-particle excitations, yielding vc = 0. The
interacting Fermi gas is instead superfluid in all regimes.
By inserting the results for the threshold frequency de-
rived above into Eq. (93) one can calculate the critical
value vc due to pair breaking. The result is

m(vsp
c )2 =

√

∆2 + µ2 − µ , (94)

and coincides, as expected, with the critical velocity cal-
culated by applying directly the Landau criterion (93)
to the single-particle dispersion law ǫq of Eq. (51). In
the deep BCS limit kF |a| → 0, corresponding to ∆ ≪ µ,
Eq. (94) approaches the exponentially small value vc =
∆/~kF . On the BEC side of the crossover the value (94)
becomes instead larger and larger and the relevant exci-
tations giving rise to Landau’s instability are no longer
single-particle excitations but phonons and the critical
velocity coincides with the sound velocity: vc = c. A
simple estimate of the critical velocity along the whole
crossover is then given by the expression

vc = Min (c, vsp
c ) . (95)

Remarkably one sees that vc has a maximum near uni-
tarity (see Fig. 20), further confirming the robustness
of superfluidity in this regime. This effect has been re-
cently demonstrated experimentally by moving a one di-
mensional optical lattice in a trapped superfluid Fermi
at tunable velocity (see Fig. 21) (Miller et al., 2007).

The critical velocity permits to provide a general def-
inition of the healing length according to ξ = ~/mvc.
Apart from an irrelevant numerical factor it coincides
with the usual definition ~/

√
2mµd of the healing length

in the BEC regime and with the size of Cooper pairs in
the opposite BCS limit as already discussed in Sec. VII A.
The healing length provides the typical length above
which the dynamic description of the system is safely
described by the hydrodynamic picture. It is smallest
near unitarity (Pistolesi and Strinati, 1996), where it is
on the order of the interparticle distance.

E. Dynamic and static structure factor

The dynamic structure factor provides an important
characterization of quantum many-body systems (see,
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FIG. 19: Spectrum of collective excitations of the superfluid Fermi gas along the BCS-BEC crossover (thick lines). Energy is
given in units of the Fermi energy. Left: BCS regime (kF a = −1). Center: unitarity. Right: BEC regime (kF a = +1). The
thin lines denote the threshold of single-particle excitations. From Combescot, Kagan and Stringari (2006).

for example, Pines and Nozières, 1966; Pitaevskii and
Stringari, 2003). At low energy transfer it gives infor-
mation on the spectrum of collective oscillations, includ-
ing the propagation of sound, while at higher energies
it is sensitive to the behavior of single-particle excita-
tions. In general, the dynamic structure factor is mea-
sured through inelastic scattering experiments in which
the probe particle is weakly coupled to the many-body
system so that the scattering may be described within the
Born approximation. In dilute gases it can be accessed
with stimulated light scattering by using two photon
Bragg spectroscopy (Stamper-Kurn et al., 1999). The
dynamic structure factor is defined by the expression

S(q, ω) = Q−1
∑

m,n

e−βEmn |〈0|δρ̂q|n〉|2δ(~ω − ~ωmn) ,

(96)

FIG. 20: Landau’s critical velocity (in units of the Fermi ve-
locity) calculated along the crossover using BCS mean field
theory. The figure clearly shows that the critical velocity is
largest near unitarity. The dashed line is the sound velocity.
From Combescot, Kagan and Stringari (2006).

where ~q and ~ω are, respectively, the momentum and
energy transferred by the probe to the sample, δρ̂q =
ρ̂q − 〈ρ̂q〉 is the fluctuation of the Fourier component
ρ̂q =

∑

j exp(−iq · rj) of the density operator, ωmn ≡
Emn/~ = (Em − En)/~ are the usual Bohr frequencies
and Q is the partition function. The definition of the
dynamic structure factor is immediately generalized to
other excitation operators like, for example, the spin den-
sity operator.

The main features of the dynamic structure factor are
best understood in uniform matter, where the excitations
are classified in terms of their momentum. From the re-
sults of the Sec. VII D one expects that, for sufficiently
small momenta, the dynamic structure factor be char-
acterized by a sharp phonon peak and by a continuum
of single-particle excitations above the threshold energy

FIG. 21: Measured critical velocity along the BCS-BEC
crossover. The solid line is a guide to the eye. From Miller et

al. (2007).
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~ωthr. Measurements of the dynamic structure factor
in Fermi superfluids can then provide unique informa-
tion on the gap parameter. Theoretical calculations of
the dynamic structure factor in the small q regime were
carried out using a proper dynamic generalization of the
BCS mean-field approach (Minguzzi, Ferrari and Castin,
2001; Büchler, Zoller and Zwerger, 2004). At higher mo-
mentum transfer the behavior will depend crucially on
the regime considered. In fact, for values of q of the
order of the Fermi momentum the discretized branch
no longer survives on the BCS side of the resonance.
At even higher momenta the theoretical calculations of
Combescot, Giorgini and Stringari (2006) have revealed
that on the BEC side of the resonance the response is
dominated by a discretized peak correponding to the ex-
citation of free molecules with energy ~

2q2/4m. This
molecular-like peak has been shown to survive even at
unitarity. On the BCS side of the resonance, the molec-
ular signatures are instead completely lost at high mo-
menta and the response is very similar to the one of an
ideal Fermi gas.

From the knowledge of the dynamic structure factor
one can evaluate the static structure factor, given by

S(q) =
~

N

∫ ∞

0

dωS(q, ω) = 1 + n

∫

dr[g(r) − 1]e−iq·r

(97)
showing that the static structure factor is directly related
to the two-body correlation function g = (g↑↑ + g↑↓)/2
discussed in Sec. VB. The measuremnt of S(q) would
then provide valuable information on the correlation ef-
fects exhibited by these systems. The behavior of the
static structure factor along the BCS-BEC crossover has
been calculated by Combescot, Giorgini and Stringari
(2006).

F. Radiofrequency transitions

In Secs. VII D-VII E we have shown that pair-breaking
transitions characterize the excitation spectrum associ-
ated to the density-density response function and are
directly visible in the dynamic structure factor. Infor-
mation on pair-breaking effects is also provided by tran-
sitions which outcouple atoms to a third internal state
(Törmä and Zoller, 2000). Experiments using radiofre-
quency (RF) excitations have already been performed in
Fermi superfluids (Chin et al., 2004) in different condi-
tions of temperature and magnetic fields. The basic idea
of these experiments is the same as for the measurement
of the binding energy of free molecules (see Sec. III A).

The structure of the RF transitions is determined by
the Zeeman diagram of the hyperfine states in the pres-
ence of an external magnetic field. Starting from a sam-
ple where two hyperfine states (hereafter called 1 and
2) are occupied, one considers single-particle transitions
from the state 2 (with energy E2) to a third, initially
unoccupied, state 3 with energy E3. The typical excita-
tion operator characterizing these RF transitions has the

form VRF = λ
∫

dr[ψ̂†
3(r)ψ̂2(r) + h.c.] and does not carry

any momentum. The experimental signature of the tran-
sition is given by the appearence of atoms in the state 3
or in the reduction of the number of atoms in the state
2. In the absence of interatomic forces the transition is
resonant at the frequency ν23 = (E3 − E2)/h. If instead
the two atoms interact and form a molecule the frequency
required to induce the transition is higher since part of
the energy carried by the radiation is needed to break
the molecule. The threshold for the transition is given
by the frequency ν = ν23 + |ǫb|/h, where |ǫb| ∼ ~

2/ma2 is
the binding energy of the molecule (we are assuming here
that no molecule is formed in the 1-3 channel). The ac-
tual dissociation line shape is determined by the overlap
of the molecular state with the continuum and is affected
by the final-state interaction between the atom occupy-
ing the state 3 and the atom occupying the state 1. In
particular, the relationship between the value of the fre-
quency where the signal is maximum and the threshold
frequency depends on the value of the scattering length
a31 characterizing the interaction between the state 3 and
the state 1 (Chin and Julienne, 2005).

For interacting many-body configurations along the
BCS-BEC crossover a similar scenario takes place. Also
in this case breaking pairs costs energy so that the fre-
quency shifts of the RF transitions provide information
on the behavior of the gap, although this information is
less direct than in the case of free molecules. The ideal
situation would take place if the interaction between the
final state 3 and the states 1 and 2 were negligible. In
this case the threshold frequency is provided by the sim-

FIG. 22: RF spectra for various magnetic fields along the
BCS-BEC crossover and for different temperatures. The RF
offset δν = ν − ν23 is given relative to the atomic transition
2 → 3. The molecular limit is realized for B=720 G (first
column). The resonance regime is studied for B=822 G and
837 G (second and third column). The data at 875 G (fourth
column) correspond to the BCS side of the crossover. Upper
row, signals of unpaired atoms at high temperature (larger
than TF ); middle row, signals for a mixture of unpaired and
paired atoms at intermediate temperature (fraction of TF );
lower row, signals for paired atoms at low temperature (much
smaller than TF ). From Chin et al. (2004).



35

ple formula

hδν ≡ h(ν − ν23) = ǫk=0 − µ , (98)

where we have considered the most favourable case where
the RF transition excites single-particle states with zero
momentum. Here µ is the chemical potential while ǫk is
the quasi-particle excitation energy defined in Sec. IVB.
Eq. (98) reproduces the result hδν = |ǫb| in the deep
BEC limit of free molecules where µ approaches the value
−|ǫb|/2. In the opposite BCS regime, where µ→ EF and
the single-particle gap ∆gap is much smaller than the
Fermi energy, one has instead hδν = ∆2

gap/2EF . The
proper inclusion of final-state interactions in the calcu-
lation of the RF spectra is a difficult problem that has
been the object of several papers (Kinnunen, Rodriguez
and Törmä, 2004; He, Chen and Levin, 2005; Ohashi
and Griffin, 2005; Yu and Baym, 2006; Perali, Pieri and
Strinati, 2007).

Typical experimental results on 6Li are shown in
Fig. 22, where the observed lineshapes are presented for
different values of the temperature along the BCS-BEC
crossover. In 6Li the relevant scattering lengths a13 (< 0)
and a12 are both large in modulus and final-state inter-
actions can not be ignored. On the BEC side of the res-
onance (lowest magnetic field in Fig. 22) one recognizes
the emergence of the typical molecular lineshape at low
temperature with the clear threshold effect for the RF
transition.

In the most interesting region where kF |a| ∼ 1 many-
body effects become important and change the scenario
of the RF transitions. While at high temperature (up-
per row in Fig. 22) the measured spectra still reveal the
typical feature of the free atom transition, at lower tem-

FIG. 23: Frequency shift δνmax measured in 6Li at low tem-
perature as a function of the magnetic field for two different
configurations corresponding to TF = 1.2 µK (filled symbols)
and 3.6 µK (open symbols). The solid line shows the value
δνmax predicted in the free molecular regime where it is es-
sentially given by the molecular binding energy. From Chin
et al. (2004).

peratures the lineshapes are modified by interactions in
a nontrivial way. This is shown in Fig. 23 where the shift
δνmax = νmax − ν23, defined in terms of the frequency
νmax where the RF signal is maximum, is reported for
two different values of TF . In the deep BEC regime the
value of δνmax is independent of the density and directly
related to the binding energy of the molecule. Vicev-
ersa, at unitarity and on the BCS side it shows a clear
density dependence. From these data one extracts the
relationship hδνmax ∼ 0.2EF at unitarity. The depen-
dence on the density is even more dramatic in the BCS
regime, due to the exponential decrease of pairing effects
as kF |a| → 0.

Since pairing effects are density dependent and become
weaker and weaker as one approaches the border of the
atomic cloud, one can not observe any gap in Fig. 22 ex-
cept on the BEC side of the resonance where the gap is
density independent. Spatially resolved RF spectroscopy
has been recently become available at unitarity (Shin et

al., 2007) revealing in a clear way the occurrence of the
gap and hence opening new perspectives for a direct com-
parison with the theoretical predictions in uniform mat-
ter.

VIII. ROTATIONS AND SUPERFLUIDITY

Superfluidity shows up in spectacular rotational prop-
erties. In fact a superfluid can not rotate like a rigid body,
due to the irrotationality constraint (83) imposed by the
existence of the order parameter. At low angular velocity
an important macroscopic consequence of superfluidity is
the quenching of the moment of inertia. At higher an-
gular velocities the superfluid can instead carry angular
momentum via the formation of vortex lines. The cir-
culation around these vortex lines is quantized. When
many vortex lines are created a regular vortex lattice is
formed and the angular momentum acquired by the sys-
tem approaches the classical rigid-body value. Both the
quenching of the moment of inertia and the formation
of vortex lines have been the object of fundamental in-
vestigations in the physics of quantum liquids and have
been recently explored in a systematic way also in dilute
Bose-Einstein condensed gases. In this Section we sum-
marize some of the main rotational features exhibited by
dilute Fermi gases where first experimental results are al-
ready available. In Secs. VIII A and VIII B we discuss the
consequences of the irrotationality constraint on the mo-
ment of inertia, on the collective oscillations and on the
expansion of a rotating gas, while Sec. VIII C is devoted
to discuss some key properties of quantized vortices and
vortex lattices.

A. Moment of inertia and scissors mode

The moment of inertia Θ relative to the z axis is de-
fined as the response of the system to a rotational field
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−ΩL̂z according to 〈L̂z〉 = ΩΘ where L̂z is the z compo-
nent of the angular momentum operator and the average
is taken on the stationary configuration in the presence
of the perturbation. For a non-interacting gas trapped
by a deformed harmonic potential the moment of inertia
can be calculated explicitly. In the small Ω limit (linear
response) one finds the result (Stringari 1996a)

Θ =
mN

ω2
x − ω2

y

[

(〈y2〉 − 〈x2〉)(ω2
x + ω2

y)

+ 2(ω2
y〈y2〉 − ω2

x〈x2〉)
]

. (99)

where the expectation values should be evaluated in the
absence of rotation. This result applies both to bosonic
and fermionic ideal gases. It assumes ωx 6= ωy, but ad-
mits a well defined limit when ωx → ωy. In the ideal
Fermi gas, when the number of particles is large, one
can use the Thomas-Fermi relationships 〈x2〉 ∝ 1/ω2

x and
〈y2〉 ∝ 1/ω2

x for the radii. In this case Eq. (99) reduces
to the rigid value of the moment of inertia:

Θrig = Nm〈x2 + y2〉 . (100)

For a non-interacting Bose-Einstein condensed gas at
T = 0, where the radii scale according to 〈x2〉 ∝ 1/ωx and
〈y2〉 ∝ 1/ωx, one instead finds that Θ → 0 as ωx → ωy.

