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Preface

“Damn the torpedoes! Full speed ahead.”
—Admiral Farragut

Programming is the art of expressing solutions to problems so that a computer can execute those solutions. Much of the effort in
programming is spent finding and refining solutions. Often, a problem is only fully understood through the process of
programming a solution for it.

This book is for someone who has never programmed before but is willing to work hard to learn. It helps you understand the
principles and acquire the practical skills of programming using the C++ programming language. My aim is for you to gain
sufficient knowledge and experience to perform simple useful programming tasks using the best up-to-date techniques. How
long will that take? As part of a first-year university course, you can work through this book in a semester (assuming that you
have a workload of four courses of average difficulty). If you work by yourself, don’t expect to spend less time than that
(maybe 15 hours a week for 14 weeks).

Three months may seem a long time, but there’s a lot to learn and you’ll be writing your first simple programs after about an
hour. Also, all learning is gradual: each chapter introduces new useful concepts and illustrates them with examples inspired by
real-world uses. Your ability to express ideas in code — getting a computer to do what you want it to do — gradually and
steadily increases as you go along. I never say, “Learn a month’s worth of theory and then see if you can use it.”

Why would you want to program? Our civilization runs on software. Without understanding software you are reduced to
believing in “magic” and will be locked out of many of the most interesting, profitable, and socially useful technical fields of
work. When I talk about programming, I think of the whole spectrum of computer programs from personal computer
applications with GUIs (graphical user interfaces), through engineering calculations and embedded systems control
applications (such as digital cameras, cars, and cell phones), to text manipulation applications as found in many humanities and
business applications. Like mathematics, programming — when done well — is a valuable intellectual exercise that sharpens
our ability to think. However, thanks to feedback from the computer, programming is more concrete than most forms of math,
and therefore accessible to more people. It is a way to reach out and change the world — ideally for the better. Finally,
programming can be great fun.

Why C++? You can’t learn to program without a programming language, and C++ directly supports the key concepts and
techniques used in real-world software. C++ is one of the most widely used programming languages, found in an unsurpassed
range of application areas. You find C++ applications everywhere from the bottom of the oceans to the surface of Mars. C++ is
precisely and comprehensively defined by a nonproprietary international standard. Quality and/or free implementations are
available on every kind of computer. Most of the programming concepts that you will learn using C++ can be used directly in
other languages, such as C, C#, Fortran, and Java. Finally, I simply like C++ as a language for writing elegant and efficient
code.

This is not the easiest book on beginning programming; it is not meant to be. I just aim for it to be the easiest book from
which you can learn the basics of real-world programming. That’s quite an ambitious goal because much modern software
relies on techniques considered advanced just a few years ago.

My fundamental assumption is that you want to write programs for the use of others, and to do so responsibly, providing a
decent level of system quality; that is, I assume that you want to achieve a level of professionalism. Consequently, I chose the
topics for this book to cover what is needed to get started with real-world programming, not just what is easy to teach and
learn. If you need a technique to get basic work done right, I describe it, demonstrate concepts and language facilities needed to
support the technique, provide exercises for it, and expect you to work on those exercises. If you just want to understand toy
programs, you can get along with far less than I present. On the other hand, I won’t waste your time with material of marginal
practical importance. If an idea is explained here, it’s because you’ll almost certainly need it.

If your desire is to use the work of others without understanding how things are done and without adding significantly to the
code yourself, this book is not for you. If so, please consider whether you would be better served by another book and another
language. If that is approximately your view of programming, please also consider from where you got that view and whether it
in fact is adequate for your needs. People often underestimate the complexity of programming as well as its value. I would hate
for you to acquire a dislike for programming because of a mismatch between what you need and the part of the software reality
I describe. There are many parts of the “information technology” world that do not require knowledge of programming. This
book is aimed to serve those who do want to write or understand nontrivial programs.

Because of its structure and practical aims, this book can also be used as a second book on programming for someone who
already knows a bit of C++ or for someone who programs in another language and wants to learn C++. If you fit into one of



those categories, I refrain from guessing how long it will take you to read this book, but I do encourage you to do many of the
exercises. This will help you to counteract the common problem of writing programs in older, familiar styles rather than
adopting newer techniques where these are more appropriate. If you have learned C++ in one of the more traditional ways,
you’ll find something surprising and useful before you reach Chapter 7. Unless your name is Stroustrup, what I discuss here is
not “your father’s C++.”

Programming is learned by writing programs. In this, programming is similar to other endeavors with a practical component.
You cannot learn to swim, to play a musical instrument, or to drive a car just from reading a book — you must practice. Nor
can you learn to program without reading and writing lots of code. This book focuses on code examples closely tied to
explanatory text and diagrams. You need those to understand the ideals, concepts, and principles of programming and to master
the language constructs used to express them. That’s essential, but by itself, it will not give you the practical skills of
programming. For that, you need to do the exercises and get used to the tools for writing, compiling, and running programs. You
need to make your own mistakes and learn to correct them. There is no substitute for writing code. Besides, that’s where the
fun is!

On the other hand, there is more to programming — much more — than following a few rules and reading the manual. This
book is emphatically not focused on “the syntax of C++.” Understanding the fundamental ideals, principles, and techniques is
the essence of a good programmer. Only well-designed code has a chance of becoming part of a correct, reliable, and
maintainable system. Also, “the fundamentals” are what last: they will still be essential after today’s languages and tools have
evolved or been replaced.

What about computer science, software engineering, information technology, etc.? Is that all programming? Of course not!
Programming is one of the fundamental topics that underlie everything in computer-related fields, and it has a natural place in a
balanced course of computer science. I provide brief introductions to key concepts and techniques of algorithms, data
structures, user interfaces, data processing, and software engineering. However, this book is not a substitute for a thorough and
balanced study of those topics.

Code can be beautiful as well as useful. This book is written to help you see that, to understand what it means for code to be
beautiful, and to help you to master the principles and acquire the practical skills to create such code. Good luck with
programming!

A note to students
Of the many thousands of first-year students we have taught so far using this book at Texas A&M University, about 60% had
programmed before and about 40% had never seen a line of code in their lives. Most succeeded, so you can do it, too.

You don’t have to read this book as part of a course. The book is widely used for self-study. However, whether you work
your way through as part of a course or independently, try to work with others. Programming has an — unfair — reputation as a
lonely activity. Most people work better and learn faster when they are part of a group with a common aim. Learning together
and discussing problems with friends is not cheating! It is the most efficient — as well as most pleasant — way of making
progress. If nothing else, working with friends forces you to articulate your ideas, which is just about the most efficient way of
testing your understanding and making sure you remember. You don’t actually have to personally discover the answer to every
obscure language and programming environment problem. However, please don’t cheat yourself by not doing the drills and a
fair number of exercises (even if no teacher forces you to do them). Remember: programming is (among other things) a
practical skill that you need to practice to master. If you don’t write code (do several exercises for each chapter), reading this
book will be a pointless theoretical exercise.

Most students — especially thoughtful good students — face times when they wonder whether their hard work is
worthwhile. When (not if) this happens to you, take a break, reread this Preface, and look at Chapter 1 (“Computers, People,
and Programming”) and Chapter 22 (“Ideals and History”). There, I try to articulate what I find exciting about programming
and why I consider it a crucial tool for making a positive contribution to the world. If you wonder about my teaching
philosophy and general approach, have a look at Chapter 0 (“Notes to the Reader”).

You might find the weight of this book worrying, but it should reassure you that part of the reason for the heft is that I prefer
to repeat an explanation or add an example rather than have you search for the one and only explanation. The other major
reason is that the second half of the book is reference material and “additional material” presented for you to explore only if
you are interested in more information about a specific area of programming, such as embedded systems programming, text
analysis, or numerical computation.

And please don’t be too impatient. Learning any major new and valuable skill takes time and is worth it.

A note to teachers
No. This is not a traditional Computer Science 101 course. It is a book about how to construct working software. As such, it



leaves out much of what a computer science student is traditionally exposed to (Turing completeness, state machines, discrete
math, Chomsky grammars, etc.). Even hardware is ignored on the assumption that students have used computers in various
ways since kindergarten. This book does not even try to mention most important CS topics. It is about programming (or more
generally about how to develop software), and as such it goes into more detail about fewer topics than many traditional
courses. It tries to do just one thing well, and computer science is not a one-course topic. If this book/course is used as part of
a computer science, computer engineering, electrical engineering (many of our first students were EE majors), information
science, or whatever program, I expect it to be taught alongside other courses as part of a well-rounded introduction.

Please read Chapter 0 (“Notes to the Reader”) for an explanation of my teaching philosophy, general approach, etc. Please
try to convey those ideas to your students along the way.

ISO standard C++
C++ is defined by an ISO standard. The first ISO C++ standard was ratified in 1998, so that version of C++ is known as
C++98. I wrote the first edition of this book while working on the design of C++11. It was most frustrating not to be able to use
the novel features (such as uniform initialization, range-for-loops, move semantics, lambdas, and concepts) to simplify the
presentation of principles and techniques. However, the book was designed with C++11 in mind, so it was relatively easy to
“drop in” the features in the contexts where they belonged. As of this writing, the current standard is C++11 from 2011, and
facilities from the upcoming 2014 ISO standard, C++14, are finding their way into mainstream C++ implementations. The
language used in this book is C++11 with a few C++14 features. For example, if your compiler complains about
Click here to view code image

vector<int> v1;

vector<int> v2 {v1};        // C++14-style copy construction

use
Click here to view code image

vector<int> v1;

vector<int> v2 = v1;        // C++98-style copy construction

instead.
If your compiler does not support C++11, get a new compiler. Good, modern C++ compilers can be downloaded from a

variety of suppliers; see www.stroustrup.com/compilers.html. Learning to program using an earlier and less supportive
version of the language can be unnecessarily hard.

Support
The book’s support website, www.stroustrup.com/Programming, contains a variety of material supporting the teaching and
learning of programming using this book. The material is likely to be improved with time, but for starters, you can find

• Slides for lectures based on the book
• An instructor’s guide
• Header files and implementations of libraries used in the book
• Code for examples in the book
• Solutions to selected exercises
• Potentially useful links
• Errata

Suggestions for improvements are always welcome.
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0. Notes to the Reader

“When the terrain disagrees with
the map, trust the terrain.”

—Swiss army proverb

This chapter is a grab bag of information; it aims to give you an idea of what to expect from the rest of the book. Please skim
through it and read what you find interesting. A teacher will find most parts immediately useful. If you are reading this book
without the benefit of a good teacher, please don’t try to read and understand everything in this chapter; just look at “The
structure of this book” and the first part of the “A philosophy of teaching and learning” sections. You may want to return and
reread this chapter once you feel comfortable writing and executing small programs.

0.1 The structure of this book
0.1.1 General approach
0.1.2 Drills, exercises, etc.
0.1.3 What comes after this book?

0.2 A philosophy of teaching and learning
0.2.1 The order of topics
0.2.2 Programming and programming language
0.2.3 Portability

0.3 Programming and computer science
0.4 Creativity and problem solving
0.5 Request for feedback
0.6 References
0.7 Biographies

0.1 The structure of this book
This book consists of four parts and a collection of appendices:

• Part I, “The Basics,” presents the fundamental concepts and techniques of programming together with the C++ language
and library facilities needed to get started writing code. This includes the type system, arithmetic operations, control
structures, error handling, and the design, implementation, and use of functions and user-defined types.

• Part II, “Input and Output,” describes how to get numeric and text data from the keyboard and from files, and how to
produce corresponding output to the screen and to files. Then, it shows how to present numeric data, text, and geometric
shapes as graphical output, and how to get input into a program from a graphical user interface (GUI).

• Part III, “Data and Algorithms,” focuses on the C++ standard library’s containers and algorithms framework (the STL,
standard template library). It shows how containers (such as vector, list, and map) are implemented (using pointers,
arrays, dynamic memory, exceptions, and templates) and used. It also demonstrates the design and use of standard library
algorithms (such as sort, find, and inner_product).

• Part IV, “Broadening the View,” offers a perspective on programming through a discussion of ideals and history,
through examples (such as matrix computation, text manipulation, testing, and embedded systems programming), and
through a brief description of the C language.

• Appendices provide useful information that doesn’t fit into a tutorial presentation, such as surveys of C++ language and
standard library facilities, and descriptions of how to get started with an integrated development environment (IDE) and
a graphical user interface (GUI) library.

Unfortunately, the world of programming doesn’t really fall into four cleanly separated parts. Therefore, the “parts” of this
book provide only a coarse classification of topics. We consider it a useful classification (obviously, or we wouldn’t have
used it), but reality has a way of escaping neat classifications. For example, we need to use input operations far sooner than we
can give a thorough explanation of C++ standard I/O streams (input/output streams). Where the set of topics needed to present
an idea conflicts with the overall classification, we explain the minimum needed for a good presentation, rather than just



referring to the complete explanation elsewhere. Rigid classifications work much better for manuals than for tutorials.
The order of topics is determined by programming techniques, rather than programming language features; see §0.2. For a

presentation organized around language features, see Appendix A.

To ease review and to help you if you miss a key point during a first reading where you have yet to discover which kind of
information is crucial, we place three kinds of “alert markers” in the margin:

• Blue: concepts and techniques (this paragraph is an example of that)
• Green: advice
• Red: warning

0.1.1 General approach
In this book, we address you directly. That is simpler and clearer than the conventional “professional” indirect form of
address, as found in most scientific papers. By “you” we mean “you, the reader,” and by “we” we refer either to “ourselves,
the author and teachers,” or to you and us working together through a problem, as we might have done had we been in the same
room.

This book is designed to be read chapter by chapter from the beginning to the end. Often, you’ll want to go back to look at
something a second or a third time. In fact, that’s the only sensible approach, as you’ll always dash past some details that you
don’t yet see the point in. In such cases, you’ll eventually go back again. However, despite the index and the cross-references,
this is not a book that you can open to any page and start reading with any expectation of success. Each section and each
chapter assume understanding of what came before.

Each chapter is a reasonably self-contained unit, meant to be read in “one sitting” (logically, if not always feasible on a
student’s tight schedule). That’s one major criterion for separating the text into chapters. Other criteria include that a chapter is
a suitable unit for drills and exercises and that each chapter presents some specific concept, idea, or technique. This plurality
of criteria has left a few chapters uncomfortably long, so please don’t take “in one sitting” too literally. In particular, once you
have thought about the review questions, done the drill, and worked on a few exercises, you’ll often find that you have to go
back to reread a few sections and that several days have gone by. We have clustered the chapters into “parts” focused on a
major topic, such as input/output. These parts make good units of review.

Common praise for a textbook is “It answered all my questions just as I thought of them!” That’s an ideal for minor technical
questions, and early readers have observed the phenomenon with this book. However, that cannot be the whole ideal. We raise
questions that a novice would probably not think of. We aim to ask and answer questions that you need to consider when
writing quality software for the use of others. Learning to ask the right (often hard) questions is an essential part of learning to
think as a programmer. Asking only the easy and obvious questions would make you feel good, but it wouldn’t help make you a
programmer.

We try to respect your intelligence and to be considerate about your time. In our presentation, we aim for professionalism
rather than cuteness, and we’d rather understate a point than hype it. We try not to exaggerate the importance of a programming
technique or a language feature, but please don’t underestimate a simple statement like “This is often useful.” If we quietly
emphasize that something is important, we mean that you’ll sooner or later waste days if you don’t master it. Our use of humor
is more limited than we would have preferred, but experience shows that people’s ideas of what is funny differ dramatically
and that a failed attempt at humor can be confusing.

We do not pretend that our ideas or the tools offered are perfect. No tool, library, language, or technique is “the solution” to
all of the many challenges facing a programmer. At best, it can help you to develop and express your solution. We try hard to
avoid “white lies”; that is, we refrain from oversimplified explanations that are clear and easy to understand, but not true in the
context of real languages and real problems. On the other hand, this book is not a reference; for more precise and complete
descriptions of C++, see Bjarne Stroustrup, The C++ Programming Language, Fourth Edition (Addison-Wesley, 2013), and
the ISO C++ standard.

0.1.2 Drills, exercises, etc.



Programming is not just an intellectual activity, so writing programs is necessary to master programming skills. We provide
two levels of programming practice:

• Drills: A drill is a very simple exercise devised to develop practical, almost mechanical skills. A drill usually consists
of a sequence of modifications of a single program. You should do every drill. A drill is not asking for deep
understanding, cleverness, or initiative. We consider the drills part of the basic fabric of the book. If you haven’t done
the drills, you have not “done” the book.

• Exercises: Some exercises are trivial and others are very hard, but most are intended to leave some scope for initiative
and imagination. If you are serious, you’ll do quite a few exercises. At least do enough to know which are difficult for
you. Then do a few more of those. That’s how you’ll learn the most. The exercises are meant to be manageable without
exceptional cleverness, rather than to be tricky puzzles. However, we hope that we have provided exercises that are hard
enough to challenge anybody and enough exercises to exhaust even the best student’s available time. We do not expect
you to do them all, but feel free to try.

In addition, we recommend that you (every student) take part in a small project (and more if time allows for it). A project is
intended to produce a complete useful program. Ideally, a project is done by a small group of people (e.g., three people)
working together for about a month while working through the chapters in Part III. Most people find the projects the most fun
and what ties everything together.

Some people like to put the book aside and try some examples before reading to the end of a chapter; others prefer to read
ahead to the end before trying to get code to run. To support readers with the former preference, we provide simple suggestions
for practical work labeled “Try this” at natural breaks in the text. A Try this is generally in the nature of a drill focused
narrowly on the topic that precedes it. If you pass a Try this without trying — maybe because you are not near a computer or
you find the text riveting — do return to it when you do the chapter drill; a Try this either complements the chapter drill or is a
part of it.

At the end of each chapter you’ll find a set of review questions. They are intended to point you to the key ideas explained in
the chapter. One way to look at the review questions is as a complement to the exercises: the exercises focus on the practical
aspects of programming, whereas the review questions try to help you articulate the ideas and concepts. In that, they resemble
good interview questions.

The “Terms” section at the end of each chapter presents the basic vocabulary of programming and of C++. If you want to
understand what people say about programming topics and to articulate your own ideas, you should know what each means.

Learning involves repetition. Our ideal is to make every important point at least twice and to reinforce it with exercises.

0.1.3 What comes after this book?

At the end of this book, will you be an expert at programming and at C++? Of course not! When done well, programming is a
subtle, deep, and highly skilled art building on a variety of technical skills. You should no more expect to be an expert at
programming in four months than you should expect to be an expert in biology, in math, in a natural language (such as Chinese,
English, or Danish), or at playing the violin in four months — or in half a year, or a year. What you should hope for, and what
you can expect if you approach this book seriously, is to have a really good start that allows you to write relatively simple
useful programs, to be able to read more complex programs, and to have a good conceptual and practical background for
further work.

The best follow-up to this initial course is to work on a real project developing code to be used by someone else. After that,
or (even better) in parallel with a real project, read either a professional-level general textbook (such as Stroustrup, The C++
Programming Language), a more specialized book relating to the needs of your project (such as Qt for GUI, or ACE for
distributed programming), or a textbook focusing on a particular aspect of C++ (such as Koenig and Moo, Accelerated C++;
Sutter’s Exceptional C++; or Gamma et al., Design Patterns). For more references, see §0.6 or the Bibliography section at the
back of the book.

Eventually, you should learn another programming language. We don’t consider it possible to be a professional in the realm
of software — even if you are not primarily a programmer — without knowing more than one language.

0.2 A philosophy of teaching and learning
What are we trying to help you learn? And how are we approaching the process of teaching? We try to present the minimal
concepts, techniques, and tools for you to do effective practical programs, including



• Program organization
• Debugging and testing
• Class design
• Computation
• Function and algorithm design
• Graphics (two-dimensional only)
• Graphical user interfaces (GUIs)
• Text manipulation
• Regular expression matching
• Files and stream input and output (I/O)
• Memory management
• Scientific/numerical/engineering calculations
• Design and programming ideals
• The C++ standard library
• Software development strategies
• C-language programming techniques

Working our way through these topics, we cover the programming techniques called procedural programming (as with the C
programming language), data abstraction, object-oriented programming, and generic programming. The main topic of this book
is programming, that is, the ideals, techniques, and tools of expressing ideas in code. The C++ programming language is our
main tool, so we describe many of C++’s facilities in some detail. But please remember that C++ is just a tool, rather than the
main topic of this book. This is “programming using C++,” not “C++ with a bit of programming theory.”

Each topic we address serves at least two purposes: it presents a technique, concept, or principle and also a practical
language or library feature. For example, we use the interface to a two-dimensional graphics system to illustrate the use of
classes and inheritance. This allows us to be economical with space (and your time) and also to emphasize that programming is
more than simply slinging code together to get a result as quickly as possible. The C++ standard library is a major source of
such “double duty” examples — many even do triple duty. For example, we introduce the standard library vector, use it to
illustrate widely useful design techniques, and show many of the programming techniques used to implement it. One of our aims
is to show you how major library facilities are implemented and how they map to hardware. We insist that craftsmen must
understand their tools, not just consider them “magical.”

Some topics will be of greater interest to some programmers than to others. However, we encourage you not to prejudge
your needs (how would you know what you’ll need in the future?) and at least look at every chapter. If you read this book as
part of a course, your teacher will guide your selection.

We characterize our approach as “depth-first.” It is also “concrete-first” and “concept-based.” First, we quickly (well,
relatively quickly, Chapters 1–11) assemble a set of skills needed for writing small practical programs. In doing so, we
present a lot of tools and techniques in minimal detail. We focus on simple concrete code examples because people grasp the
concrete faster than the abstract. That’s simply the way most humans learn. At this initial stage, you should not expect to
understand every little detail. In particular, you’ll find that trying something slightly different from what just worked can have
“mysterious” effects. Do try, though! And please do the drills and exercises we provide. Just remember that early on you just
don’t have the concepts and skills to accurately estimate what’s simple and what’s complicated; expect surprises and learn
from them.

We move fast in this initial phase — we want to get you to the point where you can write interesting programs as fast as
possible. Someone will argue, “We must move slowly and carefully; we must walk before we can run!” But have you ever
watched a baby learning to walk? Babies really do run by themselves before they learn the finer skills of slow, controlled
walking. Similarly, you will dash ahead, occasionally stumbling, to get a feel of programming before slowing down to gain the
necessary finer control and understanding. You must run before you can walk!

It is essential that you don’t get stuck in an attempt to learn “everything” about some language detail or technique. For



example, you could memorize all of C++’s built-in types and all the rules for their use. Of course you could, and doing so
might make you feel knowledgeable. However, it would not make you a programmer. Skipping details will get you “burned”
occasionally for lack of knowledge, but it is the fastest way to gain the perspective needed to write good programs. Note that
our approach is essentially the one used by children learning their native language and also the most effective approach used to
teach foreign languages. We encourage you to seek help from teachers, friends, colleagues, instructors, Mentors, etc. on the
inevitable occasions when you are stuck. Be assured that nothing in these early chapters is fundamentally difficult. However,
much will be unfamiliar and might therefore feel difficult at first.

Later, we build on the initial skills to broaden your base of knowledge and skills. We use examples and exercises to solidify
your understanding, and to provide a conceptual base for programming.

We place a heavy emphasis on ideals and reasons. You need ideals to guide you when you look for practical solutions — to
know when a solution is good and principled. You need to understand the reasons behind those ideals to understand why they
should be your ideals, why aiming for them will help you and the users of your code. Nobody should be satisfied with
“because that’s the way it is” as an explanation. More importantly, an understanding of ideals and reasons allows you to
generalize from what you know to new situations and to combine ideas and tools in novel ways to address new problems.
Knowing “why” is an essential part of acquiring programming skills. Conversely, just memorizing lots of poorly understood
rules and language facilities is limiting, a source of errors, and a massive waste of time. We consider your time precious and
try not to waste it.

Many C++ language-technical details are banished to appendices and manuals, where you can look them up when needed.
We assume that you have the initiative to search out information when needed. Use the index and the table of contents. Don’t
forget the online help facilities of your compiler, and the web. Remember, though, to consider every web resource highly
suspect until you have reason to believe better of it. Many an authoritative-looking website is put up by a programming novice
or someone with something to sell. Others are simply outdated. We provide a collection of links and information on our
support website: www.stroustrup.com/Programming.

Please don’t be too impatient for “realistic” examples. Our ideal example is the shortest and simplest code that directly
illustrates a language facility, a concept, or a technique. Most real-world examples are far messier than ours, yet do not consist
of more than a combination of what we demonstrate. Successful commercial programs with hundreds of thousands of lines of
code are based on techniques that we illustrate in a dozen 50-line programs. The fastest way to understand real-world code is
through a good understanding of the fundamentals.

On the other hand, we do not use “cute examples involving cuddly animals” to illustrate our points. We assume that you aim
to write real programs to be used by real people, so every example that is not presented as language-technical is taken from a
real-world use. Our basic tone is that of professionals addressing (future) professionals.

0.2.1 The order of topics

There are many ways to teach people how to program. Clearly, we don’t subscribe to the popular “the way I learned to
program is the best way to learn” theories. To ease learning, we early on present topics that would have been considered
advanced only a few years ago. Our ideal is for the topics we present to be driven by problems you meet as you learn to
program, to flow smoothly from topic to topic as you increase your understanding and practical skills. The major flow of this
book is more like a story than a dictionary or a hierarchical order.

It is impossible to learn all the principles, techniques, and language facilities needed to write a program at once.
Consequently, we have to choose a subset of principles, techniques, and features to start with. More generally, a textbook or a
course must lead students through a series of subsets. We consider it our responsibility to select topics and to provide
emphasis. We can’t just present everything, so we must choose; what we leave out is at least as important as what we leave in
— at each stage of the journey.

For contrast, it may be useful for you to see a list of (severely abbreviated) characterizations of approaches that we decided
not to take:

• “C first”: This approach to learning C++ is wasteful of students’ time and leads to poor programming practices by
forcing students to approach problems with fewer facilities, techniques, and libraries than necessary. C++ provides
stronger type checking than C, a standard library with better support for novices, and exceptions for error handling.

• Bottom-up: This approach distracts from learning good and effective programming practices. By forcing students to
solve problems with insufficient support from the language and libraries, it promotes poor and wasteful programming
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practices.
• “If you present something, you must present it fully”: This approach implies a bottom-up approach (by drilling deeper

and deeper into every topic touched). It bores novices with technical details they have no interest in and quite likely will
not need for years to come. Once you can program, you can look up technical details in a manual. Manuals are good at
that, whereas they are awful for initial learning of concepts.

• Top-down: This approach, working from first principles toward details, tends to distract readers from the practical
aspects of programming and force them to concentrate on high-level concepts before they have any chance of appreciating
their importance. For example, you simply can’t appreciate proper software development principles before you have
learned how easy it is to make a mistake in a program and how hard it can be to correct it.

• “Abstract first”: Focusing on general principles and protecting the student from nasty real-world constraints can lead to
a disdain for real-world problems, languages, tools, and hardware constraints. Often, this approach is supported by
“teaching languages” that cannot be used later and (deliberately) insulate students from hardware and system concerns.

• “Software engineering principles first”: This approach and the abstract-first approach tend to share the problems of the
top-down approach: without concrete examples and practical experience, you simply cannot appreciate the value of
abstraction and proper software development practices.

• “Object-oriented from day one”: Object-oriented programming is one of the best ways of organizing code and
programming efforts, but it is not the only effective way. In particular, we feel that a grounding in the basics of types and
algorithmic code is a prerequisite for appreciation of the design of classes and class hierarchies. We do use user-defined
types (what some people would call “objects”) from day one, but we don’t show how to design a class until Chapter 6
and don’t show a class hierarchy until Chapter 12.

• “Just believe in magic”: This approach relies on demonstrations of powerful tools and techniques without introducing
the novice to the underlying techniques and facilities. This leaves the student guessing — and usually guessing wrong —
about why things are the way they are, what it costs to use them, and where they can be reasonably applied. This can lead
to overrigid following of familiar patterns of work and become a barrier to further learning.

Naturally, we do not claim that these other approaches are never useful. In fact, we use several of these for specific subtopics
where their strengths can be appreciated. However, as general approaches to learning programming aimed at real-world use,
we reject them and apply our alternative: concrete-first and depth-first with an emphasis on concepts and techniques.

0.2.2 Programming and programming language

We teach programming first and treat our chosen programming language as secondary, as a tool. Our general approach can be
used with any general-purpose programming language. Our primary aim is to help you learn general concepts, principles, and
techniques. However, those cannot be appreciated in isolation. For example, details of syntax, the kinds of ideas that can be
directly expressed, and tool support differ from programming language to programming language. However, many of the
fundamental techniques for producing bug-free code, such as writing logically simple code (Chapters 5 and 6), establishing
invariants (§9.4.3), and separating interfaces from implementation details (§9.7 and §14.1–2), vary little from programming
language to programming language.

Programming and design techniques must be learned using a programming language. Design, code organization, and
debugging are not skills you can acquire in the abstract. You need to write code in some programming language and gain
practical experience with that. This implies that you must learn the basics of a programming language. We say “the basics”
because the days when you could learn all of a major industrial language in a few weeks are gone for good. The parts of C++
we present were chosen as the subset that most directly supports the production of good code. Also, we present C++ features
that you can’t avoid encountering either because they are necessary for logical completeness or are common in the C++
community.

0.2.3 Portability

It is common to write C++ to run on a variety of machines. Major C++ applications run on machines we haven’t ever heard of!
We consider portability and the use of a variety of machine architectures and operating systems most important. Essentially
every example in this book is not only ISO Standard C++, but also portable. Unless specifically stated, the code we present
should work on every C++ implementation and has been tested on several machines and operating systems.

The details of how to compile, link, and run a C++ program differ from system to system. It would be tedious to mention the



details of every system and every compiler each time we need to refer to an implementation issue. In Appendix C, we give the
most basic information about getting started using Visual Studio and Microsoft C++ on a Windows machine.

If you have trouble with one of the popular, but rather elaborate, IDEs (integrated development environments), we suggest
you try working from the command line; it’s surprisingly simple. For example, here is the full set of commands needed to
compile, link, and execute a simple program consisting of two source files, my_file1.cpp and my_file2.cpp, using the GNU
C++ compiler on a Unix or Linux system:
Click here to view code image

c++ –o my_program my_file1.cpp my_file2.cpp

./my_program

Yes, that really is all it takes.

0.3 Programming and computer science
Is programming all that there is to computer science? Of course not! The only reason we raise this question is that people have
been known to be confused about this. We touch upon major topics from computer science, such as algorithms and data
structures, but our aim is to teach programming: the design and implementation of programs. That is both more and less than
most accepted notions of computer science:

• More, because programming involves many technical skills that are not usually considered part of any science
• Less, because we do not systematically present the foundation for the parts of computer science we use

The aim of this book is to be part of a course in computer science (if becoming a computer scientist is your aim), to be the
foundation for the first of many courses in software construction and maintenance (if your aim is to become a programmer or a
software engineer), and in general to be part of a greater whole.

We rely on computer science throughout and we emphasize principles, but we teach programming as a practical skill based
on theory and experience, rather than as a science.

0.4 Creativity and problem solving
The primary aim of this book is to help you to express your ideas in code, not to teach you how to get those ideas. Along the
way, we give many examples of how we can address a problem, usually through analysis of a problem followed by gradual
refinement of a solution. We consider programming itself a form of problem solving: only through complete understanding of a
problem and its solution can you express a correct program for it, and only through constructing and testing a program can you
be certain that your understanding is complete. Thus, programming is inherently part of an effort to gain understanding.
However, we aim to demonstrate this through examples, rather than through “preaching” or presentation of detailed
prescriptions for problem solving.

0.5 Request for feedback
We don’t think that the perfect textbook can exist; the needs of individuals differ too much for that. However, we’d like to make
this book and its supporting materials as good as we can make them. For that, we need feedback; a good textbook cannot be
written in isolation from its readers. Please send us reports on errors, typos, unclear text, missing explanations, etc. We’d also
appreciate suggestions for better exercises, better examples, and topics to add, topics to delete, etc. Constructive comments
will help future readers and we’ll post errata on our support website: www.stroustrup.com/Programming.
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0.7 Biographies
You might reasonably ask, “Who are these guys who want to teach me how to program?” So here is some biographical
information. I, Bjarne Stroustrup, wrote this book, and together with Lawrence “Pete” Petersen, I designed and taught the
university-level beginner’s (first-year) course that was developed concurrently with the book, using drafts of the book.

Bjarne Stroustrup

I’m the designer and original implementer of the C++ programming language. I have used the language, and many other
programming languages, for a wide variety of programming tasks over the last 40 years or so. I just love elegant and efficient
code used in challenging applications, such as robot control, graphics, games, text analysis, and networking. I have taught
design, programming, and C++ to people of essentially all abilities and interests. I’m a founding member of the ISO standards
committee for C++ where I serve as the chair of the working group for language evolution.

This is my first introductory book. My other books, such as The C++ Programming Language and The Design and
Evolution of C++, were written for experienced programmers.

I was born into a blue-collar (working-class) family in Århus, Denmark, and got my master’s degree in mathematics with
computer science in my hometown university. My Ph.D. in computer science is from Cambridge University, England. I worked
for AT&T for about 25 years, first in the famous Computer Science Research Center of Bell Labs — where Unix, C, C++, and
so much more was invented — and later in AT&T Labs–Research.

I’m a member of the U.S. National Academy of Engineering, a Fellow of the ACM, and an IEEE Fellow. As the first
computer scientist ever, I received the 2005 William Procter Prize for Scientific Achievement from Sigma Xi (the scientific
research society). In 2010, I received the University of Åarhus’s oldest and most prestigious honor for contributions to science
by a person associated with the university, the Rigmor og Carl Holst-Knudsens Videnskapspris. In 2013, I was made
Honorary Doctor of Computer Science from the National Research University, ITMO, St. Petersburg, Russia.

I do have a life outside work. I’m married and have two children, one a medical doctor and one a Post-doctoral Research
Fellow. I read a lot (including history, science fiction, crime, and current affairs) and like most kinds of music (including
classical, rock, blues, and country). Good food with friends is an essential part of life, and I enjoy visiting interesting places
and people, all over the world. To be able to enjoy the good food, I run.

For more information, see my home pages: www.stroustrup.com. In particular, there you can find out how to pronounce my
name.

Lawrence “Pete” Petersen

http://www.stroustrup.com


In late 2006, Pete introduced himself as follows: “I am a teacher. For almost 20 years, I have taught programming languages at
Texas A&M. I have been selected by students for Teaching Excellence Awards five times and in 1996 received the
Distinguished Teaching Award from the Alumni Association for the College of Engineering. I am a Fellow of the Wakonse
Program for Teaching Excellence and a Fellow of the Academy for Educator Development.

“As the son of an army officer, I was raised on the move. After completing a degree in philosophy at the University of
Washington, I served in the army for 22 years as a Field Artillery Officer and as a Research Analyst for Operational Testing. I
taught at the Field Artillery Officers’ Advanced Course at Fort Sill, Oklahoma, from 1971 to 1973. In 1979 I helped organize a
Test Officers’ Training Course and taught it as lead instructor at nine different locations across the United States from 1978 to
1981 and from 1985 to 1989.

“In 1991 I formed a small software company that produced management software for university departments until 1999. My
interests are in teaching, designing, and programming software that real people can use. I completed master’s degrees in
industrial engineering at Georgia Tech and in education curriculum and instruction at Texas A&M. I also completed a master’s
program in microcomputers from NTS. My Ph.D. is in information and operations management from Texas A&M.

“My wife, Barbara, and I live in Bryan, Texas. We like to travel, garden, and entertain; and we spend as much time as we
can with our sons and their families, and especially with our grandchildren, Angelina, Carlos, Tess, Avery, Nicholas, and
Jordan.”

Sadly, Pete died of lung cancer in 2007. Without him, the course would never have succeeded.

Postscript
Most chapters provide a short “postscript” that attempts to give some perspective on the information presented in the chapter.
We do that with the realization that the information can be — and often is — daunting and will only be fully comprehended
after doing exercises, reading further chapters (which apply the ideas of the chapter), and a later review. Don’t panic! Relax;
this is natural and expected. You won’t become an expert in a day, but you can become a reasonably competent programmer as
you work your way through the book. On the way, you’ll encounter much information, many examples, and many techniques that
lots of programmers have found stimulating and fun.



1. Computers, People, and Programming

“Specialization is for insects.”
—R. A. Heinlein

In this chapter, we present some of the things that we think make programming important, interesting, and fun. We also present a
few fundamental ideas and ideals. We hope to debunk a couple of popular myths about programming and programmers. This is
a chapter to skim for now and to return to later when you are struggling with some programming problem and wondering if it’s
all worth it.

1.1 Introduction
1.2 Software
1.3 People
1.4 Computer science
1.5 Computers are everywhere

1.5.1 Screens and no screens
1.5.2 Shipping
1.5.3 Telecommunications
1.5.4 Medicine
1.5.5 Information
1.5.6 A vertical view
1.5.7 So what?

1.6 Ideals for programmers

1.1 Introduction
Like most learning, learning how to program is a chicken and egg problem: We want to get started, but we also want to know
why what we are about to learn matters. We want to learn a practical skill, but also make sure it is not just a passing fad. We
want to know that we are not going to waste our time, but don’t want to be bored by still more hype and moralizing. For now,
just read as much of this chapter as seems interesting and come back later when you feel the need to refresh your memory of
why the technical details matter outside the classroom.

This chapter is a personal statement of what we find interesting and important about programming. It explains what
motivates us to keep going in this field after decades. This is a chapter to read to get an idea of possible ultimate goals and an
idea of what kind of person a programmer might be. A beginner’s technical book inevitably contains much pretty basic stuff. In
this chapter, we lift our eyes from the technical details and consider the big picture: Why is programming a worthwhile
activity? What is the role of programming in our civilization? Where can a programmer make contributions to be proud of?
Where does programming fit into the greater world of software development, deployment, and maintenance? When people talk
about “computer science,” “software engineering,” “information technology,” etc., where does programming fit into the
picture? What does a programmer do? What skills does a good programmer have?

To a student, the most urgent reason for understanding an idea, a technique, or a chapter may be to pass a test with a good
grade — but there has to be more to learning than that! To someone working in the software industry, the most urgent reason for
understanding an idea, a technique, or a chapter may be to find something that can help with the current project and that will not
annoy the boss who controls the next paycheck, promotions, and firings — but there has to be more to learning than that! We
work best when we feel that our work in some small way makes the world a better place for people to live in. For tasks that
we perform over a period of years (the “things” that professions and careers are made of), ideals and more abstract ideas are
crucial.

Our civilization runs on software. Improving software and finding new uses for software are two of the ways an individual
can help improve the lives of many. Programming plays an essential role in that.

1.2 Software



Good software is invisible. You can’t see it, feel it, weigh it, or knock on it. Software is a collection of programs running on
some computer. Sometimes, we can see the computer. Often, we can see only something that contains the computer, such as a
telephone, a camera, a bread maker, a car, or a wind turbine. We can see what that software does. We can be annoyed or hurt if
it doesn’t do what it is supposed to do. We can be annoyed or hurt if what it is supposed to do doesn’t suit our needs.

How many computers are there in the world? We don’t know; billions at least. There may be more computers in the world
than people. We need to count servers, desktop computers, laptops, tablets, smartphones, and computers embedded in
“gadgets.”

How many computers do you (more or less directly) use every day? There are more than 30 computers in my car, two in my
cell phone, one in my MP3 player, and one in my camera. Then there is my laptop (on which the page you are reading is being
written) and my desktop machine. The air-conditioning controller that keeps the summer heat and humidity at bay is a simple
computer. There is one controlling the computer science department’s elevator. If you use a modern television, there will be at
least one computer in there somewhere. A bit of web surfing gets you into direct contact with dozens — possibly hundreds —
of servers through a telecommunications system consisting of many thousands of computers — telephone switches, routers, and
so on.

No, I do not drive around with 30 laptops on the backseat of my car! The point is that most computers do not look like the
popular image of a computer (with a screen, a keyboard, a mouse, etc.); they are small “parts” embedded in the equipment we
use. So, that car has nothing that looks like a computer, not even a screen to display maps and driving directions (though such
gadgets are popular in other cars). However, its engine contains quite a few computers, doing things like fuel injection control
and temperature monitoring. The power-assisted steering involves at least one computer, the radio and the security system
contain some, and we suspect that even the open/close controls of the windows are computer controlled. Newer models even
have computers that continuously monitor tire pressure.

