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Abstract—In this paper, we study CPU utilization time patterns of several MapReduce applications. After extracting running patterns 

of several applications, the patterns along with their statistical information are saved in a reference database to be later used to tweak 

system parameters to efficiently execute future unknown applications. To achieve this goal, CPU utilization patterns of new applications 

along with its statistical information are compared with the already known ones in the reference database to find/predict their most 

probable execution patterns. Because of different pattern lengths, the Dynamic Time Warping (DTW) is utilized for such comparison; a 

statistical analysis is then applied to DTWs’ outcomes to select the most suitable candidates. Furthermore, under a hypothesis, we also 

proposed another algorithm to classify applications under similar CPU utilization patterns. Finally, dependency between minimum 

distance/maximum similarity of applications and their scalability (in both input size and number of virtual nodes) are studied. Here, we 

used widely used applications (WordCount, Distributed Grep, and Terasort) as well as an Exim Mainlog parsing application to evaluate 

our hypothesis in automatic tweaking MapReduce configuration parameters in executing similar applications scalable on both size of 

input data and number of virtual nodes. Results are very promising and showed the effectiveness of our approach on a private cloud 

with up to 25 virtual nodes. 

Index Terms—MapReduce, Scalability, Pattern Matching, Configuration parameters, statistical analysis. 

 

I. INTRODUCTION 
 

Recently, businesses have started using MapReduce as a popular computation framework for processing large-scaled data in both 

public and private clouds; e.g., many Internet endeavors are already deploying MapReduce platforms to analyze their core 

businesses by mining their produced data [1-3]. Therefore, there is a significant benefit to application developers in understanding 

performance trade-offs in MapReduce-style computations in order to better utilize their computational resources [4]. 

MapReduce users typically run a few number of applications for a long time. For example, Facebook, which is based on Hadoop 

(Apache implementation of MapReduce in Java), is using MapReduce to read its daily produced log files and filter database 

information depending on the incoming queries; such applications are repeated millions of times per day in Facebook. Another 

example is Yahoo where around 80-90% of their jobs are based on Hadoop [5]. The typical applications here are searching among 

large quantities of data, indexing the documents and returning appropriate information to incoming queries. Similar to Facebook, 

these applications are run million times per day for different purposes. 

One of the major problems with direct influence on MapReduce performance is tweaking/tuning the effective configuration 

parameters [6] (e.g., number of mappers, number of reducers, etc) for efficient execution of an application when scaled to the size 

of input file or number of nodes. These optimal values not only are very hard to properly set, but also can significantly change 

from one application to another. Furthermore, obtaining these optimal values usually needs running an application for several 

times with different configuration parameters values: a very time consuming and costly procedure. Therefore, it is very important 

to find the optimal values for these parameters before actual running of such application on MapReduce platforms.  

The work presented in this paper is an attempt for solving the problem of automatic tweaking/tuning of MapReduce configuration 

parameters (here, the number of mappers and number of reducers) for efficient execution of an application on cloud. This is 

achieved by predicting uncertain CPU utilization pattern of new applications based on the already known ones in a database. Then 

we show how it scales with respect to input size, and number of virtual nodes.  More specifically, we propose a two-phase 

approach to extract patterns and find statistical similarity in uncertain CPU utilization patterns of MapReduce applications. In the 

first phase, profiling, few applications are run on several small-sized input data files with different sets of MapReduce 

configuration parameters (here number of mappers, and number of reducers) to collect their execution/utilization profiles in a 

Linux environment. Upon obtaining such information –the CPU utilization time series of these applications–, their statistical 

information at each point is calculated. These uncertain CPU utilization values are then stored in a reference database to be later 
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used in the second phase, i.e., matching. To use our approach for automatic tweaking of MapReduce configuration parameters, 

when a new unknown application is submitted, it is first run on the same small-sized input data and with the same sets of 

configuration parameters. Then in the matching phase, a pattern-matching algorithm is deployed to find minimum distance 

(maximum similarity) between stored CPU utilization profiles and the new application. If the new application is fairly similar to 

an application in the reference database –for the same values of configuration parameters and same sets of small-sized input data–, 

then it can be concluded that these two applications will probably have the same CPU behavioral for large-sized input data files 

(scalability in input data size) as well. As a result, if the optimal values of configuration parameters (here number of mappers and 

reducers) of the application in the reference database were already calculated, it is very likely that these values also result in 

optimal (or at least fairly close sub-optimal) settings for the new application on the same input data size. Among the two phases of 

the approach (profiling and matching), profiling of an experiment is a time consuming part. In this paper, we executed     
        experiments for each application where the number of mappers and reducers were 4,8,12,16,20,24, 28, or, 32; the size 

of our input data was 5GB, 10GB, 15GB, or, 20GB; and, each experiment were run ten times to collect its statistical information. 

