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The fundamental conception in physics of the propagation of the electromagnetic wave polarization in matter is newly 
understood as the cardinal keyword in free-space quantum communication technology and cosmology in astrophysics. 
Interactive visualization of the propagation mechanism of polarized electromagnetism in a medium with its helicity has 
accordingly received attention from scientists exploiting the protocol of quantum key distribution (QKD) to guarantee 
unconditional security in cryptography communication.  We have provided a dynamic polarization platform for presenting 
the polarization modes of a transverse electromagnetic wave, converting the state of polarization through the arrangement 
of optical elements, using Jones vectors calculations in Methematica. The platform graphically simulates the mechanism of 
production and propagation of the polarized waves in a medium while satisfying Maxwell's equations.
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1. INTRODUCTION
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(EM) wave in a medium. In a plane wave, both the electric  
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 of the electromagnetic  

radiation always oscillates parallel to a fixed direction in 

space. Light of such character is said to be linearly polarized, 

and maintains a constant direction of oscillation, and 

does vary spatially in a regular manner, producing either 

elliptically polarized or circularly polarized light (Fowles 

1975; Jackson 1975; Pedrotti & Pedrotti 1987).  Polarization 

characteristic have been used in radio transmission to 

reduce interference between channels, particularly at 

VHF frequencies and beyond (Masayoshi 2007; Yao et al. 

2007). Free-space communication has forced the use of 

circular polarization, which has the fundamental advantage 

of precluding disturbance from the reflections of signals 

(Leitch et al. 2002; Elser et al. 2009).  Free-space optical 

(FSO) communication utilizes a spatial diversity receiver 

to receive the binary signals, which are modulated by two 

circular polarizations.  FSO communication employing 

a binary polarization shift keying coherent modulation 

scheme are utilized in atmospheric turbulence channel 

(Tang et al. 2010) and free-space quantum key distribution 

(QKD) by rotation-invariant twisted photons are used 

to guarantee unconditional security in cryptographic 

communication (Vallone 2014).  On 17 March 2014, 

astronomers from the Harvard Smithsonian Center for 

Astrophysics announced their detection of signature 

patterns of polarized light in the Cosmic Microwave 

Background (CMB) (Ade 2014; Calvin 2014; CfA 2014).  

The team hunted for a special type of polarization called 

‘B-mode’ which represents a twisting or ‘curl’ pattern in 

the polarized orientations of the ancient light. This is the 

strongest confirmation yet of the cosmic inflation theory 

(Boyle 2006).  Gravitational waves squeeze space as they 

travel, and the squeezing produces a distinct pattern in the 

CMB. Gravitational waves have a “handedness” much like 
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light wave and can have left- and right-handed polarization.  

In the Standard Model, the weak bosons (W±, Z) mediate 

the weak interactions between different flavors (all quarks 

and leptons).  Experimental results have shown that all 

produced and observed neutrinos have left-handed helicity, 

and all antineutrinos have right-handed helicity (Aad et 

al. 2012; CfA 2014). The helicity of the elementary particle 

could be a keyword to determine the Standard Model. 

The scope of application of polarization has expanded 

explosively this decade with the development of communication  

technology. Accordingly, it is fundamentally important 

for application of a manipulation scheme to understand 

the physics of polarization’s conception and the process 

of producing polarization modes.  Presently the definition 

of polarization has been modified, and its nomenclature 

upgraded, which can be confusing to students of physics 

and researchers. For instance, there are similar customary 

nomenclature for the right circularly polarization: right 

circularly (Fowles 1975; Jackson 1975), right-circularly 

(Pedrotti & Pedrotti 1987), right-hand circularly (Reitz et al. 

1993), and right-handed (Born & Wolf 1999; Georgi 1982) 

circularly polarization. Right circularly polarization and 

right-handed polarization are different types of polarization, 

although with similar names. Recently, the visualization of 

polarization propagating in matter has drawn physicist's 

attention for potential  applications in modern physics and 

information technology (Tamm 1997; Mooleskamp & Stokes 

2015; Yun & Choi 2013).

We have provided a dynamic polarization modes platform 

for simulating polarization modes with Jones matrices 

calculations, corresponding to the physical arrangement of 

optical elements, in a Mathematica computing environment 

(Mathematica 2015). 

2. MATHEMATICA SIMULATION FOR THE 
CONVERTING POLARIZATION MODES

2.1 Electromagnetic waves in solids

The propagating process of electromagnetic waves in 

solids is different from that in the vacuum, since  
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∇⃗⃗ × ( ∇⃗⃗ × E⃗⃗  )   1c2
∂2E⃗⃗ 
∂t2  = −u0

∂2P⃗⃗ 
∂t2

where P⃗⃗ = 𝜒𝜒𝜀𝜀0E⃗⃗ .  If we suppose the EM wave will be a form of solution such as Ê0ei(�⃗⃗�𝒦 .r⃗ −⍵t), we can  

rewrite Eq. (1) using a wave vector k⃗  
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rewrite Eq. (1) using a wave vector k⃗  

=0, the Helmholtz 

wave equation in a solid (Fowles 1975; Jackson 1975) is

 

3 
 

producing polarization modes.  Presently the definition of polarization has been modified, and its 

nomenclature upgraded, which can be confusing to students of physics and researchers. For instance, 

there are similar customary nomenclature for the right circularly polarization: right circularly (Fowles 

1975, Jackson 1975), right-circularly (Pedrotti & Predrotti 1987), right-hand circularly (Reitz et al. 

1993), and right-handed (Born & Wolf 1999, Georgi 1982) circularly polarization. Right circularly 

polarization and right-handed polarization are different types of polarization, although with similar 

names.  Recently, the visualization of polarization propagating in matter has drawn physicist's 

attention for potential  applications in modern physics and information technology (Tamm 1997, 

Mooleskamp & Stokes 2015, Yun & Choi 2013). 

We have provided a dynamic polarization modes platform for simulating polarization modes with 

Jones matrices calculations, corresponding to the physical arrangement of optical elements, in a 

Mathematica computing environment (Mathematica 2015).  

 

2.MATHEMATICA SIMULATION FOR THE CONVERTING POLARIZATION 

MODES 

2.1 Electromagnetic waves in solids 

The propagating process of electromagnetic waves in solids is different from that in the vacuum, since  

E⃗⃗  and B⃗⃗  of the electromagnetic waves interact with the electrons in a solid (Pedrotti & Predrotti 1987, 

Fowles 1975).  In particular, although the electromagnetic waves are an harmonic plane wave, the 

fields may pull or push the electrons in the orbital of a solid, which is responsible for inducing dipole 

moment  P⃗⃗   and magnetization M⃗⃗⃗   in the solid.  If we assume that the medium is not a magnetic 

material and J =0, the Helmholtz wave equation in a solid (Fowles 1975, Jackson 1975) is 

∇⃗⃗ × ( ∇⃗⃗ × E⃗⃗  )   1c2
∂2E⃗⃗ 
∂t2  = −u0

∂2P⃗⃗ 
∂t2

where P⃗⃗ = 𝜒𝜒𝜀𝜀0E⃗⃗ .  If we suppose the EM wave will be a form of solution such as Ê0ei(�⃗⃗�𝒦 .r⃗ −⍵t), we can  
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It then becomes a vector equation for E⃗⃗ , which indicates that the propagation process varies with   

the component of electric susceptibility 𝜒𝜒.  Therefore, we will write the E⃗⃗  solution of Eq. (2) in a 
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As shown above, Ê field vector may be presented as the Jones vector (Jones 1941) with a complex 
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and form a real mutually orthogonal unit vectors  ( ε 1, ε 2, n̂ ).  Here K̂ =  k ⃗⃗⃗⃗ +  i 𝛼𝛼  is a complex 

wave vector and N =n + i κ complex refraction index.  For Eq. (3) to be a solution of Eq. (2) 

as a homogeneous plane harmonic wave, it should be 𝒦𝒦 ⍵
c .  Then we get the relations: 𝛼𝛼 ⍵

c 𝜅𝜅, 

⍵
c 𝑛𝑛, which result in propagation speeds that are different along the direction in the medium.  

Therefore, there will be a cumulative phase difference  ∆𝜀𝜀 between the two components of the E⃗⃗  

field vector as they emerge in uniaxial crystals (Quartz, Calcite, etc.). After the wave has traveled a 

distance d, the phase difference is   ∆𝜀𝜀 = ⍵
𝑐𝑐  𝑑𝑑(n2-n1) between Ex wave and Ey wave when the 

radiation is propagating along the k⃗  direction.  If the ∆𝜀𝜀=0 while the amplitude of  E⃗⃗  is real, the 

vector is responsible for the linearly polarized such as Jones vector {A, B}, otherwise the amplitude is 

the complex vector responsible for the elliptically polarized Jones vector as {A, B iC}. Specifically, 

if B=0 and A=C then the wave is a circularly polarized Jones vector such as {1, i}.  

A quarter wave plate is a thin birefringent crystal the thickness of which has been adjusted to 

produce a  𝜋𝜋/4 phase difference between the ordinary and extraordinary rays at the operating 
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As shown above, Ê field vector may be presented as the Jones vector (Jones 1941) with a complex 

vector amplitude {A, B  iC} oscillating in an inhomogeneous plane.  The wave vector  k⃗ = k n̂ 

and form a real mutually orthogonal unit vectors  ( ε 1, ε 2, n̂ ).  Here K̂ =  k ⃗⃗⃗⃗ +  i 𝛼𝛼  is a complex 

wave vector and N =n + i κ complex refraction index.  For Eq. (3) to be a solution of Eq. (2) 

as a homogeneous plane harmonic wave, it should be 𝒦𝒦 ⍵
c .  Then we get the relations: 𝛼𝛼 ⍵

c 𝜅𝜅, 

⍵
c 𝑛𝑛, which result in propagation speeds that are different along the direction in the medium.  

