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Chapter 1
Frequency Effects in Processing Inflected Dutch
Nouns: A Distributed Connectionist Account
Matthew H. Davis, Maarten van Casteren and
William D. Marslen-Wilson

1. Introduction

Words that occur more frequently in language are processed more quickly.
This is the longest-standing, and most clearly established result in experi-
mental psycholinguistics (for early summaries of research on word fre-
quency, see Howes and Soloman 1951; Broadbent 1967; Morton 1969).
This basic result has been replicated in a range of tasks, such as reading
aloud, picture naming, semantic or lexical decisions, in a range of lan-
guages. The word frequency effect is taken as evidence that the systems
involved in language processing respond to basic statistical properties of an
individual’s linguistic experience. Furthermore, through careful manipula-
tions of different word properties, it has been possible to observe effects of
the frequency of individual morphemes in complex words (Taft 1979; Se-
reno and Jongman 1997; Baayen, Dijkstra, and Schreuder, 1997) or effects
of the frequency of different meanings of homonymous words (Borowsky
and Masson 1996; Rodd, Gaskell, and Marslen-Wilson 2002) in order to
infer which aspects of word frequency are crucial for a particular task.

However, despite widespread agreement that word frequency plays an
important role in language processing, a variety of accounts have been pro-
posed of the mechanism by which frequency effects arise. It has been pro-
posed that word frequency effects arise since access to the mental lexicon
involves a search through a frequency-ordered word list (in the search
model of Forster 1976). Alternatively, it is proposed that changes to the
processing properties of the units that represent individual lexical items
(such as lowering the threshold for recognition in the logogen model of
Morton 1969 or raising the resting activation level in the interactive-
activation model of word recognition proposed by McClelland and Rumel-
hart 1981) allows high frequency words to be recognised more quickly.
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Both serial search and logogen accounts share a single common as-
sumption; namely that there is a single lexical unit that uniquely represents
each word – that is, they are localist models. Thus effects of the frequency
of occurrence can be localised to changes occurring to a lexical unit. In
contrast, a recent class of computational account, distributed connectionist
models, propose that individual words are represented as a pattern of acti-
vation over many active units, with different banks of units representing
domains of word knowledge such as orthography, phonology and seman-
tics. Linguistic knowledge in distributed models is represented by the
strength or weights of connections that link these banks of units. These
connection weights are not pre-determined but are gradually learnt by
training the network to translate from one representation to another (e.g.
reading aloud involves a translation from orthography to phonology, audi-
tory comprehension involves mapping from phonology to semantics, etc.).
During training, a learning algorithm (typically back-propagation – Rumel-
hart, Hinton, and Williams 1986) adjusts connection strengths to reduce the
discrepancy between the network’s output and a target representation.1

One crucial aspect of distributed connectionist accounts is that they
change the interpretation of a distinction that is common to both linguistics
and psycholinguistics; the distinction between rule-governed forms and
exceptions. In distributed models, a single set of connections is not only
able to acquire knowledge of individual lexical items or exceptions, but is
also able to extract and apply regularities to new items, showing how these
systems can generalise in a seemingly rule-governed way. For example, in
generating the past-tense forms of English verbs from their stems, a single
system can learn to phonologically translate both regular verbs (jump-
jumped, play-played) and irregular verbs (leap-leapt, give-gave) as well as
generalising to novel forms (wug-wugged) (Rumelhart and McClelland
1986; Plunkett and Marchman 1991, 1993). Thus the distinction between
rule-governed forms and exceptions to these rules may be an accurate de-
scription of the structure of linguistic knowledge but need not imply that
there are two underlying mechanisms by which these forms are processed.

In the current paper, we explore whether these distributed connectionist
models are able to account for the recognition (rather than the phonological
transformation) of regularly inflected words. In describing these simula-
tions we will not only consider the capabilities of distributed connectionist
networks (that is, whether they can perform the task) but, crucially, we will
evaluate the behaviour of these networks by comparison with experimental
investigations of the processing of regularly inflected words. In order to
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conclude that a single-mechanism distribution connectionist model can
account for the recognition of inflected words, we require the model to
simulate the pattern of behavioural data produced by human participants.
Before describing these network simulations, we will therefore review the
target empirical phenomena, and their interpretation in more traditional,
localist accounts of lexical representation and processing.

1.1. Frequency effects in the recognition of regularly inflected words

Tasks that involve accessing stored lexical information are sensitive to the
frequency of occurrence of these units in the linguistic environment. For
example, in the lexical decision task, where participants make a speeded
response to indicate whether a letter string or word is a real word or a non-
word, a typical response time of 600ms for a word that occurs once in a
million words of text, will decrease by approximately 10% for an otherwise
matched word that occurs with a frequency of 100 occurrences per million
words. In logogen-style models (c.f. Morton 1969), in which words are
identified when the activation of the lexical unit exceeds some threshold
value, this effect is simulated by assuming that more frequently occurring
words have a higher level of resting activation or a lower recognition
threshold. In either case, more frequent words have a head-start in the rec-
ognition process, and will be identified faster.

One important theoretical question in this framework is whether the
critical logogens that are activated during word identification represent
whole-words or individual morphemes. Are inflected words like “tables”
stored whole or decomposed into the smaller units “table” + “s”? This issue
can be addressed using the frequency effect as a diagnostic. For example, if
we consider the words “neck/necks” and “lip/lips”, these words are ap-
proximately matched on the frequency of occurrence of the lemma2  {neck}
or {lip} at around 80 occurrences/million words in the CELEX database
(Baayen, Pipenbrock, and Guilikers, 1995). However, as we might expect
(since individuals typically have two lips but only one neck), the frequency
of occurrence of singular and plural forms of these two items is very differ-
ent. The word “neck” occurs many times more frequently than “necks”
(word-form frequency, neck = 72/million, necks = 7/million, these frequen-
cies are singular-dominant) whereas the plural “lips” is used much more
frequently than the singular “lip” (word-form frequency, lip = 17/million,
lips = 61/million, showing that the noun {lip} is plural-dominant).
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By an account in which there are individual logogens for the singular
and plural form of these words (a whole-word storage account), we would
expect substantial differences in response times to “lip” and “neck” or to
“lips” and “necks”, with the singular of the singular dominant form being
responded to more quickly than the singular of the plural dominant form,
and vice-versa for plural forms. This pattern of results is illustrated graphi-
cally in Figure 1a. Conversely, if both of these words were decomposed
into smaller units such that a single lemma unit (for {neck} or {lip}) was
activated for both singular and plural forms, we would not expect a differ-
ence in response time between singular- and plural-dominant nouns, so
long as those items are matched on lemma frequency. To build a model that
functions in this way, we need to invoke an additional process that allows
the inflected words “necks” and “lips” to gain access to the appropriate
lemma representation. This decomposition process may add to the time
required to respond to plural nouns so that although there is no difference
between response times to singular- and plural-dominant nouns, responses
are generally slowed to plural forms. This predicted pattern is illustrated in
Figure 1b.

