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Abstract
Total variation (TV) models are among the most
popular and successful tools in signal processing.
However, due to the complex nature of the TV
term, it is challenging to efficiently compute a
solution for large-scale problems. State-of-the-
art algorithms that are based on the alternating
direction method of multipliers (ADMM) often
involve solving large-size linear systems. In this
paper, we propose a highly scalable parallel al-
gorithm for TV models that is based on a novel
decomposition strategy of the problem domain.
As a result, the TV models can be decoupled in-
to a set of small and independent subproblems,
which admit closed form solutions. This makes
our approach particularly suitable for parallel im-
plementation. Our algorithm is guaranteed to
converge to its global minimum. With N vari-
ables and np processes, the time complexity is
O( N

εnp
) to reach an ε-optimal solution. Exten-

sive experiments demonstrate that our approach
outperforms existing state-of-the-art algorithms,
especially in dealing with high-resolution, mega-
size images.

1. Introduction
Total variation (TV) models have found great success in
a wide range of applications, including but not limited to
image denoising, image deblurring, image reconstruction
(Barbero & Sra, 2011; Candès et al., 2006; Casas et al.,
1999; He et al., 2005; Kim et al., 2010; Lustig et al., 2005;
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Osher et al., 2005; Vert & Bleakley, 2010; Vogel & Oman,
1998) etc. Rudin et al. (1992) first introduced the TV model
to remove noise in a given image by using the TV term.
The motivation for this model came from the fact that a
noisy signal generally implies high total variation. Given
an image Y ∈ <m×n, the discrete version of the Rudin-
Osher-Fatemi (ROF) model is:

min
X

1

2
‖X − Y ‖2F + λ‖X‖TV , (1)

where ‖ · ‖F and ‖ · ‖TV are the Frobenius norm and TV
norm respectively, λ is a positive parameter, and X ∈
<m×n is the image to be recovered. In this paper, we con-
sider the isotropic TV norm:

‖X‖TV =
∑m

i=1

∑n

j=1
‖Di,jX‖2, (2)

where Di,jX = ((D1X)i,j , (D2X)i,j)
T is the discretized

gradient at pixel (i, j). For simplicity, we use the forward
difference to define Di,jX , i.e.,

(D1X)i,j =

{
xi+1,j − xi,j if i < m

0 if i = m
, (3)

(D2X)i,j =

{
xi,j+1 − xi,j if j < n

0 if j = n
. (4)

It is worthwhile to mention that there are fast algorithms for
the “anisotropic” TV model, where ‖X‖TV is defined by∑m
i=1

∑n
j=1 ‖Di,jX‖1. However, those algorithms, which

are usually based on graph cuts or maximum flow, are not
applicable to isotropic TV models. As pointed out by Gold-
farb & Yin (2009); Duan & Tai (2012), unless xi,j are bi-
nary variables, the isotropic TV term is not graph repre-
sentable. Moreover, Wahlberg et al. (2012) proposed an
ADMM method to solve the 1D TV model. Recently, Con-
dat (Condat, 2013) showed that the 1D TV denoising mod-
el admits a closed-form solution and thus can be solved by
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a very fast noniterative algorithm. By utilizing this result,
Yang et al. (2013) proposed an efficient ADMM algorithm
for the multidimensional TV model. However, this method
is only applicable to the anisotropic TV model.

Although the formulation in problem (1) is simple, it is
computationally challenging to solve due to the complex
nature of the TV norm. This makes it difficult to work with
high-resolution, large-scale data. Existing algorithms usu-
ally demand high computational cost and memory usage,
which prevent their use in large-scale problems. Simpler
methods require moderate computational efforts and less
memory space, but usually converge very slowly. These
difficulties have motivated a lot of research efforts to bet-
ter trade off the computational cost and the convergence
rate. For example, Beck & Teboulle (2009a) propose fast
gradient-based algorithms that combine an acceleration of
the dual approach with a fast iterative shrinkage algorith-
m (FISTA) (Beck & Teboulle, 2009b); Goldstein & Os-
her (2009) develop a split Bregman method; Chambolle
& Pock (2011) apply a primal-dual method to solve (1).
As another popular application of TV-based models, the
Magnetic Resonance (MR) image reconstruction has re-
ceived great attention recently. Ma et al. (2008) propose
an operator-splitting algorithm (TVCMRI) for MR image
reconstruction. Huang et al. (2011) propose another effi-
cient algorithm named FCSA, which utilizes the ideas of
composite splitting (Combettes & Pesquet, 2011) and the
acceleration technique introduced by FISTA.

