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Nonmetricity formulation of general relativity and its scalar-tensor extension
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Einstein’s celebrated theory of gravitation can be presented in three forms: general relativity,
teleparallel gravity, and the rarely considered before symmetric teleparallel gravity. Extending
the latter, we introduce a new class of theories where a scalar field is coupled nonminimally to
nonmetricity Q, which here encodes the gravitational effects like curvature R in general relativity or
torsion T in teleparallel gravity. We point out the similarities and differences with analogous scalar-
curvature and scalar-torsion theories by discussing the field equations, role of connection, conformal
transformations, relation to f(Q) theory, and cosmology. The equations for spatially flat universe
coincide with those of teleparallel dark energy, thus allowing to explain accelerating expansion.

I. INTRODUCTION

General relativity (GR) assumes Levi-Civita connec-
tion and hence implies zero torsion and nonmetricity. GR
has a well researched alternative formulation known as
teleparallel equivalent of general relativity (TEGR) [1]
which instead utilizes Weitzenböck connection and elic-
its vanishing curvature and nonmetricity. However, there
exists also a third possibility, to adopt a connection with
vanishing curvature and torsion, which provides a ba-
sis for yet another equivalent formulation of GR, the so-
called symmetric teleparallel equivalent of general rela-
tivity (STEGR) [2], hardly ever studied in the literature
[3–5]. Instead of curvature R, or torsion T , it relies on
the nonmetricity Q to describe the effects of gravity.

Although TEGR is considered to be completely equiv-
alent to GR, some features make it appealing to study,
e.g., the gauge theory structure, possibility to separate
inertial and gravitational effects, etc. [1]. However, inter-
est in this formulation only surged some years ago when
it was realized that extensions of TEGR, like f(T ) and
scalar-torsion gravity differ from their f(R) and scalar-
curvature counterparts which extend general relativity [6,
7]. Suddenly a completely unexplored new alley opened
up for researchers to address the puzzles of dark energy,
inflation, etc., resulting in a lot of activity (see Ref. [8]).
A confusion concerning the local Lorentz invariance has
just been recently overcome by stressing the covariant
formulation [9] and deriving the appropriate equation for
the connection [10–13].

While STEGR also promises a set of nice features [2,
14], its extensions potentially offer yet another totally un-
charted territory to map and study. The first pioneering
works have just appeared looking at f(Q) theories [15]
and higher derivative generalizations [16]. In this pa-
per we propose an extension of STEGR by introducing
a scalar field that is nonminimally coupled to the non-
metricity scalar Q. Our setup resembles the generic forms
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of scalar-curvature [17–19] and scalar-torsion [20, 21] the-
ories, where the scalar field is coupled to the curvature
and torsion scalar, respectively. Nonminimal couplings
arise naturally when quantum effects for a minimal scalar
are considered in GR [22], and are utilized in, e.g., the
Higgs inflation [23].

Let us clarify from the outset that STEGR differs from
typical metric-affine theories of gravity [24, 25] where
GR is extended by allowing connection to possess be-
sides curvature also torsion and nonmetricity, whereby
one usually needs specific types or properties of matter
to excite and probe such additional geometric structures
[26–32]. By imposing vanishing curvature and torsion, in
STEGR the GR gravitational action is rewritten in terms
of nonmetricity, and all gravitational effects that are at-
tributed to curvature in GR, now equivalently stem from
nonmetricity. Therefore in STEGR the matter content
can remain unaltered, for in analogy to the Einstein’s
equations it is the usual matter energy-momentum that
is the source of nonmetricity. In our construction novel
features appear when a scalar field is nonminimally cou-
pled.

We begin in Sec. II with a basic introduction to the key
geometric notions and establish the equivalence of general
relativity to teleparallel and symmetric teleparallel theo-
ries. Next in Sec. III we postulate the action, derive the
field equations and comment their main features. Then
in Sec. IV we probe the conformal transformations and
also show how f(Q) theories fit into the picture. Finally,
Sec. V briefly look at the cosmological equations for spa-
tially flat spacetime, and Sec. VI concludes the paper.

