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Preface

The term smart antenna is often used in mobile communications to describe an
adaptive process designed to improve the capacity of a base station by focusing
the radiated electromagnetic energy on transmit while improving the gain pattern
on receive from a mobile system. This is called space division multiple access.
Here, the transmitted signals from a base station are spatially directed to an
intended mobile. In addition, the receive gain of the base station is also increased
by spatially forming a beam along the direction of a mobile which is on a
transmit mode. In this way the capacity of a base station can be increased, as it
can now serve many mobile units simultaneously by directing a beam along each
one of them. However, this promise of increased capacity through space division
multiplexing can be further enhanced if one understands the true nature of an
antenna (the source of radiating and/or the sensor of electromagnetic energy)
which is the central point of this methodology. An antenna may be considered to
be a device that maps spatial-temporal signals into the time domain, thus making
them available for further analysis in a digital signal processor. In this
philosophical framework, an ideal antenna is one that converts the spatial-
temporal signals arriving at an antenna into a temporal signal without distortion.
Hence, there is a tacit assumption that no information is destroyed by the
antenna. This may be true when dealing with narrowband signals, but when
considering the transmission of broadband signals, even a smali radiator called a
Heritzian dipole operating in free space behaves differently on transmit than it
does on receive. It is important to note that in electromagnetics there does not
exist any isotropic radiator, as even a Hertzian dipole has a directive pattern.
However, along a certain plane the pattern can be omni-directional. On transmit
the far field of an antenna (even that of a small Hertzian dipole operating in free
space) is the time derivative of the input transient waveform fed to its input
terminal. While on receive, the same antenna acts as a spatial integrator of the
fields that are incident on it. Hence, the temporal and spatial properties of an
antenna are intimately related and it is not advisable to separate them if one
wants to realize the full potential of an antenna system. In this book the term
smart antenna is used to imply that one is dealing appropriately with the dual
spatial and temporal properties of an antenna on both transmit and receive.

An admirer of James Clerk Maxwell (the actual discoverer of
electromagnetism) or Heinrich Hertz (the true father of radio, as he not only
formulated the four equations of Maxwell that are available in electromagnetic
textbooks today but also produced an experimental device to generate, transmit,
propagate, and receive electromagnetic energy) will realize immediately that
antennas act simultaneously as temporal and spatial filters. In addition, an
antenna is a spatial sampler of the electric fields. One of the objectives of this
book is to explain the basic difference between adaptive antennas and adaptive
signal processing. Whereas for the former an antenna acts as a spatial filter, and
therefore processing occurs in the angular domain, a signal-processing algorithm

xiii
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is applied in the temporal domain. To identify whether one is dealing with
adaptive antennas or adaptive signal processing is to ask the following simple
question: For a narrowband communication, can the adaptive system separate a
desired signal from its coherent multipath components? In this case, there is not
only a signal, but also multipath components that are correlated with the desired
signal and interact (in either a constructive or destructive fashion) with the signal.
Only an adaptive antenna can isolate the desired signal from its coherent
multipath, as the information on how to separate them is contained in the angle of
arrival (i.e., in the spatial domain). There is little information in the temporal
domain for this case. In a conventional signal-processing algorithm, this type of
coherent multipath separation is not trivial, and secondary processing that utilizes
spatial concepts from electromagnetics is necessary. The critical point is that
temporal processing cannot separate coherent signals spatially, since the
differences between the signals manifest themselves in the spatial domain and
not in the temporal domain. The signal-processing community sometimes views
an antenna as a temporal channel, whereas practitioners of electromagnetics
always consider an antenna to be a spatial filter. We want to distinguish between
these disjoint temporal and spatial properties by adding the term smart antennas
which we imply that we are merging these two distinct methodologies to provide
better systems. In fact, in an adaptive system, one is shaping the spatial response
of an antenna by processing the time domain signal. Hence, we do not treat these
two spatial and temporal properties separately. An additional advantage to using
this coupled spatial-temporal methodology is that we have a well-established
mathematical tool, which treats this space-time continuum in an exact way. This
mathematical framework for such a system is described by one of the oldest sets
of equations in mathematical physics, equations that have withstood the test of
erosion and corrosion of time. Even the advent of relativity has had little effect
on them. This analytical framework is given by Maxwell’s equations. A related
problem that also needs to be addressed is what actually limits the speed of
communication: is it based on the channel capacity defined by Shannon which
does not include the speed of light or is it based on the dispersion introduced by
the propagation medium as per Maxwell’s equations? A moment of reflection on
this critical question will reveal that we need to develop the problem along the
space-time continuum as formulated by the Maxwell’s equations.

