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Abstract

Unmeasured confounding may undermine the validity of causal inference with observational

studies. Sensitivity analysis provides an attractive way to partially circumvent this issue by

assessing the potential influence of unmeasured confounding on the causal conclusions. How-

ever, previous sensitivity analysis approaches often make strong and untestable assumptions

such as having a confounder that is binary, or having no interaction between the effects of

the exposure and the confounder on the outcome, or having only one confounder. Without

imposing any assumptions on the confounder or confounders, we derive a bounding factor

and a sharp inequality such that the sensitivity analysis parameters must satisfy the inequal-

ity if an unmeasured confounder is to explain away the observed effect estimate or reduce

it to a particular level. Our approach is easy to implement and involves only two sensitivity

parameters. Surprisingly, our bounding factor, which makes no simplifying assumptions, is

no more conservative than a number of previous sensitivity analysis techniques that do make

assumptions. Our new bounding factor implies not only the traditional Cornfield conditions

that both the relative risk of the exposure on the confounder and that of the confounder on the

outcome must satisfy, but also a high threshold that the maximum of these relative risks must

satisfy. Furthermore, this new bounding factor can be viewed as a measure of the strength of
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confounding between the exposure and the outcome induced by a confounder.

Key Words: Bounding factor; Causality; Confounding; Cornfield condition; Observational

study.

1 Introduction

Causal inference with observational studies is of great interest and importance in many scien-

tific disciplines. Although unmeasured confounding between the exposure and the outcome

may bias the estimation of the true causal effect, an approach often called “sensitivity anal-

ysis” or “bias analysis” over a range of sensitivity parameters sometimes allows researchers

to make causal inferences even without full control of the confounders of the relationship

between the exposure and outcome.

Sensitivity analysis plays a central role in assessing the influence of the unmeasured con-

founding on the causal conclusions. However, many sensitivity analysis techniques often

require additional untestable assumptions. For instance, some authors assume a single bi-

nary confounder1–6. Researchers also often assume a homogeneity assumption that there

is no interaction between the effects of the exposure and the confounder on the outcome5–9.

Some sensitivity analysis techniques only allow one to assess how strong an unmeasured con-

founder would have to be to completely explain away an effect1–3,10,11, but do not allow one

to assess what the effect estimate might be under weaker unmeasured confounding scenarios,

i.e., do not allow one to do sensitivity analysis under alternative hypotheses. Performing sen-

sitivity analysis under alternative hypotheses can be quite challenging due to more parameters

needed in the sensitivity analysis. Cornfield et al.’s early work1 on sensitivity analysis for the

cigarette smoking and lung cancer association, which helped initiate the entire field of sen-

2



sitivity analysis, in fact made all three simplifying assumptions: a single binary confounder,

no interaction, and only sensitivity analysis for the null hypothesis of no causal effect. Al-

though some sensitivity analysis results exist for general confounders8,12, they are only easy

to implement under some of the above simplifying assumptions.

In this paper, we propose a new bounding factor and sensitivity analysis technique with-

out any assumptions about the unmeasured confounder or confounders. None of the null

hypothesis, a single binary confounder, or the no-interaction assumption is required for us-

ing the bounding factor. Nonetheless, our new bounding factor, which makes no simplifying

assumptions, is no more conservative than many previous sensitivity analysis techniques that

do make assumptions and is furthermore easy to implement. Moreover, we show that the new

bounding factor implies not only the classical Cornfield conditions1 that both the relative risk

of the exposure on the confounder and that of the confounder on the outcome must satisfy,

but also a stronger condition that the maximum of these relative risks must satisfy. The new

bounding factor can be viewed as a measure of the strength of confounding between the ex-

posure and the outcome resulting from the confounder. We begin by considering outcomes

which are binary and extend our results further to time-to-event and non-negative count or

continuous outcomes. We consider both ratio and difference scales.

The claim that our technique is “without assumptions” requires some clarification. As we

will see below, we will, without any assumptions, be able to make statements of the form:

“For an observed association to be due solely to unmeasured confounding, two sensitivity

analysis parameters must satisfy [a specific inequality].” We will also, without assumptions,

be able to make statements of the form: “For unmeasured confounding alone to be able to

reduce an observed association [to a given level], two sensitivity analysis parameters must
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satisfy [another specific inequality].” We believe the ability to make statements of this form

without imposing any specific structure on the nature of the unmeasured confounder or con-

founders constitutes a major advance in the literature.

However, if statements are made of the form, “If the sensitivity analysis parameter take

[specified values], then such unmeasured confounding can reduce the observed estimate by

no more than [a specific level],” then the specification of the sensitivity analysis parame-

ters could itself of course be viewed as an assumption. Moreover, when placing the results

within a counterfactual or potential outcomes framework, the assumptions implicit within

that framework of course would be needed also to give a potential outcomes interpretation to

the sensitivity analysis. Thus certain types of statements concerning the sensitivity of con-

clusions to unmeasured confounding can be made “without assumptions,” while other types

of statements do require assumptions concerning the specification of the sensitivity analysis

parameters themselves, or those implicit within the potential outcomes framework.

Our title perhaps merits one further qualification which is that what is called in this pa-

per “sensitivity analysis” is generally now referred to as “bias analysis” in the epidemiologic

literature. Moreover, such “bias analysis” is relevant not only to problems of unmeasured

confounding but also measurement error and selection bias, and our focus in this paper only

concerns unmeasured confounding. The term “sensitivity analysis” is, however, still em-

ployed in statistics, econometrics, and in many of the social sciences for issues of unmea-

sured confounding. We believe the technique presented in this paper will be useful across

this range of disciplines and have chosen to use the broader term, while acknowledging that

terminology in epidemiology has shifted.
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2 Main Result: A New Bounding Factor

Let E denote the exposure, D denote a binary outcome, C denote the measured confounders,

and U denote one or more unmeasured confounders. We will assume for what follows that

the exposure E is binary, but all of the results below are also applicable to a categorical

or continuous exposure and could be applied comparing any two levels of E. For ease of

notation, we assume that the unmeasured confounder U is categorical with levels 0,1, . . . ,K−

1. But all the conclusions hold for U of general type (categorical, continuous, or mixed; single

or multiple confounders). We provide proofs and theoretical technical details for general U

in the eAppendix.

Let RRobs
ED|c = P(D = 1 | E = 1,C = c)/P(D = 1 | E = 0,C = c) denote the observed

relative risk of the exposure E on the outcome D within stratum of measured confounders

C = c. Define RREU,k|c = P(U = k | E = 1,C = c)/P(U = k | E = 0,C = c) as the relative

risk of exposure on category k of the unmeasured confounder within stratum of measured

confounders C = c. We use RREU |c =maxk RREU,k|c to denote the maximum of these relative

risks between E and U , which we will call the maximal relative risk of E on U within stratum

C = c. Define

RRUD|E=0,c =
maxk P(D = 1 | E = 0,C = c,U = k)
mink P(D = 1 | E = 0,C = c,U = k)

as the maximum of the effect of U on D among the unexposed comparing any two categories

of U (i.e., the ratio of the maximum and minimum of the probabilities of the outcome over

strata of U without exposure and within stratum C = c); similarly, define

RRUD|E=1,c =
maxk P(D = 1 | E = 1,C = c,U = k)
mink P(D = 1 | E = 1,C = c,U = k)

as the maximum of the effect of U on D among the exposed comparing any two categories of
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U (i.e., the ratio of the maximum and minimum of the probabilities of the outcome over strata

of U with exposure and within stratum C = c). We use RRUD|c =max(RRUD|E=1,c,RRUD|E=0,c)

to denote the maximum of the relative risks between U and D with and without exposure, de-

fined as the maximal relative risk of U on D within stratum C = c. Note that if U is a vector

that contains multiple unmeasured confounders, then RREU |c and RRUD|c are defined as the

maximum relative risk comparing any two categories of the vector U .

If C and U suffice to control for confounding for the effect of E on D, the standardized

relative risk

RRtrue
ED|c =

∑
K−1
k=0 P(D = 1 | E = 1,C = c,U = k)P(U = k |C = c)

∑
K−1
k=0 P(D = 1 | E = 0,C = c,U = k)P(U = k |C = c)

is the true causal relative risk of the exposure E on the outcome D within stratum C = c.

In the main text, we focus the discussion on the whole population. We further show in the

eAppendix that all the conclusions also hold for exposed and unexposed subpopulations.

We will for the next several sections assume all analyses are carried out within strata of C,

and thus the condition C = c is omitted and kept implicitly in all the conditional probabilities,

e.g., RRobs
ED|c is replaced by RRobs

ED for notational simplicity. Later in the paper we will com-

ment on how the results are applicable to estimation averaged over C, rather than conditional

on C.

The relative risk pair (RREU ,RRUD) measures the strength of confounding between the

exposure E and the outcome D induced by the confounder U . Our main result ties the ratio of

the observed relative risk RRobs
ED adjusted only for measured confounders C and the true rela-

tive risk RRtrue
ED adjusted also for unmeasured confounders U , to the strength of confounding,

(RREU ,RRUD). Without any assumptions, we have the following result:
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Result 1.

RRtrue
ED ≥ RRobs

ED

/ RREU ×RRUD

RREU +RRUD−1
. (1)

Result 1 shows that even in the presence of unmeasured confounding the true relative risk

must be at least as large as RRobs
ED

/
RREU×RRUD

RREU+RRUD−1 . In the eAppendix, we provide a proof for

result (1) and also show that the inequality is sharp in the sense that we can always construct

a model with a confounder U to attain the equality. The quantity (RREU×RRUD)/(RREU +

RRUD− 1) is a new joint bounding factor for the relative risk. Although quite simple, this

bound using both RREU and RRUD has several important implications.

First, the result essentially allows for sensitivity analysis without assumptions insofar as

for an unmeasured confounder to reduce an observed estimated RRobs
ED to an actual relative

risk of RRtrue
ED the sensitivity analysis parameters RREU and RRUD must be sufficiently large

to satisfy the inequality

RREU ×RRUD

RREU +RRUD−1
≥ RRobs

ED
RRtrue

ED
.

This statement holds without any assumptions about the nature of the unmeasured con-

founder. One could plot those values of RREU and RRUD that would be required to explain

away the effect estimate (or the lower limit of a confidence interval). To conduct sensitiv-

ity analysis with pre-specified strength of the unmeasured confounder, (RREU ,RRUD), we

can divide the observed relative risk and its confidence limits by (RREU ×RRUD)/(RREU +

RRUD−1), in order to obtain a point estimate and confidence limits of the lower bound of the

true causal effect of the exposure E on the outcome D. We will refer to the relative risk ad-

justed only for C, when divided by the bounding factor (RREU ×RRUD)/(RREU +RRUD−

1) as the corrected relative risk. It is “corrected” in the sense that an unmeasured confounder
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cannot reduce the relative risk any further than what is obtained by division by its bounding

factor. As an example, suppose we have an observed relative risk of 2.1 with a 95% confi-

dence interval [1.4,3.1]. If we consider an unmeasured confounder with (RREU ,RRUD) =

(2,2), then the joint bounding factor is 2× 2/(2+ 2− 1) = 1.33, and the corrected relative

risk is 2.1/1.33 = 1.58 with a 95% confidence interval [1.4/1.33,3.1/1.33] = [1.05,2.33].

Therefore, the confounder with (RREU ,RRUD) = (2,2) cannot explain away the observed

relative risk 2.1 or its lower confidence limit 1.4, i.e., it cannot reduce the point estimate

and lower confidence limit of the relative risk to be smaller than one. If we consider an

unmeasured confounder with (RREU ,RRUD) = (2.5,3.5), then the joint bounding factor is

2.5×3.5/(2.5+3.5−1) = 1.75, and an estimate for the lower bound of the true causal rela-

tive risk is 2.1/1.75 = 1.20 with a 95% confidence interval [1.4/1.75,3.1/1.75] = [0.8,1.77].

Although the confounder with (RREU ,RRUD) = (2.5,3.5) cannot explain away the observed

relative risk of 2.1, it reduces the original lower confidence limit 1.4 to 0.8 (i.e., less than

one). Note that we are not merely assessing a binary confounder, and we are not imposing

the no interaction assumption. Moreover, we are not restricted to only assessing how much

confounding can explain away an effect, nor are we even assuming that there is a single un-

measured confounder (since U can be a vector of unmeasured confounders). The corrected

estimates and confidence intervals above are applicable irrespective of the underlying con-

founder (or confounders). We can apply the technique to obtain a range of values for the true

causal effect under different specifications of RREU and RRUD.

Table 1 shows the magnitudes of the joint bounding factor for different combinations

of RREU and RRUD. The entries in the table for the joint bounding factor are the largest

observed relative risks that such an unmeasured confounder could explain away. We can see
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from the table that the joint bounding factor is always smaller than both of RREU and RRUD,

and much smaller than the maximum of them.

Table 1: Magnitudes of the joint bounding factor for different combinations of RREU and
RRUD

RRUD
bounding factor 1.3 1.5 1.8 2 2.5 3 3.5 4 5 6 8 10

RREU

1.3 1.06 1.08 1.11 1.13 1.16 1.18 1.20 1.21 1.23 1.24 1.25 1.26
1.5 1.08 1.12 1.17 1.20 1.25 1.29 1.31 1.33 1.36 1.38 1.41 1.43
1.8 1.11 1.17 1.25 1.29 1.36 1.42 1.47 1.50 1.55 1.59 1.64 1.67

2 1.13 1.20 1.29 1.33 1.43 1.50 1.56 1.60 1.67 1.71 1.78 1.82
2.5 1.16 1.25 1.36 1.43 1.56 1.67 1.75 1.82 1.92 2.00 2.11 2.17

3 1.18 1.29 1.42 1.50 1.67 1.80 1.91 2.00 2.14 2.25 2.40 2.50
3.5 1.20 1.31 1.47 1.56 1.75 1.91 2.04 2.15 2.33 2.47 2.67 2.80

4 1.21 1.33 1.50 1.60 1.82 2.00 2.15 2.29 2.50 2.67 2.91 3.08
5 1.23 1.36 1.55 1.67 1.92 2.14 2.33 2.50 2.78 3.00 3.33 3.57
6 1.24 1.38 1.59 1.71 2.00 2.25 2.47 2.67 3.00 3.27 3.69 4.00
8 1.25 1.41 1.64 1.78 2.11 2.40 2.67 2.91 3.33 3.69 4.27 4.71

10 1.26 1.43 1.67 1.82 2.17 2.50 2.80 3.08 3.57 4.00 4.71 5.26

As a second important consequence of our main result in (1), we also show in the eAp-

pendix that once we specify one of the unmeasured confounding measures, for example

RREU , then to be able to reduce an observed relative risk of RRobs
ED to a true causal rela-

tive risk of RRtrue
ED the other confounding measure RRUD must be at least of the magnitude

RRUD ≥
RREU ×RRobs

ED−RRobs
ED

RREU ×RRtrue
ED −RRobs

ED
.

