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ABSTRACT

Although clustering has been studied for several decades,
the fundamental problem of a valid evaluation has not yet
been solved. The sound evaluation of clustering results in
particular on real data is inherently difficult. In the litera-
ture, new clustering algorithms and their results are often
externally evaluated with respect to an existing class label-
ing. These class-labels, however, may not be adequate for
the structure of the data or the evaluated cluster model.
Here, we survey the literature of different related research
areas that have observed this problem. We discuss common
“defects” that clustering algorithms exhibit w.r.t. this eval-
uation, and show them on several real world data sets of
different domains along with a discussion why the detected
clusters do not indicate a bad performance of the algorithm
but are valid and useful results. An useful alternative eval-
uation method requires more extensive data labeling than
the commonly used class labels or it needs a combination of
information measures to take subgroups, supergroups, and
overlapping sets of traditional classes into account. Finally,
we discuss an evaluation scenario that regards the possible
existence of several complementary sets of labels and hope
to stimulate the discussion among different sub-communities
— like ensemble-clustering, subspace-clustering, multi-label
classification, hierarchical classification or hierarchical clus-
tering, and multiview-clustering or alternative clustering —
regarding requirements on enhanced evaluation methods.

1. INTRODUCTION

Evaluating the quality of clustering results is still a chal-
lenge in recent research. One kind of evaluation is the use
of internal measures as e.g. compactness or density of clus-
ters. Because these measures usually reflect the objective
functions of particular clustering models, the evaluation of
clustering results based on this technique, however, is prob-
lematic. In general, an algorithm specifically designed for
the objective function used in the evaluation outperforms its
competing approaches in terms of clustering quality. Thus,
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a fair validation of the results is not achieved by using these
measures. Accordingly, the best way for fair evaluations so
far is using external evaluation measures. Based on a data
set whose true clustering structure is given, the results of
an algorithm are compared against this ground truth. A
comparable evaluation is ensured because the true cluster-
ing structure can be chosen independently of specific mod-
els. For this technique, however, the definition of the ground
truth is very problematic. The ground truths used so far in
the evaluation of clustering results are mostly inadequate,
which we will substantiate in the following.

Synthetic data sets can be engineered to match assump-
tions of the occurrences and properties of meaningful clus-
ters. The underlying assumptions and the thereon based
generation of the data allows the deduction of a ground
truth for these data sets. The evaluation can then demon-
strate to which degree the algorithms actually find clusters
that match these assumptions. Thus, this procedure allows
the explication of the assumptions of the algorithms them-
selves. It is important, though, to show the significance of
a solution also on real world data to demonstrate the na-
ture of the problem tackled by the specific approach exist-
ing beforehand in the real world. For real world data, how-
ever, specifying the true clustering is difficult since mostly
the knowledge of domain experts is required. This problem
does not arise for the supervised mining task of classifica-
tion. The evaluation procedures in this area are well studied
(cf. e.g. [63]) and relatively straightforward. Though the aim
of classification usually is to generalize concepts describing
previously known knowledge for classifying new, unlabeled
data, its success can be assessed quantitatively w.r.t. a rela-
tion between the provided set of class-labels and the redis-
covered classes. For this kind of evaluation, in the context
of classification many different measures are available (see
e.g. [50]).

Since using labeled classification benchmark data is rather
convenient, the usual approach in evaluation of clustering al-
gorithms is to use such data sets based on the assumption
that the natural grouping of the data set (which the clus-
tering algorithm is to find) is reflected by the class labels to
a certain degree. Using classification data for the purpose
of evaluating clustering results, however, encounters several
problems since the class labels do not necessarily correspond
to natural clusters. A typical example includes the clus-
tering specific identification of outliers, i.e., of objects that
do not belong to any cluster. In classification data, how-
ever, usually each object has assigned a certain class label.
Thus, a clustering algorithm that detects outliers is actu-



ally punished in an evaluation based on these class labels
even though it should be rewarded for identifying outliers as
not belonging to a common cluster albeit outliers represent
a genuine class of objects. Similar difficulties occur if the
labeled classes split up in different sub-clusters or if several
classes cannot be distinguished leading to one larger clus-
ter. Consequently, in general, classes cannot be expected to
exactly correspond to clusters.