The time required for profiling changes from application to application. For example, the total profiling time for processing of 5G 

of WordCount data on 10 virtual nodes is 202 hours and 40 minutes while for Exim Mainlog Parsing on the same input data size 

and number of virtual nodes, the total time is 69 hours and 20 minutes.   

 To demonstrate our approach, Section II highlights the related works in this area. Section III provides some theoretical 

background for pattern matching in uncertain time series. Section IV explains our approach in which pattern matching is used to 

predict behavior of unknown applications. Section V details our experimental setup to gauge efficiency of our approach and 

introduces a hypothesis to classify applications. Discussion and analysis is presented in Section V, followed by conclusion in 

Section VI.    

 

II. RELATED WORKS 

Early works on analyzing/improving MapReduce performance started around 2005; such as an approach introduced by Zaharia et 

al [7] addressed the problem of improving the performance of Hadoop for heterogeneous environments. Their approach was based 

on the critical assumption in Hadoop for homogeneous cluster nodes that tasks progress linearly. Hadoop utilizes these 

assumptions to efficiently schedule tasks and (re)execute the stragglers. Their work introduced a new scheduling policy to 

overcome these assumptions. Besides their work, there are many other approaches to enhance or analysis the performance of 

different parts of MapReduce frameworks, particularly in scheduling [8], energy efficiency [4, 9, 10] and workload 

optimization[11]. A statistics-driven workload modeling was introduced in [10] to effectively evaluate design decisions in scaling, 

configuration and scheduling. The framework in [10] was utilized to make appropriate suggestions to improve the energy 

efficiency of MapReduce applications. A modeling method was proposed in [9] for finding the total execution time of a 

MapReduce application. It used Kernel Canonical Correlation Analysis to obtain the correlation between the performance feature 

vectors extracted from MapReduce job logs, map time, reduce time, and, total execution time. These features were acknowledged 

as critical characteristics for establishing any scheduling decisions. Recent works in [12, 13] reported a basic model for 

MapReduce computation utilizations. Here, at first, the map and reduce phases were modeled using dynamic linear programming 

independently; then, these phases were combined to build a global optimal strategy for MapReduce scheduling and resource 

allocation. In [14-17], linear regression is applied to model the total number of CPU tick clocks/execution time of an application 

needs to execute and four MapReduce configuration parameters. These configuration parameters are: number of Mappers, number 

of Reducers, size of file system and size of input file.  

The second part of our approach in this work is inspired by another discipline (Speaker recognition) in which similarity of objects 

is also the center of attention and therefore very important. In speaker recognition (or signature verification) applications, it has 

been already validated that if two voices (or signatures) are significantly similar – based on a same set of parameters as well as 

their combinations –; then, they are most probably produced by a unique person [18]. Inspired by this well proved fact, our 

proposed technique in this paper hypothesizes the same logic with the idea of pattern feature extraction and matching, an area 

which is widely used in pattern recognition, sequence matching in bio-informatics and machine vision. Here, we extract the CPU 

utilization pattern of unknown/new MapReduce applications for a small amount of data (not the whole data) and compare its 

results with already known patterns in a reference database to find similarity. Such similarity will show how much an application 

is similar to another application. As a result, the optimal values of configuration parameters (here number of mappers, and number 

of reducers) for unknown/new applications can be set based on the already calculated optimal values for the known similar 

applications in the database. 

The last part of the work is to study the scalability behavioral of our algorithms for cloud environments. Scalability in cloud is 

generally divided into two groups: horizontal scalability and vertical scalability [19]. Horizontal scalability is the ability of an 

application to be scaled up to meet demands through replication; e.g., through distribution of requests across a pool of servers. 

Such scalability addresses the traditional load balanced models with respect to integrality of components in a cloud-computing 

environment. Vertical scalability, on the other hand, is the ability of an application to scale under load so that it can maintain its 

performance while the number of concurrent requests is increased. Although generic load balancing solutions can certainly assist 

in optimizing environments where application need to scale up by reducing their overheads, such solutions cannot solve core 



 

 

problems that prevent vertical scalability. In cloud platforms in particular, overhead can negatively impact performance (such as 

TCP session management, SSL operations, and compression/caching functionality) for the whole system.  