Figure 1 Predictions of (a) simple storage and (b) full decomposition
accounts for the processing of singular-dominant nouns
(e.g. neck) and plural-dominant nouns (e.g. lip).
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inflected forms. However, in a further experiment (Expt 3), Taft also ob-
served an effect of word-form frequency on response times to lemma-
frequency matched items; a result that suggests that inflected words are
stored whole forms. This pattern was interpreted by Taft as evidence for
both whole-word and decomposed lexical representations at different levels
of the recognition system.

However, other authors have criticised the experimental materials used
by Taft (1979). For instance, Sereno and Jongman (1997) pointed out that
Taft’s items were not matched for word class, and that the groups of words
that contained more nouns would be likely to produce faster responses.
Furthermore, it is unclear whether all three of the inflections tested by Taft
(-ed, -ing and -s) are equally sensitivity to word-form and lemma fre-
quency. Later in the paper we will review the results of experiments in
Dutch and Finnish conducted by Bertram and colleagues (Bertram, Laine,
and Karvinen, 1999; Bertram, Schreuder, and Baayen, 2000) which suggest
differences in the behaviour of words with different inflectional endings.

In seeking to replicate the Taft (1979) findings, Sereno and Jongman
(1997) tested only nouns and used the same set of materials in both singular
and plural form. Since word-form frequency effects should arise in opposite
directions for the two forms (as depicted by the interaction in Figure 1a),
this effect is less likely to arise from a simple confound in the experimental
materials. However, Sereno and Jongman conducted separate experiments
with different participants on singular and plural nouns (with both words
and non-words either all inflected or all uninflected) such that some partici-
pants were tested on a word list consisting entirely of inflected items. These
participants could have adopted different response strategies from those
tested on a mix of inflected and uninflected items – for instance, it is possi-
ble that inflectional affixes would be ignored in making a lexical decision
response. Furthermore, since the Sereno and Jongman experiments in-
cluded only a small number of items (12 per condition) it is possible that a
lack of statistical power may be responsible for the null effects of lemma
frequency that they report.

We will therefore focus on results reported for Dutch nouns by Baayen,
Dijkstra, and Schreuder (1997). Their experiment tested lexical decision
responses to singular and (-en) plural forms of 93 nouns divided into high
and low lemma frequency sets. Each of the 100 participants were tested on
a mix of singular and plural nouns with inflected and uninflected non-
words to ensure that participants must process inflectional endings in mak-
ing their lexical decisions. Test items were divided into two lists to ensure
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that participants did not see both forms of any noun, avoiding priming ef-
fects between plurals and singulars. Given the size of the data set we can be
reasonably sure that this experiment had sufficient power to detect small
behavioural effects. The pattern of response times obtained by Baayen,
Dijkstra, and Schreuder is shown in Figure 2.

Figure 2 Results of Experiment 1 from Baayen, Dijkstra, and Schreuder
(1997); response times to singular and plural forms of high and
low frequency, singular- or plural-dominant nouns.

As can be seen by comparison of Figure 2 with Figure 1a, Baayen,
Dijkstra, and Schreuder’s (1997) results did not conform to the predictions
of a whole-word storage account. Although there was a reliable effect of
word-form frequency on response times to the plural nouns, there was no
significant difference between response times to the singular form of sin-
gular- and plural-dominant nouns. Comparing the results shown in Figure 2
with the predictions of Figure 1b shows that this experiment also failed to
confirm the predictions of an account based on decomposition of plural
nouns. There was a highly significant effect of dominance on response
times to plural forms; an effect that would not be predicted by an account in
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which plural forms are decomposed and recognised on the basis of a shared
lemma representation.

In summary, the results of the experiment reported by Baayen and col-
leagues shows a pattern that is a mixture of simple storage and full decom-
position accounts. Correspondingly, they interpret these results as being in
line with the predictions of accounts of word recognition which postulate
that both of these processing mechanisms – whole-word storage and mor-
phological decomposition – are involved in the identification of inflected
forms.

Dual-route or dual-mechanism models such as these have been proposed
by a variety of authors (Carramazza et al. 1985; Pinker 1991; Frauenfelder
and Schreuder 1991), each making different assumptions regarding the
relative role of storage and decomposition in lexical processing. For exam-
ple, Pinker3 (1991)  proposes that all regularly-inflected forms are decom-
posed during processing and accessed via their stems, except for irregular
forms which must be stored as whole forms (such as the irregular plural
“mice” in English). In the Augmented Addressed Morphology (AAM)
model proposed by Carramazza and colleagues (Caramazza et al., 1985;
Caramazza, Laudanna, and Romani, 1988), it is suggested that all complex
forms that have been recognised previously will have a stored lexical repre-
sentation and only new or very low frequency plurals (e.g. nouns that have
only been seen in the singular form) would be decomposed. A careful con-
sideration of these two models would suggest that despite the presence of
two processing mechanisms, neither account would predict the exact pat-
tern that was observed experimentally.

For instance, although the Words and Rules model proposed by Pinker
(1991) could account for finding a lemma frequency effect (or an absence
of a word-form frequency effect) for singular nouns it would still predict
similar results to the full-decomposition account for plurals – i.e. that there
would be no dominance effect. Conversely, the AAM model proposed by
Carramazza and colleagues can account for the word-form frequency effect
for plurals in two different ways; for high-frequency lemmas, plurals of
both singular and plural-dominant nouns would be stored and word-form
frequency effects would be observed. Secondly, for low-frequency or un-
familiar plurals (such as for low-frequency, singular-dominant nouns) the
need to decompose these items would further increase the size of the domi-
nance effect. Nonetheless, for the singular forms (which do not require any
decomposition) the AAM model appears to predict a word-form frequency
effect that was not observed experimentally.
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Part of the problem for both of these accounts is that although they in-
clude two processing mechanisms, the recruitment of each of the two routes
is a fairly strict ‘either/or’ based on the familiarity or regularity of the target
item. In practice, for the experimental materials used by Baayen and col-
leagues (which are of reasonable frequency and entirely regular), process-
ing in both of these models would be dominated by one of the two available
routes (decomposition in the Pinker model, storage in the AAM model). As
is apparent from the comparison of Figure 1 and 2, neither of these single
mechanism profiles are appropriate for Baayen and colleagues’ data.

The Morphological Race Model (MRM – Baayen, Dijkstra, and Schreu-
der, 1997; Frauenfelder and Shreuder, 1991; Schreuder and Baayen, 1995)
proposed to account for these data again includes mechanisms of both
whole-word storage and morphological decomposition. However, rather
than selecting one of the two routes for each type of item, the MRM pro-
poses that the two processing routes ‘race’ against each other, with the out-
put of the winning route (i.e. whichever process is completed faster) ac-
counting for the processing of any particular item. Such a race model
provides for a dynamic assignment of items to the two routes, such that
whichever process operates more rapidly and efficiently will determine the
response time for a particular item. Critically, however, processing is still
completed in the non-winning route and the results of the slower route will
still influence the behaviour of the model under certain circumstances.