In this paper, we propose a fast Altermating Direction
Method of Multipliers (ADMM) (Boyd et al., 2011; Chen
et al., 2012; Chan et al., 2011; Esser et al., 2010; Esser,
2009) based algorithm, termed FAD, to solve the TV mod-
els. FAD is based on a novel decomposition strategy of the
problem domain. As a result, the TV model in (1) can be
decoupled into a set of small and independent subproblems.
Each subproblem involves at most three variables and ad-
mits a closed-form solution. Thus, all of the subproblem-
s can be solved efficiently in parallel. We implement our
highly scalable parallel algorithm via OpenMP and MPI.
Extensive experiments on synthetic and real data demon-
strate the scalability and efficiency of FAD.

Notation: Let ‖ · ‖ be the `2 norm. For matrix A, [A]i,j
is its (i, j)th entry. The inner product between matrices is
defined as 〈A,B〉 =

∑
i,j [A]i,j [B]i,j . Given a set C, we

use C◦, relint C, and ∂C to denote the interior points, rel-
ative interior and boundary points of C, respectively. For
any real number c, let d := bcc be the largest integer
such that d ≤ c, and mod (a, b) := a −

⌊
a
b

⌋
b. Let

f : <n → < ∪ {+∞} be a closed proper convex func-
tion. The proximal operator of f is defined by:

proxf (x) = argminy

(
f(y) +

1

2
‖y − x‖2

)
.

2. Optimization Methods
In this section, we present the details of FAD. We first
briefly review ADMM in Section 2.1. In Section 2.2, we
present our novel decomposition strategy to partition the
variables in (1). FAD and its convergence properties are
presented in Sections 2.3 and 2.4, respectively.

2.1. Review of ADMM

ADMM makes use of the decomposability of the dual as-
cent and meanwhile has the good convergence properties
of the multipliers’ method. Given a problem:

min
x,z
{f(x) + g(z) : x− z = 0} , (5)

we assume that both f(·) and g(·) are convex. The aug-
mented Lagrangian is given by:

Lγ(x, z; θ) = f(x) + g(z) +
γ

2
‖x− (z− θ)‖2, (6)

where θ and γ > 0 are the scaled augmented Lagrangian
multipliers (Boyd et al., 2011) and the penalty parameter,
respectively. ADMM attempts to solve problem (5) by iter-
atively minimizing Lγ(x,y; θ) over x and y, respectively,
and updating θ accordingly (Boyd et al., 2011). The sup-
plement presents details on ADMM.

2.2. The Decomposition Strategy

We first give an example to illustrate our idea in Section
2.2.1 and then consider the general case in Section 2.2.2.

2.2.1. A SIMPLE EXAMPLE

Let us first consider a simple case as an example. Suppose
that we have an image of 4×4 pixels as illustrated in Fig. 1.
The TV term ‖X‖TV can be written as:

‖X‖TV =
∑4

i=1

∑4

j=1
‖Di,jX‖ (7)

=
∑3

i=1

∑3

j=1

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2

+
∑3

i=1
|xi+1,4 − xi,4|+

∑3

j=1
|x4,j+1 − x4,j |.

From the right-hand side (RHS) of Eq. (7), we can see

(a) (b) (c)
Figure 1. Illustration of the decomposition.

that none of the terms is separable from the others since
most of the variables appear in different terms. Our goal
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is to decompose ‖X‖TV into several different parts such
that each term is separable from all the others. As shown in
Fig. 1, we decompose ‖X‖TV into three disjoint parts, i.e.,

‖X‖TV =
∑3

k=1
‖X‖TVk . (8)

Each part consists of the total variation norm ‖Di,jX‖ as-
sociated with the big solid nodes. For example, there are
six big solid red nodes in Fig. 1(a): (1, 1), (2, 2), (3, 3),
(4, 4), (1, 4) and (4, 1). Thus, the first part ‖X‖TV1 is:

‖X‖TV1 =
∑4

k=1
‖Dk,kX‖+ ‖D1,4X‖+ ‖D4,1X‖

=
∑3

k=1

√
(xk+1,k − xk,k)2 + (xk,k+1 − xk,k)2

+ |x2,4 − x1,4|+ |x4,2 − x4,1|.
Recall that ‖D4,4X‖ = 0. From the RHS of the above e-
quation, we can see that each variable only appears in one
term, which implies that every term is separable from al-
l the other ones. Similarly, from Fig. 1(b) and Fig. 1(c),
‖X‖TV2 and ‖X‖TV3 are given by

‖X‖TV2
=
∑3

k=1
‖Dk,k+1X‖+

∑2

k=1
‖Dk+2,kX‖,

‖X‖TV3
=
∑3

k=1
‖Dk+1,kX‖+

∑2

k=1
‖Dk,k+2X‖.

Clearly, for ‖X‖TV2
, each term on the RHS of the equation

is separable from all the other ones and the same property
holds for ‖X‖TV3

.