In [20], the problem of service applications scalabilities on different clouds have been studied. For example, in Infrastructure-as-a-

Service (IaaS) clouds –like Amazon EC2 that mainly works based on virtual machine (VM) technology– VMs can scale on both 

horizontally (by adding more service replicas) and vertically (by redefining and increasing a single VM resources). IaaS clouds 

can also be scaled vertically by adding more clusters or network resources. However, IaaS scalability is still too service-level 

oriented to be automatically managed; i.e., scaling decisions are made on the basis of pure infrastructure metrics and thus users' 

involvements is crucial for its success. As a solution, full automation and application of scalability rules (or load profile-based 

models) to holistically control services are granted for future developments on top of IaaS Clouds. Although these advanced high-

level management automation capabilities lay close to the aforementioned PaaS features, they only deal with deployment and 

runtime service lifecycle stages. As a result, scaling applications in cloud environments still faces some ―old-fashioned‖ 

challenges. It means, detecting code parallelism –could be offered as a PaaS–, and distributing application components in clusters 

and service operations in multi-core architectures will receive massive research interest to efficiently fulfil scalability requirement 

of future cloud applications. Another comprehensive research is performed in 2011 to study scalability issues in clouds [21]. This 

study (1) pointed out several critical issues about automatic scaling of applications on cloud environments, (2) presented the 

related state-of-the-art efforts, and, (3) highlighted existing challenges.  

The horizontal scaling of MapReduce applications on public cloud like Amazon Elastic MapReduce is restricted to the Cloud 

resources and is provided at an additional cost [22]. Therefore, it becomes important to execute an application with large-size 

input data effectively on the provided Cloud resources. As a MapReduce application behavioral has strong dependency on values 

of the configuration parameters [23, 24],  automatic effective tweaking of these parameters by Cloud load balancer results in 

effective usage of the Cloud resources and therefore save money and time.  Our approach, in this work, is an attempt for enabling 

a Cloud load balancer to automatically tune a given MapReduce application parameters by comparing it to previously executed 

MapReduce applications in a reference database. We will also study the scalability of our approach when affected by the 

similarity of MapReduce applications, the size of input data files, and, the number of virtual nodes.  
 

III. THEORITICAL BACKGROUND 

Pattern matching is a well-known approachparticularly in pattern recognitionto transform a time series pattern into a 

mathematical space. Such transformation is essential to extract the most suitable running features of an application before 

comparing it with reference applications in a database to find its similar pairs. Such approaches have two general phases: (1) 

profiling phase, and (2) matching phase. In the profiling phase, the time series patterns of several applications are extracted. 

Several mathematical operations are then applied on these patterns (including magnitude normalization); results are stored in a 

database to be used as references for the matching phase. In matching phase, the same procedure is repeated for an unknown/new 

application first; and then, the time series of this application are compared with those stored in the database –using a pattern 

matching algorithm– to find the most similar ones. 

 

A. Uncertain time series 

A time series       is called certain time series when its data values are fixed/certain:                       where       in 

the value of time series at time  . A time series                       is called uncertain when there is uncertainty in its data 

values [25] and be formulated as: 

                  

where        is the amount of error/uncertainty in     data point. Due to uncertainty, the value of each point is considered as 

independent random variable with statistical mean         and standard deviation       . These values are calculated during 

analyzing time series in the profiling phase.  

In MapReduce application, because the length of CPU utilization time series as well as their values in each point may change for 

even several identical executional environments of an application –i.e., the same input data file size, number of mappers, and 

number of reducers–, we considered the CPU utilization time series ―uncertain‖ and try to use its statistical information in our 

similarity measurements. 

 

B. Pattern matching 

Similarity measurement algorithms have been frequently used in pattern matching, classification and sequence alignment in bio-

informatics. The measurement of similarity between two (normalized) uncertain time series means to find a function:           

where       and       are two time series without the same length. This function is typically designed as               , 

where greater values means higher similarities. In this case,              should be obtained for identical series only, and, 

             should reflect no similarity at all. To this end, ―similarity distance is defined as a specific distance between two 

uncertain time series to reflect the level of their similarity. 