Let us consider the problem from a different perspective.
The already annotated classes usually do not completely ex-
ploit the knowledge hidden in the data. The whole point in
performing unsupervised methods in data mining is to find
previously unknown knowledge. Or to put it another way,
additionally to the (approximately) given object groupings
based on the class labels, several further views or concepts
can be hidden in the data that the data miner would like
to detect. If a clustering algorithm detects structures that
deviate considerably from annotated classes, this could ac-
tually be a good and desirable result. Consider for example
the case of subspace clustering algorithms [39], where not
only groups of data objects define a cluster but also certain
subsets (or combinations) of the attributes of the data. The
general task definition of “subspace clustering” is to look
for “all clusters in all subspaces” which allows for overlap
of clusters, i.e., one object can belong to different clusters
simultaneously in different subspaces. Therefore, determin-
ing the true clustering based on class labels cannot be accu-
rate since different groupings for each individual object are
possible. This observation goes beyond subspace clustering
and is also true for other approaches. Alternative clustering
and multi-view clustering methods are interested in finding
clusterings that differ from a previously known clustering.
Again, given the class labels, an evaluation may not be cor-
rect. Thus, for a meaningful evaluation of clustering algo-
rithms, multiple labeled data should be used where for each
object a set of possible clusters is specified — and such an-
notations of evaluation benchmark data sets should be up-
dated if new, meaningful concepts can be identified in the
data. Even the recently conducted experimental evaluations
of subspace clustering algorithms [48, 46] suffer from these
problems. In both studies, for real data sets, class labels
have been assumed to correspond also to true clusters. A
recent subspace clustering method for detecting orthogonal
views in data, resorts to a different evaluation approach [28].
Multiple groupings are obtained by concatenating multiple
times the object vectors of usual classification data (per-
muting in each step the order of objects). Thereby, for each
object several clusters are generated and more meaningful
conclusions are possible. This approach, however, is more
like synthesizing data based on real data than solving the
problems sketched here. Actually, the original problem is
not solved since already the unmodified data comprises sev-
eral groupings that are not incorporated into the evaluation.
At last, the approaches in [19, 52] perform only a subjective
evaluation by manually inspecting their results avoiding the
problematic objective quantitative external evaluation.

Overall, the true hindrance of scientific progress in the
area of clustering hence becomes apparent as being the lack
of data sets carefully studied regarding their clustering struc-
ture and suitably prepared for a more meaningful evalua-
tion of clustering approaches. Here, we discuss and demon-
strate the problems in using classification data for cluster
evaluation. We aim at studying the characteristics of nat-

ural groupings in real world data and we describe different
meaningful views or clusters within these data sets. We
try to derive general problems and challenges for evaluating
clusterings in order to attract the attention of the research
community to this problem and to inspire discussions among
researchers about how enhanced evaluation procedures could
and should look like. This would be beneficial because we
envision to annotate real world data with the information on
alternative clusters in order to obtain reasonable groupings
for the task of clustering and to eventually substitute the
naive class label approach. It is our hope that if these more
carefully annotated data sets can be provided along with
enhanced evaluation procedures, this may initiate research
for a more meaningful evaluation of clustering algorithms in
the future.

Although the problem we are sketching here has not found
much attention so far, we find some related observations in
the literature which we lay out in Section 2. The formaliza-
tion of the introduced problems and case studies on exem-
plary data sets that contain more than one meaningful set of
concepts are provided in Section 3. Our observations lead to
a new procedure for the evaluation of clustering results. In
Section 4, we discuss possible evaluation scenarios. Section
5 concludes the paper.

2. RELATED WORK
2.1 The Problem in Different Research Areas

It has been observed now and then that classes and clus-
ters need not be identical but, for example, one class can
comprise several clusters. Such observations on the differ-
ence between clusters and classes have been occasionally re-
ported in different research areas. However, in none of these
research areas this difference has been truly taken into ac-
count for the evaluation of approaches, as we survey below.

An example concerned with traditional clustering is [15],
where the difference between clusters and classes is noted
though not taken into account for the evaluation. The clus-
tering research community did not pay much attention, how-
ever, on this rather obvious possibility. For example, al-
though the observation of [15] is quoted and used for mo-
tivating ensemble clustering in [57], the evaluation in the
latter study uses uncritically classification benchmark data
sets (including the pendigits data set that we survey below
in Section 3.4). The problematic variants of approaches to
ensemble clustering cannot be discussed here. It is, however,
our conviction that the results we report in this study are of
utmost importance especially for the research on ensemble
clustering since focussing on one single clustering result in
the presence of different, possibly equally important clus-
tering solutions, is an inherent flaw of many approaches to
ensemble clustering.