2.2.2. THE GENERAL CASE

Suppose that we have an image of m × n pixels. Let D =
{(i, j) : i = 1, 2, . . . ,m, j = 1, 2, . . . , n.}. Then, we can
divide D into three non-overlapping subsets:
Dk = {(i, j) ∈ D : mod(j − i, 3) = k − 1}, k = 1, 2, 3.

Thus, ‖X‖TV can be written as:

‖X‖TV =

3∑
k=1

‖X‖TVk =

3∑
k=1

∑
(i,j)∈Dk

‖Di,jX‖. (9)

For each ‖X‖TVk =
∑

(i,j)∈Dk ‖Di,jX‖ (k = 1, 2, 3),
every term ‖Di,jX‖2, (i, j) ∈ Dk is separable from all
the other ones ‖Di′,j′X‖ where (i′, j′) ∈ Dk \ (i, j). For
details, please refer to Proposition 1 in the supplement.

Remark 1. The isotropic TV norm introduced in Eq. (2)
is the summation of the `2 norm of the discretized gradi-
ent over all pixels. The proposed decomposition strate-
gy is to decompose the image into three non-overlapping
sets of pixels, and write the TV norm as the summa-
tion of three terms as in Eq. (9). Each term refers to
the summation of the `2 norm of the discretized gradien-
t over one group of pixels. Notice that each ‖X‖TVk =∑

(i,j)∈Dk ‖Di,jX‖ also involves the pixel-level variables
[X]i′,j′ that are shared across the three groups (though not
within the groups).

2.3. ADMM for TV-Based Models

By using the decomposition strategy presented in the last
section, problem (1) can be rewritten as:

min
X

1

2
‖X − Y ‖2F + λ

∑3

k=1
‖X‖TVk . (10)

To use ADMM, (10) can be reformulated as:

min
Z;X1,X2,X3

1

2
‖Z − Y ‖2F + λ

∑3

k=1
‖Xk‖TVk , (11)

s.t. Xk = Z, k = 1, 2, 3,

with global variable Z and local variables Xk, k = 1, 2, 3.
The augmented Lagrangian of problem (11) is:
Lγ(Z;X1, X2, X3; Θ1,Θ2,Θ3) (12)

=
1

2
‖Z − Y ‖2F + λ

3∑
k=1

‖Xk‖TVk +
γ

2

3∑
k=1

‖Xk − (Z −Θk)‖2F .

Denote X1, X2, X3 and Θ1,Θ2,Θ3 by X and Θ, re-
spectively. Thus, Lγ in Eq. (12) can be simplified to
Lγ(Z; X; Θ). We apply ADMM to solve (11). In each
iteration, we first minimize Lγ(Z; X; Θ) with respect to Z
and X, and then update the dual variable Θ. Assume that
we are at the tth step, i.e., Zt, Xt and Θt are known. We
then compute Zt+1, Xt+1 and Θt+1 as follows:

S1. Minimize Lγ(Zt; X; Θt) with respect to X

Recall that X refers to Xk, k = 1, 2, 3. Thus, we need to
minimize Lγ(Zt; X; Θt) with respect to Xk, k = 1, 2, 3.

Since Xt+1
k = argminXk Lγ(Zt; X; Θt), we have

Xt+1
k = argmin

Xk

λ‖Xk‖TVk +
γ

2
‖Xk − (Zt −Θt

k)‖2F (13)

= argmin
Xk

1

2
‖Xk − V tk‖2F +

λ

γ
‖Xk‖TVk ,

where V tk = Zt −Θt
k. Note that, the first term on the RHS

of (13) is separable. Due to the decomposition strategy in
Section 2.2, the second term on the RHS of (13) is separa-
ble as well. Therefore, problem (13) can be decoupled into
a set of subproblems that involve at most three variables.

Intuitively, the reason is that each subproblem involves a
given pixel as well as the pixels above and to the right due
to the forward difference. Suppose that pixel (p, q) ∈ Dk.
We have the following cases.

Case 1. Image interior (if p < m, q < n). Let us define
u = ([Xk]p,q+1, [Xk]p,q, [Xk]p+1,q)

T , (14)

w = ([V tk ]p,q+1, [V
t
k ]p,q, [V

t
k ]p+1,q)

T .

As we discussed in Section 2.2, u is only involved in
‖Dp,qXk‖, not any other terms in ‖Xk‖TVk . Thus, the fol-
lowing subproblem can be decoupled from problem (13):

min
u

1

2
‖u−w‖2 +

λ

γ

√
(u1 − u2)2 + (u3 − u2)2. (15)
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Case 2. Top boundary (if p = m, q < n). Let
u = ([Xk]p,q+1, [Xk]p,q)

T ,w = ([V tk ]p,q+1, [V
t
k ]p,q)

T . (16)
Then, due to the same reason as in Case 1, we have the
following subproblem that can be decoupled from (13):

min
u

1

2
‖u−w‖2 +

λ

γ
|u2 − u1|. (17)

Consider the right boundary (p < m, q = n). Let
u = ([Xk]p+1,q, [Xk]p,q)

T ,w = ([V tk ]p+1,q, [V
t
k ]p,q)

T . (18)
We have the same subproblem as (17).

