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Abstract
The quadratic loss function has been used by decision-theoretic statisticians and

economists for many years.  In this paper  the estimation of scale parameter under a
bounded loss function, which is adequate for assessing quality and quality
improvement, is considered with restriction to the principles of invariance and risk
unbiasedness. An implicit form of minimum risk scale equivariant estimator and
Bayes estimators are obtained. Fisher’s problem of the Nile as an example is
included.
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Introduction
A loss function has been ( , )L   represents the

amount  by which a statistician is penalized when is
the true state of nature and is the statistican’s action.
In the literature, ( , )L   is usually taken to be convex in
 and even in ( )  . For example, let 1,...,XnX be a

random sample of size n from a density 1 ( ) ,xf
 

where f is known and  is an unknown scale
parameter. In this case, the commonly used quadratic
loss is given by(δ, τ) = ( − 1) (1.1)

This loss function has been criticized  by some
researchers  e. g. Rukhin and Ananda [7], Dey, Ghosh
and Srinivasan [3], Akaike [1] and [2].  They motivated
the entropy loss as an asymmetric loss  function for

estimating an unknown scale parameter, but this loss
with its infinite maximum value, is not appropriate in
describing , for example, the loss associated with a
product. The arguments suggest that bounded loss
functions are more appropriate than the unbounded one
[10] and [11]. Also unbounded asymmetric losses, such
as square error loss, are widely employed in decision
theory but their application is often justified by their
nice mathematical properties, not their appropriateness
in representing a true loss structure. The nature of many
decision problems, such as reliability analysis, requires
the use of asymmetric losses. For a scale parameter
estimation,we use a loss function of the form

( , ) = {1 − ( )} (1.2)
where a>0 is a shape parameter and b>0 is the

maximum loss parameter. The general form of the loss
function is illustrated in Figure [1]. This is obviously a
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bounded loss function with respect to varying and
and adequate for assessing quality and quality
improvement [10] .  For the sake of simplicity we take

1a b  in the rest of paper.
In this paper, we study the problem of estimation of a

scale parameter, using the loss (1.2). In section 2 we
introduce the best invariant estimator of the scale
parameter  using the loss (1.2). In section 3 we
consider a subclass of the expossessing quality
andnential family and obtain the Bayes estimates of 
using the loss (1.2). In section 4, the Fisher’s problem of
the Nile as an example is included.

Best Scale Invariant Estimator
Consider a random sample

1 2, ,..., XnX X from
1 ( )xf
 

, where f is  a known function, and  is an

unknown scale parameter. It is desired to estimate
under the loss function (1.2). The class of scale-
invariant estimators of  is of the form [12], [13]

0( ) (X) ( )X W Z 
Where 0 is any scale-invariant estimator,

1( ,..., )nX X X ,  and
1( ,..., )nZ Z Z with

; 1,..., 1i
i

n

XZ i n
X
   , n

n
n

XZ
X

 . Moreover the

best scale-invariant (minimum risk equivariant (MRE))
estimator * of  is given by * *

0( ) (X) ( )X Z  

Where w*(z) is a function of Z which maximizes
0

0

( ) ( )2
( ) (X)

1

X Z
ZE e Z z

 
 



 



 
 

  
Or minimizing

0

0

( ) ( )
( ) (X)

1

X Z
ZE e Z z

 
 







 
 

  
.                            (2.1)

In the presence of location parameter as a nuisance
parameter, the MRE estimator of  is of the form

* *
0( ) ( ) ( )X Y Z   ,

where 0 ( )Y is any finite risk scale-invariant
estimator of , based on 1 1(Y ,..., )nY Y  with

i i nY X X  ; 1,..., 1i n  , 1 1( ,..., )nZ Z Z  ,

1
1

1 1

; 1,... 2 ,i n
i n

n n

Y YZ i n Z
Y Y




 

    and *( )Z is

any function of Z maximizing

(2.2)

In many cases ,when 1  ,we can find an
equivariant estimator

0 (X) or
0 (Y) which has the

gamma distribution with known parameters v, and is
independent of Z. see for instance Rahman, M.S., and
Gupta, R.P[7].

It follows that * 0
*



 is the MRE estimator of 

where * is a number which maximizes
(2.3)
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 




where c is a function of and v , and (.)fk is the
modified Bessel function of the third kind (Gradshteyn
and Ryzhik[5]) and Kariya[8]. Now we can show by
differentiating ( )g  with respect to and using the

recurrence relation 1 1
2( ) ( ) ( )v v v

vk z k z k z
z    that

* must satisfy the following equation
(2.4)

Hence we have the following result.

Figure 1. The Loss Function (1.2)
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Theorem 2.1: If
0 ( )X is a finite risk scale-invariant

estimator of  , which has the gamma distribution with
known parameters ,v  , when 1  . Then the MRE
(minimum risk equivariant) estimator of under the loss

function (1.2) is * 0
*

( )(X) X


 , where * must

satisfy the equation (2.4).
Example 2.1: (Exponential) Let 1,..., nX X be a

random sample from (0, )E  with density
1 ; 0

x

e x




 , and consider the estimation of  under

the loss (1.2).

0
1

( )
n

i
i

X X


 is an equivariant estimator which has

Ga(n,1)-distribution when 1  .It follows from the
Basu’s theorem that 0 is independent of  Z, hence  the
MRE estimator

of  under the loss(1.2) is * 1
*( )

n
ii

X
X


 ,

where * must satisfy the following
(2.5)

Example 2.1: (Continued) Suppose that 1,..., nX X
is a random sample of ( , )E   with density ( )1 xe  


  ,

x  and consider the estimation  of  when  is
unknown.