Therefore, there will be a cumulative phase difference  ∆𝜀𝜀 between the two components of the E⃗⃗  

field vector as they emerge in uniaxial crystals (Quartz, Calcite, etc.). After the wave has traveled a 

distance d, the phase difference is   ∆𝜀𝜀 = ⍵
𝑐𝑐  𝑑𝑑(n2-n1) between Ex wave and Ey wave when the 

radiation is propagating along the k⃗  direction.  If the ∆𝜀𝜀=0 while the amplitude of  E⃗⃗  is real, the 

vector is responsible for the linearly polarized such as Jones vector {A, B}, otherwise the amplitude is 

the complex vector responsible for the elliptically polarized Jones vector as {A, B iC}. Specifically, 

if B=0 and A=C then the wave is a circularly polarized Jones vector such as {1, i}.  

A quarter wave plate is a thin birefringent crystal the thickness of which has been adjusted to 

produce a  𝜋𝜋/4 phase difference between the ordinary and extraordinary rays at the operating 

 = 

4 
 

k⃗ × ( k⃗ × E⃗⃗  )   ⍵
2

c2 E⃗⃗ = − ⍵
2

c2 χ E⃗⃗ 

It then becomes a vector equation for E⃗⃗ , which indicates that the propagation process varies with   

the component of electric susceptibility 𝜒𝜒.  Therefore, we will write the E⃗⃗  solution of Eq. (2) in a 

solid as an inhomogeneous plane wave solution below (Pedrotti & Predrotti 1987, Fowles 1975, 

Jackson 1975) 
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The fundamental conception in physics of the propagation of the electromagnetic wave polarization in matter is 

newly understood as the cardinal keyword in free-space quantum communication technology and cosmology in 

astrophysics. Interactive visualization of the propagation mechanism of polarized electromagnetism in a medium 

with its helicity has accordingly received attention from scientists exploiting the protocol of quantum key 

distribution (QKD) to guarantee unconditional security in cryptography communication.  We have provided a 

dynamic polarization platform for presenting the polarization modes of a transverse electromagnetic wave, 

converting the state of polarization through the arrangement of optical elements, using Jones vectors calculations 

in Methematica.  The platform graphically simulates the mechanism of production and propagation of the 

polarized waves in a medium while satisfying Maxwell's equations.  
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1. INTRODUCTION  

Polarization is a coherent characteristic of the electromagnetic (EM) wave in a medium. In a plane 

wave, both the electric field vector E⃗⃗  and magnetic field vector B⃗⃗  of the electromagnetic radiation 

always oscillates parallel to a fixed direction in space. Light of such character is said to be linearly 
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The fundamental conception in physics of the propagation of the electromagnetic wave polarization in matter is 

newly understood as the cardinal keyword in free-space quantum communication technology and cosmology in 

astrophysics. Interactive visualization of the propagation mechanism of polarized electromagnetism in a medium 

with its helicity has accordingly received attention from scientists exploiting the protocol of quantum key 

distribution (QKD) to guarantee unconditional security in cryptography communication.  We have provided a 

dynamic polarization platform for presenting the polarization modes of a transverse electromagnetic wave, 

converting the state of polarization through the arrangement of optical elements, using Jones vectors calculations 

in Methematica.  The platform graphically simulates the mechanism of production and propagation of the 

polarized waves in a medium while satisfying Maxwell's equations.  
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1. INTRODUCTION  

Polarization is a coherent characteristic of the electromagnetic (EM) wave in a medium. In a plane 

wave, both the electric field vector E⃗⃗  and magnetic field vector B⃗⃗  of the electromagnetic radiation 

always oscillates parallel to a fixed direction in space. Light of such character is said to be linearly 

 is real, the vector is responsible for 

the linearly polarized such as Jones vector {A, B}, otherwise 

the amplitude is the complex vector responsible for the 

elliptically polarized Jones vector as {A, B±iC}. Specifically, 

if B=0 and A=C then the wave is a circularly polarized Jones 

vector such as {1, i}. 

A quarter wave plate is a thin birefringent crystal the 

thickness of which has been adjusted to produce a ± π/4 
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rays at the operating wavelength. We desire a matrix that will 
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wavelength. We desire a matrix that will transform the element E0x  eiφx  into E0x  ei(εx +φx)   and 

E0y  eiφy  into E0y  ei(εy +φy).  The general form of a matrix representing a phase retarder will 

transform the elements by the matrix operation as follows 

(eiεx 0
0  eiεy

) ( E0x  eiφx

 E0y  eiφy) = (E0x  ei(εx +φx)

E0y  ei(εy +φy))              (4) 

where εx and εy   represent the advance in phase of Ex- and Ey- component of the incident light. As 

an example, consider a quarter-wave plate (QWP) which makes ∆𝜀𝜀=𝜋𝜋/2.  We may write the Jones 

matrix, M transforming the Jones vector  ∆𝜀𝜀=𝜋𝜋/2 to produce right-handed circular polarizing light as 

M= (e−i1
4π 0

0  ei1
4π

) = e−iπ/4 (1 0
0  i)       QWP, FA vertical         (5) 

This is the case of fast axis vertical(FA vertical). Similarly, we can determine the corresponding Jones 

matrix for a half-wave plate(HWP) or eighth-wave plate (EWP) or arbitrary phase of retarded. Jones 

matrices derived for various wave plates are summarized in Table 1. 

 

Table 1. Summary of Jones vectors  in the most common and Jones matrices of the wave plates 

              and phase retarders (Pedrotti & Predrotti 1987). 

 Polarized light                 Jones vectors                       helicity 

 linearly polarized                  (Cos α
Sin α)                               0 

 right(left)-handed circularly         1/√2 ( 1
±i )                            ±1 

 right(left)-handed elliptically         1/√A2 + B2 + C2  ( A
B + i C)                ±1 

Polarizer & Wave Plate          Jones matrices                       
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k⃗ × ( k⃗ × E⃗⃗  )   ⍵
2

c2 E⃗⃗ = − ⍵
2

c2 χ E⃗⃗ 

It then becomes a vector equation for E⃗⃗ , which indicates that the propagation process varies with   

the component of electric susceptibility 𝜒𝜒.  Therefore, we will write the E⃗⃗  solution of Eq. (2) in a 

solid as an inhomogeneous plane wave solution below (Pedrotti & Predrotti 1987, Fowles 1975, 

Jackson 1975) 

Ê(r , t) = (ε 1 E1 + ε 2 E2)  ei(�⃗⃗�𝒦 .r⃗ −⍵t)

= E0(ε 1  + ε 2 ei∆ε)  ei(k⃗⃗ .r⃗ −⍵t)

=  ( A
 B  + iC)  ei(k⃗⃗  ∙ r⃗ −⍵t)

As shown above, Ê field vector may be presented as the Jones vector (Jones 1941) with a complex 

vector amplitude {A, B  iC} oscillating in an inhomogeneous plane.  The wave vector  k⃗ = k n̂ 

and form a real mutually orthogonal unit vectors  ( ε 1, ε 2, n̂ ).  Here K̂ =  k ⃗⃗⃗⃗ +  i 𝛼𝛼  is a complex 

wave vector and N =n + i κ complex refraction index.  For Eq. (3) to be a solution of Eq. (2) 

as a homogeneous plane harmonic wave, it should be 𝒦𝒦 ⍵
c .  Then we get the relations: 𝛼𝛼 ⍵

c 𝜅𝜅, 

⍵
c 𝑛𝑛, which result in propagation speeds that are different along the direction in the medium.  

Therefore, there will be a cumulative phase difference  ∆𝜀𝜀 between the two components of the E⃗⃗  

field vector as they emerge in uniaxial crystals (Quartz, Calcite, etc.). After the wave has traveled a 

distance d, the phase difference is   ∆𝜀𝜀 = ⍵
𝑐𝑐  𝑑𝑑(n2-n1) between Ex wave and Ey wave when the 

radiation is propagating along the k⃗  direction.  If the ∆𝜀𝜀=0 while the amplitude of  E⃗⃗  is real, the 

vector is responsible for the linearly polarized such as Jones vector {A, B}, otherwise the amplitude is 

the complex vector responsible for the elliptically polarized Jones vector as {A, B iC}. Specifically, 

if B=0 and A=C then the wave is a circularly polarized Jones vector such as {1, i}.  