Case 3. Top right corner (if p = m and q = n). We have
‖Dp,qXk‖ = 0 by the definitions in (3) and (4). Thus,

min
[Xk]p,q

1

2
([Xk]p,q − [V tk ]p,q)

2 ⇒ [Xt+1
k ]p,q = [V tk ]p,q. (19)

We solve problems (15) and (17) in Section 3.

Remark 2. [Xk]p,q will be updated with one of the above
three cases if group k contains pixel (p, q), the pixel below,
or the pixel to the left.

Case 4. By Remark 2, if none among the pixels (p, q),
the pixel below, or the pixel to the left belongs to group k,
[Xk]p,q will not be updated. Take Fig. 1(a) as an example;
this is the case for pixel (1, 3). Clearly, the variable [Xk]p,q
does not appear in the second term on the RHS of (13), i.e.,
λ
γ ‖Xk‖TVk . Thus, we only need to solve:

min
[Xk]p,q

1
2 ([Xk]p,q − [V tk ]p,q)

2 ⇒ [Xt+1
k ]p,q = [V tk ]p,q. (20)

Remark 3. S1 involves two levels of decomposition. The
first level comes from the fact that problem (13) involves
minimizing over the three sets of local variables, Xk, k =
1, 2, 3, which are independent from each other. Thus, we
can solve (13) for Xk, k = 1, 2, 3, in parallel. The sec-
ond level is due to the four cases in S1. Specifically, for
each k ∈ {1, 2, 3}, (13) breaks into a set of subproblems
involving at most three variables [problems (15) and (17)].
Recall that, in Section 2.2, we decompose the image into
three groups of non-overlapping pixels. We emphasize that
these are referring to different levels of the decomposition.

S2. Minimize Lγ(Z; Xt+1; Θt) with respect to Z

Since Zt+1 = argminZ Lγ(Z; Xt+1; Θt), we have
∂Lγ(Z; Xt+1; Θt)

∂Z

∣∣∣∣
Z=Zt+1

= 0 (21)

⇒Zt+1 − Y − γ
∑3

k=1
(Xt+1

k − Z + Θt
k) = 0

⇒Zt+1 =
Y +

∑3
k=1(Θt

k +Xt+1
k )

1 + 3γ
. (22)

Notice that, in this step, we update the global variable Z
and thus the replicated variables Xk, k = 1, 2, 3, are coor-
dinated across the three pixel groups.

S3. Update the (scaled) dual variable Θt

The dual variables Θt
k, k = 1, 2, 3, are updated by

Θt+1
k = Θt

k + (Xt+1
k − Zt+1), (23)

which is equivalent to a dual ascent step (Boyd et al., 2011).

Our method is summarized in Algorithm 1.

Algorithm 1 FAD (Fast ADMM for TV Models)
Input: Y , λ, γ > 0
Initialize Z0 = X0

k := Y , Θ0
k := 0, k = 1, 2, 3

for t = 0 to T do
for k = 1 to 3 do

V t
k := Zt −Θt

k,

Xt+1
k := argmin

Xk

1

2
‖Xk − V t

k ‖2F +
λ

γ
‖Xk‖TVk ,

end for

Zt+1 :=
Y +

∑3
k=1(Θt

k +Xt+1
k )

1 + 3γ
,

for k = 1 to 3 do
Θt+1

k := Θt
k + (Xt+1

k − Zt+1),

end for
end for
Return: ZT

Remark 4. Recall that T is the number of iterations when
Algorithm 1 terminates. We use the primal and dual resid-
uals (Boyd et al., 2011) to specify the stopping criterion.
If both residuals are smaller than a given parameter ε, the
algorithm stops. In this paper, we set ε = 10−4. In addi-
tion, it is known that a larger γ tends to result in a smaller
primal residual but a larger dual residual. We keep γ fixed
(γ = 10) in this paper. For schemes about varying γ, we
refer readers to (Boyd et al., 2011).

2.4. Convergence Analysis

The convergence properties of ADMM that solve the stan-
dard form in (5) have been extensively explored by (He &
Yuan, 2012; Boyd et al., 2011; Monteiro & Svaiter, 2010;
Eckstein & Bertsekas, 1992; Glowinski & Tallec, 1989).
To establish the convergence properties of Algorithm 1,
we can reformulate problem (11) as (5), and the result-
ing formulation satisfies the conditions required for con-
vergence. Moreover, the convergence rate of Algorithm 1
can be shown asO(1/k) by following the procedure in (He
& Yuan, 2012). For details, see the supplement.