For an unmeasured confounder to completely explain away the relative risk, i.e., reduce

RRobs
ED to RRtrue

ED = 1, once we specify RREU the other unmeasured confounding measure

much be at least of the magnitude

RRUD ≥
RREU ×RRobs

ED−RRobs
ED

RREU −RRobs
ED

.

For example, if we have an observed relative risk RRobs
ED = 2.5, and we specify the exposure-

confounder association RREU = 3. Then in order to reduce the observed relative risk to a true
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causal relative risk RRtrue
ED = 1.5, the confounder-outcome association must be at least as large

as (3× 2.5− 2.5)/(3× 1.5− 2.5) = 2.5; in order to completely explain away the observed

relative risk (i.e., to reduce the observed relative risk to RRtrue
ED = 1), the confounder-outcome

association must be at least as large as (3×2.5−2.5)/(3−2.5) = 10. The symmetry of result

(1) implies that a similar result also holds for RREU with pre-specified RRUD.

Third, we show in the eAppendix that if both the generalized relative risks RREU and

RRUD have the same magnitude, for an unmeasured confounder to reduce an observed rel-

ative risk of RRobs
ED to a true causal relative risk of RRtrue

ED both of the confounding relative

risks must thus be at least as large as

RREU = RRUD ≥
{

RRobs
ED +

√
RRobs

ED(RRobs
ED−RRtrue

ED )

}/
RRtrue

ED .

For an unmeasured confounder to completely explain away an observed relative risk of RRobs
ED

(i.e., to reduce RRobs
ED to a true causal relative risk of RRtrue

ED = 1), both RREU and RRUD must

be at least as large as

RREU = RRUD ≥ RRobs
ED +

√
RRobs

ED(RRobs
ED−1).

If one of the confounding relative risks is smaller than the lower bound above, we then know

that the other one must be larger. Thus even if RREU and RRUD are not of the same magni-

tude, the maximum of RREU and RRUD must satisfy the inequality above. We then have the

following “high threshold” condition:

max(RREU ,RRUD)≥
{

RRobs
ED +

√
RRobs

ED(RRobs
ED−RRtrue

ED )

}/
RRtrue

ED .

For example, in order to reduce an observed relative risk of RRobs
ED = 2.5 to a true causal

relative risk of RRtrue
ED = 1.5, the high threshold is (2.5+

√
2.5×1)/1.5 = 2.72; at least one
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of RREU and RRUD must be of magnitude 2.72 or above. In order to completely explain

away an observed relative risk of RRobs
ED = 2.5, the high threshold is 2.5+

√
2.5×1.5 = 4.44;

at least one of RREU and RRUD must be of magnitude 4.44 or higher to completely explain

away the effect.

Fourth, the bias formula in (1) is relevant for an apparently causative exposure, which

allows researchers to get lower bounds of the true causal relative risk given pre-specified

sensitivity parameters RREU and RRUD. If the exposure E is apparently preventive with

RRobs
ED < 1, we can use the following formula to conduct sensitivity analysis:

RRtrue
ED ≤ RRobs

ED×
RREU ×RRUD

RREU +RRUD−1
, (2)

where we modify the definition of RREU as maxk RR−1
EU,k, i.e., the maximum of the inverse

relative risks relating E and U , or equivalently the inverse of the minimum of the relative risks

relating E and U. For an apparently preventive exposure, (2) allows researchers to obtain an

upper bound of the causal relative risk RRtrue
ED by multiplying the observed relative risk RRobs

ED

by the joint bounding factor RREU ×RRUD/(RREU +RRUD−1). We present the proof in

the eAppendix, and omit analogous discussion based on (2).

Finally, all the results above are within strata of the observed covariates C as would be

obtained from a log-binomial regression model or a logistic regression model with rare out-

come. If averaged relative risk over the observed covariates C is of interest, the true causal

relative risk must be at least as large as the minimum of RRobs
ED|c

/
RREU |c×RRUD|c

RREU |c+RRUD|c−1 over c.

If we assume a common causal relative risk among the levels of C as in the usual log-linear

or logistic regression with rare outcomes, then the true causal relative risk must be at least

as large as the maximum of RRobs
ED|c

/
RREU |c×RRUD|c

RREU |c+RRUD|c−1 over c. See the eAppendix for further
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discussion.

3 Relation with Cornfield Conditions

Under the assumptions of a binary confounder U and the conditional independence between

the exposure E and the outcome D given the confounder U , Cornfield et al.1 showed that the

exposure-confounder relative risk must be at least as large as the observed exposure-outcome

relative risk:

RREU ≥ RRobs
ED. (3)

Schlesselman7 further showed that the confounder-outcome relative risk must also be at least

as large as the observed exposure-outcome relative risk:

RRUD ≥ RRobs
ED. (4)

We show in the eAppendix that the classical Cornfield conditions (3) and (4) are just special

cases of our result by letting one of RREU or RRUD go to infinity in (1). Moreover, our

results apply to general confounders not just binary confounders, and our results also apply

to other possible values of the true causal relative risk of the exposure on the outcome. We

are not restricted to only assessing how strong the unmeasured confounder would have to be

to completely explain away the effect. Thus, for example, for confounding to reduce the ob-

served relative risk RRobs
ED to a true causal relative risk of RRtrue

ED , the unmeasured confounding

measures have to satisfy

RREU ≥ RRobs
ED/RRtrue

ED and RRUD ≥ RRobs
ED/RRtrue

ED . (5)

Perhaps even more importantly with regard to Cornfield-like conditions, our main result in

(1) not only leads to the conditions in (5) that both RREU and RRUD must satisfy, but also
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implies the following condition that the maximum of RREU and RRUD must satisfy:

max(RREU ,RRUD)≥
{

RRobs
ED +

√
RRobs

ED(RRobs
ED−RRtrue

ED )

}/
RRtrue

ED , (6)

to reduce an observed relative risk RRobs
ED to a true causal relative risk RRtrue

ED . We show this

in the eAppendix. As a special case, for the unmeasured confounder to completely explain

away the observed relative risk (i.e., RRtrue
ED = 1), it is necessary that

max(RREU ,RRUD)≥ RRobs
ED +

√
RRobs

ED(RRobs
ED−1).

Once again the results do not require a binary unmeasured confounder. They are applicable

to any unmeasured confounder. Similar low and high threshold Cornfield conditions that the

minimum and maximum of the confounding measures must satisfy to completely explain

away an effect were derived on an odds ratio scale of exposure-confounder association by

Flanders and Khoury12 and Lee10, and we comment and extend these results in the eAp-

pendix.

The classical Cornfield conditions and the high threshold generalization are useful to

answer the question about the magnitude of the association between the exposure and the

confounder and that between the confounder and the outcome, in order to explain away the

observed exposure-outcome association or with our new results, to reduce it to a pre-specified

magnitude. The Cornfield conditions in (5) and (6) are especially useful, when we want to

specify only one of the marginal associations RREU or RRUD as well as their relative magni-

tudes. However, they are inferior to the main result in (1), which is essentially the condition

that the joint values of (RREU ,RRUD) must satisfy. As will be seen below, although the

high threshold conclusions are a useful heuristic, they are weaker than the use of our new

joint bounding factor in (1) insofar as there are scenarios which the joint bounding factor in
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(1) can rule out an estimate as being due to unmeasured confounding but the high threshold

conditions cannot. For example, when we have an observed exposure-outcome relative risk

of RRobs
ED = 3, the low threshold (i.e., the classical Cornfield condition) is given by

min(RREU ,RRUD)≥ 3,

the high threshold is given by

max(RREU ,RRUD)≥ 3+
√

3×2 = 5.45,

and the joint threshold condition is given by

RREU ×RRUD

RREU +RRUD−1
≥ 3.

Thus, the low Cornfield threshold is 3, and so we know that we must have that both RREU

and RRUD be greater than 3 to explain away the effect. The high Cornfield threshold is 5.45,

and so at least one of RREU and RRUD must be larger than 5.45 to explain away the effect.

Consider an unmeasured confounder with (RREU = 5.5,RRUD = 3.1), they would exceed

both the low Cornfield threshold (since RREU > 3,RRUD > 3) and the high threshold (since

RREU > 5.45), and we might thus think it can explain away the observed exposure-outcome

relative risk. However, using our joint threshold condition in (1), an unmeasured confounder

with (RREU = 5.5,RRUD = 3.1) has a bounding factor 5.5×3.1/(5.5+3.1−1) = 2.24 < 3

and thus such confounding could not explain away an observed relative risk of 3. We can

see this from our result in (1), but we cannot see this from the classical Cornfield conditions

and even the new high threshold Cornfield condition. The Cornfield conditions, both low

and high thresholds, although a useful heuristic, are not as useful for sensitivity analysis as

our bounding factor in (1) insofar as there as scenarios, such as the one above, which our
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bounding factor in (1) can rule out an estimate as being due to unmeasured confounding but

the low and high threshold Cornfield conditions cannot.

4 Illustration

Consider the historical study conducted by Hammond and Horn13, in which the point esti-

mate of the observed relative risk of cigarette smoking on lung cancer was RRobs
ED = 10.73

with 95% confidence interval [8.02,14.36]. Fisher14 suggested that the observed relative risk

of the exposure E on the outcome D might be completely due to the existence of a common

genetic confounder. The work of Cornfield et al.1 showed that for a binary unmeasured con-

founder to completely explain away the observed relative risk, both the exposure-confounder

relative risk and the confounder-outcome relative risk would have to be at least 10.73. Let us

now assume then that both the exposure-confounder relative risk and the confounder-outcome

relative risk have the magnitude 10.73. The joint bounding factor is

RREU ×RRUD

RREU +RRUD−1
=

10.73×10.73
10.73+10.73−1

= 5.63.

Even if we assume such a strong confounder, the point estimate of the causal relative risk of

cigarette smoking and lung cancer must still be at least as large as RRtrue
ED ≥ RRobs

ED/5.63 =

10.73/5.63= 1.91> 1, and the 95% confidence interval is [8.02/5.63,14.36/5.63] = [1.42,2.55]

with the lower confidence limit still larger than one. Thus in fact, not even exposure-confounder

and confounder-outcome relative risks of 10.73 suffice to explain away the effect nor the

lower confidence limit. In fact, in order to explain away the point estimate of the observed

relative risk 10.73, the magnitude of RREU and RRUD (if RREU = RRUD) should be at

least as large as 10.73+
√

10.73×9.73 = 20.95. And in order to explain away the lower
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confidence limit 8.02, these two confounding relative risks should be at least as large as

8.02+
√

8.02×7.02 = 15.52. More generally, we can plot those values of RREU and RRUD

that would be required to explain away the effect estimate or the lower limit of the confidence

interval. This is given in Figure 1. To explain away the point estimate the two parameters

would have to lie on or above the solid line. To explain away the lower confidence limit the

two parameters would have to lie on or above the dotted line. These results hold without any

assumptions on the structure of the unmeasured confounding. The numerical results above

show that by using the new joint bounding factor it is even more implausible than using

the Cornfield conditions that a genetic confounder explains away the relative risk between

cigarette smoking and lung cancer.

More generally, we could consider corrected estimates and confidence intervals for the

effect over a range of different values of the sensitivity analysis parameters, RREU and RRUD,

as in Table 2. The columns of Table 2 correspond to RRUD and the rows to RREU . The

entries are the corrected estimates and confidence intervals for the effect under the different

confounding scenarios. In general a table like this one is most informative for sensitivity

analysis. SAS code to carry out such a sensitivity analysis and to provide such a table is

given in Appendix 1.
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RREURRUD (RREU + RRUD − 1) = 10.73
RREURRUD (RREU + RRUD − 1) = 8.02

Figure 1: The areas above the two lines are the joint values of (RREU ,RRUD) that can would
be required to explain away the effect estimate 10.73 and the lower confidence limit 8.02.
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Table 2: Bounds on corrected estimates, lower confidence limits, and upper confidence limits
for unmeasured confounding (each cell contains bounds on point estimate, lower and upper
confidence limits; columns correspond to increasing strength of the risk ratio of U on the
outcome; rows correspond to increasing strength of risk ratio relating the exposure and U)

1.2 1.3 1.5 1.8 2.0 2.5 3.0 5.0 8.0 10.0
1.2 10.43 10.32 10.13 9.94 9.84 9.66 9.54 9.30 9.17 9.12

(7.80, (7.71, (7.57, (7.43, (7.35, (7.22, (7.13, (6.95, (6.85, (6.82,
13.96) 13.81) 13.56) 13.30) 13.16) 12.92) 12.76) 12.45) 12.27) 12.21)

1.3 10.32 10.16 9.90 9.63 9.49 9.24 9.08 8.75 8.56 8.50
(7.71, (7.59, (7.40, (7.20, (7.09, (6.91, (6.79, (6.54, (6.40, (6.35,

13.81) 13.60) 13.26) 12.89) 12.70) 12.37) 12.15) 11.71) 11.46) 11.38)
1.5 10.13 9.90 9.54 9.14 8.94 8.58 8.35 7.87 7.60 7.51

(7.57, (7.40, (7.13, (6.83, (6.68, (6.42, (6.24, (5.88, (5.68, (5.61,
13.56) 13.26) 12.76) 12.23) 11.97) 11.49) 11.17) 10.53) 10.17) 10.05)

1.8 9.94 9.63 9.14 8.61 8.35 7.87 7.55 6.91 6.56 6.44
(7.43, (7.20, (6.83, (6.44, (6.24, (5.88, (5.64, (5.17, (4.90, (4.81,

13.30) 12.89) 12.23) 11.52) 11.17) 10.53) 10.11) 9.25) 8.78) 8.62)
2.0 9.84 9.49 8.94 8.35 8.05 7.51 7.15 6.44 6.04 5.90

(7.35, (7.09, (6.68, (6.24, (6.01, (5.61, (5.35, (4.81, (4.51, (4.41,
13.16) 12.70) 11.97) 11.17) 10.77) 10.05) 9.57) 8.62) 8.08) 7.90)

2.5 9.66 9.24 8.58 7.87 7.51 6.87 6.44 5.58 5.10 4.94
(7.22, (6.91, (6.42, (5.88, (5.61, (5.13, (4.81, (4.17, (3.81, (3.69,

12.92) 12.37) 11.49) 10.53) 10.05) 9.19) 8.62) 7.47) 6.82) 6.61)
3.0 9.54 9.08 8.35 7.55 7.15 6.44 5.96 5.01 4.47 4.29

(7.13, (6.79, (6.24, (5.64, (5.35, (4.81, (4.46, (3.74, (3.34, (3.21,
12.76) 12.15) 11.17) 10.11) 9.57) 8.62) 7.98) 6.70) 5.98) 5.74)

5.0 9.30 8.75 7.87 6.91 6.44 5.58 5.01 3.86 3.22 3.00
(6.95, (6.54, (5.88, (5.17, (4.81, (4.17, (3.74, (2.89, (2.41, (2.25,

12.45) 11.71) 10.53) 9.25) 8.62) 7.47) 6.70) 5.17) 4.31) 4.02)
8.0 9.17 8.56 7.60 6.56 6.04 5.10 4.47 3.22 2.51 2.28

(6.85, (6.40, (5.68, (4.90, (4.51, (3.81, (3.34, (2.41, (1.88, (1.70,
12.27) 11.46) 10.17) 8.78) 8.08) 6.82) 5.98) 4.31) 3.37) 3.05)

10.0 9.12 8.50 7.51 6.44 5.90 4.94 4.29 3.00 2.28 2.04
(6.82, (6.35, (5.61, (4.81, (4.41, (3.69, (3.21, (2.25, (1.70, (1.52,

12.21) 11.38) 10.05) 8.62) 7.90) 6.61) 5.74) 4.02) 3.05) 2.73)
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5 Discussion

A crucial task in causal inference with observational studies is to assess the sensitivity of

causal conclusions with respect to unmeasured confounding. In sensitivity analysis, because

one is assessing the sensitivity of conclusions to the assumption of no unmeasured confound-

ing, additional untestable assumptions may often seem undesirable and suspect to researchers.