A quarter wave plate is a thin birefringent crystal the thickness of which has been adjusted to 

produce a  𝜋𝜋/4 phase difference between the ordinary and extraordinary rays at the operating 

- and 
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wavelength. We desire a matrix that will transform the element E0x  eiφx  into E0x  ei(εx +φx)   and 

E0y  eiφy  into E0y  ei(εy +φy).  The general form of a matrix representing a phase retarder will 

transform the elements by the matrix operation as follows 

(eiεx 0
0  eiεy

) ( E0x  eiφx

 E0y  eiφy) = (E0x  ei(εx +φx)

E0y  ei(εy +φy))              (4) 

where εx and εy   represent the advance in phase of Ex- and Ey- component of the incident light. As 

an example, consider a quarter-wave plate (QWP) which makes ∆𝜀𝜀=𝜋𝜋/2.  We may write the Jones 

matrix, M transforming the Jones vector  ∆𝜀𝜀=𝜋𝜋/2 to produce right-handed circular polarizing light as 

M= (e−i1
4π 0

0  ei1
4π

) = e−iπ/4 (1 0
0  i)       QWP, FA vertical         (5) 

This is the case of fast axis vertical(FA vertical). Similarly, we can determine the corresponding Jones 

matrix for a half-wave plate(HWP) or eighth-wave plate (EWP) or arbitrary phase of retarded. Jones 

matrices derived for various wave plates are summarized in Table 1. 
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This is the case of fast axis vertical (FA vertical). Similarly, 

we can determine the corresponding Jones matrix for a half-

wave plate (HWP) or eighth-wave plate (EWP) or arbitrary 

phase of retarded. Jones matrices derived for various wave 

plates are summarized in Table 1.

We desire now to create a new simulation presenting 

a means of producing polarizing modes from a Jones 

calculation corresponding to the physical arrangement 

of optical elements in the Mathematica  computing 

environment.  In a plane wave, the electric field vector 
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The fundamental conception in physics of the propagation of the electromagnetic wave polarization in matter is 

newly understood as the cardinal keyword in free-space quantum communication technology and cosmology in 

astrophysics. Interactive visualization of the propagation mechanism of polarized electromagnetism in a medium 

with its helicity has accordingly received attention from scientists exploiting the protocol of quantum key 

distribution (QKD) to guarantee unconditional security in cryptography communication.  We have provided a 

dynamic polarization platform for presenting the polarization modes of a transverse electromagnetic wave, 

converting the state of polarization through the arrangement of optical elements, using Jones vectors calculations 

in Methematica.  The platform graphically simulates the mechanism of production and propagation of the 

polarized waves in a medium while satisfying Maxwell's equations.  
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1. INTRODUCTION  

Polarization is a coherent characteristic of the electromagnetic (EM) wave in a medium. In a plane 

wave, both the electric field vector E⃗⃗  and magnetic field vector B⃗⃗  of the electromagnetic radiation 

always oscillates parallel to a fixed direction in space. Light of such character is said to be linearly 

 

always oscillates parallel to the fixed direction in space.  

Light of such character is said to be linearly polarized. 

If the linearly polarized light passes through a quarter-

wave plate, elliptically polarized light emerges. The 

same can be said of the magnetic field vector 

3 
 

producing polarization modes.  Presently the definition of polarization has been modified, and its 

nomenclature upgraded, which can be confusing to students of physics and researchers. For instance, 

there are similar customary nomenclature for the right circularly polarization: right circularly (Fowles 

1975, Jackson 1975), right-circularly (Pedrotti & Predrotti 1987), right-hand circularly (Reitz et al. 

1993), and right-handed (Born & Wolf 1999, Georgi 1982) circularly polarization. Right circularly 

polarization and right-handed polarization are different types of polarization, although with similar 

names.  Recently, the visualization of polarization propagating in matter has drawn physicist's 

attention for potential  applications in modern physics and information technology (Tamm 1997, 

Mooleskamp & Stokes 2015, Yun & Choi 2013). 

We have provided a dynamic polarization modes platform for simulating polarization modes with 

Jones matrices calculations, corresponding to the physical arrangement of optical elements, in a 

Mathematica computing environment (Mathematica 2015).  

 

2.MATHEMATICA SIMULATION FOR THE CONVERTING POLARIZATION 

MODES 

2.1 Electromagnetic waves in solids 

The propagating process of electromagnetic waves in solids is different from that in the vacuum, since  

E⃗⃗  and B⃗⃗  of the electromagnetic waves interact with the electrons in a solid (Pedrotti & Predrotti 1987, 

Fowles 1975).  In particular, although the electromagnetic waves are an harmonic plane wave, the 

fields may pull or push the electrons in the orbital of a solid, which is responsible for inducing dipole 

moment  P⃗⃗   and magnetization M⃗⃗⃗   in the solid.  If we assume that the medium is not a magnetic 

material and J =0, the Helmholtz wave equation in a solid (Fowles 1975, Jackson 1975) is 

∇⃗⃗ × ( ∇⃗⃗ × E⃗⃗  )   1c2
∂2E⃗⃗ 
∂t2  = −u0

∂2P⃗⃗ 
∂t2

where P⃗⃗ = 𝜒𝜒𝜀𝜀0E⃗⃗ .  If we suppose the EM wave will be a form of solution such as Ê0ei(�⃗⃗�𝒦 .r⃗ −⍵t), we can  

rewrite Eq. (1) using a wave vector k⃗  

 , which 

maintains an orientation perpendicular to the electric 

field vector such that the direction of 
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Fowles 1975).  In particular, although the electromagnetic waves are an harmonic plane wave, the 

fields may pull or push the electrons in the orbital of a solid, which is responsible for inducing dipole 

moment  P⃗⃗   and magnetization M⃗⃗⃗   in the solid.  If we assume that the medium is not a magnetic 
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where P⃗⃗ = 𝜒𝜒𝜀𝜀0E⃗⃗ .  If we suppose the EM wave will be a form of solution such as Ê0ei(�⃗⃗�𝒦 .r⃗ −⍵t), we can  

rewrite Eq. (1) using a wave vector k⃗  
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the direction of wave propagation. Thus, the possibility 

of polarizing light is essentially due to its transverse 

character. Therefore, the Mathematica simulation should 

show the transverse character of the 
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1. INTRODUCTION  

Polarization is a coherent characteristic of the electromagnetic (EM) wave in a medium. In a plane 

wave, both the electric field vector E⃗⃗  and magnetic field vector B⃗⃗  of the electromagnetic radiation 

always oscillates parallel to a fixed direction in space. Light of such character is said to be linearly 

 × 
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producing polarization modes.  Presently the definition of polarization has been modified, and its 

nomenclature upgraded, which can be confusing to students of physics and researchers. For instance, 

there are similar customary nomenclature for the right circularly polarization: right circularly (Fowles 

1975, Jackson 1975), right-circularly (Pedrotti & Predrotti 1987), right-hand circularly (Reitz et al. 

1993), and right-handed (Born & Wolf 1999, Georgi 1982) circularly polarization. Right circularly 

polarization and right-handed polarization are different types of polarization, although with similar 

names.  Recently, the visualization of polarization propagating in matter has drawn physicist's 

attention for potential  applications in modern physics and information technology (Tamm 1997, 

Mooleskamp & Stokes 2015, Yun & Choi 2013). 

We have provided a dynamic polarization modes platform for simulating polarization modes with 

Jones matrices calculations, corresponding to the physical arrangement of optical elements, in a 

Mathematica computing environment (Mathematica 2015).  
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fields may pull or push the electrons in the orbital of a solid, which is responsible for inducing dipole 

moment  P⃗⃗   and magnetization M⃗⃗⃗   in the solid.  If we assume that the medium is not a magnetic 

material and J =0, the Helmholtz wave equation in a solid (Fowles 1975, Jackson 1975) is 

∇⃗⃗ × ( ∇⃗⃗ × E⃗⃗  )   1c2
∂2E⃗⃗ 
∂t2  = −u0

∂2P⃗⃗ 
∂t2

where P⃗⃗ = 𝜒𝜒𝜀𝜀0E⃗⃗ .  If we suppose the EM wave will be a form of solution such as Ê0ei(�⃗⃗�𝒦 .r⃗ −⍵t), we can  

rewrite Eq. (1) using a wave vector k⃗  

 with its vectorial 

behaviors dynamically satisfying Maxwell's wave equations. 

In addition to the transverse character of the polarizing  

wave, the helicity of a polarized wave is a critical factor in 

quantum cryptography communication  technology or 

cosmology in modern physics.

2.2  Polarization modes Mathematica simulation

We have used Mathematica to implement interactive 

Jones matrix calculations and animations for the generation 

and propagation of the polarization modes in the solid state. 

First, we desire to confirm that the complex vector field 
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k⃗ × ( k⃗ × E⃗⃗  )   ⍵
2

c2 E⃗⃗ = − ⍵
2

c2 χ E⃗⃗ 

It then becomes a vector equation for E⃗⃗ , which indicates that the propagation process varies with   

the component of electric susceptibility 𝜒𝜒.  Therefore, we will write the E⃗⃗  solution of Eq. (2) in a 

solid as an inhomogeneous plane wave solution below (Pedrotti & Predrotti 1987, Fowles 1975, 

Jackson 1975) 

Ê(r , t) = (ε 1 E1 + ε 2 E2)  ei(�⃗⃗�𝒦 .r⃗ −⍵t)

= E0(ε 1  + ε 2 ei∆ε)  ei(k⃗⃗ .r⃗ −⍵t)

=  ( A
 B  + iC)  ei(k⃗⃗  ∙ r⃗ −⍵t)

As shown above, Ê field vector may be presented as the Jones vector (Jones 1941) with a complex 

vector amplitude {A, B  iC} oscillating in an inhomogeneous plane.  The wave vector  k⃗ = k n̂ 

and form a real mutually orthogonal unit vectors  ( ε 1, ε 2, n̂ ).  Here K̂ =  k ⃗⃗⃗⃗ +  i 𝛼𝛼  is a complex 

wave vector and N =n + i κ complex refraction index.  For Eq. (3) to be a solution of Eq. (2) 

as a homogeneous plane harmonic wave, it should be 𝒦𝒦 ⍵
c .  Then we get the relations: 𝛼𝛼 ⍵

c 𝜅𝜅, 

⍵
c 𝑛𝑛, which result in propagation speeds that are different along the direction in the medium.  