3. Solutions to the Subproblems
We solve problems (15) and (17) in Sections 3.1 and 3.2,
respectively. In Section 3.3, we give a brief complexity
analysis of Algorithm 1.

3.1. Solution to Subproblem (15)

We focus on the following subproblem:

min
u

1

2
‖u−w‖2 + ρ

√
(u1 − u2)2 + (u3 − u2)2,
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where ρ = λ
γ ≥ 0. Let G ∈ <2×3 be defined by

G =

(
−1 1 0
0 −1 1

)
. (24)

The dual problem of (15) is:
min
s

{
1
2‖w − ρG

T s‖2 : s21 + s22 ≤ 1
}
. (25)

Assume that u∗ and s∗ are the optimal solutions of (15) and
(25). By the KKT conditions, we have:

u∗ = w − ρGT s∗, (26)(
s∗1
s∗2

)
∈

{
(u∗2−u

∗
1 ,u
∗
3−u

∗
2)
T

‖(u∗2−u∗1 ,u∗3−u∗2)T ‖
, if (u∗2 − u∗1, u∗3 − u∗2)T 6= 0,

v, ‖v‖ ≤ 1, if (u∗2 − u∗1, u∗3 − u∗2)T = 0.
(27)

Note that problem (25) is smooth and convex. It is thus
easier to solve than the nonsmooth problem (15). We can
solve u∗ via s∗ according to Eq. (26). We rewrite (25) as:

min
s

{
ρ2

2

∥∥∥w
ρ −G

T s
∥∥∥2 : s21 + s22 ≤ 1

}
. (28)

Let B̃ = {t : t = GT s, s ∈ B}, where B ∈ <2 is the unit
disc. Clearly, B̃ ∈ <3 is a two dimensional linear manifold.
Indeed, problem (28) is a projection problem. Let

t∗(ρ) = argmin
t∈B̃

∥∥∥w
ρ − t

∥∥∥2 = PB̃(w/ρ).

Then, we have t∗(ρ) = GT s∗(ρ). There is a one-to-one
linear mapping between t∗(ρ) and s∗(ρ) since GT is linear
and has full column rank. Consequently, t∗(ρ) ∈ relint B̃
implies that s∗(ρ) ∈ B◦ and t∗(ρ) ∈ ∂B̃ implies that
s∗(ρ) ∈ ∂B and vice versa. Since the projection operator
PB̃(w/ρ) is nonexpansive (Bertsekas, 2003), t∗(ρ) varies
continuously with ρ. When ρ is large enough, t∗(ρ) must
belong to relint B̃ and thus ‖s∗‖ ∈ B◦ (consider the ex-
treme case t∗(∞) = 0 ∈ relint B̃). Therefore, there must
exist a ρmax such that ρ > ρmax implies s∗(ρ) ∈ B◦, i.e.,
‖s∗(ρ)‖ < 1. By Eq. (27), ‖s∗‖(ρ) < 1 implies that al-
l components of u∗(ρ) are equal. The following theorem
solves for ρmax and u∗ explicitly when ρ ≥ ρmax.

Theorem 1. Let ρmax = ‖(GGT )−1Gw‖ and I be the
identity matrix. If ρ ≥ ρmax, the optimal solution of the
problem (15) is given by

u∗ =
[
I −GT (GGT )−1G

]
w. (29)

Remark 5. The expression of ρmax implies that if w be-
longs to the null space of G, i.e., all three components of
w are equal, then ρmax = 0. In this case, the solution to
problem (15) is u∗ = w [note that u∗ is the projection of w
onto the null space of G by Eq. (29)], which is independent
of ρ. To avoid this trivial case, we always assume that w is
not a constant signal. Therefore, we consider only the case
with ρmax > 0.

We solve for u∗ with ρ < ρmax in the following theorem.

Theorem 2. LetG = UΣV T be the singular value decom-

position ofG. If ρ < ρmax, the optimal solution to problem
(15) is given by

u∗ =
[
I −GT (GGT + α

ρ2 I)−1G
]

w, (30)

where α > 0 solves the following quartic equation:

α4 + c3α
3 + c2α

2 + c1α+ c0 = 0. (31)
The parameters are given by

c0 = ρ8σ4
1σ

4
2 − ρ6(w̃2

1σ
4
2 + w̃2

2σ
4
1),

c1 = 2ρ6(σ2
1σ

4 + σ4
1σ

2)− 2ρ4(w̃2
1σ

2 + w̃2
2σ

2
1),

c2 = ρ4(σ4
1 + σ4

2 + 4σ2
1σ

2
2)− ρ2(w̃2

1 + w̃2
2),

c3 = 2ρ2(σ2
1 + σ2

2),

and w̃ = ΣV Tw, σ2
1 = 3, σ2

2 = 1. Eq. (31) has a unique
positive root if ρ < ρmax.

