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PREFACE

Trigonometry in modern time is an indispensable tool in Physics, engineer-
ing, computer science, biology, and in practically all the sciences.
This book consists of my lectures of a freshmen-level mathematics class of-
fered at Arkansas Tech University. This book has been written in a way
that can be read by students. That is, the text represents a serious effort to
produce exposition that is accessible to a student at the freshmen or high
school levels.
The chapters of this book are well suited for a one semester course in College
Trigonometry.

Marcel B. Finan
March 2003
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1 Equations and Inequalities

This section illustrates the processes of solving linear and quadratic equations
and inequalities. Also, the process of solving absolute value inequalities is
discussed.

Solving Linear Equations
By a linear equation we mean an equation of the form

ax + b = 0

where a and b are given numbers and x is the variable to be found, also called
the solution or root of the equation. The process of finding x is referred to
as solving the given equation.
To solve a linear equation in one variable, isolate the variable on one side
of the equation. This can be done thanks to the following two properties of
numbers:

Property I: Adding or subtracting the same number to both sides of an
equation does not change the solution to the equation.
Property II: Multiplying or dividing both sides of an equation by a nonzero
number does not change the solution to the equation.

Remark 1.1
The above two properties apply to any equation and not only for linear
equations.

Example 1.1
Solve the equation: −3x + 20 = 2.

Solution.
To isolate x, subtract first 20 from both sides of the given equation to obtain
−3x = −18. Now, divide both sides by −3 to obtain x = 6.

Solving Quadratic Equations
The second type of equations that we discuss here is the so called quadratic
equations. By a quadratic equation we mean an equation of the form

ax2 + bx + c + 0, a 6= 0,
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where a, b, and c are given numbers and x is the variable to be found.
There are two methods for finding x.

• Solving by Factoring
The process of factoring consists of rewriting the equation in the form

a(x− r)(x− s) = 0.

Now, by the zero product property, which states that if u · v = 0 then either
u = 0 or v = 0, we can conclude that either x− r = 0 or x− s = 0. That is,
x = r or x = s.
To factor ax2 + bx + c
1. find two integers that have a product equal to ac and a sum equal to b,
2. replace bx by two terms using the two new integers as coefficients,
3. then factor the resulting four-term polynomial by grouping. Thus, ob-
taining a(x− r)(x− s) = 0.
4. use the zero product property.

Example 1.2
Find the zeros of f(x) = x2 − 2x− 8.

Solution.
We need two numbers whose product is −8 and sum is −2. Such two integers
are −4 and 2. Thus,

x2 − 2x− 8 = x2 + 2x− 4x− 8
= x(x + 2)− 4(x + 2)
= (x + 2)(x− 4) = 0.

Thus, either x = −2 or x = 4.

Example 1.3
Find the zeros of f(x) = 2x2 + 9x + 4.

Solution.
We need two integers whose product is ac = 8 and sum equals to b = 9. Such
two integers are 1 and 8. Thus,

2x2 + 9x + 4 = 2x2 + x + 8x + 4
= x(2x + 1) + 4(2x + 1)
= (2x + 1)(x + 4).
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Hence, the zeros are x = −1
2

and x = −4.

• Solving by Using the Quadratic Formula:
Many quadratic functions are not easily factored. For example, the function
f(x) = 3x2− 7x− 7. However, the zeros can be found by using the quadratic
formula which we derive next:

ax2 + bx + c = 0 (subtract c from both sides)
ax2 + bx = −c (multiply both sides by 4a)

4a2x2 + 4abx = −4ac (add b2 to both sides)
4a2x2 + 4abx + b2 = b2 − 4ac

(2ax + b)2 = b2 − 4ac

2ax + b = ±
√

b2 − 4ac

x = −b±
√

b2−4ac
2a

provided that b2 − 4ac ≥ 0. This last formula is known as the quadratic
formula. Note that if b2 − 4ac < 0 then the equation ax2 + bx + c = 0 has
no solutions.

Example 1.4
Find the zeros of f(x) = 3x2 − 7x− 7.

Solution.
Letting a = 3, b = −7 and c = −7 in the quadratic formula we have

x =
7±

√
133

6
.

Example 1.5
Find the zeros of the function f(x) = 6x2 − 2x + 5.

Solution.
Letting a = 6, b = −2, and c = 5 in the quadratic formula we obtain

x =
2±

√
−116

12

But
√
−116 is not a real number. Hence, the function has no zeros.
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Solving Linear Inequalities
By a linear inequality we mean an inequality of the form

ax + b � 0

where � can be any of the following:<,>,≤,≥ .
To isolate the x, use the following two properties:

Property III: Adding or subtracting the same number to both sides of
an inequality does not change the solution to the inequality.
Property IV: Multiplying or dividing both sides of an equality by a nonzero
number does not change the solution to the inequality. However, when you
multiply or divide by a negative number make sure you reverse the inequality
sign.

Example 1.6
Solve the inequality: x + 4 > 3x + 16.

Solution.
Add −x−16 to both sides of the inequality to obtain −12 > 2x or 2x < −12.
Now divide both sides by 2 to obtain x < −6. The solution set is usually rep-
resented by an interval. Thus, the interval of solution to the given inequality
is (−∞,−6).

Solving Quadratic Inequalities
By a quadratic inequality we mean an inequality of the form

ax2 + bx + c � 0,

where � can be any of the following:<,>,≤,≥ .
The process of solving this type of inequalities consists of factoring the
quadratic expressions so that we can locate the zeros and then construct
a chart of signs which provide the solution interval to the inequality. We
illustrate this in the next example.

Example 1.7
Solve the inequality 6x2 − 4 ≤ 5x.

Solution.
Subtract 5x from both sides to obtain 6x2 − 5x − 4 ≤ 0. Factor f(x) =
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6x2 − 5x − 4 = (3x − 4)(2x + 1). Thus, the zeros of the left-hand side are
x = 4

3
and x = −1

2
. Next, we construct the following chart of signs:

Figure 1.1

According to Figure 1.1, the interval of solution is given by [−1
2
, 4

3
].

Solving Absolute Value Inequalities
First, we define the absolute value of a number x by the formula

|x| =
{

x, if x ≥ 0,
−x, if x < 0.

Geometrically, |x| measures the distance from x to the origin. Thus, an
inequality of the form |x| > 5 indicates that x is more than five units from 0.
Any number on the number line to the right of 5 or to the left of −5 is more
than five units from 0. So |x| > 5 is equivalent to x < −5 or x > 5. Thus,
the interval of solution is given by the union of the intervals (−∞,−5) and
(5,∞). Symbolically, we will write (−∞,−5) ∪ (5,∞).
Similarly, the inequality |x − 9| < 2 indicates that the distance from x to 9
is less than 2. On a number line, this happens when x is between 7 and 11.
That is, the interval of solution is (7, 11).

Example 1.8
Solve |5− 3x| ≤ 6.

Solution.
Let u = 5 − 3x. Then |u| ≤ 6. This means that the distance from u to 0 is
less than or equal to 6. On a number line, this happens when −6 ≤ u ≤ 6.
Thus, −6 ≤ 5− 3x ≤ 6. Next, we have to isolate the x. Subtract 5 from each
part of the inequality to obtain −11 ≤ −3x ≤ 1. Now, divide through by -3
to obtain −1

3
≤ x ≤ 11

3
. Thus, the interval of solution is [−1

3
, 11

3
].
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Review Problems

Exercise 1.1
Solve each of the following equations:

1. 2x + 10 = 40.
2. 6(5x− 11)− 12(2x + 5) = 0.
3. 3

5
(x + 5)− 3

4
(x− 11) = 0.

4. 2
3
x− 5 = 1

2
x− 3.

5. 0.08x + 0.12(4000− x) = 432.

Exercise 1.2
Solve by using the quadratic formula.

1. x2 − 2x− 15 = 0.
2. x2 + x− 2 = 0.
3. 1

2
x2 + 3

4
x− 1 = 0.

4.
√

2x2 + 3x +
√

2 = 0.

Exercise 1.3
Solve each of the following equations by factoring.

1. x2 − 2x− 15 = 0.
2. 12x2 − 41x + 24 = 0.
3. (x− 5)2 − 9 = 0.

Exercise 1.4
Solve each inequality. Write answers in interval notation.

1. 2x + 3 < 11.
2. x + 4 > 3x + 16.
3. −3(x + 2) ≤ 5x + 7.
4. 3(x + 7) ≤ 5(2x− 8).

Exercise 1.5
Solve each inequality. Write answers in interval notation.
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1. x2 + 7x > 0.
2. x2 + 7x + 10 < 0.
3. x2 − 3x ≥ 28.
4. 12x2 + 8x ≥ 15.

Exercise 1.6
Solve each inequality. Write answers in interval notation.

1. |x− 1| < 9.
2. |2x− 1| > 4.
3. |3x− 10| ≤ 14.
4. |2x− 5| ≥ 1.
5. |3− 2x| ≤ 5.

Exercise 1.7
The perimeter of a rectangle is 27 centimeters, and its area is 35 square
centimeters. Find the length and the width of the rectangle.

Exercise 1.8
A gardener wishes to use 600 feet of fencing to enclose a rectangular region
and subdivide the region into two smaller rectangles. The total enclosed ares
is 15,000 square feet. Find the dimensions of the enclosed region.

Exercise 1.9
You can rent a car for the day from company A for $29.00 plus $0.12 a mile.
Company B charges $22.00 plus $0.21 a mile. Find the number of miles m
(to the nearest mile) per day for which it is cheaper to rent from company
A.

Exercise 1.10
Let S be the sum of n consecutive positive integers, i.e.,

S = 1 + 2 + 3 + · · ·+ n.

(a) Find a compact formula for S in terms of n.
(b) How many consecutive positive integers starting with 1 produce a sum
of 253?
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Exercise 1.11
Write an absolute value inequality to represent all the real numbers within

(a) 8 units of 3.
(b) k units of j (assume k > 0).

Exercise 1.12
A ball is thrown directy upward from a height of 32 feet above the ground
with initial velocity of 80 feet per second. The position of the ball from the
ground after t seconds is given by the equation

s(t) = −16t2 + 80t + 32 ft.

Find the time interval during which the ball will be more than 96 feet above
the ground.
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2 Geometry in the Cartesian System

This section is designed to familiarize students to the Cartesian coordinate
system and its many uses in the world of mathematics. The Cartesian coor-
dinate system was developed by the mathematician René Descartes in 1637.
The Cartesian coordinate system, also known as the rectangular coordi-
nate system or the xy-plane, consists of two number scales, called the x-axis
and the y-axis, that are perpendicular to each other at point O called the
origin. Any point in the system is associated with an ordered pair of num-
bers (x, y) called the coordinates of the point. The number x is called the
abscissa or the x-coordinate and the number y is called the ordinate or
the y-coordinate. The abscissa measures the distance from the point to the
y-axis whereas the ordinate measures the distance of the point to the x-axis.
Positive values of the x-coordinate are measured to the right, negative values
to the left. Positive values of the y-coordinate are measured up, negative
values down. The origin is denoted as (0, 0).
The axes divide the coordinate system into four regions called quadrants
and are numbered counterclockwise as shown in Figure 2.1
To plot a point P (a, b) means to draw a dot at its location in the xy-plane.

Example 2.1
Plot the point P with coordinates (5, 2).

Solution.
Figure 2.1 shows the location of the point P (5, 2) in the xy-plane.
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Figure 2.1

Example 2.2
Complete the following table of signs of the coordinates of a point P (x, y).

x y
Quadrant I
Quadrant II
Quadrant III
Quadrant IV
Positive x-axis
Negative x-axis
Positive y-axis
Negative y-axis

14



Solution.

x y
Quadrant I + +
Quadrant II - +
Quadrant III - -
Quadrant IV + -
Positive x-axis + 0
Negative x-axis - 0
Positive y-axis 0 +
Negative y-axis 0 -

The Distance Between Two Points
The Distance Formula is a variant of the Pythagorean Theorem that you
used back in geometry. Here’s how we get from the one to the other: Given
two points A(x1, y1) and B(x2, y2). Let d be the distance between the two
points. Construct the right triangle as shown in Figure 2.2.

Figure 2.2

By the Pythagorean Theorem we have

d2 = |AC|2 + |CB|2 = (x2 − x1)
2 + (y2 − y1)

2.

Taking the square root of both sides and recalling that d > 0 we obtain the
distance formula

d = d(A, B) =
√

(x2 − x1)2 + (y2 − y1)2.
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Example 2.3
Find the distance between the points (−5, 8) and (−10, 14).

Solution.
Applying the distance formula we find

d =
√

(14− 8)2 + (−10− (−5))2 =
√

36 + 25 =
√

61.

The Midpoint Formula
The point halfway between the endpoints of a line segment is called the
midpoint. Thus, a midpoint divides a line segment into two equal parts.
Let M(a, b) be the midpoint of the line segment with endpoints A(x1, y1) and
B(x2, y2). See Figure 2.3.

Figure 2.3

The triangles MAN and BMP are similar so that we can write

|MA|
|BM |

=
|AN |
|MP |

.

But |MA| = |BM | so that |AN | = |MP |. Also, |MP | = |NC| so that
|AN | = |NC|. Thus, N is the midpoint of the line segment with endpoints A
and C. It follows that a−x1 = x2−a or a = x1+x2

2
. A similar argument shows

that b = y1+y2

2
. Thus, the midpoint M is given by the midpoint formula

M

(
x1 + x2

2
,
y1 + y2

2

)
.

Example 2.4
Find the midpoint of the line segment with endpoints A(4, 7) and B(−10, 7).
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Solution.
Plugging into the midpoint formula we find

Midpoint =
(

x1+x2

2
, y1+y2

2

)
=

(
4+(−10)

2
, 7+7

2

)
= (−3, 7)

Graph of an Equation
Given an equation involving the two variables x and y. The graph of an
equation is the set of ordered pairs (x, y) that satisfy the equation.
A typical procedure for graphing an equation is to plot points and then
connect them with a continuous curve as shown in the next examples.

Example 2.5
Graph the equation by plotting points: 2x + y = −1.

Solution.
Writing y in terms of x we find y = −1 − 2x. The table below shows some
points on the graph of the equation.

x -2 -1 0 1 2
y 3 1 -1 -3 -5

Next, plot the points and draw a curve through them. See Figure 2.4.

Figure 2.4

Example 2.6
Graph the equation by plotting points: y = |x + 3| − 2.
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Solution.
The table below shows some points on the graph of the equation.

x -6 -5 -4 -3 -2 -1 0
y 1 0 -1 -2 -1 0 1

Next, plot the points and draw a curve through them. See Figure 2.5.

Figure 2.5

Example 2.7
Graph the equation y = x2 − 2x− 8.

Solution.
The table below shows some points on the graph of the equation.

x -3 - 2 -1 0 1 2 3 4 5
y 7 0 -5 -8 -9 -8 -5 0 7

Next, plot the points and draw a curve through them. See Figure 2.6.
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Figure 2.6

Intercepts
A point (x, 0) on the graph of an equation is called the x-intercept. Geo-
metrically, the x-intercept is the point where the graph crosses the x-axis.
Similarly, a point of the form (0, y) is called the y-intercept. This is the
point where the graph crosses the y-axis.

Example 2.8
Find the x- and y-intercepts of the graph of x2 + y2 = 4.

Solution.
Letting y = 0 in the given equation we find x2 = 4. Solving for x to obtain
x = ±2. Thus, the x-intercepts are the points (−2, 0) and (2, 0). Similarly,
setting x = 0 to obtain y2 = 4. Solving for y we obtain y = ±2. So the points
(0, 2) and (0,−2) are the y-intercepts.

The Equation of a Circle
By a circle we mean the collection of all points in the plane that are at an
equal distance to a fixed point called the center of the circle. The distance
of a point on a circle to its center is called the radius. The diameter of a
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circle is the length of a line segment crossing the center and with endpoints
on the circle. Thus, the center is the midpoint and as a result a diameter is
twice the radius.
Next, we want to find the equation of a circle with center C(a, b) and radius
r. For this, let M(x, y) be an arbitrary point on the circle. Then d(C, M) = r.
By the distance formula, we have

(x− a)2 + (y − b)2 = r2.

This equation is called the standard form of the equation of a circle.

Example 2.9
Determine the center and the radius of the circle with equation: (x− 2)2 +
(y + 4)2 = 25.

Solution.
The center is the point (2,−4) and the radius is r =

√
25 = 5.

Example 2.10
Find the equation of the circle with center C(5,−3) and radius r = 4. Write
the answer in standard form.

Solution.
The equation of the circle is given by

(x− 5)2 + (y + 3)2 = 16.

Example 2.11
Find the equation of the circle with center C(−2, 5) and passing through the
point M(1, 7).

Solution.
The radius of the circle is r = d(C, M) =

√
(7− 5)2 + (1− (−2))2 =

√
13.

Thus, the equation of the circle is

(x + 2)2 + (y − 5)2 = 13.

Another form of the equation of a circle is known as the general form and
is given by the equation

x2 + y2 + Ax + By + C = 0.

To find the standard form from the general form we use the process of com-
pleting the square as shown in the following example.
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Example 2.12
Find the center and the radius of the circle: x2 + y2 − 6x− 4y + 12 = 0.

Solution.
We use the method of completing the square:

(x2 − 6x) + (y2 − 4y) = −12
(x2 − 6x + 9) + (y2 − 4y + 4) = −12 + 9 + 4

(x− 3)2 + (y − 2)2 = 1.

Thus, the center is (3, 2) and the radius is r = 1.

Example 2.13
Find the equation of a circle that has diameter with endpoints (7,−2) and
(−3, 5). Write your answer in standard form.

Solution.
The center of the circle is the midpoint of the given diameter. By the mid-
point formula, the coordinates of the center are (7−3

2
, −2+5

2
) = (2, 3

2
). The

radius of the circle is the distance between the center and one of the end-
points. This can be found by using the distance formula

d =

√
(2− 7)2 + (

3

2
+ 2)2 =

√
149

2
.

The equation of the circle is

(x− 2)2 + (y − 3

2
)2 =

149

4
.

Example 2.14
Find an equation of a circle that has its center at (−2, 3) and is tangent to
the y-axis. Write your answer in standard form.

Solution.
The radius of the circle is the distance from the center to the y-axis which
is the absolute value of the x-coordinate of the the center, i.e. r = 2. Hence,
the equation of the circle is given by

(x + 2)2 + (y − 3)2 = 4.
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Review Problems

Exercise 2.1
Plot the points whose coordinates are given on a Cartesian coordinate system.

(a) (2, 4), (0,−3), (−2, 1), (−5,−3).
(b) (−3,−5), (−4, 3), (0, 2), (−2, 0).

Exercise 2.2
Find the distance between the points whose coordinates are given.

(a) (6, 4), (−8, 11).
(b) (5,−8), (0, 0).
(c) (

√
3,
√

8), (
√

12,
√

27).
(d) (x, 4x), (−2x, 3x), x < 0.

Exercise 2.3
Find the midpoint of the line segment with the following endpoints.

(a) (1,−1), (5, 5).
(b) (6,−3), (6, 11).
(c) (1.75, 2.25), (−3.5, 5.57).

Exercise 2.4
Graph each equation by plotting points that satisfy the equation.

(a) x− y = 4.
(b) y = −2|x− 3|.
(c) y = 1

2
(x− 1)2.

(d) y = x2 + 2x− 8.

Exercise 2.5
Find the x- and y-intercepts of each equation.

(a) 2x + 5y = 12.
(b) x = |y| − 4.
(c) |x|+ |y| = 4.
(d) |x− 4y| = 8.
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Exercise 2.6
Determine the center and the radius of the circle with the given equation.

(a) x2 + y2 = 36.
(b) (x + 2)2 + (y + 5)2 = 25.
(c) (x− 8)2 + y2 = 1

4
.

Exercise 2.7
Find the equation of the circle with center C(4, 1) and radius r = 2. Write
the answer in standard form.

Exercise 2.8
Find the equation of the circle with center C(0, 0) and passing through the
point M(−3, 4).

Exercise 2.9
Find the equation of the circle with center C(1, 3) and passing through the
point M(4,−1).

Exercise 2.10
Find the center and the radius of each of the following circles.

(a) x2 + y2 − 6x + 5 = 0.
(b) 4x2 + 4y2 + 4x− 63 = 0.
(c) x2 + y2 − x + 3y − 15

4
= 0.

Exercise 2.11
Find the equation of a circle that has diameter with endpoints (2, 3) and
(−4, 11). Write your answer in standard form.

Exercise 2.12
Find an equation of a circle that has its center at (7, 11) and is tangent to
the x-axis. Write your answer in standard form.

Exercise 2.13
Given the midpoint M(9, 3) of a line segement with endpoints A(x, y) and
B(5, 1). Find the coordinates of A.
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Exercise 2.14
Find a formula for the set of all points (x, y) for which the distance from
(x, y) to (3, 4) is 5.

Exercise 2.15
Find an equation of a circle that is tangent to both axes, has its center in
the second quadrant, and has a radius 3.
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3 Functions and Function Notation

Functions play a crucial role in mathematics. A function describes how one
quantity depends on others. More precisely, when we say that a quantity y
is a function of a quantity x we mean a rule that assigns to every possible
value of x exactly one value of y. We call x the input and y the output. In
function notation we write

y = f(x).

Since y depends on x it makes sense to call x the independent variable
and y the dependent variable.
In applications of mathematics, functions are often representations of real
world phenomena. Thus, the functions in this case are referred to as math-
ematical models. If the set of input values is a finite set then the models
are known as discrete models. Otherwise, the models are known as con-
tinuous models. For example, if H represents the temperature after t hours
for a specific day, then H is a discrete model. If A is the area of a circle of
radius r then A is a continuous model.
There are four common ways in which functions are presented and used: By
verbal descriptions, by tables, by graphs, and by formulas.

Example 3.1
The sales tax on an item is 6%. So if p denotes the price of the item and C
the total cost of buying the item then if the item is sold at $ 1 then the cost
is 1 + (0.06)(1) = $1.06 or C(1) = $1.06. If the item is sold at $2 then the
cost of buying the item is 2 + (0.06)(2) = $2.12, or C(2) = $2.12, and so on.
Thus, we have a relationship between the quantities C and p such that each
value of p determines exactly one value of C. In this case, we say that C is
a function of p. Describes this function using words, a table, a graph, and a
formula.

Solution.
•Words: To find the total cost, multiply the price of the item by 0.06 and
add the result to the price.
•Table: The chart below gives the total cost of buying an item at price p as
a function of p for 1 ≤ p ≤ 6.

p 1 2 3 4 5 6
C 1.06 2.12 3.18 4.24 5.30 6.36
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•Graph: The graph of the function C is obtained by plotting the data in
the above table. See Figure 3.1.
•Formula: The formula that describes the relationship between C and p is
given by

C(p) = 1.06p.

Figure 3.1

Recognizing a Function from a Table
A table can be viewed as a collection of ordered pairs (x, y). Thus, for a collec-
tion of data to define a function we need to show that every first component
x corresponds to exactly one component y. Thus, if there are ordered pairs
with the same x value but different y values then the collection of ordered
pairs in not a function.

Example 3.2
Identify the set of ordered pairs (x, y) that define y as a function of x.

(a) {(5, 10), (3,−2), (4, 7), (5, 8)}.
(b) {(2, 2), (3, 3), (7, 2)}.

Solution.
(a) The first set does not define a function since the ordered pairs (5, 10) and
(5, 8) have the same first component with different second components.
(b) This set defines a function since all the first components are different.
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Recognizing a Function from an Equation
Suppose that an equation in the variables x and y is given. If for a given
value of x, you solve the equation for y and you get exactly one value then
the equation defines a function.

Example 3.3
Identify the equations that define y as a function of x.

(a) x2 − 2y = 2.
(b) x2 + y2 = 1.

Solution.
(a) Solving the equation for y we find y = x2

2
−1. Thus, each value of x yields

exactly one value of y. This shows that y is a function of x.
(b) Solving for y to obtain y = ±

√
1− x2. Thus, if we let x = 0 then y = ±1.

Hence, y is not a function of x.

Recognizing a Function from a Graph
Next, suppose that the graph of a relationship between two quantities x and
y is given. To say that y is a function of x means that for each value of
x there is exactly one value of y. Graphically, this means that each vertical
line must intersect the graph at most once. Hence, to determine if a graph
represents a function one uses the following test:

Vertical Line Test: A graph is a function if and only if every vertical
line crosses the graph at most once.

According to the vertical line test and the definition of a function, if a ver-
tical line cuts the graph more than once, the graph could not be the graph
of a function since we have multiple y values for the same x-value and this
violates the definition of a function.
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Example 3.4
Which of the graphs (a), (b), (c) in Figure 3.2 represent y as a function of
x?

Figure 3.2

Solution.
By the vertical line test, (b) represents a function whereas (a) and (c) fail to
represent functions since one can find a vertical line that intersects the graph
more than once.

Evaluating a Function
By evaluating a function, we mean figuring out the output value correspond-
ing to a given input value. Thus, notation like f(10) = 4 means that the
function’s output, corresponding to the input 10, is equal to 4.
If the function is given by a formula, say of the form y = f(x), then to find
the output value corresponding to an input value a we replace the letter x
in the formula of f by the input a and then perform the necessary algebraic
operations to find the output value.

Example 3.5
Let g(x) = x2+1

5+x
. Evaluate the following expressions:

(a) g(2) (b) g(a) (c) g(a)− 2 (d) g(a)− g(2).
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Solution.
(a) g(2) = 22+1

5+2
= 5

7

(b) g(a) = a2+1
5+a

(c) g(a)− 2 = a2+1
5+a

− 25+a
5+a

= a2−2a−9
5+a

(d) g(a)− g(2) = a2+1
5+a

− 5
7

= 7(a2+1)
7(5+a)

− 5
7

5+a
5+a

= 7a2−5a−18
7a+35

.

Domain and Range of a Function
If we try to find the possible input values that can be used in the function
y =

√
x− 2 we see that we must restrict x to the interval [2,∞), that is

x ≥ 2. Similarly, the function y = 1
x2 takes only certain values for the out-

put, namely, y > 0. Thus, a function is often defined for certain values of x
and the dependent variable often takes certain values.
The above discussion leads to the following definitions: By the domain of
a function we mean all possible input values that yield one output value.
Graphically, the domain is part of the horizontal axis. The range of a func-
tion is the collection of all possible output values. The range is part of the
vertical axis.
When finding the domain of a function, ask yourself what values can’t be
used. Your domain is everything else. There are simple basic rules to con-
sider:

• The domain of all polynomial functions, i.e. functions of the form f(x) =
anx

n + an−1x
n−1 + · · ·+ a1x + a0, where n is nonnegative integer, is the Real

numbers R.
• Square root functions can not contain a negative underneath the radical.
Set the expression under the radical greater than or equal to zero and solve
for the variable. This will be your domain.
• Fractional functions, i.e. ratios of two functions, determine for which input
values the numerator and denominator are not defined and the domain is
everything else. For example, make sure not to divide by zero!

Example 3.6
Find, algebraically, the domain and the range of each of the following func-
tions. Write your answers in interval notation:
(a) y = πx2 (b) y = 1√

x−4
(c) y = 2 + 1

x
.

Solution.
(a) Since the function is a polynomial then its domain is the interval (−∞,∞).
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To find the range, solve the given equation for x in terms of y obtaining
x = ±

√
y
π
. Thus, x exists for y ≥ 0. So the range is the interval [0,∞).

(b) The domain of y = 1√
x−4

consists of all numbers x such that x− 4 > 0 or

x > 4. That is, the interval (4,∞). To find the range, we solve for x in terms
of y > 0 obtaining x = 4 + 1

y2 . x exists for all y > 0. Thus, the range is the

interval (0,∞).

(c) The domain of y = 2+ 1
x

is the interval (−∞, 0)∪(0,∞). To find the range,
write x in terms of y to obtain x = 1

y−2
. The values of y for which this later

formula is defined is the range of the given function, that is, (−∞, 2)∪(2,∞).

Piecewise Defined Functions
Piecewise-defined functions are functions defined by different formulas
for different intervals of the independent variable.

Example 3.7 (The Absolute Value Function)
(a) Show that the function f(x) = |x| is a piecewise defined function.
(b) Graph f(x).

Solution.
(a) The absolute value function |x| is a piecewise defined function since

|x| =
{

x for x ≥ 0,
−x for x < 0.

(b) The graph is given in Figure 3.3.

Figure 3.3
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Example 3.8 (The Ceiling Function)
The Ceiling function f(x) = dxe is the piecewise defined function given by

dxe = smallest integer greater than or equal to x.

Sketch the graph of f(x) on the interval [−3, 3].

Solution.
The graph is given in Figure 3.4. An open circle represents a point which is
not included.

Figure 3.4

Example 3.9 (The Floor Function)
The Floor function f(x) = bxc is the piecewise defined function given by

bxc = greatest integer less than or equal to x.

Sketch the graph of f(x) on the interval [−3, 3].

Solution.
The graph is given in Figure 3.5.
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Figure 3.5

Example 3.10
Sketch the graph of the piecewise defined function given by

f(x) =


x + 4 for x ≤ −2,

2 for −2 < x < 2,
4− x for x ≥ 2.

Solution.
The following table gives values of f(x).

x -3 -2 -1 0 1 2 3
f(x) 1 2 2 2 2 2 1

The graph of the function is given in Figure 3.6.

Figure 3.6
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We next give a real-world situation where piecewise functions can be used.

Example 3.11
The charge for a taxi ride is $1.50 for the first 1

5
of a mile, and $0.25 for each

additional 1
5

of a mile (rounded up to the nearest 1
5

mile).

(a) Sketch a graph of the cost function C as a function of the distance trav-
eled x, assuming that 0 ≤ x ≤ 1.
(b) Find a formula for C in terms of x on the interval [0, 1].
(c) What is the cost for a 4

5
−mile ride?

Solution.
(a) The graph is given in Figure 3.7.

Figure 3.7

(b) A formula of C(x) is

C(x) =



0 if x = 0
1.50 if 0 < x ≤ 1

5
,

1.75 if 1
5

< x ≤ 2
5
,

2.00 if 2
5

< x ≤ 3
5
,

2.25 if 3
5

< x ≤ 4
5
,

2.50 if 4
5

< x ≤ 1.

(c) The cost for a 4
5

ride is C(4
5
) = $2.25.
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Increasing and Decreasing Functions
We say that a function is increasing if its graph climbs as x moves from left
to right. That is, the function values increase as x increases. It is said to be
decreasing if its graph falls as x moves from left to right. This means that
the function values decrease as x increases.

Example 3.12
Determine the intervals where the function, given in Figure 3.8, is increasing
and decreasing.

Figure 3.8

Solution.
The function is increasing on (−∞,−1) ∪ (1,∞) and decreasing on the in-
terval (−1, 1).

One-To-One Functions
We have seen that when every vertical line crosses a curve at most once then
the curve is the graph of a function f. We called this procedure the vertical
line test. Now, if every horizontal line crosses the graph at most once then
the function is called one-to-one.

Remark 3.1
The test used to identify one-to-one functions which we discussed above is
referred to as the horizontal line test.

Example 3.13
Use a graphing calculator to decide whether or not the function is one-to-one.

(a) f(x) = x3 + 7. (b) g(x) = |x|.
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Solution.
(a) Using a graphing calculator, the graph of f(x) is given in Figure 3.9.

Figure 3.9

We see that every horizontal line crosses the graph once so the function is
one-to-one.
(b) The graph of g(x) = |x| (See Figure 3.3) shows that there are horizontal
lines that cross the graph twice so that g is not one-to-one.
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Review Problems

Exercise 3.1
Given f(x) = 3x2 − 1, find

(a) f(−4) (b) f
(

1
3

)
(c) f(−a) (d) f(x + h) (e) f(x + h)− f(x).

Exercise 3.2
Given f(x) = x

|x| , find

(a) f(4) (b) f(−2) (c) f(x), x > 0 (d) f(x), x < 0.

Exercise 3.3
Given

f(x) =

{
3x + 1, if x < 2
−x2 + 11, if x ≥ 2.

Evaluate: (a) f(−4) (b) f(
√

5) (c) f(x), x < 2 (d) f(x + 1), x ≥ 1.

Exercise 3.4
Identify the equations that define y as a function of x.

(a) 2x + 3y = 7.
(b) −x + y2 = 2.
(c) y = 4±

√
x.

(d) y2 = x2.

Exercise 3.5
Identify the collection of ordered pairs (x, y) that define y as a function of x.

(a) {(2, 3), (5, 1), (−4, 3), (7, 11)}.
(b) {(5, 10), (3,−2), (4, 7), (5, 8)}.
(c) {(1, 0), (2, 0), (3, 0)}.

Exercise 3.6
Determine the domain of the function. Write answers in interval notation.

(a) f(x) = 3x− 4.
(b) g(x) = x2 + 2.
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(c) h(x) = 4
x+2

.

(d) i(x) =
√

4− x2.
(e) j(x) = 1√

x+4
.

Exercise 3.7
Graph each function. Insert solid circle or hollow circles to indicate the true
nature of the function. (a)

f(x) =

{
|x|, if x ≤ 1
2, if x > 1.

(b)

g(x) =


4, if x ≤ −1
x2, if −1 < x < 1

−x + 5, if x ≥ 1.

Exercise 3.8
Use the vertical line test to determine which of the following graphs are
graphs of functions.

Exercise 3.9
Use the indicated graphs to indentify the intervals over which the function
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is increasing, constant, or decreasing.

Exercise 3.10
Use the horizontal line test to determine which of the following functions are
one-to-one.
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Exercise 3.11
A bus was purchased for $80,000. Assumeing the bus depreciates linearly at
a rate of $6,500 per year for the first 10 years, write the value v of the bus
as a function of the time t (measured in years) for 0 ≤ t ≤ 10.