II. CONNECTIONS, GEOMETRIES, AND

GRAVITATIONAL THEORIES

A. Decomposition of affine connection

On metric-affine spacetimes the metric gµν encodes
distances and angles, while the connection Γλ

σρ inde-
pendently defines parallel transport and covariant deriva-
tives, e.g.,

∇µT λ
ν = ∂µT λ

ν + Γλ
µαT α

ν − Γα
µνT λ

α . (1)
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As known from differential geometry (see, e.g., [25, 33]),
generic affine connection can be decomposed into three
parts,

Γλ
µν =

{

λ
µν

}

+Kλ
µν + Lλ

µν , (2)

viz., the Levi-Civita connection of the metric gµν ,

{

λ
µν

}

≡ 1

2
gλβ (∂µgβν + ∂νgβµ − ∂βgµν) , (3)

contortion

Kλ
µν ≡ 1

2
gλβ (Tµβν + Tνβµ + Tβµν) = −Kνµ

λ , (4)

and disformation

Lλ
µν ≡ 1

2
gλβ (−Qµβν −Qνβµ +Qβµν) = Lλ

νµ . (5)

The last two quantities are defined via torsion

T λ
µν ≡ Γλ

µν − Γλ
νµ (6)

and nonmetricity

Qρµν ≡ ∇ρgµν = ∂ρgµν − Γβ
ρµgβν − Γβ

ρνgµβ . (7)

Note that torsion, nonmetricity, as well as curvature

Rσ
ρµν ≡ ∂µΓ

σ
νρ−∂νΓ

σ
µρ+Γα

νρΓ
σ
µα−Γα

µρΓ
σ
να (8)

are strictly speaking all properties of the connection. By
making assumptions about the connection we restrict the
generic metric-affine geometry, see Fig. 1. Taking non-
metricity to vanish gives Riemann-Cartan geometry, tak-
ing curvature to vanish gives teleparallel geometry (since
the parallel transport of vectors becomes independent of
the path), while taking torsion to vanish is just known
as torsion free geometry. We can also impose double
conditions on the connection. Vanishing torsion and non-
metricity leaves us with Levi-Civita (LC) connection and
Riemann geometry. Assuming nonmetricity and curva-
ture to be zero is the premise of Weitzenböck (W) con-
nection. Keeping torsion and curvature to zero means
symmetric teleparallel (STP) connection and geometry.
Finally, setting all three to zero yields Minkowski space.
To denote a situation where a particular property is im-
posed on the connection, and consequently on the covari-
ant derivative, curvature, etc., we use overset labels, e.g.,
STP

Γλ
µν ,

W

∇µ,
LC

Rσ
ρµν .

B. Three equivalent formulations of Einstein’s

gravity

In order to define a theory of gravity we need to fix
the underlying geometry as well as the quantity standing
in the action. In laying the grounds for GR Einstein
chose Levi-Civita connection, and since nonmetricity and
torsion vanish, it remains the task of curvature to encode

Riemann-Cartan
Qρµν=0

torsion free
Tλ

µν=0

teleparallel

Rσ
ρµν=0

Riemann
LC

Qρµν=0,
LC

Tλ
µν=0

Weitzenböck
W

Qρµν=0,

W

Rσ
ρµν=0

symmetric
teleparallel
STP

Rσ
ρµν=0,

STP

Tλ
µν=0

Minkowski

FIG. 1. Subclasses of metric-affine geometry, depending on
the properties of connection.

gravitational dynamics. A suitably constructed invariant
quantity of curvature, the curvature scalar,

R ≡ gνρRµ
ρµν , (9)

together with the Levi-Civita provision establishes the
Lagrangian for the theory. Both ingredients are im-
portant, since giving the action with the curvature
scalar, but making only the assumption of vanishing
nonmetricity (allowing both nontrivial curvature and
torsion) gives a different theory with extra features, Ein-
stein–Cartan–Sciama–Kibble gravity [34, 35].