How many computers do you depend on for what you do during a day? You eat; if you live in a modern city, getting the food
to you is a major effort requiring minor miracles of planning, transport, and storage. The management of the distribution
networks is of course computerized, as are the communication systems that stitch them all together. Modern farming is highly
computerized; next to the cow barn you find computers used to monitor the herd (ages, health, milk production, etc.), farm
equipment is increasingly computerized, and the number of forms required by the various branches of government can make any
honest farmer cry. If something goes wrong, you can read all about it in your newspaper; of course, the articles in that paper
were written on computers, set on the page by computers, and (if you still read the “dead tree edition”) printed by
computerized equipment — often after having been electronically transmitted to the printing plant. Books are produced in the
same way. If you have to commute, the traffic flows are monitored by computers in a (usually vain) attempt to avoid traffic
jams. You prefer to take the train? That train will also be computerized; some even operate without a driver, and the train’s
subsystems, such as announcements, braking, and ticketing, involve lots of computers. Today’s entertainment industry (music,
movies, television, stage shows) is among the largest users of computers. Even non-cartoon movies use (computer) animation
heavily; music and photography are also digital (i.e., using computers) for both recording and delivery. Should you become ill,
the tests your doctor orders will involve computers, the medical records are often computerized, and most of the medical
equipment you’ll encounter if you are sent to a hospital to be cured contains computers. Unless you happen to be staying in a
cottage in the woods without access to any electrically powered gadgets (including light bulbs), you use energy. Oil is found,
extracted, processed, and distributed through a system using computers every step along the way, from the drill bit deep in the
ground to your local gas (petrol) pump. If you pay for that gas with a credit card, you again exercise a whole host of computers.
It is the same story for coal, gas, solar, and wind power.

The examples so far are all “operational”; they are directly involved in what you are doing. Once removed from that is the
important and interesting area of design. The clothes you wear, the telephone you talk into, and the coffee machine that
dispenses your favorite brew were designed and manufactured using computers. The superior quality of modern photographic
lenses and the exquisite shapes in the design of modern everyday gadgets and utensils owe almost everything to computer-
based design and production methods. The craftsmen/designers/artists/engineers who design our environment have been freed
from many physical constraints previously considered fundamental. If you get ill, the medicines given to cure you will have
been designed using computers.

Finally, research — science itself — relies heavily on computers. The telescopes that probe the secrets of distant stars
could not be designed, built, or operated without computers, and the masses of data they produce couldn’t be analyzed and
understood without computers. An individual biology field researcher may not be heavily computerized (unless, of course, a
camera, a digital tape recorder, a telephone, etc. are used), but back in the lab, the data has to be stored, analyzed, checked
against computer models, and communicated to fellow scientists. Modern chemistry and biology — including medical research
— use computers to an extent undreamed of a few years ago and still unimagined by most people. The human genome was
sequenced by computers. Or — let’s be precise — the human genome was sequenced by humans using computers. In all of
these examples, we see computers as something that enables us to do something we would have had a harder time doing



without computers.
Every one of those computers runs software. Without software, they would just be expensive lumps of silicon, metal, and

plastic: doorstops, boat anchors, and space heaters. Every line of that software was written by some individual. Every one of
those lines that was actually executed was minimally reasonable, if not correct. It’s amazing that it all works! We are talking
about billions of lines of code (program text) in hundreds of programming languages. Getting all that to work took a staggering
amount of effort and involved an unimaginable number of skills. We want further improvements to essentially every service
and gadget we depend on. Just think of any one service and gadget you rely on; what would you like to see improved? If
nothing else, we want our services and gadgets smaller (or bigger), faster, more reliable, with more features, easier to use,
with higher capacity, better looking, and cheaper. The likelihood is that the improvement you thought of requires some
programming.

1.3 People

Computers are built by people for the use of people. A computer is a very generic tool; it can be used for an unimaginable
range of tasks. It takes a program to make it useful to someone. In other words, a computer is just a piece of hardware until
someone — some programmer — writes code for it to do something useful. We often forget about the software. Even more
often, we forget about the programmer.

Hollywood and similar “popular culture” sources of disinformation have assigned largely negative images to programmers.
For example, we have all seen the solitary, fat, ugly nerd with no social skills who is obsessed with video games and breaking
into other people’s computers. He (almost always a male) is as likely to want to destroy the world as he is to want to save it.
Obviously, milder versions of such caricatures exist in real life, but in our experience they are no more frequent among
software developers than they are among lawyers, police officers, car salesmen, journalists, artists, or politicians.

Think about the applications of computers you know from your own life. Were they done by a loner in a dark room? Of
course not; the creation of a successful piece of software, computerized gadget, or system involves dozens, hundreds, or
thousands of people performing a bewildering set of roles: for example, programmers, (program) designers, testers, animators,
focus group managers, experimental psychologists, user interface designers, analysts, system administrators, customer relations
people, sound engineers, project managers, quality engineers, statisticians, hardware interface engineers, requirements
engineers, safety officers, mathematicians, sales support personnel, troubleshooters, network designers, methodologists,
software tools managers, software librarians, etc. The range of roles is huge and made even more bewildering by the titles
varying from organization to organization: one organization’s “engineer” may be another organization’s “programmer” and yet
another organization’s “developer,” “member of technical staff,” or “architect.” There are even organizations that let their
employees pick their own titles. Not all of these roles directly involve programming. However, we have personally seen
examples of people performing each of the roles mentioned while reading or writing code as an essential part of their job.
Additionally, a programmer (performing any of these roles, and more) may over a short period of time interact with a wide
range of people from application areas, such as biologists, engine designers, lawyers, car salesmen, medical researchers,
historians, geologists, astronauts, airplane engineers, lumberyard managers, rocket scientists, bowling alley builders,
journalists, and animators (yes, this is a list drawn from personal experience). Someone may also be a programmer at times
and fill non-programming roles at other stages of a professional career.

The myth of a programmer being isolated is just that: a myth. People who like to work on their own choose areas of work
where that is most feasible and usually complain bitterly about the number of “interruptions” and meetings. People who prefer
to interact with other people have an easier time because modern software development is a team activity. The implication is
that social and communication skills are essential and valued far more than the stereotypes indicate. On a short list of highly
desirable skills for a programmer (however you realistically define programmer), you find the ability to communicate well —
with people from a wide variety of backgrounds — informally, in meetings, in writing, and in formal presentations. We are
convinced that until you have completed a team project or two, you have no idea of what programming is and whether you
really like it. Among the things we like about programming are all the nice and interesting people we meet and the variety of
places we get to visit as part of our professional lives.

One implication of all this is that people with a wide variety of skills, interests, and work habits are essential for producing
good software. Our quality of life depends on those people — sometimes even our life itself. No one person could fill all the
roles we mention here; no sensible person would want every role. The point is that you have a wider choice than you could
possibly imagine; not that you have to make any particular choice. As an individual you will “drift” toward areas of work that
match your skills, talents, and interests.

We talk about “programmers” and “programming,” but obviously programming is only part of the overall picture. The
people who design a ship or a cell phone don’t think of themselves as programmers. Programming is an important part of



software development, but not all there is to software development. Similarly, for most products, software development is an
important part of product development, but not all there is to product development.

We do not assume that you — our reader — want to become a professional programmer and spend the rest of your working
life writing code. Even the best programmers — especially the best programmers — spend most of their time not writing code.
Understanding problems takes serious time and often requires significant intellectual effort. That intellectual challenge is what
many programmers refer to when they say that programming is interesting. Many of the best programmers also have degrees in
subjects not usually considered part of computer science. For example, if you work on software for genomic research, you will
be much more effective if you understand some molecular biology. If you work on programs for analyzing medieval literature,
you could be much better off reading a bit of that literature and maybe even knowing one or more of the relevant languages. In
particular, a person with an “all I care about is computers and programming” attitude will be incapable of interacting with his
or her non-programmer colleagues. Such a person will not only miss out on the best parts of human interactions (i.e., life) but
also be a bad software developer.

So, what do we assume? Programming is an intellectually challenging set of skills that are part of many important and
interesting technical disciplines. In addition, programming is an essential part of our world, so not knowing the basics of
programming is like not knowing the basics of physics, history, biology, or literature. Someone totally ignorant of programming
is reduced to believing in magic and is dangerous in many technical roles. If you read Dilbert, think of the pointy-haired boss
as the kind of manager you don’t want to meet or (far worse) become. In addition, programming can be fun.

But what do we assume you might use programming for? Maybe you will use programming as a key tool in your further
studies and work without becoming a professional programmer. Maybe you will interact with other people professionally and
personally in ways where a basic knowledge of programming will be an advantage, maybe as a designer, writer, manager, or
scientist. Maybe you will do programming at a professional level as part of your studies or work. Even if you do become a
professional programmer it is unlikely that you will do nothing but programming.

You might become an engineer focusing on computers or a computer scientist, but even then you will not “program all the
time.” Programming is a way of presenting ideas in code — a way of aiding problem solving. It is nothing — absolutely a
waste of time — unless you have ideas that are worth presenting and problems worth solving.

This is a book about programming and we have promised to help you learn how to program, so why do we emphasize non-
programming subjects and the limited role of programming? A good programmer understands the role of code and
programming technique in a project. A good programmer is (at most times) a good team player and tries hard to understand
how the code and its production best support the overall project. For example, imagine that I worked on a new MP3 player
(maybe to be part of a smartphone or a tablet) and all that I cared about was the beauty of my code and the number of neat
features I could provide. I would probably insist on the largest, most powerful computer to run my code. I might disdain the
theory of sound encoding because it is “not programming.” I would stay in my lab, rather than go out to meet potential users,
who undoubtedly would have bad tastes in music anyway and would not appreciate the latest advances in GUI (graphical user
interface) programming. The likely result would be disaster for the project. A bigger computer would mean a costlier MP3
player and most likely a shorter battery life. Encoding is an essential part of handling music digitally, so failing to pay attention
to advances in encoding techniques could lead to increased memory requirements for each song (encodings differ by as much
as 100% for the same-quality output). A disregard for users’ preferences — however odd and archaic they may seem to you —
typically leads to the users choosing some other product. An essential part of writing a good program is to understand the needs
of the users and the constraints that those needs place on the implementation (i.e., the code). To complete this caricature of a
bad programmer, we just have to add a tendency to deliver late because of an obsession with details and an excessive
confidence in the correctness of lightly tested code. We encourage you to become a good programmer, with a broad view of
what it takes to produce good software. That’s where both the value to society and the keys to personal satisfaction lie.

1.4 Computer science
Even by the broadest definition, programming is best seen as a part of something greater. We can see it as a subdiscipline of
computer science, computer engineering, software engineering, information technology, or any other software-related
discipline. We see programming as an enabling technology for those computer and information fields of science and
engineering, as well as for physics, biology, medicine, history, literature, and any other academic or research field.

Consider computer science. A 1995 U.S. government “blue book” defines it like this: “The systematic study of computing
systems and computation. The body of knowledge resulting from this discipline contains theories for understanding computing
systems and methods; design methodology, algorithms, and tools; methods for the testing of concepts; methods of analysis and
verification; and knowledge representation and implementation.” As we would expect, the Wikipedia entry is less formal:
“Computer science, or computing science, is the study of the theoretical foundations of information and computation and their



implementation and application in computer systems. Computer science has many sub-fields; some emphasize the computation
of specific results (such as computer graphics), while others (such as computational complexity theory) relate to properties of
computational problems. Still others focus on the challenges in implementing computations. For example, programming
language theory studies approaches to describing computations, while computer programming applies specific programming
languages to solve specific computational problems.”

Programming is a tool; it is a fundamental tool for expressing solutions to fundamental and practical problems so that they
can be tested, improved through experiment, and used. Programming is where ideas and theories meet reality. This is where
computer science can become an experimental discipline, rather than pure theory, and impact the world. In this context, as in
many others, it is essential that programming is an expression of well-tried practices as well as the theories. It must not
degenerate into mere hacking: just get some code written, any old way that meets an immediate need.

1.5 Computers are everywhere
Nobody knows everything there is to know about computers or software. This section just gives you a few examples. Maybe
you’ll see something you like. At least you might be convinced that the scope of computer use — and through that, programming
— is far larger than any individual can fully grasp.

Most people think of a computer as a small gray box attached to a screen and a keyboard. Such computers tend to be good at
games, messaging and email, and playing music. Other computers, called laptops, are used on planes by bored businessmen to
look at spreadsheets, play games, and watch videos. This caricature is just the tip of the iceberg. Most computers work out of
our sight and are part of the systems that keep our civilization going. Some fill rooms; others are smaller than a small coin.
Many of the most interesting computers don’t directly interact with a human through a keyboard, mouse, or similar gadget.

1.5.1 Screens and no screens
The idea of a computer as a fairly large rectangular box with a screen and a keyboard is common and often hard to shake off.
However, consider these two computers:

Both of these “gadgets” (which happen to be watches) are primarily computers. In fact, we conjecture that they are essentially
the same model computer with different I/O (input/output) systems. The left one drives a small screen (similar to the screens on
conventional computers, but smaller) and the second drives little electric motors controlling traditional clock hands and a disk
of numbers for day-of-month readout. Their input systems are the four buttons (more easily seen on the right-hand watch) and a
radio receiver, used for synchronization with very high-precision “atomic” clocks. Most of the programs controlling these two
computers are shared between them.

1.5.2 Shipping
These two photos show a large marine diesel engine and the kind of huge ship that it may power:



Consider where computers and software play key roles here:
• Design: Of course, the ship and the engine were both designed using computers. The list of uses is almost endless and

includes architectural and engineering drawings, general calculations, visualization of spaces and parts, and simulations
of the performance of parts.

• Construction: A modern shipyard is heavily computerized. The assembly of a ship is carefully planned using computers,
and the work is guided by computers. Welding is done by robots. In particular, a modern double-hulled tanker couldn’t
be built without little welding robots to do the welding from within the space between the hulls. There just isn’t room for
a human in there. Cutting steel plates for a ship was one of the world’s first CAD/CAM (computer-aided design and
computer-aided manufacture) applications.

• The engine: The engine has electronic fuel injection and is controlled by a few dozen computers. For a 100,000-
horsepower engine (like the one in the photo), that’s a nontrivial task. For example, the engine management computers
continuously adjust fuel mix to minimize the pollution that would result from a badly tuned engine. Many of the pumps
associated with the engine (and other parts of the ship) are themselves computerized.

• Management: Ships sail where there is cargo to pick up and to deliver. The scheduling of fleets of ships is a continuing
process (computerized, of course) so that routings change with the weather, with supply and demand, and with space and
loading capacity of harbors. There are even websites where you can watch the position of major merchant vessels at any
time. The ship in the photo happens to be a container vessel (one of the largest such in the world; 397m long and 56m
wide), but other kinds of large modern ships are managed in similar ways.

• Monitoring: An oceangoing ship is largely autonomous; that is, its crew can handle most contingencies likely to arise
before the next port. However, they are also part of a globe-spanning network. The crew has access to reasonably
accurate weather information (from and through — computerized — satellites). They have a GPS (global positioning
system) and computer-controlled and computer-enhanced radar. If the crew needs a rest, most systems (including the
engine, radar, etc.) can be monitored (via satellite) from a shipping-line control room. If anything unusual is spotted, or if
the connection “back home” is broken, the crew is notified.

Consider the implication of a failure of one of the hundreds of computers explicitly mentioned or implied in this brief
description. Chapter 25 (“Embedded Systems Programming”) examines this in slightly more detail. Writing code for a modern
ship is a skilled and interesting activity. It is also useful. The cost of sea transport is really amazingly low. You appreciate that
when you buy something that wasn’t manufactured locally. Sea transport has always been cheaper than land transport; these
days one of the reasons is serious use of computers and information.

1.5.3 Telecommunications
These two photos show a telephone switch and a telephone (that also happens to be a camera, an MP3 player, an FM radio, a
web browser, and much more):



Consider where computers and software play key roles here. You pick up a telephone and “dial,” the person you dialed
answers, and you talk. Or maybe you get to leave a voicemail, or maybe you send a photo from your phone camera, or maybe
you send a text message (hit Send and let the phone do the dialing). Obviously the phone is a computer. This is especially
obvious if the phone (like most mobile phones) has a screen and allows more than traditional “plain old telephone services,”
such as web browsing. Actually, such phones tend to contain several computers: one to manage the screen, one to talk to the
phone system, and maybe more.

The part of the phone that manages the screen, does web browsing, etc. is probably the most familiar to computer users: it
just runs a graphical user interface to “all the usual stuff.” What is unknown to and largely unsuspected by most users is the
huge system that the little phone talks to while doing its job. I dial a number in Texas, but you are on vacation in New York
City, yet within seconds your phone rings and I hear your “Hello!” over the roar of city traffic. Many phones can perform that
trick for essentially any two locations on earth and we just take it for granted. How did my phone find yours? How is the sound
transmitted? How is the sound encoded into data packets? The answer could fill many books much thicker than this one, but it
involves a combination of hardware and software on hundreds of computers scattered over the geographical area in question. If
you are unlucky, a few telecommunications satellites (themselves computerized systems) are also involved — “unlucky”
because we cannot perfectly compensate for the 20,000-mile detour out into space; the speed of light (and therefore the speed
of your voice) is finite (light fiber cables are much better: shorter, faster, and carrying much more data). Most of this works
remarkably well; the backbone telecommunications systems are 99.9999% reliable (for example, 20 minutes of downtime in
20 years — that’s 20/20*365*24*60). The trouble we have tends to be in the communications between our mobile phone and
the nearest main telephone switch.

There is software for connecting the phones, for chopping our spoken words into data packets to be sent over wires and
radio links, for routing those messages, for recovering from all kinds of failures, for continuously monitoring the quality and
reliability of the services, and of course for billing. Even keeping track of all the physical pieces of the system requires serious
amounts of clever software: What talks to what? What parts go into a new system? When do you need to do some preventive
maintenance?

Arguably the backbone telecommunications system of the world, consisting of semi-independent but interconnected systems,
is the largest and most complicated man-made artifact. To make things a bit more real: remember, this is not just boring old
telephony with a few new bells and whistles. The various infrastructures have merged. They are also what the internet (the
web) runs on, what our banking and trading systems run on, and what carry our television programs to the broadcasting
stations. So, we can add another couple of photos to illustrate telecommunications:



The room is the “trading floor” of the American stock exchange on New York’s Wall Street and the map is a representation of
parts of the internet backbones (a complete map would be too messy to be useful).

As it happens, we also like digital photography and the use of computers to draw specialized maps to visualize knowledge.

1.5.4 Medicine
These two photos show a CAT (computed axial tomography) scanner and an operating theater for computer-aided surgery (also
called “robot-assisted surgery” or “robotic surgery”):

Consider where computers and software play key roles here. The scanners basically are computers; the pulses they send out
are controlled by a computer, and the readings are nothing but gibberish until quite sophisticated algorithms are applied to
convert them to something we recognize as a (three-dimensional) image of the relevant part of a human body. To do
computerized surgery, we must go several steps further. A wide variety of imaging techniques are used to let the surgeon see
the inside of the patient, to see the point of surgery with significant enlargement or in better light than would otherwise be
possible. With the aid of a computer a surgeon can use tools that are too fine for a human hand to hold or in a place where a
human hand could not reach without unnecessary cutting. The use of minimally invasive surgery (laparoscopic surgery) is a
simple example of this that has minimized the pain and recovery time for millions of people. The computer can also help steady
the surgeon’s “hand” to allow for more delicate work than would otherwise be possible. Finally, a “robotic” system can be
operated remotely, thus making it possible for a doctor to help someone remotely (over the internet). The computers and
programming involved are mind-boggling, complex, and interesting. The user interface, equipment control, and imaging
challenges alone will keep thousands of researchers, engineers, and programmers busy for decades.

We heard of a discussion among a large group of medical doctors about which new tool had provided the most help to them
in their work: The CAT scanner? The MRI scanner? The automated blood analysis machines? The high-resolution ultrasound
machines? PDAs? After some discussion, a surprising “winner” of this “competition” emerged: instant access to patient
records. Knowing the medical history of a patient (earlier illnesses, medicines tried earlier, allergies, hereditary problems,
general health, current medication, etc.) simplifies the problem of diagnosis and minimizes the chance of mistakes.

1.5.5 Information
These two photos show an ordinary PC (well, two) and part of a server farm:



We have focused on “gadgets” for the usual reason: you cannot see, feel, or hear software. We cannot present you with a
photograph of a neat program, so we show you a “gadget” that runs one. However, much software deals directly with
“information.” So let’s consider “ordinary uses” of “ordinary computers” running “ordinary software.”

A “server farm” is a collection of computers providing web services. Organizations running state-of-the-art server farms
(such as Google, Amazon, and Microsoft) are somewhat close-mouthed about the details of their servers, and the specifications
of server farms change constantly (so most of the information you find on the web is outdated). However, the specifications are
amazing and should convince anyone that there is more to programming than simply computing a few numbers on a laptop:

• Google uses about a million servers (each more powerful than your laptop) in 25 to 50 “data centers.”
• Such a data center is housed in a warehouse that might measure 60m*100m (that’s about 200ft*330ft) or more.
• In 2011, the New York Times reported that Google’s data centers draw about 260 million watts continuously (about the
same amount of energy as Las Vegas).

• Assume a server machine to be a 3GHz quad-core with 24GB of main memory. That would imply about 12*1015Hz of
compute power (about 12,000,000,000,000,000 instructions per second) with 24*1015 bytes of main memory (about
24,000,000,000,000,000 8-bit bytes), and maybe 4TB of disk per server, giving 4*1018 bytes of storage.

We may be underestimating the amounts, and by the time you read this, we almost certainly are. In particular, efforts to
minimize energy usage seem to be driving machine architectures toward more processors per server and more cores per
processor. A GB is a gigabyte, that is, about 109 characters. A TB, a terabyte, is about 1000GB, that is, about 1012 characters.
A PB, a petabyte (that is, 1015 bytes), is becoming a more common measure. This is a pretty extreme example, but every major
company runs programs on the web to interact with its users/customers. Examples are Amazon (book and other sales),
Amadeus (airline ticketing and automobile rental), and eBay (online auctions). Millions of companies, organizations, and
individuals also have a presence on the web. Most don’t run their own software, but many do and much of that is not trivial.

The other, and more traditional, massive computing effort involves accounting, order processing, payroll, record keeping,
billing, inventory management, personnel records, student records, patient records, etc. — the records that essentially every
organization (commercial and noncommercial, governmental and private) keeps. These records are the backbone of their
respective organizations. As a computing effort, processing such records seems simple: mostly some information (records) is
just stored and retrieved and very little is done to it. Examples include

• Is my 12:30 flight to Chicago still on time?
• Has Gilbert Sullivan had the measles?
• Has the coffeemaker that Juan Valdez ordered been shipped?
• What kind of kitchen chair did Jack Sprat buy in 1996 (or so)?
• How many phone calls originated from the 212 area code in August of 2012?
• What was the number of coffeepots sold in January and for what total price?

The sheer scale of the databases involved makes these systems highly complex. To that add the need to respond quickly (often
in less than two seconds for individual queries) and to be correct (at least most of the time). These days, it is not uncommon for
people to talk about terabytes of data (a byte is the amount of memory needed to hold an ordinary character). That’s traditional
“data processing” and it is merging with “the web” because most access to the databases is now through web interfaces.

This kind of computer use is often referred to as information processing. It focuses on data — often lots of data. This leads
to challenges in the organization and transmission of data and lots of interesting work on how to present vast amounts of data in
a comprehensible form: “user interface” is a very important aspect of handling data. For example, think of analyzing a work of
older literature (say, Chaucer’s Canterbury Tales or Cervantes’ Don Quixote) to figure out what the author actually wrote by
comparing dozens of versions. We need to search through the texts with a variety of criteria supplied by the person doing the
analysis and to display the results in a way that aids the discovery of salient points. Thinking of text analysis, publishing comes
to mind: today, just about every article, book, brochure, newspaper, etc. is produced on a computer. Designing software to



support that well is for most people still a problem that lacks a really good solution.

1.5.6 A vertical view
It is sometimes claimed that a paleontologist can reconstruct a complete dinosaur and describe its lifestyle and natural
environment from studying a single small bone. That may be an exaggeration, but there is something to the idea of looking at a
simple artifact and thinking about what it implies. Consider this photo showing the landscape of Mars taken by a camera on one
of NASA’s Mars Rovers:

If you want to do “rocket science,” becoming a good programmer is one way. The various space programs employ lots of
software designers, especially ones who can also understand some of the physics, math, electrical engineering, mechanical
engineering, medical engineering, etc. that underlie the manned and unmanned space programs. Getting those two Rovers to
drive around on Mars for years is one of the greatest technological triumphs of our civilization. One (Spirit) sent data back for
six years and the other (Opportunity) is still working at the time of writing and will have its tenth anniversary on Mars in
January 2014. Their estimated design life was three months.

The photo was transmitted to earth through a communication channel with a 25-minute transmission delay each way; there is
a lot of clever programming and advanced math to make sure that the picture is transmitted using the minimal number of bits
without losing any of them. On earth, the photo is then rendered using algorithms to restore color and minimize distortion due to
the optics and electronic sensors.

The control programs for the Mars Rovers are of course programs — the Rovers drive autonomously for 24 hours at a time
and follow instructions sent from earth the day before. The transmission is managed by programs.

The operating systems used for the various computers involved in the Rovers, the transmission, and the photo reconstruction
are programs, as are the applications used to write this chapter. The computers on which these programs run are designed and
produced using CAD/CAM (computer-aided design and computer-aided manufacture) programs. The chips that go into those
computers are produced on computerized assembly lines constructed using precision tools, and those tools also use computers
(and software) in their design and manufacture. The quality control for those long construction processes involves serious
computation. All that code was written by humans in a high-level programming language and translated into machine code by a
compiler, which is itself such a program. Many of these programs interact with users using GUIs and exchange data using
input/output streams.

Finally, a lot of programming goes into image processing (including the processing of the photos from the Mars Rovers),
animation, and photo editing (there are versions of the Rover photos floating around on the web featuring “Martians”).

1.5.7 So what?

What do all these “fancy and complicated” applications and software systems have to do with learning programming and using
C++? The connection is simply that many programmers do get to work on projects like these. These are the kinds of things that
good programming can help achieve. Also, every example used in this chapter involved C++ and at least some of the
techniques we describe in this book. Yes, there are C++ programs in MP3 players, in ships, in wind turbines, on Mars, and in
the human genome project. For more applications using C++, see www.stroustrup.com/applications.html.

1.6 Ideals for programmers

What do we want from our programs? What do we want in general, as opposed to a particular feature of a particular program?
We want correctness and as part of that, reliability. If the program doesn’t do what it is supposed to do, and do so in a way so
that we can rely on it, it is at best a serious nuisance, at worst a danger. We want it to be well designed so that it addresses a
real need well; it doesn’t really matter that a program is correct if what it does is irrelevant to us or if it correctly does

http://www.stroustrup.com/applications.html


something in a way that annoys us. We also want it to be affordable; I might prefer a Rolls-Royce or an executive jet to my
usual forms of transport, but unless I’m a zillionaire, cost will enter into my choices.

These are aspects of software (gadgets, systems) that can be appreciated from the outside, by non-programmers. They must
be ideals for programmers and we must keep them in mind at all times, especially in the early phases of development, if we
want to produce successful software. In addition, we must concern ourselves with ideals related to the code itself: our code
must be maintainable; that is, its structure must be such that someone who didn’t write it can understand it and make changes.
A successful program “lives” for a long time (often for decades) and will be changed again and again. For example, it will be
moved to new hardware, it will have new features added, it will be modified to use new I/O facilities (screens, video, sound),
to interact using new natural languages, etc. Only a failed program will never be modified. To be maintainable, a program must
be simple relative to its requirements, and the code must directly represent the ideas expressed. Complexity — the enemy of
simplicity and maintainability — can be intrinsic to a problem (in that case we just have to deal with it), but it can also arise
from poor expression of ideas in code. We must try to avoid that through good coding style — style matters!

This doesn’t sound too difficult, but it is. Why? Programming is fundamentally simple: just tell the machine what it is
supposed to do. So why can programming be most challenging? Computers are fundamentally simple; they can just do a few
operations, such as adding two numbers and choosing the next instruction to execute based on a comparison of two numbers.
The problem is that we don’t want computers to do simple things. We want “the machine” to do things that are difficult enough
for us to want help with them, but computers are nitpicking, unforgiving, dumb beasts. Furthermore, the world is more complex
than we’d like to believe, so we don’t really know the implications of what we request. We just want a program to “do
something like this” and don’t want to be bothered with technical details. We also tend to assume “common sense.”
Unfortunately, common sense isn’t all that common among humans and is totally absent in computers (though some really well-
designed programs can imitate it in specific, well-understood cases).

This line of thinking leads to the idea that “programming is understanding”: when you can program a task, you understand it.
Conversely, when you understand a task thoroughly, you can write a program to do it. In other words, we can see programming
as part of an effort to thoroughly understand a topic. A program is a precise representation of our understanding of a topic.

When you program, you spend significant time trying to understand the task you are trying to automate.
We can describe the process of developing a program as having four stages:

• Analysis: What’s the problem? What does the user want? What does the user need? What can the user afford? What kind
of reliability do we need?

• Design: How do we solve the problem? What should be the overall structure of the system? Which parts does it consist
of? How do those parts communicate with each other? How does the system communicate with its users?

• Programming: Express the solution to the problem (the design) in code. Write the code in a way that meets all
constraints (time, space, money, reliability, and so on). Make sure that the code is correct and maintainable.

• Testing: Make sure the system works correctly under all circumstances required by systematically trying it out.
Programming plus testing is often called implementation. Obviously, this simple split of software development into four parts
is a simplification. Thick books have been written on each of these four topics and more books still about how they relate to
each other. One important thing to note is that these stages of development are not independent and do not occur strictly in
sequence. We typically start with analysis, but feedback from testing can help improve the programming; problems with getting
the program working may indicate a problem with the design; and working with the design may suggest aspects of the problem
that hitherto had been overlooked in the analysis. Actually using the system typically exposes weaknesses of the analysis.

The crucial concept here is feedback. We learn from experience and modify our behavior based on what we learn. That’s
essential for effective software development. For any large project, we don’t know everything there is to know about the
problem and its solution before we start. We can try out ideas and get feedback by programming, but in the earlier stages of
development it is easier (and faster) to get feedback by writing down design ideas, trying out those design ideas, and using
scenarios on friends. The best design tool we know of is a blackboard (use a whiteboard instead if you prefer chemical smells
over chalk dust). Never design alone if you can avoid it! Don’t start coding before you have tried out your ideas by explaining
them to someone. Discuss designs and programming techniques with friends, colleagues, potential users, and so on before you



head for the keyboard. It is amazing how much you can learn from simply trying to articulate an idea. After all, a program is
nothing more than an expression (in code) of some ideas.

Similarly, when you get stuck implementing a program, look up from the keyboard. Think about the problem itself, rather
than your incomplete solution. Talk with someone: explain what you want to do and why it doesn’t work. It’s amazing how
often you find the solution just by carefully explaining the problem to someone. Don’t debug (find program errors) alone if you
don’t have to!

The focus of this book is implementation, and especially programming. We do not teach “problem solving” beyond giving
you plenty of examples of problems and their solutions. Much of problem solving is recognizing a known problem and applying
a known solution technique. Only when most subproblems are handled this way will you find the time to indulge in exciting and
creative “out-of-the-box thinking.” So, we focus on showing how to express ideas clearly in code.

Direct expression of ideas in code is a fundamental ideal of programming. That’s really pretty obvious, but so far we are a
bit short of good examples. We’ll come back to this, repeatedly. When we want an integer in our code, we store it in an int,
which provides the basic integer operations. When we want a string of characters, we store it in a string, which provides the
most basic text manipulation operations. At the most fundamental level, the ideal is that when we have an idea, a concept, an
entity, something we think of as a “thing,” something we can draw on our whiteboard, something we can refer to in our
discussions, something our (non–computer science) textbook talks about, then we want that something to exist in our program
as a named entity (a type) providing the operations we think appropriate for it. If we want to do math, we want a complex

type for complex numbers and a Matrix type for linear algebra. If we want to do graphics, we want a Shape type, a Circle

type, a Color type, and a Dialog_box. When we want to deal with streams of data, say from a temperature sensor, we want
an istream type (i for input). Obviously, every such type should provide the appropriate operations and only the appropriate
operations. These are just a few examples from this book. Beyond that, we offer tools and techniques for you to build your own
types to directly represent whatever concepts you want in your program.

Programming is part practical, part theoretical. If you are just practical, you will produce non-scalable, unmaintainable
hacks. If you are just theoretical, you will produce unusable (or unaffordable) toys.

For a different kind of view of the ideals of programming and a few people who have contributed in major ways to software
through work with programming languages, see Chapter 22, “Ideals and History.”

Review
Review questions are intended to point you to the key ideas explained in a chapter. One way to look at them is as a complement
to the exercises: the exercises focus on the practical aspects of programming, whereas the review questions try to help you
articulate the ideas and concepts. In that, they resemble good interview questions.

1. What is software?
2. Why is software important?
3. Where is software important?
4. What could go wrong if some software fails? List some examples.
5. Where does software play an important role? List some examples.
6. What are some jobs related to software development? List some.
7. What’s the difference between computer science and programming?
8. Where in the design, construction, and use of a ship is software used?
9. What is a server farm?

10. What kinds of queries do you ask online? List some.
11. What are some uses of software in science? List some.
12. What are some uses of software in medicine? List some.
13. What are some uses of software in entertainment? List some.
14. What general properties do we expect from good software?
15. What does a software developer look like?
16. What are the stages of software development?
17. Why can software development be difficult? List some reasons.



18. What are some uses of software that make your life easier?
19. What are some uses of software that make your life more difficult?

Terms
These terms present the basic vocabulary of programming and of C++. If you want to understand what people say about
programming topics and to articulate your own ideas, you should know what each means.

affordability
analysis
blackboard
CAD/CAM
communication
correctness
customer
design
feedback
GUI
ideals
implementation
programmer
programming
software
stereotype
testing
user

Exercises
1. Pick an activity you do most days (such as going to class, eating dinner, or watching television). Make a list of ways

computers are directly or indirectly involved.
2. Pick a profession, preferably one that you have some interest in or some knowledge of. Make a list of activities done by

people in that profession that involve computers.
3. Swap your list from exercise 2 with a friend who picked a different profession and improve his or her list. When you

have both done that, compare your results. Remember: There is no perfect solution to an open-ended exercise;
improvements are always possible.

4. From your own experience, describe an activity that would not have been possible without computers.
5. Make a list of programs (software applications) that you have directly used. List only examples where you obviously

interact with a program (such as when selecting a new song on an MP3 player) and not cases where there just might
happen to be a computer involved (such as turning the steering wheel of your car).

6. Make a list of ten activities that people do that do not involve computers in any way, even indirectly. This may be harder
than you think!

7. Identify five tasks for which computers are not used today, but for which you think they will be used at some time in the
future. Write a few sentences to elaborate on each one that you choose.

8. Write an explanation (at least 100 words, but fewer than 500) of why you would like to be a computer programmer. If,
on the other hand, you are convinced that you would not like to be a programmer, explain that. In either case, present
well-thought-out, logical arguments.

9. Write an explanation (at least 100 words, but fewer than 500) of what role other than programmer you’d like to play in
the computer industry (independently of whether “programmer” is your first choice).

10. Do you think computers will ever develop to be conscious, thinking beings, capable of competing with humans? Write a
short paragraph (at least 100 words) supporting your position.

11. List some characteristics that most successful programmers share. Then list some characteristics that programmers are



popularly assumed to have.
12. Identify at least five kinds of applications for computer programs mentioned in this chapter and pick the one that you find

the most interesting and that you would most likely want to participate in someday. Write a short paragraph (at least 100
words) explaining why you chose the one you did.

13. How much memory would it take to store (a) this page of text, (b) this chapter, (c) all of Shakespeare’s work? Assume
one byte of memory holds one character and just try to be precise to about 20%.

14. How much memory does your computer have? Main memory? Disk?

Postscript
Our civilization runs on software. Software is an area of unsurpassed diversity and opportunities for interesting, socially
useful, and profitable work. When you approach software, do it in a principled and serious manner: you want to be part of the
solution, not add to the problems.

We are obviously in awe of the range of software that permeates our technological civilization. Not all applications of
software do good, of course, but that is another story. Here we wanted to emphasize how pervasive software is and how much
of what we rely on in our daily lives depends on software. It was all written by people like us. All the scientists,
mathematicians, engineers, programmers, etc. who built the software briefly mentioned here started like you are starting.

Now, let’s get back to the down-to-earth business of learning the technical skills needed to program. If you start wondering
if it is worth all your hard work (most thoughtful people wonder about that sometime), come back and reread this chapter, the
Preface, and bits of Chapter 0 (“Notes to the Reader”). If you start wondering if you can handle it all, remember that millions
have succeeded in becoming competent programmers, designers, software engineers, etc. You can, too.



Part I: The Basics



2. Hello, World!

“Programming is learned by writing programs.”
—Brian Kernighan

Here, we present the simplest C++ program that actually does anything. The purpose of writing this program is to
• Let you try your programming environment
• Give you a first feel of how you can get a computer to do things for you

Thus, we present the notion of a program, the idea of translating a program from human-readable form to machine
instructions using a compiler, and finally executing those machine instructions.

2.1 Programs
2.2 The classic first program
2.3 Compilation
2.4 Linking
2.5 Programming environments

2.1 Programs
To get a computer to do something, you (or someone else) have to tell it exactly — in excruciating detail — what to do. Such a
description of “what to do” is called a program, and programming is the activity of writing and testing such programs.

In a sense, we have all programmed before. After all, we have given descriptions of tasks to be done, such as “how to drive
to the nearest cinema,” “how to find the upstairs bathroom,” and “how to heat a meal in the microwave.” The difference
between such descriptions and programs is one of degree of precision: humans tend to compensate for poor instructions by
using common sense, but computers don’t. For example, “turn right in the corridor, up the stairs, it’ll be on your left” is
probably a fine description of how to get to the upstairs bathroom. However, when you look at those simple instructions, you’ll
find the grammar sloppy and the instructions incomplete. A human easily compensates. For example, assume that you are sitting
at the table and ask for directions to the bathroom. You don’t need to be told to get up from your chair to get to the corridor,
somehow walk around (and not across or under) the table, not to step on the cat, etc. You’ll not have to be told not to bring
your knife and fork or to remember to switch on the light so that you can see the stairs. Opening the door to the bathroom before
entering is probably also something you don’t have to be told.

In contrast, computers are really dumb. They have to have everything described precisely and in detail. Consider again “turn
right in the corridor, up the stairs, it’ll be on your left.” Where is the corridor? What’s a corridor? What is “turn right”? What
stairs? How do I go up stairs? (One step at a time? Two steps? Slide up the banister?) What is on my left? When will it be on
my left? To be able to describe “things” precisely for a computer, we need a precisely defined language with a specific
grammar (English is far too loosely structured for that) and a well-defined vocabulary for the kinds of actions we want
performed. Such a language is called a programming language, and C++ is a programming language designed for a wide
selection of programming tasks.

If you want greater philosophical detail about computers, programs, and programming, (re)read Chapter 1. Here, let’s have a
look at some code, starting with a very simple program and the tools and techniques you need to get it to run.

2.2 The classic first program
Here is a version of the classic first program. It writes “Hello, World!” to your screen:
Click here to view code image

// This program outputs the message “Hello, World!” to the monitor

#include "std_lib_facilities.h"

int main()             // C++ programs start by executing the function main
{

          cout << "Hello, World!\n";      // output “Hello, World!”
          return 0;

}



Think of this text as a set of instructions that we give to the computer to execute, much as we would give a recipe to a cook to
follow, or as a list of assembly instructions for us to follow to get a new toy working. Let’s discuss what each line of this
program does, starting with the line
Click here to view code image

cout << "Hello, World!\n";       // output “Hello, World!”

That’s the line that actually produces the output. It prints the characters Hello, World! followed by a newline; that is, after
writing Hello, World!, the cursor will be placed at the start of the next line. A cursor is a little blinking character or line
showing where you can type the next character.

In C++, string literals are delimited by double quotes ("); that is, "Hello, World!\n" is a string of characters. The \n is a
“special character” indicating a newline. The name cout refers to a standard output stream. Characters “put into cout” using
the output operator << will appear on the screen. The name cout is pronounced “see-out” and is an abbreviation of “character
output stream.” You’ll find abbreviations rather common in programming. Naturally, an abbreviation can be a bit of a
nuisance the first time you see it and have to remember it, but once you start using abbreviations repeatedly, they become
second nature, and they are essential for keeping program text short and manageable.

The end of that line

// output “Hello, World!”

is a comment. Anything written after the token // (that’s the character /, called “slash,” twice) on a line is a comment.
Comments are ignored by the compiler and written for the benefit of programmers who read the code. Here, we used the
comment to tell you what the beginning of that line actually did.

Comments are written to describe what the program is intended to do and in general to provide information useful for
humans that can’t be directly expressed in code. The person most likely to benefit from the comments in your code is you —
when you come back to that code next week, or next year, and have forgotten exactly why you wrote the code the way you did.
So, document your programs well. In §7.6.4, we’ll discuss what makes good comments.