Exercise 3.12
A manufacturer produces a product at a cost of $22.80 per unit. The man-
ufacturer has a fixed cost of $400,000 per day. Each unit retails for $37.00.
Let x represent the number of units produced in a 5-day period.

(a) Write the total cost C as a function of x.
(b) Write the revenue R as a function of x.
(c) Write the profit P as a function of x.

Exercise 3.13
An open box is to be made from a square piece of cardboard having dimen-
sions 30 inches by 30 inches by cutting out squares of area x2 from each corner.

(a) Express the volume V of the box as a function of x.
(b) State the domain of V.

Exercise 3.14
If f(x) = x2 − x− 5 and f(c) = 1, find the value of c.

Exercise 3.15
Determine whether 1 is in the range of f(x) = x−1

x+1
.

Exercise 3.16
Determine whether 0 is in the range of f(x) = 1

x−3
.
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4 Transformations of Graphs

Throughout this section we consider the relationship between changes made
to the formula of a function and the corresponding changes made to its graph.
The resulting changes in the graph will consist of shifting, fliping, compress-
ing, and stretching of the original graph.

Reflections and Symmetry
Reflections occur when either the input or the output of a function is multi-
plied by -1.

Reflection About the x-Axis
For a given function f(x), the points (x, f(x)) and (x,−f(x)) are on opposite
sides of the x-axis. So the graph of the new function −f(x) is the reflection
of the graph of f(x) about the x-axis.

Example 4.1
Graph the functions f(x) = 2x and −f(x) = −2x on the same axes.

Solution.
The graphs of both f(x) = 2x and −f(x) are shown in Figure 4.1.

Figure 4.1

Reflection About the y-Axis
We know that the points (x, f(x)) and (−x, f(x)) are on opposite sides of
the y-axis. So the graph of the new function f(−x) is the reflection of the
graph of f(x) about the y-axis.
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Example 4.2
Graph the functions f(x) = x3 and f(−x) = −x3 on the same axes.

Solution.
The graphs of both f(x) and f(−x) are shown in Figure 4.2.

Figure 4.2

Symmetry About the y-Axis
When constructing the graph of f(−x) sometimes you will find that this new
graph is the same as the graph of the original function. That is, the reflection
of the graph of f(x) about the y-axis is the same as the graph of f(x),e.g.,
f(−x) = f(x). In this case, we say that the graph of f(x) is symmetric
about the y-axis. We call such a function an even function.

Example 4.3
(a) Using a graphing calculator show that the function f(x) = (x − x3)2 is
even.
(b) Now show that f(x) is even algebraically.

Solution.
(a) The graph of f(x) is symmetric about the y-axis so that f(x) is even.
See Figure 4.3.
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Figure 4.3

(b) Since f(−x) = (−x− (−x)3)2 = (−x+x3)2 = [−(x−x3)]2 = (x−x3)2 =
f(x) then f(x) is even.

Symmetry About the Origin
Now, if the images f(x) and f(−x) are of opposite signs i.e, f(−x) = −f(x),
then the graph of f(x) is symmetric about the origin. In this case, we say
that f(x) is odd. Alternatively, since f(x) = −f(−x), if the graph of a
function is reflected first across the y-axis and then across the x-axis and you
get the graph of f(x) again then the function is odd.

Example 4.4
(a) Using a graphing calculator show that the function f(x) = 1+x2

x−x3 is odd.
(b) Now show that f(x) is odd algebraically.

Solution.
(a) The graph of f(x) is symmetric about the origin so that f(x) is odd. See
Figure 4.4.
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Figure 4.4

(b) Since f(−x) = 1+(−x)2

(−x)−(−x)3
= 1+x2

−x+x3 = 1+x2

−(x−x3)
= −f(x) then f(x) is odd.

A function can be either even, odd, or neither.

Example 4.5
(a) Show that the function f(x) = x2 is even but not odd.
(b) Show that the function f(x) = x3 is odd but not even.
(c) Show that the function f(x) = x + x2 is neither odd nor even.
(d) Is there a function that is both even and odd? Explain.

Solution.
(a) Since f(−x) = (−x)2 = x2 = f(x) and f(−x) 6= −f(x) then f(x) is even
but not odd.
(b) Since f(−x) = (−x)3 = −x3 = −f(x) and f(−x) 6= f(x) then f(x) is
odd but not even.
(c) Since f(−x) = −x + x2 6= ±f(x) then f(x) is neither even nor odd.
(d) We are looking for a function such that f(−x) = f(x) and f(−x) =
−f(x). This implies that f(x) = −f(x) or 2f(x) = 0. Dividing by 2 to ob-
tain f(x) = 0. This function is both even and odd. This is the only function
that is both even and odd.

Vertical and Horizontal Shifts
Given the graph of a function, by shifting this graph vertically or horizontally
one gets the graph of a new function. In this section we want to find the
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formula for this new function using the formula of the original function.

Vertical Shifts
We start with an example of a vertical shift.

Example 4.6
Let f(x) = x2.
(a) Use a calculator to graph the function g(x) = x2 +1. How does the graph
of g(x) compare to the graph of f(x)?
(b) Use a calculator to graph the function h(x) = x2−1. How does the graph
of h(x) compare to the graph of f(x)?

Solution.
(a) In Figure 4.5 we have included the graph of g(x) = x2 + 1 = f(x) + 1.
This shows that if (x, f(x)) is a point on the graph of f(x) then (x, f(x)+1)
is a point on the graph of g(x). Thus, the graph of g(x) is obtained from the
old one by moving it up 1 unit.

Figure 4.5

(b) Figure 4.6 shows the graph of both f(x) and h(x). Note that h(x) =
f(x)−1 and the graph of h(x) is obtained from the graph of f(x) by moving
it 1 unit down.
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Figure 4.6

In general, if c > 0, the graph of f(x) + c is obtained by shifting the graph
of f(x) upward a distance of c units. The graph of f(x) − c is obtained by
shifting the graph of f(x) downward a distance of c units.

Horizontal Shifts
This discussion parallels the one earlier in this section. Follow the same
general directions.

Example 4.7
Let f(x) = x2.
(a) Use a calculator to graph the function g(x) = (x + 1)2 = f(x + 1). How
does the graph of g(x) compare to the graph of f(x)?
(b) Use a calculator to graph the function h(x) = (x− 1)2 = f(x− 1). How
does the graph of h(x) compare to the graph of f(x)?

Solution.
(a) In Figure 4.7 we have included the graph of g(x) = (x + 1)2. We see that
the new graph is obtained from the old one by shifting to the left 1 unit.
This is as expected since the value of x2 is the same as the value of (x + 1)2

at the point 1 unit to the left.
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Figure 4.7

(b) Similar to (a), we see in Figure 4.8 that we get the graph of h(x) by
moving the graph of f(x) to the right 1 unit.

Figure 4.8

In general, if c > 0, the graph of f(x + c) is obtained by shifting the graph
of f(x) to the left a distance of c units. The graph of f(x− c) is obtained by
shifting the graph of f(x) to the right a distance of c units.

Remark 4.1
Be careful when translating graph horizontally. In determing the direction of
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horizontal shifts we look for the value of x that would cause the expression
between parentheses equal to 0. For example, the graph of f(x−5) = (x−5)2

is the graph of f(x) = x2 shifted 5 units to the right since +5 would cause the
quantity x−5 to equal 0. On the other hand, the graph of f(x+5) = (x+5)2

is the graph of f(x) = x2 shifted 5 units to the left since −5 would cause the
expression x + 5 to equal 0.

Combinations of Vertical and Horizontal Shifts
One can use a combination of both horizontal and vertical shifts to create
new functions as shown in the next example.

Example 4.8
Let f(x) = x2. Let g(x) be the function obtained by shifting the graph of
f(x) two units to the right and then up three units. Find a formula for g(x)
and then draw its graph.

Solution.
The formula of g(x) is g(x) = f(x − 2) + 3 = (x − 2)2 + 3 = x2 − 4x + 7.
The graph of g(x) consists of a horizontal shift of x2 of two units to the right
followed by a vertical shift of three units upward. See Figure 4.9.

Figure 4.9

Combinations of Shifts and Reflections
We can obtain more complex functions by combining the horizontal and
vertical shifts with the horizontal and vertical reflections.
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Example 4.9
Let f(x) = 2x.
(a) Suppose that g(x) is the function obtained from f(x) by first reflecting
about the y-axis, then translating down three units. Write a formula for
g(x).
(b) Suppose that h(x) is the function obtained from f(x) by first translating
up two units and then reflecting about the x-axis. Write a formula for h(x).

Solution.
(a) g(x) = f(−x)− 3 = 2−x − 3.
(b) h(x) = −(f(x) + 2) = −2x − 2.

Vertical Stretches and Compressions
We have seen that for a positive k, the graph of f(x)+ k is a vertical shift of
the graph of f(x) upward and the graph of f(x)− k is a vertical shift down.
In this section we want to study the effect of multiplying a function by a con-
stant k. This will result by either a vertical stretch or vertical compression.
A vertical stretching is the stretching of the graph away from the x-axis.
A vertical compression is the squeezing of the graph towards the x-axis.

Example 4.10
(a) Complete the following tables

x y = x2

-3
-2
-1
0
1
2
3

x y = 2x2

-3
-2
-1
0
1
2
3

x y = 3x2

-3
-2
-1
0
1
2
3

(b) Use the tables of values to graph and label each of the 3 functions on the
same axes. What do you notice?

Solution.
(a)
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x y = x2

-3 9
-2 4
-1 1
0 0
1 1
2 4
3 9

x y = 2x2

-3 18
-2 8
-1 2
0 0
1 2
2 8
3 18

x y = 3x2

-3 27
-2 12
-1 3
0 0
1 3
2 12
3 27

(b) Figure 4.10 shows that the graphs of 2f(x) and 3f(x) are vertical stretches
of the graph of f(x) by a factor of 2 and 3 respectively.

Figure 4.10

Example 4.11
(a) Complete the following tables

x y = x2

-3
-2
-1
0
1
2
3

x y = 1
2
x2

-3
-2
-1
0
1
2
3

x y = 1
3
x2

-3
-2
-1
0
1
2
3

(b) Use the tables of values to graph and label each of the 3 functions on the
same axes. What do you notice?
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Solution.
(a)

x y = x2

-3 9
-2 4
-1 1
0 0
1 1
2 4
3 9

x y = 1
2
x2

-3 4.5
-2 2
-1 0.5
0 0
1 0.5
2 2
3 4.5

x y = 1
3
x2

-3 3
-2 4

3

-1 1
3

0 0
1 1

3

2 4
3

3 3

(b) Figure 4.11 shows that the graphs of 1
2
f(x) and 1

3
f(x) are vertical com-

pressions of the graph of f(x) by a factor of 1
2

and 1
3

respectively.

Figure 4.11

Summary
It follows that if a function f(x) is given, then the graph of kf(x) is a
vertical stretch of the graph of f(x) by a factor of k for k > 1, and a vertical
compression for 0 < k < 1.
What about k < 0? If |k| > 1 then the graph of kf(x) is a vertical stretch
of the graph of f(x) followed by a reflection about the x-axis. If 0 < |k| < 1
then the graph of kf(x) is a vertical compression of the graph of f(x) by a
factor of k followed by a reflection about the x-axis.

Example 4.12
(a) Use a graphing calculator to graph the functions f(x) = x2,−2f(x), and
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−3f(x) on the same axes.
(b) Use a graphing calculator to graph the functions f(x) = x2,−1

2
f(x), and

-1
3
f(x) on the same axes.

Solution.
(a) Figure 4.12 shows that the graphs of −2f(x) and −3f(x) are vertical
stretches followed by reflections about the x-axis of the graph of f(x)

Figure 4.12

(b) Figure 4.13 shows that the graphs of −1
2
f(x) and −1

3
f(x) are vertical

compressions of the graph of f(x).

Figure 4.13
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Combinations of Shifts
Any transformations of vertical, horizontal shifts, reflections, vertical stretches
or compressions can be combined to generate new functions. In this case,
always work from inside the parentheses outward.

Example 4.13
How do you obtain the graph of g(x) = −1

2
f(x + 3) − 1 from the graph of

f(x)?

Solution.
The graph of g(x) is obtained by first shifting the graph of f(x) to the left
by 3 units then the resulting graph is compressed vertically by a factor of 1

2

followed by a reflection about the x-axis and finally moving the graph down
by 1 unit.

Horizontal Stretches and Compressions
A vertical stretch or compression results from multiplying the outside of a
function by a constant k. In this section we will see that multiplying the
inside of a function by a constant k results in either a horizontal stretch or
compression.
A horizontal stretching is the stretching of the graph away from the y-
axis. A horizontal compression is the squeezing of the graph towards the
y-axis.
We consider first the effect of multiplying the input by k > 1.

Example 4.14
(a) Complete the following tables

x -3 -2 -1 0 1 2 3
y = x2

y = (2x)2

y = (3x)2

(b) Use the tables of values to graph and label each of the 3 functions on the
same axes. What do you notice?

Solution.
(a)
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x -3 -2 -1 0 1 2 3
y = x2 9 4 1 0 1 4 9
y = (2x)2 36 16 4 0 4 16 36
y = (3x)2 81 36 9 0 9 36 81

(b) Figure 4.14 shows that the graphs of f(2x) = (2x)2 = 4x2 and f(3x) =
(3x)2 = 9x2 are horizontal compressions of the graph of f(x) by a factor of
1
2

and 1
3

respecitvely.

Figure 4.14

Next, we consider the effect of multiplying the input by 0 < k < 1.

Example 4.15
(a) Complete the following tables

x -3 -2 -1 0 1 2 3
y = x2

y = (1
2
x)2

y = (1
3
x)2

(b) Use the tables of values to graph and label each of the 3 functions on the
same axes. What do you notice?

Solution.
(a)
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x -3 -2 -1 0 1 2 3
y = x2 9 4 1 0 1 4 9
y = (1

2
x)2 9

4
1 1

4
0 1

4
1 9

4

y = (1
3
x)2 1 4

9
1
9

0 1
9

4
9

1

(b) Figure 4.15 shows that the graphs of f(x
2
) and f(x

3
) are horizontal

stretches of the graph of f(x) by a factor of 2 and 3 respectively.

Figure 4.15

Summary
It follows from the above two examples that if a function f(x) is given, then
the graph of f(kx) is a horizontal stretch of the graph of f(x) by a factor of
1
k

for 0 < k < 1, and a horizontal compression for k > 1.
What about k < 0? If |k| > 1 then the graph of f(kx) is a horizontal
compression of the graph of f(x) followed by a reflection about the y-axis.
If 0 < |k| < 1 then the graph of f(kx) is a horizontal stretch of the graph of
f(x) by a factor of 1

k
followed by a reflection about the y-axis.

Example 4.16
(a) Use a graphing calculator to graph the functions f(x) = x3, f(−2x), and
f(−3x) on the same axes.
(b) Use a graphing calculator to graph the functions f(x) = x3, f(−x

2
), and

f(−x
3
) on the same axes.

Solution.
(a) Figure 4.16 shows that the graphs of f(−2x) and f(−3x) are vertical
stretches followed by reflections about the y-axis of the graph of f(x)
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Figure 4.16

(b) Figure 4.17 shows that the graphs of f(−x
2
) f(−x

3
) are horizontal stretches

of the graph of f(x).

Figure 4.17
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Review Problems

Exercise 4.1
Sketch a graph that is symmetric to the given graph with respect to the
x-axis.

Exercise 4.2
Sketch a graph that is symmetric to the given graph with respect to the
y-axis.

Exercise 4.3
Sketch a graph that is symmetric to the given graph with respect to the
origin.
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Exercise 4.4
Determine whether the graph of each equation is symmetric with respect to
(a) x-axis (b) y-axis.

(a) y = 2x2 − 5 (b) y = x5 − 3x (c) x2 + y2 = 9 (d) xy = 8.

Exercise 4.5
Determine whether the graph of each equation is symmetric with respect to
the origin.

(a) y = 3x− 2 (b) y = x3 − x (c) x2 + y2 = 1 (d) y = x
|x| .

Exercise 4.6
Identify whether the given function is even, odd, or neither.

(a) f(x) = x2 − 7 (b) g(x) = x5 + x3 (c) h(x) = 3|x| (d) j(x) = 4 + 3
√

x.

Exercise 4.7
Use the graph of f to sketch the graph of (a) y = f(x)+3 (b) y = f(x−3).
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Exercise 4.8
Use the graph of f to sketch the graph of (a) y = f(x+2) (b) y = f(x)+2.

Exercise 4.9
Use the graph of f to sketch the graph of (a) y = f(x−1) (b) y = f(x)−1.

Exercise 4.10
Let f be a function such that f(−2) = 5, f(0) = −2, and f(1) = 0. Give the
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coordinates of three points on the graph of

(a) y = f(x + 3) (b) y = f(x) + 1.

Exercise 4.11
Use the graph of f to sketch the graph of (a) y = f(−x) (b) y = −f(x).

Exercise 4.12
Let f be a function such that f(−1) = 3 and f(2) = −4. Give the coordinates
of two points on the graph of (a) y = f(−x) (b) y = −f(x).

Exercise 4.13
Use the graph of f to sketch the graph of (a) y = f(−x) (b) y = −f(x).

Exercise 4.14
Use the graph of m(x) = x2− 2x− 3 to sketch the graph of y = −1

2
m(x)+3.
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Exercise 4.15
Use the graph of f to sketch the graph of (a) y = f(2x) (b) y = f(1

2
x).
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5 Combining Functions

In this section we are going to construct new functions from old ones using
the operations of addition, subtraction, multiplication, division, and compo-
sition.
Let f(x) and g(x) be two given functions. Then for all x in the common
domain of these two functions we define new functions as follows:

• Sum: (f + g)(x) = f(x) + g(x).
• Difference: (f − g)(x) = f(x)− g(x).
• Product: (f · g)(x) = f(x) · g(x).

• Division:
(

f
g

)
(x) = f(x)

g(x)
provided that g(x) 6= 0.

Example 5.1
Let f(x) = x + 1 and g(x) =

√
x + 3. Find the common domain and then

find a formula for each of the functions f + g, f − g, f · g, f
g
.

Solution.
The domain of f(x) consists of all real numbers whereas the domain of g(x)
consists of all numbers x ≥ 3. Thus, the common domain is the interval
[−3,∞). For any x in this domain we have

(f + g)(x) = x + 1 +
√

x + 3
(f − g)(x) = x + 1−

√
x + 3

(f · g)(x) = x
√

x + 3 +
√

x + 3(
f
g

)
(x) = x+1√

x+3
provided x > −3.

Example 5.2
Let f(x) = x2 − 3x + 2 and g(x) = 2x− 4. Evaluate the indicated function.

(a) (f + g)
(

1
2

)
(b) (f − g)(−1) (c) (fg)

(
2
5

)
(d)

(
f
g

)
(11).

Solution.
(a) f(1

2
) = 3

4
and g(1

2
) = −3 so that (f + g)

(
1
2

)
= 3

4
− 3 = −9

4
.

(b) f(−1) = 6 and g(−1) = −6 so that (f − g)(−1) = 6− (−6) = 12.
(c) f(2

5
) = 39

25
and g(2

5
) = −16

5
so that (fg)

(
2
5

)
= −624

125
.

(d) f(11) = 90 and g(11) = 18 so that
(

f
g

)
(11) = 90

18
= 10

3
.
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Difference Quotient
Difference quotients are what they say they are. They involve a difference
and a quotient. Geometrically, a difference quotient is the slope of a secant
line between two points on a curve. The formula for the difference quotient
is:

f(x + h)− f(x)

h
.

Example 5.3
Find the difference quotient of the function f(x) = x2.

Solution.
Since f(x + h) = (x + h)2 = x2 + 2hx + h2 then

f(x+h)−f(x)
h

= (x2+2hx+h2)−x2

h

= 2hx+h2

h
= h(2x+h)

h

= 2x + h.

Composition of Functions
Suppose we are given two functions f and g such that the range of g is
contained in the domain of f so that the output of g can be used as input
for f. We define a new function, called the composition of f with g, by the
formula

(f ◦ g)(x) = f(g(x)).

Using a Venn diagram (See Figure 5.1) we have
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Figure 5.1

Example 5.4
Suppose that f(x) = 2x + 1 and g(x) = x2 − 3.

(a) Find f ◦ g and g ◦ f.
(b) Calculate (f ◦ g)(5) and (g ◦ f)(−3).
(c) Are f ◦ g and g ◦ f equal?

Solution.
(a) (f ◦ g)(x) = f(g(x)) = f(x2 − 3) = 2(x2 − 3) + 1 = 2x2 − 5. Similarly,
(g ◦ f)(x) = g(f(x)) = g(2x + 1) = (2x + 1)2 − 3 = 4x2 + 4x− 2.
(b) (f ◦ g)(5) = 2(5)2 − 5 = 45 and (g ◦ f)(−3) = 4(−3)2 + 4(−3)− 2 = 22.
(c) f ◦ g 6= g ◦ f.

With only one function you can build new functions using composition of
the function with itself. Also, there is no limit on the number of functions
that can be composed.

Example 5.5
Suppose that f(x) = 2x + 1 and g(x) = x2 − 3.

(a) Find (f ◦ f)(x).
(b) Find [f ◦ (f ◦ g)](x).

Solution.
(a) (f ◦ f)(x) = f(f(x)) = f(2x + 1) = 2(2x + 1) + 1 = 4x + 3.
(b) [f ◦(f ◦g)](x) = f(f(g(x))) = f(f(x2−3)) = f(2x2−5) = 2(2x2−5)+1 =
4x2 − 9.
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Review Problems

Exercise 5.1
Use the given functions f and g to find f + g, f − g, fg, and f

g
. State the

domain of each.

(a) f(x) = x2 − 2x− 15, g(x) = x + 3.
(b) f(x) = x3 − 2x2 + 7x, g(x) = x.
(c) f(x) = 2x2 + 4x− 7, g(x) = 2x2 + 3x− 5.
(d) f(x) =

√
4− x2, g(x) = 2 + x.

Exercise 5.2
Evaluate the indicated function, where f(x) = x2−3x+2 and g(x) = 2x−4.

(a) (f + g)(5) (b) (f + g)
(

2
3

)
(c) (f − g)(−3) (d) (fg)

(
2
5

)
(e)
(

f
g

) (
1
2

)
.

Exercise 5.3
Find the difference quotient of the given function.

(a) f(x) = 2x + 4.
(b) g(x) = x2 − 6.

Exercise 5.4
Find f ◦ g and g ◦ f.

(a) f(x) = 3x + 5, g(x) = 2x− 7.
(b) f(x) = x3 + 2x, g(x) = −5x.
(c) f(x) = 2

x+1
, g(x) = 3x− 5.

(d) f(x) = 1
x2 , g(x) =

√
x− 1.

(e) f(x) = 3
|5−x| , g(x) = − 2

x
.

Exercise 5.5
Evaluate each composite function where f(x) = 2x + 3, g(x) = x2 − 5x, and
h(x) = 4− 3x2.

(a) (f ◦ g)(−3) (b) (h ◦ g)
(

2
5

)
(c) (g ◦ f)(

√
3) (d) (g ◦ f)(2c).
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6 Inverse Functions

An important feature of one-to-one functions is that they can be used to
build new functions. So suppose that f is a one-to-one function. A new
function, called the inverse function (denoted by f−1), is defined such that
if f takes an input x to an output y then f−1 takes y as its input and x as
its output. That is

f(x) = y if and only if f−1(y) = x.

When a function has an inverse then we say that the function is invertible.

Example 6.1
Find the inverse function of (a) f(x) = log x (b) g(x) = ex.

Solution.
(a) f−1(x) = 10x (b) g−1(x) = ln x.

Remark 6.1
It is important not to confuse between f−1(x) and (f(x))−1. The later is just
the reciprocal of f(x), that is, (f(x))−1 = 1

f(x)
whereas the former is how the

inverse function is represented.

Domain and Range of an Inverse Function
Figure 6.1 shows the relationship between f and f−1.

Figure 6.1

This figure shows that we get the inverse of a function by simply reversing
the direction of the arrows. That is, the outputs of f are the inputs of f−1

and the outputs of f−1 are the inputs of f. It follows that

Domain of f−1 = Range of f and Range of f−1 = Domain of f.

65



Example 6.2
Consider the function f(x) =

√
x− 4.

(a) Find the domain and the range of f(x).
(b) Use the horizontal line test to show that f(x) has an inverse.
(c) What are the domain and range of f−1?

Solution.
(a) The function f(x) is defined for all x ≥ 4. The range is the interval [0,∞).
(b) Graphing f(x) we see that f(x) satisfies the horizontal line test and so
f has an inverse. See Figure 6.2.
(c) The domain of f−1 is the range of f, i.e. the interval [0,∞). The range
of f−1 is the domain of f , that is, the interval [4,∞).

Figure 6.2

Finding a Formula for the Inverse Function
How do you find the formula for f−1 from the formula of f? The procedure
consists of the following steps:

1. Replace f(x) with y.
2. Interchange the letters x and y.
3. Solve for y in terms of x.
4. Replace y with f−1(x).

Example 6.3
Find the formula for the inverse function of f(x) = x3 + 7.

Solution.
From Figure 16 and the horizontal line test w see that f(x) is invertible. We
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find its inverse as follows:

1. Replace f(x) with y to obtain y = x3 + 7.
2. Interchange x and y to obtain x = y3 + 7.
3. Solve for y to obtain y3 = x− 7 or y = 3

√
x− 7.

4. Replace y with f−1(x) to obtain f−1(x) = 3
√

x− 7.

Compositions of f and its Inverse
Suppose that f is an invertible function. Then the expressions y = f(x) and
x = f−1(y) are equivalent. So if x is in the domain of f then

f−1(f(x)) = f−1(y) = x

and for y in the domain of f−1 we have

f(f−1(y)) = f(x) = y

It follows that for two functions f and g to be inverses of each other we must
have f(g(x)) = x for all x in the domain of g and g(f(x)) = x for x in the
domain of f.

Example 6.4
Check that the pair of functions f(x) = x

4
− 3

2
and g(x) = 4(x+ 3

2
) are inverses

of each other.

Solution.
The domain and range of both functions consist of the set of all real numbers.
Thus, for any real number x we have

f(g(x)) = f(4(x +
3

2
)) = f(4x + 6) =

4x + 6

4
− 3

2
= x.

and

g(f(x)) = g(
x

4
− 3

2
) = 4(

x

4
− 3

2
+

3

2
) = x.

So f and g are inverses of each other.
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Review Problems

Exercise 6.1
Given f(3) = 7, find f−1(7).

Exercise 6.2
Given h−1(−3) = −4, find h(−4).

Exercise 6.3
If 3 is in the domain of f−1, find f [f−1(3)].

Exercise 6.4
If f is a one-to-one function and f(0) = 5, f(1) = 2, and f(2) = 7, find

(a) f−1(5) (b) f−1(2).

Exercise 6.5
Use composition of functions to determine whether f and g are inverses of
one another.

(a) f(x) = 4x, g(x) = x
4
.

(b) f(x) = 4x− 1, g(x) = 1
4
x + 1

4
.

(c) f(x) = −1
2
x− 1

2
, g(x) = −2x + 1.

Exercise 6.6
Find f−1(x). State any restrictions on the domain of f−1(x).

(a) f(x) = 2x + 4.
(b) f(x) = 2x

x−1
, x 6= 1.

(c) f(x) = x−1
x+1

, x 6= −1.

Exercise 6.7
Find f−1(x). State any restrictions on the domain of f−1(x).

(a) f(x) = x2 − 4, x ≥ 0.
(b) f(x) =

√
x− 2, x ≥ 2.

(c) f(x) = x2 + 4x− 1, x ≤ −2.
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In this chapter we introduce the trigonometric functions. These functions
can be viewed in two different but equivalent ways. The first way is to
view them as functions of real numbers, the other as functions of angles. In
both ways, the functions assign the same value to a given real number. The
difference is that in the first way, the real number is the length of an arc
along the unit circle whereas in the second the number is the measure of
an angle. The reason of studying both approaches is due to the fact that
different applications require that we view these functions differently. For
example, the first approach is needed when modeling harmonic motion. The
second is needed when measuring the sides of a triangle.

7 Angles and Arcs

As stated in the introduction above, the two approaches of defining trigono-
metric functions involve the notions of angles and arcs.
In this section you will learn (1) to identify and classify angles, (2) to mea-
sure angles in both degrees and radians, (3) to convert between the units,
(4) to find the measures of arcs spanned by angles, (5) to find the area of a
circular sector, and (6) to measure linear and angular speeds, given a situa-
tion representing a circular motion.

Angles appear in a lot of applications. Let’s mention one situation where
angles can be very useful. Suppose that you are standing at a point 100 feet
away of the Washington monument and you would like to approximate the
height of the monument. Assuming that your height is negligeable compared
to the height of the monument so that you can be identified by a point on the
horizontal line. If you know the amount of opening between the line of sight,
i.e. the line connecting you to the top of the monument, and the horizontal
line then by applying a specific trigonometric function to that opening you
will be able to estimate the height of the monument. The ”opening” between
the line of sight and the horizontal line gives an example of an angle.
An angle is determined by rotating a ray ( or a half-line) from one position,
called the initial side, to a terminal position, called the terminal side, as
shown in Figure 7.1 below. The point V is called the vertex of the angle.
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Figure 7.1

If the initial side is the positive x-axis then we say that the angle is in
standard position. See Figure 7.2.

Figure 7.2

Angles that are obtained by a counterclockwise rotation of the initial side
are considered positive and those that are obtained clockwise are negative
angles. See Figure 7.3.

Figure 7.3

Most of the time, we will use Greek lowercase letters such as α (alpha), β
(beta), γ (gamma) , etc. to denote angles. If α is an angle obtained by

rotating an initial ray
−→
OA to a terminal ray

−−→
OB then we sometimes denote

that by writing α = ∠AOB.

Angle Measure
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The measure of an angle is determined by the amount of rotation from the
initial side to the terminal side, this is how much the angle ”opens”. There
are two commonly used measures of angles: degrees and radians

• Degree Measure:
If we rotate counterclockwise a ray about a fixed vertex and then return back
to its initial position then we say that we have a one complete revolution.
The angle in this case is said to have measure of 360 degrees, in symbol 360◦.
Thus, 1◦ is 1

360
th of a revolution. See Figure 7.4)

Figure 7.4

Example 7.1
Draw each of the following angles in standard positions: (a) 225◦ (b) −90◦

(c) 180◦.

Solution.
The specified angles are drawn in Figure 7.5 below

Figure 7.5
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Remark 7.1
A protractor can be used to measure angles given in degrees or to draw an
angle given in degree measure.

Now, each degree can be divided into 60 equal parts, each called a minute.
Thus,

1◦ = 60′ and 1′ = (
1

60
)◦.

Similarly, each minute can be divided into 60 equal parts, called seconds.
Thus,

1′ = 60′′ and 1′′ = (
1

60
)
′
= (

1

3600
)◦.

By introducing the minutes and seconds units one can now convert a deci-
mal degree to a degree-minute-second format (DMS) as shown in the next
example.

Example 7.2
Convert 32.519◦ to the form D◦M ′S ′′.

Solution.

32.519◦ = 32◦ + 0.519◦

= 32◦ + (1◦)(0.519)
= 32◦ + (60′)(0.519)
= 32◦ + 31.14′

= 32◦31′ + 0.14′

= 32◦31′ + (1′)(0.14)
= 32◦31′ + (60′′)(0.14)
= 32◦31′8.4′′

Example 7.3
Convert 50◦6′21′′ to the nearest ten-thousandth of a degree.

Solution.

50◦6′21′′ = 50◦ + 6(1′) + 21(1′′)
= 50◦ + ( 6

60
)◦ + ( 21

3600
)◦

≈ 50◦ + .1◦ + .0058◦

= 50.1058◦
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Remark 7.2
Angles represented in the DMS form are very useful in applications. For
example, latitude describes the position of a point on the earth’s surface
in relation to the equator. A point on the equator has latitude of 0◦. The
north pole has a latitude of 90◦. For example, New York City has latitude of
40◦45′N.

• Radian Measure:
A more natural method of measuring angles used in calculus and other
branches of mathematics is the radian measure. The amount an angle opens
is measured along the arc of the unit circle with its center at the vertex of
the angle.( An angle whose vertex is the center of a circle is called a central
angle.) One radian, abbreviated rad, is defined to be the measure of a
central angle that intercepts an arc s of length one unit. See Figure 7.6.

Figure 7.6

Since one complete revolution measured in radians is 2π radians and mea-
sured in degrees is 360◦ then we have the following conversion formulas:

1◦ =
π

180
rad ≈ 0.01745 rad and 1 rad = (

180

π
)◦ ≈ 57.296◦.

Example 7.4
Complete the following chart.

degree 30◦ 45◦ 60◦ 90◦ 180◦ 270◦

radian

Solution.

degree 30◦ 45◦ 60◦ 90◦ 180◦ 270◦

radian π
6

π
4

π
3

π
2

π 3π
2
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By the conversion formulas, we have, for example 30◦ = 30(1◦) = 30
(

π
180

)
=

π
6
. In a similar way we convert the remaining angles.

Example 7.5
Convert each angle in degrees to radians: (a) 150◦ (b) −45◦.

Solution.
(a) 150◦ = 150(1◦) = 150( π

180
) = 5π

6
rad.

(b) −45◦ = −45(1◦) = −45( π
180

) = −π
4
rad.

Example 7.6
Convert each angle in radians to degrees: (a) −3π

4
(b) 7π

3
.

Solution.
(a) −3π

4
= −3π

4
(1 rad) = −3π

4
(180

π
)◦ = −135◦.