It is remarkable that an alternative set of assumptions
can yield a theory equivalent to GR. To witness it, let
us first rewrite the generic curvature tensor (8) as (c.f.
[1, 36])

Rσ
ρµν =

LC

Rσ
ρµν +

LC

∇µM
σ
νρ −

LC

∇νM
σ
µρ

+Mα
νρM

σ
µα −Mα

µρM
σ
να , (10)

where we used the decomposition (2) to separate the
Levi-Civita terms from the contortion and disformation
contributions, collectively denoted as

Mλ
µν = Kλ

µν + Lλ
µν . (11)

Now contracting the curvature tensor (10) to form the
curvature scalar (9) yields

R =
LC

R+Mα
νρM

µ
µαg

νρ −Mα
µρM

µ
ναg

νρ

+
LC

∇µ

(

Mµ
νρg

νρ −Mν
νρg

µρ
)

. (12)

It is obvious, that if we restrict the geometry to have
vanishing torsion and nonmetricity, the curvature scalar
(12) is simply

R =
LC

R . (13)
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This is the case of general relativity.
If we instead choose to work in the setting of Weitzen-

böck connection whereby the curvature and the non-
metricity are zero, then Eq. (12) yields

LC

R = −
W

T − 2
LC

∇α

W

Tα . (14)

Here we introduced the torsion scalar, defined in principle
for arbitrary connection as

T ≡ 1

4
TαβγT

αβγ +
1

2
TαβγT

γβα − TαT
α , (15)

and the one independent contraction of the torsion ten-
sor,

Tµ ≡ Tα
µα = −Tα

αµ . (16)

The Weitzenböck torsion scalar in Eq. (14) differs from
the GR curvature scalar by a total divergence term.
Therefore a theory where the action is set by the torsion
scalar (15), restricted to Weitzenböck connection, should
give equivalent field equations to GR. This is indeed the
case, known as teleparallel equivalent of general relativity
[1].

A third possibility, hardly explored before, is to impose
vanishing curvature and torsion, which is the case of sym-

metric teleparallel connection. Plugging
STP

Rσ
ρµν = 0 and

Mλ
µν =

STP

Lλ
µν into (12) now yields

LC

R =
STP

Q−
LC

∇α(
STP

Qα −
STP

Q̃α) . (17)

Here the nonmetricity scalar is defined for arbitrary con-
nection as

Q = −1

4
QαβγQ

αβγ +
1

2
QαβγQ

γβα +
1

4
QαQ

α − 1

2
QαQ̃

α ,

(18)
while the nonmetricity tensor is endowed with two inde-
pendent contractions,

Qµ ≡ Q α
µ α , Q̃µ ≡ Q αµ

α . (19)

As the action constructed with the nonmetricity scalar
(18), restricted to symmetric teleparallel connection,
would differ from the GR action only by a total di-
vergence term, and the latter does not contribute to
the equations of motion, we get another formulation
of Einstein’s gravity, symmetric teleparallel equivalent
of general relativity [2–5, 14, 15]. All three equivalent
formulations are summarized by Fig. 2.

III. SCALAR-NONMETRICITY THEORY

A. Action

Let us take the metric gµν , the connection Γλ
σρ, and

the scalar field Φ as independent variables and consider
the action functional

S =
1

2

∫

d4x
√
−g (Lg + Lℓ) + Sm , (20)

LGR ∼
LC

RLGR ∼
LC

R

LTEGR ∼ −
W

TLTEGR ∼ −
W

T LSTEGR ∼
STP

QLSTEGR ∼
STP

Q

Eq. (14) Eq. (17)

FIG. 2. Triple equivalence of gravitational theories: general
relativity (GR) based on Levi-Civita connection with vanish-
ing nonmetricity and torsion, teleparallel equivalent of gen-
eral relativity (TEGR) based on Weitzenböck connection with
vanishing nonmetricity and curvature, and symmetric telepar-
allel equivalent of general relativity (STEGR) based on con-
nection with vanishing curvature and torsion.

with gravitational Lagrangian

Lg = A(Φ)Q − B(Φ)gαβ∂αΦ∂βΦ− 2V(Φ) (21)

and Lagrange multipliers terms

Lℓ = 2λ βαγ
µ R

µ
βαγ + 2λ αβ

µ T
µ
αβ , (22)

while Sm = Sm [gµν , χ] denotes the action of matter fields
χ which are not directly coupled to the scalar field Φ.