Another objective of this book is to illustrate procedures for adaptive
processing using directive elements in a conformal array. Under the current
philosophy, it is uncommon to use directive elements in a phased array or
antenna elements that are not uniformly spaced. The current thinking is that if
one does not use omnidirectional antenna elements, it may not be possible to
scan over wide angles. To increase the directive gain of the phased array, one
increases the total number of elements by hundreds or even thousands. This
increases the cost significantly, as one needs an analog-to-digital converter at
each antenna element in addition to a complete receiver channel for
downconversion of the radio-frequency signal to baseband. The complexity of a
phased array can also be reduced if we employ directive antenna elements on a
conformal surface. In addition, individual antenna elements may be
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nonuniformly spaced, or the conformal array can even be nonplanar. To treat
such general array configurations in this book, we describe an electromagnetic
preprocessing technique using an array transformation matrix which broadens the
fundamental principles of adaptive antennas. Here we address phased array
applications, including direction finding or angle-of-arrival estimation and
adaptive processing utilizing directive elements that may be nonuniformly spaced
and operating in the presence of near-field scatterers.

We also address problems in radar and mobile communications. To perform
adaptive processing we need to have some a priori information about the signals
that we are trying to detect. For dealing with phased array radars, we generally
know or assume the direction of arrival of the signal of interest, as we know a
priori along which direction the mainbeam of the array was pointing, or
equivalently, along what spatial direction the energy was transmitted. Thus in
radar, our goal is to estimate the strength of the reflected signal of interest, whose
direction of arrival is known. What is unknown is the jammer interference and
clutter scenario. Furthermore, we present a direct data domain approach that
processes the data on a snapshot-by-snapshot basis to yield the desired
information. Here, a snapshot is defined as the voltages available at the terminals
of the antenna at a particular instance of time. Since we are processing the data in
a batch mode, it is highly suitable for characterizing a dynamic environment
where the nature of the interference and clutter may change over time. The direct
data domain least squares approach presented in this book estimates the signal in
the presence of jammer interference, clutter, and thermal noise. In this technique
no statistical information about the clutter is necessary. Also, since no covariance
matrix is formed in this procedure, the process can be implemented in real time
on an inexpensive digital signal processing chip. We also present an extension of
this technique to include traditional statistical processing when dealing with
space-time adaptive processing.

Unlike radar, in mobile communications it is difficult to know a priori the
direction of arrival of the signal. In this case, we exploit the temporal
characteristics of the signal through introduction of the principles of
cyclostationarity. Again a direct data domain method is presented to solve this
problem on a snapshot-by-snapshot basis using the principles of cyclostaionarity.
The advantage of exploiting the temporal characteristics of the signals is that the
number of interferers can be greater than the number of antennas. However, the
number of coherent interferers at the same frequency needs to be no more than
half the number of antenna elements. Also shown is a method to incorporate the
effects of mutual coupling between antenna elements and the effects of near-field
scatterers, to improve the overall system performance.

One unique topic in this book is a muitistage analysis procedure that
combines electromagnetic analysis with signal processing. Initially,
electromagnetic principles are applied to compensate for the effects of mutual
coupling between antenna elements, including the effect of nonuniformity in the
spacing between the elements and the presence of near-field scatterers. Then a
direct data domain methodology is implemented to yield the signal of interest. A
deterministic model for the signal of interest yields a lower value for the Cramer—
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Rao bound than those using stochastic methods. In this approach, no statistical
information about the interference environment is necessary. This makes it
possible to perform real-time processing in a dynamic environment. These
principles have been applied for space-time adaptive processing of experimental
data obtained from an airborne multichannel radar system.

We also present a survey of various models for characterizing radio-wave
propagation in urban and rural environments. We describe a method where it is
possible to identify and eliminate multipath without spatial diversity and
optimize the location of base stations in a complex environment.

Finally, it is demonstrated that in mobile communication where the transmit
and receive ports can be clearly defined, it is possible to direct the signal from
base stations to mobile units without having any a priori knowledge about their
spatial coordinates or knowing the near-field electromagnetic environment in
which they are radiating. This is possible through invocation of the principle of
reciprocity. This approach will make space division muitiplexing more than just
an experimental concept but a commercial success.

Every attempt has been made to guarantee the accuracy of the material in the
book. We would, however, appreciate readers bringing to our attention any
errors that may have appeared in the final version. Errors and any comments
may be e-mailed to either author.
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