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Abstract
Many static analysis problems involve solving mathematical
data-flow equations over numerical abstract domains. Con-
vex polyhedra is one such abstract domain that is widely used
to precisely capture affine relationships among program vari-
ables. However, the majority of the analysis problems based
on convex polyhedral domains fail to scale for large problem
sizes due to the high-complexity/exponential nature of oper-
ations defined over them (such as Feasibility, Optimization).
The Unit-Two-Variable-Per-Inequality (UTVPI) Polyhedra
(also called Octagons) has been proven to be a very useful
abstract domain; due to its improved worst-case polynomial
time complexity, as well as ease of implementation.

In this paper, we present two new algorithms that compute
the tightest UTVPI Over-Approximation (OA) of a given
convex polyhedron by relying on elementary polyhedral
operations. Our algorithms improve over the OA algorithm
that is implemented in the state-of-the-art libraries.
Our first algorithm is based on linear programming (LP);

our second algorithm is based on Fourier-Motzkin elimina-
tion (projections) combined with only rotation operations.
Both algorithms exploit the Octagonal nature of the OA that
they aim to obtain; so, they are highly simple in nature (in
theory as well as implementation), simple to reason about
correctness and optimality, and also easy to implement. We
implemented our two algorithms in the Integer Set Library
(ISL), an open-source polyhedral compilation library.

Though our work is preliminary, we believe that our algo-
rithms will be useful in static analysis as well as polyhedral
compilation applications like iterative optimization, code-
generation, cache miss calculation, and transitive closure.

Keywords Static Analysis, Polyhedral Compilation, Poly-
hedral Approximations, Octagons, Abstract domains, Farkas’
lemma, Linear Programming, Fourier-Motzkin Elimination.
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1 Introduction and Motivation
Precise program analysis plays an important role in verifying
safety properties of a given input program as well as forming
a foundational basis in modern optimizing compilers. How-
ever, in order to accurately analyze a given input program,
it must be represented in a compact and mathematically
analyzable representation.
There exist many mathematical representations that can

be handy to statically model the dynamic behavior of the in-
put program. Convex polyhedra are one of the most powerful
abstractions that allow effective and exact representation of
programs where relationships among program variables are
affine. Since they are based on the extremely well understood
techniques of linear (rational) and integer linear program-
ming [Sch86], convex polyhedra are also well backed by
libraries like PIP [Fea88] and ISL [Ver10].

The polyhedral compilation framework based on (rational
and integer) convex polyhedra is well established as a formal
and a highly powerful means to automatically parallelize
Affine Control Loops (ACLs) of the input program [Fea92,
DRV00, BHRS08]. Even in automatic program analysis, like
abstract interpretation, convex polyhedra have been widely
used for verification of program properties [CC77, CH78].
While having the advantage of precision, the usage of

(rational and integer) convex polyhedra faces the scalabil-
ity limitation, when solving the static analysis problems for
millions of lines of code, or unrealistic compile-time when
finding schedules for large ACLs. One fundamental issue
behind this limitation is the worst-case high-complexity or
exponential-time algorithms for basic operations such as
solving Feasibility, Optimization, Fourier-Motzkin and Ver-
tex enumeration.

Over the years, many approaches have been proposed to
overcome this limitation by using approximations of polyhe-
dra as numerical abstract domains. These special abstract do-
mains have better complexity, or haveworst-case-polynomial-
time algorithms for solving feasibility and optimization prob-
lems. Some examples are Intervals [CC77], Unit-Two-Variables-
Per-Inequality (UTVPI) or Octagons [Min06], and Two-Variables-
Per-Inequality (TVPI) [SK10]. Thanks to their better com-
plexities, and aided by their closure properties, these abstract
domains have been shown to be effective to scale the abstract
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interpretation (and verification) problem(s) for millions of
lines of code [CCF+09], like in the Astrée analyzer.
Of all the above, Octagons have been extremely success-

ful [CCF+09]—having been found to have a wide-spread
usage because being a relational domain, having a unique
(and simple) graph-based representation, and supported by
libraries like Apron [BCC+03].

The steps involved behind application of program analysis
using any of the special case abstract domains are as follows:

1. Obtain a convex polyhedral representation of the input
program;

2. Use an Over-Approximation (OA) algorithm to convert
polyhedra into the specific abstract domain (OA so as
to ensure the soundness of the static analysis); and

3. Solve the static analysis problem by internally solv-
ing specialized combinatorial optimization algorithms
(that have better complexity measures).

The OA algorithm should satisfy the following properties:
• Return the tightest possible OA of a given convex poly-
hedron (if it exists).
• Should be efficient and easy to implement.

Our paper contributes to both the above properties in the
context of the Octagon abstract domain. More specifically,
we design two new OA algorithms to find the tightest (ra-
tional) Octagon (UTVPI) OA from a given arbitrary convex
polyhedron without enumerating its generators.
Our algorithms rely on the following key and simple in-

sights on Octagon polyhedra:
1. Octagons have just quadratic (and hence non-exponential)

number of Octagonal directions, and, they have a small
number of 1-dimensional faces (edges): namely, O(n2)
for an n-dimensional Octagon (refer Figure 1).
In 2-dimensions, the Octagonal directions are the or-
thogonal (canonical) directions i, j, and their ±45◦ ro-
tations (+i,+j) and (+i,−j).

2. Given a general polyhedron P , its width/fatness poly-
hedron Wv in a particular Octagonal direction v is
(nothing but!) an interval polyhedron with LB andUB
being the bounds (lower-bound/min/inf and upper-
bound/max/sup respectively); The scalar valueUB−LB
constitutes the fatness of P in the particular Octagonal
direction.

