
Max–Planck–Institut für biologische Kybernetik
Max Planck Institute for Biological Cybernetics

Technical Report No. TR-149

A Tutorial on Spectral Clustering

Ulrike von Luxburg1

Updated version, March 2007

1 Department for Empirical Inference, email: ulrike.luxburg@tuebingen.mpg.de

A Tutorial on Spectral Clustering

Ulrike von Luxburg

Abstract. In recent years, spectral clustering has become one of the most popular modern clustering algorithms.
It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms
traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears
slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial
is to give some intuition on to those questions. We describe different graph Laplacians and their basic properties,
present the most common spectral clustering algorithms, and derive those algorithms from scratch by several
different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

1 Introduction

Clustering is one of the most widely used techniques for exploratory data analysis, with applications ranging from
statistics, computer science, biology to social sciences or psychology. In virtually every scientific field dealing
with empirical data, people attempt to get a first impression on their data by trying to identify groups of “similar
behavior” in their data. In this article we would like to introduce the reader to the family of spectral clustering
algorithms. Compared to the “traditional algorithms” such as k-means or single linkage, spectral clustering
has many fundamental advantages. Results obtained by spectral clustering often outperform the traditional
approaches, spectral clustering is very simple to implement and can be solved efficiently by standard linear algebra
methods.

This tutorial is set up as a self-contained introduction to spectral clustering. We derive spectral clustering from
scratch and present different points of view to why spectral clustering works. Apart from basic linear algebra, no
particular mathematical background is required by the reader. However, we do not attempt to give a concise review
of the whole literature on spectral clustering, which is impossible due to the overwhelming amount of literature
on this subject. The first two sections are devoted to a step-by-step introduction to the mathematical objects used
by spectral clustering: similarity graphs in Section 2, and graph Laplacians in Section 3. The spectral clustering
algorithms themselves will be presented in Section 4. The next three sections are then devoted to explaining why
those algorithms work. Each section corresponds to one explanation: Section 5 describes a graph partitioning
approach, Section 6 a random walk perspective, and Section 7 a perturbation theory approach. In Section 8 we
will study some practical issues related to spectral clustering, and discuss various extensions and literature related
to spectral clustering in Section 9.

2 Similarity graphs

Given a set of data points x1, . . . xn and some notion of similarity sij ≥ 0 between all pairs of data points xi and
xj , the intuitive goal of clustering is to divide the data points into several groups such that points in the same group
are similar and points in different groups are dissimilar to each other. If we do not have more information than
similarities between data points, a nice way of representing the data is in form of the similarity graph G = (V,E).
Each vertex vi in this graph represents a data point xi. Two vertices are connected if the similarity sij between the
corresponding data points xi and xj is positive or larger than a certain threshold, and the edge is weighted by sij .
The problem of clustering can now be reformulated using the similarity graph: we want to find a partition of the
graph such that the edges between different groups have very low weights (which means that points in different
clusters are dissimilar from each other) and the edges within a group have high weights (which means that points
within the same cluster are similar to each other). To be able to formalize this intuition we first want to introduce
some basic graph notation and briefly discuss the kind of graphs we are going to study.

1

2.1 Graph notation
Let G = (V,E) be an undirected graph with vertex set V = {v1, . . . , vn}. In the following we assume that the
graph G is weighted, that is each edge between two vertices vi and vj carries a non-negative weight wij ≥ 0. The
weighted adjacency matrix of the graph is the matrix W = (wij)i,j=1,...,n. If wij = 0 this means that the vertices
vi and vj are not connected. As G is undirected we require wij = wji. The degree of a vertex vi ∈ V is defined as

di =
n∑

j=1

wij .

Note that, in fact, this sum only runs over all vertices adjacent to vi, as for all other vertices vj the weight wij is 0.
The degree matrix D is defined as the diagonal matrix with the degrees d1, . . . , dn on the diagonal. Given a subset
of vertices A ⊂ V , we denote its complement V \A by A. We define the indicator vector 1A = (f1, . . . , fn)′ ∈ R

n

as the vector with entries fi = 1 if vi ∈ A and fi = 0 otherwise. For convenience we introduce the shorthand
notation i ∈ A for the set of indices {i | vi ∈ A}, in particular when dealing with a sum like

∑
i∈A wij . For two

not necessarily disjoint sets A,B ⊂ V we define

W (A,B) :=
∑

i∈A,j∈B

wij .

We consider two different ways of measuring the “size” of a subset A ⊂ V :

|A| := the number of vertices in A

vol(A) :=
∑
i∈A

di.

Intuitively, |A| measures the size of A by its number of vertices, while vol(A) measures the size of A by summing
over the weights of all edges attached to vertices in A. A subset A ⊂ V of a graph is connected if any two vertices
in A can be joined by a path such that all intermediate points also lie in A. A subset A is called a connected
component if it is connected and if there are no connections between vertices in A and A. The nonempty sets
A1, . . . , Ak form a partition of the graph if Ai ∩Aj = ∅ and A1 ∪ . . . ∪ Ak = V .

2.2 Different similarity graphs
There are several popular constructions to transform a given set x1, . . . , xn of data points with pairwise similarities
sij or pairwise distances dij into a graph. When constructing similarity graphs the goal is to model the local
neighborhood relationships between the data points.

The ε-neighborhood graph: Here we connect all points whose pairwise distances are smaller than ε. As the
distances between all connected points are roughly of the same scale (at most ε), weighting the edges would not
incorporate more information about the data to the graph. Hence, the ε-neighborhood graph is usually considered
as an unweighted graph.

k-nearest neighbor graphs: Here the goal is to connect vertex vi with vertex vj if vj is among the k-nearest
neighbors of vi. However, this definition leads to a directed graph, as the neighborhood relationship is not
symmetric. There are two ways of making this graph undirected. The first way is to simply ignore the directions
of the edges, that is we connect vi and vj with an undirected edge if vi is among the k-nearest neighbors of vj or
if vj is among the k-nearest neighbors of vi. The resulting graph is what is usually called the k-nearest neighbor
graph. The second choice is to connect vertices vi and vj if both vi is among the k-nearest neighbors of vj and
vj is among the k-nearest neighbors of vi. The resulting graph is called the mutual k-nearest neighbor graph. In
both cases, after connecting the appropriate vertices we weight the edges by the similarity of their endpoints.

The fully connected graph: Here we simply connect all points with positive similarity with each other, and we
weight all edges by sij . As the graph should represent the local neighborhood relationships, this construction
is usually only chosen if the similarity function itself models local neighborhoods. An example for such a
similarity function is the Gaussian similarity function s(xi, xj) = exp(−‖xi − xj‖2/(2σ2)), where the parameter
σ controls the width of the neighborhoods. This parameter plays a similar role as the parameter ε in case of the

2

ε-neighborhood graph.

All graphs mentioned above are regularly used in spectral clustering. To our knowledge, theoretical results on
the question how the choice of the similarity graph influences the spectral clustering result do not exist. For a
discussion of the behavior of the different graphs we refer to Section 8.

3 Graph Laplacians and their basic properties
The main tools for spectral clustering are graph Laplacian matrices. There exists a whole field dedicated to the
study of those matrices, called spectral graph theory (e.g., see Chung, 1997). In this section we want to define
different graph Laplacians and point out their most important properties. We will carefully distinguish between
different variants of graph Laplacians. Note that in the literature there is no unique convention which matrix
exactly is called “graph Laplacian”. Usually, every author just calls “his” matrix the graph Laplacian. Hence, a lot
of care is needed when reading literature on graph Laplacians.

In the following we always assume that G is an undirected, weighted graph with weight matrix W , where wij =
wji ≥ 0. When we talk about eigenvectors of a matrix, we do not necessarily assume that they are normalized.
For example, the constant vector 1 and a multiple a1 for some a 6= 0 are considered as the same eigenvectors.
Eigenvalues will always be ordered increasingly, respecting multiplicities. By “the first k eigenvectors” we refer
to the eigenvectors corresponding to the k smallest eigenvalues.

3.1 The unnormalized graph Laplacian
The unnormalized graph Laplacian matrix is defined as

L = D −W.

An overview over many of its properties can be found in Mohar (1991, 1997). The following proposition
summarizes the most important facts needed for spectral clustering.

Proposition 1 (Properties of L) The matrix L satisfies the following properties:

1. For every vector f ∈ R
n we have

f ′Lf =
1
2

n∑
i,j=1

wij(fi − fj)2.

2. L is symmetric and positive semi-definite.

3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant one vector 1.

4. L has n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λn.

Proof.
Part (1): By the definition of di,

f ′Lf = f ′Df − f ′Wf =
n∑

i=1

dif
2
i −

n∑
i,j=1

fifjwij

=
1
2

 n∑
i=1

dif
2
i − 2

n∑
i,j=1

fifjwij +
n∑

j=1

djf
2
j

 =
1
2

n∑
i,j=1

wij(fi − fj)2.

Part (2): The symmetry of L follows directly from the symmetry of W and D. The positive semi-definiteness is a
direct consequence of Part (1), which shows that f ′Lf ≥ 0 for all f ∈ R

n.
Part (3): Obvious.
Part (4) is a direct consequence of Parts (1) - (3). ,

3

Note that the unnormalized graph Laplacian does not depend on the diagonal elements of the adjacency matrix
W . Each adjacency matrix which coincides with W on all off-diagonal positions leads to the same unnormalized
graph Laplacian L. In particular, self-edges in a graph do not change the corresponding graph Laplacian.

The unnormalized graph Laplacian and its eigenvalues and eigenvectors can be used to describe many properties
of graphs, see Mohar (1991, 1997). One example which will be important for spectral clustering is the following:

Proposition 2 (Number of connected components and the spectrum of L) Let G be an undirected graph with
non-negative weights. Then the multiplicity k of the eigenvalue 0 of L equals the number of connected components
A1, . . . , Ak in the graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors 1A1 , . . . ,1Ak

of those
components.

Proof. We start with the case k = 1, that is the graph is connected. Assume that f is an eigenvector with
eigenvalue 0. Then we know that

0 = f ′Lf =
n∑

i,j=1

wij(fi − fj)2.

As the weights wij are non-negative, this sum can only vanish if all terms wij(fi − fj)2 vanish. Thus, if two
vertices vi and vj are connected (i.e., wij > 0), then fi needs to equal fj . With this argument we can see that f
needs to be constant for all vertices which can be connected by a path in the graph. Moreover, as all vertices of
a connected component in an undirected graph can be connected by a path, f needs to be constant on the whole
connected component. In a graph consisting of only one connected component we thus only have the constant
one vector 1 as eigenvector with eigenvalue 0, which obviously is the indicator vector of the connected component.

Now consider the case of k connected components. Without loss of generality we assume that the vertices are
ordered according to the connected components they belong to. In this case, the adjacency matrix W has a block
diagonal form, and the same is true for the matrix L:

L =


L1

L2

. . .
Lk


Note that each of the blocks Li is a proper graph Laplacian on its own, namely the Laplacian corresponding
to the subgraph of the i-th connected component. As it is the case for all block diagonal matrices, we know
that the spectrum of L is given by the union of the spectra of Li, and the corresponding eigenvectors of L are
the eigenvectors of Li, filled with 0 at the positions of the other blocks. As each Li is a graph Laplacian of a
connected graph, we know that every Li has eigenvalue 0 with multiplicity 1, and the corresponding eigenvector
is the constant one vector on the i-th connected component. Thus, the matrix L has as many eigenvalues 0 as
there are connected components, and the corresponding eigenvectors are the indicator vectors of the connected
components. ,

3.2 The normalized graph Laplacians
There are two matrices which are called normalized graph Laplacians in the literature. Both matrices are closely
related to each other and are defined as

Lsym := D−1/2LD−1/2 = I −D−1/2WD−1/2

Lrw := D−1L = I −D−1W.

We denote the first matrix by Lsym as it is a symmetric matrix, and the second one by Lrw as it is closely related to
a random walk. In the following we summarize several properties of Lsym and Lrw, which all can be found on the
first pages of the standard reference Chung (1997) for normalized graph Laplacians.

4

Proposition 3 (Properties of Lsym and Lrw) The normalized Laplacians satisfy the following properties:

1. For every f ∈ R
n we have

f ′Lsymf =
1
2

n∑
i,j=1

wij

(
fi√
di

− fj√
dj

)2

.