Interactions change the value of the moment of inertia
of a Fermi gas in a profound way. To calculate Θ in the
superfluid phase one can use the equations of irrotational
hydrodynamics developed in Sec. VII, by considering a
trap rotating with angular velocity Ω and looking for the
stationary solution in the rotating frame. The equations
of motion in the rotating frame are obtained by includ-
ing the term −ΩL̂z in the Hamiltonian. In this frame
the trap is described by the time independent harmonic
potential Vho of Eq. (1) and the hydrodynamic equations
admit stationary solutions characterized by the velocity
field

v = −δΩ∇(xy) , (101)

where v is the irrotational superfluid velocity in the labo-
ratory frame, while δ = 〈y2−x2〉/〈y2+x2〉 is the deforma-
tion of the atomic cloud in the xy plane. By evaluating
the angular momentum 〈L̂z〉 = m

∫

dr(r × v)n one finds
that the moment of inertia takes the irrotational form

Θ = δ2Θrig , (102)

which identically vanishes for an axisymmetric configura-
tion, pointing out the crucial role played by superfluidity.
The result for the moment of inertia holds for both Bose
and Fermi superfluids rotating in a harmonic trap.

The behavior of the moment of inertia at high angular
velocity was investigated in the case of BEC’s by Recati,
Zambelli and Stringari (2001) who found that, for angu-

lar velocities larger than ω⊥/
√

2 where ω2
⊥ = (ω2

x+ω2
y)/2,

the adiabatic increase of the rotation can sizably affect
the value of the deformation parameter δ yielding large

deformations even if the deformation of the trap is small.
Physically this effect is the consequence of the energetic
instability of the quadrupole oscillation. At even higher
angular velocites a dynamic instability of the rotating
configuration was predicted by Sinha and Castin (2001)
suggesting a natural route to the nucleation of vortices.
These theoretical predictions were confirmed experimen-
tally (Madison et al., 2001). Similar predictions have
been made also for rotating Fermi gases (Tonini, Werner
and Castin, 2006).

The irrotational nature of the moment of inertia has
important consequences on the behavior of the so called
scissors mode. This is an oscillation of the system caused
by the sudden rotation of a deformed trap which, in
the superfluid case, has frequency (Guery-Odelin and
Stringari, 1999)

ω =
√

ω2
x + ω2

y . (103)

This result should be compared with the prediction of the
normal gas in the collisionless regime where two modes
with frequencies ω± = |ωx ± ωy| are found. The oc-
currence of the low frequency mode |ωx − ωy| reflects
the rigid value of the moment of inertia in the normal
phase. The scissors mode, previously observed in a Bose-
Einstein condensed gas (Maragò et al., 2000), has been
recently investigated also in ultracold Fermi gases (see
Fig. 24) along the BCS-BEC crossover (Wright et al.,
2007). At unitarity and on the BEC side of the resonance
one clearly observes the hydrodynamic oscillation, while
when a becomes negative and small the beating between
the frequencies ω± = |ωx ± ωy| reveals the transition
to the normal collisionless regime. If the gas is normal,
but deeply collisional as happens at unitarity above the
critical temperature, classical hydrodynamics predicts an
oscillation with the same frequency (103) in addition to a
low frequency mode of diffusive nature caused by the vis-
cosity of the fluid. This mode, however, is located at too
low frequencies to be observable. The persistence of the
scissors frequency (103) has been observed at unitarity in
the recent experiment of Wright et al. (2007) even above
Tc. This result, together with the findings for the aspect
ratio of the expanding gas and for the radial compression

FIG. 24: Time evolution of the angle characterizing the scis-
sors mode in a Fermi gas at unitarity (left panel) and on the
BCS side of the resonance (right panel). The measured fre-
quencies well agree with the theoretical predictions (see text).
From Wright et al. (2007).
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mode (see discussion in Secs. VII B-VII C), confirms that
near resonance the gas behaves hydrodynamically in a
wide range of temperatures below and above the critical
temperature. This makes the distinction between the su-
perfluid and the normal phase based on the study of the
collective oscillations, a difficult task.

Promising perspectives to distinguish between super-
fluid and classical (collisional) hydrodynamics are pro-
vided by the study of the collective oscillations excited
in a rotating gas. In fact, in the presence of vorticity
∇ × v 6= 0, the equations of collisional hydrodynam-
ics contain an additional term depending on the curl of
the velocity field, which is absent in the equations of su-
perfluid hydrodynamics. The resulting consequences on
the behavior of the scissors mode have been discussed by
Cozzini and Stringari (2003).

B. Expansion of a rotating Fermi gas

Another interesting consequence of the irrotational na-
ture of the superfluid motion concerns the expansion of
a rotating gas. Let us suppose that a trapped super-
fluid Fermi gas is initially put in rotation with a given

FIG. 25: (color online). Aspect ratio versus expansion time
of a unitary gas for different values of the initial angular ve-
locity Ω0 (in units of the frequency ωz of the long axis of the
trap) and of the temperature of the gas (parametrized by the
energy per particle E/N). Squares (purple): no angular ve-
locity; solid circles (blue): Ω0/ωz = 0.40, E/(NEF ) = 0.56;
open circles (red): Ω0/ωz = 0.40, E/(NEF ) = 2.1; triangles
(green): Ω0/ωz = 1.12, E/(NEF ) = 0.56. The dashed, solid
and dotted lines are the results of calculations based on ir-
rotational hydrodynamics. From Clancy, Luo and Thomas
(2007).

value of angular velocity (in practice this can be realized
through a sudden rotation of a deformed trap which ex-
cites the scissors mode). The gas is later released from
the trap. In the plane of rotation the expansion along
the short axis of the cloud will initially be faster than
the one along the long axis, due to larger gradients in
the density distribution. However, differently from the
hydrodynamic expansion of a non rotating gas where the
cloud takes at some time a symmetric shape, in the ro-
tating case the deformation of the cloud can not vanish.
In fact, due to the irrotational constraint, this would re-
sult in a vanishing value of the angular momentum and
hence in a violation of angular momentum conservation.
The consequence is that the angular velocity of the ex-
panding cloud will increase as the value of the deforma-
tion is reduced, but can not become too large because
of energy conservation. The result is that the deforma-
tion parameter will acquire a minimum value during the
expansion but will never vanish. This non trivial conse-
quence of irrotationality was first predicted (Edwards et

al., 2002) and observed (Hechenblaikner et al., 2002) in
Bose-Einstein condensed atomic gases. Very recently the
experiment has been repeated in a cold Fermi gas at uni-
tarity (Clancy, Luo and Thomas, 2007). Fig. 25 reports
the measured aspect ratio as a function of the expansion
time for different initial values of the angular velocity. It
shows that, if the gas is initially rotating (lower curves),
the aspect ratio never reaches the value 1 corresponding
to a vanishing deformation. The experimental data are
very well reproduced by the solutions of the equations
of irrotational hydrodynamics (solid and dotted line). A
remarkable feature is that the same behavior for the as-
pect ratio is found not only in the superfluid regime but
also above the critical temperature, revealing that even
in the normal phase the dynamics of the expansion is de-
scribed by the equations of irrotational hydrodynamics.
The reason is that viscosity effects are very small in the
normal phase and that the relevant time scales in this
experiment are too short to generate a rigid component
in the velocity field.

C. Quantized vortices

The existence of quantized vortices is one of the most
important predictions of superfluidity. Recent experi-
ments have confirmed their existence also in ultracold
Fermi gases along the BCS-BEC crossover (see Fig. 26).
In these experiments vortices are produced by spinning
the atomic cloud with a laser beam and are observed by
imaging the released cloud of molecules, which are sta-
bilized through a rapid sweep of the scattering length to
small and positive values during the first ms of the ex-
pansion. This technique, which is similar to the one em-
ployed to measure the condensate fraction of pairs (see
Sec. VB), increases the contrast of the vortex cores and
therefore their visibility.

A quantized vortex along the z axis is associated with
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the appearence of a phase in the order parameter [see
Eqs. (27)-(28)] of the form exp(iφ) where φ is the az-
imuthal angle. This yields the complex form

∆(r) = ∆(r⊥, z) exp(iφ) , (104)

for the order parameter ∆ where, for simplicity, we have
assumed that the system exhibits axial symmetry and we
have used cylindrical coordinates. The velocity field v =
(~/2m)∇φ of the vortex configuration has a tangential
form (v · r⊥ = 0) with modulus v = ~/2mr⊥, which
increases as one approaches the vortex line, in contrast to
the rigid body dependence v = Ω× r characterizing the
rotation of a normal fluid. The circulation is quantized
according to the rule

∮

v·dℓ =
π~

m
, (105)

which is smaller by a factor 2 with respect to the case of
a Bose superfluid with the same atomic mass m. Vortices
with higher quanta of circulation can also be considered.
The value of the circulation is independent of the radius
of the contour. This is a consequence of the fact that
the vorticity is concentrated on a single line and hence
deeply differs from the vorticity ∇×v = 2Ω of the rigid
body rotation.

The angular momentum carried by the vortex is given
by the expression

〈L̂z〉 = m

∫

dr(r × v)n(r) = N
~

2
, (106)

holding if the vortex line coincides with the symmetry
axis of the density profile. If the vortex is displaced to-
wards the periphery of a trapped gas the angular mo-
mentum takes a smaller value. In this case the axial
symmetry of the problem is lost and the order parameter
can not be written in the form (104).

A first estimate of the energy of the vortex line is ob-
tained using macroscopic arguments based on hydrody-
namics and considering, for simplicity, a gas confined in

FIG. 26: Experimental observation of quantized vortices in a
superfluid Fermi gas along the BCS-BEC crossover (Zwierlein
et al., 2005b).

a cylinder of radial size R. The energy Ev acquired by
the vortex is mainly determined by the hydrodynamic
kinetic energy (m/2)n

∫

drv2 which yields the following
estimate for the vortex energy:

Ev =
N~

4mR2
ln
R

ξ
, (107)

where we have introduced the radius ξ of the core of the
vortex of the order of the healing length (see Sec. VII D).
The need for the inclusion of the core size ξ in Eq. (107)
follows from the logarithmic divergence of the integral
n
∫

drv2 at short radial distances. Eq. (107) can be
used to evaluate the critical angular velocity Ωc for the
existence of an energetically stable vortex line. This
value is obtained by imposing that the change in the
energy E − Ωc〈L̂z〉 of the system in the frame rotat-
ing with angular velocity Ωc be equal to Ev. One finds
Ωc = (~/2mR2) ln(R/ξ). By applying this estimate to
a harmonically trapped configuration with RTF ∼ R
and by neglecting the logarithmic term which provides
a correction of order of unity, we find Ωc/ω⊥ ≃ ~ω⊥/Eho

where ω⊥ is the radial frequency of the harmonic po-
tential and Eho ∼ mω2

⊥R
2
TF is the harmonic oscillator

energy. The above estimate shows that in the Thomas-
Fermi regime, Eho ≫ ~ω⊥, the critical frequency is much
smaller than the radial trapping frequency, thereby sug-
gesting that vortices should be easily produced in slowly
rotating traps. This conclusion, however, does not take
into account the fact that the nucleation of vortices is
strongly inhibited at low angular velocities by the occur-
rence of a barrier. For example in rotating Bose-Einstein
condensates it has been experimentally shown that it is
possible to increase the angular velocity of the trap up to
values higher than Ωc without generating vortical states.
Under these conditions the response of the superfluid is
governed by the equations of irrotational hydrodynamics
(see Sec. VIII A).

A challenging problem concerns the visibility of the
vortex lines. Due to the smallness of the healing length,
especially at unitarity, they can not be observed in situ,
but only after expansion. Another difficulty is the re-
duced contrast in the density with respect to the case of
Bose-Einstein condensed gases. Actually, while the order
parameter vanishes on the vortex line the density does
not, unless one works in the deep BEC regime. In the op-
posite BCS regime the order parameter is exponentially
small and the density profile is practically unaffected by
the presence of the vortex.

The explicit behavior of the density near the vortex
line as well as the precise calculation of the vortex en-
ergy requires the implementation of a microscopic calcu-
lation. This can be carried out following the lines of the
mean-field BCS theory developed in Sec. VA. While this
approach is approximate, it nevertheless provides a useful
consistent description of the vortical structure along the
whole crossover. The vortex is described by the solution
of the Bogoliubov- de Gennes Eq. (49) corresponding to
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the ansatz

ui(r) = un(r⊥)e−imφeikzz/
√

2πL

vi(r) = vn(r⊥)e−i(m+1)φeikzz/
√

2πL , (108)

for the normalized functions ui and vi where (n,m, kz)
are the usual quantum numbers of cylindrical symmetry
and L is the length of the box in the z direction. The
ansatz (108) is consistent with the dependence (104) of
the order parameter ∆ on the phase φ. Calculations of
the vortex structure based on the above approach, have
been carried out by several authors (Nygaard et al., 2003;
Machida and Koyama, 2005; Chien et al., 2006; Sen-
sarma, Randeria and Ho, 2006). A generalized version of
the Bogoliubov-de Gennes equations based on the den-
sity functional theory was used instead by Bulgac and Yu
(2003). An important feature emerging from these calcu-
lations is that, near the vortex line, the density contrast
is reduced at unitarity with respect to the BEC limit and
is absent in the BCS regime.

At higher angular velocities more vortices can be
formed giving rise to a regular vortex lattice. In this
limit the angular momentum acquired by the system ap-
proaches the classical rigid-body value and the rotation is
similar to the one of a rigid body, characterized by the law
∇×v = 2Ω. Using result (105) and averaging the vortic-
ity over several vortex lines one finds ∇×v = (π~/m)nv ẑ,
where nv is the number of vortices per unit area, so that
the density of vortices nv is related to the angular veloc-
ity Ω by the relation nv = 2mΩ/π~ showing that the dis-
tance between vortices (proportional to 1/

√
nv) depends

on the angular velocity but not on the density of the gas.
The vortices form thus a regular lattice even if the av-
erage density is not uniform as happens in the presence
of harmonic trapping. This feature, already pointed out
in the case of Bose-Einstein condensed gases, has been
confirmed in the recent experiments on Fermi gases (see
Fig. 26). It is worth noticing that, due to the repulsive
quantum pressure effect characterizing Fermi gases, one
can realize trapped configurations with a large size R⊥

hosting a large number of vortices Nv = πR2
⊥nv, even

with relatively small values of Ω. For example choosing
Ω = ω⊥/3, ωz ≃ ω⊥ and N = 106, one predicts Nv ∼ 130
at unitarity which is significantly larger than the number
of vortices that one can produce in a dilute Bose gas with
the same angular velocity.

At large angular velocity the vortex lattice is responsi-
ble for a bulge effect associated with the increase of the
radial size of the cloud and consequently with a modifi-
cation of the aspect ratio. In fact, in the presence of an
average rigid rotation, the effective potential felt by the
atoms is given by Vho − (m/2)Ω2r2⊥. The new Thomas-
Fermi radii satisfy the relationship

R2
z

R2
⊥

=
ω2
⊥ − Ω2

ω2
z

, (109)

showing that at equilibrium the angular velocity can not
overcome the radial trapping frequency. This formula

can be used to determine directly the value of Ω by just
measuring the in situ aspect ratio of the atomic cloud.