3. If P is a polyhedron and P ′ = OAUTVPI(P) is the tightest
Octagonal OA of P , then, P ′ can be described as the
intersection of the width/fatness polyhedra in each of
the Octagonal directions.
In 2-dimensions, there are just four width polyhedra
as shown in Figure 1:Wi ,Wj ,W+i,+j ,W+i,−j :

P ′ =Wi ∩Wj ∩W+i,+j ∩W+i,−j = OAUTVPI(P)

4. Finding the tightest octagonal OA reduces to the prob-
lem ofminimization of fatness in each of the Octagonal
directions.

Figure 1. A 2-d octagon and its four Octagonal directions.
Observe that octagonal directions within a pair (Blue or Red)
are orthogonal to each other. The oblique pair (in Red) must
be aligned with respect to the pair along the canonical axes
(shown in Blue) by 45◦ and vice versa.

Building from the above intuitions, our two algorithms
rely on using different techniques—Linear Programming (LP)
and Fourier-Motzkin (FM)—for the above mentioned fatness
minimization (#4 above) in each of the Octagonal directions.
More specifically,
• [Algorithm#1] We propose a Linear Programming
based algorithm for fatness minimization in each of
the Octagonal directions, with a simple cost function
encoding the same. The LP formulation is a result of a
particular application of the Farkas’ lemma.
• [Algorithm#2] We propose a Fourier-Motzkin elimi-
nation for fatness estimation along each of the Octago-
nal directions; in the orthogonal (canonical) directions,
it is a regular application of FM, while in the (oblique)
Octagonal directions, it is an application of FM after
rotating the polyhedron (or the axes) by ±45◦.

Contributions: We make the following contributions:
• Wepresent two new algorithms that Over-Approximate
an arbitrary convex polyhedron into a (rational) Oc-
tagon (formally termed as Unit-Two-Variable-Per-Inequality)
polyhedra by relying on elementary polyhedral oper-
ations and solely on its Hyperplane representation.
Our algorithms improve over the OA algorithm that
is implemented in the state-of-the-art libraries like
Apron [JM09].
• Our first algorithm is based on Linear Programming;
it relies on an application of the affine form of Farkas’
lemma and an objective function that encodes the
tightness measure. Our second algorithm is based on
Fourier-Motzkin (projections) and affine rotations.
• We do a thorough complexity analysis of our two
algorithms along with the one proposed earlier by
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Miné [Min06,Min04]. Our algorithms are implemented
in (version 0.18) of the ISL library [Ver10, UTV]. We
briefly enumerate applications of our algorithms from
program analysis and polyhedral compilation.

This paper is organized as follows: In Section 2, we discuss
the necessary background. In Section 3, we introduce our
Algorithm#1 which is based on a series of linear program-
ming calls. In Section 4, we discuss our Algorithm#2, which
is based on a series of Fourier-Motzkin eliminations and
rotations. In Section 5, we do a thorough complexity anal-
ysis of both the algorithms along with discussing various
perspectives. In Section 6, we discuss some related work. In
Section 7, we discuss some applications in polyhedral com-
pilation as well as static analysis. In Section 8, we discuss
our implementation details in the ISL library and finally, we
discuss some conclusions as well as future work.

2 Background
In this section, we formally describe some basic terminolo-
gies and background concepts. First we begin with some
basic terminolgies, then give a summary of the UTVPI-Over-
Approximation algorithm by Antoine Miné. Finally, we give
an overview of the setting of our algorithm.

2.1 Some basic terminology
Polyhedron: A Polyhedron is a space enclosed within an
n-dimensional vector-space which is bounded by finitely
many linear inequalities. Each linear inequality defines a
half-space; hence polyhedra can be thought of as intersection
of finitely many half-spaces.

Dual representations of Polyhedra: A Polyhedron in n-
dimensional space can be represented and described in two
alternative (dual) forms, and these representations are con-
sidered to be equivalent to each other.
• Hyperplane (H ) representation: A Polyhedron is ex-
pressed as an intersection of finitely many affine in-
equalities P = {x | Ax ≤ b}.
• Generator (V) representation: A Polyhedron is ex-
pressed as a convex combination of is its extremal
vertices, a conical combination of its rays and a linear
combination of its lines.
P =

{
x | x = V a + Rb + Lc;ai ≥ 0; Σvi=1ai = 1;bi ≥ 0

}
,

where V ’s columns denote the vertices, R’s columns
its rays and L’s columns its lines.

The classic algorithm by Chernikova [Che65] can be used to
convert either of these representations to the other. Among
others, the PolyLib [Ver92, Wil93], lrs [AF92], PPL [BHZ08],
and ISL [Ver10, GGS+17] libraries have an implementation
of this algorithm.

Interval (Box) Polyhedra: An Interval (or Box) polyhedron
is a special case of convex polyhedra, where every constraint
is restricted to the form: xi ≤ ci .

UTVPI (Octagon) andDBMPolyhedra: AUTVPI (Octagon)
polyhedron is a special case of polyhedra where every affine
constraint is restricted to the form: ±xi ± x j ≤ ci j . As the
name suggests, every constraint should involve at most two
variables and have coefficients to be one of the following
{+1, 0,−1}. A Difference Bound Matrix (DBM) polyhedron is
a special case of UTVPI polyhedron where every constraint
can only be of the form: +xi − x j ≤ ci j or ±xi ≤ ci j ; the
coefficients are of opposite signs, or one of them is zero. A
DBM can be represented in a compact matricial (and graph)
representation.