2. λ is an eigenvalue of Lrw with eigenvector u if and only if λ is an eigenvalue of Lsym with eigenvector w =
D1/2u.

3. λ is an eigenvalue of Lrw with eigenvector u if and only if λ and u solve the generalized eigenproblem
Lu = λDu.

4. 0 is an eigenvalue of Lrw with the constant one vector 1 as eigenvector. 0 is an eigenvalue of Lsym with
eigenvector D1/2

1.

5. Lsym and Lrw are positive semi-definite and have n non-negative real-valued eigenvalues 0 = λ1 ≤ . . . ≤ λn.

Proof. Part (1) can be proved similarly to Part (1) of Proposition 1.
Part (2) can be seen immediately by multiplying the eigenvalue equation Lsymw = λw with D−1/2 from the left
and substituting u = D−1/2w.
Part (3) follows directly by multiplying the eigenvalue equation Lrwu = λu with D from the left.
Part (4): The first statement is obvious as Lrw1 = 0, the second statement follows from (2).
Part (5): The statement about Lsym follows from (1), and then the statement about Lrw follows from (2). ,

As it is the case for the unnormalized graph Laplacian, the multiplicity of the eigenvalue 0 of the normalized graph
Laplacian is related to the number of connected components:

Proposition 4 (Number of connected components and spectra of Lsym and Lrw) Let G be an undirected graph
with non-negative weights. Then the multiplicity k of the eigenvalue 0 of both Lrw and Lsym equals the number of
connected components A1, . . . , Ak in the graph. For Lrw, the eigenspace of 0 is spanned by the indicator vectors
1Ai of those components. For Lsym, the eigenspace of 0 is spanned by the vectors D1/2

1Ai .
Proof. The proof is analogous to the one of Proposition 2, using Proposition 3. ,

4 Spectral Clustering Algorithms
Now we would like to state the most common spectral clustering algorithms. For references and the history of
spectral clustering we refer to Section 9. We assume that our data consists of n “points” x1, . . . , xn which can
be arbitrary objects. We measure their pairwise similarities sij = s(xi, xj) by some similarity function which is
symmetric and non-negative, and we denote the corresponding similarity matrix by S = (sij)i,j=1...n.

Unnormalized spectral clustering

Input: Similarity matrix S ∈ R
n×n, number k of clusters to construct.

• Construct a similarity graph by one of the ways described in Section 2.
Let W be its weighted adjacency matrix.

• Compute the unnormalized Laplacian L.
• Compute the first k eigenvectors u1, . . . , uk of L.
• Let U ∈ R

n×k be the matrix containing the vectors u1, . . . , uk as columns.
• For i = 1, . . . , n, let yi ∈ R

k be the vector corresponding to the i-th row of
U.

• Cluster the points (yi)i=1,...,n in R
k with the k-means algorithm into

clusters C1, . . . , Ck.
Output: Clusters A1, . . . , Ak with Ai = {j| yj ∈ Ci}.

5

There are two different versions of normalized spectral clustering, depending which of the normalized graph Lapla-
cians is used. We name both algorithms after two popular papers, for more references and history please see
Section 9.

Normalized spectral clustering according to Shi and Malik (2000)

Input: Similarity matrix S ∈ R
n×n, number k of clusters to construct.

• Construct a similarity graph by one of the ways described in Section 2.
Let W be its weighted adjacency matrix.

• Compute the unnormalized Laplacian L.
• Compute the first k eigenvectors u1, . . . , uk of the generalized eigenproblem Lu = λDu.
• Let U ∈ R

n×k be the matrix containing the vectors u1, . . . , uk as columns.
• For i = 1, . . . , n, let yi ∈ R

k be the vector corresponding to the i-th row of
U.

• Cluster the points (yi)i=1,...,n in R
k with the k-means algorithm into

clusters C1, . . . , Ck.
Output: Clusters A1, . . . , Ak with Ai = {j| yj ∈ Ci}.

Note that this algorithm uses the generalized eigenvectors of L, which according to Proposition 3 correspond to
the eigenvectors of the matrix Lrw. So in fact, the algorithm works with eigenvectors of the normalized Laplacian
Lrw, and hence is called normalized spectral clustering. The next algorithm also uses a normalized Laplacian,
but this time the matrix Lsym instead of Lrw. As we will see, this algorithm needs to introduce an additional row
normalization step which is not needed in the other algorithms. The reasons will become clear in Section 7.

Normalized spectral clustering according to Ng, Jordan, and Weiss (2002)

Input: Similarity matrix S ∈ R
n×n, number k of clusters to construct.

• Construct a similarity graph by one of the ways described in Section 2.
Let W be its weighted adjacency matrix.

• Compute the normalized Laplacian Lsym.
• Compute the first k eigenvectors u1, . . . , uk of Lsym.
• Let U ∈ R

n×k be the matrix containing the vectors u1, . . . , uk as columns.
• Form the matrix T ∈ R

n×k from U by normalizing the rows to norm 1,
that is set tij = uij/(

∑
k u2

ik)1/2.
• For i = 1, . . . , n, let yi ∈ R

k be the vector corresponding to the i-th row of T.
• Cluster the points (yi)i=1,...,n with the k-means algorithm into clusters

C1, . . . , Ck.
Output: Clusters A1, . . . , Ak with Ai = {j| yj ∈ Ci}.

All three algorithms stated above look rather similar, apart from the fact that they use three different graph
Laplacians. In all three algorithms, the main trick is to change the representation of the abstract data points xi to
points yi ∈ R

k. It is due to the properties of the graph Laplacians that this change of representation is useful. We
will see in the next sections that this change of representation enhances the cluster-properties in the data, so that
they can be trivially detected in the new representation. In particular, the simple k-means clustering algorithm has
no difficulties to detect the clusters in this new representation. Readers not familiar with k-means can read up on
this algorithm in numerous text books, for example in Hastie, Tibshirani, and Friedman (2001).

6

0 2 4 6 8 10
0

2

4

6

8
Histogram of the sample

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

Eigenvalues

no
rm

, k
nn

2 4 6 8
0

0.2

0.4

no
rm

, k
nn

Eigenvector 1

2 4 6 8

−0.5

−0.4

−0.3

−0.2

−0.1

Eigenvector 2

2 4 6 8
0

0.2

0.4

Eigenvector 3

2 4 6 8
0

0.2

0.4

Eigenvector 4

2 4 6 8

−0.5

0

0.5

Eigenvector 5

1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

Eigenvalues

un
no

rm
, k

nn

2 4 6 8
0

0.05

0.1

un
no

rm
, k

nn

Eigenvector 1

2 4 6 8

−0.1

−0.05

0
Eigenvector 2

2 4 6 8

−0.1

−0.05

0
Eigenvector 3

2 4 6 8

−0.1

−0.05

0
Eigenvector 4

2 4 6 8

−0.1

0

0.1

Eigenvector 5

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

Eigenvalues

no
rm

, f
ul

l g
ra

ph

2 4 6 8

−0.1451

−0.1451

−0.1451

no
rm

, f
ul

l g
ra

ph

Eigenvector 1

2 4 6 8

−0.1

0

0.1

Eigenvector 2

2 4 6 8

−0.1

0

0.1

Eigenvector 3

2 4 6 8

−0.1

0

0.1

Eigenvector 4

2 4 6 8
−0.5

0

0.5

Eigenvector 5

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

Eigenvalues

un
no

rm
, f

ul
l g

ra
ph

2 4 6 8

−0.0707

−0.0707

−0.0707

un
no

rm
, f

ul
l g

ra
ph

Eigenvector 1

2 4 6 8

−0.05

0

0.05

Eigenvector 2

2 4 6 8

−0.05

0

0.05

Eigenvector 3

2 4 6 8

−0.05

0

0.05

Eigenvector 4

2 4 6 8
0

0.2

0.4

0.6

0.8

Eigenvector 5

Figure 1: Toy example for spectral clustering where the data points have been drawn from a mixture of four Gaussians on
R. Left upper corner: histogram of the data. First and second row: eigenvalues and eigenvectors of Lrw and L based on the
k-nearest neighbor graph. Third and fourth row: eigenvalues and eigenvectors of Lrw and L based on the fully connected graph.
For all plots, we used the Gaussian kernel with σ = 1 as similarity function. See text for more details.

Before we dive into the theory of spectral clustering, we would like to illustrate its principle on a very simple
toy example. This example will be used at several places in this tutorial, and we chose it because it is so simple
that the relevant quantities can easily be plotted. This toy data set consists of a random sample of 200 points
x1, . . . , x200 ∈ R drawn according to a mixture of four Gaussians. The first row of Figure 1 shows the histogram
of a sample drawn from this distribution (the x-axis represents the one-dimensional data space). As similarity
function on this data set we choose the Gaussian similarity function s(xi, xj) = exp(−|xi − xj |2/(2σ2)) with
σ = 1. As similarity graph we consider both the fully connected graph and the 10-nearest neighbor graph. In
Figure 1 we show the first eigenvalues and eigenvectors of the unnormalized Laplacian L and the normalized
Laplacian Lrw. That is, in the eigenvalue plot we plot i vs. λi (for the moment ignore the dashed line and the
different shapes of the eigenvalues in the plots for the unnormalized case; their meaning will be discussed in
Section 8.5). In the eigenvector plots of an eigenvector u = (u1, . . . , u200)′ we plot xi vs. ui (note that in the
example chosen xi is simply a real number, hence we can depict it on the x-axis). The first two rows of Figure 1
show the results based on the 10-nearest neighbor graph. We can see that the first four eigenvalues are 0, and the
corresponding eigenvectors are cluster indicator vectors. The reason is that the clusters form disconnected parts in
the 10-nearest neighbor graph, in which case the eigenvectors are given as in Propositions 2 and 4. The next two
rows show the results for the fully connected graph. As the Gaussian similarity function is always positive, this
graph only consists of one connected component. Thus, eigenvalue 0 has multiplicity 1, and the first eigenvector
is the constant vector. The following eigenvectors carry the information about the clusters. For example in the
unnormalized case (last row), if we threshold the second eigenvector at 0, then the part below 0 corresponds to
clusters 1 and 2, and the part above 0 to clusters 3 and 4. Similarly, thresholding the third eigenvector separates

7

clusters 1 and 4 from clusters 2 and 3, and thresholding the fourth eigenvector separates clusters 1 and 3 from
clusters 2 and 4. Altogether, the first four eigenvectors carry all the information about the four clusters. In all the
cases illustrated in this figure, spectral clustering using k-means on the first four eigenvectors easily detects the
correct four clusters.

5 Graph cut point of view

The intuition of clustering is to separate points in different groups according to their similarities. For data given in
form of a similarity graph, this problem can be restated as follows: we want to find a partition of the graph such
that the edges between different groups have a very low weight (which means that points in different clusters are
dissimilar from each other) and the edges within a group have high weight (which means that points within the
same cluster are similar to each other). In this section we will see how spectral clustering can be derived as an
approximation to such graph partitioning problems.

Given a similarity graph with adjacency matrix W , the simplest and most direct way to construct a partition of the
graph is to solve the mincut problem. To define it, please recall the notation W (A,B) :=

∑
i∈A,j∈B wij and A

for the complement of A. For a given number k of subsets, the mincut approach simply consists in choosing the
partition A1, . . . , Ak which minimizes

cut(A1, . . . , Ak) :=
1
2

k∑
i=1

W (Ai, Ai).

Here we introduce the factor 1/2 for consistency reasons, otherwise we would count each edge twice as we are
dealing with undirected graphs. In particular for k = 2, mincut is a relatively easy problem and can be solved
efficiently, see Stoer and Wagner (1997) and the discussion therein. However, in practice it often does not lead
to satisfactory partitions. The problem is that in many cases, the solution of mincut simply separates one indi-
vidual vertex from the rest of the graph. Of course this is not what we want to achieve in clustering, as clusters
should be reasonably large groups of points. One way to circumvent this problem is to explicitly request that the
sets A1, . . . , Ak are “reasonably large”. The two most common objective functions to encode this are RatioCut
(introduced by Hagen and Kahng, 1992) and the normalized cut Ncut (introduced by Shi and Malik, 2000). In
RatioCut, the size of a subset A of a graph is measured by its number of vertices |A|, while in Ncut the size is
measured by the weights of its edges vol(A). The definitions are:

RatioCut(A1, . . . , Ak) :=
1
2

k∑
i=1

W (Ai, Ai)
|Ai|

=
k∑

i=1

cut(Ai, Ai)
|Ai|

Ncut(A1, . . . , Ak) :=
1
2

k∑
i=1

W (Ai, Ai)
vol(Ai)

=
k∑

i=1

cut(Ai, Ai)
vol(Ai)

.