A program is written for two audiences. Naturally, we write code for computers to execute. However, we spend long hours
reading and modifying the code. Thus, programmers are another audience for programs. So, writing code is also a form of
human-to-human communication. In fact, it makes sense to consider the human readers of our code our primary audience: if they
(we) don’t find the code reasonably easy to understand, the code is unlikely to ever become correct. So, please don’t forget:
code is for reading — do all you can to make it readable. Anyway, the comments are for the benefit of human readers only; the
computer doesn’t look at the text in comments.

The first line of the program is a typical comment; it simply tells the human reader what the program is supposed to do:
Click here to view code image

// This program outputs the message “Hello, World!” to the monitor

Such comments are useful because the code itself says what the program does, not what we meant it to do. Also, we can usually
explain (roughly) what a program should do to a human much more concisely than we can express it (in detail) in code to a
computer. Often such a comment is the first part of the program we write. If nothing else, it reminds us what we are trying to
do.

The next line

#include "std_lib_facilities.h"

is an “#include directive.” It instructs the computer to make available (“to include”) facilities from a file called
std_lib_facilities.h. We wrote that file to simplify use of the facilities available in all implementations of C++ (“the C++
standard library”). We will explain its contents as we go along. It is perfectly ordinary standard C++, but it contains details
that we’d rather not bother you with for another dozen chapters. For this program, the importance of std_lib_facilities.h is
that we make the standard C++ stream I/O facilities available. Here, we just use the standard output stream, cout, and its
output operator, <<. A file included using #include usually has the suffix .h and is called a header or a header file. A header
contains definitions of terms, such as cout, that we use in our program.



How does a computer know where to start executing a program? It looks for a function called main and starts executing the
instructions it finds there. Here is the function main of our “Hello, World!” program:
Click here to view code image

int main()         // C++ programs start by executing the function main
{

          cout << "Hello, World!\n;"       // output “Hello, World!”
          return 0;

}

Every C++ program must have a function called main to tell it where to start executing. A function is basically a named
sequence of instructions for the computer to execute in the order in which they are written. A function has four parts:

• A return type, here int (meaning “integer”), which specifies what kind of result, if any, the function will return to
whoever asked for it to be executed. The word int is a reserved word in C++ (a keyword), so int cannot be used as the
name of anything else (see §A.3.1).

• A name, here main.
• A parameter list enclosed in parentheses (see §8.2 and §8.6), here (); in this case, the parameter list is empty.
• A function body enclosed in a set of “curly braces,” { }, which lists the actions (called statements) that the function is to
perform.

It follows that the minimal C++ program is simply

int main() { }

That’s not of much use, though, because it doesn’t do anything. The main() (“the main function”) of our “Hello, World!”
program has two statements in its body:
Click here to view code image

cout << "Hello, World!\n";        // output “Hello, World!”
return 0;

First it’ll write Hello, World! to the screen, and then it will return a value 0 (zero) to whoever called it. Since main() is
called by “the system,” we won’t use that return value. However, on some systems (notably Unix/Linux) it can be used to check
whether the program succeeded. A zero (0) returned by main() indicates that the program terminated successfully.

A part of a C++ program that specifies an action and isn’t an #include directive (or some other preprocessor directive; see
§4.4 and §A.17) is called a statement.

2.3 Compilation

C++ is a compiled language. That means that to get a program to run, you must first translate it from the human-readable form to
something a machine can “understand.” That translation is done by a program called a compiler. What you read and write is
called source code or program text, and what the computer executes is called executable, object code, or machine code.
Typically C++ source code files are given the suffix .cpp (e.g., hello_world.cpp) or .h (as in std_lib_facilities.h), and
object code files are given the suffix .obj (on Windows) or .o (Unix). The plain word code is therefore ambiguous and can
cause confusion; use it with care only when it is obvious what’s meant by it. Unless otherwise specified, we use code to mean
“source code” or even “the source code except the comments,” because comments really are there just for us humans and are
not seen by the compiler generating object code.

The compiler reads your source code and tries to make sense of what you wrote. It looks to see if your program is
grammatically correct, if every word has a defined meaning, and if there is anything obviously wrong that can be detected
without trying to actually execute the program. You’ll find that compilers are rather picky about syntax. Leaving out any detail
of our program, such as an #include file, a semicolon, or a curly brace, will cause errors. Similarly, the compiler has



absolutely zero tolerance for spelling mistakes. Let us illustrate this with a series of examples, each of which has a single small
error. Each error is an example of a kind of mistake we often make:
Click here to view code image

// no #include here
int main()

{

        cout << "Hello, World!\n";

        return 0;

}

We didn’t include something to tell the compiler what cout was, so the compiler complains. To correct that, let’s add a header
file:
Click here to view code image

#include "std_facilities.h"

int main()

{

        cout << "Hello, World!\n";

        return 0;

}

Unfortunately, the compiler again complains: we misspelled std_lib_facilities.h. The compiler also objects to this:
Click here to view code image

#include "std_lib_facilities.h"

int main()

{

        cout << "Hello, World!\n;

        return 0;

}

We didn’t terminate the string with a ". The compiler also objects to this:
Click here to view code image

#include "std_lib_facilities.h"

integer main()

{

        cout << "Hello, World!\n";

        return 0;

}

The abbreviation int is used in C++ rather than the word integer. The compiler doesn’t like this either:
Click here to view code image

#include "std_lib_facilities.h"

int main()

{

         cout < "Hello, World!\n";

         return 0;

}

We used < (the less-than operator) rather than << (the output operator). The compiler also objects to this:
Click here to view code image

#include "std_lib_facilities.h"

int main()

{

         cout << 'Hello, World!\n';

         return 0;

}

We used single quotes rather than double quotes to delimit the string. Finally, the compiler gives an error for this:
Click here to view code image

#include "std_lib_facilities.h"

int main()



{

         cout << "Hello, World!\n"

         return 0;

}

We forgot to terminate the output statement with a semicolon. Note that many C++ statements are terminated by a semicolon
(;). The compiler needs those semicolons to know where one statement ends and the next begins. There is no really short, fully
correct, and nontechnical way of summarizing where semicolons are needed. For now, just copy our pattern of use, which can
be summarized as: “Put a semicolon after every expression that doesn’t end with a right curly brace (}).”

Why do we spend two pages of good space and minutes of your precious time showing you examples of trivial errors in a
trivial program? To make the point that you — like all programmers — will spend a lot of time looking for errors in program
source text. Most of the time, we look at text with errors in it. After all, if we were convinced that some code was correct,
we’d typically be looking at some other code or taking the time off. It came as a major surprise to the early computer pioneers
that they were making mistakes and had to devote a major portion of their time to finding them. It is still a surprise to most
newcomers to programming.

When you program, you’ll get quite annoyed with the compiler at times. Sometimes it appears to complain about unimportant
details (such as a missing semicolon) or about things you consider “obviously right.” However, the compiler is usually right:
when it gives an error message and refuses to produce object code from your source code, there is something not quite right
with your program; that is, the meaning of what you wrote isn’t precisely defined by the C++ standard.

The compiler has no common sense (it isn’t human) and is very picky about details. Since it has no common sense, you
wouldn’t like it to try to guess what you meant by something that “looked OK” but didn’t conform to the definition of C++. If it
did and its guess was different from yours, you could end up spending a lot of time trying to figure out why the program didn’t
do what you thought you had told it to do. When all is said and done, the compiler saves us from a lot of self-inflicted
problems. It saves us from many more problems than it causes. So, please remember: the compiler is your friend; possibly, the
compiler is the best friend you have when you program.

2.4 Linking

A program usually consists of several separate parts, often developed by different people. For example, the “Hello, World!”
program consists of the part we wrote plus parts of the C++ standard library. These separate parts (sometimes called
translation units) must be compiled and the resulting object code files must be linked together to form an executable program.
The program that links such parts together is (unsurprisingly) called a linker:

Please note that object code and executables are not portable among systems. For example, when you compile for a Windows



machine, you get object code for Windows that will not run on a Linux machine.
A library is simply some code — usually written by others — that we access using declarations found in an #included file.

A declaration is a program statement specifying how a piece of code can be used; we’ll examine declarations in detail later
(e.g., §4.5.2).

Errors found by the compiler are called compile-time errors, errors found by the linker are called link-time errors, and
errors not found until the program is run are called run-time errors or logic errors. Generally, compile-time errors are easier
to understand and fix than link-time errors, and link-time errors are often easier to find and fix than run-time errors and logic
errors. In Chapter 5 we discuss errors and the ways of handling them in greater detail.

2.5 Programming environments
To program, we use a programming language. We also use a compiler to translate our source code into object code and a
linker to link our object code into an executable program. In addition, we use some program to enter our source code text into
the computer and to edit it. These are just the first and most crucial tools that constitute our programmer’s tool set or “program
development environment.”

If you work from a command-line window, as many professional programmers do, you will have to issue the compile and
link commands yourself. If instead you use an IDE (“interactive development environment” or “integrated development
environment”), as many professional programmers also do, a simple click on the correct button will do the job. See Appendix
C for a description of how to compile and link on your C++ implementation.

IDEs usually include an editor with helpful features like color coding to help distinguish between comments, keywords, and
other parts of your program source code, plus other facilities to help you debug your code, compile it, and run it. Debugging is
the activity of finding errors in a program and removing them; you’ll hear a lot about that along the way.

Working with this book, you can use any system that provides an up-to-date, standards-conforming implementation of C++.
Most of what we say will, with very minor modifications, be true for all implementations of C++, and the code will run
everywhere. In our work, we use several different implementations.

Drill

So far we have talked about programming, code, and tools (such as compilers). Now you have to get a program to run. This is
a crucial point in this book and in learning to program. This is where you start to develop practical skills and good
programming habits. The exercises for this chapter are focused on getting you acquainted with your software development
environment. Once you get the “Hello, World!” program to run, you will have passed the first major milestone as a
programmer.

The purpose of a drill is to establish or reinforce your practical programming skills and give you experience with
programming environment tools. Typically, a drill is a sequence of modifications to a single program, “growing” it from
something completely trivial to something that might be a useful part of a real program. A traditional set of exercises is
designed to test your initiative, cleverness, or inventiveness. In contrast, a drill requires little invention from you. Typically,
sequencing is crucial, and each individual step should be easy (or even trivial). Please don’t try to be clever and skip steps; on
average that will slow you down or even confuse you.

You might think you understand everything you read and everything your Mentor or instructor told you, but repetition and
practice are necessary to develop programming skills. In this regard, programming is like athletics, music, dance, or any skill-
based craft. Imagine people trying to compete in any of those fields without regular practice. You know how well they would
perform. Constant practice — for professionals that means lifelong constant practice — is the only way to develop and
maintain a high-level practical skill.

So, never skip the drills, no matter how tempted you are; they are essential to the learning process. Just start with the first
step and proceed, testing each step as you go to make sure you are doing it right.

Don’t be alarmed if you don’t understand every detail of the syntax you are using, and don’t be afraid to ask for help from
instructors or friends. Keep going, do all of the drills and many of the exercises, and all will become clear in due time.

So, here is your first drill:
1. Go to Appendix C and follow the steps required to set up a project. Set up an empty console C++ project called



hello_world.
2. Type in hello_world.cpp, exactly as specified below, save it in your practice directory (folder), and include it in your

hello_world project.
Click here to view code image

#include "std_lib_facilities.h"

int main()         // C++ programs start by executing the function main
{

         cout << "Hello, World!\n";    // output “Hello, World!”
         keep_window_open();           // wait for a character to be entered
         return 0;

}

The call to keep_window_open() is needed on some Windows machines to prevent them from closing the window
before you have a chance to read the output. This is a peculiarity/feature of Windows, not of C++. We defined
keep_window_open() in std_lib_facilities.h to simplify writing simple text programs.

How do you find std_lib_facilities.h? If you are in a course, ask your instructor. If not, download it from our
support site www.stroustrup.com/Programming. But what if you don’t have an instructor and no access to the web? In
that case (only), replace the #include directive with

Click here to view code image

#include<iostream>

#include<string>

#include<vector>

#include<algorithm>

#include<cmath>

using namespace std;

inline void keep_window_open() { char ch; cin>>ch; }

This uses the standard library directly, will keep you going until Chapter 5, and will be explained in detail later (§8.7).
3. Compile and run the “Hello, World!” program. Quite likely, something didn’t work quite right. It very rarely does in a

first attempt to use a new programming language or a new programming environment. Find the problem and fix it! This is
a point where asking for help from a more experienced person is sensible, but be sure to understand what you are shown
so that you can do it all by yourself before proceeding further.

4. By now, you have probably encountered some errors and had to correct them. Now is the time to get a bit better
acquainted with your compiler’s error-detection and error-reporting facilities! Try the six errors from §2.3 to see how
your programming environment reacts. Think of at least five more errors you might have made typing in your program
(e.g., forget keep_window_open(), leave the Caps Lock key on while typing a word, or type a comma instead of a
semicolon) and try each to see what happens when you try to compile and run those versions.

Review

The basic idea of these review questions is to give you a chance to see if you have noticed and understood the key points of the
chapter. You may have to refer back to the text to answer a question; that’s normal and expected. You may have to reread
whole sections; that too is normal and expected. However, if you have to reread the whole chapter or have problems with
every review question, you should consider whether your style of learning is effective. Are you reading too fast? Should you
stop and do some of the Try this suggestions? Should you study with a friend so that you can discuss problems with the
explanations in the text?

1. What is the purpose of the “Hello, World!” program?
2. Name the four parts of a function.
3. Name a function that must appear in every C++ program.
4. In the “Hello, World!” program, what is the purpose of the line return 0;?
5. What is the purpose of the compiler?
6. What is the purpose of the #include directive?
7. What does a .h suffix at the end of a file name signify in C++?

http://www.stroustrup.com/Programming


8. What does the linker do for your program?
9. What is the difference between a source file and an object file?

10. What is an IDE and what does it do for you?
11. If you understand everything in the textbook, why is it necessary to practice?

Most review questions have a clear answer in the chapter in which they appear. However, we do occasionally include
questions to remind you of relevant information from other chapters and sometimes even relating to the world outside this
book. We consider that fair; there is more to writing good software and thinking about the implications of doing so than fits into
an individual chapter or book.

Terms
These terms present the basic vocabulary of programming and of C++. If you want to understand what people say about
programming topics and to articulate your own ideas, you should know what each means.

//

<<

C++
comment
compiler
compile-time error
cout

executable
function
header
IDE
#include

library
linker
main()

object code
output
program
source code
statement

You might like to gradually develop a glossary written in your own words. You can do that by repeating exercise 5 below for
each chapter.

Exercises
We list drills separately from exercises; always complete the chapter drill before attempting an exercise. Doing so will save
you time.

1. Change the program to output the two lines

Hello, programming!

Here we go!

2. Expanding on what you have learned, write a program that lists the instructions for a computer to find the upstairs
bathroom, discussed in §2.1. Can you think of any more steps that a person would assume, but that a computer would not?
Add them to your list. This is a good start in “thinking like a computer.” Warning: For most people, “go to the bathroom”
is a perfectly adequate instruction. For someone with no experience with houses or bathrooms (imagine a stone-age
person, somehow transported into your dining room) the list of necessary instructions could be very long. Please don’t
use more than a page. For the benefit of the reader, you may add a short description of the layout of the house you are
imagining.

3. Write a description of how to get from the front door of your dorm room, apartment, house, whatever, to the door of your



classroom (assuming you are attending some school; if you are not, pick another target). Have a friend try to follow the
instructions and annotate them with improvements as he or she goes along. To keep friends, it may be a good idea to
“field test” those instructions before giving them to a friend.

4. Find a good cookbook. Read the instructions for baking blueberry muffins (if you are in a country where “blueberry
muffins” is a strange, exotic dish, use a more familiar dish instead). Please note that with a bit of help and instruction,
most of the people in the world can bake delicious blueberry muffins. It is not considered advanced or difficult fine
cooking. However, for the author, few exercises in this book are as difficult as this one. It is amazing what you can do
with a bit of practice.
• Rewrite those instructions so that each individual action is in its own numbered paragraph. Be careful to list all
ingredients and all kitchen utensils used at each step. Be careful about crucial details, such as the desired oven
temperature, preheating the oven, the preparation of the muffin pan, the way to time the cooking, and the need to protect
your hands when removing the muffins from the oven.

• Consider those instructions from the point of view of a cooking novice (if you are not one, get help from a friend who
does not know how to cook). Fill in the steps that the book’s author (almost certainly an experienced cook) left out for
being obvious.

• Build a glossary of terms used. (What’s a muffin pan? What does preheating do? What do you mean by “oven”?)
• Now bake some muffins and enjoy your results.

5. Write a definition for each of the terms from “Terms.” First try to see if you can do it without looking at the chapter (not
likely), then look through the chapter to find definitions. You might find the difference between your first attempt and the
book’s version interesting. You might consult some suitable online glossary, such as www.stroustrup.com/glossary.html.
By writing your own definition before looking it up, you reinforce the learning you achieved through your reading. If you
have to reread a section to form a definition, that just helps you to understand. Feel free to use your own words for the
definitions, and make the definitions as detailed as you think reasonable. Often, an example after the main definition will
be helpful. You may like to store the definitions in a file so that you can add to them from the “Terms” sections of later
chapters.

Postscript

What’s so important about the “Hello, World!” program? Its purpose is to get us acquainted with the basic tools of
programming. We tend to do an extremely simple example, such as “Hello, World!,” whenever we approach a new tool. That
way, we separate our learning into two parts: first we learn the basics of our tools with a trivial program, and later we learn
about more complicated programs without being distracted by our tools. Learning the tools and the language simultaneously is
far harder than doing first one and then the other. This approach to simplifying learning a complex task by breaking it into a
series of small (and more manageable) steps is not limited to programming and computers. It is common and useful in most
areas of life, especially in those that involve some practical skill.

http://www.stroustrup.com/glossary.html


3. Objects, Types, and Values

“Fortune favors the prepared mind.”
—Louis Pasteur

This chapter introduces the basics of storing and using data in a program. To do so, we first concentrate on reading in data
from the keyboard. After establishing the fundamental notions of objects, types, values, and variables, we introduce several
operators and give many examples of use of variables of types char, int, double, and string.

3.1 Input
3.2 Variables
3.3 Input and type
3.4 Operations and operators
3.5 Assignment and initialization

3.5.1 An example: detect repeated words
3.6 Composite assignment operators

3.6.1 An example: find repeated words
3.7 Names
3.8 Types and objects
3.9 Type safety

3.9.1 Safe conversions
3.9.2 Unsafe conversions

3.1 Input
The “Hello, World!” program just writes to the screen. It produces output. It does not read anything; it does not get input from
its user. That’s rather a bore. Real programs tend to produce results based on some input we give them, rather than just doing
exactly the same thing each time we execute them.

To read something, we need somewhere to read into; that is, we need somewhere in the computer’s memory to place what
we read. We call such a “place” an object. An object is a region of memory with a type that specifies what kind of information
can be placed in it. A named object is called a variable. For example, character strings are put into string variables and
integers are put into int variables. You can think of an object as a “box” into which you can put a value of the object’s type:

This would represent an object of type int named age containing the integer value 42. Using a string variable, we can read a
string from input and write it out again like this:
Click here to view code image

// read and write a first name
#include "std_lib_facilities.h"

int main()

{

         cout << "Please enter your first name (followed by 'enter'):\n";

         string first_name;              // first_name is a variable of type string
         cin >> first_name;             // read characters into first_name
         cout << "Hello, " << first_name << "!\n";

}

The #include and the main() are familiar from Chapter 2. Since the #include is needed for all our programs (up to Chapter
12), we’ll leave it out of our presentation to avoid distraction. Similarly, we’ll sometimes present code that will work only if



it is placed in main() or some other function, like this:
Click here to view code image

cout << "Please enter your first name (followed by 'enter'):\n";

We assume that you can figure out how to put such code into a complete program for testing.
The first line of main() simply writes out a message encouraging the user to enter a first name. Such a message is typically

called a prompt because it prompts the user to take an action. The next lines define a variable of type string called
first_name, read input from the keyboard into that variable, and write out a greeting. Let’s look at those three lines in turn:
Click here to view code image

string first_name;     // first_name is a variable of type string

This sets aside an area of memory for holding a string of characters and gives it the name first_name:

A statement that introduces a new name into a program and sets aside memory for a variable is called a definition.
The next line reads characters from input (the keyboard) into that variable:

Click here to view code image

cin >> first_name;     // read characters into first_name

The name cin refers to the standard input stream (pronounced “see-in,” for “character input”) defined in the standard library.
The second operand of the >> operator (“get from”) specifies where that input goes. So, if we type some first name, say
Nicholas, followed by a newline, the string "Nicholas" becomes the value of first_name:

The newline is necessary to get the machine’s attention. Until a newline is entered (the Enter key is hit), the computer simply
collects characters. That “delay” gives you the chance to change your mind, erase some characters, and replace them with
others before hitting Enter. The newline will not be part of the string stored in memory.

Having gotten the input string into first_name, we can use it:
Click here to view code image

cout << "Hello, " << first_name << "!\n";

This prints Hello, followed by Nicholas (the value of first_name) followed by ! and a newline ('\n') on the screen:

Hello, Nicholas!

If we had liked repetition and extra typing, we could have written three separate output statements instead:

cout << "Hello, ";

cout << first_name;

cout << "!\n";

However, we are indifferent typists, and — more importantly — strongly dislike needless repetition (because repetition
provides opportunity for errors), so we combined those three output operations into a single statement.

Note the way we use quotes around the characters in "Hello, " but not in first_name. We use quotes when we want a
literal string. When we don’t quote, we refer to the value of something with a name. Consider:
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cout << "first_name" << " is " << first_name;

Here, "first_name" gives us the ten characters first_name and plain first_name gives us the value of the variable
first_name, in this case, Nicholas. So, we get

first_name is Nicholas



3.2 Variables

Basically, we can do nothing of interest with a computer without storing data in memory, the way we did it with the input string
in the example above. The “places” in which we store data are called objects. To access an object we need a name. A named
object is called a variable and has a specific type (such as int or string) that determines what can be put into the object (e.g.,
123 can go into an int and "Hello, World!\n" can go into a string) and which operations can be applied (e.g., we can
multiply ints using the * operator and compare strings using the <= operator). The data items we put into variables are called
values. A statement that defines a variable is (unsurprisingly) called a definition, and a definition can (and usually should)
provide an initial value. Consider:

string name = "Annemarie";

int number_of_steps = 39;

You can visualize these variables like this:

You cannot put values of the wrong type into a variable:
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string name2 = 39;                                      // error: 39 isn’t a string
int number_of_steps = "Annemarie";     // error: “Annemarie” is not an int

The compiler remembers the type of each variable and makes sure that you use it according to its type, as specified in its
definition.

C++ provides a rather large number of types (see §A.8). However, you can write perfectly good programs using only five of
those:
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int number_of_steps = 39;                               // int for integers
double flying_time = 3.5;                                 // double for floating-point numbers
char decimal_point = '.';                                  // char for individual characters
string name = "Annemarie";                           // string for character strings
bool tap_on = true;                                           // bool for logical variables

The reason for the name double is historical: double is short for “double-precision floating point.” Floating point is the
computer’s approximation to the mathematical concept of a real number.

Note that each of these types has its own characteristic style of literals:
Click here to view code image

39                          // int: an integer
3.5                         // double: a floating-point number
'.'                           // char: an individual character enclosed in single quotes
"Annemarie"      // string: a sequence of characters delimited by double quotes
true                      // bool: either true or false

That is, a sequence of digits (such as 1234, 2, or 976) denotes an integer, a single character in single quotes (such as '1', '@',
or 'x') denotes a character, a sequence of digits with a decimal point (such as 1.234, 0.12, or .98) denotes a floating-point
value, and a sequence of characters enclosed in double quotes (such as "1234", "Howdy!", or "Annemarie") denotes a
string. For a detailed description of literals see §A.2.

3.3 Input and type

The input operation >> (“get from”) is sensitive to type; that is, it reads according to the type of variable you read into. For
example:
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// read name and age



int main()

{

          cout << "Please enter your first name and age\n";

          string first_name;          // string variable
          int age;                          // integer variable
          cin >> first_name;         // read a string
          cin >> age;                    // read an integer
          cout << "Hello, " << first_name << " (age " << age << ")\n";

}

So, if you type in Carlos 22 the >> operator will read Carlos into first_name, 22 into age, and produce this output:

Hello, Carlos (age 22)

Why won’t it read (all of) Carlos 22 into first_name? Because, by convention, reading of strings is terminated by what is
called whitespace, that is, space, newline, and tab characters. Otherwise, whitespace by default is ignored by >>. For
example, you can add as many spaces as you like before a number to be read; >> will just skip past them and read the number.

If you type in 22 Carlos, you’ll see something that might be surprising until you think about it. The 22 will be read into
first_name because, after all, 22 is a sequence of characters. On the other hand, Carlos isn’t an integer, so it will not be
read. The output will be 22 followed by (age followed by some random number, such as –96739 or 0. Why? You didn’t give
age an initial value and you didn’t succeed in reading a value into it. Therefore, you get some “garbage value” that happened
to be in that part of memory when you started executing. In §10.6, we look at ways to handle “input format errors.” For now,
let’s just initialize age so that we get a predictable value if the input fails:
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// read name and age (2nd version)
int main()

{

          cout << "Please enter your first name and age\n";

          string first_name = "???";      // string variable
                                                            // ("???” means “don’t know the name”)
          int age = –1;         // integer variable (–1 means “don’t know the age”)
          cin >> first_name >> age;      // read a string followed by an integer
          cout << "Hello, " << first_name << " (age " << age << ")\n";

}

Now the input 22 Carlos will output

Hello, 22 (age –1)

Note that we can read several values in a single input statement, just as we can write several values in a single output
statement. Note also that << is sensitive to type, just as >> is, so we can output the int variable age as well as the string

variable first_name and the string literals "Hello, " and " (age " and ")\n".

A string read using >> is (by default) terminated by whitespace; that is, it reads a single word. But sometimes, we want to
read more than one word. There are of course many ways of doing this. For example, we can read a name consisting of two
words like this:
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int main()

{

          cout << "Please enter your first and second names\n";

          string first;

          string second;

          cin >> first >> second;           // read two strings
          cout << "Hello, " << first <<" << second << '\n';

}

We simply used >> twice, once for each name. When we want to write the names to output, we must insert a space between
them.



 Try This

Get the “name and age” example to run. Then, modify it to write out the age in months: read the input in years and
multiply (using the * operator) by 12. Read the age into a double to allow for children who can be very proud of
being five and a half years old rather than just five.

3.4 Operations and operators
In addition to specifying what values can be stored in a variable, the type of a variable determines what operations we can
apply to it and what they mean. For example:
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int count;

cin >> count;                            // >> reads an integer into count
string name;

cin >> name;                             // >> reads a string into name

int c2 = count+2;                      // + adds integers
string s2 = name + " Jr. ";         // + appends characters

int c3 = count–2;                      // – subtracts integers
string s3 = name – " Jr. ";         // error: – isn’t defined for strings

By “error” we mean that the compiler will reject a program trying to subtract strings. The compiler knows exactly which
operations can be applied to each variable and can therefore prevent many mistakes. However, the compiler doesn’t know
which operations make sense to you for which values, so it will happily accept legal operations that yield results that may look
absurd to you. For example:

int age = –100;

It may be obvious to you that you can’t have a negative age (why not?) but nobody told the compiler, so it’ll produce code for
that definition.

Here is a table of useful operators for some common and useful types:



A blank square indicates that an operation is not directly available for a type (though there may be indirect ways of using that
operation; see §3.9.1). We’ll explain these operations, and more, as we go along. The key points here are that there are a lot of
useful operators and that their meaning tends to be the same for similar types.

Let’s try an example involving floating-point numbers:
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// simple program to exercise operators
int main()

{

          cout << "Please enter a floating-point value: ";

          double n;

          cin >> n;

          cout << "n == " << n

                    << "\nn+1 == " << n+1

                    << "\nthree times n == " << 3*n

                    << "\ntwice n == " << n+n

                    << "\nn squared == " << n*n

                    << "\nhalf of n == " << n/2

                    << "\nsquare root of n == " << sqrt(n)

                    << '\n';  // another name for newline (“end of line”) in output
}

Obviously, the usual arithmetic operations have their usual notation and meaning as we know them from primary school.
Naturally, not everything we might want to do to a floating-point number, such as taking its square root, is available as an
operator. Many operations are represented as named functions. In this case, we use sqrt() from the standard library to get the
square root of n: sqrt(n). The notation is familiar from math. We’ll use functions along the way and discuss them in some
detail in §4.5 and §8.5.

 Try This

Get this little program to run. Then, modify it to read an int rather than a double. Note that sqrt() is not defined



for an int so assign n to a double and take sqrt() of that. Also, “exercise” some other operations. Note that for
ints / is integer division and % is remainder (modulo), so that 5/2 is 2 (and not 2.5 or 3) and 5%2 is 1. The
definitions of integer *, /, and % guarantee that for two positive ints a and b we have a/b * b + a%b == a.

Strings have fewer operators, but as we’ll see in Chapter 23, they have plenty of named operations. However, the operators
they do have can be used conventionally. For example:
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// read first and second name
int main()

{

          cout << "Please enter your first and second names\n";

          string first;

          string second;

          cin >> first >> second;                         // read two strings
          string name = first + ' ' + second;       // concatenate strings
          cout << "Hello, " << name << '\n';

}

For strings + means concatenation; that is, when s1 and s2 are strings, s1+s2 is a string where the characters from s1 are
followed by the characters from s2. For example, if s1 has the value "Hello" and s2 the value "World", then s1+s2 will
have the value "HelloWorld". Comparison of strings is particularly useful:
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// read and compare names
int main()

{

          cout << "Please enter two names\n";

          string first;

          string second;

          cin >> first >> second;           // read two strings
          if (first == second) cout << "that's the same name twice\n";

          if (first < second)

                    cout << first << " is alphabetically before " << second <<'\n';

          if (first > second)

                    cout << first << " is alphabetically after " << second <<'\n';

}

Here, we used an if-statement, which will be explained in detail in §4.4.1.1, to select actions based on conditions.

3.5 Assignment and initialization

In many ways, the most interesting operator is assignment, represented as =. It gives a variable a new value. For example:



That last assignment deserves notice. First of all it clearly shows that = does not mean equals — clearly, a doesn’t equal a+7.
It means assignment, that is, to place a new value in a variable. What is done for a=a+7 is the following:

1. First, get the value of a; that’s the integer 4.
2. Next, add 7 to that 4, yielding the integer 11.
3. Finally, put that 11 into a.

We can also illustrate assignments using strings:



Above, we use “starts out with” and “gets” to distinguish two similar, but logically distinct, operations:
• Initialization (giving a variable its initial value)
• Assignment (giving a variable a new value)

These operations are so similar that C++ allows us to use the same notation (the =) for both:
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int y = 8;                          // initialize y with 8
x = 9;                               // assign 9 to x

string t = "howdy!";      // initialize t with “howdy!”
s = "G'day";                   // assign “G’day” to s

However, logically assignment and initialization are different. You can tell the two apart by the type specification (like int or
string) that always starts an initialization; an assignment does not have that. In principle, an initialization always finds the
variable empty. On the other hand, an assignment (in principle) must clear out the old value from the variable before putting in
the new value. You can think of the variable as a kind of small box and the value as a concrete thing, such as a coin, that you
put into it. Before initialization, the box is empty, but after initialization it always holds a coin so that to put a new coin in, you
(i.e., the assignment operator) first have to remove the old one (“destroy the old value”). Things are not quite this literal in the
computer’s memory, but it’s not a bad way of thinking of what’s going on.

3.5.1 An example: detect repeated words
Assignment is needed when we want to put a new value into an object. When you think of it, it is obvious that assignment is
most useful when you do things many times. We need an assignment when we want to do something again with a different
value. Let’s have a look at a little program that detects adjacent repeated words in a sequence of words. Such code is part of
most grammar checkers:
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int main()

{

          string previous = " ";       // previous word; initialized to “not a word”
          string current;                             // current word
          while (cin>>current) {                // read a stream of words
                    if (previous == current)    // check if the word is the same as last
                              cout << "repeated word: " << current << '\n';

          previous = current;

          }
}

This program is not the most helpful since it doesn’t tell where the repeated word occurred in the text, but it’ll do for now. We
will look at this program line by line starting with

string current;     // current word

This is the string variable into which we immediately read the current (i.e., most recently read) word using

while (cin>>current)

This construct, called a while-statement, is interesting in its own right, and we’ll examine it further in §4.4.2.1. The while

says that the statement after (cin>>current) is to be repeated as long as the input operation cin>>current succeeds, and
cin>>current will succeed as long as there are characters to read on the standard input. Remember that for a string, >>

reads whitespace-separated words. You terminate this loop by giving the program an end-of-input character (usually referred
to as end of file). On a Windows machine, that’s Ctrl+Z (Control and Z pressed together) followed by an Enter (return). On a
Unix or Linux machine that’s Ctrl+D (Control and D pressed together).

So, what we do is to read a word into current and then compare it to the previous word (stored in previous). If they are
the same, we say so:
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if (previous == current)         // check if the word is the same as last
          cout << "repeated word: " << current << '\n';



Then we have to get ready to do this again for the next word. We do that by copying the current word into previous:

previous = current;

This handles all cases provided that we can get started. What should this code do for the first word where we have no previous
word to compare? This problem is dealt with by the definition of previous:
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string previous = " ";      // previous word; initialized to “not a word”

The " " contains only a single character (the space character, the one we get by hitting the space bar on our keyboard). The
input operator >> skips whitespace, so we couldn’t possibly read that from input. Therefore, the first time through the while-
statement, the test

if (previous == current)

fails (as we want it to).

One way of understanding program flow is to “play computer,” that is, to follow the program line for line, doing what it
specifies. Just draw boxes on a piece of paper and write their values into them. Change the values stored as specified by the
program.

 Try This

Execute this program yourself using a piece of paper. Use the input The cat cat jumped. Even experienced
programmers use this technique to visualize the actions of small sections of code that somehow don’t seem
completely obvious.

 Try This

Get the “repeated word detection program” to run. Test it with the sentence She she laughed He He He

because what he did did not look very very good good. How many repeated words were there? Why?
What is the definition of word used here? What is the definition of repeated word? (For example, is She she a
repetition?)

3.6 Composite assignment operators
Incrementing a variable (that is, adding 1 to it) is so common in programs that C++ provides a special syntax for it. For
example:

++counter

means

counter = counter + 1

There are many other common ways of changing the value of a variable based on its current value. For example, we might like
to add 7 to it, to subtract 9, or to multiply it by 2. Such operations are also supported directly by C++. For example:

a += 7;      // means a = a+7
b –= 9;      // means b = b–9
c *= 2;      // means c = c*2

In general, for any binary operator oper, a oper= b means a = a oper b (§A.5). For starters, that rule gives us operators +=,
–=, *=, /=, and %=. This provides a pleasantly compact notation that directly reflects our ideas. For example, in many
application domains *= and /= are referred to as “scaling.”

3.6.1 An example: find repeated words



3.6.1 An example: find repeated words
Consider the example of detecting repeated adjacent words above. We could improve that by giving an idea of where the
repeated word was in the sequence. A simple variation of that idea simply counts the words and outputs the count for the
repeated word:
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int main()

{

         int number_of_words = 0;

         string previous = " ";                 // not a word
         string current;

         while (cin>>current) {

                   ++number_of_words;       // increase word count
                   if (previous == current)

                             cout << "word number " << number_of_words

                                       << " repeated: " << current << '\n';

                   previous = current;

         }
}

We start our word counter at 0. Each time we see a word, we increment that counter:

++number_of_words;

That way, the first word becomes number 1, the next number 2, and so on. We could have accomplished the same by saying

number_of_words += 1;

or even
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number_of_words = number_of_words+1;

but ++number_of_words is shorter and expresses the idea of incrementing directly.

Note how similar this program is to the one from §3.5.1. Obviously, we just took the program from §3.5.1 and modified it a
bit to serve our new purpose. That’s a very common technique: when we need to solve a problem, we look for a similar
problem and use our solution for that with suitable modification. Don’t start from scratch unless you really have to. Using a
previous version of a program as a base for modification often saves a lot of time, and we benefit from much of the effort that
went into the original program.

3.7 Names
We name our variables so that we can remember them and refer to them from other parts of a program. What can be a name in
C++? In a C++ program, a name starts with a letter and contains only letters, digits, and underscores. For example:

x

number_of_elements

Fourier_transform

z2

Polygon

The following are not names:
Click here to view code image

2x                             // a name must start with a letter
time$to$market      // $ is not a letter, digit, or underscore
Start menu               // space is not a letter, digit, or underscore

When we say “not names,” we mean that a C++ compiler will not accept them as names.

If you read system code or machine-generated code, you might see names starting with underscores, such as _foo. Never
write those yourself; such names are reserved for implementation and system entities. By avoiding leading underscores, you



will never find your names clashing with some name that the implementation generated.
Names are case sensitive; that is, uppercase and lowercase letters are distinct, so x and X are different names. This little

program has at least four errors:
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#include "std_lib_facilities.h"

int Main()

{

          STRING s = "Goodbye, cruel world! ";

          cOut << S << '\n';

}

It is usually not a good idea to define names that differ only in the case of a character, such as one and One; that will not
confuse a compiler, but it can easily confuse a programmer.

 Try This

Compile the “Goodbye, cruel world!” program and examine the error messages. Did the compiler find all the
errors? What did it suggest as the problems? Did the compiler get confused and diagnose more than four errors?
Remove the errors one by one, starting with the lexically first, and see how the error messages change (and
improve).

The C++ language reserves many (about 85) names as “keywords.” We list them in §A.3.1. You can’t use those to name your
variables, types, functions, etc. For example:
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int if = 7;          // error: if is a keyword

You can use names of facilities in the standard library, such as string, but you shouldn’t. Reuse of such a common name will
cause trouble if you should ever want to use the standard library:
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int string = 7;          // this will lead to trouble

When you choose names for your variables, functions, types, etc., choose meaningful names; that is, choose names that will
help people understand your program. Even you will have problems understanding what your program is supposed to do if you
have littered it with variables with “easy to type” names like x1, x2, s3, and p7. Abbreviations and acronyms can confuse
people, so use them sparingly. These acronyms were obvious to us when we wrote them, but we expect you’ll have trouble
with at least one:

mtbf

TLA

myw

NBV

We expect that in a few months, we’ll also have trouble with at least one.
Short names, such as x and i, are meaningful when used conventionally; that is, x should be a local variable or a parameter

(see §4.5 and §8.4) and i should be a loop index (see §4.4.2.3).
Don’t use overly long names; they are hard to type, make lines so long that they don’t fit on a screen, and are hard to read

quickly. These are probably OK:

partial_sum

element_count

stable_partition



These are probably too long:
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the_number_of_elements

remaining_free_slots_in_symbol_table

Our “house style” is to use underscores to separate words in an identifier, such as element_count, rather than alternatives,
such as elementCount and ElementCount. We never use names with all capital letters, such as ALL_CAPITAL_LETTERS,
because that’s conventionally reserved for macros (§27.8 and §A.17.2), which we avoid. We use an initial capital letter for
types we define, such as Square and Graph. The C++ language and standard library don’t use the initial-capital-letter style,
so it’s int rather than Int and string rather than String. Thus, our convention helps to minimize confusion between our types
and the standard ones.

Avoid names that are easy to mistype, misread, or confuse. For example:
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Name       names        nameS

foo            f00              fl

f1               fI                 fi

The characters 0 (zero), o (lowercase O), O (uppercase o), 1 (one), I (uppercase i), and l (lowercase L) are particularly
prone to cause trouble.

3.8 Types and objects
The notion of type is central to C++ and most other programming languages. Let’s take a closer and slightly more technical
look at types, specifically at the types of the objects in which we store our data during computation. It’ll save time in the long
run, and it may save you some confusion.

• A type defines a set of possible values and a set of operations (for an object).
• An object is some memory that holds a value of a given type.
• A value is a set of bits in memory interpreted according to a type.
• A variable is a named object.
• A declaration is a statement that gives a name to an object.
• A definition is a declaration that sets aside memory for an object.

Informally, we think of an object as a box into which we can put values of a given type. An int box can hold integers, such as
7, 42, and –399. A string box can hold character string values, such as "Interoperability", "tokens: !@#$%^&*", and
"Old MacDonald had a farm". Graphically, we can think of it like this:

The representation of a string is a bit more complicated than that of an int because a string keeps track of the number of
characters it holds. Note that a double stores a number whereas a string stores characters. For example, x stores the number
1.2, whereas s2 stores the three characters '1', '.', and '2'. The quotes for character and string literals are not stored.

Every int is of the same size; that is, the compiler sets aside the same fixed amount of memory for each int. On a typical
desktop computer, that amount is 4 bytes (32 bits). Similarly, bools, chars, and doubles are fixed size. You’ll typically find
that a desktop computer uses a byte (8 bits) for a bool or a char and 8 bytes for a double. Note that different types of objects



take up different amounts of space. In particular, a char takes up less space than an int, and string differs from double, int,
and char in that different strings can take up different amounts of space.