Monotonizing Transformation: Miné [Min06] proposed
a monotonizing PUTVPI −→ PDBM conversion that takes an
input UTVPI polyhedron PUTVPI and returns an equivalent
DBM polyhedron PDBM. When PUTVPI is a rational polyhe-
dron (PUTVPI ∈ Q), the conversion is exact.1 This conversion
is the key step for solving the tightening and closure proper-
ties on the input UTVPI polyhedra using graph algorithms
like Bellman-Ford and Floyd-Warshall [CSRL01].

Fatness of a polyhedron: The Fatness of a polyhedron P is
the difference between the upper and lower bounds of its
projection in a particular direction.

2.2 Some lemmas
Affine form of Farkas’ lemma: LetD be a nonempty poly-
hedron defined by p inequalities akx + bk ≥ 0, for any
k ∈ {1, . . . ,p}. An affine form Φ is non-negative over D
if and only if it is a non-negative affine combination of the
affine forms used to define D, meaning:

Φ(x) ≡ λ0 +

p∑
k=1

λk (akx + bk ); ∀k ∈ [0,p] λk ≥ 0

The nonnegative values λk are called Farkas’s multipliers.
Many seminal results in polyhedral compilation rely on the
usage of the above powerful lemma [Sch86].

Rotation operation of Polyhedra inH -form: Given a Poly-
hedron P inH -form, P = {x | Ax ≤ b}, where x = (x1,x2, . . . ,xn),
we define the rotation operation within a plane 2 (xi ,x j ) by
45◦, ROT45(P), as follows:

f : (x1, . . . ,xi , . . . ,x j , . . . ,xn) −→
(x1, . . . ,xi + x j , . . . ,xi − x j , . . . ,xn)

ROT45(P) : Protated = Imaдe(P , f )

1There is however, a loss of precision [Min06] when PUTVPI ∈ Z is an integer
polyhedron (also called as a Z-Polyhedron), defined over a collection of
integer points bounded by affine faces.
2Rotation about any canonical axis automatically fixes the plane of rotation.
For instance, in 3-d, rotation about z axis fixes the plane of rotation to xy .
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Decomposition of an Octagon into (two) interval poly-
hedra: Geometrically, a 2-d Octagon can be visualized as
a superimposition of two interval (or box) polyhedra (see
Figure 1). Each interval polyhedra captures fatness along
two unique Octagonal directions. But, as one pair of Octago-
nal directions aligns the other pair by 45◦, the two interval
polyhedra must also be aligned with respect to each other
by 45◦.
If P is an Octagon in the (x ,y)-axes, it can be expressed

as an intersection of two interval polyhedra P1 and P2:

P = P1 ∩ P2 (1)
P1 = {LBx ≤ x ≤ UBx ∧ LBy ≤ y ≤ UBy } (2)
P2 = {LBx+y ≤ x + y ≤ UBx+y ∧ LBx−y ≤ x − y ≤ UBx−y }

(3)

2.3 Miné’s Over-Approximation Algorithm
While proposing the Octagon abstract domain, Miné [Min06,
Min04] presented an algorithm that takes a non-empty con-
vex polyhedron P and returns its UTVPI-OA (OAUTVPI (P)).
Miné’s algorithmuses the generator (“Frame”) representation
(V-form) of the polyhedron to be over-approximated. There-
fore, it requires application of Chernikova’s algorithm [Che65,
Ver92, AF92] to convertH -form toV-form.

The intuition behind Miné’s algorithm is to construct the
smallest possible octagonwhich encloses all the vertices from
PV , along with adjusting the upper/ lower bounds to ±∞ for
the Octagonal constraints which are along the direction of
rays and lines.
Formally, the algorithm computes Octagonal union over

all the vertices of the polyhedron, i.e.,
⋃

OCT vi , where vertex
vi ∈ PV . The subtle property that is being exploited here is
that each vertex is trivially an octagon in itself. The final step
of the algorithm involves post-processing the DBM resulting
from

⋃
OCT vi to accommodate for rays and lines. For each

ray/line, if the coordinate value for dimension xi is non-zero,
then the algorithm sets the upper/lower bound for all the
Octagonal constraints involving the variable xi to ±∞.

Limitation It is well known that enumerating generators
of a polyhedron is never a polynomial time process: the sim-
plest case of an n-dimensional hypercube can be represented
with 2n halfspaces while it has 2n many vertices. Hence the
interest in a scalable algorithm which can directly build the
OA using just theH -form of the original polyhedron.

2.4 OA Algorithms: the necessity
Convex polyhedra and its limitation A typical usage of
an abstract domain—from static analysis [BAG14], polyhe-
dral compilation [Upa13], or performance analysis [BKPS17]—
involves collection of a large number of (rational or integer)

small-size convex polyhedra3 that describe the relations be-
tween the variables in the input program.4 This is followed
by performing several operations —like Union, Intersection,
Emptiness, Optimization, Counting etc.—on these abstract
domains which lead to scalability issues.

Our proposal for scalable UTVPI-OA Our premise of us-
ing an improved complexity UTVPI-OA rests on the strength
of the Octagonal domain (mainly its cubic time-complexity
for all its abstract domain operations). It is in the same theme
as proposed by Miné’s classic work [Min06, Min04]. But, we
propose that many of abstract domain operations, though
involving small polyhedra, could cumulatively induce a large
unscalability factor. This could either be because of their
large number, or the high complexity of the operations.

In this paper, we deal with only (rational) approximations.
We do not deal with integer linear approximations and para-
metric (rational or integer) linear programming approxima-
tions. Though these latter problems are harder, we believe
that our work will enable the latter.