Note that both objective functions take a small value if the clusters Ai are not too small. In particular, the minimum
of the function

∑k
i=1(1/|Ai|) is achieved if all |Ai| coincide, and the minimum of

∑k
i=1(1/ vol(Ai)) is achieved if

all vol(Ai) coincide. So what both objective functions try to achieve is that the clusters are “balanced”, as measured
by the number of vertices or edge weights, respectively. Unfortunately, introducing balancing conditions makes
the previously simple to solve mincut problem become NP hard, see Wagner and Wagner (1993) for a discussion.
Spectral clustering is a way to solve relaxed versions of those problems. We will see that relaxing Ncut leads to
normalized spectral clustering, while relaxing RatioCut leads to unnormalized spectral clustering.

5.1 Approximating RatioCut for k = 2

Let us start with the case of RatioCut and k = 2, because the relaxation is easiest to understand in this setting.
Our goal is to solve the optimization problem

min
A⊂V

RatioCut(A,A). (1)

8

We first rewrite the problem in a more convenient form. Given a subset A ⊂ V we define the vector f =
(f1, . . . , fn)′ ∈ R

n with entries

fi =


√
|A|/|A| if vi ∈ A

−
√
|A|/|A| if vi ∈ A.

(2)

Now the RatioCut objective function can be conveniently rewritten using the unnormalized graph Laplacian. This
is due to the following calculation:

f ′Lf =
1
2

n∑
i,j=1

wij(fi − fj)2

=
1
2

∑
i∈A,j∈A

wij

√ |A|
|A|

+

√
|A|
|A|

2

+
1
2

∑
i∈A,j∈A

wij

−√ |A|
|A|

−

√
|A|
|A|

2

= cut(A,A)
(
|A|
|A|

+
|A|
|A|

+ 2
)

= cut(A,A)
(
|A|+ |A|
|A|

+
|A|+ |A|
|A|

)
= |V | · RatioCut(A,A).

Additionally, we have

n∑
i=1

fi =
∑
i∈A

√
|A|
|A|

−
∑
i∈A

√
|A|
|A|

= |A|

√
|A|
|A|

− |A|

√
|A|
|A|

= 0.

In other words, the vector f as defined in Equation (2) is orthogonal to the constant one vector 1. Finally, note that
f satisfies

‖f‖2 =
n∑

i=1

f2
i = |A| |A|

|A|
+ |A| |A|

|A|
= |A|+ |A| = n.

Altogether we can see that the problem of minimizing (1) can be equivalently rewritten as

min
A⊂V

f ′Lf subject to f ⊥ 1, fi as defined in Eq. (2), ‖f‖ =
√

n. (3)

This is a discrete optimization problem as the entries of the solution vector f are only allowed to take two particular
values, and of course it is still NP hard. The most obvious relaxation in this setting is to discard the discreteness
condition and instead allow that fi takes arbitrary values in R. This leads to the relaxed optimization problem

min
f∈Rn

f ′Lf subject to f ⊥ 1, ‖f‖ =
√

n. (4)

By the Rayleigh-Ritz theorem (e.g., see Section 5.5.2. of Lütkepohl, 1997) it can be seen immediately that the
solution of this problem is given by the vector f which is the eigenvector corresponding to the second smallest
eigenvalue of L (recall that the smallest eigenvalue of L is 0 with eigenvector 1). So we can approximate a
minimizer of RatioCut by the second eigenvector of L. However, in order to obtain a partition of the graph we
need to re-transform the real-valued solution vector f of the relaxed problem into a discrete indicator vector. The
simplest way to do this is to use the sign of f as indicator function, that is to choose{

vi ∈ A if fi ≥ 0
vi ∈ A if fi < 0.

However, in particular in the case of k > 2 treated below, this heuristic is too simple. What most spectral clustering
algorithms do instead is to consider the coordinates fi as points in R and cluster them into two groups C,C by the

9

k-means clustering algorithm. Then we carry over the resulting clustering to the underlying data points, that is we
choose {

vi ∈ A if fi ∈ C

vi ∈ A if fi ∈ C.

This is exactly the unnormalized spectral clustering algorithm for the case of k = 2.

5.2 Approximating RatioCut for arbitrary k

The relaxation of the RatioCut minimization problem in the case of a general value k follows a similar principle as
the one above. Given a partition of V into k sets A1, . . . , Ak, we define k indicator vectors hj = (h1,j , . . . , hn,j)′

by

hi,j =

{
1/
√
|Aj | if vi ∈ Aj

0 otherwise
(i = 1, . . . , n; j = 1, . . . , k). (5)

Then we set the matrix H ∈ R
n×k as the matrix containing those k indicator vectors as columns. Observe that the

columns in H are orthonormal to each other, that is H ′H = I . Similar to the calculations in the last section we
can see that

h′iLhi =
cut(Ai, Ai)

|Ai|
.

Moreover, one can check that

h′iLhi = (H ′LH)ii.

Plugging those things together we get

RatioCut(A1, . . . , Ak) =
k∑

i=1

h′iLhi =
k∑

i=1

(H ′LH)ii = Tr(H ′LH),

where Tr denotes the trace of a matrix. So the problem of minimizing RatioCut(A1, . . . , Ak) can be rewritten as

min
A1,...,Ak

Tr(H ′LH) subject to H ′H = I, H as defined in Eq. (5).

Similar to above we now relax the problem by allowing the entries of the matrix H to take arbitrary real values.
Then the relaxed problem becomes:

min
H∈Rn×k

Tr(H ′LH) subject to H ′H = I.

This is the standard form of a trace minimization problem, and again some version of the Rayleigh-Ritz theorem
(e.g., see Section 5.2.2.(6) of Lütkepohl, 1997) tells us that the solution is given by choosing H as the matrix which
contains the first k eigenvectors of L as columns. We can see that the matrix H is in fact the matrix U used in the
unnormalized spectral clustering algorithm as described in Section 4. Again we need to re-convert the real valued
solution matrix to a discrete partition. As above, the standard way is to use the k-means algorithms on the rows of
U . This then leads to the general unnormalized spectral clustering algorithm as presented in Section 4.

5.3 Approximating Ncut

Techniques very similar to the ones used for RatioCut can be used to derive normalized spectral clustering as
relaxation of minimizing Ncut. In the case k = 2 we define the cluster indicator vector f by

fi =


√

vol(A)
vol A if vi ∈ A

−
√

vol(A)

vol(A)
if vi ∈ A.

(6)

10

Similar to above one can check that (Df)′1 = 0, f ′Df = vol(V), and f ′Lf = vol(V) Ncut(A,A). Thus we can
rewrite the problem of minimizing Ncut by the equivalent problem

min
A

f ′Lf subject to f as in (6), Df ⊥ 1, f ′Df = vol(V). (7)

Again we relax the problem by allowing f to take arbitrary real values:

min
f∈Rn

f ′Lf subject to Df ⊥ 1, f ′Df = vol(V). (8)

Now we substitute g := D1/2f . After substitution, the problem is

min
g∈Rn

g′D−1/2LD−1/2g subject to g ⊥ D1/2
1, ‖g‖2 = vol(V). (9)

Observe that D−1/2LD−1/2 = Lsym, D1/2
1 is the first eigenvector of Lsym, and vol(V) is a constant. Hence,

Problem (9) is in the form of the standard Rayleigh-Ritz theorem, and its solution g is given by the second
eigenvector of Lsym. Re-substituting f = D−1/2g and using Proposition 3 we see that f then is the second
eigenvector of Lrw, or equivalently the generalized eigenvector of Lu = λDu.

For the case of finding k > 2 clusters, we define the indicator vectors hj = (h1,j , . . . , hn,j)′ by

hi,j =

{
1/
√

vol(Aj) if vi ∈ Aj

0 otherwise
(i = 1, . . . , n; j = 1, . . . , k). (10)

Then we set the matrix H as the matrix containing those k indicator vectors as columns. Observe that H ′H = I ,
h′iDhi = 1, and h′iLhi = cut(Ai, Ai)/ vol(Ai). So we can write the problem of minimizing Ncut as

min
A1,...,Ak

Tr(H ′LH) subject to H ′DH = I, H as in (10) .

Relaxing the discreteness condition and substituting T = D1/2H we obtain the relaxed problem

min
T∈Rn×k

Tr(T ′D−1/2LD−1/2T) subject to T ′T = I. (11)

Again this is the standard trace minimization problem which is solved by the matrix T which contains the first k
eigenvectors of Lsym as columns. Re-substituting H = D−1/2T and using Proposition 3 we see that the solution
H consists of the first k eigenvectors of the matrix Lrw, or the first k generalized eigenvectors of Lu = λDu. This
yields the normalized spectral clustering algorithm according to Shi and Malik (2000).

5.4 Comments on the relaxation approach
There are several comments we should make about this derivation of spectral clustering. Most importantly, there
is no guarantee whatsoever on the quality of the solution of the relaxed problem compared to the exact solution.
That is, if A1, . . . , Ak is the exact solution of minimizing RatioCut, and B1, . . . , Bk is the solution constructed
by unnormalized spectral clustering, then RatioCut(B1, . . . , Bk) − RatioCut(A1, . . . , Ak) can be arbitrary
large. An example for the case k = 2 can be found in Guattery and Miller (1998). Here the authors consider
a very simple class of graphs called “cockroach graphs”. Those graphs essentially look like a ladder, with a
few rimes removed, see Figure 2. Obviously, the ideal RatioCut just cuts the ladder by a vertical cut such that
A = {v1, . . . , vk, v2k+1, . . . , v3k} and A = {vk+1, . . . , v2k, v3k+1, . . . , v4k}. This cut is perfectly balanced
with |A| = |A| = 2k and cut(A,A) = 2. However, by studying the properties of the second eigenvector of
the unnormalized graph Laplacian of cockroach graphs the authors prove that unnormalized spectral clustering
always cuts horizontally through the ladder, constructing the sets B = {v1, . . . , v2k} and B = {v2k+1, . . . , v4k}.
This also results in a balanced cut, but now we cut k edges instead of just 2. So RatioCut(A,A) = 2/k, while
RatioCut(B,B) = 1. This means that compared to the optimal cut, the RatioCut value obtained by spectral
clustering is k/2 times worse, that is a factor in the order of n. The same example also works for Ncut. In general
it is known that efficient algorithms to approximate balanced graph cuts up to a constant factor do not exist. To the

11

Figure 2: The cockroach graph from Guattery and Miller (1998).

contrary, this approximation problem can be NP hard itself (Bui and Jones, 1992).

Of course, the relaxation we discussed above is not unique. For example, a completely different relaxation
which leads to a semi-definite program is derived in Bie and Cristianini (2006), and there might be many other
useful relaxations. The reason why the spectral relaxation is so appealing is not that it leads to particularly good
solutions. Its popularity is mainly due to the fact that it results in a standard linear algebra problem which is
simple to solve.

6 Random walks point of view

Another line of argument to explain spectral clustering is based on random walks on the similarity graph. A
random walk on a graph is a stochastic process which randomly jumps from vertex to vertex. We will see below
that spectral clustering can be interpreted as trying to find a partition of the graph such that the random walk
stays long within the same cluster and seldom jumps between clusters. Intuitively this makes sense, in particular
together with the graph cut explanation of the last section. A balanced partition with a low cut will also have the
property that the random walk does not have many opportunities to jump between clusters. For background reading
on random walks in general we refer to Norris (1997) and Brémaud (1999), and for random walks on graphs we
recommend Aldous and Fill (in preparation) and Lovász (1993). Formally, the transition probability of jumping
in one step from vertex vi to vertex vj is proportional to the edge weight wij and is given by pij := wij/di. The
transition matrix P = (pij)i,j=1,...,n of the random walk is thus defined by

P = D−1W.