The meaning of bits in memory is completely dependent on the type used to access it. Think of it this way: computer memory
doesn’t know about our types; it’s just memory. The bits of memory get meaning only when we decide how that memory is to
be interpreted. This is similar to what we do every day when we use numbers. What does 12.5 mean? We don’t know. It could
be $12.5 or 12.5cm or 12.5gallons. Only when we supply the unit does the notation 12.5 mean anything.

For example, the very same bits of memory that represent the value 120 when looked upon as an int would be 'x' when
looked upon as a char. If looked at as a string, it wouldn’t make sense at all and would become a run-time error if we tried to
use it. We can illustrate this graphically like this, using 1 and 0 to indicate the value of bits in memory:

This is the setting of the bits of an area of memory (a word) that could be read as an int (120) or as a char ('x', looking at the
rightmost 8 bits only). A bit is a unit of computer memory that can hold the value 0 or 1. For the meaning of binary numbers,
see §A.2.1.1.

3.9 Type safety

Every object is given a type when it is defined. A program — or a part of a program — is type-safe when objects are used
only according to the rules for their type. Unfortunately, there are ways of doing operations that are not type-safe. For example,
using a variable before it has been initialized is not considered type-safe:
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int main()

{

          double x;                   // we “forgot” to initialize:
                                              // the value of x is undefined
          double y = x;            // the value of y is undefined
          double z = 2.0+x;     // the meaning of + and the value of z are undefined
}

An implementation is even allowed to give a hardware error when the uninitialized x is used. Always initialize your variables!
There are a few — very few — exceptions to this rule, such as a variable we immediately use as the target of an input
operation, but always to initialize is a good habit that’ll save you a lot of grief.

Complete type safety is the ideal and therefore the general rule for the language. Unfortunately, a C++ compiler cannot
guarantee complete type safety, but we can avoid type safety violations through a combination of good coding practice and run-
time checks. The ideal is never to use language features that the compiler cannot prove to be safe: static type safety.
Unfortunately, that’s too restrictive for most interesting uses of programming. The obvious fallback, that the compiler implicitly
generates code that checks for type safety violations and catches all of them, is beyond C++. When we decide to do things that
are (type) unsafe, we must do some checking ourselves. We’ll point out such cases as we get to them.

The ideal of type safety is incredibly important when writing code. That’s why we spend time on it this early in the book.
Please note the pitfalls and avoid them.

3.9.1 Safe conversions
In §3.4, we saw that we couldn’t directly add chars or compare a double to an int. However, C++ provides an indirect way
to do both. When needed, a char is converted to an int and an int is converted to a double. For example:

char c = 'x';

int i1 = c;

int i2 = 'x';

Here both i1 and i2 get the value 120, which is the integer value of the character 'x' in the most popular 8-bit character set,
ASCII. This is a simple and safe way of getting the numeric representation of a character. We call this char-to-int conversion
safe because no information is lost; that is, we can copy the resulting int back into a char and get the original value:
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char c2 = i1;

cout << c << ' << i1 << ' << c2 << '\n';

This will print

x 120 x

In this sense — that a value is always converted to an equal value or (for doubles) to the best approximation of an equal
value — these conversions are safe:

bool to char

bool to int

bool to double

char to int

char to double

int to double

The most useful conversion is int to double because it allows us to mix ints and doubles in expressions:
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double d1 = 2.3;

double d2 = d1+2;         // 2 is converted to 2.0 before adding
if (d1 < 0)                         // 0 is converted to 0.0 before comparison
          cout << "d1 is negative";

For a really large int, we can (for some computers) suffer a loss of precision when converting to double. This is a rare
problem.

3.9.2 Unsafe conversions

Safe conversions are usually a boon to the programmer and simplify writing code. Unfortunately, C++ also allows for
(implicit) unsafe conversions. By unsafe, we mean that a value can be implicitly turned into a value of another type that does
not equal the original value. For example:
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int main()

{

          int a = 20000;

          char c = a;       // try to squeeze a large int into a small char
          int b = c;

          if (a != b)         // != means “not equal”
                    cout << "oops!: " << a << "!=" << b << '\n';

          else

                    cout << "Wow! We have large characters\n";

}

Such conversions are also called “narrowing” conversions, because they put a value into an object that may be too small
(“narrow”) to hold it. Unfortunately, few compilers warn about the unsafe initialization of the char with an int. The problem is
that an int is typically much larger than a char, so that it can (and in this case does) hold an int value that cannot be
represented as a char. Try it to see what value b gets on your machine (32 is a common result); better still, experiment:
Click here to view code image

int main()

{

          double d = 0;

          while (cin>>d) {            // repeat the statements below
                                                  // as long as we type in numbers
                    int i = d;               // try to squeeze a double into an int
                    char c = i;            // try to squeeze an int into a char
                    int i2 = c;             // get the integer value of the character
                    cout << "d==" << d                          // the original double



                              << " i=="<< i                            // converted to int
                              << " i2==" << i2                       // int value of char
                              << " char(" << c << ")\n";      // the char
          }
}

The while-statement that we use to allow many values to be tried will be explained in §4.4.2.1.

 Try This

Run this program with a variety of inputs. Try small values (e.g., 2 and 3); try large values (larger than 127, larger
than 1000); try negative values; try 56; try 89; try 128; try non-integer values (e.g., 56.9 and 56.2). In addition to
showing how conversions from double to int and conversions from int to char are done on your machine, this
program shows you what character (if any) your machine will print for a given integer value.

You’ll find that many input values produce “unreasonable” results. Basically, we are trying to put a gallon into a pint pot
(about 4 liters into a 500ml glass). All of the conversions

double to int

double to char

double to bool

int to char

int to bool

char to bool

are accepted by the compiler even though they are unsafe. They are unsafe in the sense that the value stored might differ from
the value assigned. Why can this be a problem? Because often we don’t suspect that an unsafe conversion is taking place.
Consider:
Click here to view code image

double x = 2.7;

// lots of code
int y = x;               // y becomes 2

By the time we define y we may have forgotten that x was a double, or we may have temporarily forgotten that a double-
to-int conversion truncates (always rounds down, toward zero) rather than using the conventional 4/5 rounding. What happens
is perfectly predictable, but there is nothing in the int y = x; to remind us that information (the .7) is thrown away.

Conversions from int to char don’t have problems with truncation — neither int nor char can represent a fraction of an
integer. However, a char can hold only very small integer values. On a PC, a char is 1 byte whereas an int is 4 bytes:

So, we can’t put a large number, such as 1000, into a char without loss of information: the value is “narrowed.” For example:
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int a = 1000;

char b = a;           // b becomes –24 (on some machines)

Not all int values have char equivalents, and the exact range of char values depends on the particular implementation. On a
PC the range of char values is [–128:127], but only [0:127] can be used portably because not every computer is a PC, and
different computers have different ranges for their char values, such as [0:255].



Why do people accept the problem of narrowing conversions? The major reason is history: C++ inherited narrowing
conversions from its ancestor language, C, so from day one of C++, there existed much code that depended on narrowing
conversions. Also, many such conversions don’t actually cause problems because the values involved happen to be in range,
and many programmers object to compilers “telling them what to do.” In particular, the problems with unsafe conversions are
often manageable in small programs and for experienced programmers. They can be a source of errors in larger programs,
though, and a significant cause of problems for novice programmers. However, compilers can warn about narrowing
conversions — and many do.

C++11 introduced an initialization notation that outlaws narrowing conversions. For example, we could (and should)
rewrite the troublesome examples above using a {}-list notation, rather than the = notation:
Click here to view code image

double x {2.7};           // OK

int y {x};                      // error: double -> int might narrow

int a {1000};                // OK

char b {a};                  // error: int -> char might narrow

When the initializer is an integer literal, the compiler can check the actual value and accept values that do not imply
narrowing:
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int char b1 {1000};           // error: narrowing (assuming 8-bit chars)

char b2 {48};                    // OK

So what should you do if you think that a conversion might lead to a bad value? Use {} initializers to avoid accidents, and
when you want a conversion, check the value before assigning as we did in the first example in this section. See §5.6.4 and
§7.5 for a simplified way of doing such checking. The {}-list-based notation is known as universal and uniform initialization
and we will see much more of that later on.

 Drill

After each step of this drill, run your program to make sure it is really doing what you expect it to. Keep a list of what mistakes
you make so that you can try to avoid those in the future.

1. This drill is to write a program that produces a simple form letter based on user input. Begin by typing the code from
§3.1 prompting a user to enter his or her first name and writing “Hello, first_name” where first_name is the name
entered by the user. Then modify your code as follows: change the prompt to “Enter the name of the person you want to
write to” and change the output to “Dear first_name,”. Don’t forget the comma.

2. Add an introductory line or two, like “How are you? I am fine. I miss you.” Be sure to indent the first line. Add a few
more lines of your choosing — it’s your letter.

3. Now prompt the user for the name of another friend, and store it in friend_name. Add a line to your letter: “Have you
seen friend_name lately?”

4. Declare a char variable called friend_sex and initialize its value to 0. Prompt the user to enter an m if the friend is
male and an f if the friend is female. Assign the value entered to the variable friend_sex. Then use two if-statements to
write the following:
If the friend is male, write “If you see friend_name please ask him to call me.”
If the friend is female, write “If you see friend_name please ask her to call me.”

5. Prompt the user to enter the age of the recipient and assign it to an int variable age. Have your program write “I hear
you just had a birthday and you are age years old.” If age is 0 or less or 110 or more, call simple_error("you're

kidding!") using simple_error() from std_lib_facilities.h.
6. Add this to your letter:

If your friend is under 12, write “Next year you will be age+1.”
If your friend is 17, write “Next year you will be able to vote.”
If your friend is over 70, write “I hope you are enjoying retirement.”
Check your program to make sure it responds appropriately to each kind of value.

7. Add “Yours sincerely,” followed by two blank lines for a signature, followed by your name.



Review
1. What is meant by the term prompt?
2. Which operator do you use to read into a variable?
3. If you want the user to input an integer value into your program for a variable named number, what are two lines of

code you could write to ask the user to do it and to input the value into your program?
4. What is \n called and what purpose does it serve?
5. What terminates input into a string?
6. What terminates input into an integer?
7. How would you write

cout << "Hello, ";

cout << first_name;

cout << "!\n";

as a single line of code?
8. What is an object?
9. What is a literal?

10. What kinds of literals are there?
11. What is a variable?
12. What are typical sizes for a char, an int, and a double?
13. What measures do we use for the size of small entities in memory, such as ints and strings?
14. What is the difference between = and ==?
15. What is a definition?
16. What is an initialization and how does it differ from an assignment?
17. What is string concatenation and how do you make it work in C++?
18. Which of the following are legal names in C++? If a name is not legal, why not?

Click here to view code image

This_little_pig         This_1_is fine              2_For_1_special

latest thing              the_$12_method         _this_is_ok

MiniMineMine       number                        correct?

19. Give five examples of legal names that you shouldn’t use because they are likely to cause confusion.
20. What are some good rules for choosing names?
21. What is type safety and why is it important?
22. Why can conversion from double to int be a bad thing?
23. Define a rule to help decide if a conversion from one type to another is safe or unsafe.

Terms
assignment
cin

concatenation
conversion
declaration
decrement
definition
increment
initialization
name
narrowing



object
operation
operator
type
type safety
value
variable

Exercises
1 If you haven’t done so already, do the Try this exercises from this chapter.
2 Write a program in C++ that converts from miles to kilometers. Your program should have a reasonable prompt for the

user to enter a number of miles. Hint: There are 1.609 kilometers to the mile.
3 Write a program that doesn’t do anything, but declares a number of variables with legal and illegal names (such as int

double = 0;), so that you can see how the compiler reacts.
4 Write a program that prompts the user to enter two integer values. Store these values in int variables named val1 and

val2. Write your program to determine the smaller, larger, sum, difference, product, and ratio of these values and report
them to the user.

5 Modify the program above to ask the user to enter floating-point values and store them in double variables. Compare the
outputs of the two programs for some inputs of your choice. Are the results the same? Should they be? What’s the
difference?

6 Write a program that prompts the user to enter three integer values, and then outputs the values in numerical sequence
separated by commas. So, if the user enters the values 10 4 6, the output should be 4, 6, 10. If two values are the same,
they should just be ordered together. So, the input 4 5 4 should give 4, 4, 5.

7 Do exercise 6, but with three string values. So, if the user enters the values Steinbeck, Hemingway, Fitzgerald, the
output should be Fitzgerald, Hemingway, Steinbeck.

8 Write a program to test an integer value to determine if it is odd or even. As always, make sure your output is clear and
complete. In other words, don’t just output yes or no. Your output should stand alone, like The value 4 is an even

number. Hint: See the remainder (modulo) operator in §3.4.
9 Write a program that converts spelled-out numbers such as “zero” and “two” into digits, such as 0 and 2. When the user

inputs a number, the program should print out the corresponding digit. Do it for the values 0, 1, 2, 3, and 4 and write out
not a number I know if the user enters something that doesn’t correspond, such as stupid computer!.

10 Write a program that takes an operation followed by two operands and outputs the result. For example:

+ 100 3.14

* 4 5

Read the operation into a string called operation and use an if-statement to figure out which operation the user wants,
for example, if (operation=="+"). Read the operands into variables of type double. Implement this for operations
called +, –, *, /, plus, minus, mul, and div with their obvious meanings.

11 Write a program that prompts the user to enter some number of pennies (1-cent coins), nickels (5-cent coins), dimes (10-
cent coins), quarters (25-cent coins), half dollars (50-cent coins), and one-dollar coins (100-cent coins). Query the user
separately for the number of each size coin, e.g., “How many pennies do you have?” Then your program should print out
something like this:

Click here to view code image

You have 23 pennies.

You have 17 nickels.

You have 14 dimes.

You have 7 quarters.

You have 3 half dollars.

The value of all of your coins is 573 cents.

Make some improvements: if only one of a coin is reported, make the output grammatically correct, e.g., 14 dimes and 1
dime (not 1 dimes). Also, report the sum in dollars and cents, i.e., $5.73 instead of 573 cents.



Postscript
Please don’t underestimate the importance of the notion of type safety. Types are at the center of most notions of correct
programs, and some of the most effective techniques for constructing programs rely on the design and use of types — as you’ll
see in Chapters 6 and 9, Parts II, III, and IV.



4. Computation

“If it doesn’t have
to produce correct results,

I can make it arbitrarily fast.”
—Gerald M. Weinberg

This chapter presents the basics of computation. In particular, we discuss how to compute a value from a set of operands
(expression), how to choose among alternative actions (selection), and how to repeat a computation for a series of values
(iteration). We also show how a particular sub-computation can be named and specified separately (a function). Our primary
concern is to express computations in ways that lead to correct and well-organized programs. To help you perform more
realistic computations, we introduce the vector type to hold sequences of values.

4.1 Computation
4.2 Objectives and tools
4.3 Expressions

4.3.1 Constant expressions
4.3.2 Operators
4.3.3 Conversions

4.4 Statements
4.4.1 Selection
4.4.2 Iteration

4.5 Functions
4.5.1 Why bother with functions?
4.5.2 Function declarations

4.6 vector

4.6.1 Traversing a vector

4.6.2 Growing a vector

4.6.3 A numeric example
4.6.4 A text example

4.7 Language features

4.1 Computation

From one point of view, all that a program ever does is to compute; that is, it takes some inputs and produces some output.
After all, we call the hardware on which we run the program a computer. This view is accurate and reasonable as long as we
take a broad view of what constitutes input and output:

The input can come from a keyboard, from a mouse, from a touch screen, from files, from other input devices, from other
programs, from other parts of a program. “Other input devices” is a category that contains most really interesting input sources:
music keyboards, video recorders, network connections, temperature sensors, digital camera image sensors, etc. The variety is
essentially infinite.



To deal with input, a program usually contains some data, sometimes referred to as its data structures or its state. For
example, a calendar program may contain lists of holidays in various countries and a list of your appointments. Some of that
data is part of the program from the start; other data is built up as the program reads input and collects useful information from
it. For example, the calendar program will probably build your list of appointments from the input you give it. For the calendar,
the main inputs are the requests to see the months and days you ask for (probably using mouse clicks) and the appointments you
give it to keep track of (probably by typing information on your keyboard). The output is the display of calendars and
appointments, plus the buttons and prompts for input that the calendar program writes on your screen.

Input comes from a wide variety of sources. Similarly, output can go to a wide variety of destinations. Output can be to a
screen, to files, to network connections, to other output devices, to other programs, and to other parts of a program. Examples
of output devices include network interfaces, music synthesizers, electric motors, light generators, heaters, etc.

From a programming point of view the most important and interesting categories are “to/from another program” and “to/from
other parts of a program.” Most of the rest of this book could be seen as discussing that last category: how do we express a
program as a set of cooperating parts and how can they share and exchange data? These are key questions in programming. We
can illustrate that graphically:

The abbreviation I/O stands for “input/output.” In this case, the output from one part of code is the input for the next part. What
such “parts of a program” share is data stored in main memory, on persistent storage devices (such as disks), or transmitted
over network connections. By “parts of a program” we mean entities such as a function producing a result from a set of input
arguments (e.g., a square root from a floating-point number), a function performing an action on a physical object (e.g., a
function drawing a line on a screen), or a function modifying some table within the program (e.g., a function adding a name to a
table of customers).

When we say “input” and “output” we generally mean information coming into and out of a computer, but as you see, we can
also use the terms for information given to or produced by a part of a program. Inputs to a part of a program are often called
arguments and outputs from a part of a program are often called results.

By computation we simply mean the act of producing some outputs based on some inputs, such as producing the result
(output) 49 from the argument (input) 7 using the computation (function) square (see §4.5). As a possibly helpful curiosity, we
note that until the 1950s a computer was defined as a person who did computations, such as an accountant, a navigator, or a
physicist. Today, we simply delegate most computations to computers (machines) of various forms, of which the pocket
calculator is among the simplest.

4.2 Objectives and tools

Our job as programmers is to express computations
• Correctly
• Simply
• Efficiently

Please note the order of those ideals: it doesn’t matter how fast a program is if it gives the wrong results. Similarly, a correct
and efficient program can be so complicated that it must be thrown away or completely rewritten to produce a new version
(release). Remember, useful programs will always be modified to accommodate new needs, new hardware, etc. Therefore a
program — and any part of a program — should be as simple as possible to perform its task. For example, assume that you
have written the perfect program for teaching basic arithmetic to children in your local school, and that its internal structure is
a mess. Which language did you use to communicate with the children? English? English and Spanish? What if I’d like to use it
in Finland? In Kuwait? How would you change the (natural) language used for communication with a child? If the internal
structure of the program is a mess, the logically simple (but in practice almost always very difficult) operation of changing the
natural language used to communicate with users becomes insurmountable.

Concerns about correctness, simplicity, and efficiency become ours the minute we start writing code for others and accept



the responsibility to do that well; that is, we must accept that responsibility when we decide to become professionals. In
practical terms, this means that we can’t just throw code together until it appears to work; we must concern ourselves with the
structure of code. Paradoxically, concerns for structure and “quality of code” are often the fastest ways of getting something to
work. When programming is done well, such concerns minimize the need for the most frustrating part of programming:
debugging; that is, good program structure during development can minimize the number of mistakes made and the time needed
to search for such errors and to remove them.

Our main tool for organizing a program — and for organizing our thoughts as we program — is to break up a big
computation into many little ones. This technique comes in two variations:

• Abstraction: Hide details that we don’t need to use a facility (“implementation details”) behind a convenient and general
interface. For example, rather than considering the details of how to sort a phone book (thick books have been written
about how to sort), we just call the sort algorithm from the C++ standard library. All we need to know to sort is how to
invoke (call) that algorithm, so we can write sort(b) where b refers to the phone book; sort() is a variant (§21.9) of the
standard library sort algorithm (§21.8, §B.5.4) defined in std_library.h. Another example is the way we use computer
memory. Direct use of memory can be quite messy, so we access it through typed and named variables (§3.2), standard
library vectors (§4.6, Chapters 17–19), maps (Chapter 21), etc.

• “Divide and conquer”: Here we take a large problem and divide it into several little ones. For example, if we need to
build a dictionary, we can separate that job into three: read the data, sort the data, and output the data. Each of the
resulting problems is significantly smaller than the original.

Why does this help? After all, a program built out of parts is likely to be slightly larger than a program where everything is
optimally merged together. The reason is that we are not very good at dealing with large problems. The way we actually deal
with those — in programming and elsewhere — is to break them down into smaller problems, and we keep breaking those into
even smaller parts until we get something simple enough to understand and solve. In terms of programming, you’ll find that a
1000-line program has far more than ten times as many errors as a 100-line program, so we try to compose the 1000-line
program out of parts with fewer than 100 lines. For large programs, say 10,000,000 lines, applying abstraction and divide-and-
conquer is not just an option, it’s an essential requirement. We simply cannot write and maintain large monolithic programs.
One way of looking at the rest of this book is as a long series of examples of problems that need to be broken up into smaller
parts together with the tools and techniques needed to do so.

When we consider dividing up a program, we must always consider what tools we have available to express the parts and
their communications. A good library, supplying useful facilities for expressing ideas, can crucially affect the way we
distribute functionality into different parts of a program. We cannot just sit back and “imagine” how best to partition a program;
we must consider what libraries we have available to express the parts and their communication. It is early days yet, but not
too soon to point out that if you can use an existing library, such as the C++ standard library, you can save yourself a lot of
work, not just on programming but also on testing and documentation. The iostreams save us from having to directly deal with
the hardware’s input/output ports. This is a first example of partitioning a program using abstraction. Every new chapter will
provide more examples.

Note the emphasis on structure and organization: you don’t get good code just by writing a lot of statements. Why do we
mention this now? At this stage you (or at least many readers) have little idea about what code is, and it will be months before
you are ready to write code upon which other people could depend for their lives or livelihood. We mention it to help you get
the emphasis of your learning right. It is very tempting to dash ahead, focusing on the parts of programming that — like what is
described in the rest of this chapter — are concrete and immediately useful and to ignore the “softer,” more conceptual parts of
the art of software development. However, good programmers and system designers know (often having learned it the hard
way) that concerns about structure lie at the heart of good software and that ignoring structure leads to expensive messes.
Without structure, you are (metaphorically speaking) building with mud bricks. It can be done, but you’ll never get to the fifth
floor (mud bricks lack the structural strength for that). If you have the ambition to build something reasonably permanent, you
pay attention to matters of code structure and organization along the way, rather than having to come back and learn them after
failures.

4.3 Expressions

The most basic building block of programs is an expression. An expression computes a value from a number of operands. The



simplest expression is simply a literal value, such as 10, 'a', 3.14, or "Norah".
Names of variables are also expressions. A variable represents the object of which it is the name. Consider:
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// compute area:
int length = 20;                       // a  literal integer (used to initialize a variable)
int width = 40;

int area = length*width;       // a  multiplication

Here the literals 20 and 40 are used to initialize the variables length and width. Then, length and width are multiplied; that
is, we multiply the values found in length and width. Here, length is simply shorthand for “the value found in the object
named length.” Consider also
Click here to view code image

length = 99;      // assign 99 to length

Here, as the left-hand operand of the assignment, length means “the object named length,” so that the assignment expression
is read “Put 99 into the object named by length.” We distinguish between length used on the left-hand side of an assignment
or an initialization (“the lvalue of length” or “the object named by length”) and length used on the right-hand side of an
assignment or initialization (“the rvalue of length,” “the value of the object named by length,” or just “the value of length”).
In this context, we find it useful to visualize a variable as a box labeled by its name:

That is, length is the name of an object of type int containing the value 99. Sometimes (as an lvalue) length refers to the box
(object) and sometimes (as an rvalue) length refers to the value in that box.

We can make more complicated expressions by combining expressions using operators, such as + and *, in just the way that
we are used to. When needed, we can use parentheses to group expressions:
Click here to view code image

int perimeter = (length+width)*2;     // add then multiply

Without parentheses, we’d have had to say
Click here to view code image

int perimeter = length*2+width*2;

which is clumsy, and we might even have made this mistake:
Click here to view code image

int perimeter = length+width*2;       // add width*2 to length

This last error is logical and cannot be found by the compiler. All the compiler sees is a variable called perimeter initialized
by a valid expression. If the result of that expression is nonsense, that’s your problem. You know the mathematical definition of
a perimeter, but the compiler doesn’t.

The usual mathematical rules of operator precedence apply, so length+width*2 means length+(width*2). Similarly
a*b+c/d means (a*b)+(c/d) and not a*(b+c)/d. See §A.5 for a precedence table.

The first rule for the use of parentheses is simply “If in doubt, parenthesize,” but please do learn enough about expressions
so that you are not in doubt about a*b+c/d. Overuse of parentheses, as in (a*b)+(c/d), decreases readability.

Why should you care about readability? Because you and possibly others will read your code, and ugly code slows down
reading and comprehension. Ugly code is not just hard to read, it is also much harder to get correct. Ugly code often hides
logical errors. It is slower to read and makes it harder to convince yourself — and others — that the ugly code is correct.
Don’t write absurdly complicated expressions such as
Click here to view code image

a*b+c/d*(e–f/g)/h+7      // too complicated

and always try to choose meaningful names.

4.3.1 Constant expressions



Programs typically use a lot of constants. For example, a geometry program might use pi and an inch-to-centimeter conversion
program will use a conversion factor such as 2.54. Obviously, we want to use meaningful names for those constants (as we did
for pi; we didn’t say 3.14159). Similarly, we don’t want to change those constants accidentally. Consequently, C++ offers the
notion of a symbolic constant, that is, a named object to which you can’t give a new value after it has been initialized. For
example:
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constexpr double pi = 3.14159;

pi = 7;                           // error: assignment to constant
double c = 2*pi*r;       // OK: we just read pi; we don’t try to change it

Such constants are useful for keeping code readable. You might have recognized 3.14159 as an approximation to pi if you saw
it in some code, but would you have recognized 299792458? Also, if someone asked you to change some code to use pi with
the precision of 12 digits for your computation, you could search for 3.14 in your code, but if someone incautiously had used
22/7, you probably wouldn’t find it. It would be much better just to change the definition of pi to use the more appropriate
value:
Click here to view code image

constexpr double pi = 3.14159265359;

Consequently, we prefer not to use literals (except very obvious ones, such as 0 and 1) in most places in our code. Instead, we
use constants with descriptive names. Non-obvious literals in code (outside definitions of symbolic constants) are derisively
referred to as magic constants.

In some places, such as case labels (§4.4.1.3), C++ requires a constant expression, that is, an expression with an integer
value composed exclusively of constants. For example:
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constexpr int max = 17;      // a literal is a constant expression
int val = 19;

max+2                                  // a constant expression (a const int plus a literal)
val+2                                    // not a constant expression: it uses a variable

And by the way, 299792458 is one of the fundamental constants of the universe: the speed of light in vacuum measured in
meters per second. If you didn’t instantly recognize that, why would you expect not to be confused and slowed down by other
literals embedded in code? Avoid magic constants!

A constexpr symbolic constant must be given a value that is known at compile time. For example:
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constexpr int max = 100;

void use(int n)

{

          constexpr int c1 = max+7;   // OK: c1 is 107
          constexpr int c2 = n+7;        // error: we don’t know the value of c2
          // ...
}

To handle cases where the value of a “variable” that is initialized with a value that is not known at compile time but never
changes after initialization, C++ offers a second form of constant (a const):
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constexpr int max = 100;

void use(int n)

{

          constexpr int c1 = max+7;    // OK: c1 is 107
          const int c2 = n+7;                 // OK, but don’t try to change the value of c2
          // ...
          c2 = 7;                                     // error: c2 is a const



}

Such “const variables” are very common for two reasons:
• C++98 did not have constexpr, so people used const.
• “Variables” that are not constant expressions (their value is not known at compile time) but do not change values after

initialization are in themselves widely useful.

4.3.2 Operators
We just used the simplest operators. However, you will soon need more as you want to express more complex operations.
Most operators are conventional, so we’ll just explain them later as needed and you can look up details if and when you find a
need. Here is a list of the most common operators:

We used lval (short for “value that can appear on the left-hand side of an assignment”) where the operator modifies an
operand. You can find a complete list in §A.5.

For examples of the use of the logical operators && (and), || (or), and ! (not), see §5.5.1, §7.7, §7.8.2, and §10.4.

Note that a<b<c means (a<b)<c and that a<b evaluates to a Boolean value: true or false. So, a<b<c will be equivalent to
either true<c or false<c. In particular, a<b<c does not mean “Is b between a and c?” as many have naively (and not
unreasonably) assumed. Thus, a<b<c is basically a useless expression. Don’t write such expressions with two comparison
operations, and be very suspicious if you find such an expression in someone else’s code — it is most likely an error.

An increment can be expressed in at least three ways:

++a

a+=1

a=a+1

Which notation should we use? Why? We prefer the first version, ++a, because it more directly expresses the idea of
incrementing. It says what we want to do (increment a) rather than how to do it (add 1 to a and then write the result to a). In



general, a way of saying something in a program is better than another if it more directly expresses an idea. The result is more
concise and easier for a reader to understand. If we wrote a=a+1, a reader could easily wonder whether we really meant to
increment by 1. Maybe we just mistyped a=b+1, a=a+2, or even a=a–1; with ++a there are far fewer opportunities for such
doubts. Please note that this is a logical argument about readability and correctness, not an argument about efficiency. Contrary
to popular belief, modern compilers tend to generate exactly the same code from a=a+1 as for ++a when a is one of the built-
in types. Similarly, we prefer a*=scale over a=a*scale.

4.3.3 Conversions
We can “mix” different types in expressions. For example, 2.5/2 is a double divided by an int. What does this mean? Do we
do integer division or floating-point division? Integer division throws away the remainder; for example, 5/2 is 2. Floating-
point division is different in that there is no remainder to throw away; for example, 5.0/2.0 is 2.5. It follows that the most
obvious answer to the question “Is 2.5/2 integer division or floating-point division?” is “Floating-point, of course; otherwise
we’d lose information.” We would prefer the answer 1.25 rather than 1, and 1.25 is what we get. The rule (for the types we
have presented so far) is that if an operator has an operand of type double, we use floating-point arithmetic yielding a
double result; otherwise, we use integer arithmetic yielding an int result. For example:

5/2 is 2 (not 2.5)
2.5/2 means 2.5/double(2), that is, 1.25

'a'+1 means int{'a'}+1

The notations type(value) and type{value} mean “convert value to type as if you were initializing a variable of type type

with the value value.” In other words, if necessary, the compiler converts (“promotes”) int operands to doubles or char

operands to ints. The type{value} notation prevents narrowing (§3.9.2), but the type(value) notation does not. Once the
result has been calculated, the compiler may have to convert it (again) to use it as an initializer or the right hand of an
assignment. For example:
Click here to view code image

double d = 2.5;

int i = 2;

double d2 = d/i;         // d2 == 1.25
int i2 = d/i;                   // i2 == 1
int i3 {d/i};                   // error: double -> int conversion may narrow (§3.9.2)

d2 = d/i;                       // d2 == 1.25
i2 = d/i;                        // i2 == 1

Beware that it is easy to forget about integer division in an expression that also contains floating-point operands. Consider the
usual formula for converting degrees Celsius to degrees Fahrenheit: f = 9/5 * c + 32. We might write
Click here to view code image

double dc;

cin >> dc;

double df = 9/5*dc+32;         // beware!

Unfortunately, but quite logically, this does not represent an accurate temperature scale conversion: the value of 9/5 is 1 rather
than the 1.8 we might have hoped for. To get the code mathematically correct, either 9 or 5 (or both) will have to be changed
into a double. For example:
Click here to view code image

double dc;

cin >> dc;

double df = 9.0/5*dc+32;       // better

4.4 Statements
An expression computes a value from a set of operands using operators like the ones mentioned in §4.3. What do we do when
we want to produce several values? When we want to do something many times? When we want to choose among alternatives?



When we want to get input or produce output? In C++, as in many languages, you use language constructs called statements to
express those things.

So far, we have seen two kinds of statements: expression statements and declarations. An expression statement is simply an
expression followed by a semicolon. For example:

a = b;

++b;

Those are two expression statements. Note that the assignment = is an operator so that a=b is an expression and we need the
terminating semicolon to make a=b; a statement. Why do we need those semicolons? The reason is largely technical.
Consider:
Click here to view code image

a = b ++ b;       // syntax error: missing semicolon

Without the semicolon, the compiler doesn’t know whether we mean a=b++; b; or a=b; ++b;. This kind of problem is not
restricted to computer languages; consider the exclamation “man eating tiger!” Who is eating whom? Punctuation exists to
eliminate such problems, for example, “man-eating tiger!”

When statements follow each other, the computer executes them in the order in which they are written. For example:

int a = 7;

cout << a << '\n';

Here the declaration, with its initialization, is executed before the output expression statement.
In general, we want a statement to have some effect. Statements without effect are typically useless. For example:

Click here to view code image

1+2;       // do an addition, but don’t use the sum
a*b;       // do a multiplication, but don’t use the product

Such statements without effects are typically logical errors, and compilers often warn against them. Thus, expression
statements are typically assignments, I/O statements, or function calls.

We will mention one more type of statement: the “empty statement.” Consider the code:

if (x == 5);

{ y = 3; }

This looks like an error, and it almost certainly is. The ; in the first line is not supposed to be there. But, unfortunately, this is a
legal construct in C++. It is called an empty statement, a statement doing nothing. An empty statement before a semicolon is
rarely useful. In this case, it has the unfortunate consequence of allowing what is almost certainly an error to be acceptable to
the compiler, so it will not alert you to the error and you will have that much more difficulty finding it.

What will happen if this code is run? The compiler will test x to see if it has the value 5. If this condition is true, the
following statement (the empty statement) will be executed, with no effect. Then the program continues to the next line,
assigning the value 3 to y (which is what you wanted to have happen if x equals 5). If, on the other hand, x does not have the
value 5, the compiler will not execute the empty statement (still no effect) and will continue as before to assign the value 3 to y
(which is not what you wanted to have happen unless x equals 5). In other words, the if-statement doesn’t matter; y is going to
get the value 3 regardless. This is a common error for novice programmers, and it can be difficult to spot, so watch out for it.

The next section is devoted to statements used to alter the order of evaluation to allow us to express more interesting
computations than those we get by just executing statements in the order in which they were written.

4.4.1 Selection
In programs, as in life, we often have to select among alternatives. In C++, that is done using either an if-statement or a
switch-statement.

4.4.1.1 if-statements
The simplest form of selection is an if-statement, which selects between two alternatives. For example:
Click here to view code image



int main()

{

          int a = 0;

          int b = 0;

          cout << "Please enter two integers\n";

          cin >> a >> b;

          if (a<b)       // condition
                             // 1st alternative (taken if condition is true):
                    cout << "max(" << a << "," << b <<") is " << b <<"\n";

          else

                             // 2nd alternative (taken if condition is false):
                    cout << "max(" << a << "," << b <<") is " << a << "\n";

}

An if-statement chooses between two alternatives. If its condition is true, the first statement is executed; otherwise, the second
statement is. This notion is simple. Most basic programming language features are. In fact, most basic facilities in a
programming language are just new notation for things you learned in primary school — or even before that. For example, you
were probably told in kindergarten that to cross the street at a traffic light, you had to wait for the light to turn green: “If the
traffic light is green, go” and “If the traffic light is red, wait.” In C++ that becomes something like

if (traffic_light==green) go();

and

if (traffic_light==red) wait();

So, the basic notion is simple, but it is also easy to use if-statements in a too-simple-minded manner. Consider what’s wrong
with this program (apart from leaving out the #include as usual):
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// convert from inches to centimeters or centimeters to inches
// a suffix ‘i’ or ‘c’ indicates the unit of the input

int main()

{

          constexpr double cm_per_inch = 2.54;       // number of centimeters in
                                                                                      // an inch
          double length = 1;                                           // length in inches or
                                                                                      // centimeters
          char unit = 0;

          cout<< "Please enter a length followed by a unit (c or i):\n";

          cin >> length >> unit;

          if (unit == 'i')

                    cout << length << "in == " << cm_per_inch*length << "cm\n";

          else

                    cout << length << "cm == " << length/cm_per_inch << "in\n";

}

Actually, this program works roughly as advertised: enter 1i and you get 1in == 2.54cm; enter 2.54c and you’ll get 2.54cm

== 1in. Just try it; it’s good practice.
The snag is that we didn’t test for bad input. The program assumes that the user enters proper input. The condition unit=='i'

distinguishes between the case where the unit is 'i' and all other cases. It never looks for a 'c'.
What if the user entered 15f (for feet) “just to see what happens”? The condition (unit == 'i') would fail and the program

would execute the else part (the second alternative), converting from centimeters to inches. Presumably that was not what we
wanted when we entered 'f'.

We must always test our programs with “bad” input, because someone will eventually — intentionally or accidentally —
enter bad input. A program should behave sensibly even if its users don’t.

Here is an improved version:



Click here to view code image

// convert from inches to centimeters or centimeters to inches
// a suffix ‘i’ or ‘c’ indicates the unit of the input
// any other suffix is an error
int main()

{

          constexpr double cm_per_inch = 2.54;         // number of centimeters in
                                                                                  // an inch
          double length = 1;                                         // length in inches or
                                                                                  // centimeters
          char unit = ' ';                                                 // a space is not a unit
          cout<< "Please enter a length followed by a unit (c or i):\n";

          cin >> length >> unit;

          if (unit == 'i')

                    cout << length << "in == " << cm_per_inch*length << "cm\n";

          else if (unit == 'c')

                    cout << length << "cm == " << length/cm_per_inch << "in\n";

          else

                    cout << "Sorry, I don't know a unit called '" << unit << "'\n";

}

We first test for unit=='i' and then for unit=='c' and if it isn’t (either) we say, “Sorry.” It may look as if we used an “else-

if-statement,” but there is no such thing in C++. Instead, we combined two if-statements. The general form of an if-statement is
if ( expression ) statement else statement

That is, an if, followed by an expression in parentheses, followed by a statement, followed by an else, followed by a
statement. What we did was to use an if-statement as the else part of an if-statement:

if ( expression ) statement else if ( expression ) statement else statement
For our program that gives this structure:
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if (unit == 'i')

         . . .                        // 1st alternative
else if (unit == 'c')

         . . .                        // 2nd alternative
else

         . . .                        // 3rd alternative

In this way, we can write arbitrarily complex tests and associate a statement with each alternative. However, please remember
that one of the ideals for code is simplicity, rather than complexity. You don’t demonstrate your cleverness by writing the most
complex program. Rather, you demonstrate competence by writing the simplest code that does the job.

 Try This

Use the example above as a model for a program that converts yen, euros, and pounds into dollars. If you like
realism, you can find conversion rates on the web.

4.4.1.2 switch-statements
Actually, the comparison of unit to 'i' and to 'c' is an example of the most common form of selection: a selection based on
comparison of a value against several constants. Such selection is so common that C++ provides a special statement for it: the
switch-statement. We can rewrite our example as
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int main()

{

          constexpr double cm_per_inch = 2.54;     // number of centimeters in
                                                                              // an inch
          double length = 1;                                     // length in inches or



                                                                              // centimeters
          char unit = 'a';

          cout<< "Please enter a length followed by a unit (c or i):\n";

          cin >> length >> unit;

          switch (unit) {

          case 'i':

                    cout << length << "in == " << cm_per_inch*length << "cm\n";

                    break;

          case 'c':

                    cout << length << "cm == " << length/cm_per_inch << "in\n";

                    break;

          default:

                    cout << "Sorry, I don't know a unit called '" << unit << "'\n";

                    break;

          }
}

The switch-statement syntax is archaic but still clearer than nested if-statements, especially when we compare against many
constants. The value presented in parentheses after the switch is compared to a set of constants. Each constant is presented as
part of a case label. If the value equals the constant in a case label, the statement for that case is chosen. Each case is
terminated by a break. If the value doesn’t match any of the case labels, the statement identified by the default label is
chosen. You don’t have to provide a default, but it is a good idea to do so unless you are absolutely certain that you have listed
every alternative. If you don’t already know, programming will teach you that it’s hard to be absolutely certain (and right)
about anything.

4.4.1.3 Switch technicalities
Here are some technical details about switch-statements:

1. The value on which we switch must be of an integer, char, or enumeration (§9.5) type. In particular, you cannot switch
on a string.

2. The values in the case labels must be constant expressions (§4.3.1). In particular, you cannot use a variable in a case

label.
3. You cannot use the same value for two case labels.
4. You can use several case labels for a single case.
5. Don’t forget to end each case with a break. Unfortunately, the compiler probably won’t warn you if you forget.