3 Algorithm#1: LP based OA Algorithm
In his seminal work on affine scheduling, Feautrier pro-
posed [Fea92] to use the affine form of Farkas’ lemma as
a means of avoiding the transformation of a polyhedron
fromH -form toV-form.

In this section, we present a new algorithm that relies on
the same lemma to construct a search space for valid UTVPI-
OA hyperplanes. The algorithm involves a series of linear
programming calls (4

(n
2
)
in total), each of which finds the

tightest over-approximating UTVPI hyperplane-pairs which
are geometrically opposite to each other. Furthermore, to
ensure tightness of the over-approximating hyperplanes, we
minimize a cost function which encodes a tightness measure.

3.1 Enabling application of Farkas’ lemma
A generalized UTVPI constraint template looks like aixi +
bjx j ≤ ci j where ai and bj can be from {0,+1,−1}. For the
sake of presentation of the algorithm, we just consider the
cases where ai ,bj = ±1. The cases when ai ,bj = 0 are obvi-
ous extensions, and will be covered in the formal algorithm.

Consider a UTVPI constraint template of the form: ±xi ±
x j ≤ ci j . We are interested in finding a good numeric value
for ci j such that the resulting constraint is satisfied by every
point belonging to the original polyhedron P . Geometrically,
P must lie on one side of such a hyperplane so that the latter
can help define the over-approximating UTVPI polyhedron.
The above criterion is equivalent to the rule that the affine
form

{
H : ci j ± xi ± x j ± 0

}
is positive over P .

3Small in either the number of dimensions, or constraints, or both.
4This requirement is fundamentally different from our prior work [UC13],
which proposed approximated domains for affine scheduling. In that work,
the problem involved small number of large-size polyhedra with a limited
type of operations: optimization and feasibility.
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The following pre-conditions hold true which allow appli-
cation of the affine form of Farkas’ lemma: (1) H is affine. (2)
H must be positive over the original convex polyhedron. (3)
P must be non-empty.
While (1) is trivially satisfied, (3) is a basic assumption

for program analysis; as part of program analysis or classic
array data-flow analysis, the non-emptiness of polyhedra
can easily be tested by a single LP call. For (2), we apply
affine form of Farkas’ lemma.

ci j ± xi ± x j ≡ λ0 +

p∑
k=1

λk (akx + bk ); ∀k ∈ [0,p] λk ≥ 0

Where each λk is a Farkas’ multiplier.
Equating the coefficients of the variables from both the

sides, and projecting out the Farkas’ multipliers, results in a
search space that captures all feasible values for ci j ; and this
in turn corresponds to a search space of over-approximating
UTVPI hyperplanes.

3.2 Challenge in searching for tightest
over-approximating UTVPI hyperplanes

Application of Farkas’ lemma enables characterization of the
search space for over-approximating UTVPI hyperplanes.
There is however a need to have a selection criterion to
choose the hyperplanes so that the UTVPI-OA is the tightest
one. From the above discussion, it is clear that searching for
the right constant ci j will lead to the tightest UTVPI-OA.
The selection criterion will however change depending

on the nature of the UTVPI-template constraint, whether
it is bounding from the lower or the upper side. For the
lower-bounding (inf) constraint, it is desirable to select the
hyperplane having the maximum possible numeric value;
while it is desirable to select the hyperplane having the min-
imal possible numeric value for the upper-bounding (sup)
constraint. Both these selection criteria together result in the
tightest over-approximating (lower/upper bounding) UTVPI
hyperplane-pairs in that particular Octagonal direction. This
can be repeated for each of the 4

(n
2
)
Octagonal directions.5

3.3 Joint search space construction and cost
function minimization

To apply both these selection criteria together, a joint search
space for the two geometrically opposite over-approximating
UTVPI constraints can be constructed. A 2-d joint search
space (ci j , c ′i j ) can be formed by application of Affine form
of Farkas’ lemma to xi + x j ≤ ci j and −xi − x j ≤ −c ′i j .

Consider a linear cost function f (i, j) = ci j − c’i j . It repre-
sents the distance among two geometrically opposite
over-approximating hyperplanes. Minimizing f with respect
to the search space (ci j , c ′i j ), results in tightening of the OA

5Because the search is for Octagonal OA (which means that the two hy-
perplanes in a particular Octagonal direction differ only in the constant
dimension), both the inf and sup can be encoded in a single LP formulation.

along that Octagonal direction. So, the following objective
function can be used while solving a (rational) linear pro-
gramming problem over the joint search space:

lexmin
(
ci j − c

′
i j , ci j , c

′
i j

)
That is, to find the tightest OA, minimize ci j − c ′i j with the
highest priority. In case of the existence of two possible sets
of values for (ci j , c ′i j ) with equal separating distance among
them, the one whose coefficients have a lower numeric value
is preferred.

Iteratively finding the UTVPI hyperplanes pairs Opti-
mizing the cost function over the search space gives two geo-
metrically opposite UTVPI hyperplanes. For a n-dimensional
(bounded) polyhedra, it is necessary to find 8

(n
2
)
UTVPI

over-approximating hyperplanes. However, due to the con-
struction of a joint search space, the above procedure needs
to be iterated only 4

(n
2
)
times, once in each Octagonal direc-

tion. The intersection of all the constraints found gives the
UTVPI OA of the original polyhedron.

Handling of unbounded polyhedra While obtaining a
joint search space, the individual search spaces of the two
over-approximating UTVPI hyperplanes need to be inter-
sected. If the polyhedron is unbounded along a given direc-
tion, then, the over-approximating UTVPI search space turns
out to be empty, in turn making the resulting intersection
empty. So, before constructing the joint search space, there
is a need to ensure non-emptiness of each individual search
space. Additionally, the cost function needs to be specialized
in order to compensate for the empty search space.