Remark 6. There are numerous efficient algorithms1 to
solve Eq. (31). Closed-form solutions of quartic equations
are also available2, but they are computationally expensive
and nonstable. In this paper, we use Newton’s method to
find the nonnegative root of Eq. (31), which never fails in
practice. For discussions regarding the root finding tech-
niques, we refer the reader to the supplement.

3.2. Solution to Subproblem (17)

Recall that problem (17) takes the form of
min
u
h(u) = 1

2‖u−w‖2 + ρ|u2 − u1|,

where ρ = λ/γ. We have the following theorem.

Theorem 3. Let u∗ be the optimal solution of (17). Then,

u∗ =


(w1 − ρ, w2 + ρ)T , if w1 > w2 + 2ρ,

(w1 + ρ, w2 − ρ)T , if w1 < w2 − 2ρ,

(w1+w2

2 , w1+w2

2 )T , otherwise.
(32)

Notice that the result in Theorem 3 is a small variation on
the standard soft thresholding operator.

Remark 7. Notice that problems (15) and (17) can be
viewed as proximal operators of particular functions. Take
problem (15) for example. Let f(u) = ‖Gu‖. Then, the
optimal solution u∗ of problem (15) can be expressed as:

u∗ = proxρf (w).

Moreover, Fenchel’s conjugate (Ruszczyński, 2006) of ρf
is given by:

(ρf)∗(v) = supu

(
uTv − ρf(u)

)
= δρB̃(v),

where δρB̃(v) = 0 if v ∈ ρB̃ and δρB̃(v) =∞ otherwise;

1http://en.wikipedia.org/wiki/Quartic_
function

2We found instances that the closed form solution can not give
correct answers due to the limitation of the computers’ precision.

http://en.wikipedia.org/wiki/Quartic_function
http://en.wikipedia.org/wiki/Quartic_function
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that is, δρB̃(v) is the indicator function of ρB̃. Thus,

proxδρB̃ (w) = min
u

1

2
‖u−w‖2 + δρB̃(u) = PρB̃(w).

By Moreau decomposition (Rockafellar, 1970), we have

proxρf (w) = w − prox(ρf)∗(w)⇒ u∗ = w − ρGT s∗,

which is the same as Eq. (26). By similar analysis as in Sec-
tion 3.1, we can also solve (15). For more details, please
refer to Parikh & Boyd (2013); Pustelnik et al. (2011).

3.3. Complexity Analysis of Algorithm 1

Each iteration of Algorithm 1 involves updating of the pri-
mal variablesZ,X, and dual variables Θ. We updateZ and
Θ element-wise by simple arithmetic operations and thus
the complexity is O(N), where N = m× n is the number
of variables/pixels. The update of X involves solving a set
of small and independent subproblems. Because each sub-
problem involves at most three variables, the complexity of
updating X is proportional to N . Thus, the complexity of
each iteration in Algorithm 1 is O(N). From Section 2.4,
to obtain an ε-optimal solution, Algorithm 1 needs O(1/ε)
steps (He & Yuan, 2012). Thus, the complexity of Algo-
rithm 1 to achieve an ε-optimal solution is O(N/ε).

An appealing feature of Algorithm 1 is that every step of
Algorithm 1 can be executed in parallel. Suppose that we
have np processors. Then, we can run FAD simultaneously
on these processors. Each processor solves a subset of sub-
problems (15) and (17) to update X and updates a small
piece of Z and Θ. We call the parallel version of FAD
“pFAD”. The complexity of pFAD is O( N

εnp
). Clearly, the

more processors we have, the more efficient pFAD will be.
This is demonstrated in our experiments.

4. Implementation of pFAD via MPI
By the decomposition strategy in Section 2.2, the TV mod-
el in (1) can be decoupled into a set of small and indepen-
dent subproblems as in (15) and (17). To fully utilize this
feature, we implement pFAD via MPI such that pFAD can
run on large systems of interconnected computer clusters
in parallel. One of the key advantages of pFAD is that the
communication overhead across processors is very smal-
l. Suppose that we divide the image into several blocks.
Only the data on the “boundaries” need to be interchanged
among the “adjacent” blocks (Fig. 1).

