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Abstract 

Applying 2D algorithms for inverting the potential field data is more useful and efficient 
than their 3D counterparts, whenever the geologic situation permits. This is because the 
computation time is less and modeling the subsurface is easier. In this paper we present a 
2D inversion algorithm for interpreting gravity data by employing a set of constraints 
including minimum distance, smoothness, and compactness. Using different combination 
of these constraints provide either smooth images of the underground geological 
structures or models with sharp geological boundaries. We model the study area by a 
large number of infinitely long horizontal prisms with square cross-sections and unknown 
densities. The final density distribution is obtained by minimizing an objective function 
that is composed of the model objective function and equality constraints, which are 
combined using a Lagrangian multipliers. Each block's weight depends on depth, a priori 
information on density and the allowed density ranges for the specified area. A MATLAB 
code has been developed and tested on a synthetic model consists of vertical and dipping 
dikes. The algorithm is applied with different combinations of constraints and the 
practical aspects are discussed. Results indicate that when a combination of constraints is 
used, the geometry and density distribution of both structures can be reconstructed. The 
method is applied on Zereshlu Mining Camp in Zanjan - Iran, which is well known for 
the Manganese ores. Result represents a high density distribution with the horizontal 
extension of about 30 m, and the vertical extension shows a trend in the E - W direction 
with a depth interval between 7 to 22 m in the east and 15 to 35 m in the west. 
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1    Introduction 
Gravity inversion recovers models of density 
distribution from data that are measured on 
finite discrete points on the Earth’s surface. 
Following Gauss’ theorem, there are many 
equivalent sources that can produce the same 
known field at the surface (theoretical 
ambiguity). Meanwhile, as the 
parameterization of problem is such that 
there are more unknowns than observations, 
the system does not provide enough 
information to uniquely determine model 
parameters (algebraic ambiguity). Although a 
density distribution which satisfies the 
observed data can be easily found, the non-
uniqueness of the solution still exists. It is 
also obvious that measurements on the 

Earth’s surface cannot be carried carry out 
without errors that will impose arbitrarily 
large changes on the solution (instability of 
solution). Thus, the inversion of gravity data 
is a typical example of an ill-posed problem, 
so that it is necessary to include more 
information about the desired solution in 
order to find a geologically acceptable 
solution. The additional information can be 
divided into two groups: 1) a set of 
mathematical constraints that stabilize the 
problem and recover the model with certain 
criteria; and 2) the geological-based 
constraints which are added to produce 
reliable models consistent with geology. 
During last decades different authors have 
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used several approaches to introduce a priori 
information into gravity inversion. Green 
(1975) found the closest model to the initial 
model, Last and Kubik (1983) minimized the 
volume of the causative body, Guillen and 
Menichetti (1984) concentrated the solution 
about a geometric element. Li and Oldenburg 
(1996, 1998) counteracted the decreasing 
sensitivity of the cells with depth by 
weighting it with an inverse function of 
depth. Smoothness or roughness of physical 
parameters distribution that control gradients 
in spatial direction used by Pilkington (1997) 
and Li and Oldenburg (1996, 1998). 
Boulanger and Chouteau (2001) employed a 
3D inversion algorithm that implements 
several constraints, including minimum 
distance, flatness, smoothness and 
compactness.  

Gravity inversion can be carried out either 
in the two or three dimensional spaces, 
depending on the type of problem to be 
tackled. Therefore, the first question to be 
raised is whether to use a two or three 
dimensional gravity inversion to fully 
recover the location, shape and density of the 
sources. Two–dimensional  methods are 
suitable to be applied on the geological 
structures such as faults, dikes and rift zones 
over which the length of the source body (y-
direction) is much longer than its width in x 
and z directions. Then, it may be possible to 
consider the gravitational sources as 
completely invariant in the direction parallel 
to the length direction. Additionally, 2D 
sources are easier to conceptualize and 

considerably easier to be modeled than their 
3D counterparts (Blakely, 1996). 