Therefore, there will be a cumulative phase difference  ∆𝜀𝜀 between the two components of the E⃗⃗  

field vector as they emerge in uniaxial crystals (Quartz, Calcite, etc.). After the wave has traveled a 

distance d, the phase difference is   ∆𝜀𝜀 = ⍵
𝑐𝑐  𝑑𝑑(n2-n1) between Ex wave and Ey wave when the 

radiation is propagating along the k⃗  direction.  If the ∆𝜀𝜀=0 while the amplitude of  E⃗⃗  is real, the 

vector is responsible for the linearly polarized such as Jones vector {A, B}, otherwise the amplitude is 

the complex vector responsible for the elliptically polarized Jones vector as {A, B iC}. Specifically, 

if B=0 and A=C then the wave is a circularly polarized Jones vector such as {1, i}.  

A quarter wave plate is a thin birefringent crystal the thickness of which has been adjusted to 

produce a  𝜋𝜋/4 phase difference between the ordinary and extraordinary rays at the operating 

 of 

Eq. (3) with Jones vectors in the matter satisfy the Maxwell's 

vector equations Eqs. (6) and (7) in both numeric and 

graphic simulations.
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equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 

  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 

where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

 (6)
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k⃗ × ( k⃗ × E⃗⃗  )   ⍵
2

c2 E⃗⃗ = − ⍵
2

c2 χ E⃗⃗ 

It then becomes a vector equation for E⃗⃗ , which indicates that the propagation process varies with   

the component of electric susceptibility 𝜒𝜒.  Therefore, we will write the E⃗⃗  solution of Eq. (2) in a 

solid as an inhomogeneous plane wave solution below (Pedrotti & Predrotti 1987, Fowles 1975, 

Jackson 1975) 
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As shown above, Ê field vector may be presented as the Jones vector (Jones 1941) with a complex 

vector amplitude {A, B  iC} oscillating in an inhomogeneous plane.  The wave vector  k⃗ = k n̂ 
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radiation is propagating along the k⃗  direction.  If the ∆𝜀𝜀=0 while the amplitude of  E⃗⃗  is real, the 
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  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 
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wave, both the electric field vector E⃗⃗  and magnetic field vector B⃗⃗  of the electromagnetic radiation 

always oscillates parallel to a fixed direction in space. Light of such character is said to be linearly 
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producing polarization modes.  Presently the definition of polarization has been modified, and its 

nomenclature upgraded, which can be confusing to students of physics and researchers. For instance, 

there are similar customary nomenclature for the right circularly polarization: right circularly (Fowles 

1975, Jackson 1975), right-circularly (Pedrotti & Predrotti 1987), right-hand circularly (Reitz et al. 

1993), and right-handed (Born & Wolf 1999, Georgi 1982) circularly polarization. Right circularly 

polarization and right-handed polarization are different types of polarization, although with similar 

names.  Recently, the visualization of polarization propagating in matter has drawn physicist's 

attention for potential  applications in modern physics and information technology (Tamm 1997, 

Mooleskamp & Stokes 2015, Yun & Choi 2013). 

We have provided a dynamic polarization modes platform for simulating polarization modes with 

Jones matrices calculations, corresponding to the physical arrangement of optical elements, in a 

Mathematica computing environment (Mathematica 2015).  
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Fowles 1975).  In particular, although the electromagnetic waves are an harmonic plane wave, the 

fields may pull or push the electrons in the orbital of a solid, which is responsible for inducing dipole 

moment  P⃗⃗   and magnetization M⃗⃗⃗   in the solid.  If we assume that the medium is not a magnetic 

material and J =0, the Helmholtz wave equation in a solid (Fowles 1975, Jackson 1975) is 
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where P⃗⃗ = 𝜒𝜒𝜀𝜀0E⃗⃗ .  If we suppose the EM wave will be a form of solution such as Ê0ei(�⃗⃗�𝒦 .r⃗ −⍵t), we can  
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�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 

  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 

where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

 

are real vectors with 

3 
 

producing polarization modes.  Presently the definition of polarization has been modified, and its 

nomenclature upgraded, which can be confusing to students of physics and researchers. For instance, 

there are similar customary nomenclature for the right circularly polarization: right circularly (Fowles 

1975, Jackson 1975), right-circularly (Pedrotti & Predrotti 1987), right-hand circularly (Reitz et al. 

1993), and right-handed (Born & Wolf 1999, Georgi 1982) circularly polarization. Right circularly 

polarization and right-handed polarization are different types of polarization, although with similar 

names.  Recently, the visualization of polarization propagating in matter has drawn physicist's 

attention for potential  applications in modern physics and information technology (Tamm 1997, 

Mooleskamp & Stokes 2015, Yun & Choi 2013). 

We have provided a dynamic polarization modes platform for simulating polarization modes with 

Jones matrices calculations, corresponding to the physical arrangement of optical elements, in a 

Mathematica computing environment (Mathematica 2015).  

 

2.MATHEMATICA SIMULATION FOR THE CONVERTING POLARIZATION 

MODES 

2.1 Electromagnetic waves in solids 

The propagating process of electromagnetic waves in solids is different from that in the vacuum, since  

E⃗⃗  and B⃗⃗  of the electromagnetic waves interact with the electrons in a solid (Pedrotti & Predrotti 1987, 

Fowles 1975).  In particular, although the electromagnetic waves are an harmonic plane wave, the 

fields may pull or push the electrons in the orbital of a solid, which is responsible for inducing dipole 

moment  P⃗⃗   and magnetization M⃗⃗⃗   in the solid.  If we assume that the medium is not a magnetic 

material and J =0, the Helmholtz wave equation in a solid (Fowles 1975, Jackson 1975) is 

∇⃗⃗ × ( ∇⃗⃗ × E⃗⃗  )   1c2
∂2E⃗⃗ 
∂t2  = −u0

∂2P⃗⃗ 
∂t2

where P⃗⃗ = 𝜒𝜒𝜀𝜀0E⃗⃗ .  If we suppose the EM wave will be a form of solution such as Ê0ei(�⃗⃗�𝒦 .r⃗ −⍵t), we can  

rewrite Eq. (1) using a wave vector k⃗  

 =µ
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equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 

  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 

where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

 where 
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equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 

  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 

where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

 is a magnetic intensity 

vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors 

calculations in the Mathematica simulation as below.  The 

Mathematica input code is shown below: 

Mathematica code #1

In[11]:=  E0 = 1/
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equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 

  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 

where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

{1, 0} + 1/
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equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 

  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 

where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

{0, 1};

In[12]:=  LP = {
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equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 

  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 

where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

}; 

In[13]:=  LW = {{
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equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 

  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 

where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 
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equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 

  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 

where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  
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  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 
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In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

, 
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equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 

  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 

where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 
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equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 

  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 

where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 
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equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 

  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 

where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

}};  

In[14]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}};

In[15]:=  HW = {{1, 0}, {0, -1}};

In[16]:=  EWV = {{1, 0}, {0, Exp[ I 1/4
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equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 

  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 

where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

}};

 EWH = {{1, 0}, {0, Exp[ -I 1/4
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equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 

  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 

where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

}}; 

In[17]:=  l1 = E0*LP;  l2=LW ;

In[22]:=  E0*LP/. 
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equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 

  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 

where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

 ->1/4
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equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 

  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 

where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

In[23]:=  E0*LP∙QWV/. 
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equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 

  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 

where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

 ->1/4

7 
 

equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 

  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 

where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

In[24]:=  E0* LP∙QWH/. 

7 
 

equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 

  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 

where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  
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In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 
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In[19]:=  EWH = {{1, 0}, {0, -1}}; 
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In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 
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In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

 ->1/4
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equations Eq. (6,7) in both numeric and graphic simulations. 
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In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  
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In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 
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In[25]:=  E0* LP∙HW /. 
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�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 
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where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 
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In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  
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In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 
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In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

 ->1/4
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equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 

  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 

where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

In[26]:=  E0* LP∙EWV /. 
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equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 

  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 

where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

 ->1/4
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equations Eq. (6,7) in both numeric and graphic simulations. 
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where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  
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In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

 //N

In[27]:=  E0* LP∙EWH /. 
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In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  
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where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 
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Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 
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where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 
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where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 
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equations Eq. (6,7) in both numeric and graphic simulations. 
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where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 
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In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 
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below.  The Mathematica input code is shown below:  
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equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 
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where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 
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In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 
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In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 
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equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 
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where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 
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In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

} //N
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where εx and εy   represent the advance in phase of Ex- and Ey- component of the incident light. As 
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matrix, M transforming the Jones vector  ∆𝜀𝜀=𝜋𝜋/2 to produce right-handed circular polarizing light as 

M= (e−i1
4π 0

0  ei1
4π

) = e−iπ/4 (1 0
0  i)       QWP, FA vertical         (5) 

This is the case of fast axis vertical(FA vertical). Similarly, we can determine the corresponding Jones 

matrix for a half-wave plate(HWP) or eighth-wave plate (EWP) or arbitrary phase of retarded. Jones 

matrices derived for various wave plates are summarized in Table 1. 
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 general phase retarder              M=  (e
iεx 0
0  eiεy

) 

 linearly polarizer(𝛽𝛽,TA)             M=  ( Cos2β Cosβ Sinβ
Cosβ Sinβ Sin2β )  

 quarter-wave plate(V/H)             M= e∓iπ/4 (1 0
0 ± i) 

half-wave plate(V/H)                M= e∓iπ/4 (1 0
0 −1) 

eighth-wave plate(V/H)           M= (1 0
0   e±iπ/4)        

† Wave plate (V/H) stand for the fast transmission axis of vertical/horizontal. 