Our complete algorithm is shown in Algorithm 1.

3.4 Relation between cost function minimization
and Fatness of the convex polyhedron

Figure 2. Fatness of polyhedron serves as threshold while
minimizing the width between over-approximating hyper-
planes.

We now investigate the relation between tightness of
UTVPI over-approximation and the fatness of the original

5
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Algorithm 1 LP based UTVPI OA Algorithm
Require: P ← Polyhedron in (x1, x2, ... , xn ) dimensions
1: O ← Universal Set in n dimensions
2: for each dimension xi do
3: for each dimension x j , xi do
4: for each ci ∈ {-1,0} do
5: for each c j ∈ {-1,0,1} do
6: if (ci=0 and c j=0) or (ci=0 and c j=1) continue end if
7: S1← Affine form of Farkas lemma (P , ci j + cixi + c jxj ≥ 0)
8: c ′i ← -ci
9: c ′j ← -c j
10: S2← Affine form of Farkas lemma (P , c ′i j + c ′ixi + c ′jxj ≥ 0)
11: if (not ( Empty(S1) or Empty(S2) ) then
12: S← product space (S1, S2)
13: Solve lexmin (ci j - c ′i j , ci j , c

′
i j ) over S

14: O ← O
⋂

(ci j + cixi + c jxj ≥ 0 )
⋂

(c ′i j + c ′ixi + c ′jxj ≥ 0 )
15: else
16: if Empty(S2) then
17: Solve lexmin (ci j ) over S1
18: O ← O

⋂
(ci j + cixi + c jxj ≥ 0 )

19: else
20: Solve lexmin (c ′i j ) over S2
21: O ← O

⋂
(c ′i j + c ′ixi + c ′jxj ≥ 0)

22: end if
23: end if
24: end for
25: end for
26: end for
27: end for
28: Return O

polyhedron P . In the LP based OA algorithm, the cost func-
tion ci j − c

′
i j is being minimized to find the tightest over-

approximating UTVPI hyperplanes. However, this function
can be minimized only till a threshold value, which essen-
tially corresponds to the fatness of P along that (Octagonal)
direction. Figure 2 illustrates this. The cost function can be
seen as minimizing the fatness of the (over-approximating)
UTVPI polyhedron thereby making it as close as possible to
P . This ensures that the tightness of the over-approximation
in that Octagonal direction. When the minimization of fat-
ness is done for each of the 4

(n
2
)
Octagonal directions, it will

ensure that the resulting Octagonal OA is the tightest one.
In the next section, we develop another algorithmwhich is

(1) free of linear programming, and (2) uses the relationship
between fatness of a convex polyhedron and tightness of
its UTVPI-OA. The idea behind our second algorithm lies
in measuring the fatness of the original convex polyhedron
along all possible Octagonal directions by using the Fourier-
Motzkin projection algorithm along with affine rotations.

4 Algorithm#2: FM based OA Algorithm
The Fourier-Motzkin (FM) algorithm [DE73? ] has been well
known in the geometry folklore with its main purpose be-
ing a means of eliminating variables from a set of linear
constraints using projection operations.

In this section, however, we present a FM based UTVPI-OA
algorithm.We provide a unique use-case of FM formeasuring
fatness of a convex polyhedron along various Octagonal
directions so as to compute tightest UTVPI-OA.

The central idea behind our FM based algorithm is to itera-
tively build the Octagonal OA for a given convex polyhedron
by individually constructing

(n
2
)
many 2-dimensional Octag-

onal OAs. Each of the OAs are constructed in such a way that
they over-approximate the (exact) shadow of the original
polyhedron along the eight Octagonal directions.
The 2-dimensional shadow of the polyhedron can be ob-

tained by projecting out all except the required two dimen-
sions. The projections on the oblique (purely) Octagonal
directions can be obtained by rotating the polyhedron itself
(or equivalently, the canonical axes) by ±45◦.

6
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Algorithm 2 FM based UTVPI OA Algorithm
Require: P ← Polyhedron in (x1, x2, ... , xn ) dimensions
1: O ← Universal Set in n dimensions
2: for each dimension xi do
3: for each dimension x j , xi do
4: S ← Project_Out_Except(P , xi , x j )
5: Wi ← Project_Out (S, xi )
6: Wj ← Project_Out (S, x j )
7: R← { (xi , x j )→ (d1, d2): (d1 = xi + x j ∧ d2 = xi − x j ) }
8: S ′← Image (S , R)
9: W ′

+i,+j ← Project_Out (S ′, d1)
10: W ′

+i,−j ← Project_Out (S ′, d2)
11: O ← O

⋂
Wi

⋂
Wj

⋂
W+i,+j

⋂
W+i,−j

12: end for
13: end for
14: Return O

In the upcoming sub-sections, we discuss the FM based
algorithm in detail.

4.1 Fatness estimation along Orthogonal
(Canonical) directions

Given a convex polyhedron P , let S be its (exact rational)
shadow on a 2-d plane with dimensions xi and x j .

S = Project_Out_Except(P ,xi ,x j )

Referring to the lemma on Octagonal decomposition (Sec-
tion 2.2), the task of finding the UTVPI-OA of S can be decom-
posed into finding two separate interval (or box) polyhedra
having the desired orientations. For this, we first discuss
the method to obtain the interval (box) polyhedral OA of
the shadow S along canonical (Orthogonal) axes. We then
discuss how to extend this method to obtain another inter-
val polyhedron having the desired orientation which again
over-approximates S .