In this paper a 2D version of the 
Boulanger and Chouteau’s (2001) 3D method 
is developed. First, the subsurface under the 
gravity profile is divided into a large number 
of infinitely long horizontal prisms with 
square cross-sections, which density for each 
block is an unknown constant. Later, an 
analytical calculation for the model is 
derived. To solve the inverse problem, 
weighted model objective function and 
equality constraints are combined. Tests are 
performed using different combinations of 
constraints on synthetic model. Finally, as a 
practical application the method is applied on 
a profile of gravity data gathered from 
Zereshlu mining camp. 
 
2    Gravity modelling 
The subsurface under the survey area is 
divided into a large number of infinitely  
long horizontal prisms, with square cross-
section and unknown densities (Figure1). 
This type of parameterization is a  
simple two-dimensional modeling. The y axis 
is directed parallel to the invariant direction 
and variations in densities are  
only allowed for the x and z directions. The 
cross-section of the model under gravity 
profile is shown in Figure 2. The cells are 
square and their dimensions are equal to the 
distance between two observation points. 
Here the unknown density is considered to be 
constant for each block and the data and 
model parameters are linearly related. 

 

 

Figure 1. Discretization of the subsurface with infinity long horizontal prisms. 
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Figure 2. Cross-section of the model under gravity profile. Gravity stations are located at the center of the blocks at the 
ground surface. Cells are square and their dimensions are equal to the distance between two observation points. 

 
The vertical component of the 

gravitational attraction of a two-dimensional 
body at the origin using Cartesian coordinate 
system is given by Blakely (1996): 
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Here   is the universal gravitational constant 

and the density   is assumed to be constant 

within the body. A solution of this integral 
for L-sided polygon is given by Blakely 
(1996): 
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In Figure 2, nr , 1nr  , 
n  and 

1n 
 are 

displayed for the upper side of a square 
block. The term on the right-hand side of the 
equation (2) quantifies the contribution to the 
ith datum of a unit density in the jth cell 
(

ijG ). This response is valid only at the 

station i and for one prism. To obtain the 
total response at each station i، the gravity 
responses of M prisms are summed: 

1
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Geophysical data always contaminated with 
noise, thus equation (3) in matrix notation is:  

G  g e                                                   (4) 

G  is the forward operator matrix or kernel 
that maps from the physical parameter space 
to the data space and e  is N-dimensional 
vector represents errors in the measurements. 
 
3    Inversion methodology  
Green (1975), based on Backus and Gilbert 
(1967) approach, proposed a linear method 
for inversion of gravity data. The approach 
uses the minimization of a cost functional 
that consists of the weighted distance of an 
acceptable model from an initial state, 
subject to an equality constraint, which can 
be solved using Lagrangian multipliers (See 
appendix A). Boulanger and Chouteau (2001) 
used Green’s method and developed a three-
dimensional inversion algorithm to interpret 
gravity data using a set of constraints. 
Following their method, the Lagrangian 
function is given by   
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This objective function is flexible and allows 
inserting various constraints and a priori 
information in the inversion process. It is 
composed of: 
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H
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                                              (6) 

Here N MG   is the forward operator matrix and 

M MH  is the first or the second derivative  

matrices (  or 2 ) that multiplied by H  ( H   
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or 
2

H  ). The coefficient H  gives either 
more or less importance to the matrix H .The  
first and second derivatives are referred to 
‘flatness’ and ‘smoothness’ constraints 
respectively, which have two effects in the 
inversion process. Firstly, they produce flat 
or smooth density distribution and secondly 
they improve the numerical stability of 
inversion by preventing unlimited growth of 
a single parameter. In this paper smoothness 
constraint is used such that for 2D structure 
according to Figure 2 we need to constitute 

2 2

x zH x H z    . The 2
x  and 2

z  matrices 

represent the finite-difference approximation 
to taking model derivatives in x and 
z directions. Considering that the grid 
consists of M  parameters with nx elements 
in the x-direction and nz  elements in the z- 
direction (elements are numbered up to down 
starting at the top left element). The M M  

matrices of 
2
z  and 

2
x  are given by: 