For example:
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int main()                        // you can switch only on integers, etc.
{

          cout << "Do you like fish?\n";

          string s;

          cin >> s;

          switch (s) {            // error: the value must be of integer, char, or enum type
          case "no":

                    // . . .
                   break;

          case "yes":

                    // . . .
                    break;

          }
}

To select based on a string you have to use an if-statement or a map (Chapter 21).
A switch-statement generates optimized code for comparing against a set of constants. For larger sets of constants, this

typically yields more efficient code than a collection of if-statements. However, this means that the case label values must be
constants and distinct. For example:
Click here to view code image



int main()                    // case labels must be constants
{

      // define alternatives:
          int y = 'y';        // this is going to cause trouble
          constexpr char n = 'n';

          constexpr char m = '?';

          cout << "Do you like fish?\n";

          char a;

          cin >> a;

          switch (a) {

          case n:

                    // . . .
                    break;

          case y:                // error: variable in case label
                    // . . .
                    break;

          case m:

                   // . . .
                   break;

          case 'n':              // error: duplicate case label (n’s value is ‘n’)
                   // . . .
                   break;

          default:

                   // . . .
                   break;

           }
}

Often you want the same action for a set of values in a switch. It would be tedious to repeat the action so you can label a single
action by a set of case labels. For example:
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int main()                   // you can label a statement with several case labels
{

          cout << "Please enter a digit\n";

          char a;

          cin >> a;

          switch (a) {

          case '0': case '2': case '4': case '6': case '8':

                    cout << "is even\n";

                    break;

          case '1': case '3': case '5': case '7': case '9':

                    cout << "is odd\n";

                    break;

          default:

                    cout << "is not a digit\n";

                    break;

          }
}

The most common error with switch-statements is to forget to terminate a case with a break. For example:
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int main()      // example of bad code (a break is missing)
{

          constexpr double cm_per_inch = 2.54;   // number of centimeters in
                                                                                      // an inch
          double length = 1;                                             // length in inches or
                                                                                     // centimeters
          char unit = 'a';

          cout << "Please enter a length followed by a unit (c or i):\n";

          cin >> length >> unit;

          switch (unit) {

          case 'i':

                    cout << length << "in == " << cm_per_inch*length << "cm\n";



          case 'c':

                   cout << length << "cm == " << length/cm_per_inch << "in\n";

          }
}

Unfortunately, the compiler will accept this, and when you have finished case 'i' you’ll just “drop through” into case 'c', so
that if you enter 2i the program will output

2in == 5.08cm

2cm == 0.787402in

You have been warned!

 Try This

Rewrite your currency converter program from the previous Try this to use a switch-statement. Add conversions
from yuan and kroner. Which version of the program is easier to write, understand, and modify? Why?

4.4.2 Iteration
We rarely do something only once. Therefore, programming languages provide convenient ways of doing something several
times. This is called repetition or — especially when you do something to a series of elements of a data structure — iteration.

4.4.2.1 while-statements
As an example of iteration, consider the first program ever to run on a stored-program computer (the EDSAC). It was written
and run by David Wheeler in the computer laboratory in Cambridge University, England, on May 6, 1949, to calculate and
print a simple list of squares like this:

0        0

1        1

2        4

3        9

4        16

    . . .
98      9604

99      9801

Each line is a number followed by a “tab” character ('\t'), followed by the square of the number. A C++ version looks like
this:
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// calculate and print a table of squares 0–99
int main()

{

         int i = 0;           // start from 0
         while (i<100) {

                   cout << i << '\t' << square(i) << '\n';

                   ++i;        // increment i (that is, i becomes i+1)
         }
}

The notation square(i) simply means the square of i. We’ll later explain how it gets to mean that (§4.5).
No, this first modern program wasn’t actually written in C++, but the logic was as is shown here:

• We start with 0.
• We see if we have reached 100, and if so we are finished.
• Otherwise, we print the number and its square, separated by a tab ('\t'), increase the number, and try again.

Clearly, to do this we need
• A way to repeat some statement (to loop)
• A variable to keep track of how many times we have been through the loop (a loop variable or a control variable), here
the int called i



• An initializer for the loop variable, here 0
• A termination criterion, here that we want to go through the loop 100 times
• Something to do each time around the loop (the body of the loop)

The language construct we used is called a while-statement. Just following its distinguishing keyword, while, it has a
condition “on top” followed by its body:
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while (i<100)                   // the loop condition testing the loop variable i
{

          cout << i << '\t' << square(i) << '\n';

          ++i ;                     // increment the loop variable i
}

The loop body is a block (delimited by curly braces) that writes out a row of the table and increments the loop variable, i. We
start each pass through the loop by testing if i<100. If so, we are not yet finished and we can execute the loop body. If we have
reached the end, that is, if i is 100, we leave the while-statement and execute what comes next. In this program the end of the
program is next, so we leave the program.

The loop variable for a while-statement must be defined and initialized outside (before) the while-statement. If we fail to
define it, the compiler will give us an error. If we define it, but fail to initialize it, most compilers will warn us, saying
something like “local variable i not set,” but would be willing to let us execute the program if we insisted. Don’t insist!
Compilers are almost certainly right when they warn about uninitialized variables. Uninitialized variables are a common
source of errors. In this case, we wrote

int i = 0;     // start from 0

so all is well.
Basically, writing a loop is simple. Getting it right for real-world problems can be tricky, though. In particular, it can be

hard to express the condition correctly and to initialize all variables so that the loop starts correctly.

 Try This

The character 'b' is char('a'+1), 'c' is char('a'+2), etc. Use a loop to write out a table of characters with their
corresponding integer values:

a     97

b     98

. . .

z     122

4.4.2.2 Blocks
Note how we grouped the two statements that the while had to execute:
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while (i<100)  {

          cout << i << '\t' << square(i) << '\n';

          ++i ;            // increment i (that is, i becomes i+1)
}

A sequence of statements delimited by curly braces { and } is called a block or a compound statement. A block is a kind of
statement. The empty block { } is sometimes useful for expressing that nothing is to be done. For example:
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if (a<=b)  {                 // do nothing
}

else {                          // swap a and b
          int t = a;



          a = b;

          b = t;

}

4.4.2.3 for-statements
Iterating over a sequence of numbers is so common that C++, like most other programming languages, has a special syntax for
it. A for-statement is like a while-statement except that the management of the control variable is concentrated at the top
where it is easy to see and understand. We could have written the “first program” like this:
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// calculate and print a table of squares 0–99
int main()

{

          for (int i = 0; i<100; ++i)

                    cout << i << '\t' << square(i) << '\n';

}

This means “Execute the body with i starting at 0 incrementing i after each execution of the body until we reach 100.” A for-
statement is always equivalent to some while-statement. In this case
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for (int i = 0; i<100; ++i)

         cout << i << '\t' << square(i) << '\n';

means
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{

          int i = 0;                     // the for-statement initializer
          while (i<100) {          // the for-statement condition
                    cout << i << '\t' << square(i) << '\n';      // the for-statement body
                    ++i;                   // the for-statement increment
          }
}

Some novices prefer while-statements and some novices prefer for-statements. However, using a for-statement yields more
easily understood and more maintainable code whenever a loop can be defined as a for-statement with a simple initializer,
condition, and increment operation. Use a while-statement only when that’s not the case.

Never modify the loop variable inside the body of a for-statement. That would violate every reader’s reasonable
assumption about what a loop is doing. Consider:
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int main()

{

          for (int i = 0; i<100; ++i) {     // for i in the [0:100) range
                    cout << i << '\t' << square(i) << '\n';

                    ++i;         // what's going on here? It smells like an error!
          }
}

Anyone looking at this loop would reasonably assume that the body would be executed 100 times. However, it isn’t. The ++i

in the body ensures that i is incremented twice each time around the loop so that we get an output only for the 50 even values of
i. If we saw such code, we would assume it to be an error, probably caused by a sloppy conversion from a while-statement. If
you want to increment by 2, say so:
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// calculate and print a table of squares of even numbers in the [0:100) range
int main()

{



          for (int i = 0; i<100; i+=2)

                    cout << i << '\t' << square(i) << '\n';

}

Please note that the cleaner, more explicit version is shorter than the messy one. That’s typical.

 Try This

Rewrite the character value example from the previous Try this to use a for-statement. Then modify your program
to also write out a table of the integer values for uppercase letters and digits.

There is also a simpler “range-for-loop” for traversing collections of data, such as vectors; see §4.6.

4.5 Functions
In the program above, what was square(i)? It is a call of a function. In particular, it is a call of the function called square

with the argument i. A function is a named sequence of statements. A function can return a result (also called a return value).
The standard library provides a lot of useful functions, such as the square root function sqrt() that we used in §3.4. However,
we write many functions ourselves. Here is a plausible definition of square:
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int square(int x)    // return the square of x
{

          return x*x;

}

The first line of this definition tells us that this is a function (that’s what the parentheses mean), that it is called square, that it
takes an int argument (here, called x), and that it returns an int (the type of the result always comes first in a function
declaration); that is, we can use it like this:
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int main()

{

         cout << square(2) << '\n';        // print 4
         cout << square(10) << '\n';      // print 100
}

We don’t have to use the result of a function call, but we do have to give a function exactly the arguments it requires. Consider:
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square(2);                            // probably a mistake: unused return value
int v1 = square();                // error: argument missing
int v2 = square;                   // error: parentheses missing
int v3 = square(1,2);           // error: too many arguments
int v4 = square("two");     // error: wrong type of argument – int expected

Many compilers warn against unused results, and all give errors as indicated. You might think that a computer should be smart
enough to figure out that by the string "two" you really meant the integer 2. However, a C++ compiler deliberately isn’t that
smart. It is the compiler’s job to do exactly what you tell it to do after verifying that your code is well formed according to the
definition of C++. If the compiler guessed about what you meant, it would occasionally guess wrong, and you — or the users of
your program — would be quite annoyed. You’ll find it hard enough to predict what your code will do without having the
compiler “help you” by second-guessing you.

The function body is the block (§4.4.2.2) that actually does the work.
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{

          return x*x;        // return the square of x



}

For square, the work is trivial: we produce the square of the argument and return that as our result. Saying that in C++ is
easier than saying it in English. That’s typical for simple ideas. After all, a programming language is designed to state such
simple ideas simply and precisely.

The syntax of a function definition can be described like this:
type identifier ( parameter-list ) function-body

That is, a type (the return type), followed by an identifier (the name of the function), followed by a list of parameters in
parentheses, followed by the body of the function (the statements to be executed). The list of arguments required by the function
is called a parameter list and its elements are called parameters (or formal arguments). The list of parameters can be empty,
and if we don’t want to return a result we give void (meaning “nothing”) as the return type. For example:
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void write_sorry()         // take no argument; return no value
{

         cout << "Sorry\n";

}

The language-technical aspects of functions will be examined more closely in Chapter 8.

4.5.1 Why bother with functions?

We define a function when we want a separate computation with a name because doing so
• Makes the computation logically separate
• Makes the program text clearer (by naming the computation)
• Makes it possible to use the function in more than one place in our program
• Eases testing

We’ll see many examples of each of those reasons as we go along, and we’ll occasionally mention a reason. Note that real-
world programs use thousands of functions, some even hundreds of thousands of functions. Obviously, we would never be able
to write or understand such programs if their parts (e.g., computations) were not clearly separated and named. Also, you’ll
soon find that many functions are repeatedly useful and you’d soon tire of repeating equivalent code. For example, you might be
happy writing x*x and 7*7 and (x+7)*(x+7), etc. rather than square(x) and square(7) and square(x+7), etc. However,
that’s only because square is a very simple computation. Consider square root (called sqrt in C++): you prefer to write
sqrt(x) and sqrt(7) and sqrt(x+7), etc. rather than repeating the (somewhat complicated and many lines long) code for
computing square root. Even better: you don’t have to even look at the computation of square root because knowing that
sqrt(x) gives the square root of x is sufficient.

In §8.5 we will address many function technicalities, but for now, we’ll just give another example.
If we had wanted to make the loop in main() really simple, we could have written

Click here to view code image

void print_square(int v)

{

          cout << v << '\t' << v*v << '\n';

}

int main()

{

          for (int i = 0; i<100; ++i) print_square(i);

}

Why didn’t we use the version using print_square()? That version is not significantly simpler than the version using
square(), and note that

• print_square() is a rather specialized function that we could not expect to be able to use later, whereas square() is an
obvious candidate for other uses

• square() hardly requires documentation, whereas print_square() obviously needs explanation
The underlying reason for both is that print_square() performs two logically separate actions:



• It prints.
• It calculates a square.

Programs are usually easier to write and to understand if each function performs a single logical action. Basically, the
square() version is the better design.

Finally, why did we use square(i) rather than simply i*i in the first version of the problem? Well, one of the purposes of
functions is to simplify code by separating out complicated calculations as named functions, and for the 1949 version of the
program there was no hardware that directly implemented “multiply.” Consequently, in the 1949 version of the program, i*i

was actually a fairly complicated calculation, similar to what you’d do by hand using a piece of paper. Also, the writer of that
original version, David Wheeler, was the inventor of the function (then called a subroutine) in modern computing, so it seemed
appropriate to use it here.

 Try This

Implement square() without using the multiplication operator; that is, do the x*x by repeated addition (start a
variable result at 0 and add x to it x times). Then run some version of “the first program” using that square().

4.5.2 Function declarations
Did you notice that all the information needed to call a function was in the first line of its definition? For example:

int square(int x)

Given that, we know enough to say

int x = square(44);

We don’t really need to look at the function body. In real programs, we most often don’t want to look at a function body. Why
would we want to look at the body of the standard library sqrt() function? We know it calculates the square root of its
argument. Why would we want to see the body of our square() function? Of course we might just be curious. But almost all of
the time, we are just interested in knowing how to call a function — seeing the definition would just be distracting. Fortunately,
C++ provides a way of supplying that information separate from the complete function definition. It is called a function
declaration:
Click here to view code image

int square(int);                 // declaration of square
double sqrt(double);      // declaration of sqrt

Note the terminating semicolons. A semicolon is used in a function declaration instead of the body used in the corresponding
function definition:
Click here to view code image

int square(int x)             // definition of square
{

          return x*x;

}

So, if you just want to use a function, you simply write — or more commonly #include — its declaration. The function
definition can be elsewhere. We’ll discuss where that “elsewhere” might be in §8.3 and §8.7. This distinction between
declarations and definitions becomes essential in larger programs where we use declarations to keep most of the code out of
sight to allow us to concentrate on a single part of a program at a time (§4.2).

4.6 vector

To do just about anything of interest in a program, we need a collection of data to work on. For example, we might need a list
of phone numbers, a list of members of a football team, a list of courses, a list of books read over the last year, a catalog of
songs for download, a set of payment options for a car, a list of the weather forecasts for the next week, a list of prices for a
camera in different web stores, etc. The possibilities are literally endless and therefore ubiquitous in programs. We’ll get to
see a variety of ways of storing collections of data (a variety of containers of data; see Chapters 20 and 21). Here we will start
with one of the simplest, and arguably the most useful, ways of storing data: a vector.



A vector is simply a sequence of elements that you can access by an index. For example, here is a vector called v:

That is, the first element has index 0, the second index 1, and so on. We refer to an element by subscripting the name of the
vector with the element’s index, so here the value of v[0] is 5, the value of v[1] is 7, and so on. Indices for a vector always
start with 0 and increase by 1. This should look familiar: the standard library vector is simply the C++ standard library’s
version of an old and well-known idea. I have drawn the vector so as to emphasize that it “knows its size”; that is, a vector

doesn’t just store its elements, it also stores its size.
We could make such a vector like this:

Click here to view code image

vector<int> v = {5, 7, 9, 4, 6, 8};      // vector of 6 ints

We see that to make a vector we need to specify the type of the elements and the initial set of elements. The element type
comes after vector in angle brackets (< >), here <int>. Here is another example:
Click here to view code image

vector<string> philosopher

          = {"Kant", "Plato", "Hume", "Kierkegaard"};    // vector of 4 strings

Naturally, a vector will only accept elements of its declared element type:
Click here to view code image

philosopher[2] = 99;       // error: trying to assign an int to a string
v[2] = "Hume";                // error: trying to assign a string to an int

We can also define a vector of a given size without specifying the element values. In that case, we use the (n) notation where
n is the number of elements, and the elements are given a default value according to the element type. For example:
Click here to view code image

vector<int> vi(6);                  // vector of 6 ints initialized to 0
vector<string> vs(4);            // vector of 4 strings initialized to “”

The string with no characters "" is called the empty string.
Please note that you cannot simply refer to a nonexistent element of a vector:

Click here to view code image

vi[20000] = 44;       // run-time error

We will discuss run-time errors and subscripting in the next chapter.

4.6.1 Traversing a vector

A vector “knows” its size, so we can print the elements of a vector like this:

vector<int> v = {5, 7, 9, 4, 6, 8};

for (int i=0; i<v.size(); ++i)

          cout << v[i] << '\n';

The call v.size() gives the number of elements of the vector called v. In general, v.size() gives us the ability to access
elements of a vector without accidentally referring to an element outside the vector’s range. The range for a vector v is
[0:v.size()). That’s the mathematical notation for a half-open sequence of elements. The first element of v is v[0] and the last
v[v.size()–1]. If v.size==0, v has no elements, that is, v is an empty vector. This notion of half-open sequences is used
throughout C++ and the C++ standard library (§17.3, §20.3).

The language takes advantage of the notion of a half-open sequence to provide a simple loop over all the elements of a
sequence, such as the elements of a vector. For example:



vector<int> v = {5, 7, 9, 4, 6, 8};

for (int x : v)        // for each x in v
          cout << x << '\n';

This is called a range-for-loop because the word range is often used to mean the same as “sequence of elements.” We read
for (int x : v) as “for each int x in v” and the meaning of the loop is exactly like the equivalent loop over the subscripts
[0:v.size()). We use the range-for-loop for simple loops over all the elements of a sequence looking at one element at a time.
More complicated loops, such as looking at every third element of a vector, looking at only the second half of a vector, or
comparing elements of two vectors, are usually better done using the more complicated and more general traditional for-
statement (§4.4.2.3).

4.6.2 Growing a vector

Often, we start a vector empty and grow it to its desired size as we read or compute the data we want in it. The key operation
here is push_back(), which adds a new element to a vector. The new element becomes the last element of the vector. For
example:

Note the syntax for a call of push_back(). It is called a member function call; push_back() is a member function of vector

and must be called using this dot notation:
member-function-call:
              object_name.member-function-name ( argument-list )

The size of a vector can be obtained by a call to another of vector’s member functions: size(). Initially v.size() was 0, and
after the third call of push_back(), v.size() has become 3.

If you have programmed before, you will note that a vector is similar to an array in C and other languages. However, you
need not specify the size (length) of a vector in advance, and you can add as many elements as you like. As we go along,
you’ll find that the C++ standard vector has other useful properties.

4.6.3 A numeric example
Let’s look at a more realistic example. Often, we have a series of values that we want to read into our program so that we can
do something with them. The “something” could be producing a graph of the values, calculating the mean and median, finding
the largest element, sorting them, combining them with other data, searching for “interesting” values, comparing them to other
data, etc. There is no limit to the range of computations we might perform on data, but first we need to get it into our
computer’s memory. Here is the basic technique for getting an unknown — possibly large — amount of data into a computer.
As a concrete example, we chose to read in floating-point numbers representing temperatures:
Click here to view code image



// read some temperatures into a vector
int main()

{

          vector<double> temps;                      // temperatures
          for (double temp; cin>>temp; )        // read into temp
                    temps.push_back(temp);         // put temp into vector
                                                                      // . . . do something . . .
}

So, what goes on here? First we declare a vector to hold the data:
Click here to view code image

vector<double> temps;           // temperatures

This is where the type of input we expect is mentioned. We read and store doubles.
Next comes the actual read loop:

Click here to view code image

for (double temp; cin>>temp; )      // read into temp
          temps.push_back(temp);       // put temp into vector

We define a variable temp of type double to read into. The cin>>temp reads a double, and that double is pushed into the
vector (placed at the back). We have seen those individual operations before. What’s new here is that we use the input
operation, cin>>temp, as the condition for a for-statement. Basically, cin>>temp is true if a value was read correctly and
false otherwise, so that for-statement will read all the doubles we give it and stop when we give it anything else. For
example, if you typed

1.2 3.4 5.6 7.8 9.0 |

then temps would get the five elements 1.2, 3.4, 5.6, 7.8, 9.0 (in that order, for example, temps[0]==1.2). We used the
character '|' to terminate the input — anything that isn’t a double can be used. In §10.6 we discuss how to terminate input and
how to deal with errors in input.

To limit the scope of our input variable, temp, to the loop, we used a for-statement, rather than a while-statement:
Click here to view code image

          double temp;

          while (cin>>temp)                           // read
                    temps.push_back(temp);    // put into vector
// ... temp might be used here ...

As usual, a for-loop shows what is going on “up front” so that the code is easier to understand and accidental errors are
harder to make.

Once we get data into a vector we can easily manipulate it. As an example, let’s calculate the mean and median
temperatures:
Click here to view code image

// compute mean and median temperatures
int main()

{

          vector<double> temps;                  // temperatures
          for (double temp; cin>>temp; )    // read into temp
                    temps.push_back(temp);     // put temp into vector

          // compute mean temperature:
          double sum = 0;

          for (int x : temps) sum += x;

          cout << "Average temperature: " << sum/temps.size() << '\n';

          // compute median temperature:
          sort(temps);                                     // sort temperatures
          cout << "Median temperature: " << temps[temps.size()/2] << '\n';

}

We calculate the average (the mean) by simply adding all the elements into sum, and then dividing the sum by the number of



elements (that is, temps.size()):
Click here to view code image

// compute average temperature:
double sum = 0;

for (int x : temps) sum += x;

cout << "Average temperature: " << sum/temps.size() << '\n';

Note how the += operator comes in handy.
To calculate a median (a value chosen so that half of the values are lower and the other half are higher) we need to sort the

elements. For that, we use a variant of the standard library sort algorithm, sort():
Click here to view code image

// compute median temperature:
sort(temps);              // sort temperatures
cout << "Median temperature: " << temps[temps.size()/2] << '\n';

We will explain the standard library algorithms much later (Chapter 20). Once the temperatures are sorted, it’s easy to find the
median: we just pick the middle element, the one with index temps.size()/2. If you feel like being picky (and if you do, you
are starting to think like a programmer), you could observe that the value we found may not be a median according to the
definition we offered above. Exercise 2 at the end of this chapter is designed to solve that little problem.

4.6.4 A text example
We didn’t present the temperature example because we were particularly interested in temperatures. Many people — such as
meteorologists, agronomists, and oceanographers — are very interested in temperature data and values based on it, such as
means and medians. However, we are not. From a programmer’s point of view, what’s interesting about this example is its
generality: the vector and the simple operations on it can be used in a huge range of applications. It is fair to say that whatever
you are interested in, if you need to analyze data, you’ll use vector (or a similar data structure; see Chapter 21). As an
example, let’s build a simple dictionary:
Click here to view code image

// simple dictionary: list of sorted words
int main()

{

          vector<string> words;

          for(string temp; cin>>temp; )        // read whitespace-separated words
                    words.push_back(temp);     // put into vector
          cout << "Number of words: " << words.size() << '\n';

          sort(words);                                     // sort the words

          for (int i = 0; i<words.size(); ++i)

                    if (i==0 || words[i–1]!=words[i])        // is this a new word?
                             cout << words[i] << "\n";

}

If we feed some words to this program, it will write them out in order without repeating a word. For example, given

a man a plan a canal panama

it will write

a

canal

man

panama

plan

How do we stop reading string input? In other words, how do we terminate the input loop?
Click here to view code image

for (string temp; cin>>temp; )     // read
          words.push_back(temp);   // put into vector

When we read numbers (in §4.6.2), we just gave some input character that wasn’t a number. We can’t do that here because



every (ordinary) character can be read into a string. Fortunately, there are characters that are “not ordinary.” As mentioned in
§3.5.1, Ctrl+Z terminates an input stream under Windows and Ctrl+D does that under Unix.

Most of this program is remarkably similar to what we did for the temperatures. In fact, we wrote the “dictionary program”
by cutting and pasting from the “temperature program.” The only thing that’s new is the test
Click here to view code image

if (i==0 || words[i–1]!=words[i])     // is this a new word?

If you deleted that test the output would be

a

a

a

canal

man

panama

plan

We didn’t like the repetition, so we eliminated it using that test. What does the test do? It looks to see if the previous word we
printed is different from the one we are about to print (words[i–1]!=words[i]) and if so, we print that word; otherwise, we
do not. Obviously, we can’t talk about a previous word when we are about to print the first word (i==0), so we first test for
that and combine those two tests using the || (or) operator:
Click here to view code image

if (i==0 || words[i–1]!=words[i])     // is this a new word?

Note that we can compare strings. We use != (not equals) here; == (equals), < (less than), <= (less than or equal), > (greater
than), and >= (greater than or equal) also work for strings. The <, >, etc. operators use the usual lexicographical ordering, so
"Ape" comes before "Apple" and "Chimpanzee".

 Try This

Write a program that “bleeps” out words that you don’t like; that is, you read in words using cin and print them
again on cout. If a word is among a few you have defined, you write out BLEEP instead of that word. Start with
one “disliked word” such as

string disliked = “Broccoli”;

When that works, add a few more.

4.7 Language features
The temperature and dictionary programs used most of the fundamental language features we presented in this chapter: iteration
(the for-statement and the while-statement), selection (the if-statement), simple arithmetic (the ++ and += operators),
comparisons and logical operators (the ==, !=, and || operators), variables, and functions (e.g., main(), sort(), and size()). In
addition, we used standard library facilities, such as vector (a container of elements), cout (an output stream), and sort() (an
algorithm).

If you count, you’ll find that we actually achieved quite a lot with rather few features. That’s the ideal! Each programming
language feature exists to express a fundamental idea, and we can combine them in a huge (really, infinite) number of ways to
write useful programs. This is a key notion: a computer is not a gadget with a fixed function. Instead it is a machine that we can
program to do any computation we can think of, and given that we can attach computers to gadgets that interact with the world
outside the computer, we can in principle get it to do anything.

 Drill

Go through this drill step by step. Do not try to speed up by skipping steps. Test each step by entering at least three pairs of



values — more values would be better.
1. Write a program that consists of a while-loop that (each time around the loop) reads in two ints and then prints them.

Exit the program when a terminating '|' is entered.
2. Change the program to write out the smaller value is: followed by the smaller of the numbers and the larger value

is: followed by the larger value.
3. Augment the program so that it writes the line the numbers are equal (only) if they are equal.
4. Change the program so that it uses doubles instead of ints.
5. Change the program so that it writes out the numbers are almost equal after writing out which is the larger and the

smaller if the two numbers differ by less than 1.0/100.
6. Now change the body of the loop so that it reads just one double each time around. Define two variables to keep track

of which is the smallest and which is the largest value you have seen so far. Each time through the loop write out the
value entered. If it’s the smallest so far, write the smallest so far after the number. If it is the largest so far, write the

largest so far after the number.
7. Add a unit to each double entered; that is, enter values such as 10cm, 2.5in, 5ft, or 3.33m. Accept the four units: cm,

m, in, ft. Assume conversion factors 1m == 100cm, 1in == 2.54cm, 1ft == 12in. Read the unit indicator into a string.
You may consider 12 m (with a space between the number and the unit) equivalent to 12m (without a space).

8. Reject values without units or with “illegal” representations of units, such as y, yard, meter, km, and gallons.
9. Keep track of the sum of values entered (as well as the smallest and the largest) and the number of values entered. When

the loop ends, print the smallest, the largest, the number of values, and the sum of values. Note that to keep the sum, you
have to decide on a unit to use for that sum; use meters.

10. Keep all the values entered (converted into meters) in a vector. At the end, write out those values.
11. Before writing out the values from the vector, sort them (that’ll make them come out in increasing order).

Review
1. What is a computation?
2. What do we mean by inputs and outputs to a computation? Give examples.
3. What are the three requirements a programmer should keep in mind when expressing computations?
4. What does an expression do?
5. What is the difference between a statement and an expression, as described in this chapter?
6. What is an lvalue? List the operators that require an lvalue. Why do these operators, and not the others, require an

lvalue?
7. What is a constant expression?
8. What is a literal?
9. What is a symbolic constant and why do we use them?

10. What is a magic constant? Give examples.
11. What are some operators that we can use for integers and floating-point values?
12. What operators can be used on integers but not on floating-point numbers?
13. What are some operators that can be used for strings?
14. When would a programmer prefer a switch-statement to an if-statement?
15. What are some common problems with switch-statements?
16. What is the function of each part of the header line in a for-loop, and in what sequence are they executed?
17. When should the for-loop be used and when should the while-loop be used?
18. How do you print the numeric value of a char?
19. Describe what the line char foo(int x) means in a function definition.
20. When should you define a separate function for part of a program? List reasons.
21. What can you do to an int that you cannot do to a string?



22. What can you do to a string that you cannot do to an int?
23. What is the index of the third element of a vector?
24. How do you write a for-loop that prints every element of a vector?
25. What does vector<char> alphabet(26); do?
26. Describe what push_back() does to a vector.
27. What do vector’s member functions begin(), end(), and size() do?
28. What makes vector so popular/useful?
29. How do you sort the elements of a vector?

Terms
abstraction
begin()

computation
conditional statement
declaration
definition
divide and conquer
else

end()

expression
for-statement
range-for-statement
function
if-statement
increment
input
iteration
loop
lvalue
member function
output
push_back()

repetition
rvalue
selection
size()

sort()

statement
switch-statement
vector

while-statement

Exercises
1. If you haven’t already, do the Try this exercises from this chapter.
2. If we define the median of a sequence as “a number so that exactly as many elements come before it in the sequence as

come after it,” fix the program in §4.6.3 so that it always prints out a median. Hint: A median need not be an element of



the sequence.
3. Read a sequence of double values into a vector. Think of each value as the distance between two cities along a given

route. Compute and print the total distance (the sum of all distances). Find and print the smallest and greatest distance
between two neighboring cities. Find and print the mean distance between two neighboring cities.

4. Write a program to play a numbers guessing game. The user thinks of a number between 1 and 100 and your program
asks questions to figure out what the number is (e.g., “Is the number you are thinking of less than 50?”). Your program
should be able to identify the number after asking no more than seven questions. Hint: Use the < and <= operators and the
if-else construct.

5. Write a program that performs as a very simple calculator. Your calculator should be able to handle the four basic math
operations — add, subtract, multiply, and divide — on two input values. Your program should prompt the user to enter
three arguments: two double values and a character to represent an operation. If the entry arguments are 35.6, 24.1, and
'+', the program output should be The sum of 35.6 and 24.1 is 59.7. In Chapter 6 we look at a much more
sophisticated simple calculator.

6. Make a vector holding the ten string values "zero", "one", . . . "nine". Use that in a program that converts a digit to
its corresponding spelled-out value; e.g., the input 7 gives the output seven. Have the same program, using the same
input loop, convert spelled-out numbers into their digit form; e.g., the input seven gives the output 7.

7. Modify the “mini calculator” from exercise 5 to accept (just) single-digit numbers written as either digits or spelled out.
8. There is an old story that the emperor wanted to thank the inventor of the game of chess and asked the inventor to name

his reward. The inventor asked for one grain of rice for the first square, 2 for the second, 4 for the third, and so on,
doubling for each of the 64 squares. That may sound modest, but there wasn’t that much rice in the empire! Write a
program to calculate how many squares are required to give the inventor at least 1000 grains of rice, at least 1,000,000
grains, and at least 1,000,000,000 grains. You’ll need a loop, of course, and probably an int to keep track of which
square you are at, an int to keep the number of grains on the current square, and an int to keep track of the grains on all
previous squares. We suggest that you write out the value of all your variables for each iteration of the loop so that you
can see what’s going on.

9. Try to calculate the number of rice grains that the inventor asked for in exercise 8 above. You’ll find that the number is
so large that it won’t fit in an int or a double. Observe what happens when the number gets too large to represent
exactly as an int and as a double. What is the largest number of squares for which you can calculate the exact number of
grains (using an int)? What is the largest number of squares for which you can calculate the approximate number of
grains (using a double)?

10. Write a program that plays the game “Rock, Paper, Scissors.” If you are not familiar with the game do some research
(e.g., on the web using Google). Research is a common task for programmers. Use a switch-statement to solve this
exercise. Also, the machine should give random answers (i.e., select the next rock, paper, or scissors randomly). Real
randomness is too hard to provide just now, so just build a vector with a sequence of values to be used as “the next
value.” If you build the vector into the program, it will always play the same game, so maybe you should let the user
enter some values. Try variations to make it less easy for the user to guess which move the machine will make next.

11. Create a program to find all the prime numbers between 1 and 100. One way to do this is to write a function that will
check if a number is prime (i.e., see if the number can be divided by a prime number smaller than itself) using a vector

of primes in order (so that if the vector is called primes, primes[0]==2, primes[1]==3, primes[2]==5, etc.). Then
write a loop that goes from 1 to 100, checks each number to see if it is a prime, and stores each prime found in a vector.
Write another loop that lists the primes you found. You might check your result by comparing your vector of prime
numbers with primes. Consider 2 the first prime.

12. Modify the program described in the previous exercise to take an input value max and then find all prime numbers from
1 to max.

13. Create a program to find all the prime numbers between 1 and 100. There is a classic method for doing this, called the
“Sieve of Eratosthenes.” If you don’t know that method, get on the web and look it up. Write your program using this
method.

14. Modify the program described in the previous exercise to take an input value max and then find all prime numbers from
1 to max.

15. Write a program that takes an input value n and then finds the first n primes.



16. In the drill, you wrote a program that, given a series of numbers, found the max and min of that series. The number that
appears the most times in a sequence is called the mode. Create a program that finds the mode of a set of positive
integers.

17. Write a program that finds the min, max, and mode of a sequence of strings.
18. Write a program to solve quadratic equations. A quadratic equation is of the form

ax2 + bx + c = 0

If you don’t know the quadratic formula for solving such an expression, do some research. Remember, researching how
to solve a problem is often necessary before a programmer can teach the computer how to solve it. Use doubles for the
user inputs for a, b, and c. Since there are two solutions to a quadratic equation, output both x1 and x2.

19. Write a program where you first enter a set of name-and-value pairs, such as Joe 17 and Barbara 22. For each pair, add
the name to a vector called names and the number to a vector called scores (in corresponding positions, so that if
names[7]=="Joe" then scores[7]==17). Terminate input with NoName 0. Check that each name is unique and
terminate with an error message if a name is entered twice. Write out all the (name,score) pairs, one per line.

20. Modify the program from exercise 19 so that when you enter a name, the program will output the corresponding score or
name not found.

21. Modify the program from exercise 19 so that when you enter an integer, the program will output all the names with that
score or score not found.

Postscript
From a philosophical point of view, you can now do everything that can be done using a computer — the rest is details! Among
other things, this shows the value of “details” and the importance of practical skills, because clearly you have barely started as
a programmer. But we are serious. The tools presented in this chapter do allow you to express every computation: you have as
many variables (including vectors and strings) as you want, you have arithmetic and comparisons, and you have selection
and iteration. Every computation can be expressed using those primitives. You have text and numeric input and output, and
every input or output can be expressed as text (even graphics). You can even organize your computations as sets of named
functions. What is left for you to do is “just” to learn to write good programs, that is, to write programs that are correct,
maintainable, and reasonably efficient. Importantly, you must try to learn to do so with a reasonable amount of effort.



5. Errors

“I realized that from now on a large part of my life would be spent finding and correcting my own
mistakes.”

—Maurice Wilkes, 1949

In this chapter, we discuss correctness of programs, errors, and error handling. If you are a genuine novice, you’ll find the
discussion a bit abstract at times and painfully detailed at other times. Can error handling really be this important? It is, and
you’ll learn that one way or another before you can write programs that others are willing to use. What we are trying to do is to
show you what “thinking like a programmer” is about. It combines fairly abstract strategy with painstaking analysis of details
and alternatives.

5.1 Introduction
5.2 Sources of errors
5.3 Compile-time errors

5.3.1 Syntax errors
5.3.2 Type errors
5.3.3 Non-errors

5.4 Link-time errors
5.5 Run-time errors

5.5.1 The caller deals with errors
5.5.2 The callee deals with errors
5.5.3 Error reporting

5.6 Exceptions
5.6.1 Bad arguments
5.6.2 Range errors
5.6.3 Bad input
5.6.4 Narrowing errors

5.7 Logic errors
5.8 Estimation
5.9 Debugging

5.9.1 Practical debug advice
5.10 Pre- and post-conditions

5.10.1 Post-conditions
5.11 Testing

5.1 Introduction
We have referred to errors repeatedly in the previous chapters, and — having done the drills and some exercises — you have
some idea why. Errors are simply unavoidable when you develop a program, yet the final program must be free of errors, or at
least free of errors that we consider unacceptable for it.

There are many ways of classifying errors. For example:

• Compile-time errors: Errors found by the compiler. We can further classify compile-time errors based on which
language rules they violate, for example:
• Syntax errors
• Type errors



• Link-time errors: Errors found by the linker when it is trying to combine object files into an executable program.
• Run-time errors: Errors found by checks in a running program. We can further classify run-time errors as

• Errors detected by the computer (hardware and/or operating system)
• Errors detected by a library (e.g., the standard library)
• Errors detected by user code

• Logic errors: Errors found by the programmer looking for the causes of erroneous results.

It is tempting to say that our job as programmers is to eliminate all errors. That is of course the ideal, but often that’s not
feasible. In fact, for real-world programs it can be hard to know exactly what “all errors” means. If we kicked out the power
cord from your computer while it executed your program, would that be an error that you were supposed to handle? In many
cases, the answer is “Obviously not,” but what if we were talking about a medical monitoring program or the control program
for a telephone switch? In those cases, a user could reasonably expect that something in the system of which your program was
a part will do something sensible even if your computer lost power or a cosmic ray damaged the memory holding your
program. The key question becomes: “Is my program supposed to detect that error?” Unless we specifically say otherwise, we
will assume that your program

1. Should produce the desired results for all legal inputs
2. Should give reasonable error messages for all illegal inputs
3. Need not worry about misbehaving hardware
4. Need not worry about misbehaving system software
5. Is allowed to terminate after finding an error

Essentially all programs for which assumptions 3, 4, or 5 do not hold can be considered advanced and beyond the scope of this
book. However, assumptions 1 and 2 are included in the definition of basic professionalism, and professionalism is one of our
goals. Even if we don’t meet that ideal 100% of the time, it must be the ideal.

When we write programs, errors are natural and unavoidable; the question is: How do we deal with them? Our guess is that
avoiding, finding, and correcting errors takes 90% or more of the effort when developing serious software. For safety-critical
programs, the effort can be greater still. You can do much better for small programs; on the other hand, you can easily do worse
if you’re sloppy.

Basically, we offer three approaches to producing acceptable software:
• Organize software to minimize errors.

• Eliminate most of the errors we made through debugging and testing.
• Make sure the remaining errors are not serious.

None of these approaches can completely eliminate errors by itself; we have to use all three.
Experience matters immensely when it comes to producing reliable programs, that is, programs that can be relied on to do

what they are supposed to do with an acceptable error rate. Please don’t forget that the ideal is that our programs always do the
right thing. We are usually able only to approximate that ideal, but that’s no excuse for not trying very hard.

5.2 Sources of errors
Here are some sources of errors:

• Poor specification: If we are not specific about what a program should do, we are unlikely to adequately examine the
“dark corners” and make sure that all cases are handled (i.e., that every input gives a correct answer or an adequate error
message).

• Incomplete programs: During development, there are obviously cases that we haven’t yet taken care of. That’s
unavoidable. What we must aim for is to know when we have handled all cases.

• Unexpected arguments: Functions take arguments. If a function is given an argument we don’t handle, we have a
problem. An example is calling the standard library square root function with –1.2: sqrt(–1.2). Since sqrt() of a
double returns a double, there is no possible correct return value. §5.5.3 discusses this kind of problem.



• Unexpected input: Programs typically read data (from a keyboard, from files, from GUIs, from network connections,
etc.). A program makes many assumptions about such input, for example, that the user will input a number. What if the
user inputs “aw, shut up!” rather than the expected integer? §5.6.3 and §10.6 discuss this kind of problem.

• Unexpected state: Most programs keep a lot of data (“state”) around for use by different parts of the system. Examples
are address lists, phone directories, and vectors of temperature readings. What if such data is incomplete or wrong? The
various parts of the program must still manage. §26.3.5 discusses this kind of problem.

• Logical errors: That is, code that simply doesn’t do what it was supposed to do; we’ll just have to find and fix such
problems. §6.6 and §6.9 give examples of finding such problems.

This list has a practical use. We can use it as a checklist when we are considering how far we have come with a program. No
program is complete until we have considered all of these potential sources of errors. In fact, it is prudent to keep them in mind
from the very start of a project, because it is most unlikely that a program that is just thrown together without thought about
errors can have its errors found and removed without a serious rewrite.

5.3 Compile-time errors
When you are writing programs, your compiler is your first line of defense against errors. Before generating code, the compiler
analyzes code to detect syntax errors and type errors. Only if it finds that the program completely conforms to the language
specification will it allow you to proceed. Many of the errors that the compiler finds are simply “silly errors” caused by
mistyping or incomplete edits of the source code. Others result from flaws in our understanding of the way parts of our program
interact. To a beginner, the compiler often seems petty, but as you learn to use the language facilities — and especially the type
system — to directly express your ideas, you’ll come to appreciate the compiler’s ability to detect problems that would
otherwise have caused you hours of tedious searching for bugs.