Important consequences of the presence of vortex
lines concern the frequency of the collective oscillations.
For example, using a sum-rule approach (Zambelli and
Stringari, 1998) it is possible to show that the splitting
∆ω between the m = ±2 quadrupole frequencies is given
by the formula

∆ω = ω(m = +2) − ω(m = −2) = 2
ℓz

m〈r2⊥〉
, (110)

where ℓz = 〈Lz〉/N is the angular momentum per par-
ticle carried by the vortical configuration. For a single
vortex line ℓz is equal to ~/2, while for a vortex lattice
ℓz is given by the rigid-body value Ωm〈r2⊥〉. The split-
ting (110), and hence the angular momentum ℓz can be
directly measured by producing a sudden quadrupole de-
formation in the x−y plane and imaging the correspond-
ing precession φ̇ = ∆ω/4 of the angle φ of the symmetry
axis of the deformation during the quadrupole oscillation.
This precession phenomenon has been already observed
in the case of Bose-Einstein condensates containing quan-
tized vortex lines (Chevy, Madison and Dalibard, 2000).
For a single vortex line this experiment gives direct ac-
cess to the quantization of the angular momentum (106)
carried by the vortex, in analogy with the famous Vinen
experiment of superfluid helium (Vinen, 1961).

In the presence of many vortex lines the collective os-
cillations of the system can be calculated using the equa-
tions of rotational hydrodynamics (Cozzini and Stringari,
2003). In fact, from a macroscopic point of view, the vor-
tex lattice behaves like a classical body rotating in a rigid
way. For example, in the case of axisymmetric configu-
rations one finds the result

ω(m = ±2) =
√

2ω2
⊥ − Ω2 ± Ω (111)

for the frequencies of the two m = ±2 quadrupole modes,
which is consistent with the sum-rule result (110) for the
splitting in the case of a rigid rotation. Other impor-
tant modes affected by the presence of the vortex lattice
are the compressional m = 0 oscillations resulting from
the coupling of the radial and axial degrees of freedom.
These modes were discussed in Sec. VII C in the absence
of rotation. The effect of the rotation in a Fermi gas has
been recently discussed by Antezza, Cozzini and Stringari
(2007). In the centrifugal limit Ω → ω⊥ the frequency of
the radial mode approaches the value ω = 2ω⊥ indepen-
dent of the equation of state, while the frequency of the
axial mode approaches the value

ω =
√

γ + 2 ωz , (112)

where γ is the coefficient of the polytropic equation of
state (see Sec. VII C).

It is finally worth noticing that the achievement of the
centrifugal limit for a superfluid containing a vortex lat-
tice can not be ensured on the BCS side of the resonance.
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In fact, due to the bulge effect (109), the centrifugal limit
is associated with a strong decrease of the density and
hence, for a < 0, with an exponential decrease of the or-
der parameter ∆. It follows that the superfluid can not
support rotations with values of Ω too close to ω⊥ and
that the system will exhibit a transition to the normal
phase (Zhai and Ho, 2006; Veillette et al., 2006) [see also
Moller and Cooper (2007) for a recent discussion of the
new features exhibited by the rotating BCS Fermi gas].
If Ω becomes too close to ω⊥, superfluidity will be even-
tually lost also at resonance and on the BEC side of the
resonance because the system enters the Quantum Hall
regime (for the case of bosons see, e.g., Cooper, Wilkin
and Gunn, 2001; Regnault and Jolicoeur, 2003)

IX. SPIN POLARIZED FERMI GASES AND

FERMI MIXTURES

The description of Fermi superfluidity presented in the
previous Sections was based on the assumption that the
gas has an equal number of atoms occupying two dif-
ferent spin states. One can also consider more complex
configurations of spin imbalance where the number of
atoms in the two spin states is different (N↑ 6= N↓) as
well as mixtures of atomic species with different masses
(m↑ 6= m↓), including Fermi-Fermi and Bose-Fermi mix-
tures. Recent realizations of these novel configurations
are opening new perspectives for both experimental and
theoretical research.

FIG. 27: Qualitative phase diagram as a function of the in-
teraction strength −1/kF a and of the polarization P . The
circle at unitarity corresponds to the critical value Pc = 0.39
discussed in Sec. IXB. The Fermi wavevector corresponds
here to the total average density: kF = [3π2(n↑ + n↓)]

1/3.
Notice that the possible occurrence of the FFLO phase is not
considered on this diagram.

A. Equation of state of a spin polarized Fermi gas

The problem of spin imbalance has an old story in the
context of BCS theory of superconductivity. In super-
conductors, due to the fast relaxation between different
spin states leading to balanced spin populations, the only
possibility to create the asymmetry is to add an exter-
nal magnetic field. However, in bulk superconductors
this field is screened by the orbital motion of electrons
(Meissner effect). The situation in superfluid Fermi gases
is more favourable. In fact, in this case, the relaxation
time is very long and the numbers of atoms occupying
different spin states can be considered as independent
variables.

Let us recall that the mechanism of BCS superfluidity,
in the regime of small and negative scattering lengths,
arises from the pairing of particles of different spin occu-
pying states with opposite momenta, close to the Fermi
surface. This mechanism is inhibited by the presence
of spin imbalance, since the Fermi surfaces of the two
components do not coincide and pairs with zero total
momentum are difficult to form. Eventually, if the gap
between the two Fermi surfaces is too large, superfluid-
ity is broken and the system undergoes a quantum phase
transition towards a normal state. The existence of a
critical value for the polarization is easily understood by
noticing that, at zero temperature, the unpolarized gas
is superfluid, while a fully polarized gas is normal due
to the absence of interactions. The occurrence of such a
transition was first suggested in the papers by Clogston
(1962) and Chandrasekhar (1962) who predicted the oc-
currence of a first order transition from the normal to
the superfluid state. This transition takes place when
the gain in the grand-canonical energy associated with
the finite polarization of the normal phase is equal to
the energy difference between the normal and the super-
fluid unpolarized states. In the BCS regime one finds the
critical condition [see Eq. (36)]

h ≡ µ↑ − µ↓

2
=

∆gap√
2
, (113)

where ∆gap = (2/e)7/3EF e
π/2kF a is the BCS gap and

we have assumed the spin-down particles as the minority
component. The chemical potential difference h in the
above equation plays the role of an effective magnetic
field. In terms of the polarization

P =
N↑ −N↓

N↑ +N↓
, (114)

it can be expressed through the relationship h =
2EFP/3, which holds if P ≪ 1. The condition (113)
then immediately yields the critical value of P at which
the system phase separates:

Pc =
3√
8

(

2

e

)7/3

eπ/2kF a . (115)
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For P > Pc the system is normal and corresponds to
a uniform mixture of the two spin components well de-
scribed by the non-interacting model. For P < Pc the
system is instead in a mixed state, where the unpolarized
BCS superfluid coexists with the normal phase which ac-
commodates the excess polarization. In this mixed state,
the chemical potential difference of the normal phase re-
tains the critical value (113) irrespective of polarization,
a decrease in P being accounted for by an increase in
the volume fraction of the superfluid phase which even-
tually occupies the entire volume for P = 0. An im-
portant remark concerning the Clogston-Chandrasekhar
condition (113) is that the critical effective magnetic field
h is smaller than the superfluid gap ∆gap. If one had
h > ∆gap the above scenario would not apply because
the system would prefer to accommodate the excess po-
larization by breaking pairs and creating quasi-particles.
The gapless superfluid realized in this way would be ho-
mogeneous and the transition to the normal state would
be continous. Such a uniform phase is indeed expected
to occur in the deep BEC regime (see below).

The physical understanding of polarized Fermi gases
became more complicated when exotic superfluid phases
were proposed such as the inhomogeneous Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) state (Fulde and Ferrell,
1964; Larkin and Ovchinnikov, 1964). Other alternative
states include the breached pair or Sarma state (Sarma,
1963; Liu and Wilczek, 2003) and states with a deformed
Fermi surface (Sedrakian et al., 2005). In the FFLO
state Cooper pairs carry a finite momentum resulting in
a spontaneous breaking of translational symmetry with
a periodic structure of the order parameter of the form
∆(x) ∝ cos(qx), where the direction of the x axis is arbi-
trary. The wavevector q is proportional to the difference
of the two Fermi wavevectors q ∝ kF↑ − kF↓ with a pro-
portionality coefficient of order unity. The excess spin-up
atoms are concentrated near the zeros of the order pa-
rameter ∆(x). One can show that in the BCS limit the
FFLO phase exists for h < 0.754∆gap, corresponding to
the tiny interval of polarization 0 < P < 1.13∆gap/EF ,
and at P > 1.13∆gap/EF the system is normal (see, e.g.,
Takada and Izuyama, 1969). In the deep BCS regime
this scenario is more energetically favourable compared
to the Clogston-Chandrasekhar transition which would
take place at Pc = 1.06∆gap/EF . The FFLO state
is of interest both in condensed matter physics and in
elementary particle physics, even though direct experi-
mental evidences of this phase are still lacking [for re-
cent reviews, see Casalbuoni and Nardulli (2004) and
Combescot (2007)].

In ultracold gases the BCS regime is not easily achieved
due to the smallness of the gap parameter and one is
naturally led to explore configurations with larger val-
ues of kF |a|, where the concept of Fermi surface looses
its meaning due to the broadening produced by pair-
ing. A major question is whether the FFLO phase sur-
vives when correlations are stronger and if it can be real-
ized in trapped configurations (Mizushima, Machida and

Ichioka, 2005; Sheehy and Radzihovsky 2007; Yoshida
and Yip, 2007). As a function of the interaction strength,
parametrized by 1/kFa where kF = [3π2(n↑ + n↓)]

1/3 is
fixed by the total density, different scenarios can take
place as schematically shown in Fig. 27 (Sheehy and
Radzihovsky, 2006 and 2007; Son and Stephanov, 2006;
Pao, wu and Yip, 2006; Hu and Liu, 2006; Iskin and
Sá de Melo, 2006b; Parish et al., 2007a). An important
region of the phase diagram is the deep BEC regime of
small and positive scattering lengths, where the energet-
ically favourable phase consists of a uniform mixture of
a superfluid gas of bosonic dimers and of a normal gas
of spin polarized fermions. In this regime one expects
that the normal uniform gas exists only for P = 1, cor-
responding to the fully polarized ideal Fermi gas. The
general problem of an interacting mixture of bosons and
fermions was investigated by Viverit, Pethick and Smith
(2000) who derived the conditions of miscibility in terms
of the values of the densities and masses of the two com-
ponents and of the boson-boson and boson-fermion scat-
tering lengths (see Sec. IXE). In particular, for P ≃ 1
corresponding to a small number of bosonic dimers in a
fully polarized Fermi sea, the relevant condition for the
solubility of the mixture reads [see Eq. (130) below]

kF ≤ 4π

21/39

add

a2
ad

. (116)

By using the values add = 0.60a and aad = 1.18a for
the dimer-dimer and atom-dimer scattering length re-
spectively, one finds that the uniform phase exists for
1/kFa > 2.1. This Bose-Fermi picture, however, looses
its validity as one approaches the resonance region and
more detailed analyses are needed to understand the
phase diagram of the system close to unitarity (Pilati and
Giorgini, 2007). In the presence of harmonic trapping the
conditions of phase separation in the BEC regime change
significantly due to the non-uniform effective potentials
felt by the two components. The density profiles of the
bosonic dimers and of the unpaired fermions have been
investigated by Pieri and Strinati (2006) within the local
density approximation.

The determination of the energetically favourable con-
figuration in the unitary regime of infinite scattering
length is a difficult problem (Carlson and Reddy, 2005).
Will the unpolarized superfluid and the polarized normal
gas co-exist like in the BEC regime or will they separate?
Will the FFLO phase play any role? First experiments
carried out with spin imbalanced trapped Fermi gases
close to unitarity suggest the occurrence of a phase sepa-
ration between an unpolarized superfluid and a polarized
normal phase (Partridge et al., 2006a; Shin et al., 2006).

Other important questions that will not be addressed
in this review concern the phases of these spin polarized
Fermi gases at finite temperature (Gubbels, Romans and
Stoof, 2006; Parish et al., 2007a; Chien et al., 2007) and
the occurrence of p-wave superfluid phases at very low
temperatures (Bulgac, Forbes and Schwenk, 2006).
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B. Phase separation at unitarity

A possible scenario for the equation of state of spin
imbalanced configurations at unitarity is based on the
phase separation between an unpolarized superfluid
and a polarized normal gas similar to the Clogston-
Chandrasekhar transition discussed in the Sec. IX A (De
Silva and Mueller, 2006a; Haque and Stoof 2006; Chevy,
2006a). An important ingredient of this scenario, that
is not accounted for by the mean-field description, is
the proper inclusion of interaction effects in the normal
phase (Chevy 2006b; Lobo et al., 2006b; Bulgac and
Forbes, 2007). While there is not at present a formal
proof that the phase separated state is the most ener-
getically favourable, the resulting predictions well agree
with recent experimental findings (see Sec. IXC).

The unpolarized superfluid phase was described in de-
tails in Secs. IV and V and is characterized, at unitarity,
by the equation of state

ES

N
=

3

5
EF (1 + β) , (117)

where ES is the energy of the system, N is the to-
tal number of atoms and EF = (~2/2m)(3π2nS)2/3 is
the Fermi energy, where nS = 2n↑ = 2n↓ is the total
density of the gas. Starting from (117) one can derive
the pressure PS = −∂E/∂V and the chemical potential
µS = ∂ES/∂N .

Differently from the superfluid the normal phase is po-
larized and consequently its equation of state will depend

FIG. 28: Equation of state of a normal Fermi gas as a function
of the concentration x. The solid line is a polynomial best fit
to the QMC results (circles). The dashed line corresponds
to the expansion (119). The dot-dashed line is the coexis-
tence line between the normal and the unpolarized superfluid
states and the arrow indicates the critical concentration xc

above which the system phase separates. For x = 1, both the
energy of the normal and of the superfluid (diamond) states
are shown.

also on the concentration

x = n↓/n↑ , (118)

which, in the following, will be assumed to be smaller or
equal to 1, corresponding to N↑ ≥ N↓. A convenient way
to build the x-dependence of the equation of state is to
take the point of view of a dilute mixture where a few
spin-down atoms are added to a non-interacting gas of
spin-up particles. When x≪ 1, the energy of the system
can be written in the form (Lobo et al., 2006b)

EN (n↑, x)

N↑
=

3

5
EF↑ [1 −Ax+

m

m∗
x5/3 + ...] , (119)

where EF↑ = (~2/2m)(6π2n↑)
2/3 is the Fermi energy of

the spin-up particles. The first term in Eq. (119) corre-
sponds to the energy per particle of the non-interacting
gas, while the term linear in x gives the binding energy
of the spin-down particles. Eq. (119) assumes that, when
we add spin-down particles creating a small finite density
n↓, they form a Fermi gas of quasi-particles with effective
mass m∗ occupying, at zero temperature, all the states
with wavevector k up to kF↓

= (6π2n↓)
1/3 and contribut-

ing to the total energy (119) with the quantum pressure
term proportional to x5/3. The interaction between the
spin-down and spin-up particles is accounted for by the
dimensionless parameters A and m/m∗. The expansion
(119) should in principle include additional terms origi-
nating from the interaction between quasi-particles and
exhibiting a higher order dependence on x.