Finding the interval-OA of a polyhedron is trivial by using
linear programming. It can be solved using two LP problems
per dimension with min and max as objective functions. But
here, instead of using LP, we use FM in a recursive manner.
(Remember that the Fourier-Motzkin has already been used
to obtain S , the 2-d shadow of P ). To obtain interval-OA for
S , it can simply be projected on both of its axes (namely,
the xi and x j axes, along the (0◦, 90◦) directions). This 2-d
to 1-d projections essentially result in estimating the fat-
ness of S along both the dimensions. The constraints ob-
tained after projecting S on each individual axes provide the
(lower/upper) bounds for that particular dimension. In this
way, a 2-d rectangular bounding box can be constructed for
the shadow S . This 2-d interval (box) polyhedron gives 4 con-
straints for the desired n-dimensional over-approximating
UTVPI polyhedron.

4.2 Fatness estimation along (oblique) Octagonal
directions

The remaining 4 constraints of the 2-d Octagonal OA need
to specify bounds on xi + x j and xi − x j (±45◦) directions.
In other words, the fatness of the shadow S along the two
directions d1 and d2 needs to be estimated, where d1 : xi +x j
and d2 : xi − x j .

Naïve method One naïve method is to rotate P itself along
each of the ±45◦ oblique Octagonal directions, and then do
the FM projections. The projections obtained along these
oblique Octagonal directions result in the estimation of width
or fatness in these directions. The above method has the
limitation that (in total), the FM algorithmneeds to be applied
2
(n
2
)
times on polyhedron P ; once for the (0◦, 90◦) directional

pair, and again for the ±45◦ directional pair of axes. This
could be expensive and could be improved.

Improved method We propose that S , the exact shadow
of P that has been obtained as a result of FM, can itself be
rotated to obtain the UTVPI-OA. The rotated shadow can
be projected on the orthogonal axes to obtain its fatness in
the oblique Octagonal directions. These widths can be used
to define the tightest over-approximating constraints in the
±45◦ directions.
Consider the following linear transformation:
R : {(xi ,x j ) → (d1,d2) | (d1 = xi + x j ∧ d2 = xi − x j )}

The above linear transformation rotates the canonical axes
of a shadow by 45◦. Now, the application of Change of Basis
operation on the shadow S with respect to the mapping
function R will obtain the rotated shadow. Formally,

Srotated = Imaдe(S,R)

The rotated shadow (Srotated ) can be projected onto (new)
canonical axes (d1 and d2) to estimate its fatness, and also to
obtain (lower and upper) bounds along the two dimensions.

7



IMPACT 2019, January 23, 2019, Valencia, Spain Abhishek A. Patwardhan & Ramakrishna Upadrasta

(d1 : xi + x j ,d2 : xi − x j )

This operation results in finding the rectangular bounding
box in a rotated space. This gives rise to 4 more required
constraints for n-dimensional UTVPI-OA. By intersecting
the constraints corresponding to the (1) bounding box of
the original shadow, and (2) bounding box of the rotated
shadow, the tightest 2-d Octagonal (UTVPI) OA for a shadow
is obtained.

4.3 Iteratively constructing UTVPI OA
The above described procedure needs to be iterated for each
of the 2-d planes from the n-dimensional vector space in
which original polyhedron resides. So, for all possible pairs
of axes, it needs to be iterated

(n
2
)
times.6

All the Octagonal OA hyperplanes so obtained can be
intersected to obtain the UTVPI OA of the original convex
polyhedron. It can be noticed that unbounded polyhedra
are handled implicitly, thanks to the resilience of Fourier-
Motzkin projection algorithm.

5 Complexity Analysis and Discussion
In this section, we first do a time complexity analysis of
our algorithms discussed in Sections 3 and 4. Then, we do
a comparative analysis of these two algorithms along with
Miné’s algorithm and discuss some perspectives.

Let us assume that the input polyhedron P = {x | Ax ≤ b}
be am×n constraint system (m constraints over n variables),
and L is the maximum size of the numbers (or coefficients)
occurring in the input.

5.1 LP based algorithm
In the LP based algorithm, it can easily be seen that in total,
4
(n
2
)
(rational) LP calls are made. It is well established that

while there exist asymptotically better algorithms [GLS93],
the simplex algorithm is the more widely used one for solv-
ing (rational) LP [Sch86]. Also, in the combinatorial opti-
mization community, it is understood that for a normal
(well-behaved) constraint system, the complexity of the (ra-
tional) LP problem using simplex algorithm is on average7

Z (m,n) ≈ O ((m + n)mn L).
So, the overall average complexity of obtaining the tightest

UTVPI-OA using the above algorithm is O
(
4
(n
2
)
Z (m,n)

)
=

O
(
4
(n
2
)
(m + n)mn L

)
= O

(
(m + n)mn3 L

)
. If we make the

usual assumptions thatm ≈ O(n), and that the coefficients
fit in normal integers (32 or 64 bit), this further simplifies to
O(n5) on average.

6An improvement from the naïve method that needs to be run 2
(n
2
)
times.

This improvement shows one more instance why Octagons are a unique
polyhedra among all abstract domain.
7For some discussion on this, please see our earlier work [UC13, Upa13].

5.2 FM based algorithm
The FM based algorithm is based on a series of projections
(along the Octagonal directions) and rotations. While the
rotation operation is trivially linear in complexity, the FM
projection, along with its internal redundancy elimination,
is the most time-consuming operation. For a n-dimensional
system,

(n
2
)
FM projections to 2-d planes need to be made.