In the research on classification, the topic of multi-label
classification is highly related. Research on this topic is con-
cerned with data where each object can be multiply labeled,
i.e., belong to different classes simultaneously. An overview
on this topic is provided in [60]. In this area, the problem of
different simultaneously valid ground truths is usually tack-
led by transforming the complex, nested or intersecting class
labels to flat label sets. One possibility is to treat each oc-
curring combination of class labels as an artificial class in
its own for training purposes. Votes for this new class are
eventually mapped to the corresponding original classes at



classification time. There are, of course, many other possi-
bilities of creating a flat set of class labels (see e.g. [53, 29,
12, 60]). It is, however, remarkable that none of these meth-
ods treat the multi-label data sets in their full complexity.
This is only achieved when algorithms are adapted to the
problem (as, e.g., in [17, 59]). But even if training of classi-
fiers takes the complex nature of a data set into account, the
other side of the coin, evaluation, remains traditional. For
clustering, no comparable approaches exist yet. Again, our
present study envisions to facilitate development of cluster-
ing approaches more apt to treat such complex data. This is,
however, also partly motivating subspace clustering and bi-
clustering (see below) but even there, no suitable evaluation
technique has been developed until now.

A special case of multi-label classification is hierarchical
classification (see e.g. [38, 44, 14, 11, 13]). Here, each class
is either a top-level class or a subclass of any other class.
Overlap among different classes is present only between su-
perclass and its subclasses (i.e., comparing different classes
vertically), but not between classes on the same level of the
hierarchy (horizontally) or classes not sharing a common
superclass. Evaluation of approaches to hierarchical classi-
fication is usually performed by choosing one specific level
corresponding to a certain granularity of the classification
task. Hierarchical problems have also been studied in clus-
tering and actually represent the majority of older work in
this area [55, 62, 54, 33]. Recent work includes [7, 58, 1, 2,
4]. Though there are approaches to evaluate several or all
levels of the hierarchy [23], there has never been a system-
atic, numerical methodology of evaluating such hierarchical
clusterings as hierarchies. The cluster hierarchy can be used
to retrieve a flat clustering if a certain level of the hierarchy
is selected for example at a certain density level.

In the areas of bi-clustering or co-clustering [43, 39] it is
also a common assumption in certain problem settings that
one object can belong to different clusters simultaneously.
Surprisingly, although methods in this field have been de-
veloped for four decades (starting with [32]), there has not
been described a general method of evaluation of clustering
results in this field either. Some approaches are commonly
accepted for the biological domain of protein data, though,
which we will shortly describe below.

Subspace clustering pursues the goal to find all clusters in
all subspaces of the entire feature space [39]. This goal ob-
viously is defined to correspond to the bottom-up technique
used by these approaches, based on some anti-monotonic
property of clusters allowing the application of the APRI-
ORI [56] search heuristic. Examples for subspace clustering
include [5, 16, 49, 37, 9, 47, 10, 45, 41]. Since the initial
problem formulation of finding all clusters in all subspaces
is rather questionable (the information gained by retrieving
such a huge set of clusters with high redundancy is not very
useful), subsequent methods often concentrated on possibil-
ities of restricting the resulting set of clusters by somehow
assessing and reducing the redundancy of clusters, for ex-
ample to keep only clusters of highest dimensionality. How-
ever, none of these methods were designed for detection of
alternative subspace clusters. Only recently, for subspace
clustering the notion of orthogonal concepts has been in-
troduced [28] constituting a direct connection between the
areas of subspace clustering and alternative clustering.

Recently, the problem description of multiview clustering
[19, 36] or finding alternative clusterings [21, 52] has been

brought forward. The results stated in these studies concur
with our observations that different (alternative) clustering
structures in one data set may be possible, meaningful, and
a good result for any clustering algorithm. However, they
implicitly also support our claim that new evaluation tech-
niques are necessary. Since they cannot rely on the flat and
simple set of class labels for evaluation, they evaluate their
alternative clustering results mainly by manual inspection
and interpretation of the clusters found. While the notion
of multiview clustering [19] is closely related to the problems
tackled in subspace clustering, the notion of alternative clus-
terings discussed in [21, 52] provide a different perspective
not relying on the notion of subspaces or different views
of a data set but constraining clustering solutions to differ
from each other. In [30], the problem setting is explicitly
described as seeking a clustering different from the already
known classification. Nevertheless, regarding a quantitative
evaluation of results, all these approaches concur with the
other research areas sketched above in motivating the con-
siderations we present in this study.