We have introduced a new joint bounding factor that allows researchers to conduct sensitiv-

ity analysis without assumptions, i.e., we provide an inequality, that is applicable without

any assumptions, such that the sensitivity analysis parameters must satisfy the inequality if

an unmeasured confounder is to explain away the observed effect estimate or reduce it to a

particular level. We can obtain a conservative estimate of the true causal effect by dividing

the observed relative risk by the bounding factor; the method does not assume a single binary

confounder or no exposure-confounder interaction on the outcome.

Previous sensitivity analysis approaches in the literature often relied on the assumption

of a single binary confounder and no-interaction between the effects of the exposure and the

confounder on the outcome5,8,9. For example, Schlesselman7 assumed a binary confounder,

a common relative risk, γ , of the confounder on the outcome for both with and without expo-

sure, i.e., a no interaction assumption. Under these assumptions, he obtained the bias factor

RRobs
ED/RRtrue

ED = {1+(γ − 1)P(U = 1 | E = 1)}/{1+(γ − 1)P(U = 1 | E = 0)} for sensi-

tivity analysis requiring specifications of γ,P(U = 1 | E = 1) and P(U = 1 | E = 0). Our

result requires fewer assumptions and fewer sensitivity parameters (two rather than three).

We further discuss in the eAppendix that, under Schlesselman’s formula, if P(U = 1 | E =

1)/P(U = 1 | E = 0) is constrained to be no larger than some limit RREU , then the maximum
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bias factor that can be obtained from Schlesselman’s formula is RREU × γ/(RREU + γ−1),

which is the same as our bounding factor. Thus, in this setting Schlesselman’s no interaction

assumption does not strengthen the bounds; the no interaction assumption is unnecessary.

Without the no interaction assumption, Flanders and Khoury12 and VanderWeele and Arah8,

derived general formulas for sensitivity analysis. However, unless the confounder is binary,

these formulas require specifying a very large number of parameters. They also require spec-

ifying the prevalence of each confounder level. Flanders and Khoury12 derive bounds for the

true causal relative risk for the exposed population which are potentially applicable without

specifying the prevalence of the unmeasured confounder. However, without specifying the

prevalence, their formula only leads to a low threshold Cornfield condition, and these bounds

are thus much weaker than those in this paper. We discuss further the relation between their

results and ours in the eAppendix.

The relative risk scale is widely used for sensitivity analysis in epidemiology and else-

where, but the risk difference scale is also often of interest and importance11,15. We show,

in the Appendix, that similar conditions for sensitivity analysis also hold for the risk differ-

ence. If we use similar sensitivity parameters on the relative risk scale for the risk difference

estimate, then we can derive similar lower bounds on the effects and determine how much

confounding is required to explain away an effect or reduce it to a specific level. See Ap-

pendix 2 for details. SAS code for this approach is also given in the eAppendix. We can

also do sensitivity analysis for the risk difference using sensitivity parameters on the risk

difference scale. Unfortunately, however, these conditions for the risk difference using risk

difference sensitivity parameters then depend on the number of categories of the unmeasured

confounder, and become weaker for confounders with more categories. This is not the case
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for sensitivity analysis of the risk difference (or the relative risk) if the sensitivity parame-

ters themselves are expressed on the relative risk scale, in which case the bounding factor is

applicable and is the same regardless of the number of categories. Due to this property, it is

perhaps more suitable to conduct sensitivity analysis for the risk difference using sensitivity

parameters on the relative risk scale. See Appendix 3 for further discussion.

The hazard ratio is widely used for analyzing data with time-to-event outcome. In the

eAppendix, we show that under the assumption of having a rare outcome at the end of follow-

up, the same bounding factor also applies to the hazard ratio with the confounder-outcome

relative risk replaced by the confounder-outcome hazard ratio. Likewise similar results also

apply to non-negative outcomes (e.g., counts or positive continuous outcomes) by replacing

the confounder-outcome relative risk by the maximum ratio by which the confounder may

increase the expected outcome comparing any two confounder categories.

The new joint bounding factor (RREU×RRUD)/(RREU +RRUD−1) plays a central role

in our sensitivity analysis approach, which, in turn, gives us a new measure of the strength

of unmeasured confounding induced by a confounder U. Our approach has the advantage of

making no assumptions about the structure of the unmeasured confounder or confounders,

and of delivering conclusions much stronger than the original Cornfield conditions.

In general, a table with many different possible sensitivity analysis parameters including

values that are quite extreme, such as Table 2 above, will be most informative. However, at

the very least, in any observational study, researchers should report how much confounding

would be needed to reduce the estimate, and how much confounding would be needed to

reduce the confidence interval, to include the null. We believe that if this were always done

in observational studies, the evidence for causality could much more easily be assessed and

21



science would be better served.

Appendix 1: SAS Code

The SAS code for the cigarette smoking and lung cancer example in Table 2 is given below.

A researcher could modify the code for use in other examples by just changing the first

few lines of code with the estimated observed relative controlling for only the measured

covarates (RR=), and the lower and upper confidence interval for this estimate(RR Lower=,

RR Upper=). The minimum and maximum strength of the unmeasured confounder can also

be modified by adjusting the lines with “RR EU=” and “RR UD=” but we recommend always

including at least some relatively large values, e.g., with RREU and RRUD at least as high as

5 so as to get a sense as to how an estimate would change under fairly severe confounding.

proc iml;
/*the point estimator and confidence interval of RR*/
RR = 10.73;
RR_Lower = 8.02;
RR_Upper = 14.36;
/*strenghth of confounding resulting from U*/
RR_EU = {1.2 1.3 1.5 1.8 2 2.5 3 4 5 6 8 10};
RR_UD = {1.2 1.3 1.5 1.8 2 2.5 3 4 5 6 8 10};
highthreshold = ROUND(RR + SQRT(RR*(RR-1)), 0.01);
rownames_EU = CHAR(RR_EU, NCOL(RR_EU), 1);
colnames_UD = CHAR(RR_UD, NCOL(RR_UD), 1);
BiasFactor = J(NCOL(RR_EU), NCOL(RR_UD), 1);
SPACE = J(NCOL(RR_EU), NCOL(RR_UD), " ");
LeftP = J(NCOL(RR_EU), NCOL(RR_UD), "(");
Mid = J(NCOL(RR_EU), NCOL(RR_UD), ",");
RightP = J(NCOL(RR_EU), NCOL(RR_UD), ")");
RR_true = BiasFactor;
RR_true_Lower = BiasFactor;
RR_true_Upper = BiasFactor;
RR_true_CI = BiasFactor;
DO i=1 TO NCOL(RR_EU);

Do j=1 to NCOL(RR_UD);
BiasFactor[i, j] = RR_EU[i]*RR_UD[j]/(RR_EU[i] + RR_UD[j] - 1);

RR_true[i, j] = ROUND(RR/BiasFactor[i, j], 0.01);
RR_true_Lower[i, j] = ROUND(RR_Lower/BiasFactor[i, j], 0.01);
RR_true_Upper[i, j] = ROUND(RR_Upper/BiasFactor[i, j], 0.01);

END;
END;
RR_true_CI = CATX(" ", CHAR(RR_true), LeftP, CHAR(RR_true_Lower), Mid, CHAR(RR_true_Upper), RightP);
print RR_true_CI[colname = colnames_UD

rowname = rownames_EU
label = "Bounds on corrected estimates and confidence intervals for unmeasured confounding
(columns correspond to increasing strength of the risk ratio of U on the outcome;
rows correspond to increasing strength of risk ratio relating the exposure and U)"];

run;
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Appendix 2: Conditions for the Risk Difference Using Sensi-
tivity Parameters on the Relative Risk Scale

As in the text we assume analysis is conducted conditional on, or within strata of the measured

covariates C. Define the bounding factor as BFU = RREU ×RRUD/(RREU +RRUD− 1),

the prevalence of the exposure as f = P(E = 1), and the probabilities of the outcome with

and without exposure as p1 = P(D = 1 | E = 1) and p0 = P(D = 1 | E = 0). The causal risk

differences for the exposed and unexposed populations are

RDtrue
ED+ = p1−

K−1

∑
k=0

P(D = 1 | E = 0,U = k)P(U = k | E = 1),

RDtrue
ED− =

K−1

∑
k=0

P(D = 1 | E = 1,U = k)P(U = k | E = 0)− p0,

and the causal risk difference for the whole population is

RDtrue
ED =

K−1

∑
k=0
{P(D = 1 | E = 1,U = k)−P(D = 1 | E = 0,U = k)}P(U = k)

= f RDtrue
ED++(1− f )RDtrue

ED−.

We show in the eAppendix that the lower bounds for the causal risk differences are

RDtrue
ED+ ≥ p1− p0×BFU ,

RDtrue
ED− ≥ p1/BFU − p0,

RDtrue
ED ≥ (p1− p0×BFU)×{ f +(1− f )/BFU}= (p1/BFU − p0)×{ f ×BFU +(1− f )} .

Note that even without knowing f , we can use the inequality RDtrue
ED ≥min(RDtrue

ED+,RDtrue
ED−)

to obtain a lower bound for RDtrue
ED .

As an example, suppose the probabilities of the outcome with and without exposure are

p1 = 0.25, p0 = 0.1, and therefore the observed risk difference is RDobs
ED = p1− p0 = 0.15. If
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we assume that the unmeasured confounding measures are (RREU ,RRUD) = (2,2) with the

joint bounding factor of 2×2/(2+2−1) = 1.33, then the true risk difference for the exposed

is at least as large as 0.25−0.1×1.33 = 0.12, the true risk difference for the unexposed is at

least as large as 0.25/1.33−0.1 = 0.09, and the true risk difference for the whole population

is at least as large as min(0.12,0.09) = 0.09. If we further know that the prevalence of the

exposure is f = 0.2, the true risk difference for the whole population is at least as large as

0.12×0.2+0.09×0.8 = 0.10.

The above results imply that, for an unmeasured confounder to reduce the observed risk

difference to be RDtrue
ED+,RDtrue

ED− and RDtrue
ED respectively, the Cornfield conditions for the

joint bounding factor for the exposed, the unexposed, and the whole population, respectively,

are

BFU ≥ (p1−RDtrue
ED+)/p0,

BFU ≥ p1/(p0 +RDtrue
ED−),

BFU ≥
√
{RDtrue

ED + p0(1− f )− p1 f}2 +4p1 p0 f (1− f )−{RDtrue
ED + p0(1− f )− p1 f}

2p0 f
.

Note that if the true causal risk difference is RDtrue
ED = 0, the above conditions all reduce to

BFU ≥ RRobs
ED. Suppose, again, the probabilities of the observed outcome with and without

exposure are p1 = 0.25, p0 = 0.1, and the prevalence of the exposure is f = 0.2. For an

unmeasured confounder U to reduce the observed risk difference of RDobs
ED = 0.15 to a true

risk difference of RDtrue
ED = 0.05, the joint bounding factor resulting from the confounder must

be at least as large as

BFU ≥
√

(0.05+0.1×0.8−0.25×0.2)2+4×0.25×0.1×0.2×0.8−(0.05+0.1×0.8−0.25×0.2)
2×0.1×0.2 = 1.74.

Therefore, as in the text both of the confounding measures RREU and RRUD must be at least
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as large as 1.74, and the maximum of them must be at least as large as 1.74+
√

1.74×0.74 =

2.88.

The above results are useful for apparently causative exposures with RDobs
ED > 0, which

give (possibly positive) lower bounds for the causal risk differences. However, for apparently

preventive exposure with RDobs
ED < 0, we need to modify the definition of RREU as RREU =

maxu RR−1
EU(u). And we have the following analogous results on the upper bounds of the

causal risk differences:

RDtrue
ED+ ≤ p1×BFU − p0,

RDtrue
ED− ≤ p1− p0/BFU ,

RDtrue
ED ≤ (p1×BFU − p0)×{ f +(1− f )/BFU}= (p1− p0/BFU)×{ f ×BFU +(1− f )} .

Due to the linearity of the risk difference, we can also obtain the lower bound of the

marginal risk differences averaged over the observed covariates C using RDtrue
ED+=∑c RDtrue

ED|c+P(C =

c | E = 1),RDtrue
ED− = ∑c RDtrue

ED|c−P(C = c | E = 0) and RDtrue
ED = ∑c RDtrue

ED|cP(C = c). In the

eAppendix, we provide details and proofs for the results above, discuss statistical inference

for the causal risk difference bounds under finite samples, and give formulas for how large

the bounding factor would have to be to reduce an estimate or a confidence interval to 0 or to

some other specified quantity. In the eAppendix, we also provide software code to implement

this sensitivity analysis approach for the risk difference.