 

 

 

1. Dynamic Time Warping (DTW) 

DTW is among the common techniques to calculate 

distance/similarity between two certain time series 

of different lengths. This approach cannot be used 

to find similarity between two uncertain time series 

it usually results in unacceptable outcomes. DTW 

uses a nonlinear search to map corresponding 

samples of each series to find such similarity. The 

following recursive operation shows how such 

distance/similarity between two certain time series 
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where        is the Euclidean distance between corresponding points in each series and, 
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where            is the value of CPU utilization at time    in   .  

 

Results of these formulation is the          matrix in which each element,       , reflects the minimum distance between 

              to               . As a result,        would reflects the distance/similarity between     and   . In this case,   
  

and   
  with equal length can always be made from    and   , respectively, so that   

     is aligned with   
    .   

  and   
  are 

always made from    and   , respectively, by repeating some of their elements –based on         . 

As mentioned earlier, because DTW cannot be directly used for uncertain time series, we only use it to produce temporary time 

series    
    

   with the same lengths. This procedure is then proceeded by applying DTW on the certain time series     

                       parts of the two uncertain time series         as follows:   
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Then, to calculate the Euclidian distance between two uncertain but same length time series:  
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As a result: 

 

Figure  1. The distance between two uncertain time series and normal distribution of 

uncertainty in the k-th points. 



 

 

   
    

                            

 

It is worth nothing that DTW in this paper is only utilized to provide same length data series for    and    –and not to provide 

their actual similarity–, because DTW does not affect statistical mean and variance of points in the two uncertain time series. 

Thus, if DTW maps   
     to      , then 

{
       

                 

      
                

 

 

2.  Similarity measurement 

Despite many solutions that the distance between two time series is calculated by summing up distances from points aligned by 

DTW procedure, here, we use the square Euclidian distance to calculate such similarity. To be more specific, in our approach, two 

certain time series   
  and   

  are similar when the square Euclidian distance between them is less than a distance threshold    : 
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For  uncertain time series   
  and   

  –where the problem is not straightforward as before–, similarity is defined as [25]: 
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where       is a random variable equal to          
       Therefore, two uncertain time series are assumed similar when 

probability of their Euclidian distance is more than a pre-defined threshold        . 

Because   
     and   

     are independent random variables (figure 1), both      and       
     

    are also independent random 

variables. Therefore, if                 and                 are <statistical mean, standard derivation> of   
     and   

    , 

respectively, according to [25],       
    

   has the following normal distribution: 
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The standard normal distribution function of       
    

   can be calculated as: 
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Thus the problem in Eqn.(3) can be rewritten as: 
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Definition 1:               is a minimum distance bound value that finds the lower bound for the standard normal probability in 

Eqn.(8); i.e., [25]: 
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where               √              for standard normal distribution and         is an error function obtained from 

statistics tables [26] when working on       
    

   instead of            
     

  : 
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Definition 2:  

Two uncertain time series   
  and   

  are similar with probability more than   [25]:  
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Here,          defines the minimum distance between two uncertain series with probability ; i.e., : 
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Based on equations (1-13), from this point forward, we use uncertain time series only; and thus, we use   ,   ,    ,    ,     and 

    instead of    
 ,   

 ,    
 ,    

 ,    
 and    

 , respectively. 

 

C. Problem definition 

In distributed computing systems, MapReduce has been known as a large-scale data processing or CPU intensive job [6, 27, 28]. 

It is also well known that CPU utilization is the most important part of running an application on MapReduce. Therefore, 

optimizing the amount of CPU an application needs becomes important for customers to hire enough CPU resources from cloud 

providers as well as for cloud providers to schedule incoming jobs properly.  

Inspired by the current status of MapReduce applications and their complexity, in this paper, we try to predict CPU utilization of 

unknown applications through comparing them with the known one. To this end, we study the similarity between (normalized) 

uncertain CPU utilization time series of an incoming application with the analyzed (normalized) applications in a reference 

database for several small input data and different sets of configuration parameter values. If the uncertain CPU utilization time 

series of an unknown/new application is found to be adequately similar to uncertain CPU utilization time series of another 

application in database; then, it can be assumed that the CPU utilization behavior of both applications would be the same for other 

sets of configuration parameters values as well, especially for large input file size. This fact can be used in two ways: firstly, if the 

optimal values of number of mappers and number of reducers are obtained for one application (e.g., WordCount), these optimal 

values may lead us to optimal number of mappers and reducers of other similar applications (e.g., Distributed Grep) too; secondly, 

this approach allows us to properly categorize applications in several classes with the same CPU utilization behavioral patterns. 