The values of the coefficients entering (119) can be
calculated using fixed-node diffusion Monte Carlo sim-
ulations where one spin-down atom is added to a non-
interacting Fermi gas of spin-up particles. The results of
these calculations are A = 0.97(2) and m/m∗ = 1.04(3)
(Lobo et al., 2006b). The same value of A has been ob-
tained from an exact diagrammatic Monte Carlo calcula-
tion (Prokof’ev and Svistunov, 2007) and, quite remark-
ably, also employing a simple variational approach based
on a single particle-hole wavefunction (Chevy, 2006b,
Combescot et al., 2007). The prediction of Eq. (119)
for the equation of state is reported in Fig. 28, where we
also show the FN-DMC results obtained for finite values
of the concentration x. It is remarkable to see that the
expansion (119) reproduces quite well the best fit to the
FN-DMC results up to the large values of x where the
transition to the superfluid phase takes place (see discus-
sion below). In particular, the repulsive term in x5/3,
associated with the Fermi quantum pressure of the mi-
nority species, plays a crucial role in determining the x
dependence of the equation of state. Notice that when
x = 1 (N↑ = N↓) the energy per particle of the nor-
mal phase is smaller than the ideal gas value 6EF↑/5,
reflecting the attractive nature of the force, but larger
than the value in the superfluid phase (0.42)6EF↑/5 (see
Sec. V B).

We can now determine the conditions of equilibrium
between the normal and the superfluid phase. A first
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condition is obtained by imposing that the pressures of
the two phases be equal

∂ES

∂VS
=
∂EN

∂VN
, (120)

where VS and VN are the volumes occupied by the two
phases respectively. A second condition is obtained by
requiring that the chemical potential of each pair of spin
up-spin down particles be the same in the two phases. In
order to exploit this latter condition one takes advantage
of the thermodynamic identity µS = (µ↑ + µ↓)/2 for the
chemical potential in the superfluid phase yielding the
additional relation

∂ES

∂N
=

1

2

(

∂EN

∂N↑
+
∂EN

∂N↓

)

, (121)

where we have used the expression µ↑(↓) = ∂EN/∂N↑(↓)

for the chemical potentials of the spin-up and spin-down
particles calculated in the normal phase. Eq. (121), com-
bined with (120), permits to determine the critical val-
ues of the thermodynamic parameters characterizing the
equilibrium between the two phases. For example, if
applied to the BCS regime where EN = 3/5(N↑EF↑ +
N↓EF↓) and ES = EN −3N∆2

gap/8EF [see Eq. (36)], this
approach reproduces the Clogston-Chandrasekhar condi-
tion (113) (Bedaque, Caldas and Rupak, 2003). At uni-
tarity instead, a calculation based on the QMC values of
EN and ES yields the values xc = 0.44, corresponding
to Pc = (1 − xc)/(1 + xc) = 0.39, and (nN/nS)c = 0.73,
where nN = n↑ + n↓ is the density of the normal phase
in equilibrium with the superfluid (Lobo et al., 2006b).
For values of the polarization larger than Pc = 0.39 the
stable configuration is the uniform normal phase, while if
we increase the number of the spin down particles (corre-
sponding to a reduction of P ) there will be a phase sep-
aration between a normal phase with the concentration
xc = 0.44 and a superfluid unpolarized phase. The phase
transition has first order character consistently with the
critical value h = 0.81∆gap being smaller than the su-
perfluid gap. In particular, while the spin-up density
is practically continuous, the density of the spin-down
particles exhibits a significant jump at the transition.
Let us finally point out that the parameters characteriz-
ing the transition between the superfluid and the normal
phases depend in a crucial way on the many-body scheme
employed for the calculation. For example, if instead
of the Monte Carlo results we use the BCS mean-field
theory of Sec. V A and the non-interacting expression
EN = 3/5(N↑EF↑+N↓EF↓) for the energy of the normal
phase, we would find the very different value xc = 0.04
for the critical concentration.

C. Phase separation in harmonic traps at unitarity

The results presented in Sec. IXB can be used to cal-
culate the density profiles in the presence of harmonic

trapping. We make use of the local density approxi-
mation which permits to express the local value of the
chemical potential of each spin species as

µ↑(↓)(r) = µ0
↑(↓) − Vho(r) . (122)

The chemical potentials µ0
↑(↓) are fixed by imposing the

proper normalization to the spin-up and spin-down den-
sities and the condition µ0

↑(↓) − Vho(r = R↑(↓)) = 0 de-

fines the Thomas-Fermi radii R↑(↓) of the two species. In
our discussion we assume isotropic trapping in order to
simplify the formalism. A simple scaling transformation
permits to apply the results also to the case of anisotropic
trapping.

For small concentrations of the spin-down particles
(N↓ ≪ N↑) only the normal state is present and one
can ignore the change in µ↑ due to the attraction of
the spin-down atoms. In this case n↑ reduces to the
Thomas-Fermi profile (8) of an ideal gas, whereas n↓ is a
Thomas-Fermi profile with a modified harmonic poten-
tial Vho → (1 + 3A/5)Vho. The confining potential felt
by the spin-down atoms is stronger due to the attraction
produced by the spin-up atoms. One can also calculate
the frequency of the dipole oscillation of the spin-down
particles. This is given by (i = x, y, z)

ωdipole
i = ωi

√

(1 +
3

5
A)

m

m∗
≃ 1.23ωi , (123)

and is affected by both the interaction parameter A and
the effective mass parameter m/m∗ entering the expan-
sion (119).

When in the center of the trap the local concentration
of spin-down particles reaches the critical value xc = 0.44
(see Sec. IXB) a superfluid core starts to nucleate in
equilibrium with a polarized normal gas outside the su-
perfluid. The radius RSF of the superfluid is determined

FIG. 29: Radii of the three phases in the trap in units of the
radius R0

↑ = aho(48N↑)
1/6 of a non-interacting fully polarized

gas.
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by the equilibrium conditions between the two phases dis-
cussed in the previous Section. Towards the periphery of
the polarized normal phase the density of the spin-down
particles will eventually approach a vanishing value cor-
responding to R↓. For even larger values of the radial
coordinate only the density of the spin-up particles will
be different from zero up to the radius R↑. In this pe-
ripherical region the normal phase corresponds to a fully
polarized, non-interacting Fermi gas.

By using the Monte Carlo equation of state discussed
in Sec. IXB one finds that the superfluid core disappears
for polarizations P > P trap

c = 0.77 (Lobo et al., 2006b).
The difference between the critical value P trap

c and the
value Pc = 0.39 obtained for uniform gases reflects the
inhomogeneity of the trapping potential. In Fig. 29 we
show the calculated radii of the superfluid and of the spin-
down and spin-up components as a function of P . The
radii are given in units of the non-interacting radius of
the majority component R0

↑ = aho(48N↑)
1/6. The figure

explicitly points out the relevant features of the prob-
lem. When P → 0 one approaches the standard unpo-
larized superfluid phase where the three radii (RSF , R↑

and R↓) coincide with the value (1 + β)1/4R0
↑ ≃ 0.81R0

↑

[see Eq. (74)]. By increasing P one observes the typical
shell structure with RSF < R↓ < R↑. The spin-up radius
increases and eventually approaches the non-interacting
value when P → 1. The spin-down radius instead de-
creases and eventually vanishes as P → 1. Finally the
radius RSF of the superfluid component decreases and
vanishes for P trap

c = 0.77, corresponding to the disap-
pearence of the superfluid phase.

The predicted value for the critical polarization is in
good agreement with the findings of the MIT experiments

FIG. 30: Phase separation in an interacting Fermi gas at
unitarity. Normalized central density difference (circles) and
condensate fraction (triangles). From both sets of data one
extract the same value ∼ 0.75 for the critical polarization.
From Shin et al. (2006).
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FIG. 31: Double integrated density difference measured at
unitarity in an ultracold trapped Fermi gas of 6Li with po-
larization P = 0.58 (from Shin et al., 2006). The theoretical
curves correspond to the theory of Secs. IX B-IXC based on
the local density approximation (red solid line) and to the
predictions of a non-interacting gas with the same value of P
(dashed line). (From Lobo, Recati and Stringari, 2007).

(Zwierlein et al., 2006a; Shin et al., 2006), where the
interplay between the superfluid and the normal phase
was investigated by varying the polarization P of the
gas. The experimental evidence for superfluidity in a
spin imbalanced gas emerges from measurements of the
condensate fraction and of the vortex structure in fast
rotating configurations (Zwierlein et al., 2006a). These
time-of-flight measurements were performed by rapidly
ramping the scattering length to small and positive val-
ues after opening the trap, in order to stabilize fermion
pairs and increase the visibility of the bimodal distribu-
tion and of vortices (see discussion in Sec. VB2 and in
Sec. VIII C). In another paper (Shin et al., 2006) the
in situ density difference n↑(r)−n↓(r) was directly mea-
sured with phase contrast techniques. Phase separation
was observed by correlating the presence of a core region
with n↑ − n↓ = 0 with the presence of a condensate of
pairs (see Fig. 30). At unitarity these results reveal that
the superfluid core appears for P ≤ 0.75. An interest-
ing quantity that can be directly extracted from these
measurements is the double integrated density difference

n
(1)
d (z) =

∫

dxdy[n↑(r) − n↓(r)] , (124)

which is reported in Fig. 31 for a unitary gas with
P = 0.58. The figure reveals the occurrence of a char-

acteristic central region where n
(1)
d (z) is constant. The

physical origin of this plateau can be understood using
the local density approximation (De Silva and Mueller,
2006a; Haque and Stoof, 2006): it is a consequence of
the existence of a core region with n↑(r) = n↓(r) which
is naturally interpreted as the superfluid core. Further-
more, the value of z where the density exhibits the cusp
corresponds to the Thomas-Fermi radius RSF of the su-
perfluid. In the same figure we show the theoretical pre-
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dictions, based on the Monte Carlo results for the equa-
tion of state of the superfluid and normal phases, which
well agree with the experimental data (Lobo, Recati and
Stringari, 2007).

The theoretical predictions discussed above are based
on a zero temperature assumption and on the local den-
sity approximation applied to the various phases of the
trapped Fermi gas. While the applicability of the LDA
seems to be adequate to describe the MIT data, the Rice
experiments (Partridge et al., 2006a), carried out with a
very elongated trap, show that in this case surface tension
effects, not accounted for by LDA, play a major role. It
is possible to prove (De Silva and Mueller, 2006a; Haque
and Stoof, 2006) that the double integrated density dif-
ference, when evaluated within the LDA, should exhibit
a monotonic non increasing behavior as one moves from
the trap center. The non monotonic structure of the den-
sity observed in the Rice experiment can be explained
through the inclusion of surface tension effects. For a re-
cent discussion of surface tension and thermal effects in
spin imbalanced configurations see De Silva and Mueller
(2006b), Partridge et al. (2006b) and Haque and Stoof
(2007).

Other important questions concern the dynamic be-
havior of these spin polarized configurations. The prob-
lem is interesting since the dynamic behavior of the su-
perfluid is quite different from the one of the normal gas,
the latter being likely governed, at very low temperature,
by collisionless kinetic equations rather than by the equa-
tions of hydrodynamics. As a consequence the role of the
boundary separating the two phases should be carefully
taken into account for a reliable prediction of the dy-
namic properties, such as the collective oscillations and
the expansion.

D. Fermi superfluids with unequal masses

When one considers mixtures of Fermi gases belong-
ing to different atomic species and hence having differ-
ent masses new interesting issues emerge. One should
point out that even if the masses are different, config-
urations where the atomic densities of the two compo-
nents are equal result in equal Fermi momenta: kF↑ =

kF↓ = (3π2n)1/3, where n = n↑ + n↓ is the total den-
sity. This means that the mechanism of Cooper pairing,
where two atoms of different spin can couple to form a
pair of zero momentum, is still valid. At T = 0 the
BCS mean-field theory predicts a simple scaling behav-
ior of the equation of state in terms of the reduced mass
of the two atoms, which holds in the whole BCS-BEC
crossover. However, in the BCS regime, correlations be-
yond the mean-field approximation introduce a non triv-
ial dependence on the mass ratio in the superfluid gap
(Baranov, Lobo and Shlyapnikov, 2007). Furthermore, in
the BEC regime, theoretical studies of four-fermion sys-
tems (Petrov, 2003; Petrov, Salomon and Shlyapnikov,
2005) emphasize the crucial role of the mass ratio on the

interaction between dimers, resulting in instabilities if
the mass ratio exceeds a critical value (see Sec. III C).
First quantum Monte Carlo results have also become
available in the crossover, exploring the dependence of
the equation of state and of the superfluid gap on the
mass ratio (von Stecher, Greene and Blume 2007; As-
trakharchik, Blume and Giorgini, 2007). These studies
point out significant deviations from the predictions of
the BCS mean-field theory. Important questions emerge
also at finite temperature, where one can immediately
conclude that the simple scaling in terms of the reduced
mass can not hold since, for example, the BEC transition
temperature of composite bosons (see Sec. IVE) should
depend on the molecular mass, M = m↑ + m↓, rather
than on the reduced mass. Other interesting scenarios,
not addressed in this review, refer to the interplay be-
tween unequal masses and unequal populations of the
two spin components (see, e.g., Wu, Pao and Yip, 2006;
Iskin and Sá de Melo, 2006b; Parish et al., 2007b; Iskin
and Sá de Melo, 2007a). The experimental realization
of fermionic heteronuclear mixtures in the strongly cor-
related regime is at present actively pursued in different
laboratories (see, e.g., Wille et al., 2007).

1. Equation of state along the crossover

The BCS mean-field approach developed in Sec. VA
can be generalized in a straightforward manner to the
case of unequal masses. Starting from the BCS Hamilto-
nian (46), where the single-particle energy term contains
now the mass m↑(↓) and the chemical potential µ↑(↓) of
the two spin components, one follows the same steps lead-
ing to the gap and number equations (54)-(55). These
equations, as well as Eqs. (50)-(51) for the quasi-particle
amplitudes and excitation energies, read exactly the same
as in the equal mass case, with the only difference that
the atomic mass m should be replaced by twice the re-
duced mass

m→ 2mr = 2
m↑m↓

m↑ +m↓
, (125)

and that the single-particle energy should be replaced by
ηk → ~

2k2/4mr−µ, where µ = (µ↑+µ↓)/2 is the average
chemical potential. In units of the reduced Fermi energy

Er
F =

1

2

(

EF↑
+ EF↓

)

=
~

2k2
F

4mr
, (126)

the resulting values of the chemical potential µ and of
the order parameter ∆, for a given value 1/kFa of the
interaction strength, are then independent of the mass
ratio m↑/m↓.

At unitarity dimensionality arguments permit to write
the energy of the system in the general form ES/N =
3/5[1 + β(m↑/m↓)]E

r
F , where N = N↑ + N↓ is the to-

tal number of particles. In the BCS mean-field approach
the value of β is given by β = −0.41 (see Table II in
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Sec.VI). First results based on QMC simulations, sug-
gest that the dependence of β on the mass ratio is very
weak (Astrakharchik, Blume and Giorgini, 2007). On the
contrary, the corresponding value of the superfluid gap
∆gap is strongly reduced by increasing the mass ratio.