If the graph is connected and non-bipartite, then the random walk always possesses a unique stationary distribution
π = (π1, . . . , πn)′, where πi = di/ vol(V). Obviously there is a tight relationship between Lrw and P , as
Lrw = I −P . As a consequence, λ is an eigenvalue of Lrw with eigenvector u if and only if 1− λ is an eigenvalue
of P with eigenvector u. It is well known that many properties of a graph can be expressed in terms of the
corresponding random walk transition matrix P , see Lovász (1993) for an overview. From this point of view it
does not come as a surprise that the largest eigenvectors of P and the smallest eigenvectors of Lrw can be used to
describe cluster properties of the graph.

Random walks and Ncut

A formal equivalence between Ncut and transition probabilities of the random walk has been observed in Meila
and Shi (2001).

Proposition 5 (Ncut via transition probabilities) Let G be connected and non bi-partite. Assume that we run
the random walk (Xt)t∈N starting with X0 in the stationary distribution π. For disjoint subsets A,B ⊂ V , denote
by P (B|A) := P (X1 ∈ B|X0 ∈ A). Then:

Ncut(A,A) = P (A|A) + P (A|A).

12

Proof. First of all observe that

P (X0 ∈ A,X1 ∈ B) =
∑

i∈A,j∈B

P (X0 = i,X1 = j) =
∑

i∈A,j∈B

πipij

=
∑

i∈A,j∈B

di

vol(V)
wij

di
=

1
vol(V)

∑
i∈A,j∈B

wij .

Using this we obtain

P (X1 ∈ B|X0 ∈ A) =
P (X0 ∈ A,X1 ∈ B)

P (X0 ∈ A)

=

 1
vol(V)

∑
i∈A,j∈B

wij

(vol(A)
vol(V)

)−1

=

∑
i∈A,j∈B wij

vol(A)
.

Now the proposition follows directly with the definition of Ncut. ,

This proposition leads to a nice interpretation of Ncut, and hence of normalized spectral clustering. It tells us that
when minimizing Ncut, we actually look for a cut through the graph such that a random walk seldom transitions
from A to A or vice versa.

The commute distance
A second connection between random walks and graph Laplacians can be made via the commute distance on
the graph. The commute distance (also called resistance distance) cij between two vertices vi and vj is the
expected time it takes the random walk to travel from vertex vi to vertex vj and back (Lovász, 1993; Aldous and
Fill, in preparation). The commute distance has several nice properties which make it particularly appealing for
machine learning. As opposed to the shortest path distance on a graph, the commute distance between two vertices
decreases if there are many different short ways to get from vertex vi to vertex vj . So instead of just looking for
the one shortest path, the commute distance looks at the set of short paths. Points which are connected by a short
path in the graph and lie in the same high-density region of the graph are considered closer to each other than
points which are connected by a short path but lie in different high-density regions of the graph. In this sense, the
commute distance seems particularly well-suited to be used for clustering purposes.

Remarkably, the commute distance on a graph can be computed with the help of the generalized inverse (also
called pseudo-inverse or Moore-Penrose inverse) L† of the graph Laplacian L. In the following we denote ei =
(0, . . . 0, 1, 0, . . . , 0)′ as the i-th unit vector. To define the generalized inverse of L, recall that by Proposition 1
the matrix L can be decomposed as L = UΛU ′ where U is the matrix containing all eigenvectors as columns and
Λ the diagonal matrix with the eigenvalues λ1, . . . , λn on the diagonal. As at least one of the eigenvalues is 0,
the matrix L is not invertible. Instead, we define its generalized inverse as L† := UΛ†U ′ where the matrix Λ† is
the diagonal matrix with diagonal entries 1/λi if λi 6= 0 and 0 if λi = 0. The entries of L† can be computed as
l†ij =

∑n
k=2

1
λk

uikujk. The matrix L† is positive semi-definite and symmetric. For further properties of L† see
Gutman and Xiao (2004).

Proposition 6 (Commute distance) Let G = (V,E) a connected, undirected graph. Denote by cij the commute
distance between vertex vi and vertex vj , and by L† = (l†ij)i,j=1,...,n the generalized inverse of L. Then we have:

cij = vol(V)(l†ii − 2l†ij + l†jj) = vol(V)(ei − ej)′L†(ei − ej).

This result has been published by Klein and Randic (1993), where it has been proved by methods of electrical
network theory. For a proof using first step analysis for random walks see Fouss, Pirotte, Renders, and Saerens
(2006). There also exist other ways to express the commute distance with the help of graph Laplacians. For
example a method in terms of eigenvectors of the normalized Laplacian Lsym can be found as Corollary 3.2
in Lovász (1993), and a method computing the commute distance with the help of determinants of certain
sub-matrices of L can be found in Bapat, Gutman, and Xiao (2003).

13

Proposition 6 has an important consequence. It shows that √cij can be considered as a Euclidean distance
function on the vertices of the graph. This means that we can construct an embedding which maps the vertices
vi of the graph on points zi ∈ R

n such that the Euclidean distances between the points zi coincide with the
commute distances on the graph. This works as follows. As the matrix L† is positive semi-definite and symmetric,
it induces an inner product on R

n (or to be more formal, it induces an inner product on the subspace of Rn

which is perpendicular to the vector 1). Now choose zi as the point in R
n corresponding to the i-th row of the

matrix U(Λ†)1/2. Then, by Proposition 6 and by the construction of L† we have that 〈zi, zj〉 = e′iL
†ej and

cij = vol(V)||zi − zj ||2.

The embedding used in unnormalized spectral clustering is related to the commute time embedding, but not
identical. In spectral clustering, we map the vertices of the graph on the rows yi of the matrix U , while the
commute time embedding maps the vertices on the rows zi of the matrix (Λ†)1/2U . That is, compared to the
entries of yi, the entries of zi are additionally scaled by the inverse eigenvalues of L. Moreover, in spectral
clustering we only take the first k columns of the matrix, while the commute time embedding takes all columns.
Several authors now try to justify why yi and zi are not so different after all and state a bit hand-waiving that
the fact that spectral clustering constructs clusters based on the Euclidean distances between the yi can be
interpreted as building clusters of the vertices in the graph based on the commute distance. However, note that
both approaches can differ considerably. For example, in the optimal case where the graph consists of k several
disconnected components, the first k eigenvalues of L are 0 according to Proposition 2, and the first k columns of
U consist of the cluster indicator vectors. However, the first k columns of the matrix (Λ†)1/2U consist of zeros
only, as the first k diagonal elements of Λ† are 0. In this case, the information contained in the first k columns of U
is completely ignored in the matrix (Λ†)1/2U , and all the non-zero elements of the matrix (Λ†)1/2U which can be
found in columns k +1 to n are not taken into account in spectral clustering, which discards all those columns. On
the other hand, those problems do not occur if the underlying graph is connected. In this case, the only eigenvector
with eigenvalue 0 is the constant one vector, which can be ignored in both cases. The eigenvectors corresponding
to small eigenvalues λi of L are then stressed in the matrix (Λ†)1/2U as they are multiplied by λ†i = 1/λi. In such
a situation, it might be true that the commute time embedding and the spectral embedding to similar things.

All in all, it seems that the commute time distance can be a helpful intuition, but without making further assump-
tions there is only a rather loose relation between spectral clustering and the commute distance. It might be possible
that those relations can be tightened, for example if the similarity function is strictly positive definite. However,
we have not yet seen a precise mathematical statement about this.

7 Perturbation theory point of view

Perturbation theory studies the question of how eigenvalues and eigenvectors of a matrix A change if we add a
small perturbation H , that is we consider the perturbed matrix Ã := A + H . Most perturbation theorems state
that a certain distance between eigenvalues or eigenvectors of A and Ã is bounded by a constant times a norm of
H . The constant usually depends on which eigenvalue we are looking at, and how far this eigenvalue is separated
from the rest of the spectrum (for a formal statement see below). The justification of spectral clustering is then the
following: Let us first consider the “ideal case” where the between-cluster similarity is exactly 0. We have seen
in Section 3 that then the first k eigenvectors of L or Lrw are the indicator vectors of the clusters. In this case, the
points yi ∈ R

k constructed in the spectral clustering algorithms have the form (0, . . . , 0, 1, 0, . . . 0)′ where the
position of the 1 indicates the connected component this point belongs to. In particular, all yi belonging to the
same connected component coincide. The k-means algorithm will trivially find the correct partition by placing a
center point on each of the points (0, . . . , 0, 1, 0, . . . 0)′ ∈ R

k. In a “nearly ideal case” where we still have distinct
clusters, but the between-cluster similarity is not exactly 0, we consider the Laplacian matrices to be perturbed
versions of the ones of the ideal case. Perturbation theory then tells us that the eigenvectors will be very close to
the ideal indicator vectors. The points yi might not completely coincide with (0, . . . , 0, 1, 0, . . . 0)′, but do so up
to some small error term. Hence, if the perturbations are not too large, then k-means algorithm will still separate
the groups from each other.

14

7.1 The formal perturbation argument

The formal basis for the perturbation approach to spectral clustering is the Davis-Kahan theorem from matrix
perturbation theory. This theorem bounds the difference between eigenspaces of symmetric matrices under pertur-
bations. We state those results for completeness, but for background reading we refer to Section V of Stewart and
Sun (1990) and Section VII.3 of Bhatia (1997). In perturbation theory, distances between subspaces are usually
measured using “canonical angles” (also called “principal angles”). To define principal angles, let V1 and V2 be
two p-dimensional subspaces of Rd, and V1 and V2 two matrices such that their columns form orthonormal systems
for V1 and V2, respectively. Then the cosines cos Θi of the principal angles Θi are the singular values of V ′

1V2.
For p = 1, the so defined canonical angles coincide with the normal definition of an angle. Canonical angles can
also be defined if V1 and V2 do not have the same dimension, see Section V of Stewart and Sun (1990), Section
VII.3 of Bhatia (1997), or Section 12.4.3 of Golub and Van Loan (1996). The matrix sinΘ(V1,V2) will denote
the diagonal matrix with the sine of the canonical angles on the diagonal.

Theorem 7 (Davis-Kahan) Let A,H ∈ R
n×n be symmetric matrices, and let ‖ · ‖ be the Frobenius norm or the

two-norm for matrices, respectively. Consider Ã := A+H as a perturbed version of A. Let S1 ⊂ R be an interval.
Denote by σS1(A) the set of eigenvalues of A which are contained in S1, and by V1 the eigenspace corresponding
to all those eigenvalues (more formally, V1 is the image of the spectral projection induced by σS1(A)). Denote by
σS1(Ã) and Ṽ1 the analogous quantities for Ã. Define the distance between S1 and the spectrum of A outside of
S1 as

δ = min{|λ− s|; λ eigenvalue of A, λ 6∈ S1, s ∈ S1}.

Then the distance d(V1, Ṽ1) := ‖ sinΘ(V1, Ṽ1)‖ between the two subspaces V1 and Ṽ1 is bounded by

d(V1, Ṽ1) ≤
‖H‖

δ
.

For a discussion and proofs of this theorem see for example Section V.3 of Stewart and Sun (1990). Let us try to
decrypt this theorem, for simplicity in the case of the unnormalized Laplacian (for the normalized Laplacian it
works analogously). The matrix A will correspond to the graph Laplacian L in the ideal case where the graph has
k connected components. The matrix Ã corresponds to a perturbed case, where due to noise the k components
in the graph are no longer completely disconnected, but they are only connected by few edges with low weight.
We denote the corresponding graph Laplacian of this case by L̃. For spectral clustering we need to consider the
first k eigenvalues and eigenvectors of L̃. Denote the eigenvalues of L by λ1, . . . λn and the ones of the perturbed
Laplacian L̃ by λ̃1, . . . , λ̃n. Choosing the interval S1 is now the crucial point. We want to choose it such that
both the first k eigenvalues of L̃ and the first k eigenvalues of L are contained in S1. This is easier the smaller
the perturbation H = L − L̃ and the larger the eigengap |λk − λk+1| is. If we manage to find such a set, then
the Davis-Kahan theorem tells us that the eigenspaces corresponding to the first k eigenvalues in ideal case L
and the first k eigenvalues in the perturbed case L̃ are very close to each other, that is their distance is bounded
by ‖H‖/δ. Then, as the eigenvectors in the ideal case are piecewise constant on the connected components, the
same will approximately be true in the perturbed case. How good “approximately” is depends on the norm of the
perturbation ‖H‖ and the distance δ between S1 and the (k + 1)st eigenvector of L. If the set S1 has been chosen
as the interval [0, λk], then δ coincides with the spectral gap |λk+1 − λk|. We can see from the theorem that the
larger this eigengap is, the closer the eigenvectors of the ideal case and the perturbed case are, and hence the better
spectral clustering works. Below we will see that the size of the eigengap can also be used in a different context
as a quality criterion for spectral clustering, namely when choosing the number k of clusters to construct.