(b) 7π
3

= 7π
3

(180
π

)◦ = 420◦

Remark 7.3
When no unit of an angle is given then the angle is assumed to be measured
in radians.

Classification of Angles
Some types of angles have special names:(See Figure 7.7)

1. A 90◦ angle is called a right angle.
2. A 180◦ angle is called a straight angle.
3. An angle between 0◦ and 90◦ is called an acute angle.
4. An angle between 90◦ and 180◦ is called an obtuse angle.
5. Two acute angles are complementary if their sum is 90◦.
6. Two positive angles are supplementary if their sum is 180◦.
7. Angles in standard positions with terminal sides that lie on a coordinate
axis are called quadrantal angles. Thus, the angles 0◦,±90◦,±180◦, etc are
quadrantal angles.
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Figure 7.7

Example 7.7
Prove the Vertical Angle Theorem: The angles shown in Figure 7.8 are
equal.

Figure 7.8

Solution.
Let c be the angle shown in Figure 7.9. Then a and c are supplementary,
i.e. a + c = 180◦. Similarly, b + c = 180◦. It follows that a = 180◦ − c =
180◦ − (180◦ − b) = b.

Figure 7.9
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Example 7.8
Prove the following theorem: The interior corresponding angles formed by a
line that goes through both parallel lines are equal. See Figure 7.10.

Figure 7.10

Solution.

Let c be the angle shown in the Figure 7.11. Then a+c = 90◦ and b+c = 90◦.
Thus, a = b.

Figure 7.11

Combining the previous two exercises we see that the angles a and b given
in Figure 7.12 are equal.

Figure 7.12
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Example 7.9
Suppose that θ = 41◦28′. Determine the measure of an angle that is:
(a) Complementary to θ (b) Supplementary to θ.

Solution.
(a) 90◦ − 41◦28′ = 89◦60′ − 41◦28′ = 48◦32′.
(b) 180◦ − 41◦28′ = 179◦60′ − 41◦28′ = 138◦32′.

Remark 7.4
Non quadrantal angles are classified according to the quadrant that contains
the terminal side. For example, when we say that an angle is in Quadrant
III then by that we mean that the terminal side of the angle lies in the third
quadrant.

Two angles in standard positions with the same terminal side are called
coterminal.(See Figure 7.13) We can find an angle that is coterminal to a
given angle by adding or subtracting one revolution. Thus, a given angle has
many coterminal angles. For instance, α = 36◦ is coterminal to all of the
following angles: 396◦, 756◦,−324◦,−684◦

Figure 7.13

Example 7.10
Find a coterminal angle for the following angles, given in standard positions:
(a) 530◦ (b) −400◦.

Solution.
(a) A positive angle coterminal with 530◦ is obtained by adding a multi-
ple of 360◦. For example, 530◦ + 360◦ = 890◦. A negative angle cotermi-
nal with 530◦ is obtained by subtracting a multiple of 360◦. For example,
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530◦ − 720◦ = −190◦.
(b) A positive angle is −400◦ + 720◦ = 320◦ and a negative angle is −400◦ +
360◦ = −40◦.

Length of a Circular Arc
A circular arc swept out by a central angle is the portion of the circle which is
opposite an interior angle. We discuss below a relationship between a central
angle θ, measured in radians, and the length of the arc s that it intercepts.

Theorem 7.1
For a circle of radius r, a central angle of θ radians subtends an arc whose
length s is given by the formula:

s = rθ

Proof.
Suppose that r > 1. (A similar argument holds for 0 < r < 1.) Draw the unit
circle with the same center C (See Figure 7.14).

Figure 7.14

By definition of radian measure, the length of the arc determined by θ on the
unit circle is also θ. From elementary geometry, we know that the ratio of the
measures of the arc lengths are the same as the ratio of the corresponding
radii. That is,

r

1
=

s

θ
.

Now the formula follows by cross-multiplying.
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The above formula allows us to define the radian measure using a circle
of any radius r. (See Figure 7.15).

Figure 7.15

Example 7.11
Find the length of the arc of a circle of radius 2 meters subtended by a central
angle of measure 0.25 radians.

Solution.
We are given that r = 2 m and θ = 0.25 rad. By the previous theorem we
have:

s = rθ = 2(0.25) = 0.5 m

Example 7.12
Suppose that a central angle of measure 30◦ is subtended by an arc of length
π
2

feet. Find the radius r of the circle.

Solution.
Substituting in the formula s = rθ we find π

2
= r π

6
. Solving for r to obtain

r = 3feet.

Circular Motion
Consider an object moving along a circle of radius r with a constant speed.
Let s denote the distance traveled in time t along this circle and let θ be the
central angle, measured in radians, corresponding to s. There are two ways
to describe the motion of the object- linear and angular speed. The linear
speed v of the object is the rate at which the distance traveled is changing.
It is defined by the formula

v =
s

t
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The angular speed ω is the rate at which the central angle is changing. It
is given by

ω =
θ

t
.

Since s = rθ then we have the following relationship between v and ω

v =
s

t
=

rθ

t
= rω.

Example 7.13
The second hand of a clock is 10.2 centimeters long. Find the linear speed
of the tip of the second hand.

Solution.
The distance traveled by the tip of the second hand in one revolution is

s = 2π(10.2) = 20.4π cm.

Therefore, the linear speed is

v =
20.4π

60
≈ 1.068cm/sec

Example 7.14
A hard disk in a computer rotates at 3600 revolutions per minute. Find the
angular speed of the disk in radians per second.

Solution.
We have

3600 rev/minute = 3600 rev
1 minute

(
2π rad
1 rev

) (
1 minute

60 seconds

)
= 120π radians

1 second
≈ 377 radians/second

Area of a circular sector
A circular sector swept out by an interior angle is the portion of the interior
of the circle which is between the two radii, and the circular arc. The area
of a circle with radius r is known to be πr2. This area corresponds to an arc
of length 2πr. Let θ be a central angle subtended by an arc of length rθ. See
Fig 7.16. The area of the circular sector corresponding to this arc is then

A =
πr3θ

2πr
=

1

2
r2θ.
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Figure 7.16

Example 7.15
Find the area of a circular sector of radius 10 meters and with central angle
θ = π

3
rad.

Solution.
Substituting in the formula of A yields

A =
1

2
(10)2(

π

3
) =

50π

3
m2
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Review Problems

Exercise 7.1
(a) Explain the difference between a positive angle and a negative angle.
(b) How is the radian measure of an angle defined?
(c) How is the degree measure of an angle defined?
(d) How do you convert from degrees to radians? from radians to degrees?

Exercise 7.2
(a) When is an angle in standard position?
(b) When are two angles coterminal?
(c) When are two angles complementary?
(d) When are two angles supplementary?

Exercise 7.3
(a) What is the length s of an arc of a circle of radius r that subtends a
central angle of θ radians?
(b) What is the area A of a sector of a circle of radius r and central angle θ
radians?

Exercise 7.4
Find the radian measure that corresponds to the degree measure.

(a) −330◦ (b) 5◦ (c) 750◦.

Exercise 7.5
Find the degree measure that corresponds to the given radian measure.

(a) 9π
4

(b) −π
6

(c) 3.1

Exercise 7.6
Find the length of an arc of a circle of radius 8 m if the arc subtends a central
angle of 1 rad.

Exercise 7.7
Draw the following angles in standard position.
(a) 30◦ (b) 45◦ (c) −270◦.
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Exercise 7.8
Convert each DMS measure to its equivalent decimal measure to the nearest
ten-thousandth of a degree:
(a) 25◦25′12′′ (b) 211◦46′48′′.

Exercise 7.9
Convert to the form D◦M ′S ′′ : (a) 24.46◦ (b) 3.402◦.

Exercise 7.10
Convert each angle in degrees to radians.
(a) 165◦ (b) −270◦ (c) 585◦.

Exercise 7.11
Convert each angle in radians to degrees.
(a) 9π

2
(b) 2 rad (c) −2π

3
.

Exercise 7.12
Find the number of radians in 3

8
revolution.

Exercise 7.13
Classify each angle by quadrant, and state the measure of the positive angle
with measure less than 360◦ that is coterminal with the given angle:
(a) 765◦ (b) −975◦ (c) 2456◦.

Exercise 7.14
Find two positive angles and two negative angles that are coterminal with
the given angles.

(a) 13π
6

(b) 3π
4

(c) −2π
3

(d) −45◦ (e) 135◦.

Exercise 7.15
The measures of two angles in standard positions are given. Determine
whether the angles are coterminal.

(a) 70◦, 340◦

(b) 5π
6

, 17π
6

(c) 155◦, 875◦.
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Exercise 7.16
Find an angle between 0◦ and 360◦ that is coterminal with the given angle.

(a) 733◦ (b) −100◦ (c) 1270◦ (d) −800◦.

Exercise 7.17
Find an angle between 0 and 2π radians that is coterminal with the given
angle.

(a) 17π
6

(b) −7π
3

(c) 10 (d) 51π
2

.

Exercise 7.18
Determine the complement and the supplement of each angle:
(a) 87◦ (b) 56◦33′15′′ (c) 4π

3
.

Exercise 7.19
Determine the length of an arc of a circle of radius 4 centimeters that subtends
a central angle of measure 2.3 radians.

Exercise 7.20
Suppose that a central angle of a circle of radius 12 meters subtends an arc
of length 14 meters. Find the radian measure of the angle.

Exercise 7.21
Find the length of an arc that subtends a central angle of 45◦ in a circle of
radius 10 m.

Exercise 7.22
A central angle θ in a circle of radius 5 m is subtended by an arc of length 6
m. Find the measure of θ in degrees and in radians.

Exercise 7.23
Suppose that the wheels on a tractor have a radius of 3 feet and that the
angular speed of the tires is 20 radians per second. What is the linear speed
of the tractor?

Exercise 7.24
A wheel is rotating at 50 revolutions per minute. Find the angular speed in
radians per second.
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Exercise 7.25
The diameter of each wheel of a bicycle is 26 inches. If you are traveling at
a speed of 35 miles per hour on this bicycle, through how many revolutions
per minute are the wheels turning?

Exercise 7.26
The windshield wiper of a car is 18 inches long. How many inches will the
tip of the wiper trace out in 1

3
revolution?

Exercise 7.27
A person is seated on the end of a see-saw whose total length is 5 m. The
see-saw moves up and down through a 28◦ angle every 3 seconds. Through
what distance does the person move in a minute?

Exercise 7.28
Assuming the Earth to be a sphere of 6,372 km, find the distance of a point
in latitude 36 North from the equator.

Exercise 7.29
Each tire on a car has a radius of 15 inches. The tires are rotating at 450
revolutions per minute. Find the linear speed of the automobile to the nearest
mile per hour.

Exercise 7.30
Find the area of the circular sector of radius 15 feet and with an arc of length
12 feet that intercepts a central angle θ.

Exercise 7.31
Find the area of the shaded portion of the circle. The radius of the circle is
9 inches.
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Exercise 7.32
Find the measure of a central angle θ in a circle of radius 5 ft if the angle is
subtended by an arc of length 7 ft.

Exercise 7.33
How many revolutions will a car wheel of diameter 28 in. make over a period
of half an hour if the car is traveling at 60 mph?

Exercise 7.34
Find the area of a cicular sector with central angle 2 rad in a circle of radius
5 m.
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8 Trigonometric Functions of Acute Angles

In this section you will learn (1) how to find the trigonometric functions using
right triangles, (2) compute the values of these functions for some special
angles, and (3) solve model problems involving the trigonometric functions.
First, let’s review some of the features of right triangles. A triangle in which
one angle is 90◦ is called a right triangle. The side opposite to the right
angle is called the hypotenuse and the remaining sides are called the legs
of the triangle.
Suppose that we are given an acute angle θ as shown in Figure 8.1. Note
that a 6= 0 and b 6= 0.

Figure 8.1

Associated with θ are three lengths, the hypotenuse , the opposite side, and
the adjacent side. We define the values of the trigonometric functions of θ
as ratios of the sides of a right triangle:

sin θ = opposite
hypotenuse

= b
r

cos θ = adjacent
hypotenuse

= a
r

tan θ = opposite
adjacent

= b
a

csc θ = hypotenuse
opposite

= r
b

sec θ = hypotenuse
adjacent

= r
a

cot θ = adjacent
opposite

= a
b

where r =
√

a2 + b2 (Pythagorean formula).
The symbols sin, cos, sec, csc, tan, and cot are abbreviations of sine, cosine,
secant, cosecant, tangent, and cotangent. The above ratios are the same
regardless of the size of the triangle. That is, the trigonometric functions
defined above depend only on the angle θ. To see this, consider Figure 8.2.
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Figure 8.2

The triangles ∆ABC and ∆AB′C ′ are similar. Thus, |AB|
|AB′| = |AC|

|AC′| = |BC|
|B′C′| .

For example, using the cosine function we have

cos θ =
|AB|
|AC|

=
|AB′|
|AC ′|

.

The following identities, known as reciprocal identities, follow from the
definition given above.

sin θ = 1
csc θ

, cos θ = 1
sec θ

, tan θ = 1
cot θ

,
csc θ = 1

sin θ
, sec θ = 1

cos θ
, cot θ = 1

tan θ
.

Example 8.1
Find the exact value of the six trigonometric functions of the angle θ shown
in Figure 8.3.

Figure 8.3

Solution.
By the Pythagorean Theorem, the length of the hypotenuse is

√
144 + 25 =
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√
169 = 13. Thus,

sin θ = 12
13

cos θ = 5
13

tan θ = 12
5

csc θ = 13
12

sec θ = 13
5

cot θ = 5
12

.

Given the value of one trigonometric function, it is possible to find the values
of the remaining trigonometric functions of that angle.

Example 8.2
Suppose that θ is an acute angle for which cos θ = 5

7
. Determine the values

of the other five trigonometric functions.

Solution.
Since cos θ = 5

7
then the adjacent side has length 5 and the hypotenuse has

length 7. See Figure 8.4. Using the Pythagorean theorem, the opposite side
has length

√
49− 25 = 2

√
6. Thus,

sin θ = 2
√

6
7

; cos θ = 5
7

sec θ = 7
5

; tan θ = 2
√

6
5

csc θ = 7
2
√

6
= 7

√
6

12
; cot θ = 5

2
√

6
= 5

√
6

12
.

Figure 8.4

Example 8.3
Solve for y given that tan 30◦ =

√
3

3
.(See Figure 8.5)
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Figure 8.5

Solution.
According to Figure 8.5, y = 75 tan 30◦ = 75(

√
3

3
) = 25

√
3.

Trigonometric Functions of Special Angles
Next, we compute the trigonometric functions of some special angles. It’s
useful to remember these special trigonometric ratios because they occur
often.

Example 8.4
Determine the values of the six trigonometric functions of the angle 45◦. See
Figure 8.6.

Figure 8.6

Solution.
Using Figure 8.6, the triangle OAP is a right isosceless triangle. By the
Pythagorean theorem we find that r2 = 2a2 or r = a

√
2. Thus,

sin 45◦ =
√

2
2

; csc 45◦ =
√

2

cos 45◦ =
√

2
2

; sec 45◦ =
√

2
tan 45◦ = 1 ; cot 45◦ = 1.
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Example 8.5
Determine the trigonometric functions of the angles
(a) θ = 30◦

(b) θ = 60◦.

Solution.
(a) Let ABC be an equilateral triangle with side of length a. Let P be the
midpoint of the side AC and h the height of the triangle. See Figure 8.7.
Using the Pythagorean theorem we find h = a

√
3

2
. Thus,

sin 30◦ = 1
2

; csc 30◦ = 2

cos 30◦ =
√

3
2

; sec 30◦ = 2
√

3
3

tan 30◦ =
√

3
3

; cot 30◦ =
√

3.

(b) Similarly,

sin 60◦ =
√

3
2

; csc 60◦ = 2
√

3
3

cos 60◦ = 1
2

; sec 60◦ = 2

tan 60◦ =
√

3 ; cot 60◦ =
√

3
3

.

Figure 8.7

Example 8.6
Find the exact value of 2 sin 60◦ − sec 45◦ tan 60◦.

Solution.
Using the results of the previous two problems we find that

2 sin 60◦ − sec 45◦ tan 60◦ = 2(

√
3

2
)−

√
2
√

3 =
√

3−
√

6.
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We follow the convention that when we write a trigonometric function, such
as sin t, then it is assumed that t is in radians. If we want to evaluate the
trigonometric function of an angle measured in degrees we will use the degree
notation such as cos 30◦.

Angles of Elevation and Depression
If an observer is looking at an object, then the line from the observer’s eye to
the object is known as the line of sight. If the object is above the horizontal
then the angle between the line of sight and the horizontal is called the angle
of elevation. If the object is below the horizontal then the angle between
the line of sight and the horizontal is called the angle of depression. See
Figure 8.8.

Figure 8.8

Example 8.7
From a point 115 feet from the base of a redwood tree, the angle of elevation
to the top of the tree is 64.3◦. Find the height of the tree to the nearest foot.
See Figure 8.9.

92



Figure 8.9

Solution.
According to Figure 8.9, we use the tangent function to find the height h of
the tree: tan 64.3◦ = h

115
so that h = 115 tan 64.3◦ ≈ 238.952 ft.

Evaluating trigonometric functions with a calculator
When evaluating trigonometric functions using a calculator, you need to set
the calculator to the desired mode of measurement (degrees or radians). The
functions sine, cosine, and tangent have a key in a standard scientific calcu-
lator. For the remaining three trigonometric functions the key x−1 is used
in the process. For example, to evaluate sec π

8
, set the calculator to radian

mode, then apply the following sequence of keystrokes: π,÷, 8, cos, x−1 and
enter to obtain sec π

8
≈ 1.0824.
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Review Problems

Exercise 8.1
If θ is an acute angle in a right triangle, define the six trigonometric ratios
in terms of the adjacent, opposite, and the hypotenuse.

Exercise 8.2
Find the exact value of the six trigonometric functions of the angle θ.

Exercise 8.3
Find the exact value of the six trigonometric functions of the angle θ.

Exercise 8.4
Determine the values of the six trigonometric functions of α and θ.
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Exercise 8.5
Let θ be an acute angle of a right triangle and sin θ = 3

5
. Find:

(a) tan θ (b) sec θ (c) cos θ.

Exercise 8.6
Let θ be an acute angle of a right triangle and tan θ = 4

3
. Find:

(a) sin θ (b) cot θ (c) sec θ.

Exercise 8.7
Let θ be an acute angle of a right triangle and sec θ = 13

12
. Find:

(a) cos θ (b) sec θ (c) csc θ.

Exercise 8.8
Use a calculator to find the value of the trigonometric function to three dec-
imal places.

(a) cos 63◦20′ (b) cot 55◦50′ (c) tan 81.3|circ (d) csc1.2.

Exercise 8.9
The top of a 13-ft ladder is leaning against a wall of height 12 ft. Find the
six trigonometric functions of the angle the ladder makes with the ground.

Exercise 8.10
Solve for r.

Exercise 8.11
A 6-foot person standing 15 feet from a streetlight casts an 8-foot shadow.
What is the height of the streetlight?
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Exercise 8.12
If sin θ = 1

3
, find the exact value of

(a) cos (90◦ − θ).
(b) cos2 θ.
(c) csc θ.

Exercise 8.13
Use a calculator in radian mode to complete the following table:

θ 0.5 0.4 0.2 0.1 0.01 0.001 0.0001 0.00001
sin θ
sin θ

θ

What can you conclude about the ratio sin θ
θ

as θ approaches zero?

Exercise 8.14
Use a calculator in radian mode to complete the following table

θ 0.5 0.4 0.2 0.1 0.01 0.001 0.0001 0.00001
cos θ − 1
cos θ−1

θ

What can you conclude about the ratio cos θ−1
θ

as θ approaches 0?

Exercise 8.15
Without using a calculator, find the exact value of each expression:

(a) sec 30◦ cos 30◦ − tan 60◦ cot 60◦.
(b) sec 45◦ cot 30◦ + 3 tan 60◦

(c) sin π
3

cos π
4
− tan π

4
.

(d) 2 csc π
4
− sec π

3
cos π

6
.

Exercise 8.16
Find the exact value of each of the following expressions.

(a) sin 30◦ cos 60◦ + tan 45◦.
(b) sec 30◦ cos 30◦ − tan 60◦ cot 60◦.
(c) sec π

3
cos π

3
− tan π

6
.
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Exercise 8.17
Show that the slope of a line that makes an angle θ with the positive x-axis
equals to tan θ.

Exercise 8.18
From a point A on a line from the base of the Washington Monument, the
angle of elevation to the top of the monument is 42.0◦. From a point 100 feet
away and on the same line, the angle to the top is 37.8◦. Find the approximate
height of the Washington Monument.

Exercise 8.19
Let B denote the base of a clock tower. The angle of elevation from a point
A, on the ground, to the top of the tower is 56.3◦. On a line on the ground
that is perpendicular to AB and 25 feet from A, the angle of elevation is
53.3◦. Find the height of the clock tower.

Exercise 8.20
Show that the area A of the triangle given in Figure 8.10 is A = 1

2
ab sin θ.
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Figure 8.10

Exercise 8.21
The local fire department’s longest ladder measures 72 feet. If the angle
between the ground and the ladder must be 60◦, how high can the ladder
reach? How far from a building should the foot of the ladder be?

Exercise 8.22
A giant redwood tree casts a shadow 532 feet long. Find the height of the
tree if the angle of elevation is 25.7◦.

Exercise 8.23
A 40-ft ladder leans against a building. If the base of the ladder is 6 ft from
the base of the building, what is the angle formed by the ladder and the
building?

Exercise 8.24
Find the values of the six trigonometric functions of the angle θ in standard
position if the point P (−5, 12) is on the terminal side of θ.
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9 Trigonometric Functions of Any Angle

Right triangles are useful when trying to calculate the trigonometric func-
tions of acute angles. What about angles that are not acute angles?
In this section you will learn (1) of how to compute the trigonometric func-
tions of any angle, not just acute angles, (2) the sign of the trigonometric
functions in each quadrant of the coordinate plane, and (3) the use of refer-
ence angles which reduce the question of finding the trigonometric functions
of an angle to that of finding the trigonometric functions of the special angles
30◦, 45◦, and 60◦.

Let θ be an angle in standard position as shown in Figure 9.1.

Figure 9.1

Let P (x, y) be any point on the terminal side. If r is the distance from the
origin to the point P then by the Pythagorean Theorem, r =

√
x2 + y2. We

define the trigonometric functions of θ to be

sin θ = y
r

cos θ = x
r

tan θ = y
x

csc θ = r
y

sec θ = r
x

cot θ = x
y

where x 6= 0 and y 6= 0. If θ = kπ, where k is an integer, then the functions
csc θ and cot θ are undefined since a point on the terminal side has compo-
nents P (x, 0). Similarly, if θ = (2k + 1)π

2
then the functions sec θ and tan θ

are undefined since P (0, y).

Question: Do the above definitions depend on the choice of the point P?
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The answer is no. To see this, let Q(x′, y′) be any other point on the terminal
side of θ. See Figure 9.2.

Figure 9.2

Then the right triangles ∆OPM and ∆OQN are similar triangles since cor-
responding angles are equal. This implies that the ratios of the corresponding
sides are equal. Thus

r

r′
=

x

x′ =
y

y′

or equivalently
x

r
=

x′

r′
=

y

r
=

y′

r′
=

y

x
=

y′

x′

Thus,
sin θ = y′

r′
cos θ = x′

r′
tan θ = y′

x′

csc θ = r′

y′
sec θ = r′

x′
cot θ = x′

y′
.

This shows that the trigonometric functions are independent of the point
chosen on the terminal side of the angle.

Example 9.1
Complete the following chart, using the definitions introduced above.

θ sin θ cos θ tan θ csc θ sec θ cot θ
0◦

90◦

180◦

270◦
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Solution.
For θ = 0◦ we choose the point P (1, 0). For θ = 90◦ we choose P (0, 1); for
θ = 180◦, we choose P (−1, 0) and finally for θ = 270◦ we choose P (0,−1).
Then by the above definitions we have

θ sin θ cos θ tan θ csc θ sec θ cot θ
0◦ 0 1 0 undefined 1 undefined
90◦ 1 0 undefined 1 undefined 0
180◦ 0 -1 0 undefined -1 undefined
270◦ -1 0 undefined -1 undefined 0

Example 9.2
Find the exact value of the six trigonometric functions of an angle θ if
P (4,−3) is a point on its terminal side.

Solution.
First, note that r =

√
16 + 9 = 5. Thus,

sin θ = −3
5

; cos θ = 4
5
; tan θ = −3

4

csc θ = −5
3

; sec θ = 5
4
; cot θ = −4

3
.

Example 9.3
Given that cos θ = −2

3
, π

2
< θ < π, find the exact value of each of the

remaining trigonometric functions.

Solution.
Since θ is in Quadrant II then sin θ > 0, csc θ > 0, sec θ < 0, tan θ < 0, cot θ <
0. Thus, x = −2, r = 3 and by the Pythagorean formula y =

√
r2 − x2 =√

9− 4 =
√

5. It follows that sin θ =
√

5
3

. So csc θ = 3
√

5
5

, tan θ = −
√

5
2

, cot θ =

−2
√

5
5

, and finally sec θ = −3
2
.

Example 9.4
Complete the following chart of signs of the six trigonometric functions.

Q sin x cos x tan x cot x sec x csc x
I
II
III
IV
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Solution.

Q sin x cos x tan x cot x sec x csc x
I + + + + + +
II + - - - - +
III - - + + - -
IV - + - - + -

Reference angles
The values of trigonometric functions of angles greater than 90◦ (or less
than 0◦) can be determined from their values at corresponding angles called
reference angles.
For an angle θ in standard position, the acute angle θ′ between the terminal
side of θ and either the positive or negative x-axis is called the reference
angle of θ. Figure 9.3 illustrates the reference angles for some general angles
θ.

Figure 9.3
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Example 9.5
Determine the reference angles for the following given angles:
(a) −70◦ (b) 255◦ (c) 5π

3
rad

Solution.
(a) θ′ = 70◦ (b) θ′ = 75◦ (c) θ′ = π

3
.

Remark 9.1
Note that if θ is a nonacute angle and θ′ is its reference angle then the
trigonometric values of θ are equal to the trigonometric values of θ′ with the
appropriate sign which depends on the quadrant in which θ lies.

Example 9.6
Evaluate the following:
(a) cos 4π

3
(b) tan (−210◦) (c) csc 11π

3
.

Solution.
(a) cos 4π

3
= − cos π

3
= −1

2
.

(b) tan (−210◦) = − tan 210◦ = − tan π
6

= −
√

3
3

.

(c) csc 11π
3

= csc (2π + 3π
4

) = csc 3π
4

= csc π
4

=
√

2.

Example 9.7
Referring to Figure 9.4, answer the following questions.
(a) Express the area of ∆OBC in terms of sin θ and cos θ.
(b) Express the area of ∆OBD in terms of tan θ.
(c) Use parts (a) and (b) to show

1 <
θ

sin θ
<

1

cos θ
.
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Figure 9.4

Solution.
(a) Area ∆OBC = 1

2
|EC||OB| = 1

2
|EC| = 1

2
sin θ since sin θ = |EC|

|OC| = |EC|.
(b) Area ∆OBD = 1

2
|BD||OB| = 1

2
|BD| = 1

2
tan θ since tan θ = |DB|

|OB| =

|DB|.
(c) Using Figure 9.4 we see that

Area ∆OBC < Area circular sector OBC < Area ∆OBD.

But the area of the circular sector OBC is 1
2
θ. Hence,

1

2
sin θ <

1

2
θ <

1

2
tan θ.

Multiplying through by 2
sin θ

to obtain

1 <
θ

sin θ
<

1

cos θ
.

Note that according to the given figure the angle is assumed to be in the first
quadrant so that the sine function is positive there.
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Review Problems

Exercise 9.1
If θ is an angle in standard position, P (x, y) is a point on the terminal side,
and r is the distance from the origin to P, write expressions for the six
trigonometric functions of θ.

Exercise 9.2
If θ is an angle in standard position, what is its reference angle θ′?

Exercise 9.3
Find the value of each of the six trigonometric functions for the angle whose
terminal side passes through the given point:
(a) P (2, 3) (b) P (−8,−5) (c) P (−2, 3).

Exercise 9.4
Let θ be an angle in standard position. State the quadrant in which the
terminal side of θ lies:

(a) sin θ > 0 and cos θ > 0.
(b) cos θ > 0 and tan θ < 0.
(c) sin θ < 0 and cos θ < 0.
(d) tan θ < 0 and cos θ < 0.

Exercise 9.5
Find the exact value of: (a) sin (−13π

6
) (b) cos (19π

6
).

Exercise 9.6
Given sin θ =

√
5

5
and cos θ = 2

√
5

5
. Find the exact values of the four remaining

trigonometric functions of θ.

Exercise 9.7
Given that sin θ = 2

3
and tan θ < 0. Find the exact value of each of the

remaining trigonometric functions of θ.

Exercise 9.8
Find the exact value of: (a) csc (−π

3
) (b) tan (−30◦).
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Exercise 9.9
Find the exact value without using a calculator:
(a) sin2 30◦ + cos2 30◦.
(b) tan 40◦ − sin 40◦

cos 40◦
.

(c) sin 210◦ − cos 330◦ tan 330◦.
(d) sin (3π

2
) tan (π

4
)− cos (π

3
).

Exercise 9.10
Find the reference angle θ′ :
(a) θ = 300◦ (b) θ = 2.3 rad (c) θ = −135◦.

Exercise 9.11
Find the exact values of each of the following trigonometric functions using
reference angles:
(a) sin 135◦ (b) cos 240◦ (c) tan (−π

3
).

Exercise 9.12
Given that cos θ = −2

3
, π

2
< θ < π, find the exact value of each of the

remaining trigonometric functions.

Exercise 9.13
Without using a calculator, find the exact value of the expression:

sin 35◦ csc 55◦ − tan 35◦ cot 55◦.

Exercise 9.14
Find the exact value of the sum:

sin 1◦ + sin 2◦ + · · ·+ sin 358◦ + sin 359◦.
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10 Trigonometric Functions of Real Numbers

In this section, you will (1) study the trigonometric functions of real num-
bers, (2) their properties, and (3) some of the identities that they satisfy.

Consider the unit circle, i.e. the circle with center at the point O(0, 0)
and radius 1. Such a circle has the equation x2 + y2 = 1. Let t be any real
number. Start at the point A(1,0) on the unit circle and move on the circle
• counter-clockwise, if t > 0, a distance of t units, arriving at some point
P (a, b) on the circle;
• clockwise, if t < 0, a distance of t units, arriving at some point P (a, b) on
the circle.
We define the wrapping function W of t to be the point P (a, b). In func-
tion notation, we write W (t) = P (a, b).

Now, note that the arc
_
AP subtends a central angle θ. See Figure 10.1. Thus,

from the previous section we have sin θ = b
r

= b and cos θ = a
r

= a since r = 1.
We also know that t = rθ. Thus, t = θ. That is, on the unit circle, the mea-
sure of a central angle and the length of its arc are represented by the same
real number t.
So, the trigonometric functions of θ in radians with respect to the unit circle
can be viewed as functions of arc length t, which is a REAL NUMBER.
These trigonometric functions of angles are now called circular functions
and instead of using θ, we write:

sin t = b cos t = a tan t = b
a

csc t = 1
b

sec t = 1
a

cot t = a
b

where a 6= 0 and b 6= 0. If a = 0 then the functions sec t and tan t are
undefined. If b = 0 then the functions csct and cot t are undefined.
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Figure 10.1

Thus, for any real number t, W (t) = (cos t, sin t).

Remark 10.1
It follows from the above discussion that the value of a trigonometric function
of a real number t is its value at the angle t radians.

Example 10.1
Find the values of x and y such that W (π

6
) = P (x, y).

Solution.
From Section 8, we have cos π

6
=

√
3

2
and sin π

6
= 1

2
. Thus, W (π

6
) = (

√
3

2
, 1

2
)

Remark 10.2
The difference between the domain of the trigonometric functions defined in
the previous section and the ones defined here is the following: the domain of
each of the trigonometric functions of the previous section consists of angles
whereas the domain of each of the functions of this section consists of the set
of all real numbers.

Properties of the Trigonometric Functions of Real Numbers
First, recall that a function f(t) is even if and only if f(−t) = f(t). In this
case, the graph of f is symmetric about the y-axis. A function f is said to be
odd if and only if f(−t) = −f(t). The graph of an odd function is symmetric
about the origin.
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Theorem 10.1
The functions sin t, csc t, tan t and cot t are odd functions. The functions cos t
and sec t are even. That is,

sin (−t) = − sin t tan (−t) = − tan t
csc (−t) = − csc t cot (−t) = − cot t
cos (−t) = cos t sec (−t) = sec t

Proof.
Let P (a, b) be the point on the unit circle such that the arc

_
AP has length t.

Then the arc
_
AP ′, where P ′(a,−b), has length t and subtends a central angle

−t. See Figure 10.2. It follows that

sin (−t) = −b = − sin t tan (−t) = −b
a

= − tan t
csc (−t) = −1

b
= − csc t cot (−t) = −a

b
= − cot t

cos (−t) = a = cos t sec (−t) = 1
a

= sec t.

Figure 10.2

Example 10.2
Is the function f(t) = t− cos t even, odd, or neither?

Solution.
Since f(−t) = −t − cos (−t) = −t − cos t 6= ±f(t) then f(t) is neither even
nor odd.

We say that a function f is periodic of period p if and only if p is the
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smallest positive number such that f(t + p) = f(t). Graphically, this means
that if the graph of f is shifted horizontally by p units, the new graph is
identical to the original.