In analogy with the scalar-curvature [18, 19] and
scalar-torsion [13, 21] theories, A(Φ), B(Φ) and V(Φ) are
functions. The nonmetricity scalar Q is given by (18). In
the case when A = 1 and B = V = 0 the theory reduces
to plain STEGR. The Lagrange multipliers, assumed to
respect the antisymmetries of the associated geometrical

objects, i.e., λ βαγ
µ = λ

β[αγ]
µ and λ αβ

µ = λ
[αβ]
µ , impose

vanishing curvature R
µ
βαγ = 0 and torsion T

µ
αβ = 0, as

expected in the symmetric teleparallel framework.

B. Field equations for metric and scalar field

Varying the action (20) with respect to the metric, and
keeping in mind that the connection is flat and torsion-
free, yields

Tµν =
2√−g

STP

∇α

(√
−gA

STP

Pα
µν

)

− 1

2
gµνA

STP

Q

+A
(

STP

Pµαβ

STP

Q αβ
ν − 2

STP

Qαβµ

STP

Pαβ
ν

)

+

+
1

2
gµν

(

Bgαβ∂αΦ∂βΦ+ 2V
)

− B∂µΦ∂νΦ , (23)

where we introduced the nonmetricity conjugate (or su-
perpotential) [15]

STP

Pα
µν ≡ −1

2

STP

Lα
µν +

1

4

(

STP

Qα −
STP

Q̃α

)

gµν

− 1

8

(

δαµ
STP

Qν + δαν
STP

Qµ

)

, (24)
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which satisfies
STP

Q =
STP

Q µν
α

STP

Pα
µν . The usual matter energy-

momentum tensor,

Tµν ≡ − 2√−g

δSm [gσρ, χ]

δgµν
, (25)

acts as a source to gravity which is described by non-
metricity. Note that for minimal coupling, A = 1, the
two first lines of (23) are in fact Einstein’s equations of
GR, since we can write

LC

Rµν − 1

2
gµν

LC

R =
2√−g

STP

∇α

(√
−g

STP

Pα
µν

)

− 1

2
gµν

STP

Q

+
STP

Pµαβ

STP

Q αβ
ν − 2

STP

Qαβµ

STP

Pαβ
ν (26)

from Eq. (10).
Variation with respect to the scalar field yields

2B
LC

∇α

LC

∇αΦ+ B′gαβ∂αΦ∂βΦ +A′
STP

Q− 2V ′ = 0 , (27)

where the primes mean derivative with respect to the
scalar field. Like in the scalar-curvature and scalar-
torsion case, the scalar field equation obtains a term
with the geometric invariant to which the scalar is non-

minimally coupled to, here the nonmetricity scalar
STP

Q. In

the scalar-curvature case the curvature scalar
LC

R contains
second derivatives of the metric and it is natural to seek
to “debraid” [37] the equations by substituting in the

trace of the metric field equations, thereby removing
LC

R
but introducing the trace of matter energy-momentum
in the scalar field equation [38]. In the nonmetricity
case the Eqs. (23) and (27) are already debraided. Ap-
parently, the role of matter as a source for the scalar
field in scalar-nonmetricity gravity, like in scalar-torsion
gravity [13], is more indirect than in scalar-curvature
gravity [18, 19].

C. Variation with respect to the connection

Variation of the action (20) with respect to connection
yields an equation containing Lagrange multipliers,

STP

∇γ

(√
−gλµ

βαγ
)

+
√
−gλµ

αβ =
√
−gA

STP

Pαβ
µ . (28)

Due to the vanishing curvature and torsion the covari-
ant derivatives commute, hence one can eliminate the
Lagrange multipliers, which are antisymmetric with re-
spect to their last indices, from (28) by acting on it with
STP

∇β

STP

∇α. This yields the following equations

STP

∇β

STP

∇α(
√
−gA

STP

Pαβ
µ) = 0 , (29)

which can be simplified further by using the equivalent

of Bianchi identity,
STP

∇β

STP

∇α(
√−g

STP

Pαβ
µ) = 0, to give

STP

∇β

{

∂αA
[

STP

∇µ(
√
−ggαβ)− δαµ

STP

∇γ(
√
−ggγβ)

]}

= 0 .