If the perturbation H is too large or the eigengap is too small, we might not find a set S1 such that both the first
k eigenvalues of L and L̃ are contained in S1. In this case, we need to make a compromise by choosing the set
S1 to contain the first k eigenvalues of L, but maybe a few more or less eigenvalues of L̃. The statement of the
theorem then becomes weaker in the sense that either we do not compare the eigenspaces corresponding to the
first k eigenvectors of L and L̃, but the eigenspaces corresponding to the first k eigenvectors of L and the first k̃
eigenvectors of L̃ (where k̃ is the number of eigenvalues of L̃ contained in S1). Or, it can happen that δ becomes
so small that the bound on the distance between d(V1, Ṽ1) blows up so much that it becomes useless.

15

7.2 Comments about the perturbation approach

A bit of caution is needed when using perturbation theory arguments to justify clustering algorithms based on
eigenvectors of matrices. In general, any block diagonal symmetric matrix has the property that there exists a basis
of eigenvectors which are zero outside the individual blocks and real-valued within the blocks. For example, based
on this argument several authors use the eigenvectors of the similarity matrix S or adjacency matrix W to discover
clusters. However, being block diagonal in the ideal case of completely separated clusters can be considered as
a necessary condition for a successful use of eigenvectors, but not a sufficient one. At least two more properties
should be satisfied:

First, we need to make sure that the order of the eigenvalues and eigenvectors is meaningful. In case of the Lapla-
cians this is always true, as we know that any connected component possesses exactly one eigenvector which has
eigenvalue 0. Hence, if the graph has k connected components and we take the first k eigenvectors of the Laplacian,
then we know that we have exactly one eigenvector per component. However, this might not be the case for other
matrices such as S or W . For example, it could be the case that the two largest eigenvalues of a block diagonal sim-
ilarity matrix S come from the same block. In such a situation, if we take the first k eigenvectors of S, some blocks
will be represented several times, while there are other blocks which we will miss completely (unless we take
certain precautions). This is the reason why using the eigenvectors of S or W for clustering should be discouraged.

The second property is that in the ideal case, the entries of the eigenvectors on the components should be “safely
bounded away” from 0. Assume that an eigenvector on the first connected component has an entry u1,i > 0 at
position i. In the ideal case, the fact that this entry is non-zero indicates that the corresponding point i belongs to
the first cluster. The other way round, if a point j does not belong to cluster 1, then in the ideal case it should be
the case that u1,j = 0. Now consider the same situation, but with perturbed data. The perturbed eigenvector ũ
will usually not have any non-zero component any more; but if the noise is not too large, then perturbation theory
tells us that the entries ũ1,i and ũ1,j are still “close” to their original values u1,i and u1,j . So both entries ũ1,i and
ũ1,j will take some small values, say ε1 and ε2. In practice, if those values are very small it is unclear how we
should interpret this situation. Either we believe that small entries in ũ indicate that the points do not belong to
the first cluster (which then misclassifies the first data point i), or we think that the entries already indicate class
membership and classify both points to the first cluster (which misclassifies point j).

For both matrices L and Lrw, the eigenvectors in the ideal situation are indicator vectors, so the second problem
described above cannot occur. However, this is not true for the matrix Lsym, which is used in the normalized
spectral clustering algorithm of Ng et al. (2002). Even in the ideal case, the eigenvectors of this matrix are given
as D1/2

1Ai
. If the degrees of the vertices differ a lot, and in particular if there are vertices which have a very low

degree, the corresponding entries in the eigenvectors are very small. To counteract the problem described above,
the row-normalization step in the algorithm of Ng et al. (2002) comes into play. In the ideal case, the matrix U
in the algorithm has exactly one non-zero entry per row. After row-normalization, the matrix T in the algorithm
of Ng et al. (2002) then consists of the cluster indicator vectors. Note however, that this might not always work
out correctly in practice. Assume that we have ũi,1 = ε1 and ũi,2 = ε2. If we now normalize the i-th row of U ,
both ε1 and ε2 will be multiplied by the factor of 1/

√
ε2
1 + ε2

2 and become rather large. We now run into a similar
problem as described above: both points are likely to be classified into the same cluster, even though they belong
to different clusters. This argument shows that spectral clustering using the matrix Lsym can be problematic if the
eigenvectors contain particularly small entries. On the other hand, note that such small entries in the eigenvectors
only occur if some of the vertices have a particularly low degrees (as the eigenvectors of Lsym are given by
D1/2

1Ai). One could argue that in such a case, the data point should be considered an outlier anyway, and then it
does not really matter in which cluster the point will end up.

To summarize, the conclusion is that both unnormalized spectral clustering and normalized spectral clustering
with Lrw are well justified by the perturbation theory approach. Normalized spectral clustering with Lsym can also
be justified by perturbation theory, but it should be treated with more care if the graph contains vertices with very
low degrees.

16

8 Practical details

In this section we will briefly discuss some of the issues which come up when actually implementing spectral
clustering. There are several choices to be made and parameters to be set. However, the discussion in this section
is mainly meant to raise awareness about the general problems which an occur. For thorough studies on the
behavior of spectral clustering for various real world tasks we refer to the literature.

8.1 Constructing the similarity graph

Constructing the similarity graph for spectral clustering is not a trivial task, and little is known on theoretical
implications of the various constructions.

The similarity function itself
Before we can even think about constructing a similarity graph, we need to define a similarity function on the data.
As we are going to construct a neighborhood graph later on, we need to make sure that the local neighborhoods
induced by this similarity function are “meaningful”. This means that we need to be sure that points which are
considered to be “very similar” by the similarity function are also closely related in the application the data comes
from. For example, when constructing a similarity function between text documents it makes sense to check
whether documents with a high similarity score indeed belong to the same text category. The global “long-range”
behavior of the similarity function is not so important for spectral clustering — it does not really matter whether
two data points have similarity score 0.01 or 0.001, say, as we will not connect those two points in the similarity
graph anyway. In the common case where the data points live in the Euclidean space Rd, a reasonable default
candidate is the Gaussian similarity function s(xi, xj) = exp(−‖xi − xj‖2/(2σ2)) (but of course we need to
choose the parameter σ here, see below). Ultimately, the choice of the similarity function depends on the domain
the data comes from, and no general advice can be given.

Which type of similarity graph
The next choice one has to make concerns the type of the graph one wants to use, such as the k-nearest neighbor
or the ε-neighborhood graph. Let us illustrate the behavior of the different graphs using the toy example presented
in Figure 3. As underlying distribution we choose a distribution on R

2 with three clusters: two “moons” and a
Gaussian. The density of the bottom moon is chosen to be larger than the one of the top moon. The upper left
panel in Figure 3 shows a sample drawn from this distribution. The next three panels show the different similarity
graphs on this sample.

In the ε-neighborhood graph, we can see that it is difficult to choose a useful parameter ε. With ε = 0.3 as in the
figure, the points on the middle moon are already very tightly connected, while the points in the Gaussian are
barely connected. This problem always occurs if we have data “on different scales”, that is the distances between
data points are different in different regions of the space.

The k-nearest neighbor graph, on the other hand, can connect points “on different scales”. We can see that points
in the low-density Gaussian are connected with points in the high-density moon. This is a general property of
k-nearest neighbor graphs which can be very useful. We can also see that the k-nearest neighbor graph can break
into several disconnected components if there are high density regions which are reasonably far away from each
other. This is the case for the two moons in this example.

The mutual k-nearest neighbor graph has the property that it tends to connect points within regions of constant
density, but does not connect regions of different densities with each other. So the mutual k-nearest neighbor can
be considered as being “in between” the ε-neighborhood graph and the k-nearest neighbor graph. It is able to act
on different scales, but does not mix those scales with each other. Hence, the mutual k-nearest neighbor graph
seems particularly well-suited if we want to detect clusters of different densities.

The fully connected graph is very often used in connection with the Gaussian similarity function
s(xi, xj) = exp(−‖xi − xj‖2/(2σ2)). Here the parameter σ plays a similar role as the parameter ε in the
ε-neighborhoods. Points in local neighborhoods are connected with relatively high weights, while edges be-
tween far away points have a positive, but negligible weights. However, the resulting similarity matrix is not sparse.

17

−1 0 1 2

−3

−2

−1

0

1

Data points

−1 0 1 2

−3

−2

−1

0

1

epsilon−graph, epsilon=0.3

−1 0 1 2

−3

−2

−1

0

1

kNN graph, k = 5

−1 0 1 2

−3

−2

−1

0

1

Mutual kNN graph, k = 5

Figure 3: Different similarity graphs, see text for details.

As a general recommendation we suggest to work with the k-nearest neighbor graph as the first choice. It is simple
to work with, results in a sparse adjacency matrix W , and in our experience is less vulnerable to unsuitable choices
of parameters than the other graphs.

The parameters of the similarity graph
Once one has decided for the type of the similarity graph, one has to choose its connectivity parameter k or ε,
respectively. Unfortunately, barely any theoretical results are known to guide us in this task. In general, if the
similarity graph contains more connected components than the number of clusters we ask the algorithm to detect,
then spectral clustering will trivially return connected components as clusters. Unless one is perfectly sure that
those connected components are the correct clusters, one should make sure that the similarity graph is connected,
or only consists of “few” connected components and very few or no isolated vertices. There are many theoretical
results on how connectivity of random graphs can be achieved, but all those results only hold in the limit for
the sample size n → ∞. For example, it is known that for n data points drawn i.i.d. from some underlying
density with a connected support in R

d, the k-nearest neighbor graph and the mutual k-nearest neighbor graph
will be connected if we choose k on the order of log(n) (e.g., Brito, Chavez, Quiroz, and Yukich, 1997). Similar
arguments show that the parameter ε in the ε-neighborhood graph has to be chosen as (log(n)/n)d to guarantee
connectivity in the limit (Penrose, 1999). While being of theoretical interest, all those results do not really help us
for choosing k on a finite sample.

Now let us give some rules of thumb. When working with the k-nearest neighbor graph, then the connectivity
parameter should be chosen such that the resulting graph is connected, or at least has significantly fewer connected
components than clusters we want to detect. For small or medium-sized graphs this can be tried out ”by foot”. For
very large graphs, a first approximation could be to choose k in the order of log(n), as suggested by the asymptotic
connectivity results.

For the mutual k-nearest neighbor graph, we have to admit that we are a bit lost for rules of thumb. The advantage
of the mutual k-nearest neighbor graph compared to the standard k-nearest neighbor graph is that it tends not
to connect areas of different density. While this can be good if there are clear clusters induced by separate
high-density areas, this can hurt in less obvious situations as disconnected parts in the graph will always be chosen

18

to be clusters by spectral clustering. Very generally, one can observe that the mutual k-nearest neighbor graph
has much fewer edges than the standard k-nearest neighbor graph for the same parameter k. This suggests to
choose k significantly larger for the mutual k-nearest neighbor graph than one would do for the standard k-nearest
neighbor graph. However, to take advantage of the property that the mutual k-nearest neighbor graph does not
connect regions of different density, it would be necessary to allow for several “meaningful” disconnected parts of
the graph. Unfortunately, we do not know of any general heuristic to choose the parameter k such that this can be
achieved.

For the ε-neighborhood graph, we suggest to choose ε such that the resulting graph is safely connected. To
determine the smallest value of ε where the graph is connected is very simple: one has to choose ε as the length
of the longest edge in a minimal spanning tree of the fully connected graph on the data points. The latter can be
determined easily by any minimal spanning tree algorithm. However, note that when the data contains outliers
this heuristic will choose ε so large that even the outliers are connected to the rest of the data. A similar effect
happens when the data contains several tight clusters which are very far apart from each other. In both cases, ε
will be chosen too large to reflect the scale of the most important part of the data.