 

We desire now to create a new simulation presenting a means of producing polarizing modes from a 

Jones calculation corresponding to the physical arrangement of optical elements in the Mathematica 

computing environment.  In a plane wave, the electric field vector E⃗⃗  always oscillates parallel to the 

fixed direction in space.  Light of such character is said to be linearly polarized. If the linearly 

polarized light passes through a quarter-wave plate, elliptically polarized light emerges. The same can 

be said of the magnetic field vector B⃗⃗ , which maintains an orientation perpendicular to the electric 

field vector such that the direction of E⃗⃗  × B⃗⃗  is everywhere the direction of wave propagation. Thus, 

the possibility of polarizing light is essentially due to its transverse character. Therefore, the 

Mathematica simulation should show the transverse character of the E⃗⃗  × B⃗⃗  with its vectorial 

behaviors dynamically satisfying Maxwell's wave equations. In addition to the transverse character of 

the polarizing wave, the helicity of a polarized wave is a critical factor in quantum cryptography 

communication  technology or cosmology in modern physics. 

 

2.2  Polarization modes Mathematica simulation 

We have used Mathematica to implement interactive Jones matrix calculations and animations for the 

generation and propagation of the polarization modes in the solid state. First, we desire to confirm that 

the complex vector field Ê of Eq. (3) with Jones vectors in the matter satisfy the Maxwell's vector 

linearly polarizer(β,TA)
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Mathematica returns calculations;  

Out[22]:=  {I/2, I/2}

Out[23]:=  {I/2, I/2} (Fig. 2, Fig. 3(a))

Out[24]:=  {I/2, -I/2} (Fig. 3(b))

Out[25]:=  {I/2, -1/2} (Fig. 3(c))   

Out[26]:=  {0.5, 0.353553 + 0.353553 I } (Fig. 3(e))

Out[27]:=  {0.5, 0.353553 - 0.353553 I } (Fig. 3(f))    

Out[28]:=  {0.341506,0.591506}} (Fig. 3(g)) 

Out[29]:=  {0,0} (Fig. 3(h)) 

The Mathematica calculations show the emerging polarization 

mode through the physical arrangement of optic elements, 

which promptly confirm those Jones vectors from the animating 

platform. For instance, in In[23]:= E0*LP∙QWV/. 
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The Mathematica calculations show the emerging polarization mode through the physical arrangement 

of optic elements, which promptly confirm those Jones vectors from the animating platform.  For 

instance, in In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 produces Out[23]:= {1/2, I/2}, that is the right-handed 

circularly polarized light (RHCP) as shown in Fig. 2. From the arrangement of linearly polarizers in 

right angle no wave emerging shown as Out[29]:= {0, 0} while the Out[28]:= {0.341506, 0.591506} 

which show the linear polarization (see Figs. 3(g) and 3(h)). This enables us to switch on or off the 

polarization by the combination of arrangements of polarizers and wave plates. 

 

2.3 Helicity of the elliptically polarized wave  

The handedness of an elementary particle depends on the correlation between its spin and its 

momentum (Goldhaver et al. 1958).  If the spin and momentum are parallel, the particle can be said 

to be right-handed or have a helicity of 1.  If they are anti parallel, the particle is left-handed or have 

a helicity of -1.  We may also adopt this definition to modern optics, since the circularly polarized 

electromagnetic wave is just a helical motion with helicity. The helicity of the polarized 

electromagnetic wave is a critical factor in modern communication technology and photonics (Aad et 

al. 2012, Goldhaver et al. 1958, Rubenhok et al. 2013).  However, determination of the helicity is a 

perplex issue because we need to aware of the vectorial behaviors accurately unless we may observe 

propagating polarized wave (Goldhaver et al. 1958).  Therefore, it is very helpful to simulate 

advanced polarization modes in the medium, and further, it would be more helpful to evaluate the 

helicity operator in a physics state.  

Here we simply estimate the helicity with a calculation of phase shift in the process in the 
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The handedness of an elementary particle depends on the 

correlation between its spin and its momentum (Goldhaver et 

al. 1958).  If the spin and momentum are parallel, the particle 

can be said to be right-handed or have a helicity of 1.  If they are 

anti parallel, the particle is left-handed or have a helicity of -1. 

We may also adopt this definition to modern optics, since the 

circularly polarized electromagnetic wave is just a helical motion 

with helicity. The helicity of the polarized electromagnetic wave 

is a critical factor in modern communication technology and 

photonics (Aad et al. 2012; Goldhaver et al. 1958; Rubenhok et 

al. 2013).  However, determination of the helicity is a perplex 

issue because we need to aware of the vectorial behaviors 

accurately unless we may observe propagating polarized wave 

(Goldhaver et al. 1958).  Therefore, it is very helpful to simulate 

advanced polarization modes in the medium, and further, it 

would be more helpful to evaluate the helicity operator in a 

physics state. 

Here we simply estimate the helicity with a calculation 

of phase shift in the process in the Mathematica (Wolfram 

2015a).   We can determine the helicity based on a 

calculation of the phase shift in the block respectively; phase 

shifts of the  E
1
=E0*Jv after passing through the polarizer and 

of  E
2
=Jm∙E

1
 after the wave plate respectively.  For evaluation 

of the helicity of the polarized waves in progression, we have 

provided a Mathematica module, helicity [JvC_,JmC_]:= 

Module[{E1, E2, dp11, dp12, dp13, dp21, dp22, dp23}]. If 

you type in two numbers assigned to the polarizer JvC and 

wave plate JmC in the module, then helicity [JvC, JmC] will 

return helicity with a list of phase shifts.  The outputs of the 

helicity [JvC, JmC] are shown as below: 

Mathematica code #2

In[81]:= helicity[1,2] (Fig.3 (a))

Out[81]:= {0.,  0.,  0.}}

 helicity1 = 0

 {1.5708, 1.5708, 1.5708}

 helicity2 = +1

In[82]:= helicity[1,3] (Fig.3 (b))   

Out[81]:= {0.,  0.,  0.}}

 helicity1 = 0

 {-1.5708, -1.5708, -1.5708}

 helicity2 = -1

In[83]:=  helicity[2,7] ( E0*LCP.EWH)

Out[83]:= {-1.5708, -1.5708, -1.5708}

 helicity1 = -1

 {-2.35619, -2.35619, -2.35619}

 helicity2 = -1

In[84]:= helicity[2, 5] ] ( E0*LCP.HWH)

Out[84]:= {-1.5708, -1.5708, -1.5708}

 helicity1 = -1

 {- 4.71239, - 4.71239, - 4.71239,}

 helicity2 = +1

The helicity[1, 2] returns two helicities with two lists of 

three phase differences in the two divisions for the optical 

device arrangement of linearly polarizer (JvC=1) and quarter-

wave plate (JmC=2). The helicity[2, 7] returns the helicities 

of the optical arrangement of left-circularly polarizer (JvC=2) 

and eighth-wave plate (JmC=7). It needs to be noticed that the 

three phase differences are all 1.5708 (π/2) of the helicity[1, 2] 

which interprets the vertical component E
2z

 lead continuously 

the horizontal component E
2y

 with a constant phase shift (π/2) 

on the yz plane of 
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The fundamental conception in physics of the propagation of the electromagnetic wave polarization in matter is 

newly understood as the cardinal keyword in free-space quantum communication technology and cosmology in 

astrophysics. Interactive visualization of the propagation mechanism of polarized electromagnetism in a medium 

with its helicity has accordingly received attention from scientists exploiting the protocol of quantum key 

distribution (QKD) to guarantee unconditional security in cryptography communication.  We have provided a 

dynamic polarization platform for presenting the polarization modes of a transverse electromagnetic wave, 

converting the state of polarization through the arrangement of optical elements, using Jones vectors calculations 

in Methematica.  The platform graphically simulates the mechanism of production and propagation of the 

polarized waves in a medium while satisfying Maxwell's equations.  
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1. INTRODUCTION  

Polarization is a coherent characteristic of the electromagnetic (EM) wave in a medium. In a plane 

wave, both the electric field vector E⃗⃗  and magnetic field vector B⃗⃗  of the electromagnetic radiation 

always oscillates parallel to a fixed direction in space. Light of such character is said to be linearly 

2
 field vector propagating in x

1
 direction 

perpendicular to this plane with velocity ω/k. This results 

in 

1 
 

Platform for manipulating polarization modes realized with Jones 

vectors in MATHEMATICA 

 
Yong-Dae Choi1, Bogyeong Kim2, Hee-Joong Yun3†  
 
 
1Department of Microbial and Nanomaterials, Mokwon University,  
Daejeon 302-729, Korea  
 

2Department of Astronomy and Space Science, Chungnam National University,  
Daejeon 305-764, Korea  
 
3Korean Institute of Science and Technology Information, 
Daejeon 305-806, Korea 

heejy@reseat.re.kr 
Received  Revised  Accepted 

 
 

The fundamental conception in physics of the propagation of the electromagnetic wave polarization in matter is 

newly understood as the cardinal keyword in free-space quantum communication technology and cosmology in 

astrophysics. Interactive visualization of the propagation mechanism of polarized electromagnetism in a medium 

with its helicity has accordingly received attention from scientists exploiting the protocol of quantum key 

distribution (QKD) to guarantee unconditional security in cryptography communication.  We have provided a 

dynamic polarization platform for presenting the polarization modes of a transverse electromagnetic wave, 

converting the state of polarization through the arrangement of optical elements, using Jones vectors calculations 

in Methematica.  The platform graphically simulates the mechanism of production and propagation of the 

polarized waves in a medium while satisfying Maxwell's equations.  