Fig. 2 shows an example of the synthetic images for test-
ing. Each image Ỹ ∈ <n×n has eight randomly generated
blocks. We add Gaussian noise N (0, 0.22) to Ỹ to gener-
ate the noisy image Y . The intensities are scaled to [0, 1].
Fig. 3(a) shows the speedup of pFAD compared with FAD
when we increase the number of processors. The number
of processors, c, is set to 1, 2, 4, 9, 16, 25, 100, 400. For

each specific number of processors, we fix λ = 0.35 and
vary n, the side length of the test images, from 100 to 5000
with a step size 100 (we observed similar patterns under
different parameters). For each n, we perform 10 trials
and record the average performance. Then we average the
performance across all different n to get the speedup for
each specific number of processors. Recall that Algorithm
1 involves updating the primal variables Z and X and dual
variables Θ. Except X, the update ofZ and Θ are element-
wise and only require several simple arithmetic operations.
Thus, the dominant part of Algorithm 1 is the update of X
since it requires that we solve a bunch of quartic equation-
s. In Fig. 3(a), we report the speedup of updating X and
the total computational time. We can see that the speedup
of updating X approximately equals the number of proces-
sors. For 400 processors, the speedup is about 377 times.
Fig. 3(a) also indicates that the speedup of the total compu-
tational time is about 357 times for 400 processors, since
the cost of updating Z and Θ is very low.

(a) Original image (b) Noisy image
Figure 2. Example of synthetic images to evaluate the perfor-
mance of MFISTA, SplitBregman and FAD/pFAD.

Comparison with Other Algorithms We compare FAD
and its parallel variant pFAD with several state-of-the-art
competitors including MFISTA3 (Beck & Teboulle, 2009a)
and SplitBregman method4 (Goldstein & Osher, 2009).
Note that it is not straightforward to implement MFISTA
or SplitBregman in parallel since both of them involve
manipulating or solving large-scale linear systems. Thus,
we implement pFAD with OpenMP for this experiment and
test all of the algorithms on a server with four quad-core (16
processors in total) Intel Xeon 2.93GHz CPUs and 65G-
B memory. To evaluate the performance of the aforemen-
tioned methods thoroughly, we test them on images whose
sizes vary from 100× 100 to 5000× 5000.

We compare the performance of the above algorithms by
varying n and λ, respectively. We first fix λ = 0.35 and
vary the side length n of the images from 100 to 5000 with
a step size of 100. Then, we fix n = 1000 and vary λ
from 0.15 to 0.9 with a step size of 0.05. For both settings,
we perform 10 trials and report the average performance in

3iew3.technion.ac.il/˜becka/papers/tv_
fista.zip

4tag7.web.rice.edu/Split_Bregman.html

iew3.technion.ac.il/~becka/papers/tv_fista.zip 
iew3.technion.ac.il/~becka/papers/tv_fista.zip 
tag7.web.rice.edu/Split_Bregman.html 
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(a) (b) (c)

Figure 3. Efficiency evaluation. Fig. 3(a) shows the speedup of pFAD with respect to FAD using multiple prcessors. Fig. 3(b) and
Fig. 3(c) present the efficiency comparison of FAD, pFAD, SplitBregman and MFISTA in terms of the computational time.

Fig. 3(b) and Fig. 3(c), respectively. For a fair comparison,
in each setting, we first run FAD and record the objective
function value when it stops. Then we run all the other
algorithms until the objective function values are no larger
than that of FAD (for FAD/pFAD, we set ε = 10−4 and
γ = 10).

Fig. 3(b) indicates that the performance of FAD is com-
parable to the SplitBregman method and about six times
faster than MFISTA. pFAD further improves the efficiency
of FAD by about one order. Thus, pFAD is about 60 and 10
times faster than MFISTA and the SplitBregman method,
respectively. Fig. 3(c) further demonstrates the efficiency
of pFAD. We can observe that, pFAD and FAD become s-
lightly faster when λ increases. From Theorems 1 and 2,
when ρ ≥ ρmax (λ is proportional to ρ since γ is fixed),
problem (15) admits a closed-form solution. Otherwise,
we solve the quartic equation (31). Overall, FAD/pFAD is
more stable than SplitBregman and MFISTA.

5. Applications
We apply pFAD to the problems of image denoising, de-
blurring and reconstruction and present the results below.

5.1. Image Denoising
We apply our methods to the image denoising problem.
The original image5 is a high-resolution photograph of the
moon with 5100 × 4768 pixels (about 13 MB). The noisy
image is obtained by adding Gaussian noise N (0, 0.22).
The regularization parameter λ is set to be 0.2. To give
a better view, we show the results over a sub-image with
512× 512 pixels. The upper left corner of the sub-image is
at (1800, 2200). The denoising process takes pFAD, Split-
Bregman and MFISTA 46.87, 445.66 and 2695.28 seconds,
respectively. MFISTA takes about 45 minutes. SplitBreg-
man is much more efficient than MFISTA, but still needs
about 7 minutes. The proposed pFAD only needs several
tens of seconds and thus performs the best.