In summary, we conclude that (i) the difference between
clusters and classes, and (ii) the existence of multiple truths
in data (i.e., overlapping or alternative — labeled or un-
labeled — natural groups of data objects) are important
problems in a range of different research areas. These prob-
lems have been observed partly since decades yet they have
not found appropriate treatment. This observation moti-
vates our detailed discussion of the problems resulting for
an appropriate evaluation of clustering algorithms in order
to trigger efforts for developing enhanced evaluation tech-
niques.

2.2 Observations in Different Data Domains

Similarly to these problem observations in different re-
search areas we observe also the usage of several data do-
mains showing multiple hidden clusters per object. In gen-
eral all of the multiview and alternative clustering evalua-
tions are based on such databases. Furthermore, there are
similar observations in the more application oriented domain
of gene expression analysis.

Data used in the experiments of recent techniques [19,
21, 52], range from the pendigits database provided by UCI
ML repository [24] up to image databases containing Escher
images which are known to have multiple interpretations to
the human eye [52]. In general, the observation for all of
these databases is that data are known to contain multiple
interpretations and thus also multiple hidden clusters per
object. However, all of these databases provide only single
class labels for evaluation.

For gene expression data, one observes multiple functional
relationships for each gene to be detected by clustering al-
gorithms. A couple of methods has been proposed in order
to evaluate clusters retrieved by arbitrary clustering meth-
ods [8, 64, 6]. These methods assume that a class label
is assigned to each object of the data set (in the case of
gene expression data to each gene/ORF), i.e. a class sys-
tem is provided. In most cases, the accuracy and usefulness
of a method is proven by identifying sample clusters con-
taining “some” genes/ORF's with functional relationships,
e.g. according to Gene Ontology (GO) [8]. For example,
FatiGO[6] tries to judge whether GO terms are over- or
under-represented in a set of genes w.r.t. a reference set.
More theoretically, the cluster validity is measured by means



of how good the obtained clusters match the class system
where the class system exists of several directed graphs, i.e.,
there are hierarchical elements and elements of overlap or
multiple labels. However, examples of such measures in-
clude precision/recall values, or the measures reviewed in
[31]. This makes it methodically necessary to concentrate
the efforts of evaluation at one set of classes at a time. In re-
cent years, multiple class-driven approaches to validate clus-
ters on gene expression data have been proposed [20, 25, 27,
40, 51].

Previous evaluations do in fact report many found clusters
to not obviously reflect known structure, possibly, however,
due to the fact that the used biological knowledge bases are
very incomplete [18]. Others, however, report a clear re-
lationship between strong expression correlation values and
high similarity and short distance values w.r.t. distances in
the GO-graph [61] or a relationship between sequence simi-
larity and semantic similarity [42].

In summary, although the research community concerned
with gene expression data is pretty aware of the fact that
there is not a one-and-only flat set of class-labels and that,
if there were one, to rediscover it by using clustering is in it-
self not a meaningful goal of scientific progress, there is also
no readily generalizable methodology for evaluating cluster-
ing algorithms in presence of complex, possibly overlapping
layers of different classes.

3. ALTERNATIVE CLUSTERINGS

As motivated in the previous sections there are multiple
meaningful reasons to allow alternative clusterings. In such
cases there is not one ground truth to be detected by a clus-
tering task but there are multiple alternative valid solutions.
Let us formalize this before providing some case studies on
real world data.

3.1 Classic Evaluation of Clusterings

A typical clustering algorithm aims at detecting a group-
ing of objects in disjoint clusters {G1,...,Gr} such that
similar objects are grouped in one cluster while dissimilar
objects are separated in different clusters. For evaluation
usually a given ground truth, such as the class labels in clas-
sification data sets is used. In such databases, each object
is assigned to exactly one class out of {C1,...,Ci}. The ba-
sic assumption is that these class labels constitute an ideal
clustering solution which should be detected by any useful
clustering algorithm. In typical clustering evaluations (e.g.
[46, 48]), one uses purity and coverage measures for compar-
ison of a detected cluster G; with the given classes C;. Such
evaluations result in perfect quality of a clustering solution
if its clusters represent exactly the given classes. The qual-
ity defined by these measures decreases if a detected cluster
does not represent one of the given class labels, if class labels
are split in multiple clusters, or if different class labels are
mixed in one cluster. Different possibilities for comparing
partitions exist (see e.g. [35, 50]) but they suffer from the
same problem.