In the BEC regime, the mean-field approach predicts
that the binding energy of the dimers is given by the
formula ǫb = −~

2/2mra
2 and that these molecules inter-

act with the same scattering length as in the symmetric
mass case (add = 2a). While the result for the binding
energy is correct, the actual relationship between add and
a is sensitive to the value of the mass ratio, approaching
the value 0.60 when m↑ = m↓ (Petrov, 2003; Petrov,
Salomon and Shlyapnikov, 2005).

2. Density profiles and collective oscillations

Also in the case of unequal masses the equation of state
of uniform systems can be used to evaluate the density
profiles of the harmonically trapped configurations. In
the local density approximation the chemical potential
of each atomic species varies in space according to the
law (122) where, however, the confining potential is now
spin dependent being related to different magnetic and
optical properties of the two atomic species and should

be replaced by Vho(r) → V
↑(↓)
ho (r). Since the chemical

potential of the superfluid phase is given by the average
µS = (µ↑ + µ↓)/2, the corresponding density is deter-
mined at equilibrium by the Thomas-Fermi relation

µS(n) = µ0 − Ṽho(r) , (127)

where

Ṽho(r) =
M

4

(

ω̃2
xx

2 + ω̃2
yy

2 + ω̃2
zz

2
)

, (128)

is the average of the trapping potentials. The effective
frequencies ω̃i are given by

ω̃2
i =

m↑(ω
↑
i )2 +m↓(ω

↓
i )2

m↑ +m↓
, (129)

where ω
↑(↓)
i are the oscillator frequencies relative to

V
↑(↓)
ho , whereas M = m↑ + m↓ denotes the mass of the

pair. If the oscillator lengths of the two atomic com-

ponents coincide, i.e. if m↑ω
↑
i = m↓ω

↓
i , the effective

frequencies (129) take the simplified form ω̃i =

√

ω↑
i ω

↓
i .

In the superfluid phase the densities of the spin-up
and spin-down atoms are equal, even if the trapping po-
tentials, in the absence of interatomic forces, would give
rise to different profiles. In principle, even if one of the
two atomic species does not feel directly any external
potential (for example ω↓ = 0), it can be trapped due
to the interaction with the other species. At unitar-
ity, one can show (Orso, Pitaevskii and Stringari, 2007)
that the trapped superfluid configuration is energetically

favourable if the condition (1 +β)M/m↓ < 1 is satisfied.
This condition is easily fulfilled if m↑ ≤ m↓.

The dynamic behavior of Fermi superfluids with un-
equal masses can be studied by properly generalizing the
equations of hydrodynamics which take the form (84)-
(85) with Vho replaced by the effective trapping poten-
tial (128) and where m is replaced by half of the pair

mass m → M/2. In uniform systems (Ṽho = 0) the
equations give rise to the propagation of sound with
the sound velocity fixed by the thermodynamic relation
Mc2 = 2nS∂µS/∂nS . In the BCS limit, where the equa-
tion of state approaches the ideal gas expression the
sound velocity takes the value c = ~kF

√

1/(3m↑m↓)

where kF = (3π2n)1/3. At unitarity the sound veloc-
ity is given by the above ideal gas value multiplied by
the factor

√
1 + β.

For harmonically trapped configurations the hydrody-
namic equations can be used to study the expansion of
the gas after opening the trap as well as the collective
oscillations (Orso, Pitaevskii and Stringari, 2007). The
effect of the mass asymmetry is accounted for through the
effective frequencies (129) as well as through the changes
in the equation of state µS . At unitarity, where the den-
sity dependence of the chemical potential keeps the n2/3

power law, the same results discussed in Sec. VII C hold
with the oscillator frequencies replaced by ω̃i. Notice
that the effective frequencies ω̃i differ in general from ei-

ther ω↑
i and ω↓

i . Actually in the superfluid phase the
two atomic species can not oscillate independently, but
always move in phase as a consequence of the pairing
mechanism produced by the interaction.

E. Fermi-Bose mixtures

The problem of quantum degenerate mixtures of a spin
polarized Fermi gas and a Bose gas has been the object
of considerable experimental and theoretical work. Par-
ticularly interesting are the mixtures where the interac-
tions between the fermions and the bosons are tunable
by means of a Feshbach resonance. This is the case, for
example, of the 40K-87Rb system which has been exten-
sively investigated by the groups in Florence (Modugno et

al., 2002; Ferlaino et al., 2006; Zaccanti et al., 2006; Mod-
ugno, 2007) and in Hamburg (Ospelkaus et al., 2006a;
Ospelkaus et al., 2006b). In these configurations the mix-
ture is characterized by a repulsive boson-boson interac-
tion with scattering length aBB ≃ 5.3nm and a magneti-
cally tunable boson-fermion interaction parametrized by
the scattering length aBF . Both the observation of an
induced collapse of the mixture for large negative values
of aBF and of phase separation for large positive values
of aBF have been reported.

From the theoretical point of view these experimental
findings can be understood using a mean-field approach.
The conditions of stability of a Bose-Fermi mixture in
uniform systems at T = 0 have been investigated by
Viverit, Pethick and Smith (2000). Depending on the
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sign of aBF different scenarios can apply.
If aBF < 0, the only relevant condition is determined

by mechanical stability, i.e. by the requirement that the
energy of the mixture must increase for small fluctua-
tions in the density of the two components. Starting
from a mean-field energy functional, which includes to
lowest order the interaction effects between bosons and
between fermions and bosons, the linear stability require-
ment fixes an upper limit on the fermionic density nF

irrespective of the value nB of the bosonic density

n
1/3
F |aBF | ≤

(

4π

3

)1/3
aBB

|aBF |
mB/mF

(1 +mB/mF )2
, (130)

where mB and mF denote, respectively, the masses of
bosons and fermions and aBB is assumed to be positive
to ensure the stability of the configurations where only
bosons are present. If nF exceeds the upper bound (130)
the system collapses.

If instead aBF > 0, the uniform mixture can become
unstable against phase separation into a mixed phase
and a purely fermionic one. While the fermionic density
can not in any case violate the condition (130), yet for
each value of nF there exists a critical bosonic density
nc

B(nF ) above which the system phase separates. The
function nc

B(nF ) is nontrivial and for a given pair of den-
sities (nF and nB) one has to check whether the phase
separated configuration is in equilibrium and is energet-
ically favourable compared to the uniform mixture. For
vanishingly small bosonic densities nB, the relevant con-
dition for nF coincides with (130). It is worth noticing
that the repulsive aBF scenario describes the mixtures of
fermions and composite bosons in the deep BEC regime
considered in Sec. IXA.

In the presence of harmonic trapping the conditions for
the collapse and for the phase separation change. The
density profiles of the two components have been investi-
gated by Mølmer (1998) using the same mean-field energy
functional described above in the local density approxi-
mation. The results are consistent with the scenario of
a collapsed state if aBF is large and negative and of a
phase separated state (a core of bosons surrounded by
a shell of fermions) in the opposite regime of large and
positive aBF . These two scenarios are in agreement with
the features observed in 40K-87Rb mixtures (Ospelkaus
et al., 2006b; Zaccanti et al., 2006; Modugno, 2007).

The collective oscillations in harmonically trapped
Bose-Fermi mixtures have also been the object of a
considerable number of theoretical investigations (see,
e.g., the recent work by Maruyama and Bertsch, 2007,
and references therein). In particular, the monopole
(Maruyama, Yabu and Suzuki, 2005) and the dipole
mode (Maruyama and Bertsch, 2007) have been studied
at zero temperature using a dynamic approach based on
the solution of a coupled system of time-dependent equa-
tions: the Gross-Pitaevskii equation for the bosons and
the collisionless Vlasov equation for the fermions. These
studies point out the existence of a characteristic damp-

ing in the motion of the fermionic component affecting
both types of oscillations.

An important aspect of Bose-Fermi mixtures concerns
the boson-induced interactions experienced by the other-
wise non-interacting fermionic atoms. The physical ori-
gin of the induced interactions is the polarization of the
bosonic medium which acts as an effective potential be-
tween the fermions. The density-density response func-
tion of the bosons is the relevant quantity to describe this
effect and the induced interaction is thus frequency and
wavevector dependent. At low frequencies and long wave-
lenghts it is always attractive, irrespective of the sign of
aBF , is independent of the density of bosons and repro-
duces the mechanism of instability discussed in the para-
graph after Eq. (130) (Bijlsma, Heringa and Stoof, 2000;
Viverit, Pethick and Smith, 2000). The physical picture
is similar to the effective attraction between 3He atoms
in solution in superfluid 4He (Edwards et al., 1965) and
to the most famous phonon-induced attraction between
electrons in ordinary superconductors (see, for example,
de Gennes, 1989).

An additional major interest of exploiting heteronu-
clear Feshbach resonances (including the Fermi-Fermi
mixtures considered in Sec. IXD) is the possibility of
creating polar molecules characterized by long-range
anisotropic interactions which are expected to have a pro-
found impact on the many-body physics (Baranov et al.,
2002). Furthermore, the creation of such heteronuclear
molecules in optical lattices (Ospelkaus et al., 2006c)
might lead to important applications in quantum infor-
mation processing (Micheli, Brennen and Zoller, 2006).

X. FERMI GASES IN OPTICAL LATTICES

The availability of optical lattices has opened new fron-
tiers of research in the physics of ultracold atomic gases
(for a recent review, see Morsch and Oberthaler, 2006,
and Bloch, Dalibard and Zwerger, 2007). In the case of
Fermi gases the problem is closely related to the physics
of electrons in metals or semiconductors. However, op-
tical lattices differ favorably from traditional crystals in
many important aspects. The period of the optical lattice
is macroscopically large, which simplifies the experimen-
tal observation. The lattice can be switched off, and its
intensity can be tuned at wish. Atoms, differently from
electrons, are neutral and furthermore their interaction is
tunable thanks to the existence of Feshbach resonances.
The lattices are static and practically perfect, being free
of defects. Disorder can be added in a controllable way by
including random components in the optical field. Lastly,
it is easy to produce one- and two-dimensional structures.

An atom in a monochromatic electric field feels a time
averaged potential proportional to the square of the field
amplitude (see, e.g., Pethick and Smith, 2002; Pitaevskii
and Stringari 2003). It is useful to work sufficiently close
to the frequency ω0 of the absorption line of an atom,
where the force on the atom becomes strong. The atoms
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are pulled into the strong-field region for ω < ω0 (“red
detuning”) and pushed out of it for ω > ω0 (“blue de-
tuning”).

One-dimensional periodic potentials can be produced
by a standing light wave. In this case, the potential en-
ergy is conveniently written as Vopt (z) = sER sin2 (Kz),
whereK is the wavevector of the laser, ER = ~

2K2/2m is
the “recoil energy” and s is the dimensionless parameter
proportional to the laser field intensity. Typical values
of s in experiments range from 1 to 20. The potential
has a period d = λ/2 = π/K, where λ is the wavelength
of the laser. If the two counterpropagating laser beams
interfere under an angle θ less than 180o the period is
increased by the factor sin(θ/2)−1. By using three mutu-
ally orthogonal laser beams one can generate a potential
of the form

Vopt (r) = sER

[

sin2 (Kx) + sin2 (Ky) + sin2 (Kz)
]

.
(131)

Notice that in experiments atoms are trapped by ad-
ditional confining potentials, in most cases of harmonic
form. To preserve the effective periodicity of the problem
the harmonic potential should vary slowly with respect
to the period of the lattice. This demands the condition
ER ≫ ~ωho, which is easily satisfied in experiments.

A. Ideal Fermi gases in optical lattices

1. Fermi surface and momentum distribution

An advantage of experiments with cold fermions is the
possibility of realizing a non-interacting gas by creating a
spin-polarized configuration. As explained in Sec. III A,
the interaction between fermionic atoms with parallel
spins is in fact negligible.

The quantum mechanical description of the motion of
a particle in a periodic external field was developed by
Bloch (Bloch, 1928). In 1D the wavefunctions have the
Bloch form ψqzn(z) = exp(iqzz)uqzn(z) and are classified
in terms of the quasi-momentum pz ≡ ~qz, while n is

FIG. 32: Time-of-flight images obtained after adiabatically
ramping down the optical lattice. Image (a) is obtained with
Nσ = 3500 and s = 5ER. Images (b)-(e) are obtained with
Nσ = 15000 and correspond to s = 5ER (b), s = 6ER (c),
s = 8ER (d) and s = 12ER (e). The images show the optical
density (OD) integrated along the vertically oriented z axis
after 9 ms of ballistic expansion. From Köhl et al. (2005).

a discrete number labelling the Bloch band. The values
of the wavevector qz differing by the reciprocal lattice
vector 2K are physically equivalent and it is therefore
enough to restrict the values of qz to the first Brillouin
zone: −K < qz < K. The function uqzn(z) is a periodic
function of z with period d. The formalism is straightfor-
wardly generalized to 3D lattices where the eigenstates
of the Hamiltonian with the potential (131) are prod-
ucts of wavefunctions of the Bloch form along the three
directions and are hence classified in terms of the 3D
quasi-momentum p. In a Fermi gas at zero temperaure
all the states with excitation energy ǫ(p) = E(p)−E(0)
are occupied up to values such that ǫ(p) = EF , where
EF is the Fermi energy. The corresponding values of p

characterize the Fermi surface.
Experimentally one can measure the momentum distri-

bution of these non-interacting configurations by imag-
ing the atomic cloud after release from the trapping po-
tential. In fact, the spatial distribution n(r) of a non-
interacting expanding gas reproduces asymptotically the
initial momentum distribution n(p) according to the law
n(r, t) → (m/t)3n(p = mr/t).

In order to have access to the quasi-momentum distri-
bution a practical procedure consists of switching off the
lattice potential in an adiabatic way so that each state
in the lowest energy band with quasi-momentum p is
adiabatically transformed into a state with momentum
p. The condition of adiabaticity requires that the lattice
potential be switched off in times longer than the inverse
of the energy gap between the first and second band.

The Bloch problem can be solved analytically in the
tight binding approximation, holding for large lattice
heights. For a 3D cubic lattice one finds the result
(p = ~q)

ǫp = 2δ
[

sin2(qxd/2) + sin2(qyd/2) + sin2(qzd/2)
]

(132)

for the dispersion law of the single-particle excita-
tions in the lowest band. The band width 2δ de-
creases exponentially for large s according to δ =
8ERs

3/4 exp(−2
√
s)/

√
π (Zwerger, 2003), and is in-

versely proportional to the tunneling rate through the
barriers. The energy gap between the first and second
band coincides with the energy splitting ~ωopt = 2

√
sER

between the states in the harmonic potential produced
by the optical potential (131) around each local mini-
mum. When p → 0, Eq. (132) takes the simple form
ǫp = p2/2m∗, the effective mass being related to the
band width by the relation m∗ = ~

2/δd2. The explicit
dependence of m∗ on s, including the case of small laser
intensities, was calculated by Krämer et al. (2003).