In a series of mathematical simulations, Baayen, Dijkstra, and Schreuder
(1997) show that the MRM predicts the correct pattern of results when
operating under the following constraints. They propose that the decompo-
sition process operates fairly slowly for –en plurals4. For this reason, the
majority of the plural nouns are recognised by the faster whole-word route
and hence response times for plurals will be primarily determined by word-
form frequency (hence the dominance-effect observed for plural forms).
Despite the fact that decomposition operates slowly, Baayen and colleagues
(1997) still expect that this processing route would correctly analyse plural
forms –  determining that “lips” is the plural of the singular noun “lip”).
They further propose that successful decomposition of plural forms alters
the representation of the noun stem by boosting the resting activation of the
lexical unit for the stem. In this way, although decomposed processing can
not be readily observed in lexical decision responses to plurals (since this
route does not win the race and initiate a response), the results of decompo-
sition can be detected in the processing of singulars, since it is the com-
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bined frequency of singular and plural forms that determines response
times.

Baayen, Dijkstra, and Schreuder (1997) interpret the combination of
word-form frequency effects for plurals and lemma frequency effects for
singulars as evidence that uniquely favours the dynamic combination of
storage and decomposition proposed in their dual-route morphological race
model. In further work they show that this model (and identical parameter
settings) can readily simulate response time data from experiments in which
other manipulations of surface frequency and lemma frequency are made.
In conclusion, they suggest that not only do other dual mechanism models
fail to predict the correct pattern of results but also that (p. 113):

 “it is difficult to see how these patterns could be understood using mono-
lithic neural nets... modelling in one pass what in our view is a complex
multilayered system”.

It is this challenge that we address in the current paper, exploring
Baayen’s claim that this complex pattern of results can not be simulated
using a single-mechanism, distributed connectionist model.

1.2. Frequency and regularity in distributed connectionist models

Previous simulation work has shown that distributed connectionist models
trained on a variety of mappings are sensitive to the frequency of particular
items presented during training as well as the extent to which components
of the input-output mapping are consistent across different items (i.e. regu-
larity). For example, in models of the computation of phonology from or-
thography (e.g. the Seidenberg and McClelland (1989) model of reading
aloud), the phonology of words that occur more frequently in the training
set is computed with reduced error. Furthermore, error rates are also lower
for items with orthographic neighbours that are pronounced in a consistent
way (such as “hint”, “mint”, “splint”, “tint” etc.) than for items that are
inconsistent with their neighbours (e.g. “pint”). These two effects interact
such that effects of frequency are larger for irregular or inconsistent items
and that effects of consistency are larger for low frequency items, a pattern
reminiscent of that observed in experimental investigations of reading
aloud (Taraban and McClelland 1987).

This interaction between frequency and regularity reflects the sensitivity
of the network to the frequency of whole forms and the frequency of regu-
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lar components of those forms. The network learns to associate combina-
tions of letters with speech sounds one word at a time. After each experi-
ence of a particular word, network weights are changed so as to capture the
relationship between spelling and sound for that word. Items on which the
network is trained more often (i.e. words that occur more frequently in the
language) will have more opportunity to alter the network’s weights and
hence a processing advantage is observed for high frequency words. Im-
portantly, the network learns the orthography-phonology mapping by gen-
eralising the spelling-sound correspondences found in individual words.
For items that have a consistent relationship between spelling and sound
(such as the rhyming set of -int words listed before), training on one item
will benefit other words that are spelt and pronounced in the same way.
Conversely, exception words (such as “pint”) do not benefit from the influ-
ence of their neighbours and must be learnt as whole forms. The network is
therefore much more sensitive to the frequency of presentation of exception
words (for a more detailed explanation and mathematical treatment of fre-
quency by regularity interactions, see Plaut, McClelland, Seidenberg &
Patterson, 1996).

Having described how frequency and regularity affect models of reading
aloud, we can now consider how these properties may be extended to ac-
count for the empirical data of Baayen, Dijkstra, and Schreuder (1997).
However, previous simulations have shown that networks trained on the
task of mapping orthography to phonology are incapable of performing
lexical decision at a human-like level of accuracy (Seidenberg and
McClelland 1989; Besner et. al. 1990). In order to account for behavioural
data obtained from the lexical decision task, we require simulations that
map from the spelling (or sound) of words to their meanings (c.f. Plaut
1997; Gaskell and Marslen-Wilson 1997). Since these distributed networks
use essentially the same learning algorithms and computational mecha-
nisms we may assume that similar effects of frequency and regularity will
be apparent in these mappings between form and meaning. 

In the mapping between form and meaning, however, systematic regu-
larities between input and output representations are fewer in number; the
relationship between the form and meaning at the single word level is es-
sentially arbitrary. A notable departure from this arbitrariness is provided
by the presence of morphological units in the input (such as the English
plural affix -s which marks the plurality of nouns, or the similarity in
meaning of “lip” and “lips” provided by their shared stem). By extension of
the principles found in models of reading aloud we would expect that dif-
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ferences in the frequency of morphological components of the form-to-
meaning mapping would be reflected in the behaviour of a trained
connectionist network. Indeed prior simulations have shown the effect of
these regularities in the learning profile (Rueckl and Raveh 1999), internal
representations (Davis, Marslen-Wilson, and Hare 1996; Rueckl and Raveh
1999) and priming behaviour (Plaut and Gonnerman 2000) of distributed
connectionist networks. Nonetheless, detailed simulations of the effect of
word and lemma frequency on the identification of morphologically com-
plex words have not been conducted. In the current manuscript, we report
simulations exploring the behaviour of a distributed connectionist model of
the processing of regularly inflected words. Our goal was to simulate the
results reported by Baayen, Dijkstra, and Schreuder (1997) on the process-
ing of Dutch singular and plural nouns.

2. Simulation 1 – Modelling Dutch plural morphology

All of the simulations reported in this chapter used a standard, 3-layer
feed-forward network of units with a sigmoidal activation function (as
used by Seidenberg and McClelland 1989; Plaut and Gonnerman 2000
and others). To simulate the results of visual lexical decision experi-
ments in a distributed network we require a system that maps from a
representation of the visual form of a word to a representation of its
meaning or semantics. Since many of the critical test items for the net-
work will be inflected with the Dutch plural affix (-en), the network
should accommodate nouns that are marked for plurality. For this reason
an additional output unit was added to the semantic layer, to be acti-
vated in response to nouns presented with the plural affix. As the rela-
tionship between word-form and meaning for noun-stems is essentially
arbitrary, 500 hidden units were required to map between input and out-
put representations. Despite this large number of hidden units (chosen to
improve overall performance and learning time), the network still does
not resort to the localist solution of assigning single words to single hid-
den units (see Bullinaria and Chater 1995, for further discussion). The
architecture of the network is depicted in Figure 3.