Appendix 3: Conditions for the Risk Difference Using Sensi-
tivity Parameters on the Risk Difference Scale

In the previous Appendix, we considered sensitivity analysis for the risk difference with

sensitivity analysis parameters on the relative risk scale. In this Appendix, we consider sen-
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sitivity analysis for the risk difference with parameters defined on the risk difference scale.

Unfortunately, for the reasons described below, the results for the risk difference with param-

eters defined on the difference scale are not as practically useful as when the parameters are

defined on the relative risk scale.

Let RDobs
ED = P(D = 1 | E = 1)−P(D = 1 | E = 0) denote the observed risk difference,

and

RDtrue
ED =

K−1

∑
k=0
{P(D = 1 | E = 1,U = k)−P(D = 1 | E = 0,U = k)}P(U = k)

denote the standardized risk difference.

Define αk = P(U = k | E = 1)− P(U = k | E = 0) as the difference in the probability

that the confounder U takes a particular value k comparing exposed and unexposed. We use

RDEU = maxk≥1 |αk|, the maximum of these absolute differences, to measure the exposure-

confounder association on the risk difference scale, defined as the maximal risk difference

of the exposure E on the confounder U . Define β ∗k = P(D = 1 | E = 1,U = k)−P(D = 1 |

E = 1,U = 0) and βk = P(D = 1 | E = 0,U = k)−P(D = 1 | E = 0,U = 0) as the differ-

ence in the probability of the outcome comparing the category k and 0 of the confounder U

with and without exposure. Define RDUD|E=1 = maxk≥1 |β ∗k | and RDUD|E=0 = maxk≥1 |βk|

as the maximums of these differences with and without exposure, respectively. We use

RDUD = max(RDUD|E=1,RDUD|E=0) to measure the confounder-outcome association in the

risk difference scale, defined as the maximal risk difference of the confounder U on the out-

come D.

We first consider a binary unmeasured confounder. For binary confounder U , the maximal

risk difference RDEU becomes the ordinary risk difference RDEU , and the maximal risk dif-
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ference becomes the maximum of two conditional risk difference RDUD =max(RDUD|E=1,RDUD|E=0).

We have that

RDEU ×RDUD ≥ RDobs
ED−RDtrue

ED ,

which further leads to the following low and high thresholds:

min(RDEU ,RDUD)≥ RDobs
ED−RDtrue

ED , max(RDEU ,RDUD)≥
√

RDobs
ED−RDtrue

ED ,

which generalize previous results under the null of zero causal effect of E on D11,15,16.

For categorical confounder U , no simple form of the bounding factor is available, but we

can still show that RDEU and RDUD must satisfy the following conditions:

RDEU ≥ (RDobs
ED−RDtrue

ED )/(K−1),

RDUD ≥ (RDobs
ED−RDtrue

ED )/2,

max(RDEU ,RDUD) ≥ max
{√

(RDobs
ED−RDtrue

ED )/(K−1),(RDobs
ED−RDtrue

ED )/2
}
.

When K = 3 such as a three-level genetic confounder, these conditions reduce to

min(RDEU ,RDUD)≥ (RDobs
ED−RDtrue

ED )/2, max(RDEU ,RDUD)≥
√
(RDobs

ED−RDtrue
ED )/2. (7)

The results above generalize previous results11 from the null hypothesis of no effect

(RDtrue
ED = 0) to alternative hypotheses (RDtrue

ED arbitrary). We show the proofs and exten-

sions for the above results in the eAppendix.

We can see from above that the generalized Cornfield conditions for the risk difference

under alternative hypotheses depend on the number of categories of U , and become less

informative as the number of categories increases. Therefore, a binary confounder is not the

most conservative case for sensitivity analysis with parameters expressed the risk difference
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scale. However, the Cornfield conditions for the relative risk do not suffer from this problem.

Therefore, it seems that it is more appropriate to conduct sensitivity analysis with parameters

expressed on the risk ratio scale, and a binary confounder is the most conservative case for

sensitivity analysis with parameters expressed on the risk ratio scale17,18.
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Supplementary Materials for “Sensitivity
Analysis Without Assumptions”

The eAppendix contains the following nine sections:

Appendix 1: Three useful lemmas which are used repeatedly in the proofs in later sections;

Appendix 2: The new bounding factor introduced in the main text and its implied Cornfield

conditions with proofs;

Appendix 3: Another bounding factor with the exposure-confounder relationship on the odds

ratio scale and its implied Cornfield conditions with proofs;

Appendix 4: Relations between the new bounding factor and some existing results including

Schlesselman’s formula7 and Flanders and Khoury’s results12;

Appendix 5: Results for the risk difference using sensitivity parameters on the relative risk

scale with proofs;

Appendix 6: SAS code for the risk difference using sensitivity parameters on the relative risk

scale;

Appendix 7: Results for the risk difference using sensitivity parameters on the risk difference

scale with proofs;

Appendix 8: A bounding factor for rare time-to-event outcome on the hazard ratio scale and

its implied Cornfield conditions;

Appendix 9: A bounding factor for general nonnegative outcomes.
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Appendix 1 Useful Lemmas

Lemma A.1. Define h(x) = (c1x+1)/(c2x+1). When c1 > c2, h′(x)> 0 and h(x) is increas-

ing; when c1 ≤ c2, h′(x)≤ 0 and h(x) is non-increasing.

Proof of Lemma A.1. The first derivative of h(x) is

h′(x) =
c1(c2x+1)− (c1x+1)c2

(c2x+1)2 =
c1− c2

(c2x+1)2 .

When c1 > c2, h′(x)> 0 and h(x) is increasing in x. When c1 ≤ c2, we have opposite results.

Lemma A.2. When x,y > 1, h(x,y) = (xy)/(x+ y−1) is increasing in both x and y.

Proof of Lemma A.2. The first partial derivative of h(x,y) with respect to x is

∂h(x,y)
∂x

=
y(x+ y−1)− xy
(x+ y−1)2 =

y(y−1)
(x+ y−1)2 .

When x,y > 1, ∂h(x,y)/∂x > 0 and h(x,y) is increasing in x. By symmetry, the conclusion

holds also for y.

Lemma A.3. When x,y > 1, h(x,y) = (
√

xy+1)/(
√

x+
√

y) is increasing in both x and y.

Proof of Lemma A.3. The first partial derivative of h(x,y) with respect to x is

∂h(x,y)
∂x

=
1
2

√
y/x(
√

x+
√

y)− 1
2(
√

xy+1)/
√

x
(
√

x+
√

y)2 =
y−1

2
√

x(
√

x+
√

y)2 .

When x,y > 1, ∂h(x,y)/∂x > 0 and h(x,y) is increasing in x. By symmetry, the conclusion

holds also for y.

30



Appendix 2 The New Bounding Factor and Implied Corn-
field Conditions

Appendix 2.1 Technical Measure-Theoretical Details

This subsection presents the technical framework for the proofs. A less technical reader

can skip this subsection and move directly to the next subsection Appendix 2.2 on the new

bounding factor. Throughout the eAppendix, we allow the unmeasured confounder U to

take arbitrary values, which is a measurable mapping from probability space (Ω,F ,P) to a

measurable space (ϒ,U ). For V∈U , we define F1(V)= P(U ∈V |E = 1) as the distribution

of U with exposure, F0(V) = P(U ∈V | E = 0) as the distribution of U without exposure, and

F(V) = P(U ∈ V) as the marginal distribution of U . The distributions F1(·),F0(·) and F(·)

are measurable mappings from ϒ to [0,1], which correspondingly induce three probability

measures on the measurable space (ϒ,U ). When the confounder U is a scalar on the real

line, these definitions reduce to F1(u)= P(U ≤ u |E = 1), the cumulative distribution function

(CDF) of U with exposure, F0(u) = P(U ≤ u | E = 0), the CDF of U without exposure,

and F(u) = P(U ≤ u), its marginal CDF. Correspondingly, the CDFs, F1,F0, and F , also

induce three measures on the real line. In the following, we assume that the measure F1 is

absolutely continuous with respect to the measure F0, with the Radon–Nikodym derivative

defined as RREU(u) =F1(du)/F0(du), which is the generalized relative risk of E on U at U =

u. The absolute continuous assumption about F1 and F0 holds automatically for categorical

and absolutely continuous unmeasured confounder U . For general confounder U , this is only

a mild regularity condition.
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Appendix 2.2 The New Bounding Factor

We assume for the next several sections that analysis is done conditional on, or within strata

of the measured confounders C. We define the maximal relative risk of E on U as RREU =

maxu RREU(u). Define r(u) = P(D = 1 | E = 0,U = u) and r∗(u) = P(D = 1 | E = 1,U = u)

as the probabilities of the outcome within stratum U = u without and with exposure. Define

the maximal relative risk of U on D as RRUD|E=0 = maxu r(u)/minu r(u) and RRUD|E=1 =

maxu r∗(u)/minu r∗(u) without and with exposure, and RRUD =max(RRUD|E=0,RRUD|E=1)

as the maximum of these two relative risks. The maxima and minima are taken over the space

ϒ, and hereinafter. When U is a categorical confounder with levels 0,1, . . . ,K−1, the defini-

tions above reduce to the definitions in the main text. To allow for causal interpretations, we

invoke the counterfactural or potential outcomes framework, with Di(1) and Di(0) being the

potential outcomes for individual i with and without the exposure, respectively; we also need

to make the ignorability assumption19 E {D(1),D(0)} |U .

The observed relative risk of the exposure E on the outcome D is

RRobs
ED =

∫
P(D = 1 | E = 1,U = u)F1(du)∫
P(D = 1 | E = 0,U = u)F0(du)

=

∫
r∗(u)F1(du)∫
r(u)F0(du)

,

where the integrals are over ϒ and hereinafter. The relative risks standardized by the exposed,

the unexposed, and the whole population are as follows:

RRtrue
ED+ =

∫
r∗(u)F1(du)∫
r(u)F1(du)

, RRtrue
ED− =

∫
r∗(u)F0(du)∫
r(u)F0(du)

, RRtrue
ED =

∫
r∗(u)F(du)∫
r(u)F(du)

.

When unmeasure confounder U is categorical, RRtrue
ED reduces to the form in the main text,

and all other relative risk measures can be simplifies by replacing integrations by summations.

The corresponding confounding relative risks standardized by the exposed, the unexposed,
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and the whole population are

CRRED+ =
RRobs

ED
RRtrue

ED+

=

∫
r(u)F1(du)∫
r(u)F0(du)

, CRRED− =
RRobs

ED
RRtrue

ED−
=

∫
r∗(u)F1(du)∫
r∗(u)F0(du)

,

and CRRED = RRobs
ED/RRtrue

ED . Similar to Lee10, we have that RRtrue
ED is a weighted average

of RRtrue
ED+ and RRtrue

ED−, and CRRED is a harmonic average of CRRED+ and CRRED−.

Proposition A.1. We have

RRtrue
ED = wRRtrue

ED++(1−w)RRtrue
ED−, 1/CRRED = w/CRRED++(1−w)/CRRED−,

where f = P(E = 1) and w is a weight between zero and one:

w =
f
∫

r(u)F1(du)
f
∫

r(u)F1(du)+(1− f )
∫

r(u)F0(du)
∈ [0,1].

Proof of Proposition A.1. The conclusions follow from the following decomposition:

RRtrue
ED =

∫
r∗(u)F(du)∫
r(u)F(du)

=
f
∫

r∗(u)F1(du)+(1− f )
∫

r∗(u)F0(du)
f
∫

r(u)F1(du)+(1− f )
∫

r(u)F0(du)

=
f
∫

r(u)F1(du)
f
∫

r(u)F1(du)+(1− f )
∫

r(u)F0(du)
×
∫

r∗(u)F1(du)∫
r(u)F0(du)

+
(1− f )

∫
r(u)F0(du)

f
∫

r(u)F1(du)+(1− f )
∫

r(u)F0(du)
×
∫

r∗(u)F0(du)∫
r(u)F0(du)

.

The confounding relative risks can be bounded from above by the bounding factor

BFU =
RREU ×RRUD

RREU +RRUD−1
,

as shown in the following proposition.

Proposition A.2. The confounding relative risks can be bounded from above by

CRRED+ =
RRobs

ED
RRtrue

ED+

≤ BFU , CRRED− =
RRobs

ED
RRtrue

ED−
≤ BFU , CRRED =

RRobs
ED

RRtrue
ED
≤ BFU .
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Proof of Proposition A.2. In the following proof, we first discuss CRRED+. The key obser-

vation is to write CRRED+ in terms of a binary confounder with two levels corresponding to

maxu r(u) and minu r(u). To be more specific, we have that

CRRED+ =
w1 maxu r(u)+(1−w1)minu r(u)
w0 maxu r(u)+(1−w0)minu r(u)

,

where

w1 =

∫
{r(u)−minu r(u)}F1(du)
maxu r(u)−minu r(u)

, 1−w1 =

∫
{maxu r(u)− r(u)}F1(du)

maxu r(u)−minu r(u)
,

w0 =

∫
{r(u)−minu r(u)}F0(du)
maxu r(u)−minu r(u)

, 1−w0 =

∫
{maxu r(u)− r(u)}F0(du)

maxu r(u)−minu r(u)
.

Define Γ = w1/w0, and we have

Γ =
w1

w0
=

∫
{r(u)−minu r(u)}F1(du)∫
{r(u)−minu r(u)}F0(du)

=

∫
{r(u)−minu r(u)}RREU(u)F0(du)∫
{r(u)−minu r(u)}F0(du)

≤ maxu RREU(u)×
∫
{r(u)−minu r(u)}F0(du)∫

{r(u)−minu r(u)}F0(du)
= RREU .

We can write w0 = w1/Γ, and therefore we have

CRR+
ED =

{maxu r(u)−minu r(u)}×w1 +minu r(u)
{maxu r(u)−minu r(u)}/Γ×w1 +minu r(u)

.

In the following, we divide our discussion into two cases. If Γ > 1, then CRR+
ED is increasing

in w1 according to Lemma A.1, and it attains the maximum at w1 = 1. Thus we have

CRR+
ED ≤

Γ×RRUD|E=0

Γ+RRUD|E=0−1
≤

RREU ×RRUD|E=0

RREU +RRUD|E=0−1
,

where the second inequality follows from Lemma A.2. If Γ ≤ 1, then CRR+
ED is non-

increasing in w1, and it attains the maximum at w1 = 0. Thus we have

CRR+
ED ≤ 1≤

RREU ×RRUD|E=0

RREU +RRUD|E=0−1
,
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where the the second inequality again follows from Lemma A.2.