The dispersion law (132) results from the removal of
the degeneracy between the lowest energy states of each
well produced by the interwell tunneling. This means
that the number of levels in the band is equal to the
number of the lattice cells. Then, if one works within
the first Bloch band, the maximum achievable density is
nmax

σ = 1/d3.
The inclusion of harmonic trapping can be accounted
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for by introducing the semiclassical distribution function
which, at zero temperature, takes the form f (p, r) =
Θ [EF −H (p, r)] where EF is the Fermi energy. In the
above equation p is the quasi-momentum variable and
H = ǫp + Vho(r), with ǫp given by (132). Starting from
the distribution function, one can evaluate the quasi-
momentum (qm) distribution by integrating over r:

n(qm)(p) =

√
2

3π2~3

(

EF − ǫp
mω2

ho

)3/2

Θ (EF − ǫp) , (133)

where ωho ≪ ωopt is the usual geometrical average of
the harmonic frequencies of the potential Vho(r) and p is
restricted to the first Brillouin zone.

If the Fermi energy is much smaller than the band
width 2δ, one can expand the dispersion law up to terms
quadratic in p. In this case one recovers the same
Thomas-Fermi form (10) holding for the momentum dis-
tribution in the absence of the optical potential, the only
difference being the presence of an effective-mass term
which renormalizes the trapping frequencies. In the op-
posite regime EF ≫ 2δ, but still EF < ~ωopt, the quasi-
momentum distribution becomes flat within the first Bril-
louin zone, giving rise to a characteristic cubic shape for
the Fermi surface. In this limit we find

EF =

(

3π2

32

)2/3
(~ωho)

2

ER
N2/3

σ . (134)

The experimental investigation of the Fermi surface in a
3D optical lattice was carried out by Köhl et al. (2005),
who observed the transition from the spherical to the cu-
bic shape by increasing the intensity of the laser generat-
ing the optical lattice (see Fig. 32). For s = 12 [panel (e)
in the figure], corresponding to δ ∼ 10 nK, the values of
the relevant parameters were ER = 348 nK, ~ωho = 2π~

191 Hz=9.2 nK and Nσ = 15000, so that the conditions
~ωopt ≫ EF ≫ 2δ, needed to reach the cubic shape for
the Fermi surface, were well satisfied in this experiment.

In the same limit EF ≫ 2δ the coarse-grained density
distribution takes the constant value nmax

σ = 1/d3 within
the ellipsoid fixed by the radii (i = x, y, z)

Ri =

(

3

4π

)1/3

N1/3
σ d

ωho

ωi
. (135)

where d is the periodicity of the laser field. The constant
value of the density reflects the insulating nature of the
system.

2. Bloch oscillations

Atomic gases confined by optical lattices are well suited
to study Bloch oscillations (these oscillations are difficult
to observe in natural crystals because of the scattering
of electrons by the lattice defects). Let us consider a
1D optical lattice in the presence of a gravitational field

Vext = −mgz oriented along the direction of the lat-
tice. The dynamics of atoms in the lowest band can be
described in the semiclassical approximation using the
effective single-particle Hamiltonian

H (p, r) =
p2
⊥

2m
+ ǫpz

+ Vext (r) . (136)

The Hamilton equation dpz/dt = −∂H/∂z then yields
the obvious solution pz = mgt. In this problem it is con-
venient not to restrict pz to the first Brillouin zone, but
to allow pz to take also larger values. Then all the ob-
servable physical quantities must be periodic functions
of pz with period 2K~. From the time dependence of pz

it follows that these quantities oscillate in time with the
frequency ωB = mgd/~. The periodicity of these Bloch
oscillations is ensured by the periodicity of the optical
lattice and the theory is applicable if ωB ≪ ωopt.

Bloch oscillations have been observed in Bose gases
both above (Ben Dahan et al., 1996; Cladé et al., 2006;
Ferrari et al., 2006) and below (Anderson and Kasevich,
1998; Morsch et al., 2001) the critical temperature for
Bose-Einstein condensation. A general limitation in the
study of Bloch oscillations with bosons is due to instabil-
ities and damping effects produced by the interactions.
Precise measurements have been recently achieved in a
dense BEC gas of 39K, near a Feshbach resonance which
permits to tune the scattering length to vanishing values
(Roati et al., 2007).

The use of polarized fermions permits to work with
relatively dense gases because of the absence of s-wave
collisions. In the experiment of Roati et al. (2004) a
Fermi gas of 40K atoms was initially confined in a har-
monic trap so that the external potential takes the form
Vext(r) = Vho(r) − mgz. The quasi-momentum distri-
bution is obtained by integrating the T = 0 distribution
function in all the variables except pz:

n(qm)(pz) ∝ (EF − ǫpz
)5/2 Θ(EF − ǫpz

) . (137)

As long as EF is smaller than 2δ the quasi-momentum
distribution is localized in a narrow region around pz = 0,
while the contrast deteriorates for larger values of EF .

At t = 0 the vertical harmonic confinement is sud-
denly switched off and the atoms evolve in the presence
of the lattice and gravitational potentials. At the ini-
tial time the quasi-momentum distribution is centered
at pz = 0. It will later move according to the law
n(qm) (pz, t) = n(qm) (pz −mgt). When the cloud reaches
the edge of the Brillouin zone K, it reappears on the
opposite side and the quasi-momentum distribution ac-
quires a two-peak character. At t = 2π/ωB it regains its
initial shape.

After a given evolution time the lattice potential is
adiabatically switched off in order to transfer the quasi-
momentum distribution into the momentum one. The
cloud is then imaged after a given time of free expan-
sion. In this experiment it was possible to observe about
100 Bloch periods. The high precision achievable in the
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measurement of Bloch frequencies opens new perspec-
tives in sensitive measurements of weak forces, like the
Casimir-Polder force between atoms and a solid substrate
(Carusotto et al., 2005).

3. Center of mass oscillation

In addition to Bloch oscillations it is also interesting
to study the consequence of the lattice on the oscillations
of the gas occurring in coordinate space. In this Section
we focus on the dipole oscillation which can be excited
by a sudden shift of the confining harmonic trap. Ac-
cording to Kohn’s theorem the dipole oscillation in the
absence of the lattice has no damping and its frequency
is equal to the trap frequency. In a superfluid these os-
cillations exist also in the presence of the lattice thanks
to the coherent tunneling of atoms through the barriers
separating consecutive wells. The main consequence of
the lattice is a renormalization of the collective frequency
determined by the effective mass of the superfluid. These
oscillations have already been observed in Bose-Einstein
condensates (Cataliotti et al., 2001) and are expected to
occur also in Fermi superfluids (Pitaevskii, Stringari and
Orso, 2005).

The behavior of a non-interacting Fermi gas is very
different (Pezzè et al., 2004). To understand the origin of
the differences let us consider the simplest case of a one-
dimensional Fermi gas characterized by the dispersion
law ǫpz

= 2δ sin2 (pzd/2~) and trapped by the harmonic
potential mω2

zz
2/2. Atoms with energy smaller than 2δ

can perform closed orbits in the z−pz phase plane. These
atoms oscillate around the center of the trap. Vice-versa,
atoms with energy higher than 2δ perform open orbits,
being unable to fully transfer the potential energy into

FIG. 33: Dipole oscillations of a Fermi gas of 40K atoms at
T = 0.3 TF in the presence (solid symbols and solid line) and
in the absence (open symbols and dashed line) of a lattice
with height s = 3. The lines correspond to the theoreti-
cal predictions and the symbols to the experimental results.
The horizontal dot-dashed line represents the trap minimum.
From Pezzé et al. (2004).

the Bloch energy ǫpz
. They consequently perform small

oscillations in space, remaining localized on one side of
the harmonic potential. As a consequence if EF > 2δ
the cloud no longer oscillates around the new center of
the trap but is trapped out of the center and performes
small oscillations around an offset point, reflecting the
insulating nature of the system.

In order to investigate a three-dimensional case, one
can use the semiclassical collisionless kinetic equation
for the distribution function with the Hamiltonian (136).
The results of the calculations show that, if EF > 2δ,
also in 3D the cloud is not able to oscillate around the
new equilibrium position, but exhibits damped oscilla-
tions around an offset point, similarly to the 1D case.
The damping is due to the fact that different atoms os-
cillate with different frequencies as a consequence of the
non harmonic nature of the Hamiltonian. These phenom-
ena were investigated experimentally using a Fermi gas
of 40K atoms (Pezzè et al., 2004). In Fig. 33 we show
the observed time dependence of the z-coordinate of the
cloud at T = 0.3 TF , both without and in the presence of
the lattice. One clearly sees the offset of the oscillations
as well as their damping.

4. Anti-bunching effect in the correlation function

The discussion has so far concerned one-body proper-
ties of the gas, like the momentum distribution and the
density profiles. An interesting feature exhibited by spin-
polarized Fermi gases is the occurrence of anti-bunching
effects in the two-body correlation function [see discus-
sion on g↑↑(r) in Sec. V B2]. This suppression of the
probability of finding two atoms within short distances
is a direct consequence of the Pauli exclusion principle.

In a recent experiment (Rom et al., 2006) the density

FIG. 34: Density correlation function C(d) measured after
expansion as a function of the distance d = |z − z′| in a
Fermi gas of 40K atoms released from an optical lattice. The
difference C(d) − 1 of the correlation function with respect
to its uncorrelated value shows a clear evidence of the anti-
bunching effect at d = ℓ ≡ 2~Kt/m. From Rom et al. (2006).
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correlation function 〈n (z, t)n (z′, t)〉 of a Fermi gas was
measured after expansion from an optical lattice. The
average is taken on different runs of the experiment and
the distributions are integrated along the x, y directions.
The density correlation function, measured at large ex-
pansion times, is proportional to the momentum corre-
lation function 〈n(p = mz/t)n(p′ = mz′/t)〉. Due to the
periodicity of the Bloch function uqzn(z) an atom with
quasi-momentum p = ~q carries momenta with values
~(q+ 2jK) for all integers j. As a consequence the same
atom can be found at the points z = ~ (q + 2jK) t/m.
Since the Pauli principle does not allow two fermions
to occupy the same Bloch state, the correlation func-
tion 〈n (z, t)n (z′, t)〉 should vanish for relative distances
which are integer multiples of 2~Kt/m.

In the experiment of Rom et al. (2006) 40K atoms
were confined at T/TF ≈ 0.23 in a 3D optical trap. In
the conditions of the experiment the atoms filled the first
energy band. The key experimental results are presented
in Fig. 34, where the anti-bunching effect is visible at
|z − z′| = ℓ ≡ 2~Kt/m. Notice that at short relative
distances |z − z′| = 0 the anti-bunching effect is masked
by the positive contribution of the autocorrelation term
to the density correlation function (68).

B. Interacting fermions in optical lattices

The study of interacting Fermi gases in optical lattices
is expected to become a growing field of research. The
problem has been so far approached theoretically using
two different perspectives.

In a first approach one starts from the two-body Hamil-
tonian where interaction effects are accounted for in
terms of a single parameter, the s-wave scattering length
a. More microscopic details of the interatomic poten-
tial are unimportant provided that the lattice period is
much larger than the effective range |R∗| of the interac-
tion. The resulting many-body theories are in most cases
well suited to treat the superfluid phase of the system,
but have not so far extensively developed to investigate
other states, like the Mott insulator or the antiferromag-
netic phase. Basic applications of this approach concern
the study of the dimer formation (see next Section) and
the calculation of the BCS critical temperature (Orso and
Shlyapnikov, 2005).

A second approach is based on the development of
more phenomenological models, like the Hubbard model,
extensively employed in solid state physics. The Hubbard
model is well suited to study the novel phases emerging in
the presence of the optical lattice, like the Mott insulator
and the antiferromagnetic phases (Werner et al., 2005).
Key questions are the identification of the parameters
of the model in terms of the microscopic ingredients of
the problem (the s-wave scatttering length and the inten-
sity of the periodic potential) and its applicability under
extreme conditions, for example at unitarity, where the
scattering length is much larger than the period of the

lattice.
A separate class of problems finally concerns the

physics of low dimensional systems, in particular of 1D
systems, which can be experimentally produced using op-
tical lattices and will be discussed in the next Section.

From the experimental point of view first important re-
sults on the role of interaction have concerned the dimer
formation in 3D tight lattices (Stöferle et al., 2006) and
the superfluid to Mott-insulator transition (Chin et al.,
2006).

1. Dimer formation in periodic potentials

In this Section we discuss how the formation of a dimer
is perturbed by the presence of a periodic potential. The
problem is non trival because, differently from free space
or harmonic trapping, the two-body problem can not be
simply solved by separating the relative and center of
mass coordinates in the Schrödinger equation. In partic-
ular, the center of mass motion affects the binding energy
of the molecule.

The problem of calculating the binding energy for ar-
bitrary laser intensities of 1D lattices was solved by Orso
et al. (2005) (the limit of tight lattices was previously
considered by Fedichev, Bijlsma and Zoller, 2004). Dif-
ferently from free space, where dimers are created only for
positive values of the scattering length, in the presence of
the periodic potential bound dimers exist also for nega-
tive values of the scattering length, starting from a criti-
cal value acr < 0. When the laser intensity becomes very
large the dimer enters a quasi-2D regime. In this limit

FIG. 35: Binding energy of molecules measured with 40K
atoms in a 3D optical lattice. The data correspond to dif-
ferent intensities of the optical lattice: s = 6ER (triangles),
s = 10ER (stars), s = 15ER (circles) and s = 22ER (squares).
The solid line corresponds to Eq. (138) with no free parame-
ters. At the position of the Feshbach resonance (a → ±∞) the
binding energy takes the value ǫb = −~ωopt. From Stöferle et

al. (2006).
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the two interacting atoms are localized at the bottom
of the same optical well where, in first approximation,
the potential is harmonic with frequency ωopt. Then the
two-body problem can be solved analytically yielding, in
particular, the value ǫb = −0.244 ~ωopt = −0.488

√
sER

at unitarity (Petrov, Holzmann and Shlyapnikov, 2000;
Idziaszek and Calarco, 2006).

The formation of dimers affects dramatically also the
tunneling of particles through the barriers produced by
the optical lattice, particularly the effective mass M∗

which is defined through the dispersion law E(pz) of a
molecule as 1/M∗ = [∂2E(pz)/∂p

2
z]pz=0. As a result the

effective mass M∗ of the dimer is significantly larger than
the value 2m∗ where m∗ is the effective mass of a single
atom in the presence of the same lattice potential (see
Sec. XA). The difference is caused by the exponential de-
pendence of the tunneling rate on the mass of a tunneling
particle. Near the threshold for the molecular formation
M∗ approaches the non-interacting value 2m∗.