We doubt that such an evaluation based only on one given
class label per object is a fair and meaningful criterion for
high quality clusterings. In fact it can be seen as an “over-
fitting” of the evaluation method to the class labels. Clus-
tering is usually used to discover new structures in the data,
instead of reproducing known structure.
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Figure 1: Toy example on alternative clusters

3.2 Clustering “Defects’’ Analyzed

When analyzing clustering results, one often encounters
clusters that are meaningful, but do not necessarily corre-
spond exactly to the class labels used in evaluation. In the
following, we want to discuss some of the common “defects”
and their causes theoretically. Below (Section 3.4), we will
discuss exemplary real-data occurrences of these defects.

Figure 1 shows two example clusterings of the same data
set. The first clustering extracted the feature projections
(also: view, subspace) X and Y and identified the groups on
the left side, which correspond closely to the class labeling,
visualized as shape of the objects. A typical evaluation sce-
nario would assign a high score to this result. The clustering
on the right hand side, using W and Z projections, scores
rather low in traditional evaluation: none of the clusters
corresponds closely to a class label, even the circle objects
are broken apart into two separate clusters. However, when
you take the color of the objects into account, this partition-
ing of the data is perfect. So assuming that the color is a
hidden structure in the data, this is a very good clustering
result (albeit it is not as useful for re-identification of the
original classes). In particular, the second clustering discov-
ered a hidden structure in the circular shaped objects. As
such, the second result actually provides more insight into
the data: the circular class can be split into two meaning-
ful groups, while the other classes have a grouping that is
orthogonal to their classes. When taking this result into a
classification context, this allows for improved training of
classifiers, by training two classifiers for the circular objects
and by removing the W and Z features for separating the
other classes.

Commonly observed differences between a real clustering
result and a class labeling include:

Splitting of Classes into Multiple Clusters: A clus-
tering algorithm might have detected subgroups of one class
as multiple clusters. Thus, they split the original class struc-
ture in more than one cluster. In our example we observe
this phenomenon for the green and red circles. Based on the
clustering, the elements of such subgroups might be quite
dissimilar to each other although they are labeled with the
same class. This is in general true for classes representing a
multi-modal distribution. However, using class labels (e.g.
the shape in our example) in the evaluation often results in
allegedly bad clustering quality.

Merging of Classes into a Single Cluster: Then
again, multiple class labels might be detected together in one
cluster. Objects from different classes might share common
properties for some attributes, such that they are grouped



together. In our example, both the orange and blue cluster
in the W and Z projection are mixing-up different shapes.
There is no completely merged cluster in the toy example,
but we will observe many examples in the real world exper-
iments.

Missing Class Outliers: Clustering algorithms often
determine only obvious groupings as clusters and do not try
to assign outlying objects. However in a class label con-
text, also “class outliers” (that is unusual members of the
class) are assigned the same label. In a classification con-
text, these objects are important. For example, a Support
Vector Machine relies on such objects as support vectors. In
a clustering context, models are derived and the focus is on
typical objects. When learning correlation models [3], such
untypical objects can significantly reduce model quality. An
example of treating class outliers in an evaluation different
than class inliers is [34].

Multiple (Overlapping) Hidden Structures: As a
common observation, one class label per object is not suffi-
cient to represent multiple hidden structures. Recent clus-
tering applications aim at such multiple and alternative clus-
ter detection [30, 19, 36, 21, 52]. As a consequence, also the
methodology of evaluation should be reconsidered in these
cases. As depicted in our example, the hidden structure is
not only the object shape but also its color. Using this al-
ternative hidden grouping {Hi,...,Hn,} is essential for a
fair evaluation of alternative clusterings. Each alternative
hidden group H; might represent a split of the original class
labels or a totally different grouping by mixing-up multiple
classes or parts thereof. Thus, classes C; and alternative hid-
den structures H; together provide a more enhanced ground
truth for cluster evaluation.

3.3 Evaluation Challenge

Evaluating a clustering against a data set containing al-
ternative hidden groupings requires more sophisticated tech-
niques. For example, when a clustering algorithm merges
two classes that belong to the same hidden group, or splits
a class into two clusters according to two hidden groups,
this does not indicate an entirely bad performance of the al-
gorithm. Similarly, a clustering algorithm identifying some
class outliers as noise objects should not be heavily penalized
in an evaluation of its results. But of course the clustering
should still convey some meaning and not just contain ar-
bitrary groups. In general, the evaluation of clusterings can
happen at two levels: The first level deals with the question
whether a sensible structure has been found or not while the
second level evaluates the significance of this structure, i.e.,
whether it is trivial or not.