 

Keywords: polarization modes, cosmology, Jones vector, wave plate, helicity 

 

1. INTRODUCTION  

Polarization is a coherent characteristic of the electromagnetic (EM) wave in a medium. In a plane 

wave, both the electric field vector E⃗⃗  and magnetic field vector B⃗⃗  of the electromagnetic radiation 

always oscillates parallel to a fixed direction in space. Light of such character is said to be linearly 

2
 vector rotating in a counter clockwise direction (right-

handed, 

10 
 

    {- 4.71239, - 4.71239, - 4.71239,} 
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The helicity[1, 2] returns two helicities with two lists of three phase differences in the two divisions 

for the optical device arrangement of linearly polarizer(JvC=1) and quarter-wave plate(JmC=2). The  

helicity[2, 7] returns the helicities of the optical arrangement of left-circularly polarizer(JvC=2) and 

eighth-wave plate (JmC=7). It needs to be noticed that the three phase differences are all 1.5708(𝜋𝜋/2) 

of the helicity[1, 2] which interprets the vertical component E2z lead continuously the horizontal 

component E2y with a constant phase shift (𝜋𝜋/2) on the yz plane of E⃗⃗ 2 field vector propagating in x1 

direction perpendicular to this plane with velocity ⍵/k. This results in E⃗⃗ 2 vector rotating in a counter 

clockwise direction (right-handed, ↺) around the advancing x1 direction. That is, if we grasp our 
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3. DYNAMIC POLARIZATION PLATFORM WITH 
JONES VECTORS IN MATHEMATICA 

We have provided a dynamic polarization platform with 

Jones vectors (jdpmp) in the Graphics3D in Mathematica, 

which simulates the polarizing modes dynamically while 

presenting the helicity of a running polarization mode.  

The platform manipulates three zones graphically using 

1

Fig. 1. The starting platform of the dynamic polarization modes platform with Jones vectors (jdpmp). Unpolarized EM waves E→0 injected to 
the polarizer (LP) have not passed the polarizer yet. The simulation will run when you click the ▶ appearing while you spread the ⊕ of t1 panel 
of the platform.

1

Fig. 2. Dynamic polarization modes platform (jdpmp). The picture shown is a snapshot of the right-handed circular polarized (RHCP) 
propagation EM wave train. Unpolarized EM waves  E→0 injected into the linear polarizer (LP) with 45° to the horizontal transmission axis come 
from the vacuum and pass through the quarter-wave plate (QWPV), which result in the right-handed circular polarized  EM wave train. This 
picture shows the E0*LP∙QWPV/.α->1/4π process in the Jones vectors manipulation with a helicity of +1. 
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the Piecewise  function of Mathematica depending on the 

polarizer and wave plate,  with the Manipulate function 

of Mathematica. To present the transverse characteristic 

property satisfying Eq. (1) together with Eqs. (6) and (7), we 

used the Arrow function in Mathematica for drawing the 

vector array: Table[ Arrow [ { {x1, 0, 0}, {x1, Ey, Ez} } ] ] in the 

orthogonal {x1, Ey, Ez} coordinate system.  In addition, the 

same was used for the magnetic field vector 

3 
 

producing polarization modes.  Presently the definition of polarization has been modified, and its 

nomenclature upgraded, which can be confusing to students of physics and researchers. For instance, 

there are similar customary nomenclature for the right circularly polarization: right circularly (Fowles 

1975, Jackson 1975), right-circularly (Pedrotti & Predrotti 1987), right-hand circularly (Reitz et al. 

1993), and right-handed (Born & Wolf 1999, Georgi 1982) circularly polarization. Right circularly 

polarization and right-handed polarization are different types of polarization, although with similar 

names.  Recently, the visualization of polarization propagating in matter has drawn physicist's 

attention for potential  applications in modern physics and information technology (Tamm 1997, 

Mooleskamp & Stokes 2015, Yun & Choi 2013). 

We have provided a dynamic polarization modes platform for simulating polarization modes with 

Jones matrices calculations, corresponding to the physical arrangement of optical elements, in a 

Mathematica computing environment (Mathematica 2015).  

 

2.MATHEMATICA SIMULATION FOR THE CONVERTING POLARIZATION 

MODES 

2.1 Electromagnetic waves in solids 

The propagating process of electromagnetic waves in solids is different from that in the vacuum, since  

E⃗⃗  and B⃗⃗  of the electromagnetic waves interact with the electrons in a solid (Pedrotti & Predrotti 1987, 

Fowles 1975).  In particular, although the electromagnetic waves are an harmonic plane wave, the 

fields may pull or push the electrons in the orbital of a solid, which is responsible for inducing dipole 

moment  P⃗⃗   and magnetization M⃗⃗⃗   in the solid.  If we assume that the medium is not a magnetic 

material and J =0, the Helmholtz wave equation in a solid (Fowles 1975, Jackson 1975) is 

∇⃗⃗ × ( ∇⃗⃗ × E⃗⃗  )   1c2
∂2E⃗⃗ 
∂t2  = −u0

∂2P⃗⃗ 
∂t2

where P⃗⃗ = 𝜒𝜒𝜀𝜀0E⃗⃗ .  If we suppose the EM wave will be a form of solution such as Ê0ei(�⃗⃗�𝒦 .r⃗ −⍵t), we can  

rewrite Eq. (1) using a wave vector k⃗  
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k⃗ × ( k⃗ × E⃗⃗  )   ⍵
2

c2 E⃗⃗ = − ⍵
2

c2 χ E⃗⃗ 

It then becomes a vector equation for E⃗⃗ , which indicates that the propagation process varies with   

the component of electric susceptibility 𝜒𝜒.  Therefore, we will write the E⃗⃗  solution of Eq. (2) in a 

solid as an inhomogeneous plane wave solution below (Pedrotti & Predrotti 1987, Fowles 1975, 

Jackson 1975) 

Ê(r , t) = (ε 1 E1 + ε 2 E2)  ei(�⃗⃗�𝒦 .r⃗ −⍵t)

= E0(ε 1  + ε 2 ei∆ε)  ei(k⃗⃗ .r⃗ −⍵t)

=  ( A
 B  + iC)  ei(k⃗⃗  ∙ r⃗ −⍵t)

As shown above, Ê field vector may be presented as the Jones vector (Jones 1941) with a complex 

vector amplitude {A, B  iC} oscillating in an inhomogeneous plane.  The wave vector  k⃗ = k n̂ 

and form a real mutually orthogonal unit vectors  ( ε 1, ε 2, n̂ ).  Here K̂ =  k ⃗⃗⃗⃗ +  i 𝛼𝛼  is a complex 

wave vector and N =n + i κ complex refraction index.  For Eq. (3) to be a solution of Eq. (2) 

as a homogeneous plane harmonic wave, it should be 𝒦𝒦 ⍵
c .  Then we get the relations: 𝛼𝛼 ⍵

c 𝜅𝜅, 

⍵
c 𝑛𝑛, which result in propagation speeds that are different along the direction in the medium.  

Therefore, there will be a cumulative phase difference  ∆𝜀𝜀 between the two components of the E⃗⃗  

field vector as they emerge in uniaxial crystals (Quartz, Calcite, etc.). After the wave has traveled a 

distance d, the phase difference is   ∆𝜀𝜀 = ⍵
𝑐𝑐  𝑑𝑑(n2-n1) between Ex wave and Ey wave when the 

radiation is propagating along the k⃗  direction.  If the ∆𝜀𝜀=0 while the amplitude of  E⃗⃗  is real, the 

vector is responsible for the linearly polarized such as Jones vector {A, B}, otherwise the amplitude is 

the complex vector responsible for the elliptically polarized Jones vector as {A, B iC}. Specifically, 

if B=0 and A=C then the wave is a circularly polarized Jones vector such as {1, i}.  

A quarter wave plate is a thin birefringent crystal the thickness of which has been adjusted to 

produce a  𝜋𝜋/4 phase difference between the ordinary and extraordinary rays at the operating 
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1. INTRODUCTION  

Polarization is a coherent characteristic of the electromagnetic (EM) wave in a medium. In a plane 

wave, both the electric field vector E⃗⃗  and magnetic field vector B⃗⃗  of the electromagnetic radiation 

always oscillates parallel to a fixed direction in space. Light of such character is said to be linearly 
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 field 

only using the Animate function of graphic tools (Harrison 

2015; Mooleskamp & Stokes 2015). Also, in this work, we 

simulated polarization process with vector fields satisfying 

wave equation and Maxwell’s vector equations at  every 

point during the process. Similar numerical method has 

been applied once to solve the Lagrange’s equation in non-

inertial frame (Kim & Yun 2014).

The platform starts by clicking the button ▶ on pop up 

11 
 

The simulation will run when you click the ► appearing while you spread the ⊕ t1 panel of the 

platform.   