The 2-d to 1-d projections can be trivially done by a scan.
It is well known that FM has high complexity. At each step

of projection, the number of constraints increases quadrat-
ically; meaning, the total complexity could theoretically
be

⌊m
2
⌋2n which is doubly-exponential [Pug91]. While the

above worst-case complexity is for extreme pathological ex-
amples, the core FM algorithm remains highly simple, and
easily implementable. Moreover, excellent implementations
like Omega [Pug91], FMLib [Pou] and ISL [Ver10] exist.
We may assume that for a well-behaved and typical sys-

tem from polyhedral compilation (withm ≈ O(n)), the com-
plexity to obtain a 2-d projection using FM is on average
Y (m,n) ≈ O

(
f (ŝ,L,nk

)
). Here, ŝ is the average sparsity of

the constraints, and k is a small constant that is dependent
on run-time parameters of the constraint matrix (like redun-
dancy) [Pug91]. So, the overall complexity of the FM based
OA algorithm will be O

( (n
2
)
Y (m,n)

)
≈ O

(
f (ŝ,L,nk+2

)
).

With the above assumptions, we believe that the time com-
plexity of obtaining the tightest UTVPI-OA using our FM-
based algorithm could be a low order polynomial in n.

5.3 Discussion and Perspectives
Applicability of approximations in polyhedral model:
It is well understood that over/under approximations (OA/UA)
that preserve soundness have been accommodated in poly-
hedral compilation at various phases; dependence analysis
needs OA [DRV00], the affine-scheduling needs UA [UC13]
while the code-generation again needs an OA [Upa13]. So,
our algorithms can directly be applied to dependence anal-
ysis and code-generation. However, for affine scheduling,
polyhedral duality needs to be exploited to obtain UA of loop
transformation search space. (OA of dual results in UA of
primal [UC13].) Approximations also have applicability in
the performance analysis of ACLs, like Cache Miss Calcula-
tions [BKPS17]. For more discussions, please see Section 7.

LP vs. ILP and tightness of the approximation: Our al-
gorithms use rational linear programming (LP) and rational
Fourier-Motzkin, not integer based methods (like ILP and
integer shadows). This means that while they will return
the tightest rational Octagonal OA, it will not be the tightest
integer OA; the former will be an OA of the latter.

8
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Redundancy removal: Our algorithms return the tightest
(rational) UTVPI-OA without requiring an irredundant de-
scription of the input polyhedron. The latter is a hard prob-
lem; one approach to solve it uses Chernikova’s algorithm
forH −→ V conversion.

Complexity and real-world scalability: The Quintic (≈
n5) complexities of our algorithms indeed look large, but we
conjecture that they will be better than the larger (exponen-
tial) cost that has to paid for the earlier Chernikova based
algorithm. Also, assuming a cubic complexity for linear pro-
gramming, the polyhedral scheduling itself reduces to quintic
complexity when the dependence graph edges are taken into
consideration [UC13, Upa13]. So, our algorithms are of com-
parable complexity when compared to affine scheduling, the
most expensive phase of polyhedral compilation.

Limitations: LP Algorithm: The LP algorithm has to rely
on a library implementation of simplex. While it makes the
overall implementation simpler, as good libraries already
exist, it will also incur a static cost every time (for example,
to setup the simplex table).

Limitations: FM Algorithm: Though the FM algorithm
does not incur static-cost, it heavily relies on the presence of
a fast and efficient implementation, which seems definitely
possible with the success of libraries like Omega, FMLib and
ISL. We also believe that the FM based algorithm will scale
well if and only if it is supported by a good implementation:
one that does effective and efficient redundancy elimination.

LP and FM: constant-fold improvements: Our algorithms
exploit the Octagonal nature of the OA that they aim to con-
struct. Our LP based algorithm, by constructing the joint
search space, incurs a cost of only one LP call per Octago-
nal direction, thereby finding the UTVPI-OA hyperplanes
in both the opposite directions. Our FM based algorithm
makes projections for pairs of variables. It also makes further
improvements by rotating only the shadows (not the origi-
nal polyhedron), thereby having an additional constant-fold
improvement over a naïve FM-based algorithm that does
projections on all the Octagonal directions. In total, while
the LP based algorithm incurs O

(
4
(n
2
)
Z (m,n)

)
complexity,

the improved FM based algorithm incurs O
( (n

2
)
Y (m,n)

)
.

Parallelizability of our algorithms: It is also crucial to
note that our two OA algorithms are trivially parallelizable.
This is because, the computations in each of the

(n
2
)
Octago-

nal directions can proceed independent of each other. So, a
simple parallelization of our algorithms could speed them up
further when compared to the Chernikova based one.

Completion of tool chain: Both of our algorithms depend
on development of the complete toolchain, including linking
up with monotonizing transformation for PUTVPI −→ PDBM
conversion and Bellman-Ford to return feasibility.

6 Related Work
(U)TVPIAlgorithms The combinatorial optimization com-
munity [Sch86] has been fascinated by (U)TVPI polyhedra
because of their simplicity as well as their improved com-
plexities. Two notable works are by Aspvall-Shiloach [AS80]
who gave a polynomial time algorithm, and Hochbaum-
Noar [HN94] who gave strongly polynomial time algorithm
for checking feasibility of TVPI systems.

Abstract domains Cousot et al. [CC77] were the pioneers
in introducing abstract domains for program analysis, the
interval abstract domain, as well as the Convex Polyhe-
dra [CH78] abstract domain. This was further extended by
Miné [Min06, Min04] who proposed the Octagon (UTVPI)
abstract domain.

Over/Under Approximations There has not been consid-
erable work in developing Over or Under approximation
strategies from one numerical abstract domain to another.

Over-approximating convex polyhedra into Interval (box)
polyhedra is rather trivial and hence folklore.