Theorem 10.2
(a) The functions sin t, cos t, sec t, and csc t are periodic functions of period
2π. That is, for any real number t in the domain of these functions

sin (t + 2π) = sin t cos (t + 2π) = cos t
csc (t + 2π) = csc t sec (t + 2π) = sec t.

(b) The functions tan t and cot t are periodic of period π. That is, for any
real number t in the domain of these functions

tan (t + π) = tan t and cot (t + π) = cot t.

Proof.
(a) Since the circumference of the unit circle is 2π then W (t + 2π) = W (t).
That is (cos (t + 2π), sin (t + 2π)) = (cos t, sin t). This implies the following

sin (t + 2π) = sin t and cos (t + 2π) = cos t.

Also,
sec (t + 2π) = 1

cos (t+2π)
= 1

cos t
= sec t

csc (t + 2π) = 1
sin (t+2π)

= 1
sin t

= csc t

We show that 2π is the smallest positive number such that the above equal-
ities hold. We prove the result for the sine function. Let 0 < c < 2π
be such that sin (x + c) = sin x for all real numbers x. In particular if
x = 0 then sin c = 0 and consequently c = kπ for some positive inte-
ger k. Thus, 0 < kπ < 2π and this implies k = 1. Now if x = π

2
then

sin (π
2

+ π) = sin π
2

= 1. But sin (π
2

+ π) = −1, a contradiction. It follows
that 2π is the smallest positive number such that sin (x + 2π) = sin x. This
shows that sin x is periodic of period 2π. A similar proof holds for the cosine
function. Since sec t = 1

cos t
and csc t = 1

sin t
then these functions are of period

2π.
(b) We have that W (t) = P (a, b) and W (t + π) = P (−a,−b). Thus,

tan (t + π) = −b
−a

= b
a

= tan t

cot (t + π) = 1
tan (t+π)

= 1
tan t

= cot t.
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Now, if 0 < c < π is such that tan (c + x) = tan x for all real numbers
x then in particular, for x = 0 we have tan c = 0 and this implies that
c = kπ for some positive integer k. Thus, 0 < kπ < π i.e. 0 < k < 1
which is a contradiction. It follows that π is the smallest positive integer
such that tan (x + π) = tan x. Hence, the tangent function is of period π.
Since cot x = 1

tan x
then the cotangent function is also of period π.

Theorem 10.3
The domain of sin t and cos t consists of all real numbers whereas the range
consists of the interval [−1, 1].

Proof.
For any real number t we can find a point P (a, b) on the unit circle such
that W (t) = P (a, b). That is, cos t = a and sin t = b. Hence, the domain of
sin t and cos t consists of all real numbers. Since P is on the unit circle then
−1 ≤ a ≤ 1 and −1 ≤ b ≤ 1. That is, −1 ≤ cos t ≤ 1,−1 ≤ sin t ≤ 1. So the
range consists of the closed interval [−1, 1].

Theorem 10.4
(a) The domain of tan t and sec t consists of all real numbers except the
numbers (2n + 1)π

2
, where n is an integer.

(b) The range of tan t consists of all real numbers.
(c) The range of sec t is (−∞,−1] ∪ [1,∞).

Proof.
(a) Since tan t = b

a
and sec t = 1

a
then the domain consists of those real

numbers where a 6= 0. But a = 0 at P (0, 1) and P (0,−1). i.e. t is an odd
multiple of π

2
. That is, the domain of the secant function and the tangent

function consists of all real numbers different from (2n + 1)π
2

where n is an
integer.
(b) We next determine the range of the tangent function. Let t be any real
number. Let P (a, b) be the point on the unit circle that corresponds to an
angle θ such that tan θ = b

a
= t. This implies that b = at. Since a2 + b2 = 1

then a2(1+ t2) = 1. Thus, a = ± 1√
1+t2

and b = ± t√
1+t2

. What we have shown
here is that, given any real number t there is an angle θ such that tan θ = t.
This proves that the range of the tangent function is the interval (−∞,∞),
i.e. the set of all real numbers.
(c) If t 6= (2n + 1)π

2
, i.e. a 6= 0, then | sec t| = 1

|a| ≥ 1 (since |a| ≤ 1) and
this is equivalent to sec t ≤ −1 or sec t ≥ 1. Thus, the range of the secant
function is the interval (−∞,−1] ∪ [1,∞).
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Theorem 10.5
(a) The domain of cot t and csc t consists of all real numbers except the
numbers nπ, where n is an integer.
(b) The range of cot t consists of all real numbers.
(c) The range of csc t is the interval (−∞,−1] ∪ [1,∞).

Proof.
(a) Since cot t = a

b
and csc t = 1

b
then the domain consists of those real

numbers where b 6= 0. But b = 0 at P (1, 0) and P (−1, 0). i.e. t is a multiple
of π. That is, the domain of the cosecant function and the cotangent function
consists of all real numbers different from nπ where n is an integer.
(b) Similar argument to part (b) of the previous theorem.
(c) If t 6= nπ, then b 6= 0 and therefore csc t = 1

|b| ≥ 1. This is equivalent to
csc t ≤ −1 or csc t ≥ 1. Thus, the range of the cosecant function is the set
(−∞,−1] ∪ [1,∞).

Example 10.3
Find the domain of the function f(x) = cot (2x− π

4
).

Solution.
The tangent function is defined for all real numbers such that 2x− π

4
6= nπ.

That is, x 6= (4n + 1)π
8
, where n is an integer.

Example 10.4
Find the domain of the function f(x) = csc x

2
.

Solution.
The function f(x) is defined for all x such that x

2
6= nπ. That is, x 6= 2nπ,

where n is an integer.

Some Fundamental Trigonometric Identities
By an identity we mean an equality of the form f(x) = g(x) which is valid
for any real number x in the common domain of f and g.
Now, if P (a, b) is the point on the unit circle such that W (t) = P (a, b) then
the trigonometric functions are defined by:

cos t = a sin t = b tan t = b
a

sec t = 1
a

csc t = 1
b

cot t = a
b
.
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From these definitions, we have the following reciprocal identities:

csc t = 1
sin t

; sec t = 1
cos t

; cot t = 1
tan t

.

Also, we have the following quotient identities:

tan t = sin t
cos t

; cot t = cos t
sin t

Example 10.5
Given sin θ = 2

√
2

3
and cos θ = −1

3
. Find the exact values of the four remaining

trigonometric functions.

Solution.

sec θ = −3 ; csc θ = 3
√

2
4

tan θ = −2
√

2 ; cot θ = −
√

2
4

Since a2 +b2 = 1 then we can derive the following Pythagorean identities:

cos2 t + sin2 t = 1 (1)

Dividing both sides of (1) by cos2 t to obtain

1 + tan2 t = sec2 t (2)

Finally, dividing both sides of (1) by sin2 t we obtain

1 + cot2 t = csc2 t (3)

Example 10.6
Given cos θ = −1

3
and π

2
< θ < π. Find the remaining trigonometric func-

tions.

Solution.
Using the identity cos2 θ + sin2 θ = 1 to obtain

sin2 θ +
1

9
= 1.

Solving for sin θ and using the fact that sin θ > 0 in Quadrant II we find
sin θ = 2

√
2

3
. It follows that sec θ = −3, csc θ = 3

√
2

4
, tan θ = −2

√
2, and

cot θ = −
√

2
4

.
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Review Problems

Exercise 10.1
—rm Find W (t) for each t : (a) t = 7π

6
(b) t = −7π

4
(c) t = 11π

6
.

Exercise 10.2
Find the exact value of each function:

(a) tan (11π
6

).
(b) csc (−π

3
).

(c) sec (−7π
6

).

Exercise 10.3
Find each value.

(a) cos 2π
3

(b) tan
(
−π

3

)
(c) sin 19π

4
.

Exercise 10.4
Use the even-odd property of the trigonometric functions to determine each
value.

(a) sin
(
−π

6

)
(b) cos

(
−π

4

)
.

Exercise 10.5
Determine whether the function defined by each equation is even, odd, or
neither:

(a) f(x) = sin x + cos x.
(b) g(x) = tan x + sin x.
(c) h(x) = sin x

x
.

Exercise 10.6
Let P (a, b) be the point on the unit circle and terminal side of a central angle
θ. Find the six trigonometric functions of the angle θ + π.

Exercise 10.7
Let P (a, b) be the point on the unit circle and terminal side of a central angle
θ. Find the six trigonometric functions of the angle π − θ.
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Exercise 10.8
Let (x1, y1) and (x2, y2) be points on the unit circle corresponding to the
angles t = θ and t = π

2
− θ respectively. Identify the symmetry of the points

(x1, y1) and (x2, y2) and then find the six trigonometric functions of the angle
π
2
− θ.

Exercise 10.9
Find the positive angle between the positive x-axis and the line y =

√
3x+2.

Exercise 10.10
Let P (a, b) be the point on the unit circle and the terminal side of an angle
θ. Calculate sin2 θ + cos2 θ.

Exercise 10.11
Find the domain of the function f(x) = tan (3x− π

4
).

Exercise 10.12
Find the domain of the function f(x) = sec x

2
.

Exercise 10.13
Show that for any integer n we have

tan (x + nπ) = tan x,
cot (x + nπ) = cot x.

Exercise 10.14
Show that for any integer n we have

cos (x + 2nπ) = cos x;
sec (x + 2nπ) = sec x;
sin (x + 2nπ) = sin x;
csc (x + 2nπ) = csc x.

Exercise 10.15
Establish the identity:

(sin θ cos φ)2 + (sin θ sin φ)2 + cos2 θ = 1.
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Exercise 10.16
Use the trigonometric identities to write each expression in terms of a single
trigonometric function or a constant.

(a) tan t cos t.
(b) csc t

cot t
.

(c) 1−cos2 t
tan2 t

.
(d) 1

1−sin t
+ 1

1+sin t
.

(e) sin2 t(1 + cot2 t).

Exercise 10.17
Write sin t in terms of cos t, 0 < t < π

2
.

Exercise 10.18
Factor each expression:

(a) cos2 t− sin2 t.
(b) 2 sin2 t− sin t− 1.
(c) cos4 t− sin4 t.

Exercise 10.19
A function f is periodic with a period of 3. If f(2) = −1, determine f(14).

Exercise 10.20
(a) What is an even function?
(b) Which trigonometric functions are even?
(c) What is an odd function?
(d) Which trigonometric functions are odd?

Exercise 10.21
(a) State the reciprocal identities.
(b) State the Pythagorean identities.

Exercise 10.22
(a) What is a periodic function?
(b) What are the periods of the six trigonometric functions?

Exercise 10.23
What are the domain and range of each of the six trigonometric functions?
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Exercise 10.24
Show that the point P (−

√
3

2
, 1

2
) is on the unit circle.

Exercise 10.25
If sin t = − 8

17
and the terminal side for t is in Quadrant IV, find csc t + sec t.
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The graph of a function gives us a better idea of its behavior. In this and the
next two sections we are going to graph the six trigonometric functions as
well as transformations of these functions. These functions can be graphed
on a rectangular coordinate system by plotting the points whose coordinates
belong to the function.

11 Graphs of the Sine and Cosine Functions

In this section, you will learn how to graph the two functions y = sin x and
y = cos x. The graphing mechanism consists of plotting points whose coordi-
nates belong to the function and then connecting these points with a smooth
curve, i.e. a curve with no holes, jumps, or sharp corners.

Recall from Section 10 that the domain of the sine and cosine functions
is the set of all real numbers. Moreover, the range is the closed interval
[−1, 1] and each function is periodic of period 2π. Thus, we will sketch the
graph of each function on the interval [0, 2π] (i.e one cycle) and then repeats
it indefinitely to the right and to the left over intervals of lengths 2π of the
form [2nπ, (2n + 2)π] where n is an integer.

Graph of y = sin x
We begin by constructing the following table

x 0 π
6

π
2

5π
6

π 7π
6

3π
2

11π
6

2π
sin x 0 1

2
1 1

2
0 -1

2
-1 -1

2
0

Plotting the points listed in the above table and connecting them with a
smooth curve we obtain the graph of one period (also known as one cycle)
of the sine function as shown in Figure 11.1.
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Figure 11.1

Now to obtain the graph of y = sin x we repeat the above cycle in each
direction as shown in Figure 11.2.

Figure 11.2

Graph of y = cos x
We proceed as we did with the sine function by constructing the table below.

x 0 π
3

π
2

2π
3

π 4π
3

3π
2

5π
3

2π
cos x 1 1

2
0 −1

2
-1 -1

2
0 1

2
1
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A one cycle of the graph is shown in Figure 11.3.

Figure 11.3

A complete graph of y = cos x is given in Figure 11.4

Figure 11.4

Amplitude and period of y = a sin (bx), y = a cos (bx), b > 0

We now consider graphs of functions that are transformations of the sine
and cosine functions.

• The parameter a: This is outside the function and so deals with the
output (i.e. the y values). Since −1 ≤ sin (bx) ≤ 1 and −1 ≤ cos (bx) ≤ 1
then −a ≤ a sin (bx) ≤ a and −a ≤ a cos (bx) ≤ a. So, the range of the
function y = a sin (bx) or the function y = a cos (bx) is the closed interval
[−a, a]. The number |a| is called the amplitude. Graphically, this number
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describes how tall the graph is. The amplitude is half the distance from the
top of the curve to the bottom of the curve. If b = 1, the amplitude |a|
indicates a vertical stretch of the basic sine or cosine curve if a > 1, and a
vertical compression if 0 < a < 1. If a < 0 then a reflection about the x-axis
is required.
Figure 11.5 shows the graph of y = 2 sin x and the graph of y = 3 sin x.

Figure 11.5

• The parameter b: This is inside the function and so effects the input (i.e.
x values). Now, the graph of either y = a sin (bx) or y = a cos (bx) completes
one period from bx = 0 to bx = 2π. By solving for x we find the interval of
one period to be [0, 2π

b
]. Thus, the above mentioned functions have a period

of 2π
b
. The number b tells you the number of cylces in the interval [0, 2π].

Graphically,b either stretches (if b < 1) or compresses (if b > 1) the graph
horizontally.
Figure 11.6 shows the function y = sin x with period 2π and the function
y = sin (2x) with period π.
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Figure 11.6

Guidelines for Sketching Graphs of Sine and Cosine Functions
To graph y = a sin (bx) or y = a cos (bx), with b > 0, follow these steps.

1. Find the period, 2π
b
. Start at 0 on the x-axis, and lay off a distance

of 2π
b
.

2. Divide the interval into four equal parts by means of the points: 0, π
2b

, π
b
, 3π

2b
,

and 2π
b
.

3. Evaluate the function for each of the five x-values resulting from step 2.
The points will be maximum points, minimum points and x-intercepts.
4. Plot the points found in step 3, and join them with a sinusoidal curve
with amplitude |a|.
5. Draw additional cycles of the graph, to the right and to the left, as needed.

Example 11.1
(a) What are the zeros of y = a sin (bx) on the interval [0, 2π

b
]?

(b) What are the zeros of y = a cos (bx) on the interval [0, 2π
b
]?

Solution.
(a) The zeros of the sine function y = a sin (bx) on the interval [0, 2π] occur
at bx = 0, bx = π, and bx = 2π. That is, at x = 0, x = π

b
, and x = 2π

b
.

The maximum value occurs at bx = π
2

or x = π
2b

. The minimum value occurs
at bx = 3π

2
or x = 3π

2b
.

(b) The zeros of the cosine function y = a cos (bx) occur at bx = π
2

and
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bx = 3π
2

. That is, at x = π
2b

and x = 3π
2b

.
The maximum value occurs at bx = 0 or bx = 2π. That is, at x = 0 or
x = 2π

b
. The minimum value occurs at bx = π or x = π

b
.

Example 11.2
Sketch one cycle of the graph of y = 2 cos x.

Solution.
The amplitude of y = 2 cos x is 2 and the period is 2π. Finding five points
on the graph to obtain

x 0 π
2

π 3π
2

2π
y 2 0 -2 0 2

The graph is a vertical stretch by a factor of 2 of the graph of cos x as shown
in Figure 11.7.

Figure 11.7

Example 11.3
Sketch one cycle of the graph of y = cos πx.

Solution.
The amplitude of the function is 1 and the period is 2π

b
= 2π

π
= 2.

x 0 1
2

1 3
2

2
y 1 0 -1 0 1
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The graph is a horizontal compression by a factor of 1
π

of the graph of cos x
as shown in Figure 11.8.

Figure 11.8

Example 11.4
Sketch the graph of the function y = | cos x| on the interval [0, 2π].

Solution.
Since | cos x| = cos x when cos x ≥ 0 and | cos x| = − cos x for cos x < 0 then
the graph of y = | cos x| is the same as the graph of cos x on the intervals
where cos x ≥ 0 and is the reflection of cos x about the x-axis on the intervals
where cos x < 0. One cycle of the graph is shown in Figure 11.9.

Figure 11.9
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Review Problems

Exercise 11.1
State the amplitude and the period of the function defined by each equation:

(a) y = 2 sin x.
(b) y = 1

2
sin 2πx.

(c) y = 2 cos πx
3

.
(d) y = −3 cos 2x

3
.

Exercise 11.2
Graph one full cycle of the function defined by each equation:

(a) y = 1
2
sin x.

(b) y = −7
2
cos x.

(c) y = cos 3x.
(d) y = sin 3π

4
x.

Exercise 11.3
Graph one full cycle of the function defined by each equation:

(a) y = 2 sin πx.
(b) y = 4 sin 2πx

3
.

(c) y = cos 3π
4

x.

Exercise 11.4
Graph one full cycle of the function defined by each equation:
(a) y =

∣∣2 sin x
2

∣∣ .
(b) y = | − 2 cos 3x|.
(c) y = −

∣∣2 sin x
2

∣∣ .
Exercise 11.5
Find an equation of the following graph.

125



Exercise 11.6
Find an equation of the following graph.

Exercise 11.7
Find an equation of the following graph.

Exercise 11.8
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Find an equation of the following graph.

Exercise 11.9
Sketch the graph of y = 2 sin 2x

3
,−3π ≤ x ≤ 6π.

Exercise 11.10
Sketch the graphs of y1 = 2 cos x

2
and y2 = 2 cos x on the same axes for

−2π ≤ x ≤ 4π.

Exercise 11.11
Write an equation for a sine function with amplitude = 5 and period = 2π

3
.

Exercise 11.12
Write an equation for a cosine function with amplitude = 3 and period = π

2
.

Exercise 11.13
A tidal wave that is caused by an earthquake under the ocean is called a
tsunami. A model of a tsunami is given by f(t) = A cos Bt. Find the
equation of a tsunami that has an amplitude of 60 feet and a period of 20
seconds.

Exercise 11.14
The temperature of a chemical reaction oscillated between a low of 30circC
and a high of 110◦C. The temperature is at its lowest point when t = 0 and
completes one cycle over a five hour period.

(a) Sketch a graph of the temperature T , against the elapsed time, t, over a
ten-hour period.
(b) Find the period and the amplitude of the graph you drew in part (a).
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Exercise 11.15
The function f(x) = sin x

x
is important in calculus. Graph this function using

a graphing calculator. Comment on its behavior when x is close to 0.

Exercise 11.16
The function f(x) = a sin bx has an amplitude of 3 and a period of 4. Find
the possible values of a and b.

Exercise 11.17
Determine the domain and the range of the function f(x) = (sin x)cos x. What
is its amplitude?

Exercise 11.18
Graph one full period of y = 2− sin x

2
.

Exercise 11.19
Graph the functions y = | sin x| and y = sin |x| on the same coordinate axes.

Exercise 11.20
Explain how the graph of y = cos 2x differs from the graph of y = cos x.
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12 Graphs of the Other Trigonometric Func-

tions

In this section, you will learn how to sketch the graphs of the functions
tan x, cot x, sec x, and csc x and transformations of these functions. We are
going to use the same method we used for sin x and cos x. We will use a table
of values to plot some of the points. However, the functions of this section
are not continuous everywhere like the sin x and cos x functions; what this
means is that there will be some ”breaks” in the graphs- each of them will
have vertical asymptotes.

Graph of y = tan x
Recall that the domain of the tangent function consists of all numbers x 6=
(2n+1)π

2
, where n is any integer. The range consists of the interval (−∞,∞).

Also, the tangent function is periodic of period π. Thus, we will sketch the
graph on an interval of length π and then complete the whole graph by repe-
tition. The interval we consider is the interval (−π

2
, π

2
). First, we will consider

the behavior of the tangent function near both −π
2

and π
2
. For this purpose,

we construct the following table:

x −π
2

-1.57 -1.5 -1.4 0 1.4 1.5 1.57 π
2

tan x undefined -1255.77 -14.10 -5.80 0 5.8 14.10 1255.77 undefined

It follows that as x approaches −π
2

from the right the tangent function de-
creases without bound whereas it increases without bound when x gets closer
to π

2
from the left. We say that the vertical lines x = ±π

2
are vertical as-

ymptotes. In general, the vertical asymptotes for the graph of the tangent
function consist of the zeros of the cosine function, i.e. the lines x = (2n+1)π

2
,

where n is an integer.
Next, we construct the following table that provides points on the graph of
the tangent function:

x −π
3

−π
4

−π
6

0 π
6

π
4

π
3

tan x −
√

3 -1 -
√

3
3

0
√

3
3

1
√

3

Plotting these points and connecting them with a smooth curve we obtain
one period of the graph of y = tan x as shown in Figure 12.1.
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Figure 12.1

We obtain the complete graph by repeating the one cycle over intervals of
lengths π as shown in Figure 12.2.

Figure 12.2

Example 12.1
What are the x-intercepts of y = tan x?

Solution.
The x-intercepts of y = tan x are the zeros of the sine function. That is, the
numbers x = nπ where n is any integer.

Graph of y = cot x
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The graph of the cotangent function is similar to the graph of the tangent
function. Since

cot x =
cos x

sin x

then the vertical asymptotes occur at x = nπ where n is any integer.
Figure 12.3 shows two periods of the graph of the cotangent function.

Figure 12.3

The Functions y = a tan (bx) and y = a cot (bx), b > 0
• Note that since the graphs of the tangent function and the cotangent func-
tion have no maximum or minimum then these functions have no amplitude.
• The parameter |a| indicates a vertical stretching of the basic tangent or
cotangent function if a > 1, and a vertical compression if 0 < a < 1. If a < 0
then reflection about the x-axis is required.
• Since the function y = tan x (respectively y = cot x) completes one cycle on
the interval (−π

2
, π

2
) (respectively, on (0, π)) then the function y = a tan (bx)

(respectively, y = a cot (bx)) completes one cycle on the interval (− π
2b

, π
2b

)
(respectively, on the interval (0, π

b
)). Thus, these functions are periodic of

period π
b
.

Guidelines for Sketching Graphs of Tangent and Cotangent Func-
tions
To graph y = a tan (bx) or y = a cot (bx), with b > 0, follow these steps.

1. Find the period, π
b
.

2. Graph the asymptotes:
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• x = − π
2b

and x = π
2b

, for the tangent function.
• x = 0 and x = π

b
for the cotangent function.

3. Divide the interval into four equal parts by means of the points:
• − π

4b
, 0, π

4b
(for the tangent function).

• π
4b

, π
2b

, 3π
4b

(for the cotangent function).

4. Evaluate the function for each of the three x-values resulting from step 3.
5. Plot the points found in step 4, and join them with a smooth curve.
6. Draw additional cycles of the graph, to the right and to the left, as needed.

Example 12.2
Find the period of the function y = 2 tan (x

2
) and then sketch its graph.

Solution.
The period is π

1
2

= 2π. Finding some points on the graph

x -π
2

0 π
2

y -2 0 2

The graph of one cycle is given in Figure 12.4.

Figure 12.4

Example 12.3
Sketch the graph of cot 3x through two periods.
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Solution.
The given function is of period π

b
= π

3
. Finding points for one cycle

x π
12

π
6

π
4

y 1 0 -1

Two cycles of the graph is shown in Figure 12.5.

Figure 12.5

Graph of the Secant Function
Recall that the domain of the secant function consists of all numbers x 6=
(2n + 1)π

2
, where n is any integer. So the graph has vertical asymptotes at

x = (2n + 1)π
2
. The range consists of the interval (−∞,−1] ∪ [1,∞). Also,

the secant function is periodic of period 2π. Thus, we will sketch the graph
on an interval of length 2π and then complete the whole graph by repetition.
Note that the value of sec x at a given number x equals the reciprocal of
the corresponding value of cos x. Thus, to sketch the graph of y = sec x, we
first sketch the graph of y = cos x. On the same coordinate system, we plot,
for each value of x, a point with height equal the reciprocal of cos x. The
accompanying table gives some points to plot.
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x sec x
−π

2
undefined

−π
4

1.414
0 1
π
4

1.414
π
2

undefined
3π
4

-1.414
π -1
5π
4

-1.414
3π
2

undefined

Plotting these points and connecting them with a smooth curve we obtain
the graph of y = sec x on the interval (−π

2
, π

2
)∪(π

2
, 3π

2
) as shown in Figure 12.6.

Figure 12.6

Example 12.4
What are the x-intercepts of y = sec x?

Solution.
There are no x-intercepts since either sec x ≤ −1 or sec x ≥ 1.

Graph of y = cscx
The graph of y = csc x may be graphed in a manner similar to sec x. The
resulting graph is shown in Figure 12.7. Note that the vertical asymptotes
occur at x = nπ, where n is an integer since the domain consists of all real
numbers different from nπ.
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Figure 12.7

Finally, note that in comparing the graphs of secant and cosecant functions
with those of the sine and the cosine functions, the ”hills” and ”valleys” are
interchanged. For example, a hill on the cosine curve corresponds to a valley
on the secant curve and a valley corresponds to a hill.

Guidelines for Sketching Graphs of y = a sec (bx) and y = a csc (bx)
To graph y = a sec (bx) or y = a csc (bx), with b > 0, follow these steps.

1. Find the period, 2π
b
.

2. Graph the asymptotes:
• x = − π

2b
, x = π

2b
, and x = 3π

2b
, for the secant function.

• x = −π
b
, x = 0, and x = π

b
for the cosecant function.

3. Divide the interval into four equal parts by means of the asymptotes
and of the points:
• 0, π

b
(for the secant function).

• − π
2b

, π
2b

(for the cosecant function).

4. Evaluate the function for each of the two x-values resulting from step
3. One of the point is the lowest of the ”valley” and the other is the highest
of the ”hill.”
5. Plot the points found in step 4, and join them with a smooth curve.
6. Draw additional cycles of the graph, to the right and to the left, as needed.
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Example 12.5
Sketch the graph of y = sec 2x.

Solution.
The period is 2π

b
= 2π

2
= π. Finding some of the points on the graph

x 0 π
2

y 1 -1

Figure 12.8 shows one period of the graph.

Figure 12.8
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Review Problems

Exercise 12.1
For what values of x is y = tan x undefined?

Exercise 12.2
For what values of x is y = cot x undefined?

Exercise 12.3
State the period of each function:

(a) y = 1
2
cot 2x.

(b) y = − tan 3x.
(c) y = −3 cot 2x

3
.

Exercise 12.4
Sketch one full cycle of the graph of each function:

(a) y = 3 tan x.
(b) y = 4 cot x.
(c) y = −3 tan 3x.
(d) y = −3 cot x

2
.

(e) y = 1
2
cot 2x.

Exercise 12.5
Graph y = 3 tan πx from -2 to 2.

Exercise 12.6
Graph y = cot πx

2
from -4 to 4.

Exercise 12.7
Sketch the graph of y = | tan x| on the interval (−π

2
, π

2
).

Exercise 12.8
Sketch the graph of y = | cot x| on the interval (0, π).

Exercise 12.9
Find the value of b if the function y = tan bx has period π

3
.
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Exercise 12.10
Find the value of b if the function y = cot bx has period 2.

Exercise 12.11
Find an equation of the graph

Exercise 12.12
Find an equation of the graph

Exercise 12.13
For what values of x is y = sec x undefined?
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Exercise 12.14
For what values of x is y = csc x undefined?

Exercise 12.15
State the period of each function:

(a) y = csc 3x.
(b) y = csc x

2
.

(c) y = −3 sec x
4
.

(d) y = 2 csc πx
2

.

Exercise 12.16
Sketch one full cycle of the graph of each function:

(a) y = −2 csc x
3
.

(b) y = 1
2
sec x

2
.

(c) y = 3 csc πx
2

.

Exercise 12.17
Graph y = 3 sec πx from -2 to 4.

Exercise 12.18
Graph y = csc πx

2
from -4 to 4.

Exercise 12.19
Find the value of b if the function y = sec bx has period 3π

4
.

Exercise 12.20
Find the value of b if the function y = csc bx has period 5π

2
.

Exercise 12.21
Find an equation of the graph
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Exercise 12.22
Find an equation of the graph

Exercise 12.23
Sketch the graph of y = | csc x|.

Exercise 12.24
Sketch the graph of y = | sec x|.

Exercise 12.25
Graph one full cycle of y = tan x and x = tan y on the same coordinate axes.

Exercise 12.26
The functions y = tan x and y = tan (−x) have the same period. Find that
period.
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13 Translations of Trigonometric Functions

In this section, we will rely heavily on our knowledge of transformations to
develop an efficient way of graphing periodic functions. Essentially we will
be concerned with translations of the basic trigonometric graphs.
Recall the following translations of graphs(See Section 5):

• To get the graph of y = f(x − c) with c > 0, move the graph of y = f(x)
to the right by c units.
• To get the graph of y = f(x + c) with c > 0, move the graph of y = f(x)
to the left by c units.
• To get the graph of y = f(x) + c with c > 0, move the graph of y = f(x)
upward by c units.
• To get the graph of y = f(x) − c with c > 0, move the graph of y = f(x)
downward by c units.
• The graph of y = −f(x) is a reflection of the graph of f(x) about the
x-axis.
• The graph of y = f(−x) is a reflection of the graph of f(x) about the
y-axis.
• The graph of y = cf(x) is the graph of y = f(x) vertically stretched (re-
spectively compressed) by a factor of c, if c > 1 (respectively 0 < c < 1). If
c < 0 then either the vertical stretch or compression must be followed by a
reflection about the x-axis.
• The graph of y = f(cx) is the graph of y = f(x) horizontally stretched
(respectively compressed) by a factor of c, if 0 < c < 1 (respectively c > 1).
If c < 0 then either the horizontal stretch or compression must be followed
by a reflection about the y-axis.

Graphs of y = a sin (bx + c) + d, b > 0
We will discuss transformations of the sine function of the form y = a sin (bx + c)+
d, b > 0. Similar arguments apply for the remaining five trigonometric func-
tions.
Let’s look closely at the effects of each of the parameters a, b, c, and d.

• The value a.
This is outside the function and so deals with the output (i.e. the y values).
This constant will change the amplitude of the graph, or how tall the graph
is. The amplitude, |a|, is half the distance from the top of the curve to the
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bottom of the curve. Multiplying the sine function by a results in a verti-
cal stretch or compression (followed by a reflection about the x-axis if a < 0.)

• The value b.
This is inside the function and so effects the input or domain (i.e. the x val-
ues). This constant will stretch or compress the graph horizontally. However,
it will not change the period directly. For example the function y = sin (2x)
does not have period 2. The period is given by the fraction 2π

b
(i.e. the original

period divided by the constant b). So for example the function y = sin (2x)
will have period 2π

2
= π. b tells you the number of the cycles of the sine

function on an interval of length 2π. Thus, the graph of y = sin 2x consists
of two cycles of the sine function on an interval like [0, 2π].

• The value d.
This again is outside and so will effect the y values of the graph. This con-
stant will vertically shift the graph up and down (depending on if d is positive
or negative).

• The constant c.
This is on the inside and deals with moving the function horizontally left/right.
For example the curve y = sin (x− 2) is the graph of y = sin (x) shifted hori-
zontally to the right 2 units. Note that b = 1 in this example. For b 6= 1, the
shift is − c

b
. To see why this is so, recall that one cycle of y = a sin (bx + c) is

completed for
0 ≤ bx + c ≤ 2π.

Solving for x we find
−c ≤ bx ≤ −c + 2π
− c

b
≤ x ≤ − c

b
+ 2π

b
.

So basically, the graph of y = a sin (bx + c) is a horizontal shift of the graph
of y = a sin (bx) by − c

b
units. We call − c

b
the phase shift.

Guidelines for Graphing y = a sin (bx + c) + d, b > 0
To sketch the graph of y = a sin (bx + c) + d follow these steps.

1. Find the period 2π
b
.

2. Find the phase shift − c
b
.

3. Find the points: − c
b
, π

2b
− c

b
, π

b
− c

b
, 3π

2b
− c

b
, 2π

b
− c

b
.
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4. Compute the sine of the angles in step 3.
5. Multiply the numbers in step 4 by a.
6. Add the number d to the values obtained in step 5.
7. Plot the points in Step 6 and connect them with a smooth curve to obtain
one full cycle of the graph.

Example 13.1
Sketch one full cycle of the graph of y = − sin x + 1, 0 ≤ x ≤ 2π.

Solution.
Starting with the basic sine function we use the points

x 0 π
2

π 3π
2

2π
y 0 1 0 -1 0

Find some plotting points (see the guidelines above)

x 0 π
2

π 3π
2

2π
y 1 0 1 2 1

The graph consists of a reflection of the graph of sin x about the x-axis and
then a vertical shift upward by 1 unit as shown in Figure 13.1.

Figure 13.1

Example 13.2
Sketch one full cycle of the graph of the function y = sin (x− π

4
).

Solution.
Find some plotting points as suggested by the guideline.
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x π
4

3π
4

5π
4

7π
4

9π
4

y 0 1 0 -1 0

The graph consists of a horizontal shift of sin x by π
4

units to the right as
shown in Figure 13.2.

Figure 13.2

Example 13.3
Sketch one full cycle of the graph of y = 1

2
sin (x− π

3
).