 

IV. PATTERN MATCHING IN MAPREDUCE APPLICATIONS 

In this section, we describe our technique to find the distance/similarity between uncertain CPU utilization time series of different 

MapReduce applications.  Our approach is consisted of two phases: profiling and matching. 

 



 

 

A. Profiling phase 

In the profiling phase, CPU utilization time series of several 

MapReduce applications in database along with their 

statistical information is extracted. For each application, we 

generate a set of experiments with several small input data and 

two main MapReduce configuration parameters (number of 

mappers, and number of reducers) on a given platform.  

Figure 2 shows our profiling algorithm. While running each 

experiment, the CPU utilization time series of the experiment 

in each virtual node of a cloud is gathered to build a trace to 

be later used as the training data –this statistic can be gathered 

easily in virtual node (running on Linux) with the XenAPI 

monitoring package. Within the system, we sample the CPU 

usage of the experiment in a native system from starting 

mappers till finishing reducers with time interval of one 

second. If virtual nodes are homogenous, the CPU time series 

of nodes for an application are assumed to be approximately 

similar. Thus, the final CPU time series of an application is 

computed by averaging CPU utilization values at each point. 

Because of the temporal changes, several identical 

experiments –i.e., same input data and configuration 

parameters– may result in different values in each point of the 

extracted CPU utilization time series. Therefore, we repeat 

each experiment ten times and then extract the statistical 

<mean, variance> of each point of the time series. It is worth 

noting that the completion time of these experiments were 

insignificantly apart from each other and thus we could safely 

ignore their differences. Upon completion of ten experiments, 

the time series with its related set of configuration parameters 

values as well as its normalized statistical features are stored 

in the reference database. This procedure was repeated for all 

applications we intended to profile. 

 

B. Matching phase 

In the matching phase, the profiling is also performed for the 

newly submitted application and then followed by the several 

steps to find its distance/similarity with already known 

applications. As shown in Figure 2, the matching phase 

consists of two stages: statistical information extraction and 

candidate selection. In the statistical information extraction 

stage, CPU utilization time series of a new unknown 

application     is captured by XenAPI; then statistical 

<mean,variance> at each point   
 

     
 

     of the 

time series are extracted under the same input data sizes and 

configuration parameters. Here, because the length and 

magnitude of the new application time series might be 

different from those in reference database     , we first 

normalize them and then use DTW to make them of equal 

length. Result are two new uncertain time series for each 

application    
          to be later analyzed for extracting 

their statistical information at each point                

 and                .  

In the candidate selection stage, the mathematical analysis 

described in Section III-B is applied to calculate the similarity 

between twisted version of normalized uncertain time series in 

database    
   as well as the new unknown application     . 

  

     Figure 2. Algorithms for profiling and pattern matching phases. 



 

 

Consequently, based on Eqn.(13) the time series in database which 

gives the minimum           for predefined Euclidian distance 

probability     are chosen as the most similar application to the 

new application in the candidature pool. Raising the value of 

probability threshold     will reduce the number of applications in 

candidature pool; and consequently, increases the similarity 

selection accuracy. 

 

V. EXPERIMENTAL RESULTS 

1. Experimental setting 

Four widely known/used applications (three text processing and 

one sorting) were deployed and implemented to evaluate the 

effectiveness of our method in this work. Figure 3 shows the 

structure of the private cloud we used to conduct our experiments; 

it has the following specifications: 

 Physical H/W: includes five servers, each server was a 

dual-core Intel Genuine 3.00GHz with 4GB memory, 1GB cache 

and 250GB of shared iSCSI network drive. 

 Xen cloud platform (XCP) is used for virtualization has 

been used on top of the physical H/W. The Xen-API [29] provides 

functionality in high level languages like Java, C# and Python to 

manage virtual machines inside XCP, measure their details 

performance statistics as well as live-migrate them in a private 

cloud environment.  

Debian images are used to provide our Hadoop nodes (version 

0.20.2) on our servers; each virtualized debian were set to use 1 

CPU, 1GB RAM, and, 50GB of disk. The number of virtual nodes 

were 5, 10, 15, 20, or, 25.  We used XenAPI to collect runtime 

CPU utilisation of these nodes on a Intel(R) Core i7 (four cores, 

eight logical processors, and 16GB of RAM) desktop PC to 

monitor/extract the CPU utilization time series of applications. Performance statistics for each experiment were collected from 

―running job‖ stage to the ―job completion‖ stage with sampling time interval of one second. All CPU usages samples are then 

combined to form CPU utilization time series of an experiment. For each application we executed             experiments 

where the number of mappers and reducers were 4,8,12,16,20,24, 28, or, 32; the size of our input data was 5GB, 10GB, 15GB, or, 

20GB; and, each experiment were run ten times to collect its statistical information. Our benchmark applications were 

WordCount, TeraSort, Distributed Grep and Exim Mainlog parsing. These benchmarks were chosen because (1) they roughly 

represent a variety of MapReduce applications, and, (2) there are also used as valid MapReduce benchmarks in other approaches 

[14-16, 30-34]. 