 

 

Fig. 2. Dynamic polarization modes platform (jdpmp). The picture shown is a snapshot of the right-

handed circular polarized (RHCP) propagation EM wave train. Unpolarized EM waves E⃗⃗ 0 injected 

into the linear polarizer (LP) with 45° to the horizontal transmission axis come from the vacuum and 

pass through the quarter-wave plate (QWPV), which result in the right-handed circular polarized  EM 

wave train. This picture shows the E0*LP∙QWPV/.𝛼𝛼 >1/4𝜋𝜋 process in the Jones vectors manipulation 

with a helicity of +1.  

 

3. DYNAMIC POLARIZATION PLATFORM WITH JONES VECTORS 

IN MATHEMATICA  

We have provided a dynamic polarization platform with Jones vectors (jdpmp) in the Graphics3D in 

Mathematica, which simulates the polarizing modes dynamically while presenting the helicity of a 

running polarization mode.  The platform manipulates three zones graphically using the Piecewise  

function of Mathematica depending on the polarizer and wave plate,  with the Manipulate function 

of Mathematica.  To present the transverse characteristic property satisfying Eq. (1) together with Eq. 

(6) and Eq. (7), we used the Arrow function in Mathematica for drawing the vector array: 

Table[ Arrow [ { {x1, 0, 0}, {x1, Ey, Ez} } ] ] in the orthogonal {x1, Ey, Ez} coordinate system.  In 
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animation representing the envelope of the polarization propagation of E⃗⃗  field only using the 

Animate function of graphic tools (Harrison 2015, Mooleskamp & Stokes 2015). 추가삽입시작  It 

Fig.2 

 

of the t1 panel on the platform in Fig. 1. We can choose an 

incoming angle to the polarizer and rotate the polarizer to 

compose an arrangement of devices for the polarization mode 

indent shown as Fig. 2. While the program is running, we will 

change the polarizer or wave plate, with the changed animation 

running continuously.  Even if the animation is stopped, we 

can change the configuration of the platform and observe the 

polarizing mode of the changed state.  

Fig. 3 shows snapshots of three kinds of polarization 

modes. Figs. 3a and 3b shows a circularly polarization 

mode, Figs. 3c and 3d linearly polarization, Figs. 3e and 

3f elliptically polarization according to the arrangement 

of optical devices.  If we utilize linear polarizer JmLinear 

[β] instead of a wave plate, then either it passes a linearly 

polarized wave or block in the angle β. While making right 

angles between two polarizers no wave passes through 

the polarizer plate as shown in Figs. 3g and 3h. Thus, 

controlling of phase of polarized light waves is available for 

the phase encoding in the quantum key distribution (QKD) 

of the unconditional security in quantum communication 

technology (Rubenhok et al. 2013). 

Fig. 4 presents snapshots of three kinds of polarization 

modes viewed in the ViewPoint (200, 0, 0) against the 

propagation direction for confirmation of the transverse 

behavior and progression of the Poynting vector.  It shows 

the orthogonal transverse of the propagating process of 

the waves and confirms the flow of Poynting vector. This is 

the visualization of the graphic version of 
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Fig. 3 shows snapshots of three kinds of polarization modes.  Figs. 3(a-b) shows a circularly 

polarization mode, Figs. 3(c-d) linearly polarization, Figs. 3(e-f) elliptically polarization according to 

the arrangement of optical devices.  If we utilize linear polarizer JmLinear [𝛽𝛽] instead of a wave 

plate, then either it passes a linearly polarized wave or block in the angle . While making right 

angles between two polarizers no wave passes through the polarizer plate as shown in Figs. 3(g-h). 

Thus,  controlling of phase of polarized light waves is available for the phase encoding in the 

quantum key distribution (QKD) of the unconditional security in quantum communication technology 

(Rubenhok et al. 2013).  

Fig. 4 presents snapshots of three kinds of polarization modes viewed in the ViewPoint (200, 0, 0) 

against the propagation direction for confirmation of the transverse behavior and progression of the 

Poynting vector.  It shows the orthogonal transverse of the propagating process of the waves and 

confirms the flow of Poynting vector. This is the visualization of the graphic version of  S⃗ =  E⃗⃗ × H⃗⃗  

satisfying Maxwell’s vector equations Eq. (6) and (7).  The traces of both E⃗⃗    and H⃗⃗  are dynamically 

shown in the polarization modes at the edge of the jdpmp platform.  

The platform will run faster or slower and stop and restart again by clicking the pop-up menu of 

the t1 panel for more analytical observations while the polarization mode is running.  During the 

platform stop, you will change to another mode only if you click a panel, then the changed mode will 

be presented automatically.  At that time you can save the presenting mode or print out the mode 

status. While the platform is running, you can confirm the helicity by observing the spin direction of 

the field vectors along the orange trace of the helical propagation of the E⃗⃗  and B⃗⃗  vector fields at the 

edge of the platform.  The helicities on the helicity panel are correct in the case of E1=E0*LP( ) 

manipulation on the jdpmp platform. The helicities of other arrangements of optical devices are 

calculated promptly on the helicity [JvC, JmC] module in Mathematica.   

As far as we know, other than jdpmp, there is no instructive platform that simulates a transverse 

EM wave satisfying Maxwell's equation in the vectorial version of polarization modes (Harrison 2015, 

Mooleskamp & Stokes 2005, Tamm 1997).  The complete version of jdpmp.nb program including  

=
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1. INTRODUCTION  

Polarization is a coherent characteristic of the electromagnetic (EM) wave in a medium. In a plane 

wave, both the electric field vector E⃗⃗  and magnetic field vector B⃗⃗  of the electromagnetic radiation 

always oscillates parallel to a fixed direction in space. Light of such character is said to be linearly 

×

7 
 

equations Eq. (6,7) in both numeric and graphic simulations. 

�̂�𝒦 ∙ Ê = 0, �̂�𝒦 ∙ Ê = 0, �̂�𝒦  × Ê = ⍵ B̂                 (6) 

  S⃗ =  E⃗⃗ × H⃗⃗                                       (7) 

where �̂�𝒦 , Ê, and B̂ are both complex vectors and E⃗⃗  , B⃗⃗  and H⃗⃗  are real vectors with B⃗⃗  = H⃗⃗  

where H⃗⃗  is a magnetic intensity vector in the matter. We examine the process of generating 

polarization modes with the normalized Jones vectors calculations in the Mathematica simulation as 

below.  The Mathematica input code is shown below:  

 

 

In[11]:=  E0 = 1/√2{1, 0}+ 1/√2{0,1};  

In[12]:=  LP = {Cos[α], Sin[𝛽𝛽]};  

In[15]:=  LW = {{Cos2β, Cosβ Sinβ}, { Cosβ Sinβ, Sin2β }};  

In[16]:=  QWV = {{1, 0}, {0, I}};  QWH = {{1, 0},{0, -I}}}; 

In[17]:=  HW = {{1, 0}, {0, -1}}; 

In[18]:=  EWV = {{1, 0}, {0, Exp[ I 1/4 𝜋𝜋 }}; EWH = {{1, 0}, {0, Exp[ - I 1/4 𝜋𝜋 }}; 

In[19]:=  EWH = {{1, 0}, {0, -1}}; 

In[20]:=  l1 = E0*LP;  l2=LW ; 

In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 

In[23]:=  E0*LP∙QWV/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[24]:=  E0* LP∙QWH/. 𝛼𝛼 ->1/4 𝜋𝜋 

In[25]:=  E0* LP∙HW /. 𝛼𝛼 ->1/4 𝜋𝜋 

In[26]:=  E0* LP∙EWV /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[27]:=  E0* LP∙EWH /. 𝛼𝛼 ->1/4 𝜋𝜋  

In[28]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->1/3 𝜋𝜋} //N 

In[29]:=  l1.l2/.{ 𝛼𝛼 ->1/4 𝜋𝜋, 𝛽𝛽 ->3/4 𝜋𝜋} //N 

Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

 satisfying 

Maxwell’s vector equations Eqs. (6) and (7).  The traces of 

both 
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In[22]:=  E0*LP/.𝛼𝛼 ->1/4 𝜋𝜋 
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Mathematica returns calculations;   

Out[22]:=  {1/2, 1/2} 

Out[23]:=  {1/2, I/2}                                                                   (Fig. 2, Fig. 3(a)) 

Mathematica code #1 

 are dynamically shown in the polarization 

modes at the edge of the jdpmp platform. 

The platform will run faster or slower and stop and 

restart again by clicking the pop-up menu of the t1 panel for 

more analytical observations while the polarization mode 

is running. During the platform stop, you will change to 

another mode only if you click a panel, then the changed 

mode will be presented automatically. At that time you 

can save the presenting mode or print out the mode status. 

While the platform is running, you can confirm the helicity 

by observing the spin direction of the field vectors along 

the orange trace of the helical propagation of the 
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producing polarization modes.  Presently the definition of polarization has been modified, and its 

nomenclature upgraded, which can be confusing to students of physics and researchers. For instance, 

there are similar customary nomenclature for the right circularly polarization: right circularly (Fowles 

1975, Jackson 1975), right-circularly (Pedrotti & Predrotti 1987), right-hand circularly (Reitz et al. 

1993), and right-handed (Born & Wolf 1999, Georgi 1982) circularly polarization. Right circularly 

polarization and right-handed polarization are different types of polarization, although with similar 

names.  Recently, the visualization of polarization propagating in matter has drawn physicist's 

attention for potential  applications in modern physics and information technology (Tamm 1997, 

Mooleskamp & Stokes 2015, Yun & Choi 2013). 