2

1 2 1

1 2 1

1 2 1

1 2 1

z

 
  
  
 

 
  

0

0


                        (7) 

2

1 2 1

1 2 1

1 2 1

1 2 1

x

 
  
  
 

 
  

0 0

0 0

0 0

0 0

  

     (8) 

Here 0  in the rows of 2
x  is a vector contains 

1nz   zero.  
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where 1Ng  is the difference between the 
observed and the calculated anomaly 

( obs preg g ) and 1M0  is the null vector. 
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where   is a Lagrange multiplier associated 
with equality constraints and splits into   for 

g and   for 0 . 
0  is the vector contains initial contrasts of 

density. Normally 0  0 , but if a priori 

knowledge of the properties of the subsurface 
distribution exists, a full model of the 
expected physical properties could be used. 

1
M MW P QV
   consists of three diagonal 

matricesP ,Q  and V .  

P  is the matrix of the ‘hard’ constraint, 

where 
jjP  is fixed at 210  when geological 

information provides the value of initial 

density of the jth cell (
0
j ), otherwise 

jjP  is 

fixed at 1. Moreover, in this algorithm 
positivity of densities is imposed during the 
inversion by cutting out densities beyond the 

allowable bounds, ( min max,  ), and resets 

them to these limits. 
Q  is the depth weighting matrix with 

diagonal elements 
 

1
jj

j

Q
z



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

 which was 

introduced by Li and Oldenburg (1996, 1998) 

and Pilkington (1997), ( jz  is the mean depth 

of the cell j  and   is a small number to 

avoid singularity at the surface). It is obvious 
that amplitudes of kernel rapidly diminish 
with depth, then during the inversion process 
reconstructed models tend to concentrate 
near the surface regardless of the true depth 
of the causative bodies. Using depth 
weighting matrix counteracts the natural 
decay of the kernel, so that all cells have an 
equal probability during the inversion. The 
weight depends on power  , which small 

values of   result shallow reconstruction for 

solution, while large values concentrate the 
solution at depth, implying that it is 
important to choose an acceptable value for 
 . We illustrated the effect of different 

values of parameter   on inversion of 

gravity data for a square. The square has the 
dimension of 40 40  m and buried at a depth 
of 10 m (Figure 3a). The density of the 
square is 30.5 g cm . Synthetic data are 
calculated on a profile including 50 stations 
of 10-m spacing. We added Gaussian noise 
with zero mean and standard deviation 0

05  of 
the maximum datum. The subsurface is 
divided into 500 cells (50 cells in x-direction 
and 10 cells in z-direction). Objective 
function of equation (5) with depth 
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weighting, positivity and smoothness 
(without compactness constraint) is used for 

0  , 0.9 , 1.4  and results are shown in 

Figures 3b-d , respectively. For 0   

reconstructed model tends to concentrate 
near the surface, while for 1.4   it tends to 
be deeper. For 0.9   inversion algorithm 

tends toward intermediate depths and gives 
reasonable results. However, 0.9  is not the 
only value for   and in our test an 

acceptable range of  0.6 1  was found for this 

parameter. 
V  is a minimum area (compactness) 

constraint with diagonal elements 
2

1
jj

j

V
 




. 

This constraint which was introduced by Last 
and Kubik (1983) seeks to minimize the area 
(in 2D) or volume (in 3D) using density of 
each block as weight. As this weighting 
matrix does not penalize sharp or blocky 
features, it is a suitable constraint for 
geologic structures such as faults, dikes or 
cavities which have properties that are 
relatively localized within the area under 
consideration. This concept is further 
developed by Portniaguine and Zhdanov 
(1999) who used term “minimum support”. 
The parameter   is a small number which is 

introduced to provide stability as 0j  .  
It plays very important role in compactness 
constraint. In general, we are interested 

in the case where 0  , though there  
are practical limitations because its  
small value leads to very compact models 
and increases instability of the  
solution. Meanwhile, if   is chosen large, 
this constraint has no influence on 
compactness of the model. Figure 4  
shows the compactness term of the objective 
function in equation (5), T TW W    ,  
as a function of   (without depth weighting 
and hard constraint, i.e. W V  and with 