2.1. Training Procedure

The network was trained on a set of 582 four and five letter, monosyllabic
Dutch nouns taken from the CELEX database (Baayen, Pipenbrock, and
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Guilikers 1995), all of which took the -en plural affix. This set of nouns
included 91 out of 93 nouns from the Baayen, Dijkstra, and Schreuder ex-
periment – two items were excluded for which one form (the plural of sin-
gular dominant forms) had a frequency of 0 occurrences in the 42 million
CELEX corpus. The network was trained on the singular and plural form of
each noun. A further 379 Dutch verbs were added to the training set,
though only the verb stem was trained. In selecting the nouns and verbs, we
ensured that the two groups of test items had a representative number of
orthographic neighbours in the network’s training vocabulary (cf. Gaskell
and Marslen-Wilson 1997).

Figure 3 Architecture of the network trained in Simulation 1, including
an illustration of the input units activated to represent the plural
noun “baaien”.

The orthographic input to the network was represented over a bank of
units, each of which represented a single letter in a particular position of the
word. Thus for the first letter position, there was a bank of 27 input units
(representing each of the 26 possible letters, or a blank if no letter was pre-
sent). This bank of units was duplicated 5 times – once for each letter in the
noun or verb stem. Units that were not used by any word in the network’s
vocabulary were removed for computational convenience. For each of the
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noun and verb stems, the word was right-aligned in the template (such that
the blank space unit was only ever used in the first letter position). For
items presented in the plural, the orthographic representation of the stem
was always placed over the same bank of units, with the additional letters
for the plural affix added to two additional slots – as shown in Figure 3.
Although this representation provides the network with a solution to the
morphological alignment problem, we are confident that, using appropriate
techniques, a distributed connectionist model could discover this (or an
equivalent) scheme for itself (cf. Bullinaria 1995). The output representa-
tion for the network was a randomly generated binary vector over 128 se-
mantic units, with ten units activated for each noun or verb stem. The se-
mantic vector representing each noun was identical for both the singular
and the plural form, except for the activation of the additional unit for plu-
rals.

The network was trained using the back-propagation learning algorithm
(Rumelhart et al. 1986), and the cross-entropy error function (Hinton 1989)
to produce the correct output representation for each input (learning rate =
0.01 throughout, momentum = 0.9, introduced after the first ten epochs).
Weight-updates were performed after the presentation of a single word (on-
line learning) and training patterns were presented in a random order in
each epoch. To simulate the effect of word-frequency, rather than training
more often on more frequent words, the magnitude of each weight change
was multiplied by the base 10 Log of the frequency of occurrence of the
word being trained (cf. Plaut et al. 1996). This training procedure continued
until output activations for every training pattern were within 0.4 of the
target at all output units, which required just over 100 passes through the
training set.

2.2. Testing procedure

In order to simulate the experimental data in the trained network, we first of
all need to obtain lexical decision responses. To distinguish between words
and non-words we measured the mean ‘stress’ of all the output units (in-
cluding the plural unit) using the equation from Plaut (1997)5. Output stress
is maximal (1.0) when output activations are close to zero or one and is low
(0.0) when output activations are close to 0.5. Since the network was
trained to produce activations of zero or one for real words this measure
can distinguish between real and nonsense words. For the set of 182 Dutch
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non-words used by Baayen, Dijkstra, and Schreuder (1997) and a stress
threshold of 0.98, the network made lexical decision response with more
than 95% accuracy (see Figure 4).

Figure 4 Histogram showing values of the stress measure applied to the
output of the network to distinguish between real words and
non-words.

As is the case for most feed-forward neural networks trained using back-
propagation, output activation is produced in a single forward pass. It is
therefore not possible to measure response times directly from the network.
Rather than following some previous models by assuming that output error
is correlated with response time (Seidenberg and McClelland 1989) we
used the equations provided by Cohen, Dunbar, and McClelland (1990),
derived from McClelland (1979), to cascade activation through the net-
work6, allowing us to obtain a direct measure of processing time. In all of
the simulations reported, the time-constant τ was set at 0.01, allowing fine-
grained differences in response time to be observed.

In order to determine lexical decision response times, we used two crite-
ria based on output activation in the network. The first criterion was that
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mean output stress should exceed 0.98 – as shown in Figure 4 this allows
the network to distinguish between words and non-words. However, this
output stress measure is high early on in processing before orthographic
information has yet been propagated through the network. In the absence of
any input the output of the hidden units is set to 0.5 which is sufficient to
set the output to zero since the hidden to output weights are mostly nega-
tive7. We therefore needed to apply an additional criterion to the output to
determine when a response should be made. This second criterion was that
the Euclidean distance between the output activation and the origin (i.e. the
square root of the summed-squared activation of each output unit) should
exceed 2.0. This ensures that the network waits until activation has begun
to arrive at the output layer before making a response.

Figure 5 Time-course of output stress (left) and output distance (right
scale) during cascaded processing of an example word. The
network’s response is made when both thresholds are reached.
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The time-course of a typical processing trial, as reflected in the stress
and output distance measure, is illustrated in Figure 5. As shown in the
figure, the response time of the network is the update cycle at which the
output satisfies both of these criteria. Should the network output fail to
satisfy both of these criteria for a test word we assume that the network
made a lexical decision error.

2.3. Results

The lexical decision response time of the network for the pairs of singular
and plural nouns tested by Baayen, Dijkstra, and Schreuder (1997) is
shown in Figure 6. Excluded from this graph are 6 items on which the net-
work made a lexical decision error (3% of the data). By comparison with
the experimental data shown in Figure 2, the results of the network simula-
tion do not resemble the experimental data. This failure is confirmed by
statistical analysis.

Figure 6 Results of simulation 1. Lexical decision response times to
singular and plural forms by dominance and frequency. Error
bars show one standard error of the mean over items.
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In their analysis of the behavioural data, Baayen and colleagues report
significant main effects of number (faster responses for singulars than for
plurals) and dominance (faster responses for plural dominant forms) as well
as a significant interaction between these two factors (indicating that re-
sponses were particularly slowed for the plurals of singular dominant
nouns). This pattern was essentially identical for both high and low fre-
quency groups, reflected in a non-significant three way interaction between
number, dominance and frequency.

The equivalent three-way analysis of variance was conducted on the re-
sults of the network simulation investigating effects of number, dominance
and frequency (by items only, since only a single network was tested). This
ANOVA showed that the network’s lexical decision responses were sig-
nificantly faster for high frequency items (F[1,168]=49.53, p<.001). There
was no significant main effect of dominance or number, nor any interaction
between either of these factors and frequency (F<1). However, there was a
significant cross-over interaction between number and dominance
(F[1,168]=5.56, p<.05) indicating that dominance had opposite effects for
the singular and plural forms. This two way interaction did not differ be-
tween the two frequency bands as indicated by the non-significant three-
way interaction (F[1,168]=1.41, p>.1).