We know that  (1) (1)1
, (X )n

ii
X X


 is a complete

sufficient statistics for ( , )  .It follows that

0 (1)1
(Y) 2 ( )n

ii
X X


  has 1(n 1, )

2
Ga  

distribution, when 1  , and from the Basu’s theorem

0 ( )Y is independent of Z and hence

(1)* 1
*

( )
(Y)

n
ii

X X






 is the  MRE estimator of

 under the loss (1.2), where * must satisfies the
following equation

(2.6)

Example 2.2: (Normal variance) Let 1,..., nX X be
a random sample of 2(0, )N  and consider the

estimation of 2 . 2
0

1
( )

n

i
i

X X


 is a finite risk scale-

invariant estimator of 2 and is independent of Z, and
when 2

01 , ( )X  has 1( , )
2 2
nGa -distribution and

hence
2

* 1
*( )

n

i
i

X
X





is the MRE estimator of 2 ,

where * must satisfies the equations (2.5).

Example 2.2: (Continued) Let 1,..., nX X be a

random sample from 2( , )N   , with a nuisance
parameter . In estimating 2 under the loss (1.2), it

follows that 2
0

1
( ) ( )

n

i
i

X X X


  is independent of

Z, and when 2 1  , the distribution of
0 ( )Y is

1 1( , )
2 2

nGa  . Therefore,
 2

* 1
*( )

n

i
i

X X
X








is the

MRE estimator of 2 , where * must satisfies the
equation (2.6).

Example 2.3: (Inverse Gaussian with zero drift) Let
1,..., nX X be a random sample of ( , )IG  with

density
1
2

2
3( | ) 0

2
xf x e if x

x




   
 

and consider the estimation of  .
1

0 1
( ) n

ii
X X 


 has 1( , )

2 2
nGa -distribution and is

independent of Z and hence
1

* 1
*( )

n

i
i

X
X






 is the MRE

estimator of  , where * must satisfies the
equation(2.5).

The Bayes Estimator
In this section, we consider the Bayesian estimation

of the scale parameter in a subclass of one- parameter
exponential families in which the complete sufficient

statistic
0 ( )X has (v, )Ga 


- distribution, where

0 , 0v   are known.
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Assume that the conjugate family of prior
distribution for 1


 is the family of Gamma

distributions ( , )Ga   . Now, that posterior distribution

of  is 0( , ( ))Ga v x    and the Bayes

estimate of is a function ( )x which maximizes the
function

Or the function,

2 2
0( ) ( ( )) (2 ).

v

vg x k



     







 
  

 is obtained from the relation ( ) 0dg
d


 .Hence, the

maximized  must satisfies the following equation,

(3.1)

So all estimators satisfying (3.1) are also Bayes
estimators.

Example 3.1: In examples 2.1, 2.2 and 2.3, all
estimators, satisfying (3.1), where 0 (X) is the
complete sufficient statistic, are Bayes estimator of the
scale parameter .

Application to the Fisher Nile’s Problem
The classical example of an ancillary statistic is

known as the problem of Nile, originally formulated by
Fisher [4]. Assume that X and Y are two positive
valued random variables with the joint density function

(4.1)

and that is (X , Y ) , 1,...,i i i n a random sample of

n paired observation on ( , )X Y .Let
1

1 ,n
ii

X X
n 
 

1

1 n
ii

Y Y
n 
  , , .YT U XY T

X
  is the MLE

of  and the pair
( , )T U is a jointly sufficient, but not complete

statistic for and U is ancillary.
Consider a nonrandomized rule ( , )T U based on

the sufficient statistic ( , )X Y which is equivariant under
the transformation

0
; 010

cz X
c

Y
c



               
For ( , )T U to be scale equivariant, we must have

(4.2)

Following Lehman and Casella [9] a necessary and
sufficient condition for an estimator  to be scale
equivariant is that it is of the form 0Z  , where 0
satisfies (4.2), and Z is invariant under scale changes.
Note that T satisfies (4.2), hence 0 , ( )T Z U   .
We see that all the scale equivariant estimators ( , )T U
must have the form

(4.3)

using the loss function (1.2), and the fact that the
joint distribution of , UT


 
 
 

is independent of  , we

can evaluate  the risk at 1  .Hence
12 ( )
( )( , ( )) [ (1 ) | ].

T U
T U

UR T U E E e U


 
 

 

It follows that ( , ( ( ))R T U  is minimized by
minimizing the inner expectation. Hence, the minimum
risk scale equivariant estimator is *ˆ ( )MRE T U  ,

where *( )U must satisfy the following equation
(4.4)

where we use the fact that the joint density function
of (T, U) is g(t,u), when 1  , but Joshi and Nabar [6]
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( ) 2 1

2 2
2 0, u 0( , ) [( 1)!]
0

tnu nt

n

e uu if tg t n n t
otherwise






  




    



Note that function ( )rk z are tabulated so their
values can be computed. For deriving the Bayes
estimator of  , let us consider the Inverted Gamma
distribution as a prior distribution

, 1( ) ; 0 , 0
( )

e  

  

   
 



  


Therefore the unique Bayes estimator
( , )Bayes B    which is admissible under the loss

(1.2) must satisfies the following equation

Note  that ˆ ˆ ( , )MRE Bayes    . This means that
when the loss function is scale invariant loss (1.2), than
ˆMRE is a generalized Byes rule against the scale

invariant improper prior 1( ) ; 0  

  and is

therefore minimax Kariya[8].

Results
The estimation of scale parameter under a bounded

loss function is considered with restriction to the
principles of invariance and risk unbiasedness. An
implicit form of minimum risk scale equivariant
estimators and Bayes estimators are obtained. Fisher’s

problem of the Nile as an example is included.
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