The same discussion applies to CRR−ED, and we can obtain that

CRR−ED ≤
RREU ×RRUD|E=1

RREU +RRUD|E=1−1
.

Using the fact 1/CRRED = w/CRR+
ED +(1−w)/CRR−ED, we know that

1
CRRED

≥
(

RREU ×RRUD

RREU +RRUD−1

)−1

,

and the conclusion follows.

Appendix 2.3 The Implied Cornfield Conditions

Proposition A.2 says that the bounding factor is larger than or equal to all the confounding

relative risks. It can be viewed as the Cornfield condition for the joint value of (RREU ,RRUD)

in order to reduce the observed relative risk of RRobs
ED to the causal relative risk of RRtrue

ED . If

we specify one of the unmeasured confounding measure, for example RREU , then we can

solve A.2 and obtain the lower bound of the other confounding measure:

RRUD ≥
RREU ×RRobs

ED−RRobs
ED

RREU ×RRtrue
ED −RRobs

ED
.

When RRtrue
ED = 1, the above lower bound reduces to

RRUD ≥
RREU ×RRobs

ED−RRobs
ED

RREU −RRobs
ED

.

Further, Proposition A.2 implies the following Cornfield-type conditions for RREU and RRUD.

Proposition A.3. We have the following Cornfield conditions:

min(RREU ,RRUD)≥CRRED, max(RREU ,RRUD)≥CRRED+
√

CRRED(CRRED−1).
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Proof of Proposition A.3. According to Lemma A.2, the right-hand side of the last inequality

in Proposition A.2 is increasing in both RRUD and RREU . Therefore, the right-hand side of

the above inequality in Proposition A.2 will increase if we let RRUD or RREU go to large

extremes. Let RRUD → ∞, and we have CRRED ≤ RREU . Let RREU → ∞, and we have

CRRED ≤ RRUD. Therefore, we have the following low threshold: min(RRUD,RREU) ≥

CRRED. We can obtain the following inequality by replacing RRUD and RREU in the bound-

ing factor by their maximum value due to Lemma A.2:

CRRED ≤
max2(RRUD,RREU)

2max(RRUD,RREU)−1
,

solving max(RRUD,RREU) from which we can obtain the following high threshold.

Appendix 2.4 Preventive Exposures

The bounding factor in Proposition A.2 is particularly useful for an apparently causative

exposure with RRobs
ED > 1, and the true causal relative risk is an attenuation of RRobs

ED by the

bounding factor. However, for apparently preventive exposure with RRobs
ED < 1, we can derive

equally useful bias formula. For apparently preventive exposure, we modify the definition

of the relative risk between E and U as RREU = maxu RR−1
EU(u) = 1/minu RREU(u), and

obtain the following analogous result.

Proposition A.4. For apparently preventive exposure, we have RRtrue
ED /RRobs

ED ≤ BFU . Or,

equivalently, the true causal relative risk is an inflation of RRobs
ED by the bounding factor.

Proof of Proposition A.4. Define Ē = 1−E, and the exposure Ē is apparently preventive for

the outcome. Therefore, Proposition A.2 implies that

RRĒD

RRtrue
ĒD
≤ RRĒU ×RRUD

RRĒU +RRUD−1
.
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Since RRĒD = 1/RRobs
ED,RRtrue

ĒD = 1/RRtrue
ED , and RRĒU = maxu RR−1

EU(u) = RREU , the con-

clusion follows.

Appendix 2.5 Averaged Over Observed Covariates

All the results above are within strata of observed covariates C. The probabilities are con-

ditional probabilities (e.g., P(D = 1 | E = 1,C = c),P{D(1) = 1 | E = 0,C = c},etc.), the

causal relative risks are conditional causal measures (e.g., RDtrue
ED+ = P{D(1) = 1 | E = 1,C =

c}/P{D(0) = 1 | E = 0,C = c},etc.), and the bounding factor is also conditional denoted as

BFU |c = RREU |c×RRUD|c/(RREU |c +RRUD|c−1).

We have the following decomposition:

RRtrue
ED =

∫
P(D = 1 | E = 1,C = c,U = u)FCU(dcdu)∫
P(D = 1 | E = 0,C = c,U = u)FCU(dcdu)

=

∫ ∫
P(D = 1 | E = 1,C = c,U = u)FU |C(du)FC(dc)∫ ∫
P(D = 1 | E = 0,C = c,U = u)FU |C(du)FC(dc)

=

∫
P{D(1) = 1 |C = c}FC(dc)∫
P{D(0) = 1 |C = c}FC(dc)

=

∫
RRtrue

ED|cP{D(0) = 1 |C = c}FC(dc)∫
P{D(0) = 1 |C = c}FC(dc)

.

Applying the result about conditional causal relative risk, we have

RRtrue
ED ≥

∫ RRobs
ED|c

BFU |c
P{D(0) = 1 |C = c}FC(dc)∫

P{D(0) = 1 |C = c}FC(dc)
≥min

c

RRobs
ED|c

BFU |c
.

If we assume a common causal relative risk RRtrue
ED|c = RRtrue

ED , then we can sharpen the result

as:

RRtrue
ED ≥max

c

RRobs
ED|c

BFU |c
.
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Appendix 3 Another Bounding Factor and Implied Corn-
field Conditions Using the Odds Ratio

Appendix 3.1 Another Bounding Factor Using the Odds Ratio

Define p(u) = P(E = 1 |U = u) as the probability of the exposure, and q(u) = p(u)/{1−

p(u)} as the odds of the exposure within level u of the confounder U . Let OREU =maxu q(u)/minu q(u)

be the ratio of the maximum and minimum of these odds. We use OREU to measure the as-

sociation between the confounder U and the exposure E, which is defined as the maximal

odds ratio between the exposure E and the confounder U . When the confounder U is binary,

it reduces to the ordinary odds ratio. Using the odds ratio between the exposure E and U

and the relative risk of the confounder U on the outcome D as the association measure as

Bross and Lee2,3,10, we have the following bounding factor that ties CRRED with OREU and

RRUD:

Proposition A.5. We have( √
OREU RRUD +1√
OREU +

√
RRUD

)2

≥ RRobs
ED

RRtrue
ED

= CRRED. (A.1)

Proof of Proposition A.5. Lee10 obtained the following results:

CRR+
ED ≤

(√
OREU RRUD|E=0 +1

√
OREU +

√
RRUD|E=0

)2

, CRR−ED ≤

(√
OREU RRUD|E=1 +1

√
OREU +

√
RRUD|E=1

)2

,(A.2)

Since RRUD = max(RRUD|E=0,RRUD|E=1), Lemma A.3 implies that

CRR+
ED ≤

( √
OREU RRUD +1√
OREU +

√
RRUD

)2

, CRR−ED ≤
( √

OREU RRUD +1√
OREU +

√
RRUD

)2

,

which leads to

1
CRRED

=
w

CRR+
ED

+
1−w

CRR−ED
≥
(√

OREU +
√

RRUD√
OREU RRUD +1

)2

,

and the conclusion follows.
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Appendix 3.2 Implied Cornfield Conditions

The bounding factor in the last subsection implies the following Cornfield conditions:

Proposition A.6. We have

min(OREU ,RRUD)≥ CRRED, max(OREU ,RRUD)≥
(√

CRRED +
√

CRRED−1
)2

.

Proof of Proposition A.6. According to Lemma A.3, we can let RRED goes to infinity, and

obtain OREU ≥ CRRED. Similarly, we can let OREU goes to infinity, and obtain RRUD ≥

CRRED. Combining them together, we have the following low threshold: min(OREU ,RRUD)≥

CRRED. According to Lemma A.3 again, we can replace OREU and RRUD by max(OREU ,RRUD)

in the bounding factor in Section Appendix 3.1 , and preserve the inequality as follows:(
max(OREU ,RRUD)+1
2
√

max(OREU ,RRUD)

)2

≥ CRRED.

Solving the above inequality, we obtain
√

max(OREU ,RRUD)≥
√

CRRED+
√

CRRED−1,

and the high threshold follows.

Propositions A.5 and A.6 generalize the results of Bross2,3 and Lee10 from only being

applicable under the null hypothesis of no effect (i.e., only being useful for assessing how

much unmeasured confounding would suffice to completely explain away an effect estimate)

to alternative hypotheses and sensitivity analysis.

Appendix 3.3 Preventive Exposure

For apparently preventive exposure with RRobs
ED < 1, we can derive bias formula similar to

Proposition A.5, and we don’t even need to modify the definition of OREU .
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Proposition A.7. For apparently preventive exposure, we have

RRtrue
ED

RRobs
ED
≤
( √

OREU RRUD +1√
OREU +

√
RRUD

)2

.

Proof of Proposition A.7. Define Ē = 1−E. Applying Proposition A.5, we have

RRĒD

RRtrue
ĒD
≤

(√
ORĒU RRUD +1√
ORĒU +

√
RRUD

)2

.

Since RRĒD = 1/RRobs
ED,RRtrue

ĒD = 1/RRtrue
ED , and

ORĒU =
maxu 1/q(u)
minu 1/q(u)

=
1/minu q(u)
1/maxu q(u)

=
maxu q(u)
minu q(u)

= OREU ,

the conclusion follows.

Appendix 4 Relations with Existing Results

Appendix 4.1 Schlesselman’s Formula

For a binary confounder U , Schlesselman7 first obtained that

RRobs
ED

RRtrue
ED−

=
1+(RRUD|E=1−1)P(U = 1 | E = 1)
1+(RRUD|E=0−1)P(U = 1 | E = 0)

.

He further assumed a common relative risk of the exposure E on the outcome D within both

U = 0 and U = 1, and also a common relative risk of the confounder U on the outcome D

within both E = 0 and E = 1, denoted by γ . Under the above no-interaction assumption,

Schlesselman simplified the above identity to the following formula:

RRobs
ED

RRtrue
ED

=
1+(γ−1)P(U = 1 | E = 1)
1+(γ−1)P(U = 1 | E = 0)

.

We can write P(U = 1 | E = 0) = P(U = 1 | E = 1)/RREU and then maximize the right-hand

side of the above formula over P(U = 1 | E = 1), which gives us the following inequality:

RRobs
ED

RRtrue
ED
≤ RREU × γ

RREU + γ−1
.
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The inequality above is the same as our main result in the main text, but is derived under

unnecessary assumptions. Our result is much more general than the previous result obtained

by Schlesselman7, and his assumptions are not necessary for deriving our new bounding

factor.

Appendix 4.2 Flanders and Khoury’s results

Flanders and Khoury12 used slightly different notation for categorical confounder U :

pk = P(U = k | E = 0),

ORk =
P(U = k | E = 1)/P(U = 0 | E = 1)
P(U = k | E = 0)/P(U = 0 | E = 0)

,

RRk =
P(D = 1 |U = k,E = 0)
P(D = 1 |U = 0,E = 0)

.

They expressed the confounding relative risk for the exposed population as

CRRED+ =
∑k RRkORk pk

(∑k ORk pk)(∑k RRk pk)
.

The above sensitivity analysis formula depends on a large number of sensitivity parame-

ters, and requires specifying the prevalence of the unmeasured confounder among unexposed

population. Flanders and Khoury simplified it for binary confounder. However, for general

categorical confounder, they derived the following bounds on the confounding relative risk:

CRRED+ ≤min
{

maxk ORk

∑k ORk pk
,
maxk RRk

∑k RRk pk
,max

k
ORk,max

k
RRk,

1
pk∗

,
1

pk∗∗

}
,

where k∗ and k∗∗ are the strata corresponding to the largest ORk and RRk, respectively. The

upper bound depends on the prevalence of U . If we do not have any knowledge about the

number of categories or the prevalence of U , the above bound reduces to

CRRED+ ≤min
{

max
k

ORk,max
k

RRk

}
,

which is essentially the low threshold Cornfield condition.
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Appendix 5 Results for the Risk Difference Using Sensitiv-
ity Parameters on the Relative Risk Scale

Appendix 5.1 Lower Bounds for the Causal Risk Differences

Define p1 = P(D = 1 | E = 1) and p0 = P(D = 1 | E = 0) as the probabilities of the outcome

with and without exposure, and f = P(E = 1) as the prevalence of the exposure. The causal

risk differences for the exposed, unexposed and the whole population are defined as

RDtrue
ED+ = P{D(1) = 1 | E = 1}−P{D(0) = 1 | E = 1}= p1−P{D(0) = 1 | E = 1},

RDtrue
ED− = P{D(1) = 1 | E = 0}−P{D(0) = 1 | E = 0}= P{D(1) = 1 | E = 0}− p0,

RDtrue
ED = P{D(1) = 1}−P{D(0) = 1}.

If U suffices to control the confounding between the exposure and the outcome, then the

following standardized risk differences are the causal risk differences for the exposed, unex-

posed and the whole population:

RDtrue
ED+ = p1−

∫
r(u)F1(du), RDtrue

ED− =
∫

r∗(u)F0(du)− p0, RDtrue
ED =

∫
{r∗(u)− r(u)}F(du).

Proposition A.8. The lower bounds for the causal risk differences are

RDtrue
ED+ ≥ p1− p0×BFU ,

RDtrue
ED− ≥ p1/BFU − p0,

RDtrue
ED ≥ (p1− p0×BFU)×{ f +(1− f )/BFU}= (p1/BFU − p0)×{ f ×BFU +(1− f )} .

Proof of Proposition A.8. From the data, we can identify:

p1 =
∫

P(D = 1 | E = 1,U = u)F1(du) =
∫

r∗(u)F1(du),

p0 =
∫

P(D = 1 | E = 0,U = u)F0(du) =
∫

r(u)F0(du).
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However, the following two counterfactual probabilities are not identifiable:

P{D(1) = 1 | E = 0} =
∫

P(D = 1 | E = 1,U = u)F0(du) =
∫

r∗(u)F0(du),

P{D(0) = 1 | E = 1} =
∫

P(D = 1 | E = 0,U = u)F1(du) =
∫

r(u)F1(du).

First, we have

p1

P{D(1) = 1 | E = 0}
=

∫
r∗(u)F1(du)∫
r∗(u)F0(du)

= CRRED− ≤ BFU

according to Proposition A.2, and thus P{D(1) = 1 | E = 0} ≥ p1/BFU . Second, we have

P{D(0) = 1 | E = 1}
p0

=

∫
r(u)F1(du)∫
r(u)F0(du)

= CRRED+ ≤ BFU

according to Proposition A.2, and thus P{D(0)= 1 |E = 1}≤ p0×BFU . Therefore, the lower

bound for RDtrue
ED+ is RDtrue

ED+ ≥ p1− p0×BFU , and for RDtrue
ED− is RDtrue

ED− ≥ p1/BFU − p0.