Finally, if one uses a fully connected graph together with a similarity function which can be scaled itself, for
example the Gaussian similarity function, then the scale of the similarity function should be chosen such that the
resulting graph has similar properties as a corresponding k-nearest neighbor or ε-neighborhood graph would have.
One needs to make sure that for most data points the set of neighbors with a similarity significantly larger than
0 is “not too small and not too large”. In particular, for the Gaussian similarity function several rules of thumb
are frequently used. For example, one can choose σ in the order of the mean distance of a point to its k-th nearest
neighbor, where k is chosen similarly as above (e.g., k ∼ log(n) + 1). Another way is to determine ε by the
minimal spanning tree heuristic described above, and then choose σ = ε. But note that all those rules of thumb
are very ad-hoc, and depending on the given data at hand and its distribution of inter-point distances they might
not work at all.

In general, experience shows that spectral clustering can be quite sensitive to changes in the similarity graph
and to the choice of its parameters. Unfortunately, to our knowledge there has been no systematic study which
investigates the effects of the similarity graph and its parameters on clustering and comes up with well-justified
rules of thumb. None of the recommendations above is based on a firm theoretic ground. Finding rules which
have a theoretical justification should be considered an interesting and important topic for future research.

8.2 Computing the eigenvectors

To implement spectral clustering in practice one has to compute the first k eigenvectors of a potentially large
Laplace matrix. Luckily, if we use the k-nearest neighbor graph or the ε-neighborhood graph, then all Laplace
matrices are sparse. Efficient methods exist to compute the first eigenvectors of sparse matrices, the most popular
ones being the power method or Krylov subspace methods such as the Lanczos method (Golub and Van Loan,
1996). The speed of convergence of those algorithms depends on the size of the eigengap (also called spectral gap)
γk = |λk−λk+1|. The larger this eigengap is, the faster the algorithms computing the first k eigenvectors converge.

Note that a general problem occurs if one of the eigenvalues under consideration has multiplicity larger than one.
For example, in the ideal situation of k disconnected clusters, the eigenvalue 0 has multiplicity k. As we have
seen, in this case the eigenspace is spanned by the k cluster indicator vectors. But unfortunately, the vectors
computed by the numerical eigensolvers do not necessarily converge to those particular vectors. Instead they just
converge to some orthonormal basis of the eigenspace, and it usually depends on implementation details to which
basis exactly the algorithm converges. But this is not so bad after all. Note that all vectors in the space spanned
by the cluster indicator vectors 1Ai

have the form u =
∑k

i=1 ai1Ai
for some coefficients ai, that is, they are

piecewise constant on the clusters. So the vectors returned by the eigensolvers still encode the information about
the clusters, which can then be used by the k-means algorithm to reconstruct the clusters.

19

8.3 The number of clusters

Choosing the number k of clusters is a general problem for all clustering algorithms, and a variety of more
or less successful methods have been devised for this problem. In model-based clustering settings there exist
well-justified criteria to choose the number of clusters from the data. Those criteria are usually based on the
log-likelihood of the data, which can then be treated in a frequentist or Bayesian way, for examples see Fraley
and Raftery (2002). In settings where no or few assumptions on the underlying model are made, a large variety
of different indices can be used to pick the number of clusters. Examples range from ad-hoc measures such as
the ratio of within-cluster and between-cluster similarities, over information-theoretic criteria (Still and Bialek,
2004), the gap statistic (Tibshirani, Walther, and Hastie, 2001), to stability approaches (Ben-Hur, Elisseeff, and
Guyon, 2002; Lange, Roth, Braun, and Buhmann, 2004; Ben-David, von Luxburg, and Pal, 2006). Of course all
those methods can also be used for spectral clustering. Additionally, one tool which is particularly designed for
spectral clustering is the eigengap heuristic, which can be used for all three graph Laplacians. Here the goal is to
choose the number k such that all eigenvalues λ1, . . . , λk are very small, but λk+1 is relatively large. There are
several justifications for this procedure. The first one is based on perturbation theory, where we observe that in the
ideal case of k completely disconnected clusters, the eigenvalue 0 has multiplicity k, and then there is a gap to the
(k + 1)th eigenvalue λk+1 > 0. Other explanations can be given by spectral graph theory. Here, many geometric
invariants of the graph can be expressed or bounded with the help of the first eigenvalues of the graph Laplacian.
In particular, the sizes of cuts are closely related to the size of the first eigenvalues. For more details on this topic
we refer to Bolla (1991), Mohar (1997) and Chung (1997).

We would like to illustrate the eigengap heuristic on our toy example introduced in Section 4. For this purpose
we consider similar data sets as in Section 4, but to vary the difficulty of clustering we consider the Gaussians
with increasing variance. The first row of Figure 4 shows the histograms of the three samples. We construct the
10-nearest neighbor graph as described in Section 4, and plot the eigenvalues and eigenvectors of the normalized
Laplacian Lrw on the different samples (the results for the unnormalized Laplacian are similar). The first data set
consists of four well separated clusters, and we can see that the first 4 eigenvalues are approximately 0. Then
there is a gap between the 4th and 5th eigenvalue, that is |λ5 − λ4| is relatively large. According to the eigengap
heuristic, this gap indicates that the data set contains 4 clusters. The same behavior can also be observed for the
results of the fully connected graph (already plotted in Figure 1). So we can see that the heuristic works well if
the clusters in the data are very well pronounced. However, the more noisy or overlapping the clusters are, the
less effective is this heuristic. We can see that for the second data set where the clusters are more “blurry”, there
is still a gap between the 4th and 5th eigenvalue, but it is not as clear to detect as in the case before. Finally, in
the last data set, there is no well-defined gap, the differences between all eigenvalues are approximately the same.
But on the other hand, the clusters in this data set overlap so much that many non-parametric algorithms will have
difficulties to detect the clusters, unless they make strong assumptions on the underlying model. In this particular
example, even for a human looking at the histogram it is not obvious what the correct number of clusters should
be. This illustrates that, as most methods for choosing the number of clusters, the eigengap heuristic usually works
well if the data contains very well pronounced clusters, but in ambiguous cases it also returns ambiguous results.

Finally, note that the choice of the number of clusters and the choice of the connectivity parameters of the neigh-
borhood graph affect each other. For example, if the connectivity parameter of the neighborhood graph is so small
that the graph breaks into, say, k0 connected components, then choosing k0 as the number of clusters is a valid
choice. However, as soon as the neighborhood graph is connected, it is not clear how the number of clusters and
the connectivity parameters of the neighborhood graph interact. Both the choice of the number of clusters and
the choice of the connectivity parameters of the graph are difficult problems on their own, and to our knowledge
nothing non-trivial is known on their interactions.

8.4 The k-means step

The three spectral clustering algorithms we presented in Section 4 use k-means as last step to extract the final
partition from the real valued matrix of eigenvectors. First of all, note that there is nothing principled about using
the k-means algorithm in this step. In fact, as we have seen from the various explanations of spectral clustering,
this step should be very simple if the data contains well-expressed clusters. For example, in the ideal case if
completely separated clusters we know that the eigenvectors of L and Lrw are piecewise constant. In this case, all
points xi which belong to the same cluster Cs are mapped to exactly the sample point yi, namely to the unit vector

20

0 2 4 6 8 10
0

5

10
Histogram of the sample

0 2 4 6 8 10
0

5

10
Histogram of the sample

0 2 4 6 8 10
0

2

4

6
Histogram of the sample

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

Eigenvalues

1 2 3 4 5 6 7 8 9 10

0.02

0.04

0.06

0.08

Eigenvalues

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

Eigenvalues

Figure 4: Three data sets, and the smallest 10 eigenvalues of Lrw. See text for more details.

es ∈ R
k. In such a trivial case, any clustering algorithm applied to the points yi ∈ R

k will be able to extract the
correct clusters.

While it is somewhat arbitrary what clustering algorithm exactly one chooses in the final step of spectral
clustering, one can argue that at least the Euclidean distance between the points yi is a meaningful quantity to
look at. We have seen that the Euclidean distance between the points yi is related to the “commute distance”
on the graph, and in Nadler, Lafon, Coifman, and Kevrekidis (2006) the authors show that the Euclidean
distances between the yi are also related to a more general “diffusion distance”. Also, other uses of the spectral
embeddings (e.g., Bolla (1991) or Belkin and Niyogi (2003)) show that the Euclidean distance in Rd is meaningful.

Instead of k-means, people also use other techniques to construct he final solution from the real-valued representa-
tion. For example, in Lang (2006) the authors use hyperplanes for this purpose. A more advanced post-processing
of the eigenvectors is proposed in Bach and Jordan (2004). Here the authors study the subspace spanned by the
first k eigenvectors, and try to approximate this subspace as good as possible using piecewise constant vectors.
This also leads to minimizing certain Euclidean distances in the space Rk, which can be done by some weighted
k-means algorithm.

In our experience, the k-means algorithm works reasonably well on many data sets. Implementations with various
tricks, enhancements, and speed-ups can be downloaded from the internet.

8.5 Which graph Laplacian should be used?
A fundamental question related to spectral clustering is the question which of the three graph Laplacians should be
used to compute the eigenvectors. Before deciding this question, one should always look at the degree distribution
of the similarity graph. If the graph is very regular and most vertices have approximately the same degree, then
all the Laplacians are very similar to each other, and will work equally well for clustering. However, if the
degrees in the graph are very broadly distributed, then the Laplacians differ considerably. In our opinion, there are
several arguments which advocate for using normalized rather than unnormalized spectral clustering, and in the
normalized case to use the eigenvectors of Lrw rather than those of Lsym.

Clustering objectives satisfied by the different algorithms
The first argument in favor of normalized spectral clustering comes from the graph partitioning point of view. For
simplicity let us discuss the case k = 2. In general, clustering has two different objectives:

1. We want to find a partition such that points in different clusters are dissimilar to each other, that is we want to
minimize the between-cluster similarity. In the graph setting, this means to minimize cut(A,A).

21

2. We want to find a partition such that points in the same cluster are similar to each other, that is we want to
maximize the within-cluster similarities W (A,A) and W (A,A).

Both RatioCut and Ncut directly implement the first objective by explicitly incorporating cut(A,A) in the objec-
tive function. However, concerning the second point, both algorithms behave differently. Note that

W (A,A) = W (A, V)−W (A,A) = vol(A)− cut(A,A).

Hence, the within-cluster similarity is maximized if cut(A,A) is small and if vol(A) is large. As this is exactly
what we achieve by minimizing Ncut, the Ncut criterion implements the second objective. This can be seen
even more explicitly by considering yet another graph cut objective function, namely the MinMaxCut criterion
introduced by Ding, He, Zha, Gu, and Simon (2001):

MinMaxCut(A1, . . . , Ak) :=
k∑

i=1

cut(Ai, Ai)
W (Ai, Ai)

.

Compared to Ncut, which has the terms vol(A) = cut(A,A) + W (A,A) in the denominator, the MinMaxCut
criterion only has W (A,A) in the denominator. In practice, Ncut and MinMaxCut are often minimized by
similar cuts, as a good Ncut solution will have a small value of cut(A,A) anyway and hence the denominators
are not so different after all. Moreover, relaxing MinMaxCut leads to exactly the same optimization problem as
relaxing Ncut, namely to normalized spectral clustering with the eigenvectors of Lrw. So one can see by several
ways that normalized spectral clustering incorporates both clustering objectives mentioned above.

Now consider the case of RatioCut. Here the objective is to maximize |A| and|A| instead of vol(A) and vol(A).
But |A| and |A| are not necessarily related to the within-cluster similarity, as the within-cluster similarity depends
on the edges and not on the number of vertices in A. For instance, just think of a set A which has very many
vertices, all of which only have very low weighted edges to each other. Minimizing RatioCut does not attempt
to maximize the within-cluster similarity, and the same is then true for its relaxation by unnormalized spectral
clustering.

So this is our first important point to keep in mind: Normalized spectral clustering implements both clustering
objectives mentioned above, while unnormalized spectral clustering only implements the first objective.

Consistency issues
A completely different argument for the superiority of normalized spectral clustering comes from a statistical
analysis of both algorithms. In a statistical setting one assumes that the data points x1, . . . , xn have been sampled
i.i.d. according to some probability distribution P on some underlying data space X . The most fundamental
question is then the question of consistency: if we draw more and more data points, do the clustering results of
spectral clustering converge to a useful partition of the underlying space X ?