0 0 ). As   becomes smaller, the notch 
near zero becomes sharper (Figure 4), 
indicating that the model parameters  
values should drop below this level in order 
to reduce the compactness term in the 
objective function. Conversely, as   
becomes large, it acts like a weighted 
minimum length constraint and will lose its 
property. 

A trade-off curve method is usually used 
to select   by computing model objective 
function for the current model estimate over 
a range of values for   (Minsley et al., 
2006). The optimal value is chosen at the 
point of maximum curvature on a log-log 
plot (Figure 5). This value of   is then used 
to compute a new model estimate. This 
ensures that inversion stability is maintained 
while the value of the objective function  
does not deviate strongly from its value  
when 0  . 
 

 

Figure 3. (a) Illustration of the effect of the depth weighting function. Original model is square with the dimensions of 

40 40 m. (b), (c) and (d) display inversion results for 0  , 0.9  and 1.4 , respectively.  
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Figure 4. Comparison of the compactness term in the objective function for different values of  . 

 
Minimization of the objective function of 

equation (5), ( , )L   , with respect to   and   
gives a system of two equations: 

1 1( )( )T k kAW AW   b                                    (11) 

1 1 1( )k k T kW AW                                  (12) 

as W  is not constant, the computational 
procedure is an iterative approach. For the 
first implementation of the algorithm, 
matrices P  and V are chosen equal to 
identity matrix. For the next iterations, 
minimum area matrix is a function of the 
previous estimate of the model 

parameters,
2
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j k

V
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, and hard constraint 

matrix is adjusted according to the style 
mentioned above. At each iteration, a 
solution for k  is computed from equation 
(11), and this k  is then replaced into 

equation (12) to give the solution 1k . The 

anomaly 1kg and the vector 1kg are 

calculated to estimate 
2

2

2

obs cal
i i

i

g g





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magnitude (
i  is the error standard 

deviation). The program stops when the 
solution reaches the noise level, 2 2N N   , 
or a maximum number of iterations. In the 
present paper, the inverse matrix calculation 
in equation (11), 1 1 1(( )( ) )TAW AW   , is done by 
truncated singular value decomposition 
(TSVD). TSVD is a well-known and 
numerically stable method for dealing with 
ill-condition matrices and is a standard tool 
for small inverse problems. The basic idea of 
TSVD is to neglect the component of the 
solution corresponding to the smallest 
singular values. A complete detail about 
TSVD is given in Hansen (1987). 

 
 

  

Figure 5. Trade-off curve that illustrates the selection of for the compactness constraint. 
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4    Synthetic model 
The forward modeling and the inversion code 
have been developed using MATLAB. For 
testing the validity of the program and the 
inversion method, we invert the gravity data 
which was produced by synthetic model 
consisting of dipping and vertical dikes. 
Figure 6 shows this model and its gravity 
anomaly. The bodies have various depth and 
size, while density contrast for both models 
are the same. Data are calculated at 50 
stations with 10-m spacing, and the Gaussian 
noise with zero mean and standard deviation 

0
05  of the maximum datum is added.  
At the first step, the inversion is done 

using minimum distance and smoothness 
constraints. The starting model for inversion 
is a homogeneous ground with density of 

0 0 . The subsurface is divided into 

50 10 500   cells, with cell size of 10 m. Here 
the density limits are set to 

3 30 0.5g cm g cm   . The coefficient   in 

depth weighting matrix is chosen 0.85. To 

illustrate the application of smoothness 
constraints, the algorithm is implemented 
with two values of H  (i.e. 0.01

x zH H    and 
0.03

x zH H   ). The inversion results  
are presented in Figure 7. In both cases  
the depth to the top of the bodies are  
close to those of the original model, but the  
slop of the dipping dike in the first case is 
recovered better than the second case.  
In Figure 7a, density values of maximum 