For the first level of evaluating clustering results typically
the idea of partitionings of data is considered. Class labels
usually define a disjoint and complete partitioning of the
data. Many clustering algorithms return a similar partition-
ing, often with a special partition NV of “noise” objects, that
could also be seen as partitions that only contain a single
object each. Frequently, this partition is treated the same
way as a cluster, and the same happens for class labels that
identify outliers. Hierarchical class labels and clusterings
represent a more advanced structure. In a strict hierarchy,
every cluster has at most one parent cluster. Some algo-
rithms such as ERIC [4] can also produce arbitrarily (multi-)
nested clusters. For many data sets there exists more than
one meaningful grouping. Sometimes these groupings are
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Figure 2: Different ways of digit notation
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Figure 3: Different types of digits 9 and 3

orthogonal in the sense that there is no or only little cor-
relation between the clusters of each grouping. Algorithms
such as OSCLU [28] are able to detect these orthogonal clus-
ters that often occur when the data is comprised of multiple
views.

The most basic formulation however is that a data set can
contain any number of non-disjoint “concepts” C;. A data
object can belong to any number of concepts. In a classi-
fication context, one can discern “interesting” and “uninter-
esting” concepts based on their correlation with the classifi-
cation task. In a clustering context, concepts can be rated
based on their information value (concepts having a reason-
able size) but more importantly based on their discoverabil-
ity using naive methods. This is more related to the second
level of evaluating clusterings mentioned above. For exam-
ple in an image data context, the concept of images with
“dominant color red” can be considered of low value since
this concept can be defined using a static, data-independent
classifier. A clustering algorithm that merely groups images
by color indeed detects a proper grouping of objects — but
a rather trivial grouping.

3.4 Case Studies

The general phenomena of multiple alternative cluster-
ings have been observed in multiple applications as surveyed
above (Section 2). Here, we highlight and illustrate our key
observations using two well-known real world data sets.

Pendigits Data Set: First, we consider the hidden clus-
tering structures in the Pendigits database from the UCI
repository [24]. In the Pendigits data set, hand written pen
digits (objects) are described by 8 measurements of (z,y)
positions. These are concatenated in a digit trajectory de-
scribed by a 16 dimensional feature vector. For distinction
of pen digits, clearly not all of the pen positions are im-
portant. Some digits show very similar values in the first
positions as they all start in the upper left area. Thus, us-
ing a certain projection of the database one can distinguish
certain subgroups of digits. As we will see, these subgroups
do not necessarily correspond to the digit values given as
class labels.

A careful manual analysis of this data set reveals that
there exist different ways of notation for equal digits, as
can be seen in Figure 2. Most of the common clustering
methods, especially in full space, will therefore not detect



Figure 4: Two objects with similar shape in ALOI.
The left can contains red, the right can contains yel-
low play dough.

all instances of one digit in one cluster but will split classes
into multiple clusters. In the following we will take a closer
look at differences in digit writing exemplarily for digits 3
and 9 in Figure 3. We consider the two basic observations
of splitting classes and mixing-up classes in this real world
example. For the class of digit 9 we observe a clear split
into two detected clusters. While some of the digit 9 objects
start in the upper right corner, a second subgroup of digit
9 objects start also at the rightmost position but with an
offset downwards. Considering the first pen position stored
in the first attributes, a subspace clustering algorithm should
clearly separate these two types. On the other side, there
are digits exhibiting highly similar trajectories although they
represent different digit values. For the depicted digit 3 and
digit 9 we observe a common ending of the trajectory. Both
show a clear round curve stored as similar values in their
last attributes. Thus, considering these attributes only as a
subspace will lead to mixing-up of these two classes.

These are only two examples of alternative clusters hid-
den in this real world data set. We have found many more
valid groupings of digits, representing almost 30 different
groups of digits in contrast to the 10 given classes provided
by the original classification database from the UCI archive.
Thus, using only the given class labels might result in an
unfair comparison especially for recent clustering tasks like
subspace and alternative clustering.