 

2. Results and Discussion 

Each of the aforementioned application is executed on several small-sized input data files with a combination of difference 

configuration parameters (number of mappers and reducers) to form its related CPU utilization time series. 

 

a) Application similarity 

Table 1 and Figure 4 indicate the minimum distance            between CPU utilization patterns of these four applications in our 

experiments (for 5G of input data on 10 virtual nodes) for Euclidian distance probability of             . In Table 1, the 

lowest and the penultimate lowest minimum distance between two instances of applications are indicated with bold and bold-

italic, respectively. Here {         } are the set of number of mappers and reducers used in the experiments. Moreover, 

straight lines in the figure 4 show the diagonal line and the points show the position of the minimum distance between two 

applications which are too close to the diagonal lines. Results in this table and figure shows that diagonal numbers of these tables 

are always either the lowest or the penultimate lowest of all numbers, showing that two computationally similar applications 

always have minimum distance when run with similar configuration parameters. Based on this observation, we designed another 

candidate selection algorithm in which such similarities are taken into account for selecting the best set of running parameters for 

one applications based on its similar peers. This new approach is detailed in Figure 5 and replaces our first attempt in Figure 2.  

  

 Exim MainLog Parsing 

        

 

WordCount                               

 S-1 S-2 S-3 S-4 

S-1 24044 117017 94472 228071 

S-2  80648 64063 58351 138222 

S-3 79431 63232 56114 104255 

S-4 147014 83655 81434 70427 

                                                                                                                                                       

 Exim MainLog Parsing 

 

Terasort 

 S-1 S-2 S-3 S-4 

S-1 27400 65102 65606 132799 

S-2  155038 67293 68455 69927 

S-3 123668 76859   51876 76589 

S-4 166234 77829 81751 74693 

                                                      

 

 WordCount 

 

Distributed 

Grip 

 S-1 S-2 S-3 S-4 

S-1 21529 105309 90012 199451 

S-2  79965 62890 68553 122279 

S-3 77549 62949 54309 101280 

S-4 142703 83089 72987 70198 

TABLE 1. A sample of the minimum distance  𝑟𝑏𝑜𝑢𝑛𝑑𝑟𝑦  between 

the used applications for 𝜏        for processing 5G of  input data 

on 10 virtual nodes. 



 

 

Based on our observations, we also hypothesize that if two applications are considered ―computationally similar‖ for short data 

files, they will be fairly ―similar‖ for large data sizes too. This hypothesis can lead us to find optimal number of mappers and 

reducers for running a new unknown MapReduce application through first categorizing it based on its CPU utilization patterns, 

and then, estimating its optimal running parameters based on its peer similar applications in the dame category/class. To be more 

specific, assume we have N applications in our database   {       } along with their optimal configuration parameters.    

 Now, for a new unknown application   , we execute this application for the same set of input data and parameters we used to 

collect optimal values for {       }; then we can chose the running parameters of   based on the its closest application in our 

data base.  

A direct result from table 1 indicates that WordCount, Exim and Distributed Grep can be categorized in a same CPU time series 

class while Terasort forms another class.  

 

b) Auto-similarity of applications 

To further investigate our hypothesis, we also studied the auto similarity of an application. Here, we expect that diagonal numbers 

for in calculating auto-similarity of all applications must be significantly larger than all other off-diagonal numbers. Table 2 shows 

our results and proves our point. This table in fact proves that only similar configurations parameters can produce comparatively 

small Euclidean distances between different experiments. 

 

c)   and minimum distance            relation 

One of the parameters influencing minimum distance between CPU utilization time series of applications           is the value of 

Euclidian distance probability   . Euclidian distance probability greatly depends on the level of similarity between two 

applications. As expected, increasing   always results in raising         . This observation is also well justified from a 

mathematical point of view as shown in Eqns. (9-10). Based on these equations, greater values of     should result in greater 

values of             , and consequently, greater values of the minimum distance            as well.  