5http://blog.astrophotographytargets.com/
2012/03/

(a) Original image (b) Subimage

(c) Noisy subimage (d) Denoised result
Figure 4. Image denoising.

5.2. Image Deblurring
The TV-based image deblurring model is:

min
X
‖B(X)− Y ‖2F + λ‖X‖TV , (33)

whereX is the image to be recovered, B is a linear transfor-
mation encoding a certain blurring operation, and Y is the
observed noisy and blurred image. Problem (33) can be ef-
ficiently solved via FISTA (Beck & Teboulle, 2009b). The
key step is to solve the proximal operator of the TV term,
which is equivalent to problem (1). Therefore, we can ap-
ply FAD or pFAD to solve the proximal operator to speedup
the computation. The original image “text” in Fig. 5(a) is

(a) (b) (c)

Figure 5. Image deblurring via FISTA-pFAD.

extracted from the Matlab image processing toolbox. We
then apply a 7 × 7 Gaussian filter with a standard devia-

http://blog.astrophotographytargets.com/2012/03/
http://blog.astrophotographytargets.com/2012/03/
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Table 1. Computational time (in seconds) for MRI reconstruction.
CARDIAC BRAIN CHEST ARTERY

FCSA-MFISTA 0.682 0.607 0.633 0.712

FCSA-PFAD 0.037 0.033 0.041 0.031

tion 5 to get the blurred image. Fig. 5(b) is obtained by
adding Gaussian noise N (0, 0.022) to the blurred image.
The regularization parameter λ of pFAD is set to be 0.001.
Fig. 5(c) shows the deblurred image via FISTA-pFAD.

5.3. Image Reconstruction

(a) Cardiac

(b) Brain

(c) Chest

(d) Artery
Figure 6. MRI reconstruction. The left column shows the origi-
nal images. The images in the middle and right columns are the
reconstructed ones by FCSA-MFISTA and FCSA-pFAD, respec-
tively. The SNR for Cardiac, Brain, Chest and Artery are 17.56,
20.35, 16.06 and 23.70 respectively.

Magnetic Resonance Imaging (MRI) is a powerful tool in
medical diagnosis because of its excellent performance in
detecting soft tissue changes. However, a typical MRI ex-
amination procedure may take up 45 minutes. By noting
the sparse nature of signals in a transformed domain, recent
advances in the compressive sensing theory (CS) (Can-
dès et al., 2006; Donoho, 2006) show that it is possible to
accurately reconstruct signals with limited undersamples.
Therefore, the duration of an MRI examination can be sig-

nificantly reduced. A popular formulation of the image re-
construction problem takes the form of (Lustig et al., 2007;
Trzasko et al., 2007):

min
X

1

2
‖F(X)− Y ‖2 + λ1‖W(X)‖1 + λ2‖X‖TV , (34)

where X is the signal to be recovered, Y are the observed
undersamples and F andW are partial Fourier and wavelet
transformations, respectively. Huang et al. (2011) proposed
an efficient algorithm called FCSA6 to solve (34). One of
the key steps of FCSA is to solve the proximal operator
of the TV term by MFISTA. To improve the efficiency of
FCSA further, we use pFAD to replace MFISTA.

We compare the performance of FCSA-MFISTA and
FCSA-pFAD on four MRI images: cardiac, brain, chest
and artery. We use the default settings of the FCSA pack-
age. The sample ratio is about 20% and Gaussian noise
N (0, 0.012) is added to the undersamples to generate Y .
For a fair comparison, we first run FCSA-pFAD and record
the objective function values returned by pFAD. Then, we
run FCSA-MFISTA and make sure it achieves the same
precision level with FCSA-pFAD at each iteration. We run
both FCSA-pFAD and FCSA-MFISTA for 50 iterations.
Fig. 6 presents the results obtained by FCSA-MFISTA and
FCSA-pFAD, which are almost identical to each other.
Because both FCSA-MFISTA and FCSA-pFAD solve the
same problem and achieve the same accuracy level, the re-
sulting reconstructions and SNR are the same. The average
time for the 50 iterations of the two methods is reported
in Table 1, which indicates that FCSA-pFAD is about 20
times faster than is FCSA-MFISTA.

6. Conclusion
In this paper, we propose a fast alternating direction method
for isotropic TV models. Our approaches are based on a
novel decomposition strategy of the problem domain. By
the decomposition, isotropic TV models can be decoupled
into a set of small and independent subproblems, which
can be solved efficiently in parallel. Different from ex-
isting ADMM based approaches, like SplitBregman meth-
ods, one appealing feature of our method is that no large-
scale linear system is involved. Our empirical evaluation
demonstrates the very low communication overhead and
high scalability of the proposed method. One of our future
directions is to extend our approach to higher dimensional
problems, like video and functional MRI denoising.
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