As an example, we will look at some calls of this simple function:
Click here to view code image

int area(int length, int width);       // calculate area of a rectangle

5.3.1 Syntax errors
What if we were to call area() like this:
Click here to view code image

int s1 = area(7;           // error: ) missing
int s2 = area(7)           // error: ; missing
Int s3 = area(7);         // error: Int is not a type
int s4 = area('7);        // error: non-terminated character (' missing)

Each of those lines has a syntax error; that is, they are not well formed according to the C++ grammar, so the compiler will
reject them. Unfortunately, syntax errors are not always easy to report in a way that you, the programmer, find easy to
understand. That’s because the compiler may have to read a bit further than the error to be sure that there really is an error. The
effect of this is that even though syntax errors tend to be completely trivial (you’ll often find it hard to believe you have made
such a mistake once you find it), the reporting is often cryptic and occasionally refers to a line further on in the program. So, for
syntax errors, if you don’t see anything wrong with the line the compiler points to, also look at previous lines in the program.

Note that the compiler has no idea what you are trying to do, so it cannot report errors in terms of your intent, only in terms
of what you did. For example, given the error in the declaration of s3 above, a compiler is unlikely to say

“You misspelled int; don’t capitalize the i.”
Rather, it’ll say something like

“syntax error: missing ‘;’ before identifier ‘s3’”
“‘s3’ missing storage-class or type identifiers”
“‘Int’ missing storage-class or type identifiers”

Such messages tend to be cryptic, until you get used to them, and to use a vocabulary that can be hard to penetrate. Different
compilers can give very different-looking error messages for the same code. Fortunately, you soon get used to reading such
stuff. After all, a quick look at those cryptic lines can be read as

“There was a syntax error before s3, and it had something to do with the type of Int or s3.”



Given that, it’s not rocket science to find the problem.

 Try This

Try to compile those examples and see how the compiler responds.

5.3.2 Type errors
Once you have removed syntax errors, the compiler will start reporting type errors; that is, it will report mismatches between
the types you declared (or forgot to declare) for your variables, functions, etc. and the types of values or expressions you
assign to them, pass as function arguments, etc. For example:
Click here to view code image

int x0 = arena(7);                    // error: undeclared function
int x1 = area(7);                      // error: wrong number of arguments
int x2 = area("seven",2);      // error: 1st argument has a wrong type

Let’s consider these errors.
1. For arena(7), we misspelled area as arena, so the compiler thinks we want to call a function called arena. (What else

could it “think”? That’s what we said.) Assuming there is no function called arena(), you’ll get an error message
complaining about an undeclared function. If there is a function called arena, and if that function accepts 7 as an
argument, you have a worse problem: the program will compile but do something you didn’t expect it to (that’s a logical
error; see §5.7).

2. For area(7), the compiler detects the wrong number of arguments. In C++, every function call must provide the expected
number of arguments, of the right types, and in the right order. When the type system is used appropriately, this can be a
powerful tool for avoiding run-time errors (see §14.1).

3. For area("seven",2), you might hope that the computer would look at "seven" and figure out that you meant the integer
7. It won’t. If a function needs an integer, you can’t give it a string. C++ does support some implicit type conversions
(see §3.9) but not string to int. The compiler does not try to guess what you meant. What would you have expected for
area("Hovel lane",2), area("7,2"), and area("sieben","zwei")?

These are just a few examples. There are many more errors that the compiler will find for you.

 Try This

Try to compile those examples and see how the compiler responds. Try thinking of a few more errors yourself,
and try those.

5.3.3 Non-errors
As you work with the compiler, you’ll wish that it was smart enough to figure out what you meant; that is, you’d like some of
the errors it reports not to be errors. That’s natural. More surprisingly, as you gain experience, you’ll begin to wish that the
compiler would reject more code, rather than less. Consider:
Click here to view code image

int x4 = area(10,–7);             // OK: but what is a rectangle with a width of minus 7?
int x5 = area(10.7,9.3);        // OK: but calls area(10,9)
char x6 = area(100,9999);   // OK: but truncates the result

For x4 we get no error message from the compiler. From the compiler’s point of view, area (10,–7) is fine: area() asks for
two integers and you gave them to it; nobody said that those arguments had to be positive.

For x5, a good compiler will warn about the truncation of the doubles 10.7 and 9.3 into the ints 10 and 9 (see §3.9.2).
However, the (ancient) language rules state that you can implicitly convert a double to an int, so the compiler is not allowed
to reject the call area(10.7,9.3).

The initialization of x6 suffers from a variant of the same problem as the call area(10.7,9.3). The int returned by



area(100,9999), probably 999900, will be assigned to a char. The most likely result is for x6 to get the “truncated” value –
36. Again, a good compiler will give you a warning even though the (ancient) language rules prevent it from rejecting the code.

As you gain experience, you’ll learn how to get the most out of the compiler’s ability to detect errors and to dodge its known
weaknesses. However, don’t get overconfident: “my program compiled” doesn’t mean that it will run. Even if it does run, it
typically gives wrong results at first until you find the flaws in your logic.

5.4 Link-time errors

A program consists of several separately compiled parts, called translation units. Every function in a program must be
declared with exactly the same type in every translation unit in which it is used. We use header files to ensure that; see §8.3.
Every function must also be defined exactly once in a program. If either of these rules is violated, the linker will give an error.
We discuss how to avoid link-time errors in §8.3. For now, here is an example of a program that might give a typical linker
error:
Click here to view code image

int area(int length, int width);      // calculate area of a rectangle
int main()

{

          int x = area(2,3);

}

Unless we somehow have defined area() in another source file and linked the code generated from that source file to this code,
the linker will complain that it didn’t find a definition of area().

The definition of area() must have exactly the same types (both the return type and the argument types) as we used in our
file, that is:
Click here to view code image

int area(int x, int y) { /* . . . */ }      // “our” area()

Functions with the same name but different types will not match and will be ignored:
Click here to view code image

double area(double x, double y) { /* . . . */ }      // not “our” area()

int area(int x, int y, char unit) { /* . . . */ }           // not “our” area()

Note that a misspelled function name doesn’t usually give a linker error. Instead, the compiler gives an error immediately when
it sees a call to an undeclared function. That’s good: compile-time errors are found earlier than link-time errors and are
typically easier to fix.

The linkage rules for functions, as stated above, also hold for all other entities of a program, such as variables and types:
there has to be exactly one definition of an entity with a given name, but there can be many declarations, and all have to agree
exactly on its type. For more details, see §8.2–3.

5.5 Run-time errors
If your program has no compile-time errors and no link-time errors, it’ll run. This is where the fun really starts. When you
write the program you are able to detect errors, but it is not always easy to know what to do with an error once you catch it at
run time. Consider:
Click here to view code image

int area(int length, int width)          // calculate area of a rectangle
{

          return length*width;

}

int framed_area(int x, int y)             // calculate area within frame
{

         return area(x–2,y–2);

}

int main()

{

          int x = –1;



          int y = 2;

          int z = 4;

          // . . .
          int area1 = area(x,y);

          int area2 = framed_area(1,z);

          int area3 = framed_area(y,z);

          double ratio = double(area1)/area3;        // convert to double to get
                                                                                 // floating-point division
}

We used the variables x, y, z (rather than using the values directly as arguments) to make the problems less obvious to the
human reader and harder for the compiler to detect. However, these calls lead to negative values, representing areas, being
assigned to area1 and area2. Should we accept such erroneous results, which violate most notions of math and physics? If not,
who should detect the errors: the caller of area() or the function itself? And how should such errors be reported?

Before answering those questions, look at the calculation of the ratio in the code above. It looks innocent enough. Did you
notice something wrong with it? If not, look again: area3 will be 0, so that double(area1)/area3 divides by zero. This leads
to a hardware-detected error that terminates the program with some cryptic message relating to hardware. This is the kind of
error that you — or your users — will have to deal with if you don’t detect and deal sensibly with run-time errors. Most
people have low tolerance for such “hardware violations” because to anyone not intimately familiar with the program all the
information provided is “Something went wrong somewhere!” That’s insufficient for any constructive action, so we feel angry
and would like to yell at whoever supplied the program.

So, let’s tackle the problem of argument errors with area(). We have two obvious alternatives:
a. Let the caller of area() deal with bad arguments.
b. Let area() (the called function) deal with bad arguments.

5.5.1 The caller deals with errors
Let’s try the first alternative (“Let the user beware!”) first. That’s the one we’d have to choose if area() was a function in a
library where we couldn’t modify it. For better or worse, this is the most common approach.

Protecting the call of area(x,y) in main() is relatively easy:
Click here to view code image

if (x<=0) error("non-positive x");

if (y<=0) error("non-positive y");

int area1 = area(x,y);

Really, the only question is what to do if we find an error. Here, we have called a function error() which we assume will do
something sensible. In fact, in std_lib_facilities.h we supply an error() function that by default terminates the program with
a system error message plus the string we passed as an argument to error(). If you prefer to write out your own error message
or take other actions, you catch runtime_error (§5.6.2, §7.3, §7.8, §B.2.1). This approach suffices for most student programs
and is an example of a style that can be used for more sophisticated error handling.

If we didn’t need separate error messages about each argument, we would simplify:
Click here to view code image

if (x<=0 || y<=0) error("non-positive area() argument");       // || means “or”
int area1 = area(x,y);

To complete protecting area() from bad arguments, we have to deal with the calls through framed_area(). We could write
Click here to view code image

if (z<=2)

          error("non-positive 2nd area() argument called by framed_area()");

int area2 = framed_area(1,z);

if (y<=2 || z<=2)

         error("non-positive area() argument called by framed_area()");

int area3 = framed_area(y,z);

This is messy, but there is also something fundamentally wrong. We could write this only by knowing exactly how
framed_area() used area(). We had to know that framed_area() subtracted 2 from each argument. We shouldn’t have to
know such details! What if someone modified framed_area() to use 1 instead of 2? Someone doing that would have to look at



every call of framed_area() and modify the error-checking code correspondingly. Such code is called “brittle” because it
breaks easily. This is also an example of a “magic constant” (§4.3.1). We could make the code less brittle by giving the value
subtracted by framed_area() a name:
Click here to view code image

constexpr int frame_width = 2;

int framed_area(int x, int y)        // calculate area within frame
{

         return area(x–frame_width,y–frame_width);

}

That name could be used by code calling framed_area():
Click here to view code image

if (1–frame_width<=0 || z–frame_width<=0)

          error("non-positive argument for area() called by framed_area()");

int area2 = framed_area(1,z);

if (y–frame_width<=0 || z–frame_width<=0)

          error("non-positive argument for area() called by framed_area()");

int area3 = framed_area(y,z);

Look at that code! Are you sure it is correct? Do you find it pretty? Is it easy to read? Actually, we find it ugly (and therefore
error-prone). We have more than trebled the size of the code and exposed an implementation detail of framed_area(). There
has to be a better way!

Look at the original code:

int area2 = framed_area(1,z);

int area3 = framed_area(y,z);

It may be wrong, but at least we can see what it is supposed to do. We can keep this code if we put the check inside
framed_area().

5.5.2 The callee deals with errors
Checking for valid arguments within framed_area() is easy, and error() can still be used to report a problem:
Click here to view code image

int framed_area(int x, int y)      // calculate area within frame
{

          constexpr int frame_width = 2;

          if (x–frame_width<=0 || y–frame_width<=0)

                    error("non-positive area() argument called by framed_area()");

          return area(x–frame_width,y–frame_width);

}

This is rather nice, and we no longer have to write a test for each call of framed_area(). For a useful function that we call
500 times in a large program, that can be a huge advantage. Furthermore, if anything to do with the error handling changes, we
only have to modify the code in one place.

Note something interesting: we almost unconsciously slid from the “caller must check the arguments” approach to the
“function must check its own arguments” approach (also called “the callee checks” because a called function is often called “a
callee”). One benefit of the latter approach is that the argument-checking code is in one place. We don’t have to search the
whole program for calls. Furthermore, that one place is exactly where the arguments are to be used, so all the information we
need is easily available for us to do the check.

Let’s apply this solution to area():
Click here to view code image

int area(int length, int width)          // calculate area of a rectangle
{

          if (length<=0 || width <=0) error("non-positive area() argument");

          return length*width;

}

This will catch all errors in calls to area(), so we no longer need to check in framed_area(). We might want to, though, to get
a better — more specific — error message.



Checking arguments in the function seems so simple, so why don’t people do that always? Inattention to error handling is one
answer, sloppiness is another, but there are also respectable reasons:

• We can’t modify the function definition: The function is in a library that for some reason can’t be changed. Maybe it’s
used by others who don’t share your notions of what constitutes good error handling. Maybe it’s owned by someone else
and you don’t have the source code. Maybe it’s in a library where new versions come regularly so that if you made a
change, you’d have to change it again for each new release of the library.

• The called function doesn’t know what to do in case of error: This is typically the case for library functions. The
library writer can detect the error, but only you know what is to be done when an error occurs.

• The called function doesn’t know where it was called from: When you get an error message, it tells you that something
is wrong, but not how the executing program got to that point. Sometimes, you want an error message to be more specific.

• Performance: For a small function the cost of a check can be more than the cost of calculating the result. For example,
that’s the case with area(), where the check also more than doubles the size of the function (that is, the number of
machine instructions that need to be executed, not just the length of the source code). For some programs, that can be
critical, especially if the same information is checked repeatedly as functions call each other, passing information along
more or less unchanged.

So what should you do? Check your arguments in a function unless you have a good reason not to.

After examining a few related topics, we’ll return to the question of how to deal with bad arguments in §5.10.

5.5.3 Error reporting
Let’s consider a slightly different question: Once you have checked a set of arguments and found an error, what should you do?
Sometimes you can return an “error value.” For example:
Click here to view code image

// ask user for a yes-or-no answer;
// return 'b' to indicate a bad answer (i.e., not yes or no)
char ask_user(string question)

{

          cout << question << "? (yes or no)\n";

          string answer = " ";

          cin >> answer;

          if (answer =="y" || answer=="yes") return 'y';

          if (answer =="n" || answer=="no") return 'n';

          return 'b';        // ‘b’ for “bad answer”
}

// calculate area of a rectangle;
// return –1 to indicate a bad argument
int area(int length, int width)

{

          if (length<=0 || width <=0) return –1;

          return length*width;

}

That way, we can have the called function do the detailed checking, while letting each caller handle the error as desired. This
approach seems like it could work, but it has a couple of problems that make it unusable in many cases:

• Now both the called function and all callers must test. The caller has only a simple test to do but must still write that test
and decide what to do if it fails.

• A caller can forget to test. That can lead to unpredictable behavior further along in the program.
• Many functions do not have an “extra” return value that they can use to indicate an error. For example, a function that

reads an integer from input (such as cin’s operator >>) can obviously return any int value, so there is no int that it could
return to indicate failure.

The second case above — a caller forgetting to test — can easily lead to surprises. For example:
Click here to view code image

int f(int x, int y, int z)

{

         int area1 = area(x,y);



         if (area1<=0) error("non-positive area");

         int area2 = framed_area(1,z);

         int area3 = framed_area(y,z);

         double ratio = double(area1)/area3;

         // . . .
}

Do you see the errors? This kind of error is hard to find because there is no obvious “wrong code” to look at: the error is the
absence of a test.

 Try This

Test this program with a variety of values. Print out the values of area1, area2, area3, and ratio. Insert more
tests until all errors are caught. How do you know that you caught all errors? This is not a trick question; in this
particular example you can give a valid argument for having caught all errors.

There is another solution that deals with that problem: using exceptions.

5.6 Exceptions
Like most modern programming languages, C++ provides a mechanism to help deal with errors: exceptions. The fundamental
idea is to separate detection of an error (which should be done in a called function) from the handling of an error (which
should be done in the calling function) while ensuring that a detected error cannot be ignored; that is, exceptions provide a
mechanism that allows us to combine the best of the various approaches to error handling we have explored so far. Nothing
makes error handling easy, but exceptions make it easier.

The basic idea is that if a function finds an error that it cannot handle, it does not return normally; instead, it throws an
exception indicating what went wrong. Any direct or indirect caller can catch the exception, that is, specify what to do if the
called code used throw. A function expresses interest in exceptions by using a try-block (as described in the following
subsections) listing the kinds of exceptions it wants to handle in the catch parts of the try-block. If no caller catches an
exception, the program terminates.

We’ll come back to exceptions much later (Chapter 19) to see how to use them in slightly more advanced ways.

5.6.1 Bad arguments
Here is a version of area() using exceptions:
Click here to view code image

class Bad_area { };         // a type specifically for reporting errors from area()

// calculate area of a rectangle;
// throw a Bad_area exception in case of a bad argument
int area(int length, int width)

{

          if (length<=0 || width<=0) throw Bad_area{};

          return length*width;

}

That is, if the arguments are OK, we return the area as always; if not, we get out of area() using the throw, hoping that some
catch will provide an appropriate response. Bad_area is a new type we define with no other purpose than to provide
something unique to throw from area() so that some catch can recognize it as the kind of exception thrown by area(). User-
defined types (classes and enumeration) will be discussed in Chapter 9. The notation Bad_area{} means “Make an object of
type Bad_area with the default value,” so throw Bad_area{} means “Make an object of type Bad_area and throw it.”

We can now write
Click here to view code image

int main()

try {

         int x = –1;



         int y = 2;

         int z = 4;

         // . . .
         int area1 = area(x,y);

         int area2 = framed_area(1,z);

         int area3 = framed_area(y,z);

         double ratio = area1/area3;

}

catch (Bad_area) {

         cout << "Oops! bad arguments to area()\n";

}

First note that this handles all calls to area(), both the one in main() and the two through framed_area(). Second, note how
the handling of the error is cleanly separated from the detection of the error: main() knows nothing about which function did a
throw Bad_area{}, and area() knows nothing about which function (if any) cares to catch the Bad_area exceptions it
throws. This separation is especially important in large programs written using many libraries. In such programs, nobody can
“just deal with an error by putting some code where it’s needed,” because nobody would want to modify code in both the
application and in all of the libraries.

5.6.2 Range errors
Most real-world code deals with collections of data; that is, it uses all kinds of tables, lists, etc. of data elements to do a job.
In the context of C++, we often refer to “collections of data” as containers. The most common and useful standard library
container is the vector we introduced in §4.6. A vector holds a number of elements, and we can determine that number by
calling the vector’s size() member function. What happens if we try to use an element with an index (subscript) that isn’t in
the valid range [0:v.size())? The general notation [low:high) means indices from low to high–1, that is, including low but
not high:

Before answering that question, we should pose another question and answer it:
“Why would you do that?” After all, you know that a subscript for v should be in the range [0,v.size()), so just be sure
that’s so!

As it happens, that’s easy to say but sometimes hard to do. Consider this plausible program:
Click here to view code image

vector<int> v;                                     // a vector of ints
for (int i; cin>>I; )

          v.push_back(i);                        // get values
for (int i = 0; i<=v.size(); ++i)          // print values
          cout << "v[" << i <<"] == " << v[i] << '\n';

Do you see the error? Please try to spot it before reading on. It’s not an uncommon error. We have made such errors ourselves
— especially late at night when we were tired. Errors are always more common when you are tired or rushed. We use 0 and
size() to try to make sure that i is always in range when we do v[i].

Unfortunately, we made a mistake. Look at the for-loop: the termination condition is i<=v.size() rather than the correct
i<v.size(). This has the unfortunate consequence that if we read in five integers we’ll try to write out six. We try to read v[5],
which is one beyond the end of the vector. This kind of error is so common and “famous” that it has several names: it is an
example of an off-by-one error, a range error because the index (subscript) wasn’t in the range required by the vector, and a
bounds error because the index was not within the limits (bounds) of the vector.

Why didn’t we use a range-for-statement to express that loop? With a range-for, we cannot get the end of the loop wrong.
However, for this loop, we wanted not only the value of each element but also the indices (subscripts). A range-for doesn’t
give that without extra effort.

Here is a simpler version that produces the same range error as the loop:

vector<int> v(5);

int x = v[5];



However, we doubt that you’d have considered that realistic and worth serious attention.
So what actually happens when we make such a range error? The subscript operation of vector knows the size of the

vector, so it can check (and the vector we are using does; see §4.6 and §19.4). If that check fails, the subscript operation
throws an exception of type out_of_range. So, if the off-by-one code above had been part of a program that caught
exceptions, we would at least have gotten a decent error message:
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int main()

try {

          vector<int> v;                                    // a vector of ints
          for (int x; cin>>x; )

                    v.push_back(x);                      // set values
          for (int i = 0; i<=v.size(); ++i)         // print values
                   cout << "v[" << i <<"] == " << v[i] << '\n';

} catch (out_of_range) {

          cerr << "Oops! Range error\n";

          return 1;

} catch (...) {                                                // catch all other exceptions
          cerr << "Exception: something went wrong\n";

          return 2;

}

Note that a range error is really a special case of the argument errors we discussed in §5.5.2. We didn’t trust ourselves to
consistently check the range of vector indices, so we told vector’s subscript operation to do it for us. For the reasons we
outline, vector’s subscript function (called vector::operator[]) reports finding an error by throwing an exception. What
else could it do? It has no idea what we would like to happen in case of a range error. The author of vector couldn’t even
know what programs his or her code would be part of.

5.6.3 Bad input
We’ll postpone the detailed discussion of what to do with bad input until §10.6. However, once bad input is detected, it is
dealt with using the same techniques and language features as argument errors and range errors. Here, we’ll just show how you
can tell if your input operations succeeded. Consider reading a floating-point number:

double d = 0;

cin >> d;

We can test if the last input operation succeeded by testing cin:
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if (cin) {

          // all is well, and we can try reading again
}

else {

          // the last read didn’t succeed, so we take some other action
}

There are several possible reasons for that input operation’s failure. The one that should concern you right now is that there
wasn’t a double for >> to read.

During the early stages of development, we often want to indicate that we have found an error but aren’t yet ready to do
anything particularly clever about it; we just want to report the error and terminate the program. Later, maybe, we’ll come back
and do something more appropriate. For example:
Click here to view code image

double some_function()

{

          double d = 0;

          cin >> d;

          if (!cin) error("couldn't read a double in 'some_function()'");

          // do something useful
}

The condition !cin (“not cin,” that is, cin is not in a good state) means that the previous operation on cin failed.
The string passed to error() can then be printed as a help to debugging or as a message to the user. How can we write



error() so as to be useful in a lot of programs? It can’t return a value because we wouldn’t know what to do with that value;
instead error() is supposed to terminate the program after getting its message written. In addition, we might want to take some
minor action before exiting, such as keeping a window alive long enough for us to read the message. That’s an obvious job for
an exception (see §7.3).

The standard library defines a few types of exceptions, such as the out_of_range thrown by vector. It also supplies
runtime_error which is pretty ideal for our needs because it holds a string that can be used by an error handler. So, we can
write our simple error() like this:
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void error(string s)

{

          throw runtime_error(s);

}

When we want to deal with runtime_error we simply catch it. For simple programs, catching runtime_error in main() is
ideal:
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int main()

try {

          // . . . our program . . .
          return 0;          // 0 indicates success
}

catch (runtime_error& e) {

          cerr << "runtime error: " << e.what() << '\n';

          keep_window_open();

          return 1;         // 1 indicates failure
}

The call e.what() extracts the error message from the runtime_error. The & in

catch(runtime_error& e) {

is an indicator that we want to “pass the exception by reference.” For now, please treat this as simply an irrelevant
technicality. In §8.5.4–6, we explain what it means to pass something by reference.

Note that we used cerr rather than cout for our error output: cerr is exactly like cout except that it is meant for error
output. By default both cerr and cout write to the screen, but cerr isn’t optimized so it is more resilient to errors, and on some
operating systems it can be diverted to a different target, such as a file. Using cerr also has the simple effect of documenting
that what we write relates to errors. Consequently, we use cerr for error messages.

As it happens, out_of_range is not a runtime_error, so catching runtime_error does not deal with the out_of_range

errors that we might get from misuse of vectors and other standard library container types. However, both out_of_range and
runtime_error are “exceptions,” so we can catch exception to deal with both:
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int main()

try {

          // our program
          return 0;         // 0 indicates success
}

catch (exception& e) {

          cerr << "error: " << e.what() << '\n';

          keep_window_open();

          return 1;         // 1 indicates failure
}

catch (...) {

          cerr << "Oops: unknown exception!\n";

          keep_window_open();

          return 2;         // 2 indicates failure
}

We added catch(...) to handle exceptions of any type whatsoever.



Dealing with exceptions of both type out_of_range and type runtime_error through a single type exception, said to be
a common base (supertype) of both, is a most useful and general technique that we will explore in Chapters 13–16.

Note again that the return value from main() is passed to “the system” that invoked the program. Some systems (such as
Unix) often use that value, whereas others (such as Windows) typically ignore it. A zero indicates successful completion and a
nonzero return value from main() indicates some sort of failure.

When you use error(), you’ll often wish to pass two pieces of information along to describe the problem. In that case, just
concatenate the strings describing those two pieces of information. This is so common that we provide a second version of
error() for that:
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void error(string s1, string s2)

{

         throw runtime_error(s1+s2);

}

This simple error handling will do for a while, until our needs increase significantly and our sophistication as designers and
programmers increases correspondingly. Note that we can use error() independently of how many function calls we have done
on the way to the error: error() will find its way to the nearest catch of runtime_error, typically the one in main(). For
examples of the use of exceptions and error(), see §7.3 and §7.7. If you don’t catch an exception, you’ll get a default system
error (an “uncaught exception” error).

 Try This

To see what an uncaught exception error looks like, run a small program that uses error() without catching any
exceptions.

5.6.4 Narrowing errors
In §3.9.2 we saw a nasty kind of error: when we assign a value that’s “too large to fit” to a variable, it is implicitly truncated.
For example:

int x = 2.9;

char c = 1066;

Here x will get the value 2 rather than 2.9, because x is an int and ints don’t have values that are fractions of an integer, just
whole integers (obviously). Similarly, if we use the common ASCII character set, c will get the value 42 (representing the
character *), rather than 1066, because there is no char with the value 1066 in that character set.

In §3.9.2 we saw how we could protect ourselves against such narrowing by testing. Given exceptions (and templates; see
§19.3) we can write a function that tests and throws a runtime_error exception if an assignment or initialization would lead
to a changed value. For example:
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int x1 = narrow_cast<int>(2.9);                // throws
int x2 = narrow_cast<int>(2.0);                // OK
char c1 = narrow_cast<char>(1066);       // throws
char c2 = narrow_cast<char>(85);           // OK

The < . . . > brackets are the same as are used for vector<int>. They are used when we need to specify a type, rather than a
value, to express an idea. They are called template arguments. We can use narrow_cast when we need to convert a value
and we are not sure “if it will fit”; it is defined in std_lib_facilities.h and implemented using error(). The word cast means
“type conversion” and indicates the operation’s role in dealing with something that’s broken (like a cast on a broken leg). Note
that a cast doesn’t change its operand; it produces a new value (of the type specified in the < . . . >) that corresponds to its
operand value.

5.7 Logic errors



Once we have removed the initial compiler and linker errors, the program runs. Typically, what happens next is that no output
is produced or that the output that the program produces is just wrong. This can occur for a number of reasons. Maybe your
understanding of the underlying program logic is flawed; maybe you didn’t write what you thought you wrote; or maybe you
made some “silly error” in one of your if-statements, or whatever. Logic errors are usually the most difficult to find and
eliminate, because at this stage the computer does what you asked it to. Your job now is to figure out why that wasn’t really
what you meant. Basically, a computer is a very fast moron. It does exactly what you tell it to do, and that can be most
humbling.

Let us try to illustrate this with a simple example. Consider this code for finding the lowest, highest, and average
temperature values in a set of data:
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int main()

{

          vector<double> temps;                                   // temperatures

          for (double temp; cin>>temp; )                    // read and put into temps
                    temps.push_back(temp);

          double sum = 0;

          double high_temp = 0;

          double low_temp = 0;

          for (int x : temps)

          {
                    if(x > high_temp) high_temp = x;      // find high
                    if(x < low_temp) low_temp = x;         // find low
                    sum += x;                                               // compute sum
          }

          cout << "High temperature: " << high_temp<< '\n';

          cout << "Low temperature: " << low_temp << '\n';

          cout << "Average temperature: " << sum/temps.size() << '\n';

}

We tested this program by entering the hourly temperature values from the weather center in Lubbock, Texas, for February 16,
2004 (Texas still uses Fahrenheit):
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–16.5,   –23.2,   –24.0,   –25.7,   –26.1,   –18.6,     –9.7,     –2.4,

    7.5,     12.6,     23.8,     25.3,     28.0,     34.8,     36.7,     41.5,

  40.3,     42.6,     39.7,     35.4,     12.6,       6.5,     –3.7,   –14.3

The output was

High temperature: 42.6

Low temperature: –26.1

Average temperature: 9.3

A naive programmer would conclude that the program works just fine. An irresponsible programmer would ship it to a
customer. It would be prudent to test it again with another set of data. This time use the temperatures from July 23, 2004:
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  76.5,       73.5,      71.0,      73.6,      70.1,       73.5,       77.6,       85.3,

  88.5,       91.7,      95.9,      99.2,      98.2,     100.6,     106.3,     112.4,

110.2,     103.6,      94.9,      91.7,      88.4,       85.2,       85.4,       87.7

This time, the output was

High temperature: 112.4

Low temperature: 0.0

Average temperature: 89.2

Oops! Something is not quite right. Hard frost (0.0°F is about –18°C) in Lubbock in July would mean the end of the world! Did
you spot the error? Since low_temp was initialized at 0.0, it would remain 0.0 unless one of the temperatures in the data was
below zero.



 Try This

Get this program to run. Check that our input really does produce that output. Try to “break” the program (i.e., get
it to give wrong results) by giving it other input sets. What is the least amount of input you can give it to get it to
fail?

Unfortunately, there are more errors in this program. What would happen if all of the temperatures were below zero? The
initialization for high_temp has the equivalent problem to low_temp: high_temp will remain at 0.0 unless there is a
higher temperature in the data. This program wouldn’t work for the South Pole in winter either.

These errors are fairly typical; they will not cause any errors when you compile the program or cause wrong results for
“reasonable” inputs. However, we forgot to think about what we should consider “reasonable.” Here is an improved program:
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int main()

{

          double sum = 0;

          double high_temp = –1000;                 // initialize to impossibly low
          double low_temp = 1000;                    // initialize to “impossibly high”
          int no_of_temps = 0;

          for (double temp; cin>>temp; ) {      // read temp
                    ++no_of_temps;                         // count temperatures
                    sum += temp;                              // compute sum
                    if (temp > high_temp) high_temp = temp;             // find high
                    if (temp < low_temp) low_temp = temp;                // find low
          }

          cout << "High temperature: " << high_temp<< '\n';

          cout << "Low temperature: " << low_temp << '\n';

          cout << "Average temperature: " << sum/no_of_temps << '\n';

}

Does it work? How would you be certain? How would you precisely define “work”? Where did we get the values 1000 and –
1000? Remember that we warned about “magic constants” (§5.5.1). Having 1000 and –1000 as literal values in the middle of
the program is bad style, but are the values also wrong? Are there places where the temperatures go below –1000°F (–
573°C)? Are there places where the temperatures go above 1000°F (538°C)?

 Try This

Look it up. Check some information sources to pick good values for the min_temp (the “minimum temperature”)
and max_temp (the “maximum temperature”) constants for our program. Those values will determine the limits
of usefulness of our program.

5.8 Estimation
Imagine you have written a program that does a simple calculation, say, computing the area of a hexagon. You run it and it
gives the area –34.56. You just know that’s wrong. Why? Because no shape has a negative area. So, you fix that bug (whatever
it was) and get 21.65685. Is that right? That’s harder to say because we don’t usually keep the formula for the area of a
hexagon in our heads. What we must do before making fools of ourselves by delivering a program that produces ridiculous
results is just to check that the answer is plausible. In this case, that’s easy. A hexagon is much like a square. We scribble our
regular hexagon on a piece of paper and eyeball it to be about the size of a 3-by-3 square. Such a square has the area 9.
Bummer, our 21.65685 can’t be right! So we work over our program again and get 10.3923. Now, that just might be right!

The general point here has nothing to do with hexagons. The point is that unless we have some idea of what a correct answer
will be like — even ever so approximately — we don’t have a clue whether our result is reasonable. Always ask yourself this
question:



1. Is this answer to this particular problem plausible?
You should also ask the more general (and often far harder) question:

2. How would I recognize a plausible result?
Here, we are not asking, “What’s the exact answer?” or “What’s the correct answer?” That’s what we are writing the program
to tell us. All we want is to know that the answer is not ridiculous. Only when we know that we have a plausible answer does
it make sense to proceed with further work.

Estimation is a noble art that combines common sense and some very simple arithmetic applied to a few facts. Some people
are good at doing estimates in their heads, but we prefer scribbles “on the back of an envelope” because we find we get
confused less often that way. What we call estimation here is an informal set of techniques that are sometimes (humorously)
called guesstimation because they combine a bit of guessing with a bit of calculation.

 Try This

Our hexagon was regular with 2cm sides. Did we get that answer right? Just do the “back of the envelope”
calculation. Take a piece a paper and scribble on it. Don’t feel that’s beneath you. Many famous scientists have
been greatly admired for their ability to come up with an approximate answer using a pencil and the back of an
envelope (or a napkin). This is an ability — a simple habit, really — that can save us a lot of time and confusion.

Often, making an estimate involves coming up with estimates of data that are needed for a proper calculation, but that we
don’t yet have. Imagine you have to test a program that estimates driving times between cities. Is a driving time of 15 hours and
33 minutes plausible for New York City to Denver? From London to Nice? Why or why not? What data do you have to “guess”
to answer these questions? Often, a quick web search can be most helpful. For example, 2000 miles is not a bad guess on the
road distance from New York City to Denver, and it would be hard (and illegal) to maintain an average speed of 130m/hr, so
15 hours is not plausible (15*130 is just a bit less than 2000). You can check: we overestimated both the distance and the
average speed, but for a check of plausibility we don’t have to be exactly right; we just have to guess well enough.

 Try This

Estimate those driving times. Also, estimate the corresponding flight times (using ordinary commercial air travel).
Then, try to verify your estimates by using appropriate sources, such as maps and timetables. We’d use online
sources.

5.9 Debugging
When you have written (drafted?) a program, it’ll have errors. Small programs do occasionally compile and run correctly the
first time you try. But if that happens for anything but a completely trivial program, you should at first be very, very suspicious.
If it really did run correctly the first time, go tell your friends and celebrate — because this won’t happen every year.

So, when you have written some code, you have to find and remove the errors. That process is usually called debugging and
the errors bugs. The term bug is often claimed to have originated from a hardware failure caused by insects in the electronics
in the days when computers were racks of vacuum tubes and relays filling rooms. Several people have been credited with the
discovery and the application of the word bug to errors in software. The most famous of those is Grace Murray Hopper, the
inventor of the COBOL programming language (§22.2.2.2). Whoever invented the term more than 50 years ago, bug is
evocative and ubiquitous. The activity of deliberately searching for errors and removing them is called debugging.

Debugging works roughly like this:
1. Get the program to compile.
2. Get the program to link.
3. Get the program to do what it is supposed to do.

Basically, we go through this sequence again and again: hundreds of times, thousands of times, again and again for years for
really large programs. Each time something doesn’t work we have to find what caused the problem and fix it. I consider
debugging the most tedious and time-wasting aspect of programming and will go to great lengths during design and
programming to minimize the amount of time spent hunting for bugs. Others find that hunt thrilling and the essence of
programming — it can be as addictive as any video game and keep a programmer glued to the computer for days and nights (I



can vouch for that from personal experience also).
Here is how not to debug:

Click here to view code image

while (the program doesn't appear to work) {     // pseudo code
          Randomly look through the program for something that "looks odd"

          Change it to look better

}

Why do we bother to mention this? It’s obviously a poor algorithm with little guarantee of success. Unfortunately, that
description is only a slight caricature of what many people find themselves doing late at night when feeling particularly lost
and clueless, having tried “everything else.”

The key question in debugging is
How would I know if the program actually worked correctly?

If you can’t answer that question, you are in for a long and tedious debug session, and most likely your users are in for some
frustration. We keep returning to this point because anything that helps answer that question minimizes debugging and helps
produce correct and maintainable programs. Basically, we’d like to design our programs so that bugs have nowhere to hide.
That’s typically too much to ask for, but we aim to structure programs to minimize the chance of error and maximize the chance
of finding the errors that do creep in.

5.9.1 Practical debug advice

Start thinking about debugging before you write the first line of code. Once you have a lot of code written it’s too late to try to
simplify debugging.

Decide how to report errors: “Use error() and catch exception in main()” will be your default answer in this book.

Make the program easy to read so that you have a chance of spotting the bugs:
• Comment your code well. That doesn’t simply mean “Add a lot of comments.” You don’t say in English what is better
said in code. Rather, you say in the comments — as clearly and briefly as you can — what can’t be said clearly in code:
• The name of the program
• The purpose of the program
• Who wrote this code and when
• Version numbers
• What complicated code fragments are supposed to do
• What the general design ideas are
• How the source code is organized
• What assumptions are made about inputs
• What parts of the code are still missing and what cases are still not handled

• Use meaningful names.
• That doesn’t simply mean “Use long names.”

• Use a consistent layout of code.
• Your IDE tries to help, but it can’t do everything and you are the one responsible.
• The style used in this book is a reasonable starting point.

• Break code into small functions, each expressing a logical action.
• Try to avoid functions longer than a page or two; most functions will be much shorter.

• Avoid complicated code sequences.



• Try to avoid nested loops, nested if-statements, complicated conditions, etc. Unfortunately, you sometimes need those,
but remember that complicated code is where bugs can most easily hide.

• Use library facilities rather than your own code when you can.
• A library is likely to be better thought out and better tested than what you could produce as an alternative while busily
solving your main problem.

This is pretty abstract just now, but we’ll show you example after example as we go along.

Get the program to compile. Obviously, your compiler is your best help here. Its error messages are usually helpful — even
if we always wish for better ones — and, unless you are a real expert, assume that the compiler is always right; if you are a
real expert, this book wasn’t written for you. Occasionally, you will feel that the rules the compiler enforces are stupid and
unnecessary (they rarely are) and that things could and ought to be simpler (indeed, but they are not). However, as they say, “a
poor craftsman curses his tools.” A good craftsman knows the strengths and weaknesses of his tools and adjusts his work
accordingly. Here are some common compile-time errors:

• Is every string literal terminated?
Click here to view code image

cout << "Hello, << name << '\n';          // oops!

• Is every character literal terminated?
Click here to view code image

cout << "Hello, " << name << '\n;         // oops!

• Is every block terminated?
Click here to view code image

int f(int a)

{

          if (a>0) { /* do something */ else { /* do something else */ }

}        // oops!

• Is every set of parentheses matched?

if (a<=0            // oops!
          x = f(y);

The compiler generally reports this kind of error “late”; it doesn’t know you meant to type a closing parenthesis after the
0.

• Is every name declared?
• Did you include needed headers (for now, #include "std_lib_facilities.h")?
• Is every name declared before it’s used?
• Did you spell all names correctly?

Click here to view code image

int count;  /* . . . */ ++Count;      // oops!
char ch;     /* . . . */ Cin>>c;         // double oops!

• Did you terminate each expression statement with a semicolon?

x = sqrt(y)+2       // oops!
z = x+3;

We present more examples in this chapter’s drills. Also, keep in mind the classification of errors from §5.2.
After the program compiles and links, next comes what is typically the hardest part: figuring out why the program doesn’t do

what it’s supposed to. You look at the output and try to figure out how your code could have produced that. Actually, first you
often look at a blank screen (or window), wondering how your program could have failed to produce any output. A common
first problem with a Windows console-mode program is that the console window disappears before you have had a chance to
see the output (if any). One solution is to call keep_window_open() from our std_lib_facilities.h at the end of main().
Then the program will ask for input before exiting and you can look at the output produced before giving it the input that will



let it close the window.
When looking for a bug, carefully follow the code statement by statement from the last point that you are sure it was correct.

Pretend you’re the computer executing the program. Does the output match your expectations? Of course not, or you wouldn’t
be debugging.

• Often, when you don’t see the problem, the reason is that you “see” what you expect to see rather than what you wrote.
Consider:
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for (int i = 0; i<=max; ++j) {                // oops! (twice)
          for (int i=0; 0<max; ++i);          // print the elements of v
                     cout << "v[" << i << "]==" << v[i] << '\n';

          // ...
}

This last example came from a real program written by experienced programmers (we expect it was written very late
some night).