We can obtain the lower bound for RDtrue
ED using RDtrue

ED = f RDtrue
ED++(1− f )RDtrue

ED−.

If the probability of E = 1, f , is unknown, the above result about RDtrue
ED is not directly

useful. In the following, we obtain a lower bound for RDtrue
ED based on RDtrue

ED = f RDtrue
ED++

(1− f )RDtrue
ED−, which does not depend on f .

Proposition A.9. We have RDtrue
ED ≥min(p1− p0×BFU , p1/BFU − p0). When p1 > p0 and

1≤ BFU ≤ RRobs
ED, the above lower bound reduces to RDtrue

ED ≥ p1− p0×BFU .

The above results are particularly useful for an apparently causative exposure with RDobs
ED >

0, which give (possibly positive) lower bounds for the causal risk differences. However, for

an apparently preventive exposure with RDobs
ED < 0, we need to modify the definition of RREU

as RREU = maxu RR−1
EU(u). And we have the following analogous results.
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Proposition A.10. For apparently preventive exposure with RDobs
ED < 0, we have

RDtrue
ED+ ≤ p1×BFU − p0,

RDtrue
ED− ≤ p1− p0/BFU ,

RDtrue
ED ≤ (p1×BFU − p0)×{ f +(1− f )/BFU}= (p1− p0/BFU)×{ f ×BFU +(1− f )} .

When f is unknown and 1≤ BFU ≤ 1/RRobs
ED, we have RRtrue

ED ≤ p1− p0/BFU .

Proof of Proposition A.10. Define Ē = 1−E. Applying Proposition A.8, we have

RDtrue
ĒD+ ≥ P(D = 1 | Ē = 1)−P(D = 1 | Ē = 0)×BFU ,

RDtrue
ĒD− ≥ P(D = 1 | Ē = 1)/BFU −P(D = 1 | Ē = 0),

RDtrue
ĒD ≥ {P(D = 1 | Ē = 1)−P(D = 1 | Ē = 0)×BFU}×{ f +(1− f )/BFU}

= {P(D = 1 | Ē = 1)/BFU −P(D = 1 | Ē = 0)}×{ f ×BFU +(1− f )} .

Since RDtrue
ĒD+

= −RDtrue
ED+,RDtrue

ĒD− = −RDtrue
ED− and RDtrue

ĒD = −RDtrue
ED , the first three

conclusions follow. When f is unknown and 1 ≤ BFU ≤ 1/RRobs
ED, we have RDtrue

ED ≤

max(RDtrue
ED+,RDtrue

ED−) = p1− p0/BFU .

The above discussion is within strata of observed covariates C. All probabilities are

essentially conditional probabilities, e.g., P(D = 1 | E = 1,C = c),P(E = 1 | C = c),etc.

Consequently, the bounding factor and causal risk differences are also conditional, denoted

as BFU |c,RDtrue
ED|c+,RDtrue

ED|c− and RDtrue
ED|c. Due to the linearity of the risk difference, i.e.,

RDtrue
ED+=∑c RDtrue

ED|c+P(C = c |E = 1),RDtrue
ED−=∑c RDtrue

ED|c−P(C = c |E = 0) and RDtrue
ED =
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∑c RDtrue
ED|cP(C = c), we have the following results about the marginal risk differences:

RDtrue
ED+ ≥ ∑

c

{
P(D = 1 | E = 1,C = c)−P(D = 1 | E = 0,C = c)×BFU |c

}
P(C = c | E = 1),

RDtrue
ED− ≥ ∑

c

{
P(D = 1 | E = 1,C = c)/BFU |c−P(D = 1 | E = 0,C = c)

}
P(C = c | E = 0),

RDtrue
ED ≥ f ∑

c

{
P(D = 1 | E = 1,C = c)−P(D = 1 | E = 0,C = c)×BFU |c

}
P(C = c | E = 1)

+(1− f )∑
c

{
P(D = 1 | E = 1,C = c)/BFU |c−P(D = 1 | E = 0,C = c)

}
P(C = c | E = 0).

Appendix 5.2 Statistical Inference for the Causal Risk Differences

In previous subsections we discussed the population quantities assuming that we knew the

distribution of (E,D,C). In this subsection, we will discuss the finite sample inference for the

causal risk differences. We can straightforwardly estimate f , p1 and p0 by sample frequencies

f̂ , p̂1 and p̂0 with standard errors s,s1 and s0, respectively. Then we can estimate the lower

bound for RDtrue
ED+ by p̂1− p̂0×BFU with standard error (s2

1 + s2
0×BF2

U)
1/2, estimate the

lower bound for RDtrue
ED− by p̂1/BFU− p̂0 with standard error (s2

1/BF2
U +s2

0)
1/2, and estimate

the lower bound for RDtrue
ED by (p̂1− p̂0×BFU)×{ f̂ +(1− f̂ )/BFU} or (p̂1/BFU − p̂0)×

{ f̂ ×BFU +(1− f̂ )} with standard error√√√√(s2
1 + s2

0×BF2
U)

(
f̂ +

1− f̂
BFU

)2

+(p̂1− p̂0×BFU)2(1−BF−1
U )2s2,

using a standard argument of the delta-method. After obtaining the point estimates and their

standard errors, we can construct confidence intervals for these causal risk differences.

Note that even without estimating the prevalence, f , of the exposure, if the exposure is

apparently causative, we can use the lower bound of min(RDtrue
ED+,RDtrue

ED−) as a lower bound

for RDtrue
ED . The point estimate of the causal risk difference averaged over the observed co-

variates can be obtained by the weighted average of the point estimates of the causal risk
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differences within strata of C with the proportions of the strata as the weights, and the corre-

sponding sampling variance is the weighted average of the sampling variances within strata

with the squared proportions of the strata as the weights.

Appendix 5.3 Implied Cornfield Conditions

The results in Proposition A.8 imply the following Cornfield conditions.

Proposition A.11. For an unmeasured confounder to reduce the observed risk difference to

be RDtrue
ED+,RDtrue

ED− and RDtrue
ED respectively, the joint Cornfield conditions are

BFU ≥ (p1−RDtrue
ED+)/p0,

BFU ≥ p1/(p0 +RDtrue
ED−),

BFU ≥
√
{RDtrue

ED + p0(1− f )− p1 f}2 +4p1 p0 f (1− f )−{RDtrue
ED + p0(1− f )− p1 f}

2p0 f
.

Proof of Proposition A.11. It is straightforward to see that the first two conclusions of Propo-

sition A.8 imply the first two inequalities. From the third conclusion of Proposition A.8, we

have the following quadratic inequality about BFU :

(p0 f )BF2
U +{p0(1− f )+RDtrue

ED − p1 f}BFU − p1(1− f )≥ 0.

The corresponding equation has one negative root and the following positive root:

BF∗U =

√
{RDtrue

ED + p0(1− f )− p1 f}2 +4p1 p0 f (1− f )−{RDtrue
ED + p0(1− f )− p1 f}

2p0 f
.

Since BFU > 0, the inequality has the solution BFU ≥ BF∗U .

Similar to the discussion in the last two sections, we can also derive the low and high

threshold Cornfield conditions from the above joint Cornfield conditions for (RREU ,RRUD).
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If RDtrue
ED+,RDtrue

ED− and RDtrue
ED are zero, all the conditions in Proposition A.11 reduce to

BFU ≥ RRobs
ED, the one derived from the result about the relative risk of the exposure on the

outcome. Therefore, the formula from the risk difference is the same as that derived from the

relative risk under the null hypothesis, but they are different under the alternative hypotheses.

With finite sample, we can also find the smallest bounding factor that can reduce the lower

confidence limit of the lower bound of the causal risk differences to a certain magnitude.

We will discuss (1−α)% confidence intervals based on asymptotic normality, and let zα =

Φ−1(1−α/2) denote the upper α/2 quantile of the standard normal distribution (e.g., when

α = 0.05, z0.05 = 1.96). In order to reduce the confidence interval of the risk difference on

the exposed to cover a true causal risk difference RDtrue
ED+, the bounding factor must satisfy

p̂1− p̂0×BFU − zα

√
s2

1 + s2
0×BF2

U ≤ RDtrue
ED+,

which has the following solution:

BFU ≥
p̂0(p̂1−RDtrue

ED+)−
√

p̂2
0(p̂1−RDtrue

ED+)
2−(p̂2

0−z2
α s2

0){(p̂1+RDtrue
ED+)

2−z2
α s2

1}
p̂2

0−z2
α s2

0
. (A.3)

In order to reduce the confidence interval of the risk difference on the unexposed to cover a

true causal risk difference RDtrue
ED−, the bounding factor must satisfy

p̂1/BFU − p̂0− zα

√
s2

1/BF2
U + s2

0 ≤ RDtrue
ED−,

which has the following solution:

BFU ≥
p̂1(p̂0+RDtrue

ED−)−
√

p̂2
1(p̂0+RDtrue

ED−)
2−{(p̂0+RDtrue

ED−)
2−z2

α s2
0}(p̂2

1−z2
α s2

1)

(p̂0+RDtrue
ED−)

2−z2
α s2

0
. (A.4)

Note that if we assume RDtrue
ED+ = RDtrue

ED− = 0, the above solutions in (A.3) and (A.4) reduce

to the same form:

BFU ≥
p̂1 p̂0−

√
p̂2

1 p̂2
0− (p̂2

0− z2
αs2

0)(p̂2
1− z2

αs2
1)

p̂2
0− z2

αs2
0

.
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In order to reduce the confidence interval of the risk difference to cover a true causal risk

difference RDtrue
ED , the bounding factor must satisfy

(p̂1− p̂0×BFU)

(
f̂ +

1− f̂
BFU

)

−zα

√√√√(s2
1 + s2

0×BF2
U)

(
f̂ +

1− f̂
BFU

)2

+(p̂1− p̂0×BFU)2(1−BF−1
U )2s2 ≤ RDtrue

ED ,

(A.5)

which can be solved numerically. For example, we can apply a grid search for the solution of

(A.5) over the following bounded range:

BFU ∈

1,

√
{RDtrue

ED + p̂0(1− f̂ )− p̂1 f̂}2 +4p̂1 p̂0 f (1− f̂ )−{RDtrue
ED + p̂0(1− f̂ )− p̂1 f̂}

2p̂0 f̂

 ,

since the point estimate has already been reduced to RDtrue
ED when BFU attains the above

upper bound of range.

Appendix 6 SAS Code for the Risk Difference Using Sensi-
tivity Parameters on the Relative Risk Scale

In this section, we provide SAS code for sensitivity analysis on the risk difference scale. The

SAS code here illustrates analysis using logistic regression for a binary outcome as this is an

approach that is commonly employed.

Suppose we have a dataset named “leadlogit” with variables lead, smoking, age, male.

Suppose we are interested in the risk difference of smoking on the high blood lead level at

the covariate level, age = 50 and male = 1.

To implement sensitivity analysis for risk difference we need to obtain point estimate and

standard error for f = P(E = 1), which can be done via the following SAS code.
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proc means data=lib.leadlogit ; /*f and se(f)*/
var smoking;

output out=sumstat mean=mean var=var N=N;
run;

data sumstat (KEEP=MEAN SE);
set sumstat;
se=(var/N)**0.5;
run;

The following code obtains the predicted probabilities p1|c = P{Y (1) = 1 | C = c} and

p0|c = P{Y (0) = 1 |C = c} with standard errors.

proc logistic data = lib.leadlogit;/*predict probs*/
model lead = smoking age male;
score data = lib.leadlogit_new out=logit_pred clm;
run;

proc contents data =logit_pred ;
run;

data logit_pred (keep=P_TRUE se_p);/*p1 p0 se(p1) se(p0)*/
set logit_pred;

logit_LCL_TRUE =log(LCL_TRUE/(1-LCL_TRUE));
logit_P_TRUE =log(P_TRUE/(1-P_TRUE));
logit_UCL_TRUE =log(UCL_TRUE /(1-UCL_TRUE ));

se_eta =(logit_UCL_TRUE-logit_LCL_TRUE)/2/1.96;
se_p =P_TRUE**2/EXP(logit_P_TRUE)*se_eta;
run;

In the following SAS code, we need to input from line 2 to line 7 the point estimates

and standard errors of the prevalence f , and the two predicted outcome probabilities p1|c and

p0|c. The output contains lower bounds for the point estimates and confidence intervals of

the causal risk differences for the exposed, unexposed and the whole population. Figure A.1

is the SAS output for the causal risk difference estimates for the whole population. For other

problems, we need to change the numbers from line 2 to line 7 accordingly. We can also

change the measures of the strength of confounding in lines 8 and 9. The output from SAS

will be similar to the one shown in Figure A.1.

proc iml;/*Sensitivity analysis without assumptions for RD*/
f = 0.2032934132;/*point and interval estimate of prevalence and response rates*/
p1 = 0.101645862;
p0 = 0.0398930775;
s2_f = 0.0069647038;
s2_p1 = 0.0147497019;
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s2_p0 = 0.0058931321;
RR_EU = {1.2 1.3 1.5 1.8 2 2.5 3 5};/*strenghth of confounding*/
RR_UD = {1.2 1.3 1.5 1.8 2 2.5 3 5};
rownames_EU = CHAR(RR_EU, NCOL(RR_EU), 1);
colnames_UD = CHAR(RR_UD, NCOL(RR_UD), 1);
BiasFactor = J(NCOL(RR_EU), NCOL(RR_UD), 1);
SPACE = J(NCOL(RR_EU), NCOL(RR_UD), " ");
LeftP = J(NCOL(RR_EU), NCOL(RR_UD), "(");
Mid = J(NCOL(RR_EU), NCOL(RR_UD), ",");
RightP = J(NCOL(RR_EU), NCOL(RR_UD), ")");
/*initial values*/
RD_exposed = BiasFactor;
RD_exposed_L = BiasFactor;
RD_exposed_U = BiasFactor;
RD_unexposed = BiasFactor;
RD_unexposed_L = BiasFactor;
RD_unexposed_U = BiasFactor;
RD_whole = BiasFactor;
RD_whole_L = BiasFactor;
RD_whole_U = BiasFactor;
W_whole = BiasFactor;
Var_exposed = BiasFactor;
Var_unexposed = BiasFactor;
Var_whole = BiasFactor;
/*Sensitivity analysis*/
DO i=1 TO NCOL(RR_EU);