The response times in this simulation closely resemble the predictions of
the whole-word storage account (Figure 1a), in which response times are
primarily determined by the frequency of the individual word-forms. Lexi-
cal decision times in the network simulation were faster to the singular
form of singular-dominant nouns and to the plural form of plural-dominant
nouns. This suggests that the network is only sensitive to the frequency of
occurrence of the whole form during training.

However, before we can conclude that the behaviour of the network is
solely determined by word-form frequency and not by lemma frequency we
need to conduct a comparison of items that are matched on word-form fre-
quency yet differ on lemma frequency. This comparison was achieved by
conducting an additional simulation using a set of verb stems. A selection
of these items were assigned word-form frequencies that were matched to
the frequency of the test items. Although the verb stems will have the same
word-form frequency as the test nouns, since the network is only trained on
a single uninflected form they will differ maximally in lemma frequency.
Therefore any difference between the response times of these matched verb
stems and response times for the test nouns in this supplementary simula-
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tion shows the effect of training on the plural forms in the initial simulation
(i.e. the magnitude of the lemma frequency effect).

Response times to the singular form of the test nouns and the matched
verb stems in this supplementary simulation shows a dramatic effect of
lemma frequency (singular test noun RT, low frequency = 378 cycles, high
frequency = 331 cycles; verb stem RT, low frequency = 446 cycles, high
frequency = 414 cycles). The results of this supplementary simulation
therefore show that responses to nouns are speeded by the presence of a
morphologically related forms in the training set and does not only depend
on word-form frequency. Indeed, this lemma frequency effect appears to be
numerically larger than the effect of word-form frequency8 observed in
Figure 6.

We therefore conclude that the network trained in Simulation 1 shows
neither of the classic ‘single-mechanism’ profiles depicted in Figure 1.
Although there is some resemblance between the results of Simulation 1,
and Figure 1a, the size of the word-form frequency effect is smaller than
would be expected if this were the only factor that affected the behaviour of
the network. The results of the supplementary simulation shows a substan-
tial effect of the presence of morphologically-related items – indicating that
the network is affected by the combined frequency of singular and plural
forms (i.e. lemma frequency).

Despite this complex pattern of behaviour, a pattern that corresponds to
neither full decomposition of inflected words, nor simple storage of whole
words, the network tested in Simulation 1 fails to capture the pattern of
results reported by Baayen, Dijkstra, and Schreuder (1997) and shown in
Figure 2. The network predicts a word-form frequency effect for singulars
that is absent in the experimental data. Perhaps more significantly, as
shown by our supplementary simulation, the word-form frequency effect is
small by comparison with the experimental data. We will focus on the ef-
fect of word-form frequency for plural nouns in explaining the network’s
failure to simulate the experimental data.

2.4. Discussion

The results of Simulation 1 in combination with the supplementary simula-
tion shows a complex combination of word-form and lemma frequency
affects lexical decision RTs in the network. The lemma frequency effect
indicates that the network is using the consistent mapping between the or-
thography and semantics of the stem in singular and plural nouns. This
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finding replicates results reported by Davis, Marslen-Wilson, and Hare
(1996), Gasser (1994), Plaut and Gonnerman (2000), Rueckl and Raveh
(1999) and others in showing that distributed networks can extract mor-
phological regularities that are present in the predominantly arbitrary map-
ping from orthography to semantics. However, since there are differences
in response times to singular and plural dominant nouns that are matched
on lemma frequency, it is clear that the network’s responses are also af-
fected by word-form frequency. Thus the network does not only decom-
pose morphologically complex forms, but also retains knowledge of the
individual lexical items on which it was trained.

Nonetheless the combined effect of word-form and lemma frequency
shown by the network fails to simulate the reaction time data reported by
Baayen, Dijkstra, and Schreuder (1997). Continued training of the network
or changes to parameters such as learning rate or number of hidden units
appears insufficient to account for the experimental data. Although the
magnitude of word-form frequency effects for high frequency nouns is
reduced at later stages of training, the network never produces the tilted
wedge observed experimentally and statistical analysis of the network’s
performance does not produce the main effect of number (i.e. slower re-
sponses for plural nouns) that is observed experimentally. Indeed the nu-
merical trend often runs in the reverse direction with faster response times
for plural than for singular nouns.

The network’s failure to simulate the Baayen, Dijkstra, and Schreuder
(1997) data shows a discrepancy between the rapid identification of plural
nouns in the network and the rather slower identification of plurals that was
observed in the behavioural experiment. In the network, the recognition of
nouns appears to benefit from training on related forms and the network
displays an effect of lemma frequency for inflected forms that is not typi-
cally observed experimentally. Word-form frequency is generally a better
predictor of response times to morphologically complex forms, not only in
the experiments reported by Baayen and colleagues (1997), but also in a
number of other studies, for many different types of inflected and derived
forms and in a number of different languages including English (Sereno
and Jongman 1997; Ford, Davis, and Marslen-Wilson, this volume), Dutch
(Bertram, Schreuder, and Baayen  2000) and Finnish (Bertram et al. 1999;
Bertram, Hyönä, and Laine 2000). The pattern observed in our simulation –
effects of lemma frequency on response times to morphologically complex
forms– is rarely observed experimentally and confined to only a restricted
set of affixes in these two languages.
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Bertram, Schreuder and Baayen (2000) propose that those morphologi-
cally complex forms for which response times are best predicted by lemma
or stem frequency are those that include affixes with particular properties.
For two typologically-distinct languages (Dutch and Finnish), they suggest
three factors that determine the presence of word-form or lemma frequency
effects for morphologically complex forms – namely: (1) the word-
formation type of the affix (whether it is a inflectional, meaning-invariant
affix or a derivation, non-invariant affix); (2) the productivity of the affix
(whether it is used to form new words); and (3) whether the affix is ho-
monymous (that is, does the orthographic ending serve two or more distinct
morphological functions). In the context of a dual-route race model, each of
these factors increases the difficulty of the decomposition process. It is only
for complex words formed using productive, meaning invariant, non-
homonymous affixes that the decomposition process can be completed
sufficiently rapidly to allow response times in the lexical decision task to be
affected by properties of the stem such that lemma frequency predicts re-
sponse times for morphologically complex words.

In the case of the Dutch plural affix -en, a critical property of this in-
flection is that in addition to marking plurals, the -en ending also marks the
infinitive form of verbs, as well as the past-participles of certain verb
classes (e.g. vang-en, “to catch”, ge-vang-en, “caught”). For a homony-
mous affix such as -en, Bertram, Schreuder and Baayen (2000) propose that
word-form frequency will be the best predictor of response times to in-
flected forms. This possibility is anticipated by Baayen, Dijkstra, and
Schreuder (1997: 107) who suggest that “the polyfunctionality of –en
might be the critical factor” in explaining why the decomposition process is
slow and hence why effects word-form frequency are so pronounced for
plural nouns. For this reason a further simulation was conducted to investi-
gate whether the inclusion of an additional (verbal) interpretation of the -en
ending similar affects the behaviour of the network.