• Often when you do not see the problem, the reason is that there is too much code being executed between the point where
the program produced the last good output and the next output (or lack of output). Most programming environments
provide a way to execute (“step through”) the statements of a program one by one. Eventually, you’ll learn to use such
facilities, but for simple problems and simple programs, you can just temporarily put in a few extra output statements
(using cerr) to help you see what’s going on. For example:
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int my_fct(int a, double d)

{

          int res = 0;

         cerr << "my_fct(" << a << "," << d << ")\n";

         // . . . misbehaving code here . . .
         cerr << "my_fct() returns " << res << '\n';

         return res;

}

• Insert statements that check invariants (that is, conditions that should always hold; see §9.4.3) in sections of code
suspected of harboring bugs. For example:

Click here to view code image

int my_complicated_function(int a, int b, int c)

// the arguments are positive and a < b < c
{

          if (!(0<a && a<b && b<c))     // ! means “not” and && means “and”
                    error("bad arguments for mcf");

          // . . .
}

• If that doesn’t have any effect, insert invariants in sections of code not suspected of harboring bugs; if you can’t find a
bug, you are almost certainly looking in the wrong place.

A statement that states (asserts) an invariant is called an assertion (or just an assert).

Interestingly enough, there are many effective ways of programming. Different people successfully use dramatically different
techniques. Many differences in debugging technique come from differences in the kinds of programs people work on; others
seem to have to do with differences in the ways people think. To the best of our knowledge, there is no one best way to debug.
One thing should always be remembered, though: messy code can easily harbor bugs. By keeping your code as simple, logical,
and well formatted as possible, you decrease your debug time.

5.10 Pre- and post-conditions

Now, let us return to the question of how to deal with bad arguments to a function. The call of a function is basically the best
point to think about correct code and to catch errors: this is where a logically separate computation starts (and ends on the
return). Look at what we did in the piece of advice above:
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int my_complicated_function(int a, int b, int c)

// the arguments are positive and a < b < c
{

          if (!(0<a && a<b && b<c))          // ! means “not” and && means “and”
                    error("bad arguments for mcf");

          // . . .
}

First, we stated (in a comment) what the function required of its arguments, and then we checked that this requirement held
(throwing an exception if it did not).

This is a good basic strategy. A requirement of a function upon its argument is often called a pre-condition: it must be true
for the function to perform its action correctly. The question is just what to do if the pre-condition is violated (doesn’t hold).
We basically have two choices:

1. Ignore it (hope/assume that all callers give correct arguments).
2. Check it (and report the error somehow).

Looking at it this way, argument types are just a way of having the compiler check the simplest pre-conditions for us and report
them at compile time. For example:
Click here to view code image

int x = my_complicated_function(1, 2, "horsefeathers");

Here, the compiler will catch that the requirement (“pre-condition”) that the third argument be an integer was violated.
Basically, what we are talking about here is what to do with the requirements/pre-conditions that the compiler can’t check.

Our suggestion is to always document pre-conditions in comments (so that a caller can see what a function expects). A
function with no comments will be assumed to handle every possible argument value. But should we believe that callers read
those comments and follow the rules? Sometimes we have to, but the “check the arguments in the callee” rule could be stated,
“Let a function check its pre-conditions.” We should do that whenever we don’t see a reason not to. The reasons most often
given for not checking pre-conditions are:

• Nobody would give bad arguments.
• It would slow down my code.
• It is too complicated to check.

The first reason can be reasonable only when we happen to know “who” calls a function — and in real-world code that can
be very hard to know.

The second reason is valid far less often than people think and should most often be ignored as an example of “premature
optimization.” You can always remove checks if they really turn out to be a burden. You cannot easily gain the correctness they
ensure or get back the nights’ sleep you lost looking for bugs those tests could have caught.

The third reason is the serious one. It is easy (once you are an experienced programmer) to find examples where checking a
pre-condition would take significantly more work than executing the function. An example is a lookup in a dictionary: a pre-
condition is that the dictionary entries are sorted — and verifying that a dictionary is sorted can be far more expensive than a
lookup. Sometimes, it can also be difficult to express a pre-condition in code and to be sure that you expressed it correctly.
However, when you write a function, always consider if you can write a quick check of the pre-conditions, and do so unless
you have a good reason not to.

Writing pre-conditions (even as comments) also has a significant benefit for the quality of your programs: it forces you to
think about what a function requires. If you can’t state that simply and precisely in a couple of comment lines, you probably
haven’t thought hard enough about what you are doing. Experience shows that writing those pre-condition comments and the
pre-condition tests helps you avoid many design mistakes. We did mention that we hated debugging; explicitly stating pre-
conditions helps in avoiding design errors as well as catching usage errors early. Writing
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int my_complicated_function(int a, int b, int c)

// the arguments are positive and a < b < c
{

          if (!(0<a && a<b && b<c))          // ! means “not” and && means “and”
                    error("bad arguments for mcf");



          // . . .
}

saves you time and grief compared with the apparently simpler
Click here to view code image

int my_complicated_function(int a, int b, int c)

{

         // . . .
}

5.10.1 Post-conditions
Stating pre-conditions helps us improve our design and catch usage errors early. Can this idea of explicitly stating
requirements be used elsewhere? Yes, one more place immediately springs to mind: the return value! After all, we typically
have to state what a function returns; that is, if we return a value from a function we are always making a promise about the
return value (how else would a caller know what to expect?). Let’s look at our area function (from §5.6.1) again:
Click here to view code image

// calculate area of a rectangle;
// throw a Bad_area exception in case of a bad argument
int area(int length, int width)

{

          if (length<=0 || width <=0) throw Bad_area();

          return length*width;

}

It checks its pre-condition, but it doesn’t state it in the comment (that may be OK for such a short function) and it assumes that
the computation is correct (that’s probably OK for such a trivial computation). However, we could be a bit more explicit:
Click here to view code image

int area(int length, int width)

// calculate area of a rectangle;
// pre-conditions: length and width are positive
// post-condition: returns a positive value that is the area
{

          if (length<=0 || width <=0) error("area() pre-condition");

          int a =  length*width;

          if (a<=0) error("area() post-condition");

          return a;

}

We couldn’t check the complete post-condition, but we checked the part that said that it should be positive.

 Try This

Find a pair of values so that the pre-condition of this version of area holds, but the post-condition doesn’t.

Pre- and post-conditions provide basic sanity checks in code. As such they are closely connected to the notion of invariants
(§9.4.3), correctness (§4.2, §5.2), and testing (Chapter 26).

5.11 Testing
How do we know when to stop debugging? Well, we keep debugging until we have found all the bugs — or at least we try to.
How do we know that we have found the last bug? We don’t. “The last bug” is a programmers’ joke: there is no such creature;
we never find “the last bug” in a large program. By the time we might have, we are busy modifying the program for some new
use.

In addition to debugging we need a systematic way to search for errors. This is called testing and we’ll get back to that in
§7.3, the exercises in Chapter 10, and in Chapter 26. Basically, testing is executing a program with a large and systematically



selected set of inputs and comparing the results to what was expected. A run with a given set of inputs is called a test case.
Realistic programs can require millions of test cases. Basically, systematic testing cannot be done by humans typing in one test
after another, so we’ll have to wait a few chapters before we have the tools necessary to properly approach testing. However,
in the meantime, remember that we have to approach testing with the attitude that finding errors is good. Consider:

Attitude 1: I’m smarter than any program! I’ll break that @#$%  ̂code!
Attitude 2: I polished this code for two weeks. It’s perfect!

Who do you think will find more errors? Of course, the very best is an experienced person with a bit of “attitude 1” who
coolly, calmly, patiently, and systematically works through the possible failings of the program. Good testers are worth their
weight in gold.

We try to be systematic in choosing our test cases and always try both correct and incorrect inputs. §7.3 gives the first
example of this.

 Drill

Below are 25 code fragments. Each is meant to be inserted into this “scaffolding”:
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#include "std_lib_facilities.h"

int main()

try {

          <<your code here>>

          keep_window_open();

          return 0;

}

catch (exception& e) {

          cerr << "error: " << e.what() << '\n';

          keep_window_open();

          return 1;

}

catch (...) {

          cerr << "Oops: unknown exception!\n";

          keep_window_open();

          return 2;

}

Each has zero or more errors. Your task is to find and remove all errors in each program. When you have removed those bugs,
the resulting program will compile, run, and write “Success!” Even if you think you have spotted an error, you still need to
enter the (original, unimproved) program fragment and test it; you may have guessed wrong about what the error is, or there
may be more errors in a fragment than you spotted. Also, one purpose of this drill is to give you a feel for how your compiler
reacts to different kinds of errors. Do not enter the scaffolding 25 times — that’s a job for cut and paste or some similar
“mechanical” technique. Do not fix problems by simply deleting a statement; repair them by changing, adding, or deleting a few
characters.

1. Cout << "Success!\n";

2. cout << "Success!\n;

3. cout << "Success" << !\n"

4. cout << success << '\n';

5. string res = 7; vector<int> v(10); v[5] = res; cout << "Success!\n";

6. vector<int> v(10); v(5) = 7; if (v(5)!=7) cout << "Success!\n";

7. if (cond) cout << "Success!\n"; else cout << "Fail!\n";

8. bool c = false; if (c) cout << "Success!\n"; else cout << "Fail!\n";

9. string s = "ape"; boo c = "fool"<s; if (c) cout << "Success!\n";

10. string s = "ape"; if (s=="fool") cout << "Success!\n";

11. string s = "ape"; if (s=="fool") cout < "Success!\n";

12. string s = "ape"; if (s+"fool") cout < "Success!\n";

13. vector<char> v(5); for (int i=0; 0<v.size(); ++i) ; cout << "Success!\n";



14. vector<char> v(5); for (int i=0; i<=v.size(); ++i) ; cout << "Success!\n";

15. string s = "Success!\n"; for (int i=0; i<6; ++i) cout << s[i];

16. if (true) then cout << "Success!\n"; else cout << "Fail!\n";

17. int x = 2000; char c = x; if (c==2000) cout << "Success!\n";

18. string s = "Success!\n"; for (int i=0; i<10; ++i) cout << s[i];

19. vector v(5); for (int i=0; i<=v.size(); ++i) ; cout << "Success!\n";

20. int i=0; int j = 9; while (i<10) ++j; if (j<i) cout << "Success!\n";

21. int x = 2; double d = 5/(x–2); if (d==2*x+0.5) cout << "Success!\n";

22. string<char> s = "Success!\n"; for (int i=0; i<=10; ++i) cout << s[i];

23. int i=0; while (i<10) ++j; if (j<i) cout << "Success!\n";

24. int x = 4; double d = 5/(x–2); if (d=2*x+0.5) cout << "Success!\n";

25. cin << "Success!\n";

Review
1. Name four major types of errors and briefly define each one.
2. What kinds of errors can we ignore in student programs?
3. What guarantees should every completed project offer?
4. List three approaches we can take to eliminate errors in programs and produce acceptable software.
5. Why do we hate debugging?
6. What is a syntax error? Give five examples.
7. What is a type error? Give five examples.
8. What is a linker error? Give three examples.
9. What is a logic error? Give three examples.

10. List four potential sources of program errors discussed in the text.
11. How do you know if a result is plausible? What techniques do you have to answer such questions?
12. Compare and contrast having the caller of a function handle a run-time error vs. the called function’s handling the run-

time error.
13. Why is using exceptions a better idea than returning an “error value”?
14. How do you test if an input operation succeeded?
15. Describe the process of how exceptions are thrown and caught.
16. Why, with a vector called v, is v[v.size()] a range error? What would be the result of calling this?
17. Define pre-condition and post-condition; give an example (that is not the area() function from this chapter), preferably

a computation that requires a loop.
18. When would you not test a pre-condition?
19. When would you not test a post-condition?
20. What are the steps in debugging a program?
21. Why does commenting help when debugging?
22. How does testing differ from debugging?

Terms
argument error
assertion
catch

compile-time error
container
debugging



error
exception
invariant
link-time error
logic error
post-condition
pre-condition
range error
requirement
run-time error
syntax error
testing
throw

type error

Exercises
1. If you haven’t already, do the Try this exercises from this chapter.
2. The following program takes in a temperature value in Celsius and converts it to Kelvin. This code has many errors in it.

Find the errors, list them, and correct the code.
Click here to view code image

double ctok(double c)                   // converts Celsius to Kelvin
{

          int k = c + 273.15;

          return int

}

int main()

{

          double c = 0;                         // declare input variable
           cin >> d;                                // retrieve temperature to input variable
          double k = ctok("c");           // convert temperature
          Cout << k << '/n' ;                 // print out temperature
}

3. Absolute zero is the lowest temperature that can be reached; it is –273.15°C, or 0K. The above program, even when
corrected, will produce erroneous results when given a temperature below this. Place a check in the main program that
will produce an error if a temperature is given below –273.15°C.

4. Do exercise 3 again, but this time handle the error inside ctok().
5. Add to the program so that it can also convert from Kelvin to Celsius.
6. Write a program that converts from Celsius to Fahrenheit and from Fahrenheit to Celsius (formula in §4.3.3). Use

estimation (§5.8) to see if your results are plausible.
7. Quadratic equations are of the form

a · x2 + b · x + c = 0

To solve these, one uses the quadratic formula:

There is a problem, though: if b2–4ac is less than zero, then it will fail. Write a program that can calculate x for a
quadratic equation. Create a function that prints out the roots of a quadratic equation, given a, b, c. When the program
detects an equation with no real roots, have it print out a message. How do you know that your results are plausible? Can
you check that they are correct?

8. Write a program that reads and stores a series of integers and then computes the sum of the first N integers. First ask for



N, then read the values into a vector, then calculate the sum of the first N values. For example:
“Please enter the number of values you want to sum:”

3

“Please enter some integers (press '|' to stop):”

12 23 13 24 15 |

“The sum of the first 3 numbers ( 12 23 13 ) is 48.”
Handle all inputs. For example, make sure to give an error message if the user asks for a sum of more numbers than there
are in the vector.

9. Modify the program from exercise 8 to write out an error if the result cannot be represented as an int.
10. Modify the program from exercise 8 to use double instead of int. Also, make a vector of doubles containing the N–1

differences between adjacent values and write out that vector of differences.
11. Write a program that writes out the first so many values of the Fibonacci series, that is, the series that starts with 1 1 2 3

5 8 13 21 34. The next number of the series is the sum of the two previous ones. Find the largest Fibonacci number that
fits in an int.

12. Implement a little guessing game called (for some obscure reason) “Bulls and Cows.” The program has a vector of four
different integers in the range 0 to 9 (e.g., 1234 but not 1122) and it is the user’s task to discover those numbers by
repeated guesses. Say the number to be guessed is 1234 and the user guesses 1359; the response should be “1 bull and 1
cow” because the user got one digit (1) right and in the right position (a bull) and one digit (3) right but in the wrong
position (a cow). The guessing continues until the user gets four bulls, that is, has the four digits correct and in the correct
order.

13. The program is a bit tedious because the answer is hard-coded into the program. Make a version where the user can play
repeatedly (without stopping and restarting the program) and each game has a new set of four digits. You can get four
random digits by calling the random number generator randint(10) from std_lib_facilities.h four times. You will note
that if you run that program repeatedly, it will pick the same sequence of four digits each time you start the program. To
avoid that, ask the user to enter a number (any number) and call srand(n) where n is the number the user entered before
calling randint(10). Such an n is called a seed, and different seeds give different sequences of random numbers.

14. Read (day-of-the-week,value) pairs from standard input. For example:
Click here to view code image

Tuesday 23 Friday 56 Tuesday –3 Thursday 99

Collect all the values for each day of the week in a vector<int>. Write out the values of the seven day-of-the-week
vectors. Print out the sum of the values in each vector. Ignore illegal days of the week, such as Funday, but accept
common synonyms such as Mon and monday. Write out the number of rejected values.

Postscript

Do you think we overemphasize errors? As novice programmers we would have thought so. The obvious and natural reaction
is “It simply can’t be that bad!” Well, it is that bad. Many of the world’s best brains have been astounded and confounded by
the difficulty of writing correct programs. In our experience, good mathematicians are the people most likely to underestimate
the problem of bugs, but we all quickly exceed our natural capacity for writing programs that are correct the first time. You
have been warned! Fortunately, after 50 years or so, we have a lot of experience in organizing code to minimize problems, and
techniques to find the bugs that we — despite our best efforts — inevitably leave in our programs as we first write them. The
techniques and examples in this chapter are a good start.



6. Writing a Program

“Programming is understanding.”
– Kristen Nygaard

Writing a program involves gradually refining your ideas of what you want to do and how you want to express it. In this
chapter and the next, we will develop a program from a first vague idea through stages of analysis, design, implementation,
testing, redesign, and re-implementation. Our aim is to give you some idea of the kind of thinking that goes on when you
develop a piece of code. In the process, we discuss program organization, user-defined types, and input processing.

6.1 A problem
6.2 Thinking about the problem

6.2.1 Stages of development
6.2.2 Strategy

6.3 Back to the calculator!
6.3.1 First attempt
6.3.2 Tokens
6.3.3 Implementing tokens
6.3.4 Using tokens
6.3.5 Back to the drawing board

6.4 Grammars
6.4.1 A detour: English grammar
6.4.2 Writing a grammar

6.5 Turning a grammar into code
6.5.1 Implementing grammar rules
6.5.2 Expressions
6.5.3 Terms
6.5.4 Primary expressions

6.6 Trying the first version
6.7 Trying the second version
6.8 Token streams

6.8.1 Implementing Token_stream

6.8.2 Reading tokens
6.8.3 Reading numbers

6.9 Program structure

6.1 A problem

Writing a program starts with a problem; that is, you have a problem that you’d like a program to help solve. Understanding
that problem is key to a good program. After all, a program that solves the wrong problem is likely to be of little use to you,
however elegant it may be. There are happy accidents when a program just happens to be useful for something for which it was
never intended, but let’s not rely on such rare luck. What we want is a program that simply and cleanly solves the problem we
decided to solve.

At this stage, what would be a good program to look at? A program that
• Illustrates design and programming techniques
• Gives us a chance to explore the kinds of decisions that a programmer must make and the considerations that go into such



decisions
• Doesn’t require too many new programming language constructs
• Is complicated enough to require thought about its design
• Allows for many variations in its solution
• Solves an easily understood problem
• Solves a problem that’s worth solving
• Has a solution that is small enough to completely present and completely comprehend

We chose “Get the computer to do ordinary arithmetic on expressions we type in”; that is, we want to write a simple
calculator. Such programs are clearly useful; every desktop computer comes with such a program, and you can even buy
computers specially built to run nothing but such programs: pocket calculators.

For example, if you enter

2+3.1*4

the program should respond

14.4

Unfortunately, such a calculator program doesn’t give us anything we don’t already have available on our computer, but that
would be too much to ask from a first program.

6.2 Thinking about the problem
So how do we start? Basically, think a bit about the problem and how to solve it. First think about what the program should do
and how you’d like to interact with it. Later, you can think about how the program could be written to do that. Try writing down
a brief sketch of an idea for a solution, and see what’s wrong with that first idea. Maybe discuss the problem and how to solve
it with a friend. Trying to explain something to a friend is a marvelous way of figuring out what’s wrong with ideas, even better
than writing them down; paper (or a computer) doesn’t talk back at you and challenge your assumptions. Ideally, design isn’t a
lonely activity.

Unfortunately, there isn’t a general strategy for problem solving that works for all people and all problems. There are whole
books that claim to help you be better at problem solving and another huge branch of literature that deals with program design.
We won’t go there. Instead, we’ll present a page’s worth of suggestions for a general strategy for the kind of smaller problems
an individual might face. After that, we’ll quickly proceed to try out these suggestions on our tiny calculator problem.

When reading our discussion of the calculator program, we recommend that you adopt a more than usually skeptical attitude.
For realism, we evolve our program through a series of versions, presenting the reasoning that leads to each version along the
way. Obviously, much of that reasoning must be incomplete or even faulty, or we would finish the chapter early. As we go
along, we provide examples of the kinds of concerns and reasoning that designers and programmers deal with all the time. We
don’t reach a version of the program that we are happy with until the end of the next chapter.

Please keep in mind that for this chapter and the next, the way we get to the final version of the program – the journey
through partial solutions, ideas, and mistakes – is at least as important as that final version and more important than the
language-technical details we encounter along the way (we will get back to those later).

6.2.1 Stages of development
Here is a bit of terminology for program development. As you work on a problem you repeatedly go through these stages:

• Analysis: Figure out what should be done and write a description of your (current) understanding of that. Such a
description is called a set of requirements or a specification. We will not go into details about how such requirements
are developed and written down. That’s beyond the scope of this book, but it becomes increasingly important as the size
of problems increases.

• Design: Create an overall structure for the system, deciding which parts the implementation should have and how those
parts should communicate. As part of the design consider which tools – such as libraries – can help you structure the
program.

• Implementation: Write the code, debug it, and test that it actually does what it is supposed to do.

6.2.2 Strategy



Here are some suggestions that – when applied thoughtfully and with imagination – help with many programming projects:
• What is the problem to be solved? The first thing to do is to try to be specific about what you are trying to accomplish.
This typically involves constructing a description of the problem or – if someone else gave you such a statement – trying
to figure out what it really means. At this point you should take the user’s point of view (not the
programmer/implementer’s view); that is, you should ask questions about what the program should do, not about how it is
going to do it. Ask: “What can this program do for me?” and “How would I like to interact with this program?”
Remember, most of us have lots of experience as users of computers on which to draw.

• Is the problem statement clear? For real problems, it never is. Even for a student exercise, it can be hard to be
sufficiently precise and specific. So we try to clarify it. It would be a pity if we solved the wrong problem. Another
pitfall is to ask for too much. When we try to figure out what we want, we easily get too greedy/ambitious. It is almost
always better to ask for less to make a program easier to specify, easier to understand, easier to use, and (hopefully)
easier to implement. Once it works, we can always build a fancier “version 2.0” based on our experience.

• Does the problem seem manageable, given the time, skills, and tools available? There is little point in starting a
project that you couldn’t possibly complete. If there isn’t sufficient time to implement (including testing) a program that
does all that is required, it is usually wise not to start. Instead, acquire more resources (especially more time) or (best
of all) modify the requirements to simplify your task.

• Try breaking the program into manageable parts. Even the smallest program for solving a real problem is large enough to
be subdivided.

• Do you know of any tools, libraries, etc. that might help? The answer is almost always yes. Even at the earliest stage
of learning to program, you have parts of the C++ standard library. Later, you’ll know large parts of that standard
library and how to find more. You’ll have graphics and GUI libraries, a matrix library, etc. Once you have gained a
little experience, you will be able to find thousands of libraries by simple web searches. Remember: There is little
value in reinventing the wheel when you are building software for real use. When learning to program it is a different
matter; then, reinventing the wheel to see how that is done is often a good idea. Any time you save by using a good
library can be spent on other parts of your problem, or on rest. How do you know that a library is appropriate for your
task and of sufficient quality? That’s a hard problem. Part of the solution is to ask colleagues, to ask in discussion
groups, and to try small examples before committing to use a library.

• Look for parts of a solution that can be separately described (and potentially used in several places in a program or
even in other programs). To find such parts requires experience, so we provide many examples throughout this book.
We have already used vector, string, and iostreams (cin and cout). This chapter gives the first complete examples
of design, implementation, and use of program parts provided as user-defined types (Token and Token_stream).
Chapters 8 and 13–15 present many more examples together with their design rationales. For now, consider an
analogy: If we were to design a car, we would start by identifying parts, such as wheels, engine, seats, door handles,
etc., on which we could work separately before assembling the complete car. There are tens of thousands of such parts
of a modern car. A real-world program is no different in that respect, except of course that the parts are code. We
would not try to build a car directly out of raw materials, such as iron, plastics, and wood. Nor would we try to build
a major program directly out of (just) the expressions, statements, and types provided by the language. Designing and
implementing such parts is a major theme of this book and of software development in general; see the discussions of
user-defined types (Chapter 9), class hierarchies (Chapter 14), and generic types (Chapter 20).

• Build a small, limited version of the program that solves a key part of the problem. When we start, we rarely know the
problem well. We often think we do (don’t we know what a calculator program is?), but we don’t. Only a combination of
thinking about the problem (analysis) and experimentation (design and implementation) gives us the solid understanding
that we need to write a good program. So, we build a small, limited version

• To bring out problems in our understanding, ideas, and tools.
• To see if details of the problem statement need changing to make the problem manageable. It is rare to find that we had
anticipated everything when we analyzed the problem and made the initial design. We should take advantage of the
feedback that writing code and testing give us.

Sometimes, such a limited initial version aimed at experimentation is called a prototype. If (as is likely) our first version
doesn’t work or is so ugly and awkward that we don’t want to work with it, we throw it away and make another limited
version based on our experience. Repeat until we find a version that we are happy with. Do not proceed with a mess;
messes just grow with time.

• Build a full-scale solution, ideally by using parts of the initial version. The ideal is to grow a program from working



parts rather than writing all the code at once. The alternative is to hope that by some miracle an untested idea will work
and do what we want.

6.3 Back to the calculator!
How do we want to interact with the calculator? That’s easy: we know how to use cin and cout, but graphical user interfaces
(GUIs) are not explained until Chapter 16, so we’ll stick to the keyboard and a console window. Given expressions as input
from the keyboard, we evaluate them and write out the resulting value to the screen. For example:

Expression: 2+2

Result: 4

Expression: 2+2*3

Result: 8

Expression: 2+3–25/5

Result: 0

The expressions, e.g., 2+2 and 2+2*3, should be entered by the user; the rest is produced by the program. We chose to output
Expression: to prompt the user. We could have chosen Please enter an expression followed by a newline but that
seemed verbose and pointless. On the other hand, a pleasantly short prompt, such as >, seemed too cryptic. Sketching out such
examples of use early on is important. They provide a very practical definition of what the program should minimally do.
When discussing design and analysis, such examples of use are called use cases.

When faced with the calculator problem for the first time, most people come up with a first idea like this for the main logic
of the program:

read_a_line

calculate          // do the work
write_result

This kind of “scribbles” clearly isn’t code; it’s called pseudo code. We tend to use it in the early stages of design when we are
not yet certain exactly what our notation means. For example, is “calculate” a function call? If so, what would be its
arguments? It is simply too early to answer such questions.

6.3.1 First attempt
At this point, we are not really ready to write the calculator program. We simply haven’t thought hard enough, but thinking is
hard work and – like most programmers – we are anxious to write some code. So let’s take a chance, write a simple
calculator, and see where it leads us. The first idea is something like
Click here to view code image

#include "std_lib_facilities.h"

int main()

{

           cout << "Please enter expression (we can handle + and –): ";

           int lval = 0;

           int rval;

           char op;

           int res;

           cin>>lval>>op>>rval;        // read something like 1 + 3

           if (op=='+')

                     res = lval + rval;        // addition
           else if (op=='–')

                     res = lval – rval;        // subtraction

           cout << "Result: " << res << '\n';

           keep_window_open();

           return 0;

}

That is, read a pair of values separated by an operator, such as 2+2, compute the result (in this case 4), and print the resulting
value. We chose the variable names lval for left-hand value and rval for right-hand value.

This (sort of) works! So what if this program isn’t quite complete? It feels great to get something running! Maybe this
programming and computer science stuff is easier than the rumors say. Well, maybe, but let’s not get too carried away by an
early success. Let’s



1. Clean up the code a bit
2. Add multiplication and division (e.g., 2*3)
3. Add the ability to handle more than one operand (e.g., 1+2+3)

In particular, we know that we should always check that our input is reasonable (in our hurry, we “forgot”) and that testing a
value against many constants is best done by a switch-statement rather than an if-statement.

The “chaining” of operations, such as 1+2+3+4, we will handle by adding the values as they are read; that is, we start with
1, see +2 and add 2 to 1 (getting an intermediate result 3), see +3 and add that 3 to our intermediate result (3), and so on. After
a few false starts and after correcting a few syntax and logic errors, we get
Click here to view code image

#include "std_lib_facilities.h"

int main()

{

          cout << "Please enter expression (we can handle +, –, *, and /)\n";

          cout << "add an x to end expression (e.g., 1+2*3x): ";

          int lval = 0;

          int rval;

          cin>>lval;                                     // read leftmost operand
          if (!cin) error("no first operand");

          for (char op; cin>>op; ) {          // read operator and right-hand operand
                                                                 // repeatedly
                   if (op!='x') cin>>rval;

                   if (!cin) error("no second operand");

                   switch(op) {

                   case '+':

                             lval += rval;               // add: lval = lval + rval
                             break;

                   case '–':

                             lval –= rval;               // subtract: lval = lval – rval
                             break;

                   case '*':

                             lval *= rval;           // multiply: lval = lval * rval
                             break;

                   case '/':

                             lval /= rval;            // divide: lval = lval / rval
                             break;

                   default:                           // not another operator: print result
                             cout << "Result: " << lval << '\n';

                             keep_window_open();

                             return 0;

                   }
         }
         error("bad expression");

}

This isn’t bad, but then we try 1+2*3 and see that the result is 9 and not the 7 our arithmetic teachers told us was the right
answer. Similarly, 1–2*3 gives –3 rather than the –5 we expected. We are doing the operations in the wrong order: 1+2*3 is
calculated as (1+2)*3 rather than as the conventional 1+(2*3). Similarly, 1–2*3 is calculated as (1–2)*3 rather than as the
conventional 1–(2*3). Bummer! We might consider the convention that “multiplication binds tighter than addition” as a silly
old convention, but hundreds of years of convention will not disappear just to simplify our programming.

6.3.2 Tokens
So (somehow), we have to “look ahead” on the line to see if there is a * (or a /). If so, we have to (somehow) adjust the
evaluation order from the simple and obvious left-to-right order. Unfortunately, trying to barge ahead here, we immediately hit
a couple of snags:

1. We don’t actually require an expression to be on one line. For example:

1

+

2

works perfectly with our code so far.



2. How do we search for a * (or a /) among digits, plusses, minuses, and parentheses on several input lines?
3. How do we remember where a * was?
4. How do we handle evaluation that’s not strictly left-to-right (e.g., 1+2*3)?

Having decided to be super-optimists, we’ll solve problems 1–3 first and not worry about 4 until later.
Also, we’ll ask around for help. Surely someone will know a conventional way of reading “stuff,” such as numbers and

operators, from input and storing it in a way that lets us look at it in convenient ways. The conventional and very useful answer
is “tokenize”: first input characters are read and assembled into tokens, so if you type in

45+11.5/7

the program should produce a list of tokens representing

45

+

11.5

/

7

A token is a sequence of characters that represents something we consider a unit, such as a number or an operator. That’s the
way a C++ compiler deals with its source. Actually, “tokenizing” in some form or another is the way most analysis of text
starts. Following the example of C++ expression, we see the need for three kinds of tokens:

• Floating-point-literals: as defined by C++, e.g., 3.14, 0.274e2, and 42

• Operators: e.g., +, –, *, /, %
• Parentheses: (, )

The floating-point-literals look as if they may become a problem: reading 12 seems much easier than reading 12.3e–3, but
calculators do tend to do floating-point arithmetic. Similarly, we suspect that we’ll have to accept parentheses to have our
calculator deemed useful.

How do we represent such tokens in our program? We could try to keep track of where each token started (and ended), but
that gets messy (especially if we allow expressions to span line boundaries). Also, if we keep a number as a string of
characters, we later have to figure out what its value is; that is, if we see 42 and store the characters 4 and 2 somewhere, we
then later have to figure out that those characters represent the numerical value 42 (i.e., 4*10+2). The obvious – and
conventional – solution is to represent each token as a (kind,value) pair. The kind tells us if a token is a number, an operator,
or a parenthesis. For a number, and in this example only for a number, we use its numerical value as its value.

So how do we express the idea of a (kind,value) pair in code? We define a type Token to represent tokens. Why?
Remember why we use types: they hold the data we need and give us useful operations on that data. For example, ints hold
integers and give us addition, subtraction, multiplication, division, and remainder, whereas strings hold sequences of
characters and give us concatenation and subscripting. The C++ language and its standard library give us many types such as
char, int, double, string, vector, and ostream, but not a Token type. In fact, there is a huge number of types – thousands
or tens of thousands – that we would like to have, but the language and its standard library do not supply them. Among our
favorite types that are not supported are Matrix (see Chapter 24), Date (see Chapter 9), and infinite precision integers (try
searching the web for “Bignum”). If you think about it for a second, you’ll realize that a language cannot supply tens of
thousands of types: who would define them, who would implement them, how would you find them, and how thick would the
manual have to be? Like most modern languages, C++ escapes that problem by letting us define our own types (user-defined
types) when we need them.

6.3.3 Implementing tokens
What should a token look like in our program? In other words, what would we like our Token type to be? A Token must be
able to represent operators, such as + and –, and numeric values, such as 42 and 3.14. The obvious implementation is
something that can represent what “kind” a token is and hold the numeric value for tokens that have one:



There are many ways that this idea could be represented in C++ code. Here is the simplest that we found useful:
Click here to view code image

class Token {       // a very simple user-defined type
public:

          char kind;

          double value;

};

A Token is a type (like int or char), so it can be used to define variables and hold values. It has two parts (called members):
kind and value. The keyword class means “user-defined type”; it indicates that a type with zero or more members is being
defined. The first member, kind, is a character, char, so that it conveniently can hold '+' and '*' to represent + and *. We can
use it to make types like this:
Click here to view code image

Token t;                // t is a Token
t.kind = '+';          // t represents a +
Token t2;                  // t2 is another Token
t2.kind = '8';             // we use the digit 8 as the “kind” for numbers
t2.value = 3.14;

We use the member access notation, object_name . member_name, to access a member. You can read t.kind as “t’s kind”
and t2.value as “t2’s value.” We can copy Tokens just as we can copy ints:
Click here to view code image

Token tt = t;             // copy initialization
if (tt.kind != t.kind) error("impossible!");

t = t2;                        // assignment
cout << t.value;      // will print 3.14

Given Token, we can represent the expression (1.5+4)*11 using seven tokens like this:

Note that for simple tokens, such as +, we don’t need the value, so we don’t use its value member. We needed a character to
mean “number” and picked '8' just because '8' obviously isn’t an operator or a punctuation character. Using '8' to mean
“number” is a bit cryptic, but it’ll do for now.

Token is an example of a C++ user-defined type. A user-defined type can have member functions (operations) as well as
data members. There can be many reasons for defining member functions. Here, we’ll just provide two member functions to
give us a more convenient way of initializing Tokens:
Click here to view code image

class Token {

public:

          char kind;                // what kind of token
          double value;         // for numbers: a value
};

We can now initialize (“construct”) Token objects. For example:
Click here to view code image

Token t1 {'+'};                   // initialize t1 so that t1.kind = ‘+’
Token t2 {'8',11.5};           // initialize t2 so that t2.kind = ‘8’ and t2.value = 11.5

For more about initializing class objects, see §9.4.2 and §9.7.

6.3.4 Using tokens
So, maybe now we can complete our calculator! However, maybe a small amount of planning ahead would be worthwhile.



How would we use Tokens in the calculator? We can read input into a vector of Tokens:
Click here to view code image

Token get_token();     // function to read a token from cin

vector<Token> tok;    // we’ll put the tokens here

int main()

{

          while (cin) {

                    Token t = get_token();

                    tok.push_back(t);

          }
          // . . .
}

Now we can read an expression first and evaluate later. For example, for 11*12, we get

We can look at that to find the multiplication and its operands. Having done that, we can easily perform the multiplication
because the numbers 11 and 12 are stored as numeric values and not as strings.

Now let’s look at more complex expressions. Given 1+2*3, tok will contain five Tokens:

Now we could find the multiply operation by a simple loop:
Click here to view code image

for (int i = 0; i<tok.size(); ++i) {

          if (tok[i].kind=='*') {              // we found a multiply!
                    double d = tok[i–1].value*tok[i+1].value;

                    // now what?
          }
}

Yes, but now what? What do we do with that product d? How do we decide in which order to evaluate the sub-expressions?
Well, + comes before * so we can’t just evaluate from left to right. We could try right-to-left evaluation! That would work for
1+2*3 but not for 1*2+3. Worse still, consider 1+2*3+4. This example has to be evaluated “inside out”: 1+(2*3)+4. And how
will we handle parentheses, as we eventually will have to do? We seem to have hit a dead end. We need to back off, stop
programming for a while, and think about how we read and understand an input string and evaluate it as an arithmetic
expression.

So, this first enthusiastic attempt to solve the problem (writing a calculator) ran out of steam. That’s not uncommon for first
tries, and it serves the important role of helping us understand the problem. In this case, it even gave us the useful notion of a
token, which itself is an example of the notion of a (name,value) pair that we will encounter again and again. However, we
must always make sure that such relatively thoughtless and unplanned “coding” doesn’t steal too much time. We should do very
little programming before we have done at least a bit of analysis (understanding the problem) and design (deciding on an
overall structure of a solution).

 Try This

On the other hand, why shouldn’t we be able to find a simple solution to this problem? It doesn’t seem to be all
that difficult. If nothing else, trying would give us a better appreciation of the problem and the eventual solution.
Consider what you might do right away. For example, look at the input 12.5+2. We could tokenize that, decide that
the expression was simple, and compute the answer. That may be a bit messy, but straightforward, so maybe we
could proceed in this direction and find something that’s good enough! Consider what to do if we found both a +
and a * in the line 2+3*4. That too can be handled by “brute force.” How would we deal with a complicated



expression, such as 1+2*3/4%5+(6–7*(8))? And how would we deal with errors, such as 2+*3 and 2&3?
Consider this for a while, maybe doodling a bit on a piece of paper trying to outline possible solutions and
interesting or important input expressions.

6.3.5 Back to the drawing board
Now, we will look at the problem again and try not to dash ahead with another half-baked solution. One thing that we did
discover was that having the program (calculator) evaluate only a single expression was tedious. We would like to be able to
compute several expressions in a single invocation of our program; that is, our pseudo code grows to
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while (not_finished) {

          read_a_line

          calculate                 // do the work
          write_result

}

Clearly this is a complication, but when we think about how we use calculators, we realize that doing several calculations is
very common. Could we let the user invoke our program several times to do several calculations? We could, but program
startup is unfortunately (and unreasonably) slow on many modern operating systems, so we’d better not rely on that.

As we look at this pseudo code, our early attempts at solutions, and our examples of use, several questions – some with
tentative answers – arise:

1. If we type in 45+5/7, how do we find the individual parts 45, +, 5, /, and 7 in the input? (Tokenize!)
2. What terminates an input expression? A newline, of course! (Always be suspicious of “of course”: “of course” is not a

reason.)
3. How do we represent 45+5/7 as data so that we can evaluate it? Before doing the addition we must somehow turn the

characters 4 and 5 into the integer value 45 (i.e., 4*10+5). (So tokenizing is part of the solution.)
4. How do we make sure that 45+5/7 is evaluated as 45+(5/7) and not as (45+5)/7?
5. What’s the value of 5/7? About .71, but that’s not an integer. Based on experience with calculators, we know that people

would expect a floating-point result. Should we also allow floating-point inputs? Sure!
6. Can we have variables? For example, could we write

v=7

m=9

v*m

Good idea, but let’s wait until later. Let’s first get the basics working.

Possibly the most important decision here is the answer to question 6. In §7.8, you’ll see that if we had said yes we’d have
almost doubled the size of the initial project. That would have more than doubled the time needed to get the initial version
running. Our guess is that if you really are a novice, it would have at least quadrupled the effort needed and most likely pushed
the project beyond your patience. It is most important to avoid “feature creep” early in a project. Instead, always first build a
simple version, implementing the essential features only. Once you have something running, you can get more ambitious. It is
far easier to build a program in stages than all at once. Saying yes to question 6 would have had yet another bad effect: it
would have made it hard to resist the temptation to add further “neat features” along the line. How about adding the usual
mathematical functions? How about adding loops? Once we start adding “neat features” it is hard to stop.

From a programmer’s point of view, questions 1, 3, and 4 are the most bothersome. They are also related, because once we
have found a 45 or a +, what do we do with them? That is, how do we store them in our program? Obviously, tokenizing is part
of the solution, but only part.

What would an experienced programmer do? When we are faced with a tricky technical question, there often is a standard
answer. We know that people have been writing calculator programs for at least as long as there have been computers taking
symbolic input from a keyboard. That is at least for 50 years. There has to be a standard answer! In such a situation, the
experienced programmer consults colleagues and/or the literature. It would be silly to barge on, hoping to beat 50 years of
experience in a morning.



6.4 Grammars
There is a standard answer to the question of how to make sense of expressions: first input characters are read and assembled
into tokens (as we discovered). So if you type in

45+11.5/7

the program should produce a list of tokens representing

45

+

11.5

/

7

A token is a sequence of characters that represents something we consider a unit, such as a number or an operator.