(30)

Thus, variation with respect to the connection gave us
four equations. These can be understood as follows. If
one demands curvature and torsion to vanish, then there
exists a particular coordinate system where all symmetric
teleparallel connection coefficients vanish [39, 40], a con-
figuration called coincident gauge [15]. Therefore generic
symmetric teleparallel connection in an arbitrary coordi-
nate system can be obtained by a coordinate transforma-
tion from the coincident gauge and represented as

STP

Γλ
µν =

∂xλ

∂ξα

(

∂

∂xµ

∂ξα

∂xν

)

, (31)

where ξα are some functions. The connection equations
(29) fix the four freedoms encoded by ξα, and guaran-
tee that the connection coefficients are consistent with
the chosen metric. In fact, if we had assumed from the
beginning that the connection is of the form (31), then
the variation of the action (20) with respect to ξα would
have given the same equations (29). These equations are
first order differential equations for the connection, and

second order for the Jacobian matrix ∂ξα

∂xν .
This state of affairs can be compared to the scalar-

torsion gravities with Weitzenböck connection. There
demanding vanishing nonmetricity and curvature is not
able to set the connection coefficients to zero in some co-
ordinate basis, but it is nevertheless possible in a nonco-
ordinate basis, i.e., in some frame. Generic Weitzenböck
connection is thus generated not by coordinate transfor-
mations but by local Lorentz transformations from this
frame [9]. Lorentz transformations have six independent
parameters, resulting in six freedoms in the connection,
which are then fixed by the six equations coming from
the variation of the action with respect to flat and non-
metricity free connection [10–13]. These equations are
first order for the connection, and second order for the
Lorentz matrix.

Finally, let us note that in the pure STEGR case with
A = 1 the equation (29) reduces to the Bianchi identity
and the symmetric teleparallel connection is not present
in the equations for the metric and (in this case) mini-
mally coupled scalar field. This is again like in the TEGR
case [1], whereby one may still entertain other types of
arguments to restrict the connection [41, 42].

D. Conservation of matter energy-momentum

Taking the the Levi-Civita covariant divergence of the
field equations (23), and using the scalar field equation
(27) as well as the connection equation (29) one can de-
rive the continuity equation for matter fields,

LC

∇αT α
µ = 0 . (32)

This equation also follows from the diffeomorphism in-
variance of the matter action [43].

We conclude that there are three independent equa-
tions out of (23), (27), (29), (32), quite in analogy with



5

the scalar-torsion case [13]. If one makes an ansatz for the
metric, connection, and the scalar field, one has to check
that the ansatz is consistent with this set of equations,
including the connection equation.

IV. FURTHER REMARKS

A. Conformal transformations

Contrary to the scalar-curvature case [18, 19] the ac-
tion (20) does not preserve its form under the local con-
formal rescaling of the metric. The nonmetricity scalar
transforms under the conformal transformation ḡµν =

eΩ(Φ)gµν as follows:

Q̄ = e−Ω
(

Q +
3

2
gαβ∂αΩ∂βΩ+ (Qα − Q̃α)∂αΩ

)

. (33)

The additional piece proportional to gαβ∂αΩ∂βΩ can be
absorbed into the redefinition of the kinetic term of the
scalar field, however the piece (Qα − Q̃α)∂αΩ does not
appear in the original action. The latter causes the ac-
tion (20) not to preserve its structure under conformal
transformations.

However, if we add a term (Qα − Q̃α)∂αA(Φ) to the
original Lagrangian (21), we obtain the equivalent to the
familiar scalar-curvature theory, which is covariant un-
der the conformal transformations and scalar field redef-
initions. Introducing this term, multiplied by a function
would give a theory which interpolates between scalar-
curvature and scalar-nonmetricity theories. This is simi-
lar to the case of scalar-torsion theories and their general-
izations [44–47], where one has to include the boundary
term relating the Ricci and torsion scalars in order to
obtain a conformally invariant action.