30.5 g cm for dipping dike and 30.4 g cm for 
vertical dike are found, while in Figure  
7b they are 30.5g cm and 30.3g cm , 
respectively. Results show that with 
increasing smoothness the density 
distribution tends to spread in more cells, 
while the magnitude of obtaining parameters 
decreases. It should be mentioned that 
smoothness preserves smooth images of the 
underground geological structures and avoids 
models with sharp geological boundaries for 
which the degree of smoothness is related to 

  (see Figure 7). 
 

 

Figure 6. The synthetic model that used to test the inversion method. Contrast of densities for dipping and vertical dikes 
are 30.5 g cm . Gaussian noise with a zero mean and the standard deviation of 0

05  for the maximum datum is 

added. 
 

 

Figure 7. The density model obtained by inverting the gravity data of Figure 6 using minimum distance and smoothness 
constraints. Smoothness constraint is used in (a) with 0.01

x zH H    and (b) with 0.03
x zH H   . 
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Figure 8. The density model obtained by inverting the 
gravity data of Figure 6 using minimum distance 
and compactness constraints for different values 
of  . In (a), (b) and (d) the value of   is 110 , 

210  and 1110 , respectively, while in (c)   was 
chosen according to the trade-off curve method. 

 
Second inversion is done using minimum 

distance and compactness constraints. The 
starting model for inversion is similar to the 
previous case with 0.85   and density limits 

are chosen to be 0  and 30.5 g cm . Tests are 
made using different values of parameter   
and results are shown in Figure 8. For 0.1  , 
we find a good reconstruction for both 
structures but the inversion does penalize 
sharp boundaries and tends to provide 
smooth solutions for structures. The 
maximum density value of 30.5g cm is found 
for both bodies. For 0.01  , geometry and 
density of structures are better reconstructed, 
especially for dipping dike. Results show that 
by decreasing the value of  , the inversion 
can resolve the structures with sharp 
boundaries. Figure 8c shows the 
reconstructed density model for values of   

which was computed according to the trade-
off curve method. These values are usually in 
the range of 2 310 10  , suggesting that the 
result is very close to the case (b). In Figure 
8d, the inversion result using 1110  is 
shown. As expected, the sources become 
more compacted and the amplitude of 
sources increases by increasing compactness 
in order to fit the data. 

The last inversion uses combination of 
three constraints, i.e. minimum distance, 
smoothness and compactness. In this stage, 
parameter   is chosen according to the 
trade-off curve method and inversion is done 

for different values of H . Results are shown 
in Figure 9 for 0.01

x zH H    and 
0.07

x zH H   . The reconstructed models in 
Figures 7, 8 and 9 illustrate the effect of 
using combination of these constraints with 
choosing suitable values of parameters   

and H . The last inversion seems to best 
recover the geometry and density values for 
the sources; especially the slope of the 
dipping dike is well recovered.  

 

5    Real data 
For applying the inversion on real data, we 
choose a profile of gravity data acquired over 
the Zereshlu Mining Camp, in Zanjan-Iran, 
well known for the Manganese ores. The area 
of the gravity survey extends between UTM 
coordinates [704296 704554] East and 
[4130627 4130990] North, zone 38. The area 
is covered by altered red Andesite with 
ferrous Oxide and Olivine Pyroxene Basalt 
Tuff, which the two structures are separated 
by a north-south fault (Figure 10).  

Gravity survey was performed by gravity 
branch of the institute of Geophysics, 
University of Tehran. The measurements 
were corrected for effects caused by variation 
in latitude, elevation and topography to yield 
Bougure gravity anomaly. The residual 
anomaly is obtained by subtracting the 
regional anomaly from Bouguer anomaly 
using polynomial fitting method (Figure 11). 
A profile of the residual anomaly ( AA ) 
consisting of 26 data measurements, sampled 
every 2.5 m, is chosen for inversion. We 
have assigned each datum an error whose 
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standard deviation is 0
02  of its magnitude. 