Let us now discuss the case of a 3D lattice potential
of the form (131). We restrict the analysis to a lattice of
high intensity s. In this case the atomic pair is confined
near one of the minima of the lattice, where the potential
can be considered harmonic and isotropic with frequency
ωopt and the two-body problem can be solved analytically
(Bush et al., 1998). A bound state is found for any value
of the scattering length, the binding energy being given
by the solution of the equation

√
2

Γ (−ǫb/2~ωopt)

Γ (−ǫb/2~ωopt − 1/2)
=
aopt

a
, (138)

where Γ is the Gamma function and aopt =
√

~/mωopt.
The resulting predictions are shown in Fig. 35. For small
and positive scattering lengths (a ≪ aopt) Eq. (138)
yields the binding energy ǫb = −~

2/ma2 relative to free
space, while at unitarity one finds the result ǫb = −~ωopt.

The formation of molecules driven by the presence of
the lattice was observed in the experiment of Stöferle
et al. (2006), where the lattice was formed by three
orthogonal standing waves and the binding energy was
measured by radio-frequency spectroscopy. The radio-
frequency pulse dissociates dimers and transfers atoms in
a different hyperfine state which does not exhibit a Fes-
hbach resonance. Therefore the fragments after dissocia-
tion are essentially non-interacting. The results are pre-
sented in Fig. 35 for different values of s and show good
agreement with theory. In particular, one can clearly
see the existence of bound states for negative values of a
which would be impossible in the absence of the lattice.

2. Hubbard model

The Hubbard model (Hubbard, 1963) provides a useful
description for atoms in the lowest band of tight lattices.

In the simplest version the Hamiltonian has the form:

Ĥ = −t
∑

(i,j)

(

ĉ†i↑ĉj↑ + ĉ†i↓ĉj↓

)

+ U
∑

i

n̂i↑n̂i↓ , (139)

where the indices i and j run over the Na sites of the
cubic lattice and correspond to first neighbor sites. The

operators ĉ†iσ (ĉiσ) are the usual creation (annihilation)
operators of particles with spin σ =↑, ↓ on the site i, while

n̂iσ = ĉ†iσ ĉiσ is the corresponding number operator. The
term in the Hamiltonian (139) containing the parame-
ter t (hopping term) describes the tunneling of atoms
between sites and plays the role of the kinetic energy op-
erator. If U = 0 this term gives rise to the dispersion law
(132) with δ = 2t. The parameter U describes instead
the interaction between atoms and can have both posi-
tive and negative sign. Physically this term corresponds
to the energy shift produced by the interaction when two
atoms of opposite spin are localized in one of the lat-
tice sites. The perturbative calculation of the shift using
the pseudopotential (15) yields U = (4π~

2a/m)
∫

dr|ψ0|4
where ψ0 is the ground-state wavefunction of an atom in
the individual potential well. In the harmonic approxi-
mation for the local optical potential, holding for large

laser intensities, one finds U =
√

8
πERs

3/4Ka. The use

of perturbation theory is justified if the shift is small
compared to the optical oscillator energy |U | ≪ ~ωopt,
or equivalently if |a| ≪ aopt. This condition is equivalent
to the requirment that the energy U is small compared
to the gap between first and second band. For higher
values of U the applicability of the Hubbard model (139)
is questionable since in this case the Hamiltonian should
account also for higher bands.

At zero temperature the model is characterized by two
parameters: the ratio u = U/t between the interaction
and the hopping coefficients and the average occupancy
ρ = N/Na, which in the first band picture should be
smaller or equal to 2 due to Fermi statistics. The phase
diagram predicted by the Hubbard model is very rich,
including the superfluid, the Mott insulator and the an-
tiferromagnetic phases. It is also worth noticing that in
the strong coupling limit the Hubbard model is equiva-
lent to the Heisenberg model (see, for example, Bloch,
Dalibard and Zwerger, 2007). The detailed discussion of
the various phases available in interacting Fermi gases
trapped by a periodic potential lies outside the scope of
this work and we refer to the recent reviews by Georges
(2007) and Lewenstein et al. (2007).

XI. 1D FERMI GAS

The physical properties of 1D Fermi gases differ in
many interesting aspects from the ones of their 3D coun-
terparts.

In practice, to create a one-dimensional gas, atoms
must be confined in a highly elongated harmonic trap,
where the anisotropy parameter λ = ωz/ω⊥ is so small
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that the transverse motion is “frozen” to the zero point
oscillation. At zero temperature this condition implies
that the Fermi energy associated with the longitudinal
motion of the atoms, EF = N~ωz/2, is much smaller
than the separation between the levels in the trans-
verse direction, EF ≪ ~ω⊥. This condition requires
λ ≪ 1/N . Such a configuration can be realized using
a two-dimensional optical lattice formed by two perpen-
dicular standing-wave laser fields. If the intensity of the
beams is large enough, the tunneling between the minima
of the lattice is absent and the atoms, confined in differ-
ent minima, form an array of independent tubes. In the
experiment by Moritz et al. (2005), the typical number
of particles per tube is less than 100, while λ ≃ 0.004,
thereby ensuring a reasonably safe 1D condition in each
tube.

A. Confinement Induced Resonance

At low energy the scattering process between two
fermions with opposite spin colliding in a tightly confined
waveguide (ωz = 0) can be described by the effective 1D
interaction potential

V1D(z) = g1Dδ(z) , (140)

where the coupling constant g1D is expressed in terms of
the 3D scattering length a and of the transverse oscillator

FIG. 36: (color online). Molecular binding energy measured
with 40K in 1D [solid (black) symbols] and in 3D [open (blue)
symbols] configurations. The lower (black) line corresponds to
the theoretical prediction of Bergeman, Moore and Olshanii
(2003) without free parameters. The upper (blue) line corre-
sponds to the law −~

2/ma2 + finite-range corrections. The
vertical dashed (blue) line represents the position of the Fes-
hbach resonance. From Moritz et al. (2005).

length a⊥ =
√

~/mω⊥ (Olshanii, 1998)

g1D =
2~

2a

ma2
⊥

1

1 − Ca/a⊥
. (141)

Here, C = −ζ(1/2)/
√

2 ≃ 1.0326, with ζ(x) denoting the
Riemann zeta function. The condition of validity for the
effective 1D interaction (140)-(141) is provided by

kza⊥ ≪ 1 , (142)

where kz is the longitudinal relative wavevector of the
colliding atoms. The coupling constant g1D is reso-
nantly enhanced for a → acir = a⊥/C, corresponding
to the so called confinement induced resonance (CIR),
while it remains finite at the position of the 3D res-
onance (a → ±∞) where it takes the negative value
g1D = −2~

2/(Cma⊥). Positive values of g1D, cor-
responding to an effective 1D repulsive potential, are
obtained only in the interval 0 < a < acir. Other-
wise g1D < 0, corresponding to an effective attraction.
If |a| ≪ a⊥, the coupling constant takes the limiting
form g1D = 2~

2a/(ma2
⊥), which coincides with the re-

sult of mean-field theory where the 3D coupling con-
stant g = 4π~

2a/m is averaged over the harmonic oscil-
lator ground state in the transverse direction (see, e.g.,
Pitaevskii and Stringari, 2003, Chap. 17).

In the region where g1D is negative, two atoms can
form a bound state. The wavefunction of the relative mo-
tion is obtained by solving the 1D Schrödinger equation
with the potential (140) and is given by ψ(z) =

√
κe−κ|z|,

where κ =
√−mǫb/~. For the binding energy ǫb one finds

the result

ǫb = − m

4~2
g2
1D , (143)

yielding κ = (m/2~
2) |g1D|. Notice that ǫb is the energy

of a dimer relative to the non-interacting ground-state
energy ~ω⊥. The 1D result (143) for the binding energy
is valid under the condition κa⊥ ≪ 1, or equivalently
|ǫb| ≪ ~ω⊥. The general problem of calculating ǫb in
a tightly confined waveguide has been solved by Berge-
man, Moore and Olshanii (2003) using the pseudopoten-
tial (15). A molecular bound state exists for any value of
the scattering length a. Its energy approaches the free-
space result −~

2/ma2 for a > 0 and a≪ a⊥, and the 1D
result (143) if a < 0 and |a| ≪ a⊥. At the Feshbach res-
onance, 1/a = 0, these authors find the universal result
ǫb ≃ −0.6~ω⊥.

These molecular bound states have been observed with
40K in the experiment by Moritz et al. (2005), where the
binding energy ǫb was measured using radio-frequency
spectroscopy. In Fig. 36 we show the experimental results
obtained in highly elongated traps compared with the
quasi-1D theoretical predictions of Bergeman, Moore and
Olshanii (2003) (see also Dickerscheid and Stoof, 2005).
The corresponding results for the molecular binding en-
ergy in 3D configurations are also reported in the figure,
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explicitly showing the existence of confinement induced
molecules in the region of negative scattering lengths.

The three- and four-body problems concerning the
atom-dimer and the dimer-dimer scattering in quasi-1D
configurations has been solved by Mora et al. (2004,
2005) using techniques similar to the 3D calculation by
Petrov, Salomon and Shlyapnikov (2004) discussed in
Sec. III C. In particular, one finds that the scatter-
ing process between 1D dimers with energy (143) can
be described by the contact potential of the form (140)
with the same atom-atom coupling constant g1D. Since
g1D < 0, the interaction between these dimers is attrac-
tive. Notice, however, that the fermionic nature of the
atoms prohibits the formation of bound states with more
than two particles.

B. Exact theory of the 1D Fermi gas

We consider a two-component Fermi gas with equal
populations of the spin states (N↑ = N↓ = N/2) con-
fined in a tight waveguide of length L. At zero tempera-
ture and in the absence of interactions, all single-particle
states within the “Fermi line” −kF < k < kF are occu-
pied. The Fermi wavevector

kF =
π

2
n1D (144)

is fixed by the linear density n1D = N/L and the corre-
sponding Fermi energy is given by EF = (π~n1D)2/8m.
The condition (142), allowing for the use of the effec-
tive 1D interaction (140)-(141), implies the requirement
n1Da⊥ ≪ 1. In this case the many-body problem is com-
pletely determined by the Hamiltonian

H1D = − ~
2

2m

N
∑

i=1

d2

dz2
i

+ g1D

N↑
∑

i=1

N↓
∑

i′=1

δ (zi − zi′) , (145)

which contains only one dimensionless parameter

γ =
mg1D

~2n1D
. (146)

Correspondingly the ground-state energy per atom can
be written in the form

E

N
=

~
2n2

1D

2m
e (γ) , (147)

in terms of the dimensionless function e(γ), and analo-
gously for the chemical potential µ = d(n1DE/N)/dn1D.
From Eq. (146) one notices that the weak-coupling
regime (|γ| ≪ 1) corresponds to high densities n1D, while
the strong-coupling regime (|γ| ≫ 1) is achieved at low
densities. This is a peculiar feature of 1D configurations,
resulting from the different density dependence of the
ratio of kinetic to interaction energy in 1D (∝ n1D) com-
pared to 3D (∝ n−1/3).

The ground-state energy of the Hamiltonian (145) has
been calculated exactly using Bethe’s ansatz both for re-
pulsive, g1D > 0 (Yang, 1967), and attractive, g1D < 0
(Gaudin, 1967 and 1983), interactions. Some limiting
cases of the equation of state at T = 0 are worth dis-
cussing in detail. In the weak-coupling limit, |γ| ≪ 1,
one finds the perturbative expansion

µ = EF (1 +
4γ

π2
+ ...) , (148)

where the first correction to the Fermi energy EF car-
ries the same sign of γ. The above expansion is the 1D
analogue of Eq. (32) holding in 3D. In the limit of strong
repulsion, γ ≫ 1, one instead finds (Recati et al., 2003b)

µ = 4EF

(

1 − 16 ln 2

3γ
+ ...

)

. (149)

The lowest order term in the above expansion coin-
cides with the Fermi energy of a single component non-
interacting gas with a twice larger density (Nσ = N),
consistently with the expectation that the strong atom-
atom repulsion between atoms with different spins plays
the role in 1D of an effective Pauli principle.

The regime of strong attraction, |γ| ≫ 1 with γ < 0, is
particularly interesting. In this case one finds the follow-
ing expansion for the chemical potential (Astrakharchik
et al., 2004b)

µ =
ǫb
2

+
EF

4

(

1 − 4

3γ
+ ...

)

, (150)

where ǫb is the binding energy (143) of a dimer. Ac-
cording to the discussion at the end of Sec. XI A, in
this regime the system is a gas of strongly attractive
bosonic dimers. A crucial point is that the formation of
bound states of these composite bosons is inhibited by the
fermionic nature of the constituent atoms. In Eq. (150)
the leading term EF /4, beyond the molecular binding en-
ergy ǫb, coincides with half the chemical potential of a gas
of impenetrable bosons (Tonks-Girardeau gas) with den-
sity n1D/2 and mass 2m. This peculiar behavior is an ex-
ample of the exact mapping between bosons and fermions
exhibited by 1D configurations (Girardeau, 1960). The
consequences of the “Fermi-Bose duality” in 1D, includ-
ing the regimes of intermediate coupling and for both
s-wave and p-wave scattering, have been investigated in
a series of papers (Cheon and Shigehara, 1999; Granger
and Blume, 2004; Girardeau, Nguyen and Olshanii, 2004;
Girardeau and Olshanii, 2004; Mora et al., 2005).

The strongly interacting regime, |γ| ≫ 1, can be
achieved by tuning the effective coupling constant g1D.
As in the experiment by Moritz et al. (2005) on 1D
molecules, one makes use of a Feshbach resonance to
tune the scattering lenth in the region around the value
acir corresponding to the confinement induced resonance
where γ = ±∞ [see Eq. (141)]. This resonance con-
nects a BCS-like weakly attractive regime (γ negative
and small), corresponding to weakly bound pairs with
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energy (143) and size κ−1 >> n−1
1D, to a BEC-like regime

(γ positive and small) of tightly bound bosonic molecules
with energies of order ~ω⊥ and size much smaller than
the average distance between dimers. These dimers are
expected to behave as a 1D gas of bosons interacting with
a repulsive contact potential (Mora et al., 2005). How-
ever, these tightly bound dimers can not be described by
the Hamiltonian (145) which, if g1D > 0, only describes
the repulsive atomic branch. The occurrence of such a
BCS-BEC crossover in 1D was first suggested by Tokatly
(2004) and by Fuchs, Recati and Zwerger (2004).

The properties at T = 0 of the 1D Fermi gas with
short-range interactions are considerably different from
the ones of usual 3D Fermi liquids. Actually, this gas is
an example of a Luttinger liquid (Luttinger, 1963). The
low-energy properties of this liquid are universal and do
not depend on the details of the interaction, on the spe-
cific Hamiltonian (lattice or continuum models) nor on
the statistics of the atoms (Haldane, 1981). The only
requirement is the existence of long-wavelength gapless
excitations with linear dispersion. The Luttinger effec-
tive Hamiltonian is expressed in terms of the compress-
ibility and of the velocity of propagation of these gapless
excitations. For a review on the properties of Luttinger
liquids see, e.g., Voit (1995) and Giamarchi (2004).