B. Scalar-nonmetricity equivalent of f(Q) theory

It is easy to show that f(Q) theories [15] where

Lg,f(Q) = f(Q) (34)

form a particular subclass of scalar-nonmetricity theo-
ries. Following the standard procedure used in scalar-
curvature [48–50] and scalar-torsion [51] cases, let us in-
troduce an auxiliary field Φ to write

Lg,aux = f ′(Φ)Q − (f ′(Φ)Φ− f(Φ)) . (35)

By varying the action (35) with respect to Φ yields
f ′′(Φ)(Φ − Q) = 0. Provided f ′′(Φ) 6= 0 this equation
implies Φ = Q and restores the original Lagrangian
(34). With identifications A(Φ) = f ′(Φ), 2V(Φ) =
f ′(Φ)Φ−f(Φ) this is identical to the scalar-nonmetricity
Lagrangian (21), where B(Φ) = 0. Note that contrary to
the f(R) case, which in the scalar-curvature representa-
tion enjoys a dynamical scalar field, the f(Q) as well as
f(T ) theory are mapped to a version with nondynamical
scalar.

V. EXAMPLE: FRIEDMANN COSMOLOGY

Let us consider the spatially flat line element

ds2 = −dt2 + a(t)2δijdx
idxj . (36)

We can try that the zero connection coefficients
STP

Γλ
µν = 0

satisfy the connection equation (30), and are thus con-
sistent with the metric (36). A direct calculation yields
STP

Q = −6H2, where H = ȧ
a

is the Hubble parameter and
the dot denotes the time derivative. The field equations
for perfect fluid matter read:

H2 =
1

3A
(

ρ+
1

2
BΦ̇2 + V

)

, (37)

2Ḣ + 3H2 =
1

A
(

−2A′HΦ̇− 1

2
BΦ̇2 + V − p

)

. (38)

Here ρ is the energy density and p is the pressure of the
fluid. Using the scalar field equation

BΦ̈ + (3BH +
1

2
Ḃ)Φ̇ + V ′ + 3A′H2 = 0 , (39)

one can verify that the continuity equation

ρ̇ = −3H(ρ+ p) (40)

is sustained.
It is interesting that these cosmological equations

match the corresponding equations in the scalar-torsion

counterpart, or teleparallel dark energy, where
STP

Q is re-

placed by −
W

T in the action (20) [20, 21]. Therefore like
scalar-curvature and scalar-torsion gravities, the scalar-
nonmetricity theory can be also used to explain the early
and late time accelerated expansion of the universe.
Moreover, following the result of the previous section,
we can further infer, that spatially flat cosmologies in
f(Q) and f(T ) theories are the same. To understand the
detailed mapping between the theories definitely calls for
further studies.

VI. CONCLUSION

It is remarkable that Einstein’s centennial theory of
gravity accepts three formulations: general relativity
based on curvature, teleparallel gravity based on tor-
sion, and symmetric teleparallel gravity based on non-
metricity. Especially the latter has very little known
about it. This work endeavors to explore the ground
by considering a generic setting where a scalar field is
nonminimally coupled to the nonmetricity scalar in the
symmetric teleparallel framework. We derived the field
equations, and discussed conformal transformation, rela-
tion to f(Q) theories, as well as cosmology, comparing
those with the corresponding results in scalar-curvature
and scalar-torsion theories. Just as in the latter two
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cases, the scalar-nonmetricity theory manages to explain
both early and late time accelerated expansion of the
universe.

A lot of research waits ahead, most obviously con-
structing solutions and clarifying their features, but also
understanding the relations between the theories estab-
lished in different geometric settings. It might be inter-
esting to consider more general extensions of symmet-
ric teleparallel gravity (in analogy to the recent works in
teleparallel gravity [12, 47, 52–54]), in order to survey the
landscape of consistent and observationally viable theo-
ries. A broader picture where alternative formulations
are taken into account, may well offer novel perspectives
and insights into the issues that grapple general relativ-
ity.
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