Solution.
The amplitude is 1

2
, the period is 2π, and the phase shift is π

3
. Find some

plotting points.

x π
3

5π
6

4π
3

11π
6

7π
3

y 0 1
2

0 -1
2

0
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Figure 13.3 shows one period of the graph on the interval [π
3
, 7π

3
].

Figure 13.3

Example 13.4
Sketch the graph of y = −3 cos (2πx + 4π).

Solution.
Find some plotting points.

x -2 −7
4

−3
2

-5
4

-1
y -3 0 3 0 -3

The amplitude is 3, the period is 2π
b

= 2π
2π

= 1, and the phase shift is− c
b

= −2.
Figure 13.4 shows two cycles of the graph.

Figure 13.4
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Review Problems

Exercise 13.1
Find the amplitude, period, and phase shift for the graph of each function:

(a) y = −4 sin
(

2
3
x + π

6

)
.

(b) y = 5
4
cos (3x− 2π).

Exercise 13.2
Find the phase shift and period for the graph of each function:

(a) y = 2 tan
(
2x− π

4

)
.

(b) y = −3 cot
(

x
4

+ 3π
)
.

Exercise 13.3
Find the phase shift and period for the graph of each function:

(a) y = 2 sec
(
2x− π

8

)
.

(b) y = −3 csc
(

x
3

+ π
)
.

Exercise 13.4
Graph one full cycle of each function:

(a) y = cos
(
2x− π

3

)
.

(b) y = −2 sin
(

x
3
− 2π

3

)
.

Exercise 13.5
Graph one full cycle of each function:

(a) y = tan (x− π).
(b) y = 3

2
cot
(
3x + π

4

)
.

Exercise 13.6
Graph one full cycle of each function:

(a) y = csc (2x + π).
(b) y = sec (2x + π

6
).
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Exercise 13.7
Graph one full cycle of each function:

(a) y = 2 sin
(

π
2
x + 1

)
− 2.

(b) y = −3 cos (2πx− 3) + 1.

Exercise 13.8
Graph one full cycle of each function:

(a) y = csc x
3

+ 4.
(b) y = sec

(
x− π

2

)
+ 1.

Exercise 13.9
Graph one full cycle of each function:

(a) y = tan x
2
− 4.

(b) y = cot 2x + 3.

Exercise 13.10
Find an equation of the graph

Exercise 13.11
Find an equation of the graph
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Exercise 13.12
Find an equation of the graph

Exercise 13.13
Find an equation of the graph
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Exercise 13.14
Find an equation of the graph

Exercise 13.15
Find an equation of the sine function with amplitude 2, period π, and phase
shift π

3
.

Exercise 13.16
Find an equation of the cosine function with amplitude 3, period 3π, and
phase shift −π

4
.

Exercise 13.17
Find an equation of the tangent function with period 2π and phase shift π

2
.
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Exercise 13.18
Find an equation of the cotangent function with period π

2
and phase shift

−π
4
.

Exercise 13.19
Find an equation of the secant function with period 4π and phase shift 3π

4
.

Exercise 13.20
Find an equation of the cosecant function with period 3π

2
and phase shift π

4
.

Exercise 13.21
(a) Find the period and phase shift of the function y = 2 cot

(
x− π

2

)
.

(b) Sketch one full cycle of the the graph.

Exercise 13.22
(a) Find the period and phase shift of the function y = 4 csc (2x + π).
(b) Sketch one full cycle of the the graph.

Exercise 13.23
(a) Find the period and phase shift of the function y = −4 sec 4πx.
(b) Sketch one full cycle of the the graph.

Exercise 13.24
(a) Find the period and phase shift of the function y = tan

(
x
2
− π

8

)
.

(b) Sketch one full cycle of the the graph.

Exercise 13.25
(a) Find the period, amplitude and phase shift of the function y = 10 sin

(
x− π

2

)
.

(b) Sketch one full cycle of the the graph.

Exercise 13.26
(a) Find the period, amplitude and phase shift of the function y = cos 2

(
x− π

2

)
.

(b) Sketch one full cycle of the the graph.

Exercise 13.27
Write a sentence to explain how to obtain the graph of y = 2 sin

(
2x− π

2

)
−1

from the graph of y = 2 sin 2x.

Exercise 13.28
State the period and phase shift for the function y = 2 cot

(
π
3
x + π

6

)
.
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Exercise 13.29
State the amplitude, the period, and the phase shift of the function y =
−3 cos

(
2x + π

2

)
.

Exercise 13.30
Graph one full cycle of the function y = 3 sin

(
4x− 2π

3

)
− 3.

Exercise 13.31
Graph one full cycle of the function y = − cos

(
3x + π

2

)
+ 2.

Exercise 13.32
Graph one full cycle of the function y = 2 csc

(
x− π

4

)
− 3.

Exercise 13.33
Graph one full cycle of the function y = sec

(
x− π

2

)
+ 1.

Exercise 13.34
Graph one full cycle of the function y = cot (2x + 3).

Exercise 13.35
Graph one full cycle of the function y = tan 1

2
− 4.

Exercise 13.36
The owner of a shoe store finds that the number of pairs of shoes S, in
hundreds, that it sells can be modeled by the function

S = 2.7 cos

(
π

6
t− 7

12
π

)
+ 4

where t is measured in months, with t = 0 representing January 1.

(a) Find the phase shift and the period of S.
(b) Graph one period of S.
(c) Use the graph to determine in which month the store sells the most shoes.

Exercise 13.37
The maximum value of y = 3 sin x + 4 is 7. Do you agree? Explain.
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Exercise 13.38
The function bp(t) = 32 cos

(
10π
3

t− π
3

)
+ 112, 0 ≤ t ≤ 20 gives the blood

pressure in millimeters of mercury (mm Hg), a patient during a 20-second
interval.

(a) Find the phase shift and the period of pb.
(b) Graph one period of bp.
(c) What are the patient’s maximum (systolic) and minimum (diastolic)
blood pressure during the given time interval?
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14 Simple Harmonic Motion

In this section, we use our knowledge of trigonometric functions to describe
motion that repeats itself periodically, such as the up-and-down motion of
a mass attached to a spring or the back-and-forth motion of a simple pen-
dulum. These phenomena are described by the sinusoidal functions, which
are the sine and cosine functions or a combination of these functions.
The motion of body is called a simple harmonic motion if the body oscil-
lates about an initial state known as the equilibrium position. Examples
of such motion are the motion of a pendulum swinging back and forth, a
spring compressing or stretching, radio waves and television signals.
Variables that describe the periodic nature of the motion are: amplitude,
period, and frequency.

• Amplitude
In a simple harmonic motion a body generally goes back and forth between
two extreme points; the points of maximum displacement from the equilib-
rium point. The point of maximum displacement is known as the amplitude
of the motion. For example, if a pendulum is displaced 1 cm from equilibrium
and then allowed to oscillate we can say that the amplitude of oscillation is
1 cm.

• Period
In a simple harmonic motion, a particle completes a round trip in a certain
period of time. This time, p , which denotes the time it takes for the particle
to return to its initial position, is called the period or cycle of the motion.

• Frequency
Another concept related to time is the frequency. Frequency, denoted by f ,
is defined as the number of cycles per unit time and is related to period as
such:

f =
1

p

Period is measured in seconds, while frequency is measured in Hertz (or Hz),
where 1 Hz = 1 cycle/second.

Modeling Simple Harmonic Motions
As pointed out earlier in the section, a simple harmonic motion is modeled
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by either the function f(t) = a sin (bt) or the function f(t) = a cos (bt). But
the period of either function is known to be p = 2π

b
. Solving for b we find

b =
2π

p
= 2πf.

Thus, a simple harmonic motion can be modeled by one of the following
functions:

y = a cos (2πf)t or y = a sin (2πf)t

where |a| is the amplitude.

Remark 14.1
1. If maximum displacement occurs at t = 0 then the motion is modeled by
the cosine function.
2. If zero displacement occurs at t = 0 then the motion is modeled by the
sine function.

Example 14.1
Find the amplitude, period and frequency of the simple harmoninc motion
described by the equation

y = 3 cos
2

3
t.

Solution.
The amplitude is |a| = |3| = 3. The period is = 2π

b
= 2π

2
3

= 3π. The frequency

is f = 1
p

= 1
3π

.

Example 14.2
Find an equation of a simple harmoninc motion with frequency f = 1.5 cycles
per second and amplitude 4 inches. Assume that maximum displacement
occurs at t = 0.

Solution.
Since maximum displacement occurs at t = 0 then y = a cos 2πft. But
f = 1.5 and a = 4 so that y = 4 cos 3πt.

Example 14.3
Find an equation of a simple harmoninc motion with frequency f = 1 cycles
per second and amplitude 2 cm. Assume zero displacement occurs at t = 0.

Solution.
Since zero displacement occurs at t = 0 then y = a sin 2πft. Since a = 2 and
f = 1 then y = 2 sin 2πt.
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Review Problems

Exercise 14.1
Find the amplitude, period, and frequency of the simple harmonic motion:

(a) y = 2
3
cos t

3
.

(b) y = 4 sin 3t.

Exercise 14.2
Find the amplitude, period, and frequency of the simple harmonic motion:

(a) y = 2 sin πt
3
.

(b) y = 5 cos 2πt.

Exercise 14.3
Find an equation of a simple harmoninc motion with frequency f = 0.8 cycles
per second and amplitude 4 cm. Assume maximum displacement occurs at
t = 0. Sketch a full cycle of the equation.

Exercise 14.4
Find an equation of a simple harmoninc motion with frequency f = 0.6 cycles
per second and amplitude 1 m. Assume maximum displacement occurs at
t = 0. Sketch a full cycle of the equation.

Exercise 14.5
Find an equation of a simple harmoninc motion with amplitude equals to 4
inches and period equals to π

2
. Assume zero displacement at t = 0. Graph

one full cycle of the equation.

Exercise 14.6
Find an equation of a simple harmoninc motion with amplitude equals to
4 inches and frequency equals to 4 seconds. Assume zero displacement at
t = 0. Graph one full cycle of the equation.

Exercise 14.7
Find an equation of a simple harmoninc motion with frequency f = 1

π
cycles

per second and amplitude 3 inches. Assume maximum displacement occurs
at t = 0.
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Exercise 14.8
Find an equation of a simple harmoninc motion with frequency f = 0.5 cycles
per second and amplitude 5 inches. Assume maximum displacement occurs
at t = 0.

Exercise 14.9
Find an equation of a simple harmoninc motion with period p = 5 seconds
and amplitude 5 cm. Assume maximum displacement occurs at t = 0.

Exercise 14.10
Find an equation of a simple harmoninc motion with period p = π seconds
and amplitude 2 cm. Assume maximum displacement occurs at t = 0.

Exercise 14.11
A point P moving in simple harmoninc motion completes 8 cycles every
second. If the amplitude of the motion is 50 cm, find an equation that
describes the motion P as a function of time. Assume the point P is at its
maximum displacement when t = 0.

Exercise 14.12
A mass suspended from a spring oscillates in simple harmonic motion at a
frequency of 4 cycles per second. The distance from the highest point to the
lowest point of the oscillation is 100 cm. Find an equation of that describes
the distance of the mass from its rest position as a function of time. Assume
the mass is at its lowest point when t = 0.

Exercise 14.13
Find the amplitude, the period, and the frequency of the harmonic motion
given by y = 2.5 sin 50t.
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15 Verifying Trigonometric Identities

In this section, you will learn how to use trigonometric identities to simplify
trigonometric expressions.
Equations such as

(x− 2)(x + 2) = x2 − 4 or
x2 − 1

x− 1
= x + 1

are referred to as identities. An identity is an equation that is true for all
values of x for which the expressions are defined. For example, the equation

(x− 2)(x + 2) = x2 − 4

is defined for all real numbers x. The equation

x2 − 1

x− 1
= x + 1

is true for all real numbers x 6= 1.
We have already seen many trigonometric identities. For the sake of com-
pleteness we list these basic identities:

Reciprocal Identities

sin x = 1
csc x

cos x = 1
sec x

csc x = 1
sin x

sec x = 1
cos x

tan x = 1
cot x

tan x = 1
cot x

quotient identities

tan t = sin t
cos t

; cot t = cos t
sin t

Pythagorean identities

cos2 x + sin2 x = 1
1 + tan2 x = sec2 x
1 + cot2 x = csc2 x

Even-Odd identities

sin (−x) = − sin x cos (−x) = cos x
csc (−x) = − csc x sec (−x) = sec x
tan (−x) = − tan x cot (−x) = − cot x
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Simplifying Trigonometric Expressions
Some algebraic expressions can be written in different ways. Rewriting a
complicated expression in a much simpler form is known as simplifying the
expression. There are no standard steps to take to simplify a trigonomet-
ric expression. Simplifying trigonometric expressions is similar to factoring
polynomials: by trial and error and by experience, you learn what will work
in which situations. To simplify algebraic expressions we used factoring,
common denominators, and other formulas. We use the same techniques
with trigonometric expressions together with the fundamental trigonometric
identities listed earlier in the section.

Example 15.1
Simplify the expression sec2 θ−1

sec2 θ
.

Solution.
Using the identity 1 + tan2 θ = sec2 θ we find

sec2 θ−1
sec2 θ

= 1+tan2 θ−1
sec2 θ

= tan2 θ
sec2 θ

= sin2 θ
cos2 θ

cos2 θ = sin2 θ

Example 15.2
Simplify the expression: sin θ

1+cos θ
+ 1+cos θ

sin θ
.

Solution.
Taking common denominator and using the identity cos2 θ + sin2 θ = 1 we
find

sin θ
1+cos θ

+ 1+cos θ
sin θ

= (1+cos θ)2+sin2 θ
sin θ(1+cos θ)

= 2(1+cos θ)
sin θ(1+cos θ)

= 2 csc θ

Example 15.3
Simplify the expression: (sin x− cos x)(sin x + cos x).

Solution.
Multiplying we find

(sin x− cos x)(sin x + cos x) = sin2 x− cos2 x

158



Example 15.4
Simplify cos x + tan x sin x.

Solution.
Using the quotient identity tan x = sin x

cos x
and the Pythagorean identity cos2 x+

sin2 x = 1 we find

cos x + tan x sin x = cos x + sin x
cos x

sin x

= cos2 x+sin2 x
cos x

= 1
cos x

= sec x.

Establishing Trigonometric Identities
A trigonometric identity is a trigonometric equation that is valid for all values
of the variable for which the expressions in the equation are defined. How do
you show that a trigonometric equation is not an identity? All you need to
do is to show that the equation does not hold for some value of the variable.
For example, the equation

sin x + cos x = 1

is not an identity since for x = π
4

we have

sin
π

4
+ cos

π

4
=

√
2

2
+

√
2

2
=
√

2 6= 1.

To verify that an equation is an identity, we start by simplifying one side of
the equation and end up with the other side.
One of the common methods for establishing trigonometric identities is to
start with the side containing the more complicated expression and, using
appropriate basic identities and algebraic manipulations, such as taking a
common denominator, factoring and multiplying by a conjugate, to arrive at
the other side of the equality.

Example 15.5
Establish the identity: 1+sec θ

sec θ
= sin2 θ

1−cos θ
.

Solution.
Using the identity cos2 θ + sin2 θ = 1 we have

sin2 θ
1−cos θ

= 1−cos2θ
1−cos θ

= (1−cos θ)(1+cos θ)
1−cos θ

= 1 + cos θ = cos θ(1 + sec θ)
= 1+sec θ

sec θ
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Example 15.6
Show that sin θ = cos θ is not an identity.

Solution.
Letting θ = π

2
we get 1 = sin π

2
6= cos π

2
= 0.

Example 15.7
Verify the identity: cos x(sec x− cos x) = sin2 x.

Solution.
The left-hand side looks more complex then the right-hand side, so we start
with it and try to transform it to the right-hand side.

cos x(sec x− cos x) = cos x sec x− cos2 x
= cos x 1

cos x
= cos2 x

= 1− cos2 x = sin2 x.

Example 15.8
Verify the identity: 2 tan x sec x = 1

1−sin x
− 1

1+sin x
.

Solution.
Starting from the right-hand side to obtain

1
1−sin x

− 1
1+sin x

= (1+sin x)−(1−sin x)
(1−sin x)(1+sin x)

= 2 sin x
1−sin2 x

= 2 sin x
cos2 x

= 2 sin x
cos x

1
cos x

= 2 tan x sec x

Example 15.9
Verify the identity: cos x

1−sin x
= sec x + tan x.

Solution.
Using the conjugate of 1− sin x to obtain

cos x
1−sin x

= cos x(1+sin x)
(1−sin x)(1+sin x)

= cos x+cos x sin x
1−sin2 x

= cos x+cos x sin x
cos2 x

= 1
cos x

+ sin x
cos x

= sec x + tan x.
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Review Problems

Exercise 15.1
Explain the difference between an equation and an identity.

Exercise 15.2
How do you prove a trigonometric identity?

Exercise 15.3
Simplify: sin x sec x

tan x
.

Exercise 15.4
Simplify: cos3 x + sin2 x sec x.

Exercise 15.5
Simplify: 1+cos x

1+sec x
.

Exercise 15.6
Simplify: sin x

csc x
+ cos x

sec x
.

Exercise 15.7
Simplify: 1+sin x

cos x
+ cos x

1+sin x
.

Exercise 15.8
Simplify: cos x

sec x+tan x
.

Exercise 15.9
Establish the following identities:

(a) 4 sin2 x−1
2 sin x+1

= 2 sin x− 1.
(b) (sin x− cos x)(sin x + cos x) = 1− 2 cos2 x.

Exercise 15.10
Establish the following identities:

(a) 1
sin x

− 1
cos x

= cos x−sin x
sin x cos x

.
(b) cos x

1−sin x
= sec x + tan x.

161



Exercise 15.11
Establish the following identities:

(a) sin4 x− cos4 x = sin2 x− cos2 x.
(b) 2 sin x cot x+sin x−4 cot x−2

2 cot x+1
= sin x− 2.

Exercise 15.12
Establish the following identities:

(a) 1
sin2 x

+ 1
cos2 x

= csc2 x sec2 x.

(b)
1

sin x
+ 1

cos x
1

sin x
− 1

cos x

= cos2 x−sin2 x
1−2 cos x sin x

.

Exercise 15.13
Establish the following identities:

(a)
1

tan x
+cot x

1
tan x

+tan x
= 2

sec2 x
.

(b) 1+sin x
cos x

− cos x
1−sin x

= 0.

Exercise 15.14
Establish the following identities:

1 + tan x

1− tan x
=

cos x + sin x

cos x− sin x
.

Exercise 15.15
Express cos x in terms of sin x.

Exercise 15.16
Express tan x in terms of cos x.

Exercise 15.17
Express sec x in terms of sin x.

Exercise 15.18
Express csc x in terms of sec x.

Exercise 15.19
Making the indicated trigonometric substitutions in the given algebraic ex-
pression and simplify. Assume that 0 ≤ θ ≤ π

2
.
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(a) x√
1−x2 , x = sin θ.

(b)
√

1 + x2, x = tan θ.
(c)

√
x2 − 1, x = sec θ.

(d) x2
√

4+x2 , x = 2 tan θ.

Exercise 15.20
Show that (sin x + cos x)2 = sin2 x + cos2 x is not an identity.

Exercise 15.21
Show that tan4 x− sec4 x = tan2 x + sec2 x is not an identity.

Exercise 15.22
Show that tan4 x− 1 = sec2 x is not an identity.

Exercise 15.23
Verify the identity: 1+tan x

1−tan x
= tan

(
π
4

+ x
)
.

Exercise 15.24
The identity cos2 x + sin2 x = 1 is one of the Pythagorean identities. What
are the other two Pythagorean identities and how are they derived?

Exercise 15.25
Verify the identity: 1−tan4 x

sec2 x
= 1− tan2 x.

Exercise 15.26
Verify the identity: (sin x + cos x)2 = 1 + 2 sin x cos x.

Exercise 15.27
Verify the identity: sin2 x− cos2 x = 2 sin2 x− 1.

Exercise 15.28
Verify the identity:

1
sin x

+csc x
1

sin x
−sin x

= 2 sec2 x.

Exercise 15.29
Verify the identity: sin4 x− cos4 x = 1− 2 sin2 x.
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16 Sum and Difference Identities

In this section, you will learn how to apply identities involving the sum or
difference of two variables.

Formulas for sin (x + y) and sin (x− y)
Let x and y be two angles as shown in Figure 16.1.

Figure 16.1

Let A be the point on the x-axis such that |OA| = 1. From A drop the
perpendicular to the terminal side of x. From B drop the perpendicular to
the x-axis. Then

Area ∆OAB = Area ∆OAC + area∆OCB.

But

Area ∆OAC =
1

2
|OC||AC| = 1

2
sin x cos x.

Area ∆OCB =
1

2
|OC||BC| = 1

2
|OB|2 sin y cos y.

Area ∆OAB =
1

2
|BD||OA| = 1

2
|OB| sin (x + y).

Hence,
1

2
|OB| sin (x + y) =

1

2
sin x cos x +

1

2
|OB|2 sin y cos y.
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Mutliplying both sides by 2
|OB| and using the fact that |OB| = cos x

cos y
one

obtains the addition formula for the sine function:

sin (x + y) = sin x cos y + cos x sin y.

To find the difference formula for the sine function we proceed as follows:

sin (x− y) = sin (x + (−y))
= sin x cos (−y) + cos x sin (−y)
= sin x cos y − cos x sin y

where we use the fact that the sine function is odd and the cosine function
is even.

Example 16.1
Find the exact value of sin 75◦.

Solution.
Notice first that 75◦ = 30◦ + 45◦. Thus,

sin 75◦ = sin (45◦ + 30◦)
= sin 45◦ cos 30◦ + cos 45◦ sin 30◦

=
√

2
2

√
3

2
+

√
2

2
1
2

=
√

6+
√

2
4

Example 16.2
Find the exact value of sin π

12
.

Solution.
Since π

12
= π

4
− π

3
, the difference formula for sine gives

sin π
12

= sin (π
4
− π

6
)

= sin π
4

cos π
6
− cos π

4
sin π

6

=
√

2
2

√
3

2
−

√
2

2
1
2

=
√

6−
√

2
4

Example 16.3
Show that cos (π

2
− x) = sin x using the difference formula of the sine func-

tion.
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Solution.
Since the sine function is an odd function then we can write

sin x = − sin (−x) = − sin [(π
2
− x)− π

2
]

= −[sin (π
2
− x) cos (π

2
)− cos (π

2
− x) sin (π

2
)]

= cos (π
2
− x)

Theorem 16.1 (Cofunctions Identities)
For any angle x, measured in radians, we have

sin (π
2
− x) = cos x cos (π

2
− x) = sin x

sec (π
2
− x) = csc x csc (π

2
− x) = sec x

tan (π
2
− x) = cot x cot (π

2
− x) = tan x

Proof.
Recall that sin (π

2
) = 1 and cos (π

2
) = 0.

sin (π
2
− x) = sin (π

2
) cos x− cos (π

2
) sin x = cos x

cos (π
2
− x) = sin x (See Example 16.3)

sec (π
2
− x) = 1

cos (π
2
−x)

= 1
sin x

= csc x

csc (π
2
− x) = 1

sin (π
2
−x)

= 1
cos x

= sec x

tan (π
2
− x) =

sin (π
2
−x)

cos (π
2
−x)

= cos x
sin x

= cot x

cot (π
2
− x) = 1

tan (π
2
−x)

= 1
cot x

= tan x

Formulas for cos (x + y) and cos (x− y)
Since sin x and cos x are cofunctions of each other then

cos (x + y) = sin (π
2
− (x + y)) = sin

[
(π

2
− x)− y

]
= sin (π

2
− x) cos y − cos (π

2
− x) sin y

= cos x cos y − sin x sin y

For the difference formula we have

cos (x− y) = cos (x + (−y))
= cos x cos (−y)− sin x sin (−y)
= cos x cos y + sin x sin y

where we have used the fact that the sine function is odd and the cosine is
even.

166



Example 16.4
Find the exact value of cos 7π

12
.

Solution.

cos 7π
12

= cos (π
4

+ π
3
)

= cos π
4

cos π
3
− sin π

4
sin π

3

=
√

2
2

1
2
−

√
2

2

√
3

2
=

√
2−

√
6

4

Example 16.5
Find the exact value of: sin 42◦ cos 12◦ − cos 42◦ sin 12◦.

Solution.
sin 42◦ cos 12◦ − cos 42◦ sin 12◦ = sin (42◦ − 12◦) = sin 30◦ = 1

2
.

Example 16.6
Suppose that α and β are both in the third quadrant and that sin α = −

√
3

2

and sin β = −1
2
. Determine the value of cos (α + β).

Solution.
Since α and β are in the third quadrant then cos α = −

√
1− sin2 α = −1

2

and cos β = −
√

1− sin2 β = −
√

3
2

. Thus,

cos (α + β) = cos α cos β − sin α sin β

= (−1
2
)(−

√
3

2
)− (−

√
3

2
)(−1

2
) = 0

Formulas for tan (x + y) and tan (x− y)
Using the sum formulas for the sine and the cosine functions we have

tan (x + y) = sin (x+y)
cos (x+y)

= sin x cos y+cos x sin y
cos x cos y−sin x sin y

=
sin x cos y
cos x cos y

+ cos x sin y
cos x cos y

1− sin x sin y
cos x cos y

= tan x+tan y
1−tan x tan y

For the difference formula we have

tan (x− y) = tan (x + (−y)) = tan x+tan (−y)
1−tan x tan (−y)

= tan x−tan y
1+tan x tan y

since tan (−x) = − tan x.
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Example 16.7
Establish the identity: tan (θ + π) = tan θ.

Solution.
tan (θ + π) = tan θ+tan π

1−tan θ tan π
= tan θ since tan π = 0.
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Review Problems

Exercise 16.1
(a) State the addition formulas for sine, cosine, and tangent.
(b) State the subtraction formulas for sine, cosine, and tangent.

Exercise 16.2
Find the exact value of the expression

(a) sin (45◦ + 30◦).
(b) cos

(
π
4
− π

3

)
.

(c) tan
(

π
6

+ π
4

)
.

Exercise 16.3
Find the exact value of the expression

(a) cos 212◦ cos 122◦ + sin 212◦ sin 122◦.
(b) sin 167◦ cos 107◦ − cos 167◦ sin 107◦.

Exercise 16.4
Find the exact value of the expression

(a) sin 5π
12

cos π
4
− cos 5π

12
sin π

4
.

(b) cos π
12

cos π
4
− sin π

12
sin π

4
.

Exercise 16.5
Find the exact value of the expression

(a)
tan 7π

12
−tan π

4

1+tan 7π
12

tan π
4

.

(b)
tan π

6
+tan π

3

1−tan π
6

tan π
3
.

Exercise 16.6
Write each expression in terms of a single trigonometric function.

(a) sin x cos 3x + cos x sin 3x.
(b) sin 7x cos 3x− cos 7x sin 3x.
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Exercise 16.7
Write each expression in terms of a single trigonometric function.

(a) cos 4x cos (−2x)− sin 4x sin (−2x).
(b) tan 3x+tan 4x

1−tan 3x tan 4x
.

(c) tan 2x−tan 3x
1+tan 2x tan 3x

.

Exercise 16.8
Given tan α = 24

7
, α in Quadrant I, and sin β = − 8

17
, β in Quadrant II, find

the exact value of

(a) sin (α + β) (b) cos (α + β) (c) tan (α− β).

Exercise 16.9
Given sin α = −4

5
, α in Quadrant III, and cos β = −12

13
, β in Quadrant II,

find the exact value of

(a) sin (α− β) (b) cos (α + β) (c) tan (α + β).

Exercise 16.10
Given cos α = −3

5
, α in Quadrant III, and sin β = 5

13
, β in Quadrant I, find

the exact value of

(a) sin (α− β) (b) cos (α + β) (c) tan (α + β).

Exercise 16.11
Establish the following identities:

(a) sin
(
θ + π

2

)
= cos θ.

(b) csc (π − θ) = csc θ.

Exercise 16.12
Establish the following identities:

(a) sin 6x cos 2x− cos 6x sin 2x = 2 sin 2x cos 2x.
(b) sin (α + β) + sin (α− β) = 2 sin α cos β.

Exercise 16.13
Establish the following identity: sin (α+β)

sin (α−β)
= 1+cot α tan β

1−cot α tan β
.
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Exercise 16.14
Write the given expression as a function of only sin θ, cos θ, or tan θ. (k is a
given integer)

(a) cos (θ + 3π) (b) cos [θ + (2k + 1)π] (c) sin (θ + 2kπ).

Exercise 16.15
Establish the identity

sin (x + h)− sin x

h
= cos x

sin h

h
+ sin x

(
cos h− 1

h

)
.

Exercise 16.16
Establish the identity

cos (x + h)− cos x

h
= cos x

(
cos h− 1

h

)
− sin x

sin h

h
.

Exercise 16.17
Find the exact value of: sin π

12
cos π

4
− sin π

12
sin π

4
.

Exercise 16.18
Write the following expressions in terms of a single trigonometric function.

(a) sin 7x cos 2x− cos 7x sin 2x
(b) cos x cos 2x + sin x sin 2x
(c) cos 4x cos 2x− sin 4x sin 2x
(d) sin 7x cos 3x + cos 7x sin 3x
(e) tan 2x−tan 3x

1+tan 2x tan 3x
.

Exercise 16.19
Given tan α = −4

3
, α in Quadrant II, and tan β = 15

8
, β in Quadrant III, find

the exact value of

(a) sin (α− β) (b) cos (α + β) (c) tan (α− β).

Exercise 16.20
Given sin α = 24

25
, α in Quadrant II, and cos β = −4

5
, β in Quadrant III, find

the exact value of

(a) sin (α + β) (b) cos (α− β) (c) tan (α + β).
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Exercise 16.21
Given cos α = 15

17
, α in Quadrant I, and sin β = −3

5
, β in Quadrant III, find

the exact value of

(a) sin (α + β) (b) cos (α− β) (c) tan (α + β).
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17 The Double-Angle and Half-Angle Identi-

ties

The sum formulas discussed in the previous section are used to derive for-
mulas for double angles and half angles.
To be more specific, consider the sum formula for the sine function

sin (x + y) = sin x cos y + cos x sin y.

Then letting y = x to obtain

sin 2x = 2 sin x cos x. (4)

This is the first double angle formula. To obtain the formula for cos 2x we
use the sum formula for the cosine function

cos (x + y) = cos x cos y − sin x sin y.

Letting y = x we obtain

cos 2x = cos2 x− sin2 x. (5)

Since sin2 x + cos2 x = 1 then there are two alternatives to Eq (5), namely

cos 2x = 2 cos2 x− 1 (6)

and

cos 2x = 1− 2 sin2 x. (7)

Letting y = x in the sum formula of the tangent function we obtain

tan (2x) = tan (x + x) =
2 tan x

1− tan2 x
. (8)

Formulas (4) - (8) are examples of double angle identities.

Example 17.1
Given cos θ = 5

13
, 3π

2
< θ < 2π, find sin 2θ, cos 2θ, and tan 2θ.
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Solution.
Since θ is in quadrant IV then sin θ = −

√
1− cos2 θ = −12

13
. Thus,

sin 2θ = 2 sin θ cos θ = −120
169

cos 2θ = 2 cos2 θ − 1 = −119
169

tan 2θ = sin 2θ
cos 2θ

= 120
119

Example 17.2
Develop a formula for cot 2θ in terms of θ.

Solution.
Using the formula for tan 2θ we have

cot 2θ = 1
tan (2θ)

= 1−tan2 θ
2 tan θ

= 1
2
( 1

tan θ
− tan θ) = 1

2
(cot θ − tan θ)

Using Eq (6) we find 2 sin2 x = 1− cos 2x and therefore

sin2 x =
1− cos 2x

2
. (9)

Similarly, using Eq (7) to obtain

cos2 x =
1 + cos 2x

2
(10)

and

tan2 x =
sin2 x

cos2 x
=

1− cos 2x

1 + cos 2x
. (11)

Formulas (9) - (11) are known as the square identities.

Example 17.3
Show that

sin4 θ =
3

8
− 1

2
cos 2θ +

1

8
cos 4θ.

Solution.

sin4 θ = (sin2 θ)2 = (1−cos 2θ
2

)2

= 1
4
(1 + cos2 2θ − 2 cos 2θ)

= 1
4
(1 + (1+cos 4θ

2
)− 2 cos 2θ)

= 3
8
− 1

2
cos 2θ + 1

8
cos 4θ
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We close this section by deriving identities for the sine, cosine, and tangent
for half-angle α

2
.

Let θ = α
2

in Eq ( 9) through Eq ( 11) we obtain

sin2 α
2

= 1−cos α
2

cos2 α
2

= 1+cos α
2

tan2 α
2

= 1−cos α
1+cos α

.

Taking square roots to obtain

sin α
2

= ±
√

1−cos α
2

cos α
2

= ±
√

1+cos α
2

tan α
2

= ±
√

1−cos α
1+cos α

.

where + or − is determined by the quadrant of the angle α
2
.

Alternative formulas for tan α
2

can be obtained geometrically by means of
Figure 17.1.

Figure 17.1

Indeed, we have cos α = |OB|, sin α = |AB|, and

tan
α

2
=
|AB|
|BC|

=
sin α

1 + cos α
.

If we mutliply the top and bottom of the last identity by 1− cos θ and then
using the identity cos2 θ + sin2 θ = 1 we obtain

tan
θ

2
=

sin θ(1− cos θ)

1− cos2 θ
=

1− cos θ

sin θ
.
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Example 17.4
Given sin α = 3

5
and α in quadrant II. Determine the values of sin α

2
, cos α

2
,

and tan α
2
.