Hydrodynamic sound waves (phonons) are predicted
by the Hamiltonian (145). They propagate with the ve-
locity c determined by the compressibility through the
general relation mc2 = n1Ddµ/dn1D. In this case, the
knowledge of the equation of state allows for an exact
determination of the effective Luttinger parameters (Re-
cati et al., 2003a). If γ > 0, c is larger than the Fermi
velocity vF = π~n1D/2m. For example, in the case of
strong repulsion (γ ≫ 1) the speed of sound takes the
limiting value c = 2vF (1 − 4 ln 2/γ). For small values
of γ the sound velocity tends to vF , while for γ < 0 it
becomes smaller than the Fermi velocity. The inverse
compressibility mc2, however, remains positive indicat-
ing the stability of the gas even in the strongly attractive
regime where one finds c = vF /2. This is in sharp con-
trast with the behavior of a 1D Bose gas with attractive
contact interactions, where the ground state is a soliton-
like many-body bound state (McGuire, 1964).

The presence of phonons in a Luttinger liquid af-
fects dramatically the long-range behavior of the cor-
relation functions, fixed by the dimensionless parameter
η = 2~kF /mc (Luther and Peschel, 1974; Haldane, 1981).
For example, the one-body density matrix behaves, for
|z − z′| ≫ 1/n1D, as

〈

Ψ†
σ (z)Ψσ (z′)

〉

∝ n1D sin (πn1D |z − z′|)
(n1D |z − z′|)

1

η
+ η

4

. (151)

For a non-interacting gas η = 2 and the one-body density
matrix decays as sin (πn1D|z − z′|) /|z− z′|. This behav-
ior reflects the presence of the jump from 1 to 0 in the mo-
mentum distribution at the Fermi surface k = ±kF . In
the presence of interaction the correlation function (151)

decreases faster. This implies that the jump at kF disap-
pears and the momentum distribution close to the Fermi
surface behaves as nk − nkF

∝ sign(kF − k)|kF − k|β ,
with β = 1

η + η
4 − 1 > 0.

The Hamiltonian (145) supports also spin waves to-
gether with sound waves. For γ > 0 these spin excitations
also have a linear dispersion at small wavevectors. Their
velocity of propagation cs tends to vF for small values of
γ, but for finite interaction strengths it is different from
the speed of sound c. In the strongly repulsive regime
one finds the small velocity cs = vFπ

2/γ, to be compared
with the corresponding sound velocity c = 2vF discussed
above. This “spin-charge separation” is a peculiar fea-
ture of Luttinger liquids. The possibility of observing
this phenomenon in ultracold gases has been investigated
by Recati et al. (2003a). In the case of attractive interac-
tions, γ < 0, the spin-wave spectrum exhibits a gap ∆gap

(Luther and Emery, 1974). This “spin-gap” is defined ac-
cording to Eq. (30) and is therefore analogous to the pair-
ing gap in 3D Fermi superfluids. In the weak-coupling
limit |γ| ≪ 1, the gap is exponentially small being pro-

portional to
√

|γ| exp
(

−π2/2|γ|
)

(Bychkov, Gorkov and
Dzyaloshinskii, 1966; Krivnov and Ovchinnikov, 1975).

So far we have considered uniform systems. In experi-
ments the gas is confined in the longitudinal z-direction
by a harmonic potential. If the average distance between
particles is much smaller than the longitudinal oscillator
length, 1/n1D ≪ az =

√

~/mωz (requiring small enough
values of the trapping frequency ωz), one can use the lo-
cal density approximation to calculate the properties of
the trapped system (Astrakharchik et al., 2004b). The
density profile and the Thomas-Fermi radius can be ob-
tained as a function of the interaction strength from the
solution of Eq. (72). One can also calculate the frequency
of the lowest compression mode using the hydrodynamic
theory of superfluids of Sec. VII C. Since µ ∝ n2

1D both
in the weak- and strong-coupling limit, independent of
the sign of interactions [see Eqs. (149) and (150)], the
frequency of the mode tends to 2ωz in these limits. The
study of the breathing-mode frequency for intermediate
couplings has been carried out by Astrakharchik et al.

(2004b).

Another interesting application of the local density ap-
proximation to trapped 1D configurations is provided by
the study of spin polarized systems (Orso, 2007). The
ground-state energy of the Hamiltonian (145) can be
calculated exactly also with unequal spin populations
N↑ 6= N↓ (Yang, 1967; Gaudin, 1967). In the case of
attractive interactions, g1D < 0, the T = 0 phase dia-
gram always consists of a single phase corresponding to:
i) a fully paired state with a gap in the spin excitation
spectrum if N↑ = N↓, ii) a non-interacting fully polarized
state if N↓ = 0 and iii) a gapless partially polarized state
if N↑ > N↓ (Oelkers et al., 2006; Guan et al., 2007).
This latter state is expected to be a superfluid of the
FFLO type (Yang, 2001). In harmonic traps spin un-
balanced configurations result in a two-shell structure: a
partially polarized phase in the central region of the trap
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and either a fully paired or a fully polarized phase in the
external region depending on the value of the polariza-
tion (Orso, 2007). This structure is in sharp contrast
with the behavior in 3D configurations, where the unpo-
larized superfluid phase occupies the center of the trap
and is surrounded by two shells of partially polarized and
fully polarized normal phases (see Sec. IXC). One can
understand this behavior by noticing that the larger den-
sities occurring in the center of the trap correspond in 1D
to a weak-coupling regime and, consequently, pairing ef-
fects are smaller in the central than in the external region
of the trap. The opposite situation takes place instead
in 3D configurations.

XII. CONCLUSIONS AND PERSPECTIVES

In this review we have discussed some relevant fea-
tures exhibited by atomic Fermi gases from a theoreti-
cal perspective. The discussion has pointed out a gen-
eral good agreement between theory and experiment, re-
vealing that the basic physics underlying these quantum
systems is now reasonably well understood. The most
important message emerging from these studies is that,
despite their diluteness, the role of interactions in these
quantum gases is highly non trivial, revealing the dif-
ferent facets of Fermi superfluidity in conditions that are
now accessible and controllable experimentally. The pos-
sibility of tuning the value and even the sign of the scat-
tering length is actually the key novelty of these sys-
tems with respect to other Fermi superfluids available in
condensed matter physics. The long sought BCS-BEC
crossover, bringing the system into a high Tc superfluid
regime where the critical temperature is of the order of
the Fermi temperature, can be now systematically inves-
tigated and many theoretical approaches are available to
explore the different physical properties. The situation is
particularly well understood at zero temperature where
important properties of these Fermi gases in harmonic
traps, like the equilibrium density profiles, the values
of the release energy and of the collective frequencies,
can be calculated in an accurate way using the equation
of state of uniform matter available through Quantum
Monte Carlo simulations and employing the local den-
sity approximation. Other important features that can
be now considered reasonably well understood theoret-
ically and confirmed experimentally are the momentum
distribution along the crossover, the collisional processes
between pairs of fermions on the BEC side of the reso-
nance and the basic properties of Fermi gases in optical
lattices such as Bloch oscillations, the structure of the
Fermi surface and the binding of molecules. In general
the most interesting regime emerging from both the the-
oretical and experimental investigations is the unitary
limit of infinite scattering length, where the dilute gas
becomes strongly correlated in conditions of remarkable
stability. In this regime there are no length scales related
to interactions entering the problem, which consequently

exhibits a universal behavior of high interdisciplinary in-
terest.

Many important issues remain nevertheless to be ad-
dressed or to be explored in a deeper and systematic way.
A brief list is presented below:

- Thermodynamics. More theoretical work needs to
be done to determine the transition temperature along
the crossover and the thermodynamic functions below
and above Tc. Very little is known about the tempera-
ture dependence of the superfluid density (Taylor et al.,
2006; Akkineni, Ceperley and Trivedi, 2006; Fukushima
et al., 2007) and its role on physically observable quan-
tities like, for example, the propagation of second sound
(Taylor and Griffin, 2005; Heiselberg, 2006; He et al.,
2007). Another open question remains the identification
of a good thermometry in these ultracold systems, where
the experimental value of the temperature is often sub-
ject to large uncertainties.

- Collective modes and expansion. The transition
from the hydrodynamic to the collisionless regime on the
BCS side of the resonance and the consequences of the
superfluid transition on the frequencies and the damping
of the collective oscillations, as well as on the behavior
of the aspect ratio during the expansion, still requires a
clear understanding. This problem raises the question of
the inclusion of mesoscopic effects in the theoretical de-
scription which become important when the pairing gap
is of the order of the harmonic oscillator energy. Also
the question of the transition at finite temperature be-
tween the hydrodynamic and the collisionless regime in
the normal phase near resonance requires more theoreti-
cal and experimental work. Another important question
is the temperature dependence of the viscosity of the gas,
which is in principle measurable through the damping of
the collective modes. The problem is particularly inter-
esting at unitarity where a universal behavior is expected
to occur (Son, 2007).

- Diabatic transformation of the scattering

length. The experimental information on the conden-
sation of pairs (Regal, Greiner and Jin, 2004b; Zwier-
lein et al., 2004) and on the structure of vortices (Zwier-
lein et al., 2005b) along the crossover is so far based on
the measurement of the density profiles following the fast
ramping of the scattering length before expansion. The
theoretical understanding of the corresponding process
is only partial and requires more systematic investiga-
tions through the implementation of a time-dependent
description of the many-body problem.

- Coherence in Fermi superfluids. Although
the experimental measurement of quantized vortices has
proven the superfluid nature of these ultracold gases,
coherence effects have not yet been explored in an ex-
haustive way. For example, the implications of the order
parameter on the modulation of the diagonal one-body
density in interference experiments remain to be stud-
ied. Other relevant topics are the interference effects in
the two-body correlation function (Carusotto and Castin,
2005) and the Josephson currents (Spuntarelli, Pieri and
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Strinati, 2007).
- Rotational properties. The physics of interact-

ing Fermi gases under rotation in harmonic traps is a
relatively unexplored subject of research, both in the ab-
sence and in the presence of quantized vortices. Ques-
tions like the difference between the superfluid and the
collisional hydrodynamic behavior in rotating configura-
tions, the Tkachenko modes of the vortex lattice (Watan-
abe, Cozzini and Stringari, 2007) and the nature of the
phase diagram of the rotating gas at high angular veloc-
ity are topics requiring both theoretical and experimental
investigation.

- Spin imbalanced Fermi gases. This subject of re-
search has attracted a significant amount of work in the
last few years. Many important questions still remain
open, like the nature of the superfluid phases caused by
the polarization at zero and at finite temperature in the
different regimes along the crossover. Recent experiments
have also raised the question of the role of surface ten-
sion effects at the interface between the normal and the
superfluid component (De Silva and Mueller, 2006b; Par-
tridge et al., 2006b) and of correlation effects in the spin
polarized normal phase (Schunck et al., 2007)

- Fermi-Fermi and Fermi-Bose mixtures. A grow-
ing activity, both on the experimental and on the theoret-
ical side, is expected to characterize future studies of mix-
tures of different atomic species. The quantum phases of
Fermi-Bose mixtures in optical lattices (Albus, Illumi-
nati and Eisert, 2003; Lewenstein et al., 2004; Günter et

al., 2006), the formation of dipolar gases (Ospelkaus et

al., 2006c; Modugno, 2007) and the superfluid behavior
of Fermi-Fermi mixtures of different atomic masses are
important topics for future research.

- RF transitions. RF transitions provide valuable
information on the gap parameter and on pairing effects
in interacting Fermi gases (Chin et al., 2004; Shin et al.,
2007). The proper inclusion of final-state interactions in
the calculation of the spectral response is a crucial ingre-
dient to make the analysis of the experimental findings
conclusive on a quantitive basis.

- Quantum impurities. The investigation of the mo-
tion of impurities added to a trapped quantum gas can
open interesting possibilities for the determination of the
viscosity coefficients and for the study of the Landau cri-
terion of superfluidity.

- Phase transitions in optical lattices. The recent
experiments on the superfluid to Mott-insulator phase
transition (Chin et al., 2006) have already stimulated first
theoretical work involving the use of a multi-band Hub-
bard model (Zhai and Ho, 2007). An important issue is
the behavior of the transition at unitarity where the scat-
tering length is much larger than the lattice spacing of
the optical potential. Further important topics concern

the study of the various magnetic phases, which can be
implemented by playing with the geometry and the di-
mensionality of the lattice, as well as the role of disorder
(Lewenstein et al., 2007).

- p-wave superfluidity. The recent experiment by
Gaebler et al. (2007) on the production and detection of
molecules in a single-component 40K gas using a p-wave
Feshbach resonance and the measurement of the binding
energy and lifetime of these p-wave molecules opens new
exciting possibilities of realizing p-wave superfluids with
ultracold gases. First theoretical investigations of the
many-body properties of these systems as a function of
the interaction strength predict a much richer phase dia-
gram compared to s-wave superfluids, including quantum
and topological phase transitions (Gurarie, Radzihovsky
and Andreev, 2005; Cheng and Yip, 2005; Iskin and Sá
de Melo, 2006a; Gurarie and Radzihovsky, 2007).

- Low-dimensional configurations. Two- and one-
dimensional configurations of ultracold gases can be eas-
ily produced in laboratories. The experiment by Moritz
et al. (2005) on 1D molecules provides the first exam-
ple of a low-dimensional arrangement combined with the
use of a Feshbach resonance. Many interesting features
are expected to take place when the scattering length
becomes larger than the characteristic length of the con-
finement. The properties of the BCS-BEC crossover in
2D and in 1D as well as the physics of Luttinger liquids
in 1D can be addressed by further investigations.
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[-] Hadzibabic Z., P. Krüger, M. Cheneau, B. Battelier and
J. Dalibard, 2006, Nature 441, 1118.

[-] Hagley E.W., L. Deng, M. Kozuma, J. Wen, K. Helmerson,
S.L. Rolston and W.D. Phillips, 1999, Science 283, 1706.

[-] Haldane F.D.M., 1981, Phys. Rev. Lett. 47, 1840.
[-] Haque M. and H.T.C. Stoof, 2006, Phys. Rev. A 74,

011602.
[-] Haque M. and H.T.C. Stoof, 2007, Phys. Rev. Lett. 98,

260406.
[-] Haussmann R., 1993, Z. Phys. B 91, 291.
[-] Haussmann R., 1994, Phys. Rev. B 49, 12975.
[-] Haussmann R., W. Rantner, S. Cerrito and W. Zwerger,

2006, preprint, cond-mat/0608282.
[-] He Y., Q.J. Chen and K. Levin, 2005, Phys. Rev. A 72,

011602.
[-] He Y., Q.J. Chen, C.-C. Chien and K. Levin, 2007,

preprint, cond-mat/0704.1889.
[-] Hechenblaikner O.M., E. Hodby, S.A. Hopkins, G. Maragò
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Esslinger, 2005, Phys. Rev. Lett. 94, 210401.
[-] Morsch O., J.H. Müller, M. Cristiani, D. Ciampini and E.

Arimondo, 2001, Phys. Rev. Lett. 87, 140402.
[-] Morsch O. and M. Oberthaler, 2006, Rev. Mod. Phys. 78,

179.
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