For both normalized spectral clustering algorithms, it can be proved that this is indeed the case (von Luxburg,
Bousquet, and Belkin, 2004, 2005; von Luxburg, Belkin, and Bousquet, 2004). Mathematically, one proves that
as we take the limit n → ∞, the matrix Lsym converges in a strong sense to an operator U on the space C(X)
of continuous functions on X . This convergence implies that the eigenvalues and eigenvectors of Lsym converge
to those of U , which in turn can be transformed to a statement about the convergence of normalized spectral
clustering. One can show that the partition which is induced on X by the eigenvectors of U can be interpreted
similar to the random walks interpretation of spectral clustering. That is, if we consider a diffusion process on
the data space X , then the partition induced by the eigenvectors of U is such that the diffusion does not transition
between the different clusters very often (von Luxburg, Bousquet, and Belkin, 2004). All those statements about
normalized spectral clustering hold, for both Lsym and Lrw, under very mild conditions which are usually satisfied
in real world applications. Unfortunately, explaining more details about those results goes beyond the scope of
this tutorial, so we refer the interested reader to von Luxburg, Belkin, and Bousquet (2004).

In contrast to the clear convergence statements for normalized spectral clustering, the situation for unnormalized
spectral clustering is much more unpleasant. It can be proved that unnormalized spectral clustering can fail to

22

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3
Eigenvalues

un
no

rm
, s

ig
m

a=
2

2 4 6 8

0.0707

0.0707

0.0707

un
no

rm
, s

ig
m

a=
2

Eigenvector 1

2 4 6 8
−0.1

−0.05

0

0.05

0.1

Eigenvector 2

2 4 6 8

−0.05

0

0.05

0.1

0.15
Eigenvector 3

2 4 6 8
0

0.2

0.4

0.6

0.8

Eigenvector 4

2 4 6 8
−0.4

−0.2

0

0.2

0.4

0.6
Eigenvector 5

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

Eigenvalues

un
no

rm
, s

ig
m

a=
5

2 4 6 8

−0.0707

−0.0707

−0.0707

un
no

rm
, s

ig
m

a=
5

Eigenvector 1

2 4 6 8

−0.1

−0.05

0

0.05

0.1

Eigenvector 2

2 4 6 8

−0.8

−0.6

−0.4

−0.2

0

Eigenvector 3

2 4 6 8
−0.2

0

0.2

0.4

0.6

0.8

Eigenvector 4

2 4 6 8

−0.8

−0.6

−0.4

−0.2

0

0.2

Eigenvector 5

Figure 5: Consistency of unnormalized spectral clustering. Plotted are eigenvalues and eigenvectors of L, for parameter σ = 2
(first row) and σ = 5 (second row). The dashed line indicates min dj , the eigenvalues below min dj are plotted as red
diamonds, the eigenvalues above min dj are plotted as blue stars. See text for more details.

converge, or that it can converge to trivial solutions which construct clusters consisting of one single point of the
data space (von Luxburg et al., 2005; von Luxburg, Belkin, and Bousquet, 2004). Mathematically, even though
one can prove that the matrix (1/n)L itself converges to some limit operator T on C(X) as n → ∞, the spectral
properties of this limit operator T can be so nasty that they prevent the convergence of spectral clustering. It is
possible to construct examples which show that this is not only a problem for very large sample size, but that it
can lead to completely unreliable results even for small sample size. At least it is possible to characterize the
conditions when those problem do not occur: We have to make sure that the eigenvalues of L corresponding to
the eigenvectors used in unnormalized spectral clustering are significantly below the minimal degree in the graph.
This means that if we use the first k eigenvectors for clustering, then λi � minj=1,...,n dj should hold for all
i = 1, . . . , k. The mathematical reason for this condition is that eigenvectors corresponding to eigenvalues larger
than min dj approximate Dirac functions, that is they are approximately 0 in all but one coordinate. If those
eigenvectors are used for clustering, then they separate the one vertex where the eigenvector is non-zero from all
other vertices, and we clearly do not want to construct such a partition. Again we refer to the literature for precise
statements and proofs.

For an illustration of this phenomenon, consider again our toy data set from Section 4. We consider the first
eigenvalues and eigenvectors of the unnormalized graph Laplacian based on the fully connected graph, for
different choices of the parameter σ of the Gaussian similarity function (see last row of Figure 1 and all rows of
Figure 5). The eigenvalues above min dj are plotted as blue stars, the eigenvalues below min dj are plotted as
red diamonds. The dashed line indicates min dj . In general, we can see that the eigenvectors corresponding to
eigenvalues which are much below the dashed lines are “useful” eigenvectors. In case σ = 1 (plotted already in the
last row of Figure 1), Eigenvalues 2, 3 and 4 are significantly below min dj , and the corresponding Eigenvectors
2, 3, and 4 are meaningful (as already discussed in Section 4). If we increase the parameter σ, we can observe
that the eigenvalues tend to move towards min dj . In case σ = 2, only the first three eigenvalues are below
min dj (first row in Figure 5), and in case σ = 5 only the first two eigenvalues are below min dj (second row in
Figure 5). We can see that as soon as an eigenvalue gets close to or above min dj , its corresponding eigenvector
approximates a Dirac function. Of course, those eigenvectors are unsuitable for constructing a clustering. In the
limit for n → ∞, those eigenvectors would converge to perfect Dirac functions. Our illustration of the finite
sample case shows that this behavior not only occurs for large sample size, but can be generated even on the small
example in our toy data set.

It is very important to stress that those problems only concern the eigenvectors of the matrix L, and they do
not occur for Lrw or Lsym. Thus, from a statistical point of view, it is preferable to avoid unnormalized spectral
clustering and to use the normalized algorithms instead.

23

Which normalized Laplacian?
Looking at the differences between the two normalized spectral clustering algorithms using Lrw and Lsym, all
three explanations of spectral clustering are in favor of Lrw. The reason is that the eigenvectors of Lrw are cluster
indicator vectors 1Ai , while the eigenvectors of Lsym are additionally multiplied with D1/2, which might lead to
undesired artifacts. As using Lsym also does not have any computational advantages, we thus advocate for using
Lrw.

9 Outlook and further reading
Spectral clustering goes back to Donath and Hoffman (1973), who first suggested to construct graph partitions
based on eigenvectors of the adjacency matrix. In the same year, Fiedler (1973) discovered that bi-partitions of
a graph are closely connected with the second eigenvector of the graph Laplacian, and he suggested to use this
eigenvector to partition a graph. Since then, spectral clustering has been discovered, re-discovered, and extended
many times in different communities, see for example Pothen, Simon, and Liou (1990), Simon (1991), Bolla
(1991), Hagen and Kahng (1992), Hendrickson and Leland (1995), Van Driessche and Roose (1995), Barnard,
Pothen, and Simon (1995), Spielman and Teng (1996), Guattery and Miller (1998). A nice overview over the
history of spectral clustering can be found in Spielman and Teng (1996).

In the machine learning community, spectral clustering has been made popular by the works of Shi and
Malik (2000), Ng et al. (2002), Meila and Shi (2001), and Ding (2004). Subsequently, spectral clustering
has been extended to many non-standard settings, for example spectral clustering applied to the co-clustering
problem (Dhillon, 2001), spectral clustering with additional side information (Joachims, 2003) connections
between spectral clustering and the weighted kernel-k-means algorithm (Dhillon, Guan, and Kulis, 2005),
learning similarity functions based on spectral clustering (Bach and Jordan, 2004), or spectral clustering in
a distributed environment (Kempe and McSherry, 2004). Also, new theoretical insights about the relation of
spectral clustering to other algorithms have been found. A link between spectral clustering and the weighted
kernel k-means algorithm is described in Dhillon et al. (2005). Relations between spectral clustering and
(kernel) principal component analysis rely on the fact that the smallest eigenvectors of graph Laplacians can
also be interpreted as the largest eigenvectors of kernel matrices (Gram matrices). Two different flavors of this
interpretation exist: while Bengio et al. (2004) interpret the matrix D−1/2WD−1/2 as kernel matrix, other
authors (Saerens, Fouss, Yen, and Dupont, 2004) interpret the Moore-Penrose inverses of L or Lsym as kernel
matrix. Both interpretations can be used to construct (different) out-of-sample extensions for spectral clustering.
Concerning application cases of spectral clustering, in the last few years such a huge number of papers has been
published in various scientific areas that it is impossible to cite all of them. We encourage the reader to query his
favorite literature data base with the phrase “spectral clustering” to get an impression no the variety of applications.

The success of spectral clustering is mainly based on the fact that it does not make strong assumptions on the
form of the clusters. As opposed to k-means, where the resulting clusters form convex sets (or, to be precise, lie in
disjoint convex sets of the underlying space), spectral clustering can solve very general problems like intertwined
spirals. Moreover, spectral clustering can be implemented efficiently even for large data sets, as long as we make
sure that the similarity graph is sparse. Once the similarity graph is chosen, we just have to solve a linear problem,
and there are no issues of getting stuck in local minima or restarting the algorithm for several times with different
initializations. However, we have already mentioned that choosing a good similarity graph is not trivial, and
spectral clustering can be quite unstable under different choices of the parameters for the neighborhood graphs. So
spectral clustering cannot serve as a “black box algorithm” which automatically detects the correct clusters in any
given data set. But it can be considered as a powerful tool which can produce good results if applied with care.

In the field of machine learning, graph Laplacians are not only used for clustering, but also emerge for many other
tasks such as semi-supervised learning (e.g., Chapelle, Schölkopf, and Zien, 2006 for an overview) or manifold
reconstruction (e.g., Belkin and Niyogi, 2003). In most applications, graph Laplacians are used to encode the
assumption that data points which are “close” (i.e., wij is large) should have a “similar” label (i.e., fi ≈ fj). A
function f satisfies this assumption if wij(fi − fj)2 is small for all i, j, that is f ′Lf is small. With this intuition
one can use the quadratic form f ′Lf as a regularizer in a transductive classification problem. One other way to
interpret the use of graph Laplacians is by the smoothness assumptions they encode. A function f which has a

24

low value of f ′Lf has the property that it varies only “a little bit” in regions where the data points lie dense (i.e.,
the graph is tightly connected), whereas it is allowed to vary more (e.g., to change the sign) in regions of low
data density. In this sense, a small value of f ′Lf encodes the so called “cluster assumption” in semi-supervised
learning, which requests that the decision boundary of a classifier should lie in a region of low density.

An intuition often used is that graph Laplacians formally look like a continuous Laplace operator (and this is also
where the name “graph Laplacian” comes from). To see this, transform a local similarity wij to a distance dij by
the relationship wij = 1/d2

ij and observe that

wij(fi − fj)2 ≈
(

fi − fj

dij

)2

looks like a difference quotient. As a consequence, the equation f ′Lf =
∑

ij wij(fi − fj)2 from Proposition
1 looks like a discrete version of the quadratic form associated to the standard Laplace operator L on Rn, which
satisfies

〈g,Lg〉 =
∫
|∇g|2dx.

This intuition has been made precise in the works of Belkin (2003), Lafon (2004), Hein, Audibert, and von
Luxburg (2005), Belkin and Niyogi (2005), Hein (2006), Giné and Koltchinskii (2005). In general, it is proved that
graph Laplacians are discrete versions of certain continuous Laplace operators, and that if the graph Laplacian is
constructed on a similarity graph of randomly sampled data points, then it converges to some continuous Laplace
operator (or Laplace-Beltrami operator) on the underlying space. Belkin (2003) studied the first important step
of the convergence proof, which deals with the convergence of a continuous operator related to discrete graph
Laplacians to the Laplace-Beltrami operator. His results were generalized from uniform distributions to general
distributions by Lafon (2004). Then in Belkin and Niyogi (2005), the authors prove pointwise convergence
results for the unnormalized graph Laplacian using the Gaussian similarity function on manifolds with uniform
distribution. At the same time, Hein et al. (2005) prove more general results, taking into account all different
graph Laplacians L, Lrw, and Lsym, more general similarity functions, and manifolds with arbitrary distributions.
In Giné and Koltchinskii (2005), distributional and uniform convergence results are proved on manifolds with
uniform distribution. Hein (2006) studies the convergence of the smoothness functional induced by the graph
Laplacians and shows uniform convergence results.