Solution.
Since α is in quadrant II then cos α = −

√
1− sin2 α = −4

5
. Thus,

sin α
2

=
√

1−cos α
2

=

√
1+ 4

5

2
= 3

√
10

10

cos α
2

= −
√

1+cos α
2

= −
√

1− 4
5

2
= −

√
10

10

tan α
2

= −
√

1−cos α
1+cos α

= −3
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Review Problems

Exercise 17.1
(a) State the double-angle formulas for sine, cosine, and tangent.
(b) State the half-angle formulas for sine, cosine, and tangent.

Exercise 17.2
Write each trigonometric expression in terms of a single trigonometric func-
tion.

(a) 1− 2 sin2 5β.
(b) 2 tan 3α

1−tan2 3α
.

Exercise 17.3
Use the half-angle identities to find the exact value of each trigonometric
expression.

(a) cos 157.5◦ (b) sin 112.5◦.

Exercise 17.4
Use the half-angle identities to find the exact value of each trigonometric
expression.

(a) tan 67.5◦ (b) tan 3π
8

.

Exercise 17.5
Find the exact value of sin 2θ, cos 2θ, and tan 2θ given that sin θ = 8

17
and θ

is in Quadrant II.

Exercise 17.6
Find the exact value of sin 2θ, cos 2θ, and tan 2θ given that tan θ = −24

7
and

θ is in Quadrant IV.

Exercise 17.7
Find the exact value of sin 2θ, cos 2θ, and tan 2θ given that cos θ = 40

41
and θ

is in Quadrant IV.

Exercise 17.8
Find the exact value of sin θ

2
, cos θ

2
, and tan θ

2
given that sin θ = 5

13
and θ is

in Quadrant II.
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Exercise 17.9
Find the exact value of sin θ

2
, cos θ

2
, and tan θ

2
given that cos θ = − 8

17
and θ

is in Quadrant III.

Exercise 17.10
Find the exact value of sin θ

2
, cos θ

2
, and tan θ

2
given that tan θ = 4

3
and θ is

in Quadrant I.

Exercise 17.11
Find the exact value of sin θ

2
, cos θ

2
, and tan θ

2
given that sec θ = 17

15
and θ is

in Quadrant I.

Exercise 17.12
Find the exact value of sin θ

2
, cos θ

2
, and tan θ

2
given that cot θ = 8

15
and θ is

in Quadrant III.

Exercise 17.13
Establish the identities:

(a) sin 2x
1−sin2 x

= 2 tan x.

(b) cos4 x− sin4 x = cos 2x.

Exercise 17.14
Establish the identities:

(a) cos 3x− cos x = 4 cos3 x− 4 cos x.
(b) sin2 x

2
= sec x−1

2 sec x
.

Exercise 17.15
Establish the identities:

(a) 2 sin x
2
cos x

2
= sin x.

(b) tan 2x = 2
cot x−tan x

.

Exercise 17.16
If cos x = −2

3
, and x is in quadrant II, find cos 2x and sin 2x.

Exercise 17.17
Write cos 3x in terms of cos x.
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Exercise 17.18
Verify the identity: sin 3x

sin x cos x
= 4 cos x− sec x.

Exercise 17.19
Express sin2 x cos2 x in terms of the first powers of cosine.

Exercise 17.20
Use a half-angle formula to find the exact value of sin 22.5◦.

Exercise 17.21
Find tan x

2
if sin x = 2

5
and x is in quadrant II.
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18 Conversion Identities

In this section, you will learn (1) how to restate a product of two trigono-
metric functions as a sum, (2) how to restate a sum of two trigonometric
functions as a product, and (3) how to write a sum of two trigonometric
functions as a single function.

Product-To-Sum Identities
By the addition and subtraction formulas for the cosine, we have

cos (x + y) = cos x cos y − sin x sin y (12)

and

cos (x− y) = cos x cos y + sin x sin y. (13)

Adding these equations together to obtain

2 cos x cos y = cos (x + y) + cos (x− y) (14)

or

cos x cos y =
1

2
[cos (x + y) + cos (x− y)] (15)

Subtracting( 12) from ( 13) to obtain

2 sin x sin y = cos (x− y)− cos (x + y) (16)

or

sin x sin y =
1

2
[cos (x− y)− cos (x + y)]. (17)

Now, by the addition and subtraction formulas for the sine, we have

sin (x + y) = sin x cos y + cos x sin y
sin (x− y) = sin x cos y − cos x sin y.

Adding these equations together to obtain

2 sin x cos y = sin (x + y) + sin (x− y) (18)

or

sin x cos y =
1

2
[sin (x + y) + sin (x− y)]. (19)

Identities ( 15), ( 17), and ( 19) are known as the product-to-sum identi-
ties.
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Example 18.1
Write sin 3x cos x as a sum/difference containing only sines and cosines.

Solution.
Using ( 19) we obtain

sin 3x cos x = 1
2
[sin (3x + x) + sin (3x− x)]

= 1
2
(sin 4x + sin 2x)

Sum-to-Product Identities
We next derive the so-called sum-to-product identities. For this purpose,
we let α = x + y and β = x− y. Solving for x and y in terms of α and β we
find

x =
α + β

2
and y =

α− β

2
.

By identity ( 14) we find

cos α + cos β = 2 cos (
α + β

2
) cos (

α− β

2
). (20)

Using identity ( 16) we find

cos α− cos β = −2 sin (
α + β

2
) sin (

α− β

2
). (21)

Now, by identity ( 18) we have

sin α + sin β = 2 sin (
α + β

2
) cos (

α− β

2
). (22)

Using this last identity by replacing β by −β and using the fact that the sine
function is odd we find

sin α− sin β = 2 sin (
α− β

2
) cos (

α + β

2
). (23)

Formulas (20) - (23) are known as the sum-to-product formulas.

Example 18.2
Establish the identity: cos 2x+cos 2y

cos 2x−cos 2y
= − cot (x + y) cot (x− y).

181



Solution.
Using the product-to-sum identities we find

cos 2x+cos 2y
cos 2x−cos 2y

=
2 cos ( 2x+2y

2
) cos ( 2x−2y

2
)

−2 sin ( 2x+2y
2

) sin ( 2x−2y
2

)

= − cot (x + y) cot (x− y)

Writing a sin x + b cos x in the Form k sin (x + θ).
Let P (a, b) be a coordinate point in the plane and let θ be the angle with

initial side the x-axis and terminal side the ray
−→
OP as shown in Figure 18.1

Figure 18.1

Let k =
√

a2 + b2. Then, according to Figure 91 we have

cos θ =
a√

a2 + b2
and sin θ =

b√
a2 + b2

.

Then in terms of k and θ we can write

a sin x + b cos x =
√

a2 + b2
(

a√
a2+b2

sin x + b√
a2+b2

cos x
)

= k(cos θ sin x + sin θ cos x) = k sin (x + θ).

Example 18.3
Write y = 1

2
sin x− 1

2
cos x in the form y = k sin (x + θ).

Solution.

Since a = 1
2

and b = −1
2

then k =
√

(1
2
)2 + (−1

2
)2 =

√
2

2
, cos θ = a

k
=

√
2

2
, sin θ = b

k
= −

√
2

2
. Thus θ = −45◦ and

y =

√
2

2
sin (x− 45◦).
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Review Problems

Exercise 18.1
(a) State the product-to-sum formulas.
(b) State the sum-to-product formulas.

Exercise 18.2
Write each expression as the sum or difference of two functions.

(a) 2 sin x cos 2x (b) 2 sin 4x sin 2x (c) cos 3x cos 5x.

Exercise 18.3
Find the exact value of each expression.

(a) cos 75◦ cos 15◦ (b) sin 13π
12

cos π
12

(c) sin 11π
12

sin 7π
12

.

Exercise 18.4
Write each expression as the product of two functions.

(a) sin 4θ + sin 2θ
(b) cos 3θ + cos θ.

Exercise 18.5
Write each expression as the product of two functions.

(a) sin θ
2
− sin θ

3

(b) cos θ
2
− cos θ.

Exercise 18.6
Establish the identity.

(a) 2 cos α cos β = cos (α + β) + cos (α− β).
(b) 2 cos 3x sin x = 2 sin x cos x− 8 cos x sin3 x.

Exercise 18.7
Establish the identity.

(a) sin 3x− sin x = 2 sin x− 4 sin3 x
(b) sin (x + y) cos (x− y) = sin x cos x + sin y cos y.
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Exercise 18.8
Establish the identity.

(a) sin 3x−sin x
cos 3x−cos x

= − cot 2x

(b) sin 5x+sin 3x
4 sin x cos3 x−4 sin3 x cos x

= 2 cos x.

Exercise 18.9
Write the given equation in the form y = k sin (x + α), where α is in degrees.

(a) y = 1
2
sin x−

√
3

2
cos x

(b) y =
√

2
2

sin x +
√

2
2

cos x.

Exercise 18.10
Write the given equation in the form y = k sin (x + α), where α is in degrees.

(a) y = π sin x− π cos x
(b) y = 1

2
sin x− 1

2
cos x.

Exercise 18.11
Write the given equation in the form y = k sin (x + α), where α is in radians.

(a) y =
√

3
2

sin x + 1
2
cos x

(b) y = −10 sin x + 10
√

3 cos x.

Exercise 18.12
Graph one full cycle of each equation.

(a) y = − sin x−
√

3 cos x
(b) y = sin x +

√
3 cos x.

Exercise 18.13
Graph one full cycle of each equation.

(a) y = −5 sin x + 5
√

3 cos x
(b) y = 6

√
3 sin x− 6 cos x.

Exercise 18.14
Find the amplitude, phase shift, and period, and then graph one full cycle
of the function.

y = sin
x

2
− cos

x

2
.
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Exercise 18.15
Find the amplitude, phase shift, and period, and then graph one full cycle
of the function.

y =
√

3 sin 2x− cos 2x.

Exercise 18.16
Find the amplitude, phase shift, and period, and then graph one full cycle
of the function.

y = sin πx−
√

3 cos πx.

Exercise 18.17
Express sin 3x sin 5x as a sum of trigonometric functions.

Exercise 18.18
Write sin 7x + sin 3x as a product of trigonometric functions.

Exercise 18.19
Verify the identity: sin 3x−sin x

cos 3x+cos x
= tan x.

Exercise 18.20
Write each expression as the sum or difference of two functions.

(a) 2 sin 4x sin 2x (b) 2 sin 5x cos 3x (c) cos 6x sin 2x

Exercise 18.21
Find the exact value of each expression.

(a) sin 105◦ cos 15◦ (b) sin π
12

cos 7π
12

(c) sin 11π
12

sin 7π
12

Exercise 18.22
Write each expression as the product of two functions.

(a) sin 5θ + sin 9θ
(b) cos 3θ + cos 5θ

Exercise 18.23
Write each expression as the product of two functions.

(a) sin 7θ − sin 3θ
(b) cos θ

2
+ cos θ
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Exercise 18.24
Establish the identity.

(a) sin 5x cos 3x = sin 4x cos 4x + sin x cos x.
(b) 2 cos 5x cos 7x = cos2 6x− sin2 6x + 2 cos2 x− 1.

Exercise 18.25
Write the given equation in the form y = k sin (x + α), where α is in degrees.

(a) y = − sin x− cos x
(b) y =

√
3 sin x− cos x.

Exercise 18.26
Write the given equation in the form y = k sin (x + α), where α is in radians.

(a) y = 2 sin x + 2 cos x
(b) y = −

√
2 sin x +

√
2 cos x.

Exercise 18.27
Graph one full cycle of each equation.

(a) y = −
√

3 sin x + cos x
(b) y = 5

√
2 sin x + 5

√
2 cos x.

Exercise 18.28
Find the amplitude, phase shift, and period, and then graph one full cycle
of the function.

y = −
√

3 sin
x

2
+ cos

x

2
.
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19 Inverse Trigonometric Functions

In this and the next section, we will discuss the inverse trigonometric func-
tions. Looking at the graphs of the trigonometric functions we see that these
functions are not one-to-one in their domains by the horizontal line test.
However, restricted to suitable domains these functions become one- to-one
and therefore possess inverse functions.

The Inverse Sine Function
The function f(x) = sin x is increasing on the interval [−π

2
, π

2
]. See Figure

19.1. Thus, f(x) is one-to-one and consequently it has an inverse denoted by

f−1(x) = sin−1 x.

We call this new function the inverse sine function.

Figure 19.1

From the definition of inverse functions discussed in Section 6, we have the
following properties of f−1(x) :

(i) Dom(sin−1 x) = Range(sin x) = [−1, 1].
(ii) Range(sin−1 x) = Dom(sin x) = [−π

2
, π

2
].

(iii) sin (sin−1 x) = x for all −1 ≤ x ≤ 1.
(iv) sin−1 (sin x) = x for all −π

2
≤ x ≤ π

2
.

(v) y = sin−1 x if and only if sin y = x. Using words, the notation y = sin−1 x
gives the angle y whose sine value is x.

Remark 19.1
If x is outside the interval [−π

2
, π

2
] then we look for the angle y in the interval

[−π
2
, π

2
] such that sin x = sin y. In this case, sin−1 (sin x) = y. For example,

sin−1 (sin 5π
6

) = sin−1 (sin π
6
) = π

6
.
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The graph of y = sin−1 x is the reflection of the graph of y = sin x about the
line y = x as shown in Figure 19.2.

Figure 19.2

Example 19.1
Find the exact value of:
(a) sin−1 1 (b) sin−1

√
3

2
(c) sin−1 (−1

2
)

Solution.
(a) Since sin π

2
= 1 then sin−1 1 = π

2
.

(b) Since sin π
3

=
√

3
2

then sin−1
√

3
2

= π
3
.

(c) Since sin (−π
6
) = −1

2
then sin−1 (−1

2
) = −π

6
.

Example 19.2
Find the exact value of:
(a) sin (sin−1 2) (b) sin−1 (sin π

3
).

Solution.
(a) sin (sin−1 2) is undefined since 2 is not in the domain of sin−1 x.
(b) sin (sin−1 π

3
) = Π

3
.

Next, we will express the trigonometric functions of the angle sin−1 x in
terms of x. Let u = sin−1 x. Then sin u = x. Since sin2 u + cos2 u = 1 then
cos u = ±

√
1− x2. But −π

2
≤ u ≤ π

2
so that cos u ≥ 0. Thus

cos (cos−1 x) =
√

1− x2.
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It follows that for −π
2
≤ x ≤ π

2
we have

sin (sin−1 x) = x

cos (sin−1 x) =
√

1− x2

csc (sin−1 x) = 1
sin (sin−1 x)

= 1
x

sec (sin−1 x) = 1
cos (sin−1 x)

= 1√
1−x2

tan (sin−1 x) = sin (sin−1 x)

cos (sin−1 x)
= x√

1−x2

cot (sin−1 x) = 1
tan (sin−1 x)

=
√

1−x2

x
.

Example 19.3
Find the exact value of:
(a) cos (sin−1

√
2

2
) (b) tan (sin−1 (−1

2
))

Solution.

(a) Using the above discussion we find cos (sin−1
√

2
2

) =
√

1− (
√

2
2

)2 =
√

2
2

.

(b) tan (sin−1 (−1
2
)) =

−1
2√
1− 1

4

= −
√

3
3

.

The Inverse Cosine Function
In order to define the inverse cosine function, we will restrict the function
f(x) = cos x over the interval [0, π]. There the function is always decreasing.
See Figure 19.3. Therefore f(x) is one-to-one function. Hence, its inverse
will be denoted by

f−1(x) = cos−1 x.

We call cos−1 x the inverse cosine function.

Figure 19.3
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The following are consequences of the definition of inverse functions:
(i) Dom(cos−1 x) = Range(cos x) = [−1, 1].
(ii) Range(cos−1 x) = Dom(cos x) = [0, π].
(iii) cos (cos−1 x) = x for all −1 ≤ x ≤ 1.
(iv) cos−1 (cos x) = x for all 0 ≤ x ≤ π.
(v) y = cos−1 x if and only if cos y = x. Using words, the notation y = cos−1 x
gives the angle y whose cosine value is x.

Remark 19.2
If x is outside the interval [0, π] then we look for the angle y in the interval
[0, π] such that cos x = cos y. In this case, cos−1 (cos x) = y. For example,
cos−1 (cos 7π

6
) = cos−1 (cos 5π

6
) = 5π

6
.

The graph of y = cos−1 x is the reflection of the graph of y = cos x about the
line y = x as shown in Figure 19.4.

Figure 19.4

Example 19.4
Let θ = cos−1 x. Find the six trigonometric functions of θ.

Solution.
Let u = cos−1 x. Then cos u = x. Since sin2 u + cos2 u = 1 then sin u =
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±
√

1− x2. Since 0 ≤ u ≤ π then sin u ≥ 0 so that sin u =
√

1− x2. Thus,

sin (cos−1 x) =
√

1− x2

cos (cos−1 x) = x
csc (cos−1 x) = 1

sin (cos−1 x)
= 1√

1−x2

sec (cos−1 x) = 1
cos (cos−1 x)

= 1
x

tan (cos−1 x) = sin (cos−1 x)
cos (cos−1 x)

=
√

1−x2

x

cot (cos−1 x) = 1
tan (cos−1x)

= x√
1−x2 .

Example 19.5
Find the exact value of:
(a) cos−1

√
2

2
(b) cos−1 (−1

2
).

Solution.
(a) cos−1

√
2

2
= π

4
since cos π

4
=

√
2

2
.

(b) cos−1 (−1
2
) = 2π

3
.

The Inverse Tangent Function
Although not one-to-one on its full domain, the tangent function is one-to-
one when restricted to the interval (−π

2
, π

2
) since it is increasing there (See

Figure 19.5).

Figure 19.5

Thus, the inverse function exists and is denoted by

f−1(x) = tan−1 x.
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We call this function the inverse tangent function.
As before, we have the following properties:
(i) Dom(tan−1 x) = Range(tan x) = (−∞,∞).
(ii) Range(tan−1 x) = Dom(tan x) = (−π

2
, π

2
).

(iii) tan (tan−1 x) = x for all x.
(iv) tan−1 (tan x) = x for all −π

2
< x < π

2
.

(v) y = tan−1 x if and only if tan y = x. In words, the notation y = tan−1 x
means that y is the angle whose tangent value is x.

Remark 19.3
If x is outside the interval (−π

2
, π

2
) and x 6= (2n + 1)π

2
, where n is an

integer, then we look for the angle y in the interval (−π
2
, π

2
) such that

tan x = tan y. In this case, tan−1 (tan x) = y. For example, tan−1 (tan 5π
6

) =
tan−1 (tan (−π

6
)) = −π

6
.

The graph of y = tan−1 x is the reflection of y = tan x about the line y = x
as shown in Figure 19.6.

Figure 19.6

Example 19.6
Find the exact value of:
(a) tan−1 (tan π

4
) (b) tan−1 (tan 7π

5
).

Solution.
(a) tan−1 (tan π

4
) = π

4
.

(b) tan−1 (tan 7π
5

) = tan−1 (tan (2π
5

)) = 2π
5

.
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Example 19.7
Let u = tan−1 x. Find the six trigonometric functions of u.

Solution.
Since 1 + tan2 u = sec2 u then sec u = ±

√
1 + x2. But −π

2
< u < π

2
then

sec u > 0 so that sec u =
√

1 + x2. Also, cot u = 1
tan u

= 1
x
. In summary,

sin (tan−1 x) = 1
csc (tan−1 x)

= x√
1+x2

cos (tan−1 x) = 1
sec (tan−1 x)

= 1√
1+x2

csc (tan−1 x) =
√

1+x2

x

sec (tan−1 x) =
√

1 + x2

tan (tan−1 x) = x
cot (tan−1 x) = 1

x

The Inverse Cotangent Function
The function f(x) = cot x is always decreasing on (0, π). See Figure 19.7.

Figure 19.7

Thus, it is one-to-one and has an inverse denoted by

f−1(x) = cot−1 x

We call f−1(x) the inverse cotangent function.

Properties of y = cot−1 x :
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(i) Dom(cot−1 x) = Range(cot x) = (−∞,∞).
(ii) Range(cot−1 x) = Dom(cot x) = (0, π).
(iii) cot (cot−1 x) = x for any x.
(iv) cot−1 (cot x) = x for 0 < x < π.
(v) y = cot−1 x if and only if cot y = x. Thus, y = cot−1 x means that y is
the angle whose cotangent value is x.

Remark 19.4
If x is outside the interval (0, π) and x 6= nπ, where n is an integer, then we
look for the angle y in the interval (0, π) such that cot x = cot y. In this case,
cot−1 (cot x) = y. For example, cot−1 (cot 7π

5
) = cot−1 (cot 2π

5
) = 2π

5
.

The graph of y = cot−1 x is shown in Figure 19.8.

Figure 19.8

Example 19.8
Let u = cot−1 x. Find the six trigonometric functions of u.

Solution.
Since 1+cot2u = csc2 u then csc u = ±

√
1 + x2. But 0 < u < π then csc u > 0

so that csc u =
√

1 + x2. Also, tan u = 1
cot u

= 1
x
. In summary,

sin (cot−1 x) = 1
csc (cot−1 x)

= 1√
1+x2

cos (cot−1 x) = 1
sec (cot−1 x)

= x√
1+x2

csc (cot−1 x) =
√

1 + x2

sec (cot−1 x) =
√

1+x2

x

tan (cot−1 x) = 1
x

cot (cot−1 x) = x
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The Inverse Secant Function
The function f(x) = sec x is increasing on the interval [0, π

2
) ∪ (π

2
, π]. See

Figure 19.9. Thus, f(x) is one-to-one and consequently it has an inverse
denoted by

f−1(x) = sec−1 x.

We call this new function the inverse secant function.

Figure 19.9

We call this new function the inverse secant function. From the definition
of inverse functions we have the following properties of f−1(x) :
(i) Dom(sec−1 x) = Range(sec x) = (−∞,−1] ∪ [1,∞).
(ii) Range(sec−1 x) = Dom(sec x) = [0, π

2
) ∪ (π

2
, π].

(iii) sec (sec−1 x) = x for all x ≤ −1 or x ≥ 1.
(iv) sec−1 (sec x) = x for all x in [0, π

2
) or x in (π

2
, π].

(v) y = sec−1x if and only if sec y = x.

Remark 19.5
If x is outside the interval [0, π

2
) ∪ (π

2
, π] and x 6= (2n + 1)π

2
, where n is an

integer, then we look for the angle y in the interval [0, π
2
) ∪ (π

2
, π] such that

sec x = sec y. In this case, sec−1 (sec x) = y. For example, sec−1 (sec 7π
6

) =
sec−1 (sec 5π

6
) = 5π

6
.

The graph of y = sec−1 x is the reflection of the graph of y = sec x about the
line y = x as shown in Figure 19.10.
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Figure 19.10

Example 19.9
Find the exact value of:
(a) sec−1

√
2 (b) sec−1 (sec π

3
).

Solution.
(a) sec−1

√
2 = π

4
.

(b) sec−1 (sec π
3
) = π

3
.

Example 19.10
Let u = sec−1 x. Find the six trigonometric functions of u.

Solution.
Since sec u = x then cos u = 1

x
. Since sin2 u + cos2 u = 1 and u is in either

Quadrant I or Quadrant II where sin u > 0 then sin u =
√

1−x2

|x| . Also, csc u =
|x|√
1−x2 . In summary,

sin (sec−1 x) =
√

1−x2

|x|
cos (sec−1 x) = 1

x

csc (sec−1 x) = |x|√
1−x2

sec (sec−1 x) = x

tan (sec−1 x) = x
√

1−x2

|x|

cot (sin−1 x) = |x|
x
√

1−x2

The inverse cosecant function
In order to define the inverse cosecant function, we will restrict the function
y = csc x over the interval [−π

2
, 0) ∪ (0, π

2
]. There the function is always
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decreasing (See Figure 19.11)and therefore is one-to-one function. Hence, its
inverse will be denoted by

f−(x) = csc−1 x.

We call csc−1 x the inverse cosecant function.

Figure 19.11

The following are consequences of the definition of inverse functions:
(i) Dom(csc−1 x) = Range(csc x) = (−∞,−1] ∪ [1,∞).
(ii) Range(csc−1 x) = Dom(csc x) = [−π

2
, 0) ∪ (0, π

2
].

(iii) csc (csc−1 x) = x for all x ≤ −1 or x ≥ 1.
(iv) csc−1 (csc x) = x for all −π

2
≤ x < 0 or 0 < x ≤ π

2
.

(v) y = csc x if and only if csc y = x.

Remark 19.6
If x is outside the interval [−π

2
, 0) ∪ (0, π

2
] and x 6= nπ, where n is an inte-

ger, then we look for the angle y in the interval [−π
2
, 0) ∪ (0, π

2
] such that

csc x = csc y. In this case, csc−1 (csc x) = y. For example, csc−1 (csc (5π
6

)) =
csc−1 (csc π

6
) = π

6
.

The graph of y = csc−1 x is the reflection of the graph of y = csc x about the
line y = x as shown in Figure 19.12.
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Figure 19.12

Example 19.11
Let u = csc−1 x. Find the six trigonometric functions of u.

Solution.
Since csc u = x then sin u = 1

x
. Since sin2 u + cos2 u = 1 and u is in either

Quadrant I or Quadrant IV then cos u > 0 and cos u =
√

x2−1
|x| . Also, sec u =

|x|√
x2−1

. In summary,

sin (csc−1 x) = 1
x

cos (csc−1 x) =
√

x2−1
|x|

csc (csc−1 x) = x

sec (csc−1 x) = |x|√
x2−1

tan (csc−1 x) = |x|
x
√

x2−1

cot (csc−1 x) = x
√

x2−1
|x|

Example 19.12
Find the exact value of cos (π

4
− csc−1 5

3
).

Solution.
We have

cos (π
4
− csc−1 5

3
) = cos π

4
cos (csc−1 5

3
) + sin π

4
sin (csc−1 5

3
)

=
√

2
2

4
5

+
√

2
2

3
5

= 7
√

2
10
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Example 19.13
Find the exact value of sin (csc−1 (− 2√

3
)).

Solution.
Consider a right triangle with acute angle csc−1 2√

3
, opposite side

√
3, adja-

cent side 1 and hypotenuse of length 2. Then

sin (csc−1 (− 2√
3
)) = − sin (csc−1 ( 2√

3
))

= −
√

3
2

Example 19.14
Use a calculator to find the value of csc−1 5, rounded to four decimal places.

Solution.
Let x = csc−1 5 then csc x = 5 and this leads to sin x = 1

5
= 0.2. Hence,

either x = sin−1 0.2 ≈ 0.2014 or x ≈ π − 0.2014.
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Review Problems

Exercise 19.1
Find the exact radian value.

(a) sin−1 1 (b) cos−1
(√

3
2

)
(c) sin−1

(√
2

2

)
(d) cos−1

(
−1

2

)
.

Exercise 19.2
Find the exact value of the given expression, if it is defined.

(a) cos
(
cos−1 1

2

)
(b) sin−1

(
sin π

6

)
.

Exercise 19.3
Find the exact value of the given expression, if it is defined.

(a) cos−1
(
sin π

4

)
(b) sin−1

[
cos
(
−2π

3

)]
(c) sin

(
sin−1 2

3
+ cos−1 1

2

)
.

Exercise 19.4
Solve the equation for x algebraically.

(a) sin−1 (x− 1) = π
2
.

(b) cos−1
(
x− 1

2

)
= π

3
.

Exercise 19.5
Solve the equation for x algebraically.

(a) sin−1
√

2
2

+ cos−1 x = 2π
3

(b) sin−1 x + cos−1 4
5

= π
6
.

Exercise 19.6
Evaluate each expression.
(a) y = cos (sin−1 x) (b) y = tan (cos−1 x) (c) y = sec (sin−1 x).

Exercise 19.7
Establish the identities.

(a) sin−1 x + sin−1 (−x) = 0
(b) cos−1 x + cos−1 (−x) = π.
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Exercise 19.8
Solve for y in terms of x.

(a) 2x = 1
2
sin−1 2y

(b) x− π
3

= cos−1 (y − 3).

Exercise 19.9
Find the exact radian value.

(a) cot−1
√

3
3

(b) csc−1 (−
√

2) (c) tan−1
√

3 (d) sec−1 2
√

3
3

.

Exercise 19.10
Find the exact value of the given expression.

(a) tan (tan−1 2) (b) sin
(
tan−1 3

4

)
.

Exercise 19.11
Find the exact value of the given expression.

(a) tan−1
(
sin π

6

)
(b) cot−1

(
cos 2π

3

)
.

Exercise 19.12
Solve the equation for x algebraically.

tan−1
(
x +

√
2

2

)
= π

4
.

Exercise 19.13
Establish the identities.

(a) tan−1 x + tan−1 1
x

= π
2
, x > 0.

(b) sec−1 1
x

+ csc−1 1
x

= π
2
.

Exercise 19.14
Solve for y in terms of x.

(a) 5x = tan−1 3y
(b) x + π

2
= tan−1 (2y − 1).
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Exercise 19.15
Show that α + β = π

4

Exercise 19.16
Find the exact radian value: (a) sin−1

√
2

2
(b) cos−1−1

2
.

Exercise 19.17
Find the exact value of the given expression.

(a) cos(cos−1 2) (b) cos (sin−1 5
13

) (c) sin(cos−1
(
−

√
3

2

)
).

Exercise 19.18
Find the exact value of the given expression.

(a) cos (2 sin−1
√

2
2

)
(b) sin (2 sin−1 4

5
)

(c) cos
(
sin−1 3

4
+ cos−1 5

13

)
.

Exercise 19.19
Solve the equation for x algebraically.

(a) sin−1 x = cos−1 5
13

.
(b) cos−1

(
x− 1

2

)
= π

3
.

Exercise 19.20
Solve the equation for x algebraically.

(a) sin−1 x + cos−1 4
5

= π
6
.

(b) cos−1 x + sin−1
√

3
2

= π
2
.
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Exercise 19.21
Evaluate each expression.
(a) y = tan (cos−1 x) (b) y = sec (sin−1 x).

Exercise 19.22
Establish the identities.

(a) sin−1 x + sin−1 (−x) = 0
(b) cos−1 x + cos−1 (−x) = π.

Exercise 19.23
Find the exact radian value.

(a) tan−1
√

3 (b) sec−1 2
√

3
3

(c) cot−1
√

3 (d) csc−1 (−2).

Exercise 19.24
Find the exact value of the given expression.

(a) tan (tan−1 1
2
) (b) cos (sec−1 2).

Exercise 19.25
Find the exact value of the given expression.

(a) cot (csc−1 2) (b) sec (tan−1 12
5
).

Exercise 19.26
Find the exact value of the given expression: cos (2 tan−1 1)

Exercise 19.27
Solve the equation for x algebraically.

tan−1 x = sin−1 24
25

.

Exercise 19.28
Establish the identity.

sec−1 1

x
+ csc−1 1

x
=

π

2
.

Exercise 19.29
Solve the equation: 1 + sin x = cos2 x.
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20 Trigonometric Equations

An equation that contains trigonometric functions is called a trigonomet-
ric equation. In this section we will discuss some techniques for solving
trigonometric equations. The values that satisfy a trigonometric equation
are called solutions of the equation. To solve a trigonometric equation is
to find all its solutions.

Example 20.1
Determine whether x = π

4
is a solution of the equation

sin x =
1

2
.

Is x = π
6

a solution?

Solution.
Since sin π

4
=

√
2

2
6= 1

2
then x = π

4
is not a solution to the given equation. On

the contrary, x = π
6

is a solution since sin π
6

= 1
2
.

Unless the domain of a variable is restricted, most trigonometric equations
have an infinite number of solutions, a fact due to the periodicity property
of the trigonometric functions.

Solving the Equation sin x = sin a
The first set of solutions is given by the formula x = a + 2kπ, where k is an
integer. But sin a = sin (π − a) so that the second set of solutions is given
by the formula x = π − a + 2kπ.

Example 20.2
Find all the solutions of the equation 2 sin x− 1 = 0.

Solution.
The given equation is equivalent to sin x = 1

2
= sin π

6
. The solutions to this

equation are given by {
x = π

6
+ 2kπ

x = 5π
6

+ 2kπ

Example 20.3
Solve the equation: sin x = 1

3
.
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Solution.
Since sin x = sin (sin−1 1

3
) then the solutions are given by{
x = sin−1 1

3
+ 2kπ

x = π − sin−1 1
3

+ 2kπ

Sometimes some standard algebraic techniques such as collecting like terms
or factoring are used in solving trigonometric equations.

Example 20.4
Solve the equation: sin2 x− sin x = 0.

Solution.
Factoring we find sin x(sin x − 1) = 0. Thus, either sin x = 0 or sin x = 1.
The solutions of the equation sin x = 0 are given by x = kπ where k is any
integer. The solutions of the equation sin x = 1 are given by x = (2k + 1)π

2

where k is an arbitrary integer.

Solving the Equation cos x = cos a
The first set of solutions is given by the formula x = a + 2kπ, where k is an
integer. But cos a = cos (−a) so that the second set of solutions is given by
the formula x = −a + 2kπ.

Example 20.5
Solve the equation: 2 cos2 x− 7 cos x + 3 = 0.

Solution.
Factoring the given equation to obtain:

(2 cos x− 1)(cos x− 3) = 0.

This equation is satisfied for all values of x such that either cos x = 1
2

or
cos x = 3. Since −1 ≤ cos x ≤ 1 then the second equation has no solutions.
The solutions to the first equation in the interval [0, 2π) are π

3
and 5π

3
. All

the solutions are given by π
3

+ 2kπ or 5π
3

+ 2kπ where k is an integer.