ALOI Data Set: The real world data set “ALOI” comes
from the ALOI image database [26]. The ALOI database
consists of 110, 250 images (instances) of 1,000 objects taken
from different orientations and in different lighting condi-
tions, each object being treated as a class. We produced
color histograms based on the HSB color model using 7x3x3
bins. Running DBSCAN with Histogram Intersection dis-
tance with € = 0.20 and minPts = 20 the data set clusters
into 370 clusters and noise, where noise contains around half
of the data, three large clusters and a variety of small clus-
ters often around 50 images. Many of these small clusters
are pure, with all images coming from the same object. But
there are some clusters with more interesting contents. Fig-
ure 4 shows two objects from a larger cluster found contain-
ing images from exactly 2 objects: The rather coarse binning
into 7 hue values made the two objects next to identical with
respect to this representation. Note that we used a rather
traditional clustering algorithm and that the mixing up in
this case truly happens already at the feature extraction pro-
cess but this is not the point here. While the objects were
distinguishable using larger color histograms, they do have a
clear semantic relationship as the objects differ only in their
color. Even the best shape based features (and clustering
algorithms on top of that) would (and should) not be able
to separate them.

Obj 2 Obj 3

View 1

View 2

Figure 5: Three objects in two views from ALOI.
DBSCAN on color histograms generated one clus-
ter containing front views (top row), another cluster
containing side and back views (bottom row).

Figure 6: Different rubber duckies in ALOI, not sep-
arated by DBSCAN.

An even more interesting sample is formed by two clus-
ters containing images from 3 different objects. Figure 5
contains images from these clusters. But instead of separat-
ing objects into different clusters, the algorithm separated
different views on the objects, with one cluster containing
the front views of all three objects (46 images) and the other
cluster containing back and side views (66 images), again of
all three objects. Obviously, this is due to the three objects
being very similar baking mixes and having next to identi-
cal colors on the front, with the back and side views having
different characteristic colors. Again, adding shape features
would not yet help the algorithm to discern the objects. It
can be claimed that “it is a feature, not a bug” that the ex-
tracted features, distance function and clustering algorithm
produce these results. The detected groups have a valid
semantic meaning that can be easily described in natural
language as “baking mix front views” and “baking mix side
and back views”.

Figure 6 is yet another example from the same DBSCAN
run, where it failed to separate two classes. This cluster
contains images of two different rubber duckies contained in
the ALOI set. While they are separate objects (one rubber
duck is wearing sunglasses), it is debatable whether or not
a clustering algorithm should cluster these objects into two
separate clusters or merge them into a single one. There are
plenty examples of this kind: two similar red molding forms,
two painted easter eggs in similar colors, five yellow plastic
objects of a larger size, two next to identical metal cans.

Table 1 gives some example concepts on ALOIL. Some of
these can be seen as hierarchical concepts (e.g. exact object



Concept | Available | Example |
Exact Object Filename | 123

Lighting condition | Filename | 18¢3 (incomplete)
Viewing angle Filename | r35 (not comparable)

Object type no bell pepper, fruit, ...
Dominant color no yellow

Size no small, large, ...
Basic shape no rectangular, ...

Table 1: Example concepts on ALOI

being a subdivision of object type), others are clearly or-
thogonal: there are red bell peppers (dominant color red,
object type bell pepper) as well as yellow bell peppers, red
play dough and yellow play dough (dominant color yellow,
object type play dough). Specialized features can be useful
to identify some of these concepts (e.g. color bias for light-
ing conditions), but in particular the object type concepts
are a human concept that does not necessarily map to ob-
ject properties (e.g. “fruit” as informal human concept that
often disagrees with the biological notion of a fruit).

4. POSSIBLE EVALUATION SCENARIOS

So far, we surveyed different research areas and different
data domains backing up the conjecture that a single gold-
standard provided in terms of class labels is not sufficient
information to judge about different merits of different clus-
tering algorithms. Annotated class labels are insufficient to
function as a ground truth for clustering evaluation for sev-
eral reasons. First, class labels represent a theoretical aggre-
gation of data objects. This categorization may not become
spatially manifested in the sense of cluster definitions. Class
structures therefore do not necessarily represent an underly-
ing clustering structure. Second, for many databases more
than one view with meaningful and interesting clusters can
be determined. With multiple views, several, potentially
overlapping clusters are possible such that one object can
be assigned to more than one cluster.