After tokens have been produced, the program must ensure that complete expressions are understood correctly. For example,
we know that 45+11.5/7 means 45+(11.5/7) and not (45+11.5)/7, but how do we teach the program that useful rule (division
“binds tighter” than addition)? The standard answer is that we write a grammar defining the syntax of our input and then write
a program that implements the rules of that grammar. For example:
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// a simple expression grammar:
Expression:

          Term

          Expression "+" Term         // addition
          Expression "–" Term         // subtraction
Term:

          Primary

          Term "*" Primary             // multiplication
          Term "/" Primary              // division
          Term "%" Primary               // remainder (modulo)
Primary:

          Number

           "(" Expression ")"             // grouping
Number:

          floating-point-literal

This is a set of simple rules. The last rule is read “A Number is a floating-point-literal.” The next-to-last rule says, “A
Primary is a Number or '(' followed by an Expression followed by ')'.” The rules for Expression and Term are similar;
each is defined in terms of one of the rules that follow.

As seen in §6.3.2, our tokens – as borrowed from the C++ definition – are
• floating-point-literal (as defined by C++, e.g., 3.14, 0.274e2, or 42)
• +, –, *, /, % (the operators)
• (, ) (the parentheses)

From our first tentative pseudo code to this approach, using tokens and a grammar is actually a huge conceptual jump. It’s the
kind of jump we hope for but rarely manage without help. This is what experience, the literature, and Mentors are for.

At first glance, a grammar probably looks like complete nonsense. Technical notation often does. However, please keep in
mind that it is a general and elegant (as you will eventually appreciate) notation for something you have been able to do since
middle school (or earlier). You have no problem calculating 1–2*3 and 1+2–3 and 3*2+4/2. It seems hardwired in your brain.
However, could you explain how you do it? Could you explain it well enough for someone who had never seen conventional
arithmetic to grasp? Could you do so for every combination of operators and operands? To articulate an explanation in
sufficient detail and precisely enough for a computer to understand, we need a notation – and a grammar is a most powerful and
conventional tool for that.

How do you read a grammar? Basically, given some input, you start with the “top rule,” Expression, and search through the
rules to find a match for the tokens as they are read. Reading a stream of tokens according to a grammar is called parsing, and
a program that does that is often called a parser or a syntax analyzer. Our parser reads the tokens from left to right, just like
we type them and read them. Let’s try something really simple: Is 2 an expression?



1. An Expression must be a Term or end with a Term. That Term must be a Primary or end with a Primary. That
Primary must start with a ( or be a Number. Obviously, 2 is not a (, but a floating-point-literal, which is a
Number, which is a Primary.

2. That Primary (the Number 2) isn’t preceded by a /, *, or %, so it is a complete Term (rather than the end of a /, *, or
% expression).

3. That Term (the Primary 2) isn’t preceded by a + or –, so it is a complete Expression (rather than the end of a + or –
expression).

So yes, according to our grammar, 2 is an expression. We can illustrate the progression through the grammar like this:

This represents the path we followed through the definitions. Retracing our path, we can say that 2 is an Expression because 2
is a floating-point-literal, which is a Number, which is a Primary, which is a Term, which is an Expression.

Let’s try something a bit more complicated: Is 2+3 an Expression? Naturally, much of the reasoning is the same as for 2:
1. An Expression must be a Term or end with a Term, which must be a Primary or end with a Primary, and a Primary

must start with a ( or be a Number. Obviously 2 is not a (, but it is a floating-point-literal, which is a Number,
which is a Primary.

2. That Primary (the Number 2) isn’t preceded by a /, *, or %, so it is a complete Term (rather than the end of a /, *, or
% expression).

3. That Term (the Primary 2) is followed by a +, so it is the end of the first part of an Expression and we must look for
the Term after the +. In exactly the same way as we found that 2 was a Term, we find that 3 is a Term. Since 3 is not
followed by a + or a – it is a complete Term (rather than the first part of a + or – Expression). Therefore, 2+3 matches
the Expression+Term rule and is an Expression.

Again, we can illustrate this reasoning graphically (leaving out the floating-point-literal to Number rule to simplify):



This represents the path we followed through the definitions. Retracing our path, we can say that 2+3 is an Expression

because 2 is a term which is an Expression, 3 is a Term, and an Expression followed by + followed by a Term is an
Expression.

The real reason we are interested in grammars is that they can solve our problem of how to correctly parse expressions with
both + and *, so let’s try 45+11.5*7. However, “playing computer” following the rules in detail as we did above is tedious, so
let’s skip some of the intermediate steps that we have already gone through for 2 and 2+3. Obviously, 45, 11.5, and 7 are all
floating-point-literals which are Numbers, which are Primarys, so we can ignore all rules below Primary. So we get:

1. 45 is an Expression followed by a +, so we look for a Term to finish the Expression+Term rule.
2. 11.5 is a Term followed by *, so we look for a Primary to finish the Term*Primary rule.
3. 7 is Primary, so 11.5*7 is a Term according to the Term*Primary rule. Now we can see that 45+11.5*7 is an

Expression according to the Expression+Term rule. In particular, it is an Expression that first does the
multiplication 11.5*7 and then the addition 45+11.5*7, just as if we had written 45+(11.5*7).

Again, we can illustrate this reasoning graphically (again leaving out the floating-point-literal to Number rule to
simplify):

Again, this represents the path we followed through the definitions. Note how the Term*Primary rule ensures that 11.5 is
multiplied by 7 rather than added to 45.



You may find this logic hard to follow at first, but many humans do read grammars, and simple grammars are not hard to
understand. However, we were not really trying to teach you to understand 2+2 or 45+11.5*7. Obviously, you knew that
already. We were trying to find a way for the computer to “understand” 45+11.5*7 and all the other complicated expressions
you might give it to evaluate. Actually, complicated grammars are not fit for humans to read, but computers are good at it. They
follow such grammar rules quickly and correctly with the greatest of ease. Following precise rules is exactly what computers
are good at.

6.4.1 A detour: English grammar
If you have never before worked with grammars, we expect that your head is now spinning. In fact, it may be spinning even if
you have seen a grammar before, but take a look at the following grammar for a very small subset of English:
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Sentence:

          Noun Verb                                            // e.g., C++ rules
          Sentence Conjunction Sentence      // e.g., Birds fly but fish swim
Conjunction:

          "and"

          "or"

          "but"

Noun:

          "birds"

          "fish"

          "C++"

Verb:

          "rules"

          "fly"

          "swim"

A sentence is built from parts of speech (e.g., nouns, verbs, and conjunctions). A sentence can be parsed according to these
rules to determine which words are nouns, verbs, etc. This simple grammar also includes semantically meaningless sentences
such as “C++ fly and birds rules,” but fixing that is a different matter belonging in a far more advanced book.

Many have been taught/shown such rules in middle school or in foreign language class (e.g., English classes). These
grammar rules are very fundamental. In fact, there are serious neurological arguments for such rules being hardwired into our
brains!

Now look at a parsing tree as we used above for expressions, but used here for simple English:

This is not all that complicated. If you had trouble with §6.4, then please go back and reread it from the beginning; it may make
more sense the second time through!

6.4.2 Writing a grammar
How did we pick those expression grammar rules? “Experience” is the honest answer. The way we do it is simply the way



people usually write expression grammars. However, writing a simple grammar is pretty straightforward: we need to know
how to

1. Distinguish a rule from a token
2. Put one rule after another (sequencing)
3. Express alternative patterns (alternation)
4. Express a repeating pattern (repetition)
5. Recognize the grammar rule to start with

Different textbooks and different parser systems use different notational conventions and different terminology. For example,
some call tokens terminals and rules non-terminals or productions. We simply put tokens in (double) quotes and start with the
first rule. Alternatives are put on separate lines. For example:

List:

          "{" Sequence "}"

Sequence:

          Element

          Element " ," Sequence

Element:

          "A"

          "B"

So a Sequence is either an Element or an Element followed by a Sequence using a comma for separation. An Element

is either the letter A or the letter B. A List is a Sequence in “curly brackets.” We can generate these Lists (how?):

{ A }

{ B }

{ A,B }

{A,A,A,A,B }

However, these are not Lists (why not?):

{ }

A

{ A,A,A,A,B

{A,A,C,A,B }

{ A B C }

{A,A,A,A,B, }

This sequence rule is not one you learned in kindergarten or have hardwired into your brain, but it is still not rocket science.
See §7.4 and §7.8.1 for examples of how we work with a grammar to express syntactic ideas.

6.5 Turning a grammar into code
There are many ways of getting a computer to follow a grammar. We’ll use the simplest one: we simply write one function for
each grammar rule and use our type Token to represent tokens. A program that implements a grammar is often called a parser.

6.5.1 Implementing grammar rules
To implement our calculator, we need four functions: one to read tokens plus one for each rule in our grammar:
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get_token()           // read characters and compose tokens
                                // uses cin
expression()          // deal with + and –
                                // calls term() and get_token()
term()                     // deal with *, /, and %
                                // calls primary() and get_token()
primary()                // deal with numbers and parentheses
                                // calls expression() and get_token()

Note: Each function deals with a specific part of an expression and leaves everything else to other functions; this radically



simplifies each function. This is much like a group of humans dealing with problems by letting each person handle problems in
his or her own specialty, handing all other problems over to colleagues.

What should these functions actually do? Each function should call other grammar functions according to the grammar rule it
is implementing and get_token() where a token is required in a rule. For example, when primary() tries to follow the
(Expression) rule, it must call
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get_token()             // to deal with ( and )
expression()            // to deal with Expression

What should such parsing functions return? How about the answer we really wanted? For example, for 2+3, expression()

could return 5. After all, the information is all there. That’s what we’ll try! Doing so will save us from answering one of the
hardest questions from our list: “How do I represent 45+5/7 as data so that I can evaluate it?” Instead of storing a
representation of 45+5/7 in memory, we simply evaluate it as we read it from input. This little idea is really a major
breakthrough! It will keep the program at a quarter of the size it would have been had we had expression() return something
complicated for later evaluation. We just saved ourselves about 80% of the work.

The “odd man out” is get_token(): because it deals with tokens, not expressions, it can’t return the value of a sub-
expression. For example, + and ( are not expressions. So, it must return a Token. We conclude that we want
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// functions to match the grammar rules:
Token get_token()        // read characters and compose tokens
double expression()     // deal with + and –
double term()         // deal with *, /, and %
double primary()    // deal with numbers and parentheses

6.5.2 Expressions
Let’s first write expression(). The grammar looks like this:

Expression:

          Term

          Expression '+' Term

          Expression '–' Term

Since this is our first attempt to turn a set of grammar rules into code, we’ll proceed through a couple of false starts. That’s the
way it usually goes with new techniques, and we learn useful things along the way. In particular, a novice programmer can
learn a lot from looking at the dramatically different behavior of similar pieces of code. Reading code is a useful skill to
cultivate.

6.5.2.1 Expressions: first try
Looking at the Expression '+' Term rule, we try first calling expression(), then looking for + (and –) and then term():
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double expression()

{

          double left = expression();      // read and evaluate an Expression
          Token t = get_token();             // get the next token
          switch (t.kind) {                         // see which kind of token it is
          case '+':

                    return left + term();        // read and evaluate a Term,
                                                               // then do an add
          case '–':

                   return left – term();         // read and evaluate a Term,
                                                               // then do a subtraction
          default:

                   return left;                        // return the value of the Expression
          }
}

It looks good. It is almost a trivial transcription of the grammar. It is quite simple, really: first read an Expression and then
see if it is followed by a + or a –, and if it is, read the Term.



Unfortunately, that doesn’t really make sense. How do we know where the expression ends so that we can look for a + or a
–? Remember, our program reads left to right and can’t peek ahead to see if a + is coming. In fact, this expression() will
never get beyond its first line: expression() starts by calling expression() which starts by calling expression() and so on
“forever.” This is called an infinite recursion and will in fact terminate after a short while when the computer runs out of
memory to hold the “never-ending” sequence of calls of expression(). The term recursion is used to describe what happens
when a function calls itself. Not all recursions are infinite, and recursion is a very useful programming technique (see §8.5.8).

6.5.2.2 Expressions: second try
So what do we do? Every Term is an Expression, but not every Expression is a Term; that is, we could start looking for a
Term and look for a full Expression only if we found a + or a –. For example:
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double expression()

{

          double left = term();                       // read and evaluate a Term
          Token t = get_token();                   // get the next token
          switch (t.kind) {                               // see which kind of token that is
          case '+':

                    return left + expression();   // read and evaluate an Expression,
                                                                     // then do an add
          case '–':

                    return left – expression();    // read and evaluate an Expression,
                                                                     // then do a subtraction
          default:

                    return left;                             // return the value of the Term
          }
}

This actually – more or less – works. We have tried it in the finished program and it parses every correct expression we throw
at it (and no illegal ones). It even correctly evaluates most expressions. For example, 1+2 is read as a Term (with the value 1)
followed by + followed by an Expression (which happens to be a Term with the value 2) and gives the answer 3. Similarly,
1+2+3 gives 6. We could go on for quite a long time about what works, but to make a long story short: How about 1–2–3? This
expression() will read the 1 as a Term, then proceed to read 2–3 as an Expression (consisting of the Term 2 followed by
the Expression 3). It will then subtract the value of 2–3 from 1. In other words, it will evaluate 1–(2–3). The value of 1–(2–3)

is 2 (positive two). However, we were taught (in primary school or even earlier) that 1–2–3 means (1–2)–3 and therefore has
the value –4 (negative four).

So we got a very nice program that just didn’t do the right thing. That’s dangerous. It is especially dangerous because it
gives the right answer in many cases. For example, 1+2+3 gives the right answer (6) because 1+(2+3) equals (1+2)+3. What
fundamentally, from a programming point of view, did we do wrong? We should always ask ourselves this question when we
have found an error. That way we might avoid making the same mistake again, and again, and again.

Fundamentally, we just looked at the code and guessed. That’s rarely good enough! We have to understand what our code is
doing and we have to be able to explain why it does the right thing.

Analyzing our errors is often also the best way to find a correct solution. What we did here was to define expression() to
first look for a Term and then, if that Term is followed by a + or a –, look for an Expression. This really implements a
slightly different grammar:
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Expression:

          Term

          Term '+' Expression          // addition
          Term '–' Expression          // subtraction

The difference from our desired grammar is exactly that we wanted 1–2–3 to be the Expression 1–2 followed by – followed
by the Term 3, but what we got here was the Term 1 followed by – followed by the Expression 2–3; that is, we wanted 1–

2–3 to mean (1–2)–3 but we got 1–(2–3).
Yes, debugging can be tedious, tricky, and time-consuming, but in this case we are really working through rules you learned

in primary school and learned to apply without too much trouble. The snag is that we have to teach the rules to a computer –



and a computer is a far slower learner than you are.
Note that we could have defined 1–2–3 to mean 1–(2–3) rather than (1–2)–3 and avoided this discussion altogether. Often,

the trickiest programming problems come when we must match conventional rules that were established by and for humans
long before we started using computers.

6.5.2.3 Expressions: third time lucky
So, what now? Look again at the grammar (the correct grammar in §6.5.2): any Expression starts with a Term and such a
Term can be followed by a + or a –. So, we have to look for a Term, see if it is followed by a + or a –, and keep doing that
until there are no more plusses or minuses. For example:
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double expression()

{

          double left = term();             // read and evaluate a Term
          Token t = get_token();         // get the next token
          while (t.kind=='+' || t.kind=='–') {       // look for a + or a –
                    if (t.kind == '+')

                               left += term();                   // evaluate Term and add
                    else

                              left –= term();                    // evaluate Term and subtract
                    t = get_token();

          }
          return left;                         // finally: no more + or –; return the answer
}

This is a bit messier: we had to introduce a loop to keep looking for plusses and minuses. We also got a bit repetitive: we test
for + and – twice and twice call get_token(). Because it obscures the logic of the code, let’s just get rid of the duplication of
the test for + and –:
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double expression()

{

          double left = term();                      // read and evaluate a Term
          Token t = get_token();                  // get the next token
          while (true) {

                    switch (t.kind) {

                    case '+':

                              left += term();             // evaluate Term and add
                              t = get_token();

                              break;

                    case '–':

                              left –= term();             // evaluate Term and subtract
                              t = get_token();

                              break;

                    default:

                              return left;     // finally: no more + or –; return the answer
                    }
          }
}

Note that – except for the loop – this is actually rather similar to our first try (§6.5.2.1). What we have done is to remove the
mention of expression() within expression() and replace it with a loop. In other words, we translated the Expression in
the grammar rules for Expression into a loop looking for a Term followed by a + or a –.

6.5.3 Terms
The grammar rule for Term is very similar to the Expression rule:

Term:

          Primary

          Term '*' Primary

          Term '/' Primary

          Term '%' Primary

Consequently, the code should be very similar also. Here is a first try:



Click here to view code image

double term()

{

          double left = primary();

          Token t = get_token();

          while (true) {

                    switch (t.kind) {

                    case '*':

                              left *= primary();

                              t = get_token();

                              break;

                    case '/':

                              left /= primary();

                              t = get_token();

                              break;

                    case '%':

                              left %= primary();

                              t = get_token();

                              break;

                    default:

                              return left;

                    }
          }
}

Unfortunately, this doesn’t compile: the remainder operation (%) is not defined for floating-point numbers. The compiler
kindly tells us so. When we answered question 5 in §6.3.5 – “Should we also allow floating-point inputs?” – with a confident
“Sure!” we actually hadn’t thought the issue through and fell victim to feature creep. That always happens! So what do we do
about it? We could at run time check that both operands of % are integers and give an error if they are not. Or we could simply
leave % out of our calculator. Let’s take the simplest choice for now. We can always add % later; see §7.5.

After we eliminate the % case, the function works: terms are correctly parsed and evaluated. However, an experienced
programmer will notice an undesirable detail that makes term() unacceptable. What would happen if you entered 2/0? You
can’t divide by zero. If you try, the computer hardware will detect it and terminate your program with a somewhat unhelpful
error message. An inexperienced programmer will discover this the hard way. So, we’d better check and give a decent error
message:
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double term()

{

          double left = primary();

          Token t = get_token();

          while (true) {

                    switch (t.kind) {

                    case '*':

                              left *= primary();

                              t = get_token();

                              break;

                    case '/':

                    {     double d = primary();

                              if (d == 0) error("divide by zero");

                              left /= d;

                              t = get_token();

                              break;

                    }
                    default:

                              return left;

                    }
          }
}

Why did we put the statements handling / into a block? The compiler insists. If you want to define and initialize variables
within a switch-statement, you must place them inside a block.



6.5.4 Primary expressions
The grammar rule for primary expressions is also simple:

Primary:

          Number

          '(' Expression ')'

The code that implements it is a bit messy because there are more opportunities for syntax errors:
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double primary()

{

          Token t = get_token();

          switch (t.kind) {

          case '(':     // handle ‘(‘ expression ‘)’
                    {      double d = expression();

                            t = get_token();

                            if (t.kind != ')') error("')' expected");

                            return d;

                    }
          case '8':                              // we use ‘8’ to represent a number
                    return t.value;        // return the number’s value
          default:

                    error("primary expected");

          }
}

Basically there is nothing new compared to expression() and term(). We use the same language primitives, the same way of
dealing with Tokens, and the same programming techniques.

6.6 Trying the first version
To run these calculator functions, we need to implement get_token() and provide a main(). The main() is trivial: we just
keep calling expression() and printing out its result:
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int main()

try {

          while (cin)

                    cout << expression() << '\n';

          keep_window_open();

}

catch (exception& e) {

          cerr << e.what() << '\n';

          keep_window_open ();

          return 1;

}

catch (...) {

          cerr << "exception \n";

          keep_window_open ();

          return 2;

}

The error handling is the usual “boilerplate” (§5.6.3). Let us postpone the description of the implementation of get_token() to
§6.8 and test this first version of the calculator.

 Try This

This first version of the calculator program (including get_token()) is available as file calculator00.cpp. Get
it to run and try it out.

Unsurprisingly, this first version of the calculator doesn’t work quite as we expected. So we shrug and ask, “Why not?” or
rather, “So, why does it work the way it does?” and “What does it do?” Type a 2 followed by a newline. No response. Try



another newline to see if it’s asleep. Still no response. Type a 3 followed by a newline. No response! Type a 4 followed by a
newline. It answers 2! Now the screen looks like this:

2

3

4

2

We carry on by typing 5+6. The program responds with a 5, so that the screen looks like this:

2

3

4

2

5+6

5

Unless you have programmed before, you are most likely very puzzled! In fact, even an experienced programmer might be
puzzled. What’s going on here? At this point, you try to get out of the program. How do you do this? We “forgot” to program an
exit command, but an error will cause the program to exit, so you type an x and the program prints Bad token and exits.
Finally, something worked as planned!

However, we forgot to distinguish between input and output on the screen. Before we try to solve the main puzzle, let’s just
fix the output to better see what we are doing. Adding an = to indicate output will do for now:
Click here to view code image

while (cin) cout << "="<< expression() << '\n';     // version 1

Now, entering the exact sequence of characters as before, we get

2

3

4

= 2

5+6

= 5

x

Bad token

Strange! Try to figure out what the program did. We tried another few examples, but let’s just look at this. This is a puzzle:
Why didn’t the program respond after the first 2 and 3 and the newlines?
Why did the program respond with 2, rather than 4, after we entered 4?
Why did the program answer 5, rather than 11, after 5+6?

There are many possible ways of proceeding from such mysterious results. We’ll examine some of those in the next chapter,
but here, let’s just think. Could the program be doing bad arithmetic? That’s most unlikely; the value of 4 isn’t 2, and the value
of 5+6 is 11 rather than 5. Consider what happens when we enter 1 2 3 4+5 6+7 8+9 10 11 12 followed by a newline. We get

1 2 3 4+5 6+7 8+9 10 11 12

= 1

= 4

= 6

= 8

= 10

Huh? No 2 or 3. Why 4 and not 9 (that is, 4+5)? Why 6 and not 13 (that is, 6+7)? Look carefully: the program is outputting
every third token! Maybe the program “eats” some of our input without evaluating it? It does. Consider expression():
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double expression()

{

          double left = term();                    // read and evaluate a Term
          Token t = get_token();                // get the next token
          while (true) {

                    switch (t.kind) {



                    case '+':

                              left += term();      // evaluate Term and add
                              t = get_token();

                              break;

                    case '–':

                              left –= term();      // evaluate Term and subtract
                              t = get_token();

                              break;

                    default:

                                     return left;    // finally: no more + or –; return the answer
                    }
          }
}

When the Token returned by get_token() is not a + or a – we just return. We don’t use that token and we don’t store it
anywhere for any other function to use later. That’s not smart. Throwing away input without even determining what it is can’t
be a good idea. A quick look shows that term() has exactly the same problem. That explains why our calculator ate two tokens
for each that it used.

Let us modify expression() so that it doesn’t “eat” tokens. Where would we put that next token (t) when the program
doesn’t need it? We could think of many elaborate schemes, but let’s jump to the obvious answer (“obvious” once you see it):
that token is going to be used by some other function that is reading tokens from the input, so let’s put the token back into the
input stream so that it can be read again by some other function! Actually, you can put characters back into an istream, but
that’s not really what we want. We want to deal with tokens, not mess with characters. What we want is an input stream that
deals with tokens and that you can put an already read token back into.

So, assume that we have a stream of tokens – a “Token_stream” – called ts. Assume further that a Token_stream has a
member function get() that returns the next token and a member function putback(t) that puts a token t back into the stream.
We’ll implement that Token_stream in §6.8 as soon as we have had a look at how it needs to be used. Given
Token_stream, we can rewrite expression() so that it puts a token that it does not use back into the Token_stream:
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double expression()

{

          double left = term();                // read and evaluate a Term
          Token t = ts.get();                    // get the next Token from the Token stream

          while (true) {

                    switch (t.kind) {

                    case '+':

                              left += term();       // evaluate Term and add
                              t = ts.get();

                              break;

                    case '–':

                              left –= term();       // evaluate Term and subtract
                              t = ts.get();

                              break;

                    default:

                              ts.putback(t);       // put t back into the token stream
                              return left;            // finally: no more + or –; return the answer
                    }
          }
}

In addition, we must make the same change to term():
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double term()

{

          double left = primary();

          Token t = ts.get();                     // get the next Token from the Token stream

          while (true) {

                    switch (t.kind) {

                    case '*':

                              left *= primary();



                              t = ts.get();

                              break;

                    case '/':

                    {    double d = primary();

                              if (d == 0) error("divide by zero");

                              left /= d;

                              t = ts.get();

                              break;

                    }
                    default:

                              ts.putback(t);            // put t back into the Token stream
                              return left;

                    }
          }
}

For our last parser function, primary(), we just need to change get_token() to ts.get(); primary() uses every token it reads.

6.7 Trying the second version
So, we are ready to test our second version. This second version of the calculator program (including Token_stream) is
available as file calculator01.cpp. Get it to run and try it out. Type 2 followed by a newline. No response. Try another
newline to see if it’s asleep. Still no response. Type a 3 followed by a newline and it answers 2. Try 2+2 followed by a
newline and it answers 3. Now your screen looks like this:

2

3

=2

2+2

=3

Hmm. Maybe our introduction of putback() and its use in expression() and term() didn’t fix the problem. Let’s try another
test:

2 3 4 2+3 2*3

= 2

= 3

= 4

= 5

Yes! These are correct answers! But the last answer (6) is missing. We still have a token-look-ahead problem. However, this
time the problem is not that our code “eats” characters, but that it doesn’t get any output for an expression until we enter the
following expression. The result of an expression isn’t printed immediately; the output is postponed until the program has seen
the first token of the next expression. Unfortunately, the program doesn’t see that token until we hit Return after the next
expression. The program isn’t really wrong; it is just a bit slow responding.

How can we fix this? One obvious solution is to require a “print command.” So, let’s accept a semicolon after an expression
to terminate it and trigger output. And while we are at it, let’s add an “exit command” to allow for graceful exit. The character
q (for “quit”) would do nicely for an exit command. In main(), we have
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while (cin) cout << "=" << expression() << '\n';   // version 1

We can change that to the messier but more useful
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double val = 0;

while (cin) {

          Token t = ts.get();

          if (t.kind == 'q') break;          // ‘q’ for “quit”
          if (t.kind == ';')                        // ‘;’ for “print now”
                    cout << "=" << val << '\n';

          else

                    ts.putback(t);

          val = expression();



}

Now the calculator is actually usable. For example, we get

2;

= 2

2+3;

= 5

3+4*5;

= 23

q

At this point we have a good initial version of the calculator. It’s not quite what we really wanted, but we have a program that
we can use as the base for making a more acceptable version. Importantly, we can now correct problems and add features one
by one while maintaining a working program as we go along.

6.8 Token streams
Before further improving our calculator, let us show the implementation of Token_stream. After all, nothing – nothing at all –
works until we get correct input. We implemented Token_stream first of all but didn’t want too much of a digression from
the problems of calculation before we had shown a minimal solution.

Input for our calculator is a sequence of tokens, just as we showed for (1.5+4)*11 above (§6.3.3). What we need is
something that reads characters from the standard input, cin, and presents the program with the next token when it asks for it. In
addition, we saw that we – that is, our calculator program – often read a token too many, so that we must be able to put it back
for later use. This is typical and fundamental; when you see 1.5+4 reading strictly left to right, how could you know that the
number 1.5 had been completely read without reading the +? Until we see the + we might be on our way to reading 1.55555.
So, we need a “stream” that produces a token when we ask for one using get() and where we can put a token back into the
stream using putback(). Everything we use in C++ has a type, so we have to start by defining the type Token_stream.

You probably noticed the public: in the definition of Token in §6.3.3. There, it had no apparent purpose. For
Token_stream, we need it and must explain its function. A C++ user-defined type often consists of two parts: the public
interface (labeled public:) and the implementation details (labeled private:). The idea is to separate what a user of a type
needs for convenient use from the details that we need in order to implement the type, but that we’d rather not have users mess
with:
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class Token_stream {

public:

           // user interface
private:

           // implementation details
           // (not directly accessible to users of Token_stream)
};

Obviously, users and implementers are often just us “playing different roles,” but making the distinction between the (public)
interface meant for users and the (private) implementation details used only by the implementer is a powerful tool for
structuring code. The public interface should contain (only) what a user needs, which is typically a set of functions. The private
implementation contains what is necessary to implement those public functions, typically data and functions dealing with messy
details that the users need not know about and shouldn’t directly use.

Let’s elaborate the Token_stream type a bit. What does a user want from it? Obviously, we want get() and putback()

functions – that’s why we invented the notion of a token stream. The Token_stream is to make Tokens out of characters that
it reads for input, so we need to be able to make a Token_stream and to define it to read from cin. Thus, the simplest
Token_stream looks like this:
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class Token_stream {

public:

          Token_stream();                  // make a Token_stream that reads from cin
          Token get();                         // get a Token
          void putback(Token t);      // put a Token back



private:

          // implementation details
};

That’s all a user needs to use a Token_stream. Experienced programmers will wonder why cin is the only possible source
of characters, but we decided to take our input from the keyboard. We’ll revisit that decision in a Chapter 7 exercise.

Why do we use the “verbose” name putback() rather than the logically sufficient put()? We wanted to emphasize the
asymmetry between get() and putback(); this is an input stream, not something that you can also use for general output. Also,
istream has a putback() function: consistency in naming is a useful property of a system. It helps people remember and helps
people avoid errors.

We can now make a Token_stream and use it:
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Token_stream ts;       // a Token_stream called ts
Token t = ts.get();      // get next Token from ts
// . . .
ts.putback(t);             // put the Token t back into ts

That’s all we need to write the rest of the calculator.

6.8.1 Implementing Token_stream

Now, we need to implement those three Token_stream functions. How do we represent a Token_stream? That is, what
data do we need to store in a Token_stream for it to do its job? We need space for any token we put back into the
Token_stream. To simplify, let’s say we can put back at most one token at a time. That happens to be sufficient for our
program (and for many, many similar programs). That way, we just need space for one Token and an indicator of whether that
space is full or empty:
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class Token_stream {

public:

          Token get();                      // get a Token (get() is defined in §6.8.2)
          void putback(Token t);   // put a Token back
private:

          bool full {false};                // is there a Token in the buffer?
          Token buffer;    // here is where we keep a Token put back using putback()
};

Now we can define (“write”) the two member functions. The putback() is easy, so we will define it first. The putback()

member function puts its argument back into the Token_stream’s buffer:
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void Token_stream::putback(Token t)

{

          buffer = t;            // copy t to buffer
          full = true;           // buffer is now full
}

The keyword void (meaning “nothing”) is used to indicate that putback() doesn’t return a value.
When we define a member of a class outside the class definition itself, we have to mention which class we mean the member

to be a member of. We use the notation
class_name :: member_name

for that. In this case, we define Token_stream’s member putback.
Why would we define a member outside its class? The main answer is clarity: the class definition (primarily) states what

the class can do. Member function definitions are implementations that specify how things are done. We prefer to put them
“elsewhere” where they don’t distract. Our ideal is to have every logical entity in a program fit on a screen. Class definitions
typically do that if the member function definitions are placed elsewhere, but not if they are placed within the class definition
(“in-class”).

If we wanted to make sure that we didn’t try to use putback() twice without reading what we put back in between (using
get()), we could add a test:
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void Token_stream::putback(Token t)

{

          if (full) error("putback() into a full buffer");

          buffer = t;             // copy t to buffer
          full = true;            // buffer is now full
}

The test of full checks the pre-condition “There is no Token in the buffer.”
Obviously, a Token_stream should start out empty. That is, full should be false until after the first call of get(). We

achieve that by initializing the member full right in the definition of Token_stream.

6.8.2 Reading tokens
All the real work is done by get(). If there isn’t already a Token in Token_stream::buffer, get() must read characters
from cin and compose them into Tokens:
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Token Token_stream::get()

{

          if (full) {                                // do we already have a Token ready?
                    full = false;                // remove Token from buffer
                    return buffer;

          }
          char ch;

          cin >> ch;        // note that >> skips whitespace (space, newline, tab, etc.)
          switch (ch) {

          case ';':            // for “print”
          case 'q':           // for “quit”
          case '(': case ')': case '+': case '–': case '*': case '/':

                    return Token{ch};             // let each character represent itself
          case '.':

          case '0': case '1': case '2': case '3': case '4':

          case '5': case '6': case '7': case '8': case '9':

          {        cin.putback(ch);                // put digit back into the input stream
                    double val;

                    cin >> val;                          // read a floating-point number
                    return Token{'8',val};      // let ‘8’ represent “a number”
          }
          default:

                    error("Bad token");

          }
}

Let’s examine get() in detail. First we check if we already have a Token in the buffer. If so, we can just return that:
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if (full) {                     // do we already have a Token ready?
          full = false;     // remove Token from buffer
          return buffer;

}

Only if full is false (that is, there is no token in the buffer) do we need to mess with characters. In that case, we read a
character and deal with it appropriately. We look for parentheses, operators, and numbers. Any other character gets us the call
of error() that terminates the program:

default:

          error("Bad token");

The error() function is described in §5.6.3 and we make it available in std_lib_facilities.h.
We had to decide how to represent the different kinds of Tokens; that is, we had to choose values for the member kind. For

simplicity and ease of debugging, we decided to let the kind of a Token be the parentheses and operators themselves. This
leads to extremely simple processing of parentheses and operators:
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case '(': case ')': case '+': case '–': case '*': case '/':

          return Token{ch};         // let each character represent itself

To be honest, we had forgotten ';' for “print” and 'q' for “quit” in our first version. We didn’t add them until we needed them
for our second solution.

6.8.3 Reading numbers
Now we just have to deal with numbers. That’s actually not that easy. How do we really find the value of 123? Well, that’s
100+20+3, but how about 12.34, and should we accept scientific notation, such as 12.34e5? We could spend hours or days to
get this right, but fortunately, we don’t have to. Input streams know what C++ literals look like and how to turn them into values
of type double. All we have to do is to figure out how to tell cin to do that for us inside get():
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case '.':

case '0': case '1': case '2': case '3': case '4':

case '5': case '6': case '7': case '8': case '9':

{        cin.putback(ch);               // put digit back into the input stream
          double val;

          cin >> val;                         // read a floating-point number
          return Token{'8',val};     // let ‘8’ represent “a number”
}

We – somewhat arbitrarily – chose '8' to represent “a number” in a Token.
How do we know that a number is coming? Well, if we guess from experience or look in a C++ reference (e.g., Appendix

A), we find that a numeric literal must start with a digit or . (the decimal point). So, we test for that. Next, we want to let cin

read the number, but we have already read the first character (a digit or dot), so just letting cin loose on the rest will give a
wrong result. We could try to combine the value of the first character with the value of “the rest” as read by cin; for example,
if someone typed 123, we would get 1 and cin would read 23 and we’d have to add 100 to 23. Yuck! And that’s a trivial case.
Fortunately (and not by accident), cin works much like Token_stream in that you can put a character back into it. So instead
of doing any messy arithmetic, we just put the initial character back into cin and then let cin read the whole number.

Please note how we again and again avoid doing complicated work and instead find simpler solutions – often relying on
library facilities. That’s the essence of programming: the continuing search for simplicity. Sometimes that’s – somewhat
facetiously – expressed as “Good programmers are lazy.” In that sense (and only in that sense), we should be “lazy”; why write
a lot of code if we can find a way of writing far less?

6.9 Program structure
Sometimes, the proverb says, it’s hard to see the forest for the trees. Similarly, it is easy to lose sight of a program when
looking at all its functions, classes, etc. So, let’s have a look at the program with its details omitted:
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#include "std_lib_facilities.h"

class Token { /* . . . */ };

class Token_stream { /* . . . */ };

void Token_stream::putback(Token t) { /* . . . */ }

Token Token_stream::get() { /* . . . */ }

Token_stream ts;               // provides get() and putback()
double expression()          // declaration so that primary() can call expression()

double primary() { /* . . . */ }           // deal with numbers and parentheses
double term() { /* . . . */ }                // deal with * and /
double expression() { /* . . . */ }     // deal with + and –

int main() { /* . . . */ }         // main loop and deal with errors

The order of the declarations is important. You cannot use a name before it has been declared, so ts must be declared before
ts.get() uses it, and error() must be declared before the parser functions because they all use it. There is an interesting loop in



the call graph: expression() calls term() which calls primary() which calls expression().
We can represent that graphically (leaving out calls to error() – everyone calls error()):

This means that we can’t just define those three functions: there is no order that allows us to define every function before it is
used. We need at least one declaration that isn’t also a definition. We chose to declare (“forward declare”) expression().

But does this work? It does, for some definition of “work.” It compiles, runs, correctly evaluates expressions, and gives
decent error messages. But does it work in a way that we like? The unsurprising answer is “Not really.” We tried the first
version in §6.6 and removed a serious bug. This second version (§6.7) is not much better. But that’s fine (and expected). It is
good enough for its main purpose, which is to be something that we can use to verify our basic ideas and get feedback from. As
such, it is a success, but try it: it’ll (still) drive you nuts!

 Try This

Get the calculator as presented above to run, see what it does, and try to figure out why it works as it does.

 Drill

This drill involves a series of modifications of a buggy program to turn it from something useless into something reasonably
useful.

1. Take the calculator from the file calculator02buggy.cpp. Get it to compile. You need to find and fix a few bugs.
Those bugs are not in the text in the book. Find the three logic errors deviously inserted in calculator02buggy.cpp and
remove them so that the calculator produces correct results.

2. Change the character used as the exit command from q to x.
3. Change the character used as the print command from ; to =.
4. Add a greeting line in main():
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"Welcome to our simple calculator.

Please enter expressions using floating-point numbers."

5. Improve that greeting by mentioning which operators are available and how to print and exit.

Review
1. What do we mean by “Programming is understanding”?
2. The chapter details the creation of a calculator program. Write a short analysis of what the calculator should be able to

do.
3. How do you break a problem up into smaller manageable parts?
4. Why is creating a small, limited version of a program a good idea?
5. Why is feature creep a bad idea?



6. What are the three main phases of software development?
7. What is a “use case”?
8. What is the purpose of testing?
9. According to the outline in the chapter, describe the difference between a Term, an Expression, a Number, and a

Primary.
10. In the chapter, an input was broken down into its component Terms, Expressions, Primarys, and Numbers. Do this

for (17+4)/(5–1).
11. Why does the program not have a function called number()?
12. What is a token?
13. What is a grammar? A grammar rule?
14. What is a class? What do we use classes for?
15. How can we provide a default value for a member of a class?
16. In the expression function, why is the default for the switch-statement to “put back” the token?
17. What is “look-ahead”?
18. What does putback() do and why is it useful?
19. Why is the remainder (modulus) operation, %, difficult to implement in the term()?
20. What do we use the two data members of the Token class for?
21. Why do we (sometimes) split a class’s members into private and public members?
22. What happens in the Token_stream class when there is a token in the buffer and the get() function is called?
23. Why were the ';' and 'q' characters added to the switch-statement in the get() function of the Token_stream class?
24. When should we start testing our program?
25. What is a “user-defined type”? Why would we want one?
26. What is the interface to a C++ “user-defined type”?
27. Why do we want to rely on libraries of code?

Terms
analysis
class

class member
data member
design
divide by zero
grammar
implementation
interface
member function
parser
private

prototype
pseudo code
public

syntax analyzer
token
use case

Exercises



1. If you haven’t already, do the Try this exercises from this chapter.
2. Add the ability to use {} as well as () in the program, so that {(4+5)*6} / (3+4) will be a valid expression.
3. Add a factorial operator: use a suffix ! operator to represent “factorial.” For example, the expression 7! means 7 * 6 * 5

* 4 * 3 * 2 * 1. Make ! bind tighter than * and /; that is, 7*8! means 7*(8!) rather than (7*8)!. Begin by modifying the
grammar to account for a higher-level operator. To agree with the standard mathematical definition of factorial, let 0!

evaluate to 1. Hint: The calculator functions deal with doubles, but factorial is defined only for ints, so just for x!,
assign the x to an int and calculate the factorial of that int.

4. Define a class Name_value that holds a string and a value. Rework exercise 19 in Chapter 4 to use a
vector<Name_value> instead of two vectors.

5. Add the article the to the “English” grammar in §6.4.1, so that it can describe sentences such as “The birds fly but the
fish swim.”

6. Write a program that checks if a sentence is correct according to the “English” grammar in §6.4.1. Assume that every
sentence is terminated by a full stop (.) surrounded by whitespace. For example, birds fly but the fish swim . is a
sentence, but birds fly but the fish swim (terminating dot missing) and birds fly but the fish swim. (no space
before dot) are not. For each sentence entered, the program should simply respond “OK” or “not OK.” Hint: Don’t bother
with tokens; just read into a string using >>.

7. Write a grammar for bitwise logical expressions. A bitwise logical expression is much like an arithmetic expression
except that the operators are ! (not), ~ (complement), & (and), | (or), and ^ (exclusive or). Each operator does its
operation to each bit of its integer operands (see §25.5). ! and ~ are prefix unary operators. A ^ binds tighter than a |
(just as * binds tighter than +) so that x|y^z means x|(y^z) rather than (x|y)^z. The & operator binds tighter than ^ so
that x^y&z means x^(y&z).

8. Redo the “Bulls and Cows” game from exercise 12 in Chapter 5 to use four letters rather than four digits.
9. Write a program that reads digits and composes them into