Example 20.6
Solve the equation: 3 cos x + 3 = sin2 x.
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Solution.
Using the identity sin2 x + cos2 x = 1 we obtain the quadratic equation
2 cos2 x+3 cos x+1 = 0 which can be factored into (2 cos x+1)(cos x+1) = 0.
Thus either cos x = −1

2
or cos x = −1. The solutions to the first equation are

given by {
x = 2π

3
+ 2kπ

x = 4π
3

+ 2kπ.

The solutions to the second equation are given by x = (2k + 1)π where k is
an arbitrary integer.

Example 20.7
Solve the equation: sin 2x− cos x = 0.

Solution.
Using the identity sin 2x = 2 sin x cos x the given equation can be factored
as cos x(2 sin x − 1) = 0. Thus, either cos x = 0 or sin x = 1

2
. The solutions

to the first equation are given by x = (2k + 1)π
2

and those to the second
equation are given by {

x = π
6

+ 2kπ
x = 5π

6
+ 2kπ

where k is an integer.

Example 20.8
Solve the equation: cos x + 1 = sin x in the interval [0, 2π).

Solution.
Squaring both sides of the equation and expanding to obtain

cos2 x + 2 cos x + 1 = sin2 x

Using the identity sin2 x + cos2 x = 1, the last equation reduces to

2 cos2 x + 2 cos x = 0.

Factoring to obtain cos x(2 cos x + 1) = 0. Thus, either cos x = 0 or cos x =
−1

2
. The first equation has the solutions π

2
and 3π

2
. The second equation has

the solution π. Now since we solved this equation by squaring then we must
check for extraneous solutions. Substituting the three values found above in
to the equation we find that only π and π

2
satisfy the equation.
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Solving the Equation tan x = tan a
The solutions to this equation are given by the formula

x = a + kπ

where k is an integer.

Example 20.9
Solve the equation tan2 x− 3 = 0.

Solution.
Isolating tan x we find

tan2 x− 3 = 0
tan2 x = 3

tan x = ±
√

3

Solving the equation tan x =
√

3 = tan π
3

we find the solutions x = π
3

+ kπ.

Solving the equation tan x = −
√

3 = tan 5π
3

we find the solutions x = 5π
3

+
kπ

Example 20.10
Find the values of x for which the curves f(x) = sin x and g(x) = cos x
intersect.

Solution.
The solutions to the equation sin x = cos x are the points of intersection of
the two curves. The above equation is equivalent to tan x = 1 = tan π

4
. The

collection of all solutions is given by π
4

+ kπ where k is an integer.

Example 20.11
Solve the equation: sin 2x = 1, 0 ≤ x < 2π.

Solution.
We have 2x = (2k + 1)π

2
or x = (2k + 1)π

4
, where k is an integer. Since

0 ≤ x < 2π then 0 ≤ (2k + 1)π
4

< 2π or 0 ≤ 2k + 1 < 8. Thus 0 ≤ k < 7
2
.

This gives the values k = 0, 1, 2 and k = 3. So the solutions to the equation
on the given interval are x = π

4
, 3π

4
, 5

4
π, 7

4
π.
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Review Problems

Exercise 20.1
Solve the following equation for exact solutions in the interval 0 ≤ x < 2π.

sec x−
√

2 = 0.

Exercise 20.2
Solve the following equation for exact solutions in the interval 0 ≤ x < 2π.

sin2 x− 1 = 0.

Exercise 20.3
Solve the following equation for exact solutions in the interval 0 ≤ x < 2π.

2 sin2 x + 1 = 3 sin x.

Exercise 20.4
Solve the following equation for exact solutions in the interval 0 ≤ x < 2π.

sin4 x = sin2 x.

Exercise 20.5
Solve the following equation for exact solutions in the interval 0 ≤ x < 2π.

tan2 x + tan x−
√

3 =
√

3 tan x.

Exercise 20.6
Solve the following equation for exact solutions in the interval 0 ≤ x < 2π.

2 cos2 x + 1 = −3 cos x.

Exercise 20.7
Solve the following equation for exact solutions in the interval 0◦ ≤ x < 360◦.
Round approximate solutions to the nearest tenth of a degree.

3 sec x− 8 = 0.

Exercise 20.8
Solve the following equation for exact solutions in the interval 0◦ ≤ x < 360◦.
Round approximate solutions to the nearest tenth of a degree.

3 cos x + 3 = 0.

208



Exercise 20.9
Solve the following equation for exact solutions in the interval 0◦ ≤ x < 360◦.
Round approximate solutions to the nearest tenth of a degree.

3 tan2 x− 2 tan x = 0.

Exercise 20.10
Solve the following equation for exact solutions in the interval 0◦ ≤ x < 360◦.
Round approximate solutions to the nearest tenth of a degree.

2 sin2 x = 1− cos x.

Exercise 20.11
Solve the following equation for exact solutions in the interval 0◦ ≤ x < 360◦.
Round approximate solutions to the nearest tenth of a degree.

2 tan2 x− tan x− 10 = 0.

Exercise 20.12
Solve the following equation for exact solutions in the interval 0◦ ≤ x < 360◦.
Round approximate solutions to the nearest tenth of a degree.

2 sin x cos x− sin x− 2 cos x + 1 = 0.

Exercise 20.13
Solve the following equation for exact solutions in the interval 0◦ ≤ x < 360◦.
Round approximate solutions to the nearest tenth of a degree.

3 sin2 x− sin x− 1 = 0.

Exercise 20.14
Solve the following equation for exact solutions in the interval 0◦ ≤ x < 360◦.
Round approximate solutions to the nearest tenth of a degree.

cos2 x− 3 sin x + 2 sin2 x = 0.

Exercise 20.15
Find the exact solutions, in radians, of the equation

tan 2x− 1 = 0.
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Exercise 20.16
Find the exact solutions, in radians, of the equation

sin 2x− sin x = 0.

Exercise 20.17
Find the exact solutions, in radians, of the equation

sin2 x

2
+ cos x = 1.

Exercise 20.18
Find the exact solutions, in radians, where 0 ≤ x < 2π.

cos 2x = 1− 3 sin x.

Exercise 20.19
Find the exact solutions, in radians, where 0 ≤ x < 2π.

sin 2x cos x + cos 2x sin x = 0.

Exercise 20.20
Find the exact solutions, in radians, where 0 ≤ x < 2π.

cos 2x cos x− sin 2x sin x = 0.

Exercise 20.21
Find the exact solutions, in radians, where 0 ≤ x < 2π.

2 sin x cos x− 2
√

2 sin x−
√

3 cos x +
√

6 = 0.

Exercise 20.22
Solve the equation: 2 sin2 x cos x− cos x = 0, for 0 ≤ x < 2π.

Exercise 20.23
Solve the equation: 3 cos2 x− 5 cos x− 4 = 0, 0 ≤ x < 2π.

Exercise 20.24
Solve the equation sin 3x = 1.
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Exercise 20.25
How many solutions does the equation sin ( 1

x
) = 0 have on the interval 0 <

x < π
2
?

Exercise 20.26
Solve the eqution: 2 sin 3x− 1 = 0.

Exercise 20.27
Solve the equation:

√
3 tan x

2
− 1 = 0.

Exercise 20.28
Solve the equation: tan2 x− tan x− 2 = 0.

Exercise 20.29
Solve the equation: 3 sin x− 2 = 0.

Exercise 20.30
If a projectile is fired with velocity v0 at an angle θ, then the maximum height
it reaches (in feet) is modeled by the function

M(θ) =
v2

0 sin2 θ

64
.

Suppose that v0 = 400ft/s.
(a) At what angle θ should the projectile be fired so that the maximum height
it reaches is 2000 ft?
(b) Is it possible for the projectile to reach a height of 3000 ft?
(c) Find the angle θ for which the projectile will travel highest.

Exercise 20.31
Approximate the largest value of k for which the equation sin x cos x = k has
a solution.
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21 The Law of Sines

One important use of trigonometry is to solve problems that can be mod-
eled by a triangle. Determining the measures of all the sides and angles of
a triangle is referred to as solving the triangle. In Section 8, we used
trigonometric functions to solve right triangles. These functions can also be
used to solve oblique triangles, that is, triangles with no right angles. This
can be done by using the Law of Sines to be discussed in this section and the
Law of Cosines to be discussed in the next section.
To simplify our discussion, we will agree that in the triangle ∆ABC, the
vertices are A, B, and C, and the sides opposite these vertices are a, b, and c
respectively. See Figure 21.1. Also, when writing A = 42◦ we will mean that
the measure of the angle at vertex A is 42◦.

Figure 21.1

The Law of Sines
The Law of Sines is a relationship between the angles and the sides of a
triangle. This law requires that either two angles and a side are given (AAS)
or two sides and an angle are given (SSA)(note that the angle must not be
the angle between the two given sides).
We derive the Law of Sines as follows. Consider a triangle with sides a, b, c
and angles A, B, C. Let CD be the altitude drawn from C. See Figure 21.2.
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Figure 21.2

From Figure 21.2, we see that h = b sin A and h = a sin B. Thus, b sin A =
a sin B or sin A

a
= sin B

b
. Next, let AE be the altitude drawn from A. Then h′ =

c sin B and sin C = sin (π − ∠ECA) = sin ∠ECA = h′

b
so that h′ = b sin C.

Thus, c sin B = b sin C or sin B
b

= sin C
c

. We conclude that

a

sin A
=

b

sin B
=

c

sin C
.

This relationship is known as the Law of Sines.

Example 21.1
Solve the triangle ABC if a = 74.1, A = 52.1◦, and C = 35.9◦.

Solution.
Using the Law of Sines we can write the equality

sin A

a
=

sin C

c
.

Solving this for c we find

c =
a sin C

sin A
=

(74.1) sin (35.9◦)

sin (52.1◦)
≈ 55.1.

To find the angle B we use the fact that the sum of the interior angles is
180◦. Thus, B = 180◦ − (A + C) = 180◦ − (52.1◦ + 35.9◦) = 92.0◦.
To find b, we use the Law of sines again

sin A

a
=

sin B

b

and solving for b we find

b =
a sin B

sin A
=

74.1 sin (92.0◦)

sin (52.1◦)
≈ 93.8
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Example 21.2
Solve the triangle in Figure 21.3.

Figure 21.3

Solution.
Note first that B = 180◦ − (20◦ + 25◦) = 135◦. By the Law of Sines we have

a

sin A
=

c

sin C
.

Solving this equation for a we find

a =
c sin A

sin C
=

80.4 sin 20◦

sin 25◦
≈ 65.1.

Similarly, to find b we use b
sin B

= c
sin C

. Solving for b

b =
c sin B

sin C
=

80.4 sin 135◦

sin 25◦
≈ 134.5.

The Ambiguous Case (SSA)
Given two sides and the angle opposite one of them. One must compute the
angle opposite the other side. Recall that if the sine function is positive,
there are two possible answers, a first quadrant angle and a second quadrant
angle. Since the sum of all angles of a triangle is 180 degrees, there may be
two possible answers. Recall further that the sine function must be less than
or equal to one. If the sine exceeds one, there is no solution, and thus no
triangle. The three examples below show the three possible scenarios for this
case: no solution, one solution, and two solutions.
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Example 21.3 (No Solution)
If a = 5.7, b = 8.8 and A = 68.7◦, find c, B and C for any possible triangles.

Solution.
This is SSA so we use the Law of Sines where we have ambiguity. We first
have sin B

b
= sin A

a
which gives sin B = b sin A

a
. From that we get sin B =

8.8 sin 68.7◦

5.7
or sin B ≈ 1.438. This is impossible since the sine of an angle can

not exceed 1, so there are no possible triangles. See Figure 21.4.

Figure 21.4

Example 21.4 (One Solution)
If a = 2.0, b = 1.4, and A = 44.5◦, find c, B, and C for any possible triangles.

Solution.
This is SSA so we use the Law of Sines where we have ambiguity. We first
have sin B

b
= sin A

a
which gives sin B = b sin A

a
. From that we get sin B =

1.4 sin 44.5◦

2.0
≈ 0.4906. Hence, either B = arcsin (0.4906) ≈ 29.4◦ or B = 180◦−

29.4◦ ≈ 150.6◦ ( reject since 44.5◦+150.6◦ > 180◦). Now, C = 180◦−44.5◦−
29.4◦ = 106.1◦.
To find c, we use the Law of Sines again, sin A

a
= sin C

c
or c = a sin C

sin A
=

(2.0) sin (106.1◦)
sin 44.5◦

≈ 2.7. So there is one possible triangle as shown in Figure
21.5.

Figure 21.5
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Example 21.5 (Two Solutions)
If a = 32.2, b = 20.3andB = 20◦, find c, B and C for any possible triangles.

Solution.
This is an SSA problem so we will use the Law of Sines. Keep in mind
that this is the ambiguous case. We first have sin B

b
= sin A

a
which gives

sin A = a sin B
b

. From that we get sin A = 32.2 sin 20◦

20.3
≈ 0.5425.

Now, A = arcsin 0.5425 ≈ 32.9◦. However, the angle 180◦ − 32.9◦ = 147.1◦

gives the same sine value. We therefore can construct two triangles.
Triangle # 1 - A1 = 32.9◦. Then C1 = 180◦ − 20◦ − 32.9◦ = 127.1◦. By
the Law of Sines, sin C1

c1
= sin A1

a
, giving c1 = a sin C1

sin A
≈ 47.3. This does leave

the largest side opposite the largest angle and the smallest side opposite the
smallest angle so we suspect our work was probably right.
Triangle # 2 - A2 = 147.1◦. Then C2 = 180◦ − 147.1◦ − 20◦ = 12.9◦. By
the Law of sines, sin C2

c2
= sin A2

a
giving c2 = a sin C2

sin A2
≈ 13.2. This also leaves

the largest side opposite the largest angle and the smallest side opposite the
smallest angle so we suspect our work was probably right. See Figure 21.6.

Figure 21.6

Example 21.6
A forest fire is spotted by observers in two fire towers 12 miles apart. Tower
B is on a bearing of S12◦10′E from Tower A. If the bearing of the fire from
Tower A is S45◦40′W and from Tower B is N75◦20′W , how far is the fire
from Tower B?

Solution.
Using Figure 21.7 we see that the triangle ABC has interior angles of measure
A = 57◦50′, B = 63◦10′ and C = 180◦ − 57◦50′ − 63◦10′ = 59◦. The problem
is to find a. By the Law of Sines, sin A

a
= sin C

c
. This implies that a = c sin A

sin C
=
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12 sin 57◦50′

sin 59◦
≈ 11.9 miles.

Figure 21.7
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Review Problems

Exercise 21.1
Solve the triangle: A = 42◦, B = 61◦, a = 12.

Exercise 21.2
Solve the triangle: B = 28◦, C = 78◦, c = 44.

Exercise 21.3
Solve the triangle: A = 110◦, C = 32◦, b = 12.

Exercise 21.4
Solve the triangle: A = 82◦, B = 65.4◦, b = 36.5.

Exercise 21.5
Solve the triangle: A = 33.8◦, C = 98.5◦, c = 102.

Exercise 21.6
Solve the triangle: C = 114.2◦, c = 87.2, b = 12.1.

Exercise 21.7
Solve the triangle: A = 37◦, c = 40, a = 28.

Exercise 21.8
Solve the triangle: A = 30◦, a = 1.0, b = 2.4.

Exercise 21.9
Solve the triangle: C = 47.2◦, a = 8.25, c = 5.80.

Exercise 21.10
Solve the triangle: B = 117.32◦, b = 67.25, a = 15.05.

Exercise 21.11
When the angle of elevation of the sun is 62◦, a telephone pole tilted at an
angle of 7◦ away from the sun casts a shadow 30 feet long on the ground (See
Figure 21.8). To tenths place, approximate the length of the phone pole.
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Figure 21.8

Exercise 21.12
To find the distance between two points A and B that are on opposite sides of
a river, a surveyor measures a distance on the same side of the river as point
A. The distance to this point is 240 feet and call it point C. He then mea-
sures the angles from A to B as 62◦ and measures the angle from C to B as
55◦. (See Figure 21.9) To tenths place, approximate the distance from A to B.

Figure 21.9

Exercise 21.13
Two tracking stations are on an east-west line 110 miles apart. A large forest
fire is located on a bearing of N42◦E from the western station and a bearing
of N15◦E from the eastern station. How far is the fire from the western
station?

Exercise 21.14
A ship sailing due north spots a lighthouse 30◦ to the left of its line of travel.

219



Two miles later, the lighthouse is 50◦ to the left of its line of travel. How far
is the ship from the lighthouse at that point? (Assume the earth is flat.)

Exercise 21.15
Scientists wish to measure the diameter of a large circular meteor crater. Two
points A and B on the edge of the pit are 120 feet apart. From a point C on
the far side of the pit, the angle between the lines AC and BC is measured
to be 8◦. Use the Law of Sines to find the diameter of the crater.

Exercise 21.16
Solve the triangle: A = 45◦, a = 7

√
2, b = 7.

Exercise 21.17
Solve the triangle: A = 43.1◦, a = 186.2, b = 248.6.

Exercise 21.18
Solve the triangle: A = 57◦, a = 15, c = 20.

Exercise 21.19
Solve the triangle: A = 42◦, a = 70, b = 122.

Exercise 21.20
Solve the triangle: B = 32◦, a = 42, b = 30.

Exercise 21.21
Solve the triangle: C = 65◦, b = 10, c = 8.0.
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Exercise 21.22
Solve the triangle: A = 14.8◦, c = 6.35, a = 4.80.

Exercise 21.23
Show that for any triangle ABC one has

a− b

b
=

sin A− sin B

sin B
.

Exercise 21.24
A satellite orbiting the earth passes directly overhead at observation stations
in Phoenix and Loas Angeles, 340 miles apart. At an instant when the
satellite is between these two stations, its angle of elevation is simultaneously
observed to be 60◦ at Phoenix and 75◦ at Los Angeles. How far is the satellite
from Los Angeles?

Exercise 21.25
To find the distance across a river, a surveyor chooses points A and B, which
are 200 ft apart on one side of the river. She then chooses a reference point
C on the opposite side of the river and finds that A ≈ 82◦ and B ≈ 52◦.
Approximate the distance from A to C.

221



22 The Law of Cosines and Its Applications

The Law of Sines is applicable when either two angles and a side are given
or two sides and an angle are given such that the angle is opposite to the
angle between the two sides. When two sides and the angle between them
are given (SAS) or the three sides are given (SSS) then a triangle is being
solved by using the Law of Cosines.
By the Law of Cosines we mean one of the following formulas

a2 = b2 + c2 − 2bc cos A (24)

b2 = a2 + c2 − 2ac cos B (25)

c2 = a2 + b2 − 2ab cos C. (26)

In words, the Law of Cosines says that the square of any side of a triangle
is equal to the sum of the squares of the other two sides, minus twice the
product of those two sides times the cosine of the included angle. Note that
if a triangle is a right triangle at A then cos A = 0 and the Law of Cosines
reduces to the Pythagorean Theorem a2 = b2 + c2. Thus, the Pythagorean
Theorem is a special case of the Law of Cosines.
We derive the first formula. The proofs of the other two are quite similar.
Consider the triangle given in the Figure 22.1.

Figure 22.1
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Using the distance formula and the identity sin2 A + cos2 A = 1 we have

a2 = d(B, C) = (c cos A− b)2 + (c sin A− 0)2

= c2 cos2 A− 2bc cos A + b2 + c2 sin2 A
= c2(sin2 A + cos2 A) + b2 − 2bc cos A
= b2 + c2 − 2bc cos A

The above formulas are useful when trying to solve the SAS problem. To
Solve the SSS problem, we use ( 24) - ( 26) to write the cosine functions in
terms of the sides of the triangle. That is,

cos A = b2+c2−a2

2bc

cos B = a2+c2−b2

2ac

cos C = b2+a2−c2

2ab
.

Example 22.1 (SSS)
Solve the triangle with sides a = 3, b = 5, c = 7.

Solution.
Find the largest angle of the triangle first. This will be C because the longest
side is c. Then by the Law of Cosines we have

c2 = a2 + b2 − 2ab cos C
49 = 9 + 25− 2(3)(5) cos C
49 = 34− 30 cos C
15 = −30 cos C
−1/2 = cos C

arccos (−1/2) = C
120◦ = C.

Now that we have an angle, we can switch to the law of sines.(Easier to use)
To find B we proceed as follows

sin B
b

= sin C
c

sin B
5

= sin 120◦

7

7 sin B = 5 sin 120◦

sin B = 5
7
sin 120◦

sin B = 0.6185895741317
B = arcsin (0.6185895741317) ≈ 38.2◦

Finally, A = 180◦ − (120◦ + 38.2◦) = 21.8◦.
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Example 22.2 (SAS)
Solve the triangle if a = 3, b = 7 and C = 37◦.

Solution.
We are given two sides and the included angle. We must find the third side.
The missing side is c. By the Law of Cosines

c2 = a2 + b2 − 2ab cos C
c2 = 9 + 49− 2(3)(7) cos 37◦

c2 = 58− 42 cos 37◦

c =
√

58− 42 cos 37◦ ≈ 4.9.

Now use the Law of Sines and find the smallest angle. The smallest angle
is definitely an acute angle. The Law of Sines can not distinquish between
acute and obtuse because both angles give a positive answer. The smallest
angle is opposite side a, the shortest side.

sin A
3

= sin 37◦

4.9

4.9 sin A = 3 sin 37◦

sin A = 3
4.9

sin 37◦

sin A = .36845817
A ≈ 21.6◦

To find the angle B, B = 180◦ − (21.6◦ + 37◦) = 121.4◦.

Example 22.3
A tunnel is to be built through a mountain. To estimate the length of the
tunnel, a surveyor makes the measurements shown in Figure 22.2. Use the
surveyor’s data to approximate the length of the tunnel.

Figure 22.2
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Solution.
By the Law of Cosines we have

c2 =
√

a2 + b2 − 2ab cos C

=
√

3882 + 2122 − 2(388)(212) cos 42.4◦

≈ 416.8ft.

Applications of the Law of Cosines and Law of Sines
The Law of Cosines can be used to derive a formula for finding the area of a
triangle given two sides and the included angle. To avoid confusion, we shall
use the letter K for the area since A has been used to denote an angle (or a
vertex.)
Consider the triangles in Figure 22.3.

Figure 22.3

Then the area of the triangle is K = 1
2
height × base = 1

2
hb. But sin A = h

c

or h = c sin A. Thus,

K =
1

2
bc sin A.

Using similar arguments, one can establish the area formulas

K =
1

2
ac sin B and K =

1

2
ab sin C.

Example 22.4
Given A = 62◦, b = 12 meters, and c = 5.0 meters, find the area of the
triangle ABC.
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Solution.
Using the formula for area, we have

K =
1

2
bc sin A =

1

2
(12)(5.0) sin 62◦ ≈ 26 m2.

Example 22.5
A farmer has a triangular field with sides 120 yards, 170 yards, and 220 yards.
Find the area of the field in square yards. Then find the number of acres if
1 acre = 4840 square yards.

Solution.
We need to find an angle so we can use the area formula So, let a = 120, b =
170, c = 220. We start by finding C.

c2 = a2 + b2 − 2ab cos C
48400 = 14400 + 28900− 40800 cos C
5100 = −40800 cos C
− 5100

40800
= cos C

arccos (−5100
40800

) = C
97.2◦ ≈ C

Now find the area
K = 1

2
ab sin C

K = 1
2
(120)(170) sin 97.2◦

K = 10120 square yards

The number of acres is found by: 10120
4840

≈ 2.1 acres.

The formulas of area requires that two sides and an included angle be given.
What if two angles and an included side are given? In this case, the Law of
Sines and the Law of Cosines must be used together. To be more precise,
suppose that the angles B and C together with the side a are given. Then,
by the Law of Sines we can find c :

sin C
c

= sin A
a

c = a sin C
sin A

.

By the Law of Cosines we have that

K =
1

2
ac sin B =

1

2

a2 sin C sin B

sin A
.
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In a similar way, we can derive the formulas

K =
1

2

b2 sin A sin C

sin B
and K =

1

2

c2 sin A sin B

sin C
.

Example 22.6
Given A = 32◦, C = 77◦, and a = 14 inches, find the area of the triangle
ABC.

Solution.
Since A and C are given then we can find B = 180◦ − (32◦ + 77◦) = 71◦.
Thus,

K =
a2 sin B sin C

2 sin A
=

142 sin 71◦ sin 77◦

2 sin 32◦
≈ 170 square inches.

Finally, we will find a formula for the area when the three sides of the triangle
are given. In what follows, we let s = a+b+c

2
(i.e. s is half the perimeter of

the triangle). So let’s look at Figure 22.4.

Figure 22.4

Using the Pythagorean theorem we can write a2 − p2 = c2 − (b − p)2 or
a2 − p2 = c2 − b2 − p2 + 2bp. Solving for p we find

p =
a2 + b2 − c2

2b
.
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A simple arithmetic shows the following

h2 = a2 − p2 = (a− p)(a + p)

=
(
a− a2+b2−c2

2b

)(
a + a2+b2−c2

2b

)
=

(
2ab−a2−b2+c2

2b

)(
2ab+a2+b2−c2

2b

)
= c2−(a−b)2

2b
(a+b)2−c2

2b

= (c−a+b)(c+a−b)(a+b−c)(a+b+c)
4b2

= (a+b+c)(−a+b+c)(a−b+c)(a+b−c)
4b2

= (2s)2(s−a)2(s−b)2(s−c)
4b2

= 4s(s−a)(s−b)(s−c)
b2

Thus,

h =
2
√

s(s− a)(s− b)(s− c)

b

But the area of the triangle is

K =
1

2
bh =

(
1

2
b

)(
2
√

s(s− a)(s− b)(s− c)

b

)
=
√

s(s− a)(s− b)(s− c).

This last formula is known as Heron’s formula.
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Review Problems

Exercise 22.1
Find the third side of the triangle: a = 12, b = 18, C = 44◦.

Exercise 22.2
Find the third side of the triangle: a = 120, c = 180, B = 56◦.

Exercise 22.3
Find the third side of the triangle: a = 9.0, b = 7.0, C = 72◦.

Exercise 22.4
Find the third side of the triangle: a = 25.9, c = 33.4, B = 84.0◦.

Exercise 22.5
Given the three sides of a triangle, find the specified angle: a = 8.0, b =
9.0, c = 12. Find C.

Exercise 22.6
Given the three sides of a triangle, find the specified angle: a = 108, b =
132, c = 160. Find A.

Exercise 22.7
Given the three sides of a triangle, find the specified angle: a = 32.5, b =
40.1, c = 29.6. Find B.

Exercise 22.8
Find the area of the triangle: A = 105◦, b = 12, c = 24.

Exercise 22.9
Find the area of the triangle: A = 42◦, B = 76◦, c = 12.

Exercise 22.10
Find the area of the triangle: a = 16, b = 12, c = 14.

Exercise 22.11
Find the area of the triangle: a = 3.6, b = 4.2, c = 4.8.

Exercise 22.12
Find the area of a triangular piece of land that is bounded by sides of 236
meters, 620 meters, and 814 meters.
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Exercise 22.13
A commercial piece of real estate is priced at $2.20 per square foot. Find, to
the nearest $1000, the cost of a triangular lot measuring 212 feet by 185 feet
by 240 feet.

Exercise 22.14
An engineer wishes to measure the diameter of a hole in the ground, but
his tape measure isn’t long enough. He places stakes at points A and B on
opposite sides of the hole, then places a third stake at a point C at the edge
of the hole somewhere between A and C. His tape is long enough to measure
the distance from C to A at 28 feet and the distance from C to B at 26 feet.
From the point C, the angle between the lines AC and CB is 158◦. How far
is it from A to B?

Exercise 22.15
The sides of a triangle are a = 5, b = 8, and c = 12. Find the angles of the
triangle.

Exercise 22.16
Solve the triangle with A = 46.5◦, b = 10.5, and c = 18.0.

Exercise 22.17
Find the third side of the triangle: a = 400, b = 620, C = 116◦.

Exercise 22.18
Find the third side of the triangle: a = 122, c = 144, B = 48◦.

Exercise 22.19
Given the three sides of a triangle, find the specified angle: a = 25, b =
32, c = 40. Find C.

Exercise 22.20
Find the area of the triangle: A = 116◦, B = 34◦, c = 8.5.

Exercise 22.21
Find the area of the triangle: A = 42◦, B = 76◦, c = 12.

Exercise 22.22
Find the area of the triangle: a = 16, b = 12, c = 14.
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Exercise 22.23
Find the area of the triangle: a = 3.6, b = 4.2, c = 4.8.

Exercise 22.24
A pilot sets out from an airport and heads in the direction N 20◦E, flying
at 200mph. After one hour, he makes a course direction and heads in the
direction N 40◦E. Half an hour after that, engine trouble forces him to make
an emergency landing.

(a) Find the distance between the airport and his final landing point.
(b) Find the bearing from the airport to his final landing point. Notation
such as N 40◦E is known as a bearing in navigation.

Exercise 22.25
A businessman wishes to buy a triangular lot in a busy downtown location.
The lot frontages on the three adjacent streets are 125, 280, and 315 ft. Find
the area of the lot.
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23 The Dot Product of Two Vectors

The concept of vectors is widely used in the physical sciences. One important
question about vectors is the question of orthogonality. That is, when two
vectors are perpendicular. Testing the orthogonality of two vectors can be
accomplished by the use of the concept of dot product.
We start this section by discussing the notion of a vector. You must have
already encountered this concept without noticing that. Remember that the
speed and the velocity of a moving object are two completely different con-
cepts. Speed is a scalar quantity which refers to ”how fast an object is
moving.” A fast-moving object has a high speed while a slow-moving object
has a low speed. An object with no movement at all has a zero speed. The
Velocity of an object measures the speed together with the direction of the
moving object. We represent a velocity by a vector (a concept to be defined
below) whose magnitude or length is the speed and whose direction is the
direction of the moving object. Thus, velocity is a vector quantity. As such,
velocity is ”direction-aware.” When evaluating the velocity of an object, one
must keep track of direction. It would not be enough to say that an object
has a velocity of 55 mi/hr. One must include direction information in order
to fully describe the velocity of the object. For instance, you must describe
an object’s velocity as being 55 mi/hr, east. This is one of the essential
differences between speed and velocity. Speed is a scalar and does not keep
track of direction; velocity is a vector and is direction-aware.

A vector v is a line segment with a direction as shown in Figure 23.1.
If the direction of the vector is switched then we get the opposite vector -v.
The magnitude of a vector will be denoted by ||v||.

Figure 23.1
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By introducing a coordinate plane, it is possible to develop an analytic ap-
proach to vectors. So we will assume that the undirected endpoint of a vector
coincides with the point O(0, 0) as shown in the Figure 23.2. We denote this
vector by the ordered pair v =< a, b > . a is called the first component
and b is called the second component.

Figure 23.2

Expressing vectors in terms of components provides a convenient method for
performing the following operations:

• Magnitude: ||v|| = d(O,P ) =
√

a2 + b2.
• Direction: θ = 180◦−α = 180◦−arctan (

∣∣ b
a

∣∣), where θ is the angle between
the vector and the positive x-axis and α is the reference angle.
• Sum: v + w =< a, b > + < c, d >=< a + c, b + d > .
• Scalar Multiplication: kv = k < a, b >=< ka, kb > .

Example 23.1
Given v =< −2, 4 > and w =< −3,−2 > . Find

(a) The direction of the vector v (b) ||v + 2w||.

Solution.
(a) tan α =

∣∣ b
a

∣∣ = | 4
−2
| = 2. So that θ = 180◦ − arctan 2 ≈ 178.9◦.

(b) ||v + 2w|| = || < −2, 4 > +2 < −3,−2 > || = || < −8, 0 > || =√
64 + 0 = 8.

Unit Vectors
A unit vector is a vector of magnitude 1. For example, the vector v =<
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−4
5
, 1

5
> is a unit vector since

||v|| =

√(
−4

5

)2

+

(
1

5

)2

= 1.

Now, for any given nonzero vector v =< a, b > we can find a unit vector in the
same direction as the vector v. Indeed, if we let w = v

||v|| =< a√
a2+b2

, b√
a2+b2

>
then

||w|| =
√

a2

a2 + b2
+

b2

a2 + b2
=

√
a2 + b2

a2 + b2
=
√

1 = 1.

Example 23.2
Find a unit vector in the direction of v =< −4, 2 > .

Solution.
The magnitude or norm of the vector v is ||v|| =

√
(−4)2 + 22 =

√
20 = 2

√
5.

Thus,

w =
v

||v||
< −2

√
5

5
,

√
5

5
> .

Two special unit vectors are the vectors i =< 1, 0 > and j =< 0, 1 > as
shown in Figure 23.3.

Figure 23.3

Any vector v =< a, b > can be expressed as a linear combination of the unit
vectors i and j. To see this,

v =< a, b >= a < 1, 0 > +b < 0, 1 >= ai + bj.
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Example 23.3
Given u = 3i− 2j and v = −2i + 3j. Find 3u− 2v.

Solution.

3u− 2v = 3(3i− 2j)− 2(−2i + 3j) = 9i− 6j + 4i− 6j = 13i− 12j.

Horizontal and Vertical Components of a Vector
Now, let v be a nonzero vector. Suppose we know the direction angle θ of
the vector as shown in Figure 23.4.

Figure 23.4

Then, we can find the components < a, b > of the vector v using the definition
of the sine and cosine functions as follows:

cos θ =
a

||v||
and sin θ =

b

||v||
.

Thus,
a = ||v|| cos θ and b = ||v|| sin θ||.

We call ||v|| cos θ the horizontal component of v and ||v|| sin θ the vertical
component.
Since v = ai+bj = ||v|| cos θi+||v|| sin θj = ||v||(cos θi+sin θj) = ||v||u where

the vector u = cos θi+sin θj is a unit vector since ||u|| =
√

cos2 θ + sin2 θ = 1.