Antoine Miné [Min06, Min04]—father of the Octagon ab-
stract domain, proposed the first-ever algorithm [Min04, Sec-
tion 3.5.2, p68], [Min06, Section 4.3] to find the Zone (DBM)
and UTVPI OA of a given convex polyhedron. To the best
of our knowledge, there does not exist any other algorithm
that finds the tightest Octagonal OA other than Miné’s algo-
rithm. The above algorithm however requires enumeration
of generators of the original convex polyhedra using well-
established methods such as the Chernikova’s algorithm,
and is hence less practical.
Our algorithms directly operate on the H -form of the

given polyhedra, and thereby avoid using Chernikova’s al-
gorithm. They effectively leverage the power of duality and
projections.
Simon et al. [SK10] proposed strategies to obtain TVPI-

OA of a linear inequality. While the authors admit that their
approximations may not be able to find the tightest OA, they
do not observe any loss of precision in program analysis.

Upadrasta et al. [UC13] proposed sub-polyhedral schedul-
ing using (U)TVPI polyhedra in order to address the scala-
bility challenges from the affine scheduling problem. They
proposed two heuristics—that do not ensure tightness—to
obtain the (U)TVPI polyhedral under-approximations; under-
approximations of the Farkas’ (scheduling) polyhedra so as
to preserve the program semantics. In many of the static anal-
ysis problems, there is a need to find over-approximation to
preserve the soundness of the analysis.

7 Some Applications
In this preliminary work, we proposed two new algorithms
for finding UTVPI/Octagon Over approximations of Convex
Polyhedra. We envision various uses for our algorithm both
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within the static analysis community as well as in polyhedral
compilation. Here are some possibilities.

Programanalysis (Abstract Interpretation) In the foun-
dational work by Miné [Min06, Min04], the Octagon abstract
domain was shown to be effective in addressing the scalabil-
ity challenges in abstract interpretation. As our algorithms
avoid the computation of generator representation of the
polyhedra to be over-approximated, they could be used to
improve the scalability. While it is true that some problems in
static analysis do need Integer UTVPI approximations, there
is a scope to use our algorithms which propose rational (and
not integer) OA because of their tightest approximation fea-
ture. A scalable and tight OA engine also has applications
like finding the rank and termination [BAG14].

Cache modeling of Affine Programs Bao et al. [BKPS17]
recently proposed an analytical modeling of cache misses
of ACL programs. The proposed method relies on various
(rational and integer) polyhedral operations like Union, Inter-
section, Difference and Coalesce. Though relying on general
convex polyhedra results in impressive results, the authors
report scalability with some operations (like Difference and
Coalesce). The above can be improved by relying on UTVPI
polyhedra on which all the above operations can be accom-
modated in a cubic worst-case time. There would however
be a loss of precision, and it has to be practically seen how
the precision vs. scalability trade-off manifests.

Sub-polyhedral Code-generation Upadrasta et al. [Upa13,
Ch. 9] demonstrated how (U)TVPI Over-Approximations can
can be used to improve scalability of the classic QRW [QRW,
Bas04] code-generation algorithm. Their proposed technique
requires computation of (U)TVPI Over-Approximations of
the polyhedral domains to be scanned for code-generation.
As our algorithms guarantee tightest UTVPI-OA, they can di-
rectly be used in the proposed UTVPI-QRW algorithm. Since
it is well understood that at code-generation time, most of
the constraints of polyhedra are mostly (U)TVPI, it helps to
rely on our FM based algorithm.

Index Set Splitting based Parallelization Griebel et al.
[GFL00] pioneered the Index Set Splitting (ISS) based paral-
lelization scheme based on application of Transitive Closure
on the Polyhedral Reduced Dependence Graph (PRDG). This
was later extended by Bielecki et al. [BP16] in the TRACO
project. Verdoolaege et al. [VCB11] study the scalability of
exact and approximate transitive closure based paralleliza-
tion schemes, comparing with the previous work of Kelly et
al. [KPRS96], as well as the effectiveness of over (vs. under)
approximations of PRDG. Our OA algorithms can easily be
applied for computation of approximate transitive closure.

8 Implementation, Conclusions and
Future Work

We briefly discuss our implementation, and give conclusions
and future work.

8.1 Implementation and availability
We have prototype implementation our two algorithms in
the Integer Set Library (ISL) version 0.18 [Ver10]. Our LP
based algorithm uses ISL’s implementation of Farkas’ lemma
to obtain the search space of UTVPI hyperplanes, and ISL’s
PIP solver to encode our LP formulation with the objective
cost function. Our FM based algorithm uses ISL’s default
(integer) FM algorithm to implement the Projection based
OA algorithm. The implementation of our two algorithms is
available [UTV].

8.2 Conclusions
In this preliminary work, we present two new polyhedral
over-approximation algorithms, which rely solely on hy-
perplane representation and so avoid the usage of vertex
enumeration algorithms.

Our improvements overcome the limitations of the state-
of-the-art algorithm used extensively in static analysis. Both
of our algorithms are designed in a way that guarantee com-
putation of tightest over-approximation provided it exists.
We feel that our algorithms are unique because they rely on
the previously unexplored geometric properties of Octagons.
We also provide a preliminary implementation for both

of our algorithms in the Integer Set Library [Ver10] and also
enumerate its few applications from program analyses and
transformations.

8.3 Future work
Our work is preliminary and on-going. Our future work
involves building a complete scalable toolchain: (i) Using
(rational) FM from FMLib [Pou] avoiding usage of integer
FM (that is currently in ISL) (ii) linking up with Bellman-
Ford. (iii) doing extensive scalability tests on both real world
examples well as artificial examples to illustrate complexity.
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