 

d) Scalability for the size of the input data 

Upon finding the minimum distance between two applications for sets of parameters in Table1 and Figure 4, we investigated the 

relationship between the scalability of input size and the distances for        on 10 virtual nodes and show the results in Figure 

6. Here, the input file size is 5G, 10G, 15G, or, 20G. This figure indicates that increasing size of the input data file always results 

in relatively greater minimum distance as well. This observation can be justified/explained by considering the fact that larger data  

                      

Figure 3. Overall architecture of our private cloud                            Figure 5. Candidate selection and with applications pattern matching                  

             in conducting our experiments                                                       algorithm based on our application similarity hypothesis 
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Figure 4. The minimum distance  𝑟𝑏𝑜𝑢𝑛𝑑𝑟𝑦  between the four applications for 𝜏       in processing 5G of input data on 10 virtual nodes. The lowest 

minimum distance indicates the highest similarity. The y-axis shows the value of minimum distance between applications. The straight lines show the 

diagonal line and the points show the position of the minimum distance between two applications. which almost close to the diagonal lines. 



 

 

files always need more time to be executed as well. Therefore, the 

length of CPU time series will also increase and consequently 

causes more points to be compared. 

 

e) Scalability for the number of virtual nodes 

Figure 7 shows relationship between scalability of the number of 

nodes (5 to 25) in an experiment and the minimum distances for 

       on a 5G data file; this figure also shows that this 

relationship is much more complicated than the previous case. 

Further investigating and analysis however indicates the 

following facts: (1) When the number of nodes is increased –for 

the same data–, because the input data are mapped onto more 

nodes, it results shorter lengths of the CPU time series. 

Furthermore, because nodes are assumed identical, they are 

expected to produce very similar CPU time series as well. Results 

however show that more nodes always result in dispersed time 

series with more variance at each data point. This in turn causes 

greater levels of uncertainty, less accuracy in a system, and, 

greater minimum distances between experiments. (2) Increasing 

the number of nodes expedited execution of an application and 

thus results in decreasing the number of points in its CPU time 

series. Therefore, as mentioned in scalability for the size of input 

data, this also leads to lower values of minimum distances for 

experiments.  

Comparison of Figures 6 and 7 shows that increasing either size 

of data or number of virtual nodes will result in greater minimum 

distance values. Nevertheless, as discussed, the increasing slope 

for scalability of virtual nodes is less than that of the size of the 

input data; thus, scaling the number of virtual nodes requires 

lower similarity threshold value compared with scaling the size of 

the input data. It should be also noted that although scaling the 

experiments in either size of data or number of nodes increases 

the minimum distance, our hypothesis about applications’ 

similarities still holds. It means that scaling (in both cases) does 

not effect similarity among applications; mainly because, order of 

lowest or the penultimate lowest minimum distances among 

applications rarely changes when executed with different number 

of mappers and reducers, size of data file, and/or, number of 

virtual nodes. 

 

f) The cost of profiling and modeling 

During our experiments, we also carefully logged execution time of these algorithms. Table 3a reflects the average execution time 

as well as the total time for only profiling phase of a whole set of experiments for each application on 5G of input data; each 

application is executed 8 (possible number of mappers) times 8 (possible number of reducers) times 10 (repeating the whole 

experiment), i.e., 640 times in total. Table 3b shows required time for the pattern-matching phase i.e., comparing CPU time series 

of an application on 5G of input data to others with the same input data size in MATLAB [35], Table 3b also shows that matching 

TeraSort with others always takes more time; an educated guess to explain this could be related to the nature of TeraSort that is 

vastly different to the other applications. 

  

      

g) Future work 

Although in this work we tried to cover as many issues as possible to study the true execution behavior of known MapReduce 

applications and to predict the behavior of the unknown ones, we like to acknowledge that CPU utilization profile of applications 

alone ―sometimes‖ does not lead to valid estimations. Therefore, the first extension to our work will be to enrich our profiling 

 WordCount 

 

WordCount 

 S-1 S-2 S-3 S-4 

S-1 1079 116850 89382 216474 

S-2  116850 2293 61541 119652 

S-3 89382 61541 2524 118166 

S-4 216474 119652 118166 2980 

(a) 

 Exim  

 

Exim  

 S-1 S-2 S-3 S-4 

S-1 325 63003 69015 138062 

S-2  63003 987 42078 71601 

S-3 69015 42078 1136 65632 

S-4 138062 71601 65632 1706 

(b) 

 Terasort 

 