Example 23.4
Find the approximate horizontal and vertical components of a vector v of
norm 5 meters and direction angle θ = 27◦.
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Solution.

a = 5 cos 27◦ ≈ 4.46 and b = 5 sin 27◦ ≈ 2.27.

The Dot Product of Two Vectors
The dot product, also called the scalar product or inner product, of two
vectors is a number obtained by performing a specific operation on the vector
components. More precisely, the dot product of two vectors is determined
by multiplying their x-coordinates, then multiplying their y-coordinates, and
finally adding the two products. That is, if v =< a, b > and w =< c, d >
then

v ·w = ac + bd

Example 23.5
Find the dot product of v =< 4, 1 > and w =< −1, 4 > .

Solution.

v ·w = 4(−1) + 1(4) = 0.

Theorem 23.1
Let u =< a1, b1 >,v =< a2, b2 >, and w =< a3, b3 > be three vectors and k
be a constant number. Then

1. u · v = v · u
2. u · (v + w) = u · v + u ·w.
3. k(u · v) = (ku)v = u · (kv).
4. v · v = ||v||2.
5. 0 · v = 0 where 0 =< 0, 0 > .
6. i · i = j · j = 1.
7. i · j = j · i = 0.

Proof.
1. Using the definition, we see that

u · v = a1a2 + b1b2 = a2a1 + b2b1 = v · u.

236



That is, the dot product operation is commutative; it does not matter in
which order the operation is performed.
2. We have

u · (v + w) = < a1, b1 > · < a2 + a3, b2 + b3 >= a1(a2 + a3) + b1(b2 + b3)
= a1a2 + a1a3 + b1b2 + b1b3

= (a1a2 + b1b2) + (a1a3 + b1b3)
= u · v + u ·w

This property says that the dot product is distributive with respect to vector
addition.
3. We have

k(u · v) = k(a1a2 + b1b2)
= (ka1)a2 + (kb1)b2

= (ku)v

In a similar fashion, one can prove that k(u · v) = u · (kv).
4. We have

v · v = a2
1 + b2

1 = ||v||2.

5. We have
0 · v = 0a1 + 0b1 = 0.

6. i · i = 1(1) + 0(0) = 1 and j · j = 0(0) + 1(1) = 1.
7. i · j = 1(0) + 0(1) = 0 and j · i = 0(1) + 1(0) = 0.

Applications of the Dot Product
In this section you will learn four applications of the dot product of two vec-
tors: (1) finding the angle between two vectors, (2) scalar projection onto a
vector, (3) testing orthogonality, and (4) finding the work done by a force.

• Angle Between Two Vectors
Let v =< a, b > and w =< c, d > be two vectors and θ be the angle between
them as shown in Figure 23.5.
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Figure 23.5

According to Figure 23.5,
−−→
OB =

−→
OA +

−→
AB or

−→
AB =

−−→
OB−−→OA = (ci + dj)−

(ai + bj) = (c− a)i + (d− b)j. By the Law of Cosines for the triangle OAB,
we have

||−→AB||2 = ||v||2 + ||w||2 − 2||v||||w|| cos θ.

But, ||−→AB||2 = (c− a)2 +(d− b)2, ||v||2 = a2 + b2, and ||w||2 = c2 + d2. Thus,

(c− a)2 + (d− b)2 = a2 + b2 + c2 + d2 − 2||v||||w|| cos θ
c2 − 2ac + a2 + d2 − 2bd + d2 = a2 + b2 + c2 + d2 − 2||v||||w|| cos θ

−2ac− 2bd = −2||v||||w|| cos θ
ac + bd = ||v||||w|| cos θ
v ·w = ||v||||w|| cos θ

Dividing both sides of this last equality by ||v||||w|| we obtain

cos θ =
v ·w

||v||||w||

Thus, choose the smallest non-negative angle satisfying

θ = arccos

(
v ·w

||v||||w||

)
Example 23.6
Find the measure of the smallest positive angle between the vectors v =<
2,−1 > and w =< 3, 4 > .
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Solution.
Using the equation for the angle between two vectors, we have

cos θ = v·w
||v||||w||

= 2(3)+(−1)(4)√
22+(−1)2

√
32+42

= 2√
5
√

25
= 2

5
√

5
= 2

√
5

25

Thus,

θ = arccos

(
2
√

5

25

)
≈ 79.7◦.

• Orthogonal Vectors
Two vectors are orthogonal if and only if the angle between them is 90◦.
Thus, two vectors are othogonal if and only if their dot product is 0.

Example 23.7
Show that the vectors v =< 5,−2 > and w =< 2, 5 > are orthogonal.

Solution.
Since v ·w = 5(2) + (−2)(5) = 0 then the two vectors are orthogonal.

• Scalar Projection
One important use of dot products is in projections. The scalar projection
of v onto w, denoted by projwv, is the length of the segment AB shown in
Figure 23.6.

Figure 23.6

According to Figure 23.6 we can write

projwv = ||v|| cos θ =
v ·w
||w||

.
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Example 23.8
Given v =< 6, 7 > and w =< 3, 4 >, find projwv.

Solution.

projwv =
v ·w
||w||

=
6(3) + 7(4)√

32 + 42
=

46

5
.

• Work Done by a Force
Suppose you wish to find the work W done in moving a particle from one
point to another. From physics we know W = Fd, where F is the magnitude
of the force moving the particle and d is the distance between the two points.
However, this relation is only valid when the force acts in the direction the
particle moves. Suppose this is not the case. See Figure 23.7.

Figure 23.7

Let the force vector be F and the displacement vector be d. In this case, the
work is the product of the distance moved (the magnitude of the displacement
vector) and the magnitude of the component of the force that acts in the
direction of displacement (the scalar projection of F onto d):

W = ||d||||F|| cos θ = Fd.

Example 23.9
A force of 40 pounds is exerted in the direction of the handle of the wagon. If
the handle makes an angle of π

4
with the horizontal and the wagon is pulled

along a flat surface for 1 mile (5280 feet), find the work done.

Solution.
The work done can be measured by the product of the distance the wagon is
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pulled and the component of the force in the direction of the handle of the
wagon along the horizontal direction where the wagon is pulled.

W = 40 cos
(π

4

)
(5280) = 149, 341 foot− pounds
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Review Problems

Exercise 23.1
Find the magnitude and direction of the given vector. Find the unit vector
in the direction of the given vector.

(a) v =< −3, 4 > (b) v = 2i− 4j.

Exercise 23.2
Find the magnitude and direction of the given vector. Find the unit vector
in the direction of the given vector.

(a) v =< 6, 10 > (b) v = 42i− 18j.

Exercise 23.3
Perform the indicated operations where u =< −2, 4 > and v =< −3,−2 > .

(a) 3u (b) 2
3
u + 1

6
v (c) ||3u− 4v||.

Exercise 23.4
Perform the indicated operations where u = 3i− j and v = −2i + 3j.

(a) 6u + 2v (b) 2
3
v + 3

4
u (c) ||2v + 3u||.

Exercise 23.5
Find the horizontal and vertical components of the given vector. Write an
equivalent vector in the form v = a1i + a2j :
Magnitude = 5 and direction angle = 27◦.

Exercise 23.6
Find the horizontal and vertical components of the given vector. Write an
equivalent vector in the form v = a1i + a2j :
Magnitude = 4 and direction angle = π

4
.

Exercise 23.7
Find the horizontal and vertical components of the given vector. Write an
equivalent vector in the form v = a1i + a2j :
Magnitude = 2 and direction angle = 8π

7
.
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Exercise 23.8
Find the dot product of the vectors: v =< 3,−2 >;w =< 1, 3 > .

Exercise 23.9
Find the dot product of the vectors: v =< 4, 1 >;w =< −1, 4 > .

Exercise 23.10
Find the dot product of the vectors: v = 5i + 3j;w = 4i− 2j.

Exercise 23.11
Find the dot product of the vectors: v = 6i− 4j;w = −2i− 3j.

Exercise 23.12
Find the angle between the two vectors. State which pair of vectors is or-
thogonal.

(a) v =< 2,−1 > and w =< 3, 4 > .
(b) v =< 5,−2 > and w =< 2, 5 > .

Exercise 23.13
Find the angle between the two vectors. State which pair of vectors is or-
thogonal.

(a) v = 8i + j and w = −i + 8j.
(b) v = 3i− 4j and w = 6i− 12j.

Exercise 23.14
Find ProjWv.

(a) v =< 6, 7 > and w =< 3, 4 > .
(b) v =< −7, 5 > and w =< −4, 1 > .

Exercise 23.15
Find ProjWv.

(a) v = 2i + j and w = 6i + 3j.
(b) v = 3i− 4j and w = −6i + 12j.
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Exercise 23.16
A 150-pound box is dragged 15 feet along a level floor. Find the work done
if a force of 75 pounds at an angle of 32◦ is used.

Exercise 23.17
A rope is being used to pull a box up a ramp that is inclined at 15◦. The
rope exerts a force of 75 pounds on the box, and it makes an angle of 30◦

with the plane of the ramp. Find the work done in moving the box 12 feet.

Exercise 23.18
Find the smallest positive angle to the nearest degree between the vectors
v =< 3, 5 > and w =< −6, 2 > .

Exercise 23.19
Find the dot product of u = −2i + 3j and v = 5i + 3j.

Exercise 23.20
Find 3u− 5v given the vectors u = 2i− 3j and v = 5i + 4j.

Exercise 23.21
Given u = −2i + 3j. Find ||u||.

Exercise 23.22
Find the components of the vector with initial point A(−2, 4) and terminal
point B(3, 7).

Exercise 23.23
Find the magnitude and the direction of the vector u =< −2, 3 > .

Exercise 23.24
Find the components of the vector with initial point A(4, 2) and terminal
point B(−3,−3).

Exercise 23.25
Find the angle between the two vectors. State which pair of vectors is or-
thogonal.

(a) v =< 1,−5 > and w =< −2, 3 > .
(b) v = 8i + j;w = −i + 8j.
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Exercise 23.26
Find ProjWv.

(a) v =< −7, 5 > and w =< −4, 1 > .
(b) v = 5i + 2j.

Exercise 23.27
Find ProjWv.

(a) v = 2i + j and w = 6i + 3j.
(b) v = 3i− 4j and w = −6i + 12j.

Exercise 23.28
A 100-pound force is pulling a sled loaded with bricks that weighs 400 pounds.
The force is at an angle of 42◦ with the displacement. Find the work done
in moving the sled 25 feet.
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24 Introduction to Complex Numbers

Up until now, you’ve been told that you can’t take the square root of a
negative number. That’s because you had no numbers that, when squared,
were negative. So an equation like x2 + 1 = 0 has no real solutions. Trying
to solve this last equation, we end up with x = ±

√
−1. Thus, solving the

equation involves using a new number called i, standing for ”imaginary”,
such that i =

√
−1. It follows that i2 = −1.

With the above definition, we are now in a position to find the square root
of negative numbers. If a is a positive number then −a is negative and

√
−a =

√
(−1)a =

√
−1
√

a = i
√

a.

Example 24.1
Simplify

√
−18.

Solution.
We have

√
−18 =

√
9 · 2 · (−1) = 3i

√
2.

By a complex number we mean a number that can be written in the
form a + bi. We call a the real part and b the imaginary part. When
a = 0 we say that the number is purely imaginary.

Example 24.2
Write the number

√
−37− 3 in the form a + bi.

Solution.
Since

√
−37 =

√
37(−1) = (

√
37)i then

√
−37− 3 = −3 + (

√
37)i.

The Arithmetic of Complex Numbers
When a number system is extended the arithmetic operations must be de-
fined for the new numbers, and the important properties of the operations
should still hold. For example, addition of whole numbers is commutative.
This means that we can change the order in which two whole numbers are
added and the sum is the same: 3 + 5 = 8 and 5 + 3 = 8.
We need to define the four arithmetic operations on complex numbers.

• Equality of Complex Numbers
Two complex numbers a + bi and c + di are equal if and only if a = c and
b = d.
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Example 24.3
Find x so that 3 + (4− x)i = 3 + i.

Solution.
By the equality of complex numbers, we must have 4− x = 1. Solving for x
we find x = 3.

• Addition and Subtraction
To add or subtract two complex numbers, you add or subtract the real parts
and the imaginary parts.

(a + bi) + (c + di) = (a + c) + (b + d)i.
(a + bi)− (c + di) = (a− c) + (b− d)i

Example 24.4
Perform the indicated operation (a) (3− 5i) + (6 + 7i) (b) i− (3− 4i).

Solution.
(a) (3− 5i) + (6 + 7i) = (3 + 6) + (−5 + 7)i = 9 + 2i.
(b) i− (3− 4i) = (0− 3) + (1− (−4))i = −3 + 5i.

Remark 24.1
The operations of addition and subtraction are the same as combining similar
terms in expressions that have a variable. For example, if we were to simplify
the expression (3 − 5x) + (6 + 7x) by combining similar terms, then the
constants 3 and 6 would be combined, and the terms −5x and 7x would be
combined to yield 9 + 2x.

• Multiplication of Numbers
The formula for multiplying two complex numbers is

(a + bi)(c + di) = (ac− bd) + (ad + bc)i.

You do not have to memorize this formula, because you can arrive at the
same result by treating the complex numbers like expressions with a variable,
multiply them as usual by using the FOIL method and then combine like
terms. The only difference is that powers of i do simplify (using i2 = −1),
while powers of x do not.
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Example 24.5
Multiply (2 + 3i)(4 + 7i).

Solution.

(2 + 3i)(4 + 7i) = (2)(4) + (2)(7i) + (4)(3i) + (3i)(7i)
= 8 + 14i + 12i + 21(−1)
= (8− 21) + (14 + 12)i = −13 + 26i.

• Complex Conjugate
The conjugate (or complex conjugate) of the complex number a+bi is a−bi.
We denote the conjugate of a + bi by a + bi = a− bi.

Multiplying a + bi by its conjugate we find

(a + bi)(a− bi) = (a2 + b2) + 0i = a2 + b2.

Thus, a complex number times its conjugate is always real; i.e., its imaginary
part is zero.

Example 24.6
Find the conjugate of (a) −3− 4i and (b) 3 + 5i.

Solution.
(a) −3− 4i = −3 + 4i (b) 3 + 5i = 3− 5i.

• Division of Complex Numbers
By the ratio a+bi

c+di
we mean a complex number α + βi such that

a + bi

c + di
= α + βi (27)

Cross multiply and simplify to obtain

a + bi = (c + di)(α + βi)
= (cα− dβ) + (dα + cβ)i

Thus, cα − dβ = a and dα + cβ = b. Solve this system of two equations for
α and β, using the method of elimination, to obtain

α =
ac + bd

c2 + d2
and β =

bc− ad

c2 + d2
.

One can easily see that the right hand side of ( 27) is obtained by multiplying
a + bi and c + di by the conjugate c− di.(Prove that)
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Example 24.7
Find 2+6i

4+i
.

Solution.

2 + 6i

4 + i
=

(2 + 6i)

(4 + i)

(4− i)

(4− i)
=

14 + 22i

17
=

14

17
+

22

17
i.

Solving Equations
With the existence of the square roots of a negative number, it is possible
to find the solutions of any quadratic equation of the form ax2 + bx + c = 0
using the quadratic formula:

−b±
√

b2 − 4ac

2a
.

Example 24.8
What are the solutions of the quadratics: x2 +x+1 = 0 and x2−2x+3 = 0.

Solution.
Using the usual quadratic formula, we get the solutions as follows

−1±
√

1− 4

2
=
−1± i

√
3

2

and
2±

√
4− 12

2
=

2± i
√

8

2
= 1± i

√
2.
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Review Problems

Exercise 24.1
Write the given complex number in the form z = a + bi.

(a) 2 +
√
−9 (b) 4−

√
−121 (c) −

√
−100.

Exercise 24.2
Simplify and then write the complex number in the form z = a + bi.

(a) (2 + 5i) + (3 + 7i)
(b) (−5− i) + (9− 2i)
(c) (−3 + i)− (−8 + 2i).

Exercise 24.3
Simplify and then write the complex number in the form z = a + bi.

(a) 8i− (2− 3i)
(b) (4i− 5)− 2
(c) 3(2 + 7i) + 5(2− i).

Exercise 24.4
Simplify and then write the complex number in the form z = a + bi.

(a) (2 + 3i)(4− 5i)
(b) (5− 3i)(−2− 4i)
(c) (5 + 7i)(5− 7i).

Exercise 24.5
Simplify and then write the complex number in the form z = a + bi.

(a) (8i + 11)(−7 + 5i)
(b) (9− 12i)(15i + 7).

Exercise 24.6
Write each expression as a complex number in the form z = a + bi.

(a) 4+i
3+5i

(b) 1
−8+i

(c) 1
7−3i

.
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Exercise 24.7
Write each expression as a complex number in the form z = a + bi.

(a) 2i
11+i

(b) 6+i
i

(c) (−5 + 7i)2

Exercise 24.8
Write each expression as a complex number in the form z = a + bi.

(a) (1− i)− 2(4 + i)2 (b) (1− i)3 (c) (2i)(8i) (d) (−6i)(−5i)2

Exercise 24.9
Simplify and write the complex number as i,−i, or -1.

(a) −i40 (b) i223 (c) i2001 (d) i0 (e) i−1

Exercise 24.10
Simplify each product.

(a)
√
−1
√
−4 (b)

√
−3
√
−121

Exercise 24.11
Simplify each product.

(a) (4 +
√
−81)(4−

√
−81) (b) (5 +

√
−16)2.

Exercise 24.12
Solve the given quadratic equation and write the solutions in the form z =
a + bi.

(a) z2 + 2z + 2 = 0
(b) 6z2 − 5z + 5 = 0.

Exercise 24.13
Solve the given quadratic equation and write the solutions in the form z =
a + bi.

(a) 2z2 + z + 3 = 0
(b) 3z2 + 2z + 4 = 0.
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Exercise 24.14
The absolute value of a complex number a + bi is the real number

|a + bi| =
√

a2 + b2.

Find the indicated absolute value of each complex number.

(a) |5 + 12i| (b) |7− 4i| (c) | − 3i|

Exercise 24.15
Establish that |a + bi| = |a − bi|. That is, the absolute value of a complex
number and the absolute value of its conjugate are equal.

Exercise 24.16
Show that z − z is purely imaginary and z + z is a real number.

Exercise 24.17
Let z1 = a1 + b1i and z2 = a2 + b2i. Show the following:

(a) z1 + z2 = z1 + z2.
(b) z1 · z2 = z1 · z2.
(c) z1

z2
= z1

z2
.

Exercise 24.18
Show that if x = 1 + i

√
3 then x2 − 2x + 4 = 0.

Exercise 24.19
Write the given complex number in the form z = a + bi.

(a) (3 + 5i) + (4− 2i) (b) (3 + 5i)− (4− 2i) (c) (3 + 5i)(4 + 2i) (d) i23.

Exercise 24.20
Simplify and then write the complex number in the form z = a + bi.

(a) 3+5i
1−2i

(b) 7+3i
4i

.

Exercise 24.21
Simplify and then write the complex number in the form z = a + bi.

(
√

12−
√
−3)(3 +

√
−4)
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Exercise 24.22
Simplify and write the complex number as i,−i, or -1.

(a) −i40 (b) i223 (c) i2001 (d) i0 (e) i−1

Exercise 24.23
Solve the given quadratic equation and write the solutions in the form z =
a + bi.

(a) z2 + 9 = 0
(b) x2 + 4x + 5 = 0.

Exercise 24.24
Show that the solutions of the equation

4x2 − 24x + 37 = 0

are complex conjugate of each other.

Exercise 24.25
Find the indicated absolute value of each complex number.

(a) |3 + 4i| (b) |8− 5i|.

Exercise 24.26
Show that z · z is a real number.

Exercise 24.27
Show that z = z if and only if z is real.
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25 Trigonometric Form of Complex Numbers

In this section, you will learn (1) how to represent a complex number graphi-
cally, (2) to compute the absolute value of a complex number, (3) to represent
a complex number in trigonometric form, and (4) to represent the product
and the quotient of two complex numbers in trigonometric form.

Geometrical Interpretation of a Complex Number
The real numbers can be represented on the number line as shown in Figure
25.1.

Figure 25.1

Is there a similar representation for the complex numbers?
The definition of a complex number involves two real numbers. But two real
numbers give a point on a plane. So complex numbers can be plotted in a
plane by using the x-axis for the real part and the y-axis for the imaginary
part.
This plane is called The Complex Plane. See Figure 25.2.

Figure 25.2

Example 25.1
Represent each of the following complex numbers as a point in the complex
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plane:
(a) 4− 3i (b) −3 + 4i (c) −3− 4i (d) −2− 3i

Solution.
The points are shown in Figure 25.3.

Figure 25.3

The Module of a Complex Number
We define the absolute value or the modulus of a complex number a + bi
as the distance between the point (a, b) to the origin:

|a + bi| =
√

a2 + b2.

Example 25.2
Determine the absolute value of each of the following complex numbers:
(a) 2− 3i (b) −5i (c) 1− i

Solution.
(a) |2− 3i| =

√
22 + (−3)2 =

√
13

(b) | − 5i| =
√

02 + (−5)2 = 5.

(c) |1− i| =
√

12 + 12 =
√

2.

Trigonometric Form of a Complex Number
A complex number z = a + bi can be specified by giving the distance, r, of
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the point from the origin and the angle, t, between the line joining the point
to the origin and the positive x-axis. See Figure 25.4.

Figure 25.4

By some simple trigonometry it follows that a = r cos t and b = r sin t. Thus,
the complex number z can be written as z = r cos t + ir sin t = rcis(t) where
cis(t) = cos t + i sin t. This is known as the trigonometric form or the
polar form of a complex number. r is called the modulus of z and t is the
argument of z.

Example 25.3
Express the complex number z = 2 + 2i in trigonometric form.

Solution.
The modulus of the number z is r =

√
22 + 22 = 2

√
2. To find the argument,

we use tan t = b
a

= 1. Since the complex number is in the first quadrant then

t = π
4
. Thus, z = 2

√
2cis(π

4
).

Remark 25.1
It is important to remember that the trigonometric form of a complex number
is not unique. For example, all expressions of the form z = 2

√
2cis(π

4
+2nπ),

where n is an integer, represent the complex number z = 2+2i. An argument
in the interval [−π, π] is called the principle argument and we write t =
Arg(z).

In some cases calculations in polar form are much simpler so it is important
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to be able to work with complex numbers in both forms. There will be times
when conversion between these forms is necessary.
Given a modulus r and argument t of a complex number it is easy to find
the number in Cartesian coordinate system by following the two steps:

• Evaluate a = r cos t and b = r sin t.
• Write down the number in the form a + ib.

Example 25.4
If a complex number z has modulus of 2 and argument of −π

6
, express z in

the form a + ib.

Solution.
We have,

a = r cos t = 2 cos
(
−π

6

)
= 2×

√
3

2
=
√

3
b = r sin t = 2 sin

(
−π

6

)
= 2× −1

2
= −1

Thus, z =
√

3− i.

The Complex Form of z1 · z2 and z1

z2

The multiplication of two complex numbers becomes much easier using the
polar form. Take two complex numbers z1 = r1(cos t1 + i sin t1) and z2 =
r2(cos t2 + i sin t2) and multiply them together:

z1z2 = r1r2(cos t1 cos t2 − sin t1 sin t2) + ir1r2(sin t1 cos t2 + cos t1 sin t2)
= r1r2(cos (t1 + t2) + i sin (t1 + t2)) = r1r2cis(t1 + t2)

where we have used the trigonometric identities

cos (x + y) = cos x cos y − sin x sin y
sin (x + y) = sin x cos y + cos x sin y.

So the modulus of the product, r1r2, is the product of the moduli of z1 and
z2, namely r1 and r2. The argument of the product,t1 + t2, is the sum of the
arguments of z1 and z2.
This gives a simple rule for multiplying complex numbers in polar form:

• Multiply the moduli.
• Add the arguments.
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Example 25.5
Find the product of z1 = 1− i

√
3 and z2 = 1 + i using the polar form of the

complex numbers. Write the final answer in standard form.

Solution.
We have

z1 = 1− i
√

3 = 2cis(5π
3

)

z2 = 1 + i =
√

2cis(π
4
)

Thus,
z1z2 = 2

√
2cis

(
5π
3

+ π
4

)
= 2

√
2cis

(
23π
12

)
= 2

√
2cis

(
− π

12

)
= 2

√
2(cos

(
− π

12

)
+ i sin

(−π
12

)
)

= 2
√

2(
√

2+
√

6
4

+ i
√

2−
√

6
4

)

= (1 +
√

3) + i(1−
√

3)

In a similar way division can be discussed using polar form. If z1 = r1(cos t1+
i sin t1) and z2 = r2(cos t2 + i sin t2) then

z1

z2
= r1(cos t1+i sin t1)

r2(cos t2+i sin t2)

= r1

r2

(cos t1+i sin t1)(cos t2−i sin t2)
(cos t2+i sin t2)(cos t2−i sin t2)

= r1

r2

cos t1 cos t2−sin t1 sin t2+i(sin t1 cos t2−cos t1 sin t2)

(cos2 t2+sin2 t2)

= r1

r2
[cos (t1 − t2) + i sin (t1 − t2)]

= r1

r2
cis(t1 − t2).

Thus, the modulus for the quotient of two complex numbers in trigonometric
form is the quotient of the moduli of the two numbers, and the argument of
the quotient is the difference of arguments of the two numbers.

Example 25.6
Find z1

z2
where z1 = 3− i

√
3 and z2 = 4+4i by dividing trigonometric forms.

Express the answer in trigonometric form.

Solution.
We have

z1 = 2
√

3
(
cos 11π

6
+ i sin 11π

6

)
z2 = 4

√
2
(
cos π

4
+ i sin π

4

)
z1

z2
= 2

√
3

4
√

2

[
cos
(

11π
6
− π

4

)
+ i sin

(
11π
6
− π

4

)]
=

√
6

4

(
cos 19π

12
+ i sin 19π

12

)
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Review Problems

Exercise 25.1
Graph each complex number. Find the absolute value of each complex num-
ber.

(a) z = −2− 2i (b) z = 1 + i
√

3 (c) z = −2i (d) z = 3− 5i

Exercise 25.2
Write each complex number in trigonometric form.

(a) z = 1− i (b) z = 1 + i
√

3 (c) z = −2i (d) z = −5

Exercise 25.3
Write each complex number in the form z = a + bi.

(a) z = 2(cos 45◦ + i sin 45◦)
(b) z = (cos 315◦ + i sin 315◦)
(c) z = 5(cos 120◦ + i sin 120◦).

Exercise 25.4
Write each complex number in the form z = a + bi.

(a) z = 6cis135◦

(b) z = 8cis0◦

(c) z = 5cis90◦.

Exercise 25.5
Write each complex number in the form z = a + bi.

(a) z = 2
(
cos 5π

6
+ i sin 5π

6

)
(b) z = 4

(
cos 5π

3
+ i sin 5π

3

)
(c) z = 5(cos π + i sin π).

Exercise 25.6
Write each complex number in the form z = a + bi.

(a) z = 8cis3π
4

(b) z = 9cis11π
6

(c) z = 2cis2.
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Exercise 25.7
Multiply the complex numbers. Write the answer in trigonometric form.

(a) (2cis30◦) · (3cis225◦)
(b) [8(cos 88◦ + i sin 88◦)] · [12(cos 112◦ + i sin 112◦)]

Exercise 25.8
Multiply the complex numbers. Write the answer in trigonometric form.

(a)
[
5
(
cos 2π

3
+ i sin 2π

3

)]
·
[
2
(
cos 2π

5
+ i sin 2π

5

)]
(b) (4cis2.4) · (6cis4.1).

Exercise 25.9
Divide the complex numbers. Write the answer in the form z = a + bi.

(a) 32cis30◦

4cis150◦

(b) 27(cos 315◦+i sin 315◦)
9(cos 225◦+i sin 225◦)

.

Exercise 25.10
Divide the complex numbers. Write the answer in the form z = a + bi.

(a)
12cis 2π

3

4cis 11π
6

.

(b) 25(cos 3.5+i sin 3.5)
5(cos 1.5+i sin 1.5)

.

Exercise 25.11
Graph the complex numbers z1 = 2 + 3i, z2 = 3− 2i, and z1 + z2.

Exercise 25.12
Find the moduli of the complex numbers 3 + 4i and 8− 5i.

Exercise 25.13
Write each of the following complex numbers in trigonometric form.

(a) 1 + i (b) −1 +
√

3i (c) −4
√

3− 4i (d) 3 + 4i

Exercise 25.14
Let

z1 = 2
(
cos

π

4
+ i sin

π

4

)
and z2 = 5

(
cos

π

3
+ i sin

π

3

)
.

Find z1 · z2 and z1

z2
.
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26 De Moivre’s Theorem

In this section, you will learn how (1) to find the powers of a complex number
and (2) to find the roots of a complex number.
If z = rcisθ then by muliplying z by itself we find that

z2 = r2cis(2θ).

Now, if we multiply z2 by z we obtain

z3 = r3cis(3θ).

So, one might conjecture that

zn = rncis(nθ)

for any positive integer n.
In order to prove this result, we use the procedure of mathematical induction:

• The result is true when n = 1.
• Induction hypothesis: Assume that the formula is valid for n ≥ 1. That is,
zn = rncis(nθ).
• Induction conclusion: We must show that the formula is valid for n + 1,
i.e. zn+1 = rn+1cis[(n + 1)θ].
Indeed,

zn+1 = zn · z = [rncis(nθ)] (rcisθ)
= rn+1cis(nθ + θ) = rn+1cis(n + 1)θ

This formulas, is known as De Moivre’s formula.

Example 26.1
Write [2(cos 240◦ + i sin 240◦)]4 in standard form.

Solution.
By De Moivre’s formula we have

[2(cos 240◦ + i sin 240◦)]4 = 24(cos 4 · 240◦ + i sin 4 · 240◦)
= 16(cos 960◦ + i sin 960◦)

= 16(−1
2
− i

√
3

2
)

= −8− i(8
√

3)
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Example 26.2
Write (1 + i)8 in standard form.

Solution.
Writing 1 + i in trigonometric form we have 1 + i =

√
2cisπ

4
. Thus, applying

De Moivre’s formula we find

(1 + i)8 = (
√

2)8cis(8 · π
4
)

= 16cis(2π) = 16

Now, if z and w are complex numbers such that wn = z then we call w an
nth root of z.
We next consider how to determine such roots. Write z and w in trigono-
metric form z = rcisθ and w = r′cisθ′. Then

[r′cisθ′]n = rcisθ.

By De Moivre’s formula,

r′ncis(nθ′) = rcisθ.

Thus,

r′ = n
√

r and θ′ =
θ + k · 360◦

n
where k = 0, 1, 2, · · · , n− 1.

Remark 26.1
Note that we chose 0 ≤ k ≤ n−1 because past n the roots repeat themselves.
That is, a complex number has exactly n complex roots.

Example 26.3
Find all the roots of the equation x5 − 32 = 0.

Solution.
Basically, we are looking for the fifth roots of the complex number z = 32.
Since z = 32cis(0) then the five fifth roots of z are given by

w0 = 2cis(0) = 2
w1 = 2cis(360◦

5
) = 2cis(72◦)

w2 = 2cis(2·360◦

5
= 2cis(144◦)

w3 = 2cis(3·360◦

5
= 2cis(216◦)

w4 = 2cis(4·360◦
5

= 2cis(288◦)
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Review Problems

Exercise 26.1
Find the indicated power. Write the answer in the form z = a + bi.

(a) [2(cos 30◦ + i sin 30◦)]8.
(b) (cos 240◦ + i sin 240◦)12.

Exercise 26.2
Find the indicated power. Write the answer in the form z = a + bi.

(a) (2cis225◦)5

(b) (4cis5π
6

)3.

Exercise 26.3
Find the indicated power. Write the answer in the form z = a + bi.

(a) (1 + i
√

3)8

(b) (2
√

3− 2i)5.

Exercise 26.4
Find the indicated power. Write the answer in the form z = a + bi.

(a)
(
−

√
2

2
+ i

√
2

2

)12

(b)
(√

2
2

+ i
√

2
2

)6

Exercise 26.5
Find all the indicated roots. Write the answers in standard form.

(a) z =
√

9. (b) z = 6
√

64 (c) z = 5
√
−1.

Exercise 26.6
Find all the indicated roots. Write the answers in standard form.

(a) z = 4
√
−16 (b) z = 3

√
1 (c) z = 4

√
1 + i.

263



Exercise 26.7
Find all the indicated roots. Write the answers in standard form.

(a) z = 5
√
−1 + i (b) z =

3
√

2− 2i
√

3 (c) z =
√
−16 + 16i

√
3.

Exercise 26.8
Find all the roots of the given equation. Write your answers in trigonometric
form.

(a) x3 + 8 = 0
(b) x4 + i = 0
(c) x5 + 32i = 0.

Exercise 26.9
Find all the roots of the given equation. Write your answers in trigonometric
form.

(a) x4 − (1− i
√

3) = 0
(b) x3 + (1 + i

√
3) = 0

(c) x6 − (4− 4i) = 0.

Exercise 26.10
Show that if z = r(cos θ + i sin θ) then z = r(cos θ − i sin θ).

Exercise 26.11
Show that if z = r(cos θ + i sin θ) then z−1 = r−1(cos θ − i sin θ).

Exercise 26.12
Show that if z = r(cos θ + i sin θ) then z−2 = r−2(cos 2θ − i sin 2θ).

Exercise 26.13
Find the six roots of z = −64.

Exercise 26.14
Find the three cube roots of z = 2 + 2i.

Exercise 26.15
Solve the equation : z6 + 64 = 0.
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