As a consequence of these insights, an evaluation solely
based on traditional class labels as ground truth does not
allow to draw any conclusions about the quality of the clus-
tering approach under consideration. A more careful anno-
tation of data sets, that tries to account for the inherent
clustering structure of the data, will lead to more objective
and meaningful conclusions and quality statements for the
evaluation results (cf. Fig. 7). Previous approaches com-
pared their clustering results solely against the class labels.
The idea is now to compare the results with additional sets
H,; of concept annotations. While the former evaluation pro-
cedures more or less tested the applicability of a particu-
lar cluster approach as classifier, an evaluation enhanced by
considering also hidden structures allows insights into the
ability of the cluster approach itself to capture particular
concepts, also in dependance on the views involved. For
example, a hierarchical clustering may rely on one view to
detect a larger concept, then use another view to split this
into subconcepts.

The provision of such cluster oriented ground truths is
a major step towards enhanced, meaningful and objective
clustering evaluation. However, a such structured ground
truth rises new challenges and questions. Solving these chal-
lenges is beyond the scope of this paper but one aim of this

classification data
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Figure 7: Traditional vs. enhanced evaluation.
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contribution is to attract the attention of the research com-
munity to these problems and inspire discussions on how
such solutions should look like.

If multiple hidden clusters are annotated to the data, com-
monly used evaluation measures are not appropriate any-
more. A new, more meaningful evaluation measure has es-
sentially to cope with several of the following scenarios and
the question is whether to allow or to punish them:

e A result cluster covers exactly one concept but only
contains part of the objects (e.g. missing outlier mem-
bers).

e A result cluster covers the join of multiple concepts
either completely or also only partially.

e The most challenging problem will probably be the
case of newly detected clusters, not yet covered by a
concept in the ground truth. To punish or reward the
mentioned newly detected clusters presumes, that one
has fully understood the clustering structure.

e Since the ground truth may represent different views
like e.g. rotation, color, or shape, it is also reasonable
to discuss the intersection of ground truth concepts
from different views. These deviated clusters describe
multiple views simultaneously, like color A shape.

In some cases, the experienced user might be able to select
a feature space and a clustering algorithm that is biased to-
wards the desired concept level. However, here we are con-
cerned with a fair evaluation of clustering algorithms with-
out focussing on certain application areas. By this survey
and our observations, we finally hope to stimulate discussion
about the problems between the different research commu-
nities and to enhance the mutual understanding of scientists
concerned with different, but related problem formulations.

S. CONCLUSION

In this study, we surveyed different research areas where
the observation that different clustering solutions may be
equally meaningful has been reported. The obvious conclu-
sion is that the evaluation of clustering results w.r.t. some
one-and-only gold standard does not seem to be the method
of choice. It is not only somewhat questionable to evalu-
ate unsupervised methods as clustering in the same way as
one evaluates supervised methods where the concept to be
learned is known beforehand. The already annotated classes
are not even interesting in terms of finding new, previously



unknown knowledge. And this is, after all, the whole point
in performing unsupervised methods in data mining [22].

We conjecture that it is an inherent flaw in design of clus-
tering algorithms if the researcher designing the algorithm
evaluates it only w.r.t. the class labels of classification data
sets. It is an important difference between classifiers and
clustering algorithms that most classification algorithms aim
at learning borders of separation of different classes while
clustering algorithms aim at grouping similar objects to-
gether. Hence the design of clustering algorithms oriented
towards learning a class structure may be strongly biased in
the wrong direction.

It could actually be a good and desirable result if a clus-
tering algorithm detects structures that deviate considerably
from annotated classes. If it is a good and interesting result,
the clustering algorithm should not be punished for deviat-
ing from the class labels. The judgment on new clustering
results, however, requires difficult and time-consuming vali-
dation based on external domain-knowledge beyond the ex-
isting class-labels. Here, we are interested in the discussion
of requirements for an evaluation tool allowing for enhance-
ment of annotated concepts and hence allowing for an eval-
uation adapted to new insights on well-studied data sets.
Evaluation of clustering algorithms should then assess how
well a clustering algorithm can rediscover clustering (not
class!) structures that are already known or, if they are un-
known, comprehensible and validated by insight. Such new
structures should then be annotated in benchmark data sets
in order to include the new knowledge in future evaluations
of new algorithms. Our vision is hence to provide a repos-
itory for clustering benchmark data sets that are studied
and annotated — and that are continued being studied and
annotated — in order to facilitate enhanced possibilities of
evaluation truly considering the observations reported but
not yet fully taken into account in different research areas:
classes and clusters are not the same.
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