We have provided a dynamic polarization modes platform for simulating polarization modes with 

Jones matrices calculations, corresponding to the physical arrangement of optical elements, in a 

Mathematica computing environment (Mathematica 2015).  

 

2.MATHEMATICA SIMULATION FOR THE CONVERTING POLARIZATION 

MODES 

2.1 Electromagnetic waves in solids 

The propagating process of electromagnetic waves in solids is different from that in the vacuum, since  

E⃗⃗  and B⃗⃗  of the electromagnetic waves interact with the electrons in a solid (Pedrotti & Predrotti 1987, 

Fowles 1975).  In particular, although the electromagnetic waves are an harmonic plane wave, the 

fields may pull or push the electrons in the orbital of a solid, which is responsible for inducing dipole 

moment  P⃗⃗   and magnetization M⃗⃗⃗   in the solid.  If we assume that the medium is not a magnetic 

material and J =0, the Helmholtz wave equation in a solid (Fowles 1975, Jackson 1975) is 

∇⃗⃗ × ( ∇⃗⃗ × E⃗⃗  )   1c2
∂2E⃗⃗ 
∂t2  = −u0

∂2P⃗⃗ 
∂t2

where P⃗⃗ = 𝜒𝜒𝜀𝜀0E⃗⃗ .  If we suppose the EM wave will be a form of solution such as Ê0ei(�⃗⃗�𝒦 .r⃗ −⍵t), we can  

rewrite Eq. (1) using a wave vector k⃗  

 

vector fields at the edge of the platform. The helicities on 

the helicity panel are correct in the case of E1=E0*LP(α) 

manipulation on the jdpmp platform. The helicities of other 

arrangements of optical devices are calculated promptly on 

the helicity [JvC, JmC] module in Mathematica.  

As far as we know, other than jdpmp,  there is no 

instructive platform that simulates a transverse EM wave 

satisfying Maxwell's equation in the vectorial version of 

polarization modes (Harrison 2015; Mooleskamp & Stokes 

2005; Tamm 1997).  The complete version of jdpmp.nb 

program including helicity [JvC, JmC] module is available 

from the site (Yun 2015).  If your PC has not installed 

Mathematica, you can run the jdpmp.cdf instead on the 

Wolfram CDF Player (Wolfram 2015).

4. SUMMARY 

We have provided a dynamic polarization mode platform, 

jdpmp, for simulating and producing polarization modes 

with the Jones calculations, corresponding to the physical 

arrangement of optical elements, in Mathematica. The 

platform animates the polarization process of the 
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producing polarization modes.  Presently the definition of polarization has been modified, and its 

nomenclature upgraded, which can be confusing to students of physics and researchers. For instance, 

there are similar customary nomenclature for the right circularly polarization: right circularly (Fowles 

1975, Jackson 1975), right-circularly (Pedrotti & Predrotti 1987), right-hand circularly (Reitz et al. 

1993), and right-handed (Born & Wolf 1999, Georgi 1982) circularly polarization. Right circularly 

polarization and right-handed polarization are different types of polarization, although with similar 

names.  Recently, the visualization of polarization propagating in matter has drawn physicist's 

attention for potential  applications in modern physics and information technology (Tamm 1997, 

Mooleskamp & Stokes 2015, Yun & Choi 2013). 

We have provided a dynamic polarization modes platform for simulating polarization modes with 

Jones matrices calculations, corresponding to the physical arrangement of optical elements, in a 

Mathematica computing environment (Mathematica 2015).  

 

2.MATHEMATICA SIMULATION FOR THE CONVERTING POLARIZATION 

MODES 

2.1 Electromagnetic waves in solids 

The propagating process of electromagnetic waves in solids is different from that in the vacuum, since  

E⃗⃗  and B⃗⃗  of the electromagnetic waves interact with the electrons in a solid (Pedrotti & Predrotti 1987, 

Fowles 1975).  In particular, although the electromagnetic waves are an harmonic plane wave, the 

fields may pull or push the electrons in the orbital of a solid, which is responsible for inducing dipole 

moment  P⃗⃗   and magnetization M⃗⃗⃗   in the solid.  If we assume that the medium is not a magnetic 

material and J =0, the Helmholtz wave equation in a solid (Fowles 1975, Jackson 1975) is 

∇⃗⃗ × ( ∇⃗⃗ × E⃗⃗  )   1c2
∂2E⃗⃗ 
∂t2  = −u0

∂2P⃗⃗ 
∂t2

where P⃗⃗ = 𝜒𝜒𝜀𝜀0E⃗⃗ .  If we suppose the EM wave will be a form of solution such as Ê0ei(�⃗⃗�𝒦 .r⃗ −⍵t), we can  

rewrite Eq. (1) using a wave vector k⃗  

 using the Arrow vectors,  so that the 

transverse EM wave advance in the  propagation direction, 

satisfying Maxwell's wave equation at every point on the 

advancing axes of the platform. Consequently, the vectors  
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k⃗ × ( k⃗ × E⃗⃗  )   ⍵
2

c2 E⃗⃗ = − ⍵
2

c2 χ E⃗⃗ 

It then becomes a vector equation for E⃗⃗ , which indicates that the propagation process varies with   

the component of electric susceptibility 𝜒𝜒.  Therefore, we will write the E⃗⃗  solution of Eq. (2) in a 

solid as an inhomogeneous plane wave solution below (Pedrotti & Predrotti 1987, Fowles 1975, 

Jackson 1975) 

Ê(r , t) = (ε 1 E1 + ε 2 E2)  ei(�⃗⃗�𝒦 .r⃗ −⍵t)

= E0(ε 1  + ε 2 ei∆ε)  ei(k⃗⃗ .r⃗ −⍵t)

=  ( A
 B  + iC)  ei(k⃗⃗  ∙ r⃗ −⍵t)

As shown above, Ê field vector may be presented as the Jones vector (Jones 1941) with a complex 

vector amplitude {A, B  iC} oscillating in an inhomogeneous plane.  The wave vector  k⃗ = k n̂ 

and form a real mutually orthogonal unit vectors  ( ε 1, ε 2, n̂ ).  Here K̂ =  k ⃗⃗⃗⃗ +  i 𝛼𝛼  is a complex 

wave vector and N =n + i κ complex refraction index.  For Eq. (3) to be a solution of Eq. (2) 

as a homogeneous plane harmonic wave, it should be 𝒦𝒦 ⍵
c .  Then we get the relations: 𝛼𝛼 ⍵

c 𝜅𝜅, 

⍵
c 𝑛𝑛, which result in propagation speeds that are different along the direction in the medium.  

Therefore, there will be a cumulative phase difference  ∆𝜀𝜀 between the two components of the E⃗⃗  

field vector as they emerge in uniaxial crystals (Quartz, Calcite, etc.). After the wave has traveled a 

distance d, the phase difference is   ∆𝜀𝜀 = ⍵
𝑐𝑐  𝑑𝑑(n2-n1) between Ex wave and Ey wave when the 

radiation is propagating along the k⃗  direction.  If the ∆𝜀𝜀=0 while the amplitude of  E⃗⃗  is real, the 

vector is responsible for the linearly polarized such as Jones vector {A, B}, otherwise the amplitude is 

the complex vector responsible for the elliptically polarized Jones vector as {A, B iC}. Specifically, 

if B=0 and A=C then the wave is a circularly polarized Jones vector such as {1, i}.  

A quarter wave plate is a thin birefringent crystal the thickness of which has been adjusted to 

produce a  𝜋𝜋/4 phase difference between the ordinary and extraordinary rays at the operating 

 (in that order) form a right-hand orthogonal set.   

jdpmp can be accomplished graphically in Graphics3D of 

Mathematica based on the numerical vector calculations 

in Mathematica .  The platform can be manipulated 

dynamically and interactively by advancing the polarized 

mode while clicking the panels of the polarizer and wave 

plate using the Manipulate function in Mathematica, so that 

the program will continuously simulate the changed mode. 

While the program is running the helicity of the polarized 
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(a) Producing right-handed circularly polarized

EM wave in the E0∗LP ·QWPV arrangement

(b) Producing left-handed circularly polarized EM

wave in the E0∗LP ·QWPH arrangement

(c) Producing linearly polarized EM wave in the

E0∗LP ·HWPV arrangement

(d) Producing linearly polarized EM wave in the

E0∗LP ·HWPH arrangement

(e) Producing right-handed elliptically polarized

EM wave in the E0∗LP ·EWPV arrangement

(f) Producing left-handed elliptically polarized EM

wave in the E0∗LP ·EWPH arrangement

(g) Producing linearly polarized EM wave by the

arrangement of two linear polarizers

(h) No producing any polarized EM wave at the

right angle between two polarizers

1

Fig. 3. Producing different polarized modes by the different physical arrangements of polarizer and wave plate: (a) RHCP of helicity +1, (b) 
LHCP of helicity -1, (c) LP, (d) LP, (e) RHEP of helicity +1, (f) LHEP of helicity -1, (g) LP, (h) No wave.
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mode is displayed on the panel. The module helicity [JvC, 

JmC] will return the helicity of the process on Notebook of 

Mathematica when you're typing in a polarizer and a wave 

plate.  The module is helpful for students or researchers to 

inspect the phase difference or helicity of a polarized mode 

for various kinds of physics arrangements.  We expect the 

platform jdpmp will be a useful starting platform for physics 

students and researchers to explore polarizations in science.
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