Do j=1 to NCOL(RR_UD);
BiasFactor[i, j] = RR_EU[i]*RR_UD[j]/(RR_EU[i] + RR_UD[j] - 1);

/*exposed*/
RD_exposed[i, j] = p1 - p0*BiasFactor[i, j];
Var_exposed[i, j] = s2_p1 + s2_p0*(BiasFactor[i, j])**2;
RD_exposed_L[i, j] = RD_exposed[i, j] - 1.96*sqrt(Var_exposed[i, j]);

RD_exposed_U[i, j] = RD_exposed[i, j] + 1.96*sqrt(Var_exposed[i, j]);
/*exposed*/
RD_unexposed[i, j] = p1/BiasFactor[i, j] - p0;

Var_unexposed[i, j] = s2_p1/(BiasFactor[i, j])**2 + s2_p0;
RD_unexposed_L[i, j] = RD_unexposed[i, j] - 1.96*sqrt(Var_unexposed[i, j]);

RD_unexposed_U[i, j] = RD_unexposed[i, j] + 1.96*sqrt(Var_unexposed[i, j]);
/*whole*/

W_whole[i, j] = f + (1-f)/BiasFactor[i, j];
RD_whole[i, j] = RD_exposed[i, j]*W_whole[i, j];
Var_whole[i, j] = Var_exposed[i, j]*(W_whole[i, j])**2

+ (RD_exposed[i, j])**2*(1-1/BiasFactor[i, j])**2*s2_f;
RD_whole_L[i, j] = RD_whole[i, j] - 1.96*sqrt(Var_whole[i, j]);
RD_whole_U[i, j] = RD_whole[i, j] + 1.96*sqrt(Var_whole[i, j]);

END;
END;
/*print;*/
RD_exposed = CATX(" ", CHAR(round(RD_exposed, 0.0001)), LeftP, CHAR(round(RD_exposed_L, 0.0001)), Mid,

CHAR(round(RD_exposed_U, 0.0001)), RightP);
print RD_exposed[colname = colnames_UD

rowname = rownames_EU
label = "Bounds on corrected estimates and confidence intervals for risk difference
among exposed (columns correspond to increasing strength of the risk ratio of U
on the outcome; rows correspond to increasing strength of risk ratio
relating the exposure and U)"];

RD_unexposed = CATX(" ", CHAR(round(RD_unexposed, 0.0001)), LeftP, CHAR(round(RD_unexposed_L, 0.0001)), Mid,
CHAR(round(RD_unexposed_U, 0.0001)), RightP);

print RD_unexposed[colname = colnames_UD
rowname = rownames_EU
label = "Bounds on corrected estimates and confidence intervals for risk difference
among unexposed (columns correspond to increasing strength of the risk ratio of U
on the outcome; rows correspond to increasing strength of risk ratio
relating the exposure and U)"];

RD_whole = CATX(" ", CHAR(round(RD_whole, 0.0001)), LeftP, CHAR(round(RD_whole_L, 0.0001)), Mid,
CHAR(round(RD_whole_U, 0.0001)), RightP);

print RD_whole[colname = colnames_UD
rowname = rownames_EU
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label = "Bounds on corrected estimates and confidence intervals for risk difference
among the whole population (columns correspond to increasing strength of the risk ratio of U
on the outcome; rows correspond to increasing strength of risk ratio
relating the exposure and U)"];

run;

Appendix 7 Results for the Risk Difference Using Sensitiv-
ity Parameters on the Risk Difference Scale

Appendix 7.1 A Useful Proposition

We first recall some definitions in the main text, and assume a categorical unmeasured con-

founder U . Let RDobs
ED = P(D = 1 | E = 1)− P(D = 1 | E = 0) denote the observed risk

difference,

RDtrue
ED =

K−1

∑
k=0
{P(D = 1 | E = 1,U = k)−P(D = 1 | E = 0,U = k)}P(U = k)

denote the true causal risk difference, and CRDED = RDobs
ED−RDtrue

ED denote the confounding

risk difference of the exposure E on the outcome D. Define αk = P(U = k | E = 1)−P(U =

k | E = 0) and RDEU = maxk≥1 |αk|. Define β ∗k = P(D = 1 | E = 1,U = k)−P(D = 1 | E =

1,U = 0) and βk = P(D = 1 | E = 0,U = k)−P(D = 1 | E = 0,U = 0). Define RDUD|E=1 =

maxk≥1 |β ∗k |,RDUD|E=0 = maxk≥1 |βk| and RDUD = max(RDUD|E=1,RDUD|E=0). The con-

founding risk difference can be decomposed as follows.

Proposition A.12. The confounding risk difference of E on D, CRDED, can be expressed as

CRDED = RDobs
ED−RDtrue

ED =
K−1

∑
k=1

αk{β ∗k P(E = 0)+βkP(E = 1)}.

Proof of Proposition A.12. The true and observed risk differences of E on D can be expressed
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19:05 Thursday, April 9, 2015 319:05 Thursday, April 9, 2015 3

Bounds on corrected estimates and confidence intervals for risk difference among the whole population
(columns correspond to increasing strength of the risk ratio of U on the outcome;
rows correspond to increasing strength of risk ratio relating the exposure and U)

1.2 1.3 1.5 1.8

1.2 0.0593 ( -0.2184 , 0.3369 ) 0.0583 ( -0.2178 , 0.3345 ) 0.0568 ( -0.217 , 0.3305 ) 0.0551 ( -0.2161 , 0.3263 )

1.3 0.0583 ( -0.2178 , 0.3345 ) 0.057 ( -0.2171 , 0.3311 ) 0.0548 ( -0.216 , 0.3257 ) 0.0525 ( -0.2148 , 0.3199 )

1.5 0.0568 ( -0.217 , 0.3305 ) 0.0548 ( -0.216 , 0.3257 ) 0.0517 ( -0.2145 , 0.318 ) 0.0483 ( -0.2131 , 0.3098 )

1.8 0.0551 ( -0.2161 , 0.3263 ) 0.0525 ( -0.2148 , 0.3199 ) 0.0483 ( -0.2131 , 0.3098 ) 0.0438 ( -0.2116 , 0.2991 )

2.0 0.0543 ( -0.2157 , 0.3242 ) 0.0514 ( -0.2143 , 0.317 ) 0.0466 ( -0.2125 , 0.3057 ) 0.0414 ( -0.211 , 0.2939 )

2.5 0.0528 ( -0.215 , 0.3205 ) 0.0492 ( -0.2134 , 0.3119 ) 0.0435 ( -0.2115 , 0.2986 ) 0.0372 ( -0.2103 , 0.2847 )

3.0 0.0517 ( -0.2145 , 0.318 ) 0.0478 ( -0.2129 , 0.3085 ) 0.0414 ( -0.211 , 0.2939 ) 0.0343 ( -0.2101 , 0.2788 )

5.0 0.0497 ( -0.2136 , 0.313 ) 0.045 ( -0.2119 , 0.3019 ) 0.0372 ( -0.2103 , 0.2847 ) 0.0285 ( -0.2105 , 0.2675 )

Bounds on corrected estimates and confidence intervals for risk difference among the whole population
(columns correspond to increasing strength of the risk ratio of U on the outcome;
rows correspond to increasing strength of risk ratio relating the exposure and U)

2.0 2.5 3.0 5.0

1.2 0.0543 ( -0.2157 , 0.3242 ) 0.0528 ( -0.215 , 0.3205 ) 0.0517 ( -0.2145 , 0.318 ) 0.0497 ( -0.2136 , 0.313 )

1.3 0.0514 ( -0.2143 , 0.317 ) 0.0492 ( -0.2134 , 0.3119 ) 0.0478 ( -0.2129 , 0.3085 ) 0.045 ( -0.2119 , 0.3019 )

1.5 0.0466 ( -0.2125 , 0.3057 ) 0.0435 ( -0.2115 , 0.2986 ) 0.0414 ( -0.211 , 0.2939 ) 0.0372 ( -0.2103 , 0.2847 )

1.8 0.0414 ( -0.211 , 0.2939 ) 0.0372 ( -0.2103 , 0.2847 ) 0.0343 ( -0.2101 , 0.2788 ) 0.0285 ( -0.2105 , 0.2675 )

2.0 0.0388 ( -0.2105 , 0.2881 ) 0.034 ( -0.2101 , 0.2781 ) 0.0307 ( -0.2102 , 0.2716 ) 0.024 ( -0.2116 , 0.2595 )

2.5 0.034 ( -0.2101 , 0.2781 ) 0.028 ( -0.2106 , 0.2667 ) 0.024 ( -0.2116 , 0.2595 ) 0.0154 ( -0.216 , 0.2468 )

3.0 0.0307 ( -0.2102 , 0.2716 ) 0.024 ( -0.2116 , 0.2595 ) 0.0193 ( -0.2136 , 0.2522 ) 0.0093 ( -0.2212 , 0.2398 )

5.0 0.024 ( -0.2116 , 0.2595 ) 0.0154 ( -0.216 , 0.2468 ) 0.0093 ( -0.2212 , 0.2398 ) -0.0045 ( -0.2402 , 0.2312 )

Figure A.1: SAS Output of Sensitivity Analysis on the Risk Difference Scale for the Whole
Population
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as

RDtrue
ED =

K−1

∑
k=0

P(D = 1 | E = 1,U = k)P(U = k)−
K−1

∑
k=0

P(D = 1 | E = 0,U = k)P(U = k),

RDobs
ED =

K−1

∑
k=0

P(D = 1 | E = 1,U = k)P(U = k | E = 1)−
K−1

∑
k=0

P(D = 1 | E = 0,U = k)P(U = k | E = 0).

Therefore, the confounding risk difference of E on D, CRDED, can be expressed as

CRDED =
K−1

∑
k=0

P(D = 1 | E = 1,U = k){P(U = k | E = 1)−P(U = k)}

−
K−1

∑
k=0

P(D = 1 | E = 0,U = k){P(U = k | E = 0)−P(U = k)}.

Applying the law of total probability, we have the following results:

P(U = k | E = 1)−P(U = k) = αkP(E = 0), P(U = k | E = 0)−P(U = k) =−αkP(E = 1).

Therefore, the confounding risk difference can be rewritten as

CRDED =
K−1

∑
k=0

αkP(D = 1 | E = 1,U = k)P(E = 0)+
K−1

∑
k=0

αkP(D = 1 | E = 0,U = k)P(E = 1)

=
K−1

∑
k=0

αk{P(D = 1 | E = 1,U = k)P(E = 0)+P(D = 1 | E = 0,U = k)P(E = 1)}.

Using the fact that α0 =−∑
K−1
k=1 αk, we can obtain that

CRDED =
K−1

∑
k=1

αk{P(D = 1 | E = 1,U = k)P(E = 0)+P(D = 1 | E = 0,U = k)P(E = 1)}

−
K−1

∑
k=1

αk{P(D = 1 | E = 1,U = 0)P(E = 0)+P(D = 1 | E = 0,U = 0)P(E = 1)}

=
K−1

∑
k=1

αk{β ∗k P(E = 0)+βkP(E = 1)}.�

Appendix 7.2 Binary Confounder

For a binary confounder U with K = 2, we have the following proposition.
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Proposition A.13. When U is binary, we have RDEU ×RDUD ≥ RDobs
ED−RDtrue

ED , implying

min(RDEU ,RDUD)≥ RDobs
ED−RDtrue

ED , max(RDEU ,RDUD)≥
√

RDobs
ED−RDtrue

ED .

Proof of Proposition A.13. We have

CRDED = α1{β11P(E = 0)+β01P(E = 1)}= RDEU{RDUD|E=1P(E = 0)+RDUD|E=0P(E = 1)}.

Since CRDED ≥ 0 and RDEU ≥ 0, we have RDUD|E=1P(E = 0)+RDUD|E=0P(E = 1)≥ 0.

Therefore, RDUD|E=1 and RDUD|E=0 cannot both be negative, and thus we have

RDUD|E=1P(E = 0)+RDUD|E=0P(E = 1)< max(RDUD|E=1,RDUD|E=0) = RDUD.

Therefore, CRDED ≤ RDEU ×RDUD, which implies that min(RDEU ,RDUD)≥ CRDED =

RDobs
ED−RDtrue

ED , and max(RDEU ,RDUD)≥
√

CRDED =
√

RDobs
ED−RDtrue

ED .

Appendix 7.3 General Categorical Confounder

For categorical confounder U , no simple form of the bounding factor is available, but we can

still show that RDEU and RDUD must satisfy the following conditions:

Proposition A.14. For a categorical confounder U, we have

RDEU ≥ (RDobs
ED−RDtrue

ED )/(K−1),

RDUD ≥ (RDobs
ED−RDtrue

ED )/2,

max(RDEU ,RDUD)≥max
{√

(RDobs
ED−RDtrue

ED )/(K−1),(RDobs
ED−RDtrue

ED )/2
}
.

When K = 3 such as a three-level genetic confounder, these conditions reduce to

min(RDEU ,RDUD)≥ (RDobs
ED−RDtrue

ED )/2, max(RDEU ,RDUD)≥
√

(RDobs
ED−RDtrue

ED )/2.
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Proof of Proposition A.14. Since

CRDED =
∣∣∣K−1

∑
k=1

αk{β ∗k P(E = 0)+βkP(E = 1)}
∣∣∣≤ RDEU

K−1

∑
k=1
|β ∗k P(E = 0)+βkP(E = 1)|

≤ RDEU

K−1

∑
k=1

max(|β ∗k |, |βk|)≤ RDEU(K−1),

we have RDEU ≥ CRDED/(K − 1). The equality is attainable if and only if (c1) αk =

CRDED/(K−1), and β ∗k = βk = 1 for k = 1, . . . ,(K−1); or (c2) αk =−1, and β ∗k = βk =−1

for k = 1, . . . ,K. The condition (c1) requires that the risk difference of the exposure E on each

category of U to be the same as CRDED/(K−1), and the confounder U is a perfect predictor

of the disease D. Similar interpretation applies to condition (c2).

Since

CRDED =
∣∣∣K−1

∑
k=1

αk{β ∗k P(E = 0)+βkP(E = 1)}
∣∣∣≤ K−1

∑
k=1
|αk|max(|β ∗k |, |βk|)≤ RDUD

K−1

∑
k=1
|αk|

≤ RDUD

K−1

∑
k=1

P(U = k | E = 1)+RDUD

K−1

∑
k=1

P(U = k | E = 0)≤ 2RDUD,

the lower bound for RDUD is RDUD ≥ CRDED/2. The equality is attainable if and only

if P(U = 0 | E = 0) = P(U = 0 | E = 1) = 0,P(U = k | E = 1)P(U = k | E = 0) = 0 for

k = 1, ...,(K−1), and β ∗k = βk =±CRDED/2 with the sign the same as the sign of αk.