Terasort 

 S-1 S-2 S-3 S-4 

S-1 361 135619 105092 150639 

S-2  135619 1046 60107 74998 

S-3 105092 60107 1102 69114 

S-4 150639 74998 69114 1588 

(c) 

 Distributed Grip 

 

Distributed 

Grip 

 S-1 S-2 S-3 S-4 

S-1 1895 106728 79264 2124544 

S-2  111743 3609 72784 104756 

S-3 79536 66530 4706 996546 

S-4 207634 98648 102746 6098 

(d) 

Table 2. The minimum distance  𝑟𝑏𝑜𝑢𝑛𝑑𝑟𝑦  between each application 

with itself for 𝜏        input data size=5G on 10 virtual nodes. 



 

 

method by considering Disk (I/O) and Memory utilizations along with CPU utilization. This extension requires collecting three 

uncertain time series for each experiment in our private cloud platform. Consequently, our pattern matching procedure should also 

be modified to concurrently consider three uncertain times series in finding similarity among applications; this requires 

significantly more complex computations. It is also worth noting that considering Disk or Memory utilization can only help to 

better estimate behavior of applications when either a large amount data is transferred between the map and the reduce 

procedures, and/or, intensive computations are performed in them. Otherwise, because most disk utilization in CPU intensive 

MapReduce applications is performed for distributing/copying data before/after starting/finishing an application, it does not 

interfere with its execution time. The case for memory utilization is however more subtle as it usually provides redundant 

information about execution behavior of an applications; mainly because, it is tightly related to its CPU utilization. Therefore, we 

can confidently hypothesize that CPU utilization of applications is most probably enough to estimate execution behavior of 

unknown applications in most cases; nevertheless, it is always worth to investigate other possible avenues to provide more 

accurate solutions. 

During our experiments, we also noticed that collected CPU utilization profiles of applications are sometimes too long and noisy 

to pass on to our DTW engine. Therefore, we also like to extend our work by extracting signaling behavior of our profiles instead 

of their raw data. Extracting Fourier/Wavelet coefficients applications’ profiles is among our first attempts to this end. We 

strongly believe that using such techniques, not only will significantly reduce the size of applications’ profile and expedites the 

whole system, but also eliminates a great amount of noise from the system to produce even more accurate estimations..   

 

VI. CONCLUSION 

In this paper, we present a new statistical approach to find similarity among uncertain CPU utilization time series of CPU 

intensive MapReduce applications on a private cloud platform. Through two phases of our approach (profiling and pattern-

matching), execution behavior of known applications is used to estimate behavior of the unknown ones. Profiling is performed 

through sampling, while our novel combination of DTW and Euclidean distance is used for pattern matching. Four applications 

(WordCount, Distributed grep, Exim Mainlog parsing and TeraSort) are deployed on our private cloud to experimentally evaluate 

performance of our approach. Results were very promising and showed how CPU utilization pattern of known application are 

related and therefore can be used to estimate those of the unknown ones. We also study the scalability of our approach against the 

size of the input data and the number of nodes in our private cloud environment. 
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 Average time for one 

experiment 

Total time of 8*8*10 

experiments per application 

WordCount   ~19 min ~202 h and 40 min 

Exim MainLog ~6.5 min ~69 h and 20 min 

Terasort ~9 min ~96 h  

Distributed    Grep ~12.2 min ~130 h and 8 min 

                                                                                                    (a)           

 WordCount Exim MainLog Terasort Dist. Grep 

WordCount --- 44 sec 184 sec 56 sec 

Exim MainLog 44 sec --- 96 sec 64 sec 

Terasort 184 sec 96 sec --- 93 sec 

Dist. Grep 56 sec 64 sec 93 sec --- 

       (b)                                                 

Table 3. Time required for (a) profiling and (b) pattern matching for executing the proposed algorithm for all experiments on 5G of  

data and on 10 virtual nodes 



 

 

 

  

                                                     

  

Figure 6. The dependency between the size of input file and minimum distance/maximum similarity (scalability in input file size) between applications for 

𝜏         input data size of 5G, 10G, 15G and 20G on 10 virtual nodes. The y-axis shows the value of minimum distance between applications. 

 



 

 

 

 

     

                                                     

 

Figure 7. Dependency between  the number of virtual nodes and minimum distance/maximum similarity (scalability in number of nodes) between 

applications for 𝜏         on  5, 10, 15, and 20 virtual nodes for 5G of input data size. The y-axis shows the value of minimum distance between 

applications. 
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