Apart from applications of graph Laplacians to partitioning problems in the widest sense, graph Laplacians can
also be used for completely different purposes, for example for graph drawing (Koren, 2005). In fact, there are
many more tight connections between the topology and properties of graphs and the graph Laplacian matrices
than we have mentioned in this tutorial. Now equipped with an understanding for the most basic properties, the
interested reader is invited to further explore and enjoy the huge literature in this field on his own.

References
Aldous, D. and Fill, J. (in preparation). Reversible Markov Chains and Random Walks on Graphs. online version

available at http://www.stat.berkeley.edu/users/aldous/RWG/book.html.
Bach, F. and Jordan, M. (2004). Learning spectral clustering. In S. Thrun, L. Saul, and B. Schölkopf (Eds.),

Advances in Neural Information Processing Systems 16 (NIPS) (pp. 305 – 312). Cambridge, MA: MIT
Press.

Bapat, R., Gutman, I., and Xiao, W. (2003). A simple method for computing resistance distance. Z. Naturforsch.,
58, 494 – 498.

Barnard, S., Pothen, A., and Simon, H. (1995). A spectral algorithm for envelope reduction of sparse matrices.
Numerical Linear Algebra with Applications, 2(4), 317 – 334.

Belkin, M. (2003). Problems of Learning on Manifolds. PhD Thesis, University of Chicago.
Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation.

Neural Computation, 15(6), 1373 – 1396.
Belkin, M. and Niyogi, P. (2005). Towards a theoretical foundation for Laplacian-based manifold methods. In

P. Auer and R. Meir (Eds.), Proceedings of the 18th Annual Conference on Learning Theory (COLT) (pp.
486 – 500). Springer, New York.

25

Ben-David, S., von Luxburg, U., and Pal, D. (2006). A sober look on clustering stability. In G. Lugosi and
H. Simon (Eds.), Proceedings of the 19th Annual Conference on Learning Theory (COLT) (pp. 5 – 19).
Springer, Berlin.

Bengio, Y., Delalleau, O., Roux, N., Paiement, J., Vincent, P., and Ouimet, M. (2004). Learning eigenfunctions
links spectral embedding and kernel PCA. Neural Computation, 16, 2197 – 2219.

Ben-Hur, A., Elisseeff, A., and Guyon, I. (2002). A stability based method for discovering structure in clustered
data. In Pacific Symposium on Biocomputing (pp. 6 – 17).

Bhatia, R. (1997). Matrix Analysis. Springer, New York.
Bie, T. D. and Cristianini, N. (2006). Fast SDP relaxations of graph cut clustering, transduction, and other

combinatorial problems . JMLR, 7, 1409 – 1436.
Bolla, M. (1991). Relations between spectral and classification properties of multigraphs (Technical Report No.

DIMACS-91-27). Center for Discrete Mathematics and Theoretical Computer Science.
Brémaud, P. (1999). Markov chains: Gibbs fields, Monte Carlo simulation, and queues. New York: Springer-

Verlag.
Brito, M., Chavez, E., Quiroz, A., and Yukich, J. (1997). Connectivity of the mutual k-nearest-neighbor graph in

clustering and outlier detection. Statistics and Probability Letters, 35, 33 – 42.
Bui, T. N. and Jones, C. (1992). Finding good approximate vertex and edge partitions is NP-hard. Inf. Process.

Lett., 42(3), 153 – 159.
Chapelle, O., Schölkopf, B., and Zien, A. (Eds.). (2006). Semi-Supervised Learning. MIT Press, Cambridge.
Chung, F. (1997). Spectral graph theory (Vol. 92 of the CBMS Regional Conference Series in Mathematics).

Conference Board of the Mathematical Sciences, Washington.
Dhillon, I. (2001). Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings

of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (KDD) (pp.
269 – 274). New York: ACM Press.

Dhillon, I., Guan, Y., and Kulis, B. (2005). A unified view of kernel k-means, spectral clustering, and graph
partitioning (Technical Report No. UTCS TR-04-25). University of Texas at Austin.

Ding, C. (2004). A tutorial on spectral clustering. Talk presented at ICML. (Slides available at http://crd.
lbl.gov/∼cding/Spectral/)

Ding, C., He, X., Zha, H., Gu, M., and Simon, H. (2001). A min-max cut algorithm for graph partitioning and
data clustering. In Proceedings of the first IEEE International Conference on Data Mining (ICDM) (pp.
107 – 114). Washington, DC, USA: IEEE Computer Society.

Donath, W. E. and Hoffman, A. J. (1973). Lower bounds for the partitioning of graphs. IBM J. Res. Develop., 17,
420 – 425.

Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Math. J., 23, 298 – 305.
Fouss, F., Pirotte, A., Renders, J.-M., and Saerens, M. (2006). A novel way of computing dissimilarities between

nodes of a graph, with application to collaborative filtering and subspace projection of the graph nodes
(Technical Report No. IAG WP 06/08). Université catholique de Louvain.

Fraley, C. and Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation. JASA,
97, 611 – 631.

Giné, E. and Koltchinskii, V. (2005). Empirical graph Laplacian approximation of Laplace-Beltrami operators:
large sample results. In Proceedings of the 4th International Conference on High Dimensional Probability
(pp. 238 – 259).

Golub, G. and Van Loan, C. (1996). Matrix computations. Baltimore: Johns Hopkins University Press.
Guattery, S. and Miller, G. (1998). On the quality of spectral separators. SIAM Journal of Matrix Anal. Appl.,

19(3), 701 – 719.
Gutman, I. and Xiao, W. (2004). Generalized inverse of the Laplacian matrix and some applications. Bulletin de

l’Academie Serbe des Sciences at des Arts (Cl. Math. Natur.), 129, 15 – 23.
Hagen, L. and Kahng, A. (1992). New spectral methods for ratio cut partitioning and clustering. IEEE Trans.

Computer-Aided Design, 11(9), 1074 – 1085.
Hastie, T., Tibshirani, R., and Friedman, J. (2001). The elements of statistical learning. New York: Springer.
Hein, M. (2006). Uniform convergence of adaptive graph-based regularization. In Proceedings of the 19th Annual

Conference on Learning Theory (COLT) (pp. 50 – 64). Springer, New York.
Hein, M., Audibert, J.-Y., and von Luxburg, U. (2005). From graphs to manifolds - weak and strong pointwise

consistency of graph Laplacians. In P. Auer and R. Meir (Eds.), Proceedings of the 18th Annual Conference

26

on Learning Theory (COLT) (pp. 470 – 485). Springer, New York.
Hendrickson, B. and Leland, R. (1995). An improved spectral graph partitioning algorithm for mapping parallel

computations. SIAM J. on Scientific Computing, 16, 452 – 469.
Joachims, T. (2003). Transductive Learning via Spectral Graph Partitioning. In T. Fawcett and N. Mishra (Eds.),

Proceedings of the 20th international conference on machine learning (ICML) (pp. 290 – 297). AAAI Press.
Kempe, D. and McSherry, F. (2004). A decentralized algorithm for spectral analysis. In Proceedings of the 36th

Annual ACM Symposium on Theory of Computing (STOC) (pp. 561 – 568). New York, NY, USA: ACM
Press.

Klein, D. and Randic, M. (1993). Resistance distance. Journal of Mathematical Chemistry, 12, 81 – 95.
Koren, Y. (2005). Drawing graphs by eigenvectors: theory and practice. Computers and Mathematics with

Applications, 49, 1867 – 1888.
Lafon, S. (2004). Diffusion maps and geometric harmonics. PhD Thesis, Yale University.
Lang, K. (2006). Fixing two weaknesses of the spectral method. In Y. Weiss, B. Schölkopf, and J. Platt (Eds.),

Advances in Neural Information Processing Systems 18 (pp. 715 – 722). Cambridge, MA: MIT Press.
Lange, T., Roth, V., Braun, M., and Buhmann, J. (2004). Stability-based validation of clustering solutions. Neural

Computation, 16(6), 1299 – 1323.
Lovász, L. (1993). Random walks on graphs: a survey. In Combinatorics, Paul Erdös is eighty (pp. 353 – 397).

Budapest: János Bolyai Math. Soc.
Lütkepohl, H. (1997). Handbook of Matrices. Chichester: Wiley.
Meila, M. and Shi, J. (2001). A random walks view of spectral segmentation. In 8th International Workshop on

Artificial Intelligence and Statistics (AISTATS).
Mohar, B. (1991). The Laplacian spectrum of graphs. In Graph theory, combinatorics, and applications. Vol. 2

(Kalamazoo, MI, 1988) (pp. 871 – 898). New York: Wiley.
Mohar, B. (1997). Some applications of Laplace eigenvalues of graphs. In G. Hahn and G. Sabidussi (Eds.), Graph

Symmetry: Algebraic Methods and Applications (Vol. NATO ASI Ser. C 497, pp. 225 – 275). Kluwer.
Nadler, B., Lafon, S., Coifman, R., and Kevrekidis, I. (2006). Diffusion maps, spectral clustering and eigen-

functions of Fokker-Planck operators. In Y. Weiss, B. Schölkopf, and J. Platt (Eds.), Advances in Neural
Information Processing Systems 18 (pp. 955 – 962). Cambridge, MA: MIT Press.

Ng, A., Jordan, M., and Weiss, Y. (2002). On spectral clustering: analysis and an algorithm. In T. Dietterich,
S. Becker, and Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems 14 (pp. 849 –
856). MIT Press.

Norris, J. (1997). Markov Chains. Cambridge: Cambridge University Press.
Penrose, M. (1999). A strong law for the longest edge of the minimal spanning tree. Ann. of Prob., 27(1),

246 – 260.
Pothen, A., Simon, H. D., and Liou, K. P. (1990). Partitioning sparse matrices with eigenvectors of graphs. SIAM

Journal of Matrix Anal. Appl., 11, 430 – 452.
Saerens, M., Fouss, F., Yen, L., and Dupont, P. (2004). The principal components analysis of a graph, and its

relationships to spectral clustering. In Proceedings of the 15th European Conference on Machine Learning
(ECML) (pp. 371 – 383). Springer, Berlin.

Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8), 888 – 905.

Simon, H. (1991). Partitioning of unstructured problems for parallel processing. Computing Systems Engineering,
2, 135 – 148.

Spielman, D. and Teng, S. (1996). Spectral partitioning works: planar graphs and finite element meshes. In
37th Annual Symposium on Foundations of Computer Science (Burlington, VT, 1996) (pp. 96 – 105). Los
Alamitos, CA: IEEE Comput. Soc. Press.

Stewart, G. and Sun, J. (1990). Matrix Perturbation Theory. New York: Academic Press.
Still, S. and Bialek, W. (2004). How many clusters? an information-theoretic perspective. Neural Comput., 16(12),

2483 – 2506.
Stoer, M. and Wagner, F. (1997). A simple min-cut algorithm. J. ACM, 44(4), 585 – 591.
Tibshirani, R., Walther, G., and Hastie, T. (2001). Estimating the number of clusters in a dataset via the gap

statistic. J. Royal. Statist. Soc. B, 63(2), 411 – 423.
Van Driessche, R. and Roose, D. (1995). An improved spectral bisection algorithm and its application to dynamic

load balancing. Parallel Comput., 21(1), 29 – 48.

27

von Luxburg, U., Belkin, M., and Bousquet, O. (2004). Consistency of spectral clustering (Technical Report No.
134). Max Planck Institute for Biological Cybernetics.

von Luxburg, U., Bousquet, O., and Belkin, M. (2004). On the convergence of spectral clustering on random
samples: the normalized case. In J. Shawe-Taylor and Y. Singer (Eds.), Proceedings of the 17th Annual
Conference on Learning Theory (COLT) (pp. 457 – 471). Springer, New York.

von Luxburg, U., Bousquet, O., and Belkin, M. (2005). Limits of spectral clustering. In L. Saul, Y. Weiss, and
L. Bottou (Eds.), Advances in Neural Information Processing Systems (NIPS) 17 (pp. 857 – 864). Cam-
bridge, MA: MIT Press.

Wagner, D. and Wagner, F. (1993). Between min cut and graph bisection. In Proceedings of the 18th International
Symposium on Mathematical Foundations of Computer Science (MFCS) (pp. 744 – 750). London: Springer.

28