The subsurface is divided into 26 20 520   
cells of side 2.5 m. Based on a priori 
information, background density of 32.6g cm  
and density limits of 3 32.5 3.3g cm g cm    are 

chosen for the inversion. Inversion is carried 
out with a combination of minimum distance, 
smoothness and minimum area constraints 
for which 0.85   and 0.01

x zH H    are  

chosen. Figure 12 displays the recovered 
density model from the inversion of profile 

AA  which clearly represents the density 
contrast and geometry for manganese ore 
occurrence. The horizontal extension of the 
obtained model is about 30 m and the vertical 
extension shows a trend in the E-W direction 
with a depth interval between 7 to 22 m in 
the east and 15 to35 m in the west. 

 

 

Figure 9. The density model obtained by inverting the gravity data of Figure 6 using minimum distance, smoothness and 
compactness constraints. The parameter  is chosen according to the trade-off curve method and inversion is done for (a) 

0.01
x zH H    and (b) 0.07

x zH H   . 

 

 

Figure 10. Geological map of the Zereshlu Mining Camp. 
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Figure 11. The residual anomaly over the Zereshlu mining camp. 

 

 

Figure 12. The density model obtained by inverting 
field gravity data (profile AA ). The 
subsurface is divided into 26 20 520  cells 
of side 2.5 m. The density contrast and the 
geometry for manganese ore occurrence 
well recovered. 

 
6    Conclusion 
We have developed a 2D inversion algorithm 
based on available 3D algorithm proposed by 
Boulanger and Chouteau (2001). The 
algorithm is flexible and allows inclusion of 

minimum distance, smoothness and 
compactness constraints. Density limits and 
depth weighting can also be integrated into 
the algorithm. The practical aspects of the 
application of these constraints and effective 
parameters have been discussed. The inverse 
matrix calculation was done by truncated 
singular value decomposition which is a 
suitable method for small inverse problems. 
We tested the algorithm on a synthetic model 
consisting of dipping and vertical dikes. 
Different constraints were applied 
individually or in combination with each 
other. In all cases, the geometry and density 
for model well recovered, although 
combination of minimum distance, 
smoothness and compactness provide better 
results. The developed method allows the 
user to employ smoothness or compactness 
constraints separately. We applied the 
algorithm on a gravity profile measured at 
the Zereshlu Mining Camp. The result 
represents a high density distribution with the 
horizontal extension of about 30 m and the 
vertical extension shows a trend in the E-W 
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direction with a depth interval between 7 to 
22 m in the east and 15m to35m in the west. 
 
Appendix  
Derivation of the inversion algorithm 

We wish to find a model   which has two 
properties: 

1) Satisfies the observed gravity data (
obsg ), 

i.e, 

(pre obs g g                                            (A-1) 

Here (pre g  are the gravity values predicted 
by the model parameter  . 

2) It should be closest to an initial estimate of 

parameters, 
0 . In the parameter space, the 

distance of   from 0  is given 

by
20 0 0

2
( , )         . In addition, we 

want to consider weighting factor W  applied 
to each cell in the model. The weighted 
distance of an acceptable model from an 
initial guess becomes 

20 0 0

2
( ) ( ( ), ( ))W W W                (A-2) 

relation between g and the model parameter 

  is linear: 

( ,pre G    g                                         (A-3) 

Where G  is the kernel and ,G   denotes an 
inner product. The gravity effect of the initial 
model is 

0 0( ,pre G    g                                     (A-4) 

from (A-1) , (A-3) and (A-4) , we have: 

0 0(obs pre G       g g                          (A-5) 

The problem is then to minimize 20

2
( )W    

subject to the constraints 0 0(obs pre G       g g  
which can be solved using Lagrangian 
multipliers: 

20 0

2

1
( ) (

2
TW G          g                 (A-6) 
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