Since CRDED≤ (K−1)RDEU RDUD≤ (K−1)max2(RDEU ,RDUD), we have max(RDEU ,RDUD)≥√
CRDED/(K−1), with the equality attainable if and only if αk = β ∗k = βk =±

√
CRDED/(K−1)

for k = 1, . . . ,K−1. Due to the constraint ∑
K−1
k=1 |αk| ≤ 2 discussed above, the equality is at-

tainable if and only if (K− 1)
√

CRDED/(K−1) ≤ 2 or (K− 1)CRDED ≤ 4. When (K−

1)CRDED > 4, RDUD can attain its lower bound CRDED with ∑
K−1
k=1 |αk| = 2. Therefore,

RDEU can attain its lower bound 2/(K−1), which, in this case, is smaller than CRDED/2. In

summary, the lower bound for max(RDEU ,RDUD) is max(RDEU ,RDUD)≥
√

CRDED/(K−1),
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if (K−1)CRDED≤ 4, and max(RDEU ,RDUD)≥ CRDED/2, if (K−1)CRDED > 4. Equiv-

alently, we have max(RDEU ,RDUD)≥max
{√

CRDED/(K−1),CRDED/2
}
.

For the Cornfield conditions for the risk difference, sharper conditions can be obtain by

imposing the monotonicity assumption that αk ≥ 0 for k = 1, · · · ,(K− 1). It requires that

each non-zero category of U is more prevalent under exposure, which is naturally satisfied for

binary confounder. Under the monotonicity assumption, the conditions for the risk difference

can be strengthened.

Proposition A.15. For a categorical confounder under monotonicity, we have that

RDEU ≥ (RDobs
ED−RDtrue

ED )/(K−1),

RDUD ≥ RDobs
ED−RDtrue

ED ,

max(RDEU ,RDUD)≥max
{√

(RDobs
ED−RDtrue

ED )/(K−1),RDobs
ED−RDtrue

ED

}
.

Proof. Proof of Proposition A.15. The bound for RDEU remains the same. Since

CRDED =
∣∣∣K−1

∑
k=1

αk{β ∗k P(E = 0)+βk(E = 1)}
∣∣∣≤ RDUD

K−1

∑
k=1
|αk| ≤ RDUD(−α0)≤ RDUD,

the lower bound for RDUD is RDUD ≥ CRDED The equality is attainable if and only if

α0 =−1 and β ∗k = βk = CRDED for k = 1, . . . ,K−1. The condition requires that the presence

or absence of the confounder U is perfectly predictive to the exposure E, and each category

of U is equally predictive to the disease D.

Since CRDED≤ (K−1)RDEU RDUD≤ (K−1)max2(RDEU ,RDUD), we have max(RDEU ,RDUD)≥√
CRDED/(K−1), with the equality attainable if and only if αk = β ∗k = βk =±

√
CRDED/(K−1)

for k = 1, . . . ,K−1. Due to the constraint ∑
K−1
k=1 αk =−α0 ≤ 1 discussed above, the equality

is attainable if and only if (K− 1)
√

CRDED/(K−1) ≤ 1 or (K− 1)CRDED ≤ 1. When
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(K−1)CRDED > 1, RDUD can attain its lower bound CRDED with ∑
K−1
k=1 αk = 1. Therefore,

RDEU can attain its lower bound 1/(K−1), which, in this case, is smaller than CRDED. In

summary, the lower bound for max(RDEU ,RDUD) is max(RDEU ,RDUD)≥
√

CRDED/(K−1),

if (K−1)CRDED ≤ 1, and max(RDEU ,RDUD)≥ CRDED, if (K−1)CRDED > 1. Equiva-

lently, we have max(RDEU ,RDUD)≥max
{√

CRDED/(K−1),CRDED

}
.

The results in Propositions A.12 to A.15 generalize previous results11 from the null hy-

pothesis of no effect (RDtrue
ED = 0) to alternative hypotheses (RDtrue

ED arbitrary).

Appendix 8 A Bounding Factor for Rare Time-to-Event Out-
come on the Hazard Ratio Scale

Let f ,S,λ be the probability density, survival function and hazard function of a positive

continuous outcome T . The outcome is rare in the sense that P(T ≤ T ) is not much greater

than 0, where T is the time point of the end our research of interest. In the following, we

will always make the rare outcome assumption. Although f ,S,λ are defined on the whole

positive real line, our interest only within interval [0,T ]. Let U be another random variable,

and f (t | u),S(t | u),λ (t | u) are the conditional probability density, survival function, and

hazard function of T given U . The following lemma is useful throughout our discussion.

Lemma A.4. If T is a rare time-to-event outcome, we have the following approximation:

λ (t)≈
∫

λ (t | u)F(du).

Proof of Lemma A.4. Similar to the case with discrete U 20, we have S(t | u) ≈ 1 for rare
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outcome, and therefore

λ (t) =
f (t)
S(t)

=

∫
λ (t | u)S(t | u)F(du)∫

S(t | u)F(du)
≈
∫

λ (t | u)F(du)∫
F(du)

=
∫

λ (t | u)F(du).

Lemma A.4 essentially allows “Law of Total Probability” type of calculation for the haz-

ard function with rare outcome.

In order to introduce the new bounding factor for hazard ratio, we need more formal nota-

tion. Define the potential outcomes for T as T (1) and T (0) with hazard functions λ (1)(t) and

λ (0)(t) and conditional hazard functions can be defined intuitively as λ (1)(t | ·) and λ (0)(t | ·).

We define λ ∗t (u) = λ (t | E = 1,U = u) and λt(u) = λ (t | E = 0,U = u) as the conditional haz-

ard functions of T for the exposed and unexposed units within strata U = u, respectively. We

define HRUT |E=1(t) = maxu λ ∗t (u)/minu λ ∗t (u) as the maximal hazard ratio function of the

confounder U on the outcome T for exposed units, HRUT |E=0(t) = maxu λt(u)/minu λt(u)

for unexposed, and their maximum, denoted by HRUT (t)=max{HRUT |E=1(t),HRUT |E=0(t)},

as the maximal hazard ratio function of the confounder U on the outcome T . Note that the

hazard ratios are time-dependent.

If the exposure and the outcome are unconfounded given U and the observed covariates

C (which is omitted in conditional probablities for simplicity), Lemma A.4 allows us to write
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the true causal hazard ratios for the exposed, unexposed, and the whole population as

HRtrue
ET+(t) =

λ (1)(t | E = 1)
λ (0)(t | E = 1)

≈
∫

λ ∗t (u)F1(du)∫
λt(u)F1(du)

,

HRtrue
ET−(t) =

λ (1)(t | E = 0)
λ (0)(t | E = 0)

≈
∫

λ ∗t (u)F0(du)∫
λt(u)F0(du)

,

HRtrue
ET (t) =

λ (1)(t)
λ (0)(t)

≈
∫

λ ∗t (u)F(du)∫
λt(u)F(du)

,

and the observed harzard ratio as

HRET (t) =
λ (t | E = 1)
λ (t | E = 0)

≈
∫

λ ∗t (u)F1(du)∫
λt(u)F0(du)

.

With categorical U taking values 0,1, . . . ,K−1, the true causal hazard ratios can be approxi-

mated by the following standardized hazard ratios:

HRtrue
ET+(t) ≈

∑
K−1
k=0 λ ∗t (k)P(U = k | E = 1)

∑
K−1
k=0 λt(k)P(U = k | E = 1)

,

HRtrue
ET−(t) ≈

∑
K−1
k=0 λ ∗t (k)P(U = k | E = 0)

∑
K−1
k=0 λt(k)P(U = k | E = 0)

,

HRtrue
ET (t) ≈ ∑

K−1
k=0 λ ∗t (k)P(U = k)

∑
K−1
k=0 λt(k)P(U = k)

The confounding hazard ratios are defined as

CHRET+(t) =
HRET (t)

HRtrue
ET+(t)

, CHRET−(t) =
HRET (t)

HRtrue
ET−(t)

, CHRET (t) =
HRET (t)
HRtrue

ET (t)
.

Analogous to the results for the relative risk, we have the following propositions for the

hazard ratio. The proofs are straightforward if we replace {r(·),r∗(·)} in the proofs for the

relative risk by {λt(·),λ ∗t (u)}.

Proposition A.16. For rare time-to-event outcome, we approximately have

HRtrue
ET (t) = wt HRtrue

ET+(t)+(1−wt)HRtrue
ET−,

1/CHRET (t) = wt/CHRET+(t)+(1−wt)/CHRET−(t),
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where wt is a weight between zero and one:

wt =
f
∫

λt(u)F1(du)
f
∫

λt(u)F1(du)+(1− f )
∫

λt(u)F0(du)
∈ [0,1].

Define the time-varying bounding factor as

BFU(t) =
RREU ×HRUT (t)

RREU +HRUT (t)−1
,

which is also time-dependent. The confounding hazard ratios can be bounded by the bound-

ing factor, as shown in the following proposition.

Proposition A.17. For rare time-to-event outcome, we approximately have

CHRET+(t)≤ BFU(t), CHRET−(t)≤ BFU(t), CHRET (t)≤ BFU(t).

Proposition A.18. The implied Cornfield conditions for the hazard ratio from Proposition

A.17 are

RREU ≥ max
t

CHRET (t),

HRUT (t) ≥ CHRET (t),

max{RREU ,HRUT (t)} ≥ CHRET (t)+
√

CHRET (t){CHRET (t)−1}.

If a proportional hazards model21 for the outcome is used as is often the case in practice,

all the above exposure-outcome hazard ratio reduce to a constant HRET (t) = HRET . The

above discussion works well for an exposure that is apparently causative at time t on the

harzard ratio scale. If at some time point t, the exposure is apparently preventive, then the

above discussion needs to be modified. To be more specific, we need to modify the definition

of RREU as in Section Appendix 3.3, and the confounding hazard ratios above are replaced
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by their reciprocals. Likewise similar results on the hazard difference scale hold as those on

the risk difference scale in eAppendix A.Appendix 5 provided that the outcome is relatively

rare.

Appendix 9 A Bounding Factor for General Nonnegative
Outcomes

The discussion above assumes a binary outcome D, and in fact all the proofs only use

the property that r(u) and r∗(u) are nonnegative. Therefore, the bounding factor also ap-

plies to any nonnegative outcomes (counts, continuous positive outcome, etc), if we mod-

ify the definitions of r(u),r∗(u), and RRUD in the following way. For general nonnega-

tive outcomes, we define r∗(u) = E(D | E = 1,U = u) and r(u) = E(D | E = 0,U = u) as

the expectations of the outcome within stratum U = u with and without exposure. Define

MRUD|E=1 = maxu r∗(u)/minu r∗(u) and MRUD|E=0 = maxu r(u)/minu r(u) as the mean ra-

tios of U on D with and without exposure, and MRUD = max(MRUD|E=1,MRUD=0) as the

maximum of these two mean ratios. Note that when D is binary, r(u) and r∗(u) reduce to

probabilities, and the mean ratios reduce to the relative risks.

The observed mean ratio of the exposure on the outcome is

MRED =

∫
E(D | E = 1,U = u)F1(du)∫
E(D | E = 0,U = u)F0(du)

=

∫
r∗(u)F1(du)∫
r(u)F0(du)

.

The true causal mean ratio of the exposure on the outcome for exposed is

MRtrue
ED+ =

∫
E(D | E = 1,U = u)F1(du)∫
E(D | E = 0,U = u)F1(du)

=

∫
r∗(u)F1(du)∫
r(u)F1(du)

,

the true causal mean ratio of the exposure on the outcome for unexposed is

MRtrue
ED+ =

∫
E(D | E = 1,U = u)F0(du)∫
E(D | E = 0,U = u)F0(du)

=

∫
r∗(u)F0(du)∫
r(u)F0(du)

,
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and the true causal mean ratio of the exposure on the outcome for the whole population is

MRtrue
ED+ =

∫
E(D | E = 1,U = u)F(du)∫
E(D | E = 0,U = u)F(du)

=

∫
r∗(u)F(du)∫
r(u)F(du)

.

Define the bounding factor as

BFU =
RREU ×MRUD

RREU +MRUD−1
.

Since the discussion in Section Appendix 2 still holds, the proofs for the following proposi-

tions are the same as those in Appendices A.2 and A.4. First, we have the following bounding

factor for nonnegative outcomes:

Proposition A.19.

CMRED+=
MRED

MRtrue
ED+

≤BFU , CMRED−=
MRED

MRtrue
ED−
≤BFU , CMRED =

MRED

MRtrue
ED
≤BFU .

In practice, we might also be interested in the average causal effect of the exposure on

the outcome on the difference scale. The observed mean difference of the exposure on the

outcome is

E(D | E = 1)−E(D | E = 0)≡ m1−m0.

The average causal effect of the exposure on the outcome for exposed is

ACEtrue
ED+=

∫
E(D |E = 1,U = u)F1(du)−

∫
E(D |E = 0,U = u)F1(du)=m1−

∫
r(u)F1(du),

the average causal effect of the exposure on the outcome for unexposed is

ACEtrue
ED+=

∫
E(D |E = 1,U = u)F0(du)−

∫
E(D |E = 0,U = u)F0(du)=

∫
r∗(u)F0(du)−m0,

and the average causal effect of the exposure on the outcome for the whole population is

ACEtrue
ED =

∫
E(D | E = 1,U = u)F(du)−

∫
E(D | E = 0,U = u)F(du)

= f ACEtrue
ED++(1− f )ACEtrue

ED−.
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Similar to the discussion in Section Appendix 5 for the risk difference with sensitivity

parameters expressed on the risk ratio scale, we have the following proposition about the

average causal effect.

Proposition A.20. For nonnegative outcomes, the lower bounds for the average causal effects

are

ACEtrue
ED+ ≥ m1−m0×BFU ,

ACEtrue
ED− ≥ m1/BFU −m0,

ACEtrue
ED ≥ (m1−m0×BFU)×{ f +(1− f )/BFU}= (m1/BFU −m0)×{ f ×BFU +(1− f )} .

We can also obtain similar forms of the conclusion for apparently preventive exposure,

for average causal effects averaged over observed covariates, and for corresponding Cornfield

conditions. The only difference is that (p1, p0) is replaced by (m1,m0).
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