3. Simulation 2 – Adding affix homonymy

One notable difference between the training vocabulary for Simulation 1
and the properties of the Dutch language is that the network is only taught a
single interpretation of the -en affix. In Dutch this ending serves at least
two distinct functions, marking the infinitive form of verbs as well as the
plural form of nouns. When presented with an -en inflected item in a sin-
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gle-word lexical decision experiment, it will only be possible for partici-
pants to interpret the affix correctly (as a plural or infinitive marker) if they
know whether the stem is a noun or a verb. This disambiguation process is
not required by the network in Simulation 1, however, which is only taught
a single interpretation of the -en affix.

In a second simulation we therefore investigated the effect of adding a
second interpretation of the -en affix. We trained a network on the same
materials as before but this time included the infinitive (-en) form as well as
the stem of the 379 verbs in the training set. To represent these infinitive
forms, an additional unit was added to the output, with the network being
trained to activate this unit when a verb infinitive was presented. In all
other respects, the training set and procedure was as before, the only
change made to the network architecture shown in Figure 3 was the addi-
tion of an output unit for verb infinitives. This unit was connected to all
units in the hidden layer in the same fashion as the plural unit for Simula-
tion 1

The network was once more trained until it reached criterion (all targets
within 0.4 of their target), this process taking approximately 40% more
epochs than for Simulation 1 – indicating the greater difficulty introduced
by the addition of the 379 extra forms into the training set as well as the
ambiguity created by including two interpretations of the -en ending. The
same testing procedure was used as previously, with activation cascaded
through the network, and lexical decision responses determined by a stress
and output distance threshold. Perhaps as a consequence of the additional
training sweeps that the network had received, the responses of the network
were faster and less error prone in this simulation.

3.1. Results

The results of this simulation on the test items from Baayen, Dijkstra, and
Schreuder (1997) is shown in Figure 7. The behavioural profile of the net-
work is clearly a much better match to the experimental data in Figure 2.
This increased similarity between model and data is confirmed statistically.
A three-way ANOVA investigated the effect of number, frequency and
dominance on the lexical decision response times generated by the network,
producing results comparable to those obtained in the behavioural study.
The network showed significant main effects of all three variables, fre-
quency (F[1,173]=71.76, p<.001), number (F[1,173]=4.389, p<.05) and
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dominance (F[1,173]=4.28, p<.05). The source of the main effect of num-
ber and dominance is clarified by the presence of a marginally significant
interaction between number and dominance (F[1,173]=3.48, p<.1) showing
that responses were slowed specifically for the plurals of singular-dominant
nouns – consistent with the pattern shown in the empirical data. All other
two- and three-way interactions were non-significant in analysis of the
networks behaviour (all F<1).

Figure 7 Results of simulation 2. Lexical decision response times to
singular and plural forms by dominance and frequency. Error

bars show one standard error of the mean over items.

We will explore the reasons behind this apparent difference in the effect
of frequency dominance on singular and plural forms in the general discus-
sion. However, we will first report an analysis to determine the significance
of these differences in the behaviour of these two simulations. These com-
parisons were conducted using a four-way analysis of variance, with re-
sponses of the two different simulations coded as a repeated measure over
items. For data from the two simulations, there was a main effect of fre-
quency (F[1,168]=70.35, p<.001) and an interaction between number and
dominance (F[1,168]=6.02, p<.05). More interesting, though, this analysis
also included main effects and interactions indicating significant differ-
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ences between the two simulations. There was a main effect of simulation,
reflecting faster responses in Simulation 2 (F[1,168]=72.23, p<.001). This
finding is likely to reflect the greater number of weight updates that were
required for the network in Simulation 2 to reach the criterion for stopping
training. As might be expected (since low-frequency items will be slowest
to train), this effect interacted with frequency (F[1,168]=10.49, p<.001)
such that the advantage for Simulation 2 was greater for low frequency
items. Of greater interest was a significant interaction between simulation
and number (F[1,169]=7.71, p<.01). In Simulation 1, there was no overall
difference in response time between singulars and plurals, whereas Simula-
tion 2 showed a response time advantage for singular nouns as observed in
the experimental data. Finally, there was a marginally significant interac-
tion between simulation, number and dominance (F[1,168]=2.99, p<.1)
reflecting a change from the cross-over interaction between number and
dominance in Simulation 1 (Figure 4), to the wedge-shaped pattern signifi-
cant main-effect and interaction produced by Simulation 2 (Figure 6). All
other main effects and interactions in this analysis failed to reach signifi-
cance (all p>.1).

4. General Discussion

We have presented two neural network simulations of the recognition of
singular and plural Dutch nouns. Both networks map orthographic forms
onto a representation of the meaning and plurality of a large number of
nouns. They also provide a realistic simulation of the processes involved in
making speeded discriminations between real words and pseudo-words (i.e.
items that do not appear in the network’s training set) – and can therefore
be compared to reaction-time data obtained using the lexical decision task.
Both simulations were trained using the same procedures and to the same
criteria.  They were tested on the same set of items using the same parame-
ters for cascading activation and measuring  responses. Despite these simi-
larities, we observed significant changes to the behavioural profile ob-
served in simulation experiments investigating effects of word-form and
lemma frequency in processing singular and plural dominant nouns. In
Simulation 1, response times reflected both word-form and lemma fre-
quency for singular and plural forms of the test nouns. In Simulation 2,
responses to plural nouns were slowed and showed more pronounced ef-
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fects of word-form frequency, consistent with experimental data obtained
in Dutch.

The critical difference between the two networks is the presence of a
homonymous affix in the training set. Whereas in Simulation 1 the -en
ending was unique to noun plurals, the second simulation more accurately
captured the dual function of this affix which also marks the infinitive and
other forms of Dutch verbs. In comparing the results of the two simula-
tions, we have seen that it is only when this second interpretation of the
inflectional ending is included that the network can simulate the pattern of
behavioural results observed for Dutch nouns. This finding illustrates an
important point; the behaviour of a distributed connectionist network not
only depends on details of the network architecture and processing mecha-
nisms, but also on the statistical structure of the linguistic environment on
which it is trained (see Elman et al., 1996 for further discussion). We will
describe in some detail how and why affix homonymy plays such an im-
portant role in determining the behaviour of the network, in particular com-
paring the processing properties and internal representations of the two
simulations.

4.1. Effects of Affix Homonymy

In the behavioural literature on frequency effects in morphological proc-
essing, Bertram and colleagues have noted that complex words formed
using homonymous affixes show effects of word-form rather than lemma
frequency (Bertram, Laine and Karvinen, 1999; Bertram, Schreuder and
Baayen, 2000). In explaining this finding it is proposed that the decompo-
sition of these items is slowed by homonymy; in particular the need to re-
solve the ambiguity introduced by the affix. For this reason, the recognition
of items with homonymous affixes (in speeded tasks such as lexical deci-
sion) is driven primarily by stored, whole-word representations. As we
have seen, affix homonymy seems to have a similar effect on the network
trained in Simulation 2, though our explanation will differ since there is no
clear distinction between whole-word and decomposed lexical representa-
tion and processing in the network.

In Simulation 1, the network is trained to identify nouns with and with-
out the -en plural ending. Since this affix has only a single interpretation,
the network can activate the plural output solely based on the presence or
absence of the -en ending. In Simulation 2, however, the -en ending has a
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different interpretation for nouns and verbs (i.e. two different output units
may be activated). In order to activate the appropriate output unit for af-
fixed forms, the network must identify the stem, since this determines the
correct interpretation of the -en affix. The network in Simulation 2 must
combine information from the stem and affix, and this suggests that the
identification of the affix is ‘non-componential’ in his network; that is,
morphologically complex words are not being processed as two independ-
ent components. We will report two analyses that allow us to assess in a
quantative fashion, the componentiality of the networks’ processing and
internal representations – boundary analysis and contribution correlation9.

One technique for assessing the componentiality of the networks in our
two simulations is to observe the processing of the affix as information
concerning the stem is removed from the input. In a truly componential
system the identification of the affix would be essentially unaffected by the
presence or absence of information concerning the stem, whereas for a non-
componential system the processing of the affix would be affected by in-
formation from the stem. Similar analyses of the mappings learnt by dis-
tributed networks (‘boundary analyses’) have been reported for models of
reading aloud by Plaut et al. (1996) and for models of morphological proc-
essing by Rueckl and Raveh (1999). We will apply this technique to the
two simulations reported here as a means of comparing the componentiality
of the affix in the two systems.

For this boundary analysis we tested networks from the two simulations
on each of the 182 test items from the Baayen, Dijkstra, and Schreuder
(1997) experiment in non-cascaded mode. For each item, we recorded the
network’s output for input patterns in which the activation of the ortho-
graphic units for the stem was reduced from 1.0 to 0.9, 0.8, etc. Changes in
the activation of the affix output as the stem input is reduced are shown in
Figure 8. As can be seen in the graph, reducing stem input had no effect on
the activation of the plural unit in Simulation 1; the plural output remains
fully active even with no stem input. However in Simulation 2, reducing
the input to the stem produces a decrease in the activation of the plural unit.
Furthermore, as information on the stem is lost, the network begins to acti-
vate both the verb infinitive and the noun plural output units. Without the
information provided by the stem, the network is unable to correctly iden-
tify the form of the affix that is presented at the input, and produces an
ambiguous output. This ambiguity will affect the output stress measure
during cascaded processing and therefore slow down the network’s lexical
decision responses for plurals.
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This inability to identify an inflectional affix separately from its stem
illustrates the non-compositional processing of the -en affix, forced by its
homonymy. When information to identify the stem is absent in Simulation
2, the best that the network can do is to activate both interpretations of the
affix. In order to activate the correct output unit, the network had to learn
which stems that take the -en affix are nouns and which are verbs. This can
only be learnt from experience of the inflected form of each stem (un-
marked noun and verb stems are processed in the same way by the net-
work). For the network to resolve the ambiguity of the -en affix therefore
requires training on specific inflected forms and will be affected by the
word-form frequency of the inflected form.

Figure 8 Boundary analysis comparing activation of the affix units in
simulation 1 and 2 as the orthographic input to the stem is
progressively reduced. Error bars show one standard error of
the mean over the test items.

The effect of the ambiguity of the -en affix can also be observed by in-
vestigating the representations that the network develops in the hidden units
for the noun stems and affixes. One index of componentiality in these rep-
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0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 

Stem Activation at Input 

In
fle

ct
io

n 
O

ut
pu

t 

simulation 1 
plural unit 

simulation 2 
plural unit  

simulation 2 
infinitive 

unit 



Davis, van Casteren & Marslen-Wilson 27

developed by Plaut et al., (1996), and used by Rueckl and Raveh (1999) for
assessing morphological representations. This analysis measures the simi-
larity of the hidden-unit representation of a particular morphological unit
both in and out of context. An item that is represented componentially will
produce a very similar pattern of hidden unit representations in a particular
context and when presented out of context. For example, if an affix is rep-
resented in the same way when presented to the network without a stem as
when presented with a stem then we might consider this affix to be repre-
sented componentially.

To calculate the contribution correlation for the -en affix, we took the
hidden-unit representation of an inflected form (e.g. ‘ambten’) and sub-
tracting the representation of the stem (‘ambt’) when presented without
input at the affix units. The resulting vector provides a representation of the
-en affix in the context of the stem ‘ambt'. We then calculated the hidden-
unit representation of the affix outside of any context by taking the hidden
activation for the -en affix alone (i.e. when presented without a stem) and
subtracting the hidden unit response to a blank input. If the hidden unit
representations of the affix in and out of context are identical or directly
proportional to each other, then the affix is represented consistently in and
out of context, and can be considered to be componential. If the two vectors
are orthogonal (i.e. dissimilar) then the representation of the affix depends
on the context in which it is presented and is therefore non-componential.
The similarity of the two vectors is assessed by calculating the correlation
coefficient between the corresponding components of the two vectors. The
components of similar vectors will be highly correlated, with a correlation
coefficient approaching one, while two orthogonal vectors will return a
similarity tending towards zero.

The average correlation calculated for the -en affix averaged over all 91
test lemmas was 0.23 for Simulation 1, and 0.19 for Simulation 2, these
values differed significantly (t(90)=26.60, p<.001), indicating that the -en
affix was represented in a more componential fashion in Simulation 1 when
there was only a single interpretation of the affix than in Simulation 2 when
two interpretations are possible.

The same procedure was also used to calculate correlation coefficients
for the stems. Since there are two independent contexts for each stem (with
and without the -en ending), hidden unit representations of the stem in
these two contexts can be compared directly (rather than using the subtrac-
tion with a null context as for the affix). When the contribution correlation
is calculated in this way, the average contribution correlation for the 91 test



Distributed model of inflectional morphology 28

stems on which the network was trained was 0.88 for Simulation 1 and 0.89
for Simulation 2. The first thing to note is that these values are substantially
higher for the stem than for the affix – the stem has a more consistent hid-
den unit representation in the network than the affix. This indicates that
activity in the hidden units is affected more by changes to the stem than by
changes to the affix (perhaps unsurprising given the greater number of in-
put and output units that represent the stem). Furthermore, although small,
the difference between the contribution correlation for the stem in the two
simulations is statistically reliable (t(90)=2.03, p<.05), thus although the
hidden-unit representation of the affix is more componential in Simulation
1 than in Simulation 2, this is not also the case for the representation of the
stem.

This finding reflects an important property of the mapping learnt by the
network – that is, despite differences in the processing of the affix, the or-
thography-to-semantics mapping for the stem is consistent for singular and
plural nouns in both simulations. For this reason, training experience with
inflected forms can still benefit the network when presented with a bare
stem. In comparing the two simulations, it does appear that the word-form
frequency effect for singular nouns is larger in Simulation 1 than in Simu-
lation 2. The exact cause of this change between the two simulations is
unclear. This may be a side-effect of the greater training required for the
network in Simulation 2 to reach criterion, which is itself a consequence of
the ambiguity of the -en  affix. Alternatively it may be that some further
reorganisation of the internal representations for noun stems is promoted by
the presence of an ambiguous affix.

4.2. Storage and decomposition in morphological processing

The two simulations that we have reported here have demonstrated that a
single-mechanism distributed connectionist model can display a complex
pattern of behaviour in responding to singular and plural nouns of varying
frequencies. Our simulations demonstrate the success of models that do not
include the distinct mechanisms of whole-word storage and morphological
decomposition that are required in traditional localist accounts. Despite
lacking explicit procedures for decomposition (segmentation, licensing,
checking) as proposed by Schreuder and Baayen (1995), we observe com-
ponential processing of stems and affixes in Simulation 1. Nonetheless,
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despite this componentiality we still observe effects of word-form fre-
quency in this simulation.

The introduction of a homonymous affix in Simulation 2 further dis-
courages the network from processing inflected items compositionally (i.e.
identifying the affix separately from the stem). Non-compositional proc-
essing of the plural affix seems necessary for the network to simulate ex-
perimental data from Dutch plurals reported by Baayen, Dijkstra, and
Schreuder (1997). Our simulations therefore support the observation of
Bertram, Schreuder and Baayen (2000) that affix homonymy affects the
processing of morphologically complex words, and illustrates how differ-
ences in the structure of the linguistic environment can impact on lexical
processing.

Distributed models in other domains have demonstrated the non-
necessity of qualitative processing distinctions between rule-governed and
exceptional forms in the generation of regular and irregular pronunciations
in reading aloud (Seidenberg and McClelland, 1989; Plaut et al., 1996). We
similarly propose that distinct processing mechanisms for whole-word stor-
age and morphological decomposition need not be included in models of
lexical processing. Our simulations are therefore in broad agreement with
other authors (e.g. Ruckel and Raveh 1999; Plaut and Gonnerman 2000) in
suggesting a distributed connectionist alternative to localist accounts of
morphological processing. Fundamental to these distributed accounts is the
suggestion that although terms like ‘storage’ and ‘decomposition’ may be
used to describe the behavioural profiles observed in experimental investi-
gations, that these terms need not reflect either explicitly-implemented
computational procedures or separable components of the human lexical
processing system.

Despite our arguments in favour of this single-mechanism, distributed
connectionist model, there is always more than one way in which to simu-
late any given set of behavioural data. Baayen, Dijkstra, and Schreuder
(1997) report mathematical simulations of a localist race model which
achieves a more precise numerical simulation of experimental data on the
processing of singular and plural nouns. Clearly the various styles of model
have different strengths and weaknesses – in particular it is often difficult
to use a distributed model to achieve precise numerical fits to empirical
data. However, there may still be reasons to favour distributed models. For
instance, they provide a basis for understanding how a system could self-
organise in order to produce a particular form of functional organisation,
rather than requiring external design to produce an implemented model.
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Further research will be required if we are to adjudicate between localist
and distributed accounts of lexical processing. From a behavioural per-
spective, one testable prediction of our distributed account would be that
since competition between verb and noun interpretations of the -en affix
play an important role in the behaviour of the network, that other affects of
competition may also be observed experimentally (in priming studies, for
example). Alternatively, linguistic or experimental contexts that favour one
interpretation of otherwise ambiguous affixes might reduce competition,
thereby shifting the balance between word-form and lemma frequency ef-
fects (cf. Bertram, Hyönä and Laine, 2000).

Despite these suggestions for future behavioural research, it is likely
that an extended research programme, including neuropsychology, neuroi-
maging, and a consideration of the underlying neurophysiology will do
more to advance the debate between localist and distributed accounts of
lexical processing. On the basis of the current work though, we encourage
researchers to be cautious before assuming that patterns of behavioural data
that suggest the ‘storage’ or ‘decomposition’ of morphologically complex
words can be mapped in a one-to-one fashion onto underlying computa-
tional mechanisms.

Notes

∗  We would like to thank members of the Language group at the Cognition and
Brain Sciences Unit, notably Mike Ford, Dennis Norris and Tim Rogers for
useful discussions of this work. We would like to thank Harold Baayen and
Jay Rueckl for comments and suggestions on a previous draft of this manu-
script. Email should be addressed to matt.davis@mrc-cbu.cam.ac.uk. This
work was supported by the Medical Research Council of the United King-
dom.

1. For a general introduction to distributed connectionist modelling, the inter-
ested reader is directed to MacLeod, Plunkett, and Rolls (1998) or Bechtel
and Abrahams (1991). For a discussion of distributed connectionist models of
linguistic processing see Christiansen and Chater (2001) or Plaut and Gon-
nerman (2000). For a critical appraisal of distributed and localist models of
cognition see Page (2000) and associated commentaries.

2. In English, the lemma frequency of a noun refers to the summed frequency of
singular and plural forms. Other languages, such as Dutch, also include a di-
minutive inflection and lemma frequencies are therefore not a simple sum of
the singular and plural frequency of the noun.
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3. In later work, Pinker (1999) has revised his account to include some storage
of high-frequency inflected forms. However, for clarity of exposition we will
focus on an early version of this account in which all regularly inflected items
are decomposed.

4. Schreuder and Baayen (1995) describe the decomposition process as involv-
ing three components, segmentation (splitting the word into stem and affix),
licensing (confirming that syntactic constraints allow the stem and affix to be
combined) and checking (determining that the resulting combination is se-
mantically interpretable). It is possible that decomposition may be particularly
slowed by one or more aspect of this process.

5. Output stress is as follows (where aj is output activation for unit j):
Stress =  Σaj log2(aj) + (1- aj) log2(1- aj) + 1

6. Cascaded activation function for hidden and output units is calculated using
the following equation, where τ is the time-constant for integration, net-in(t)
is the weighted sum of the input from the previous layer at time t (current) or
t-1 (previous time step):
activation (t) =                             1                          

      1 + e – (τ net-in(t) + (1 - τ) net-in(t - 1))

7. The average magnitude of the hidden-to-semantic weights is negative because
there are only 10 out of 128 semantic units active for any given input.

8. This comparison is an extreme form of the typical manipulation of lemma
frequency used experimentally; the verb stems we are using for comparison
do not have any  morphologically related forms – rather than having items
with a low frequency relative. Nonetheless the results of this comparison still
indicate that response times in the network are not only determined by word-
form frequency.

9. We would like to thank Jay Rueckl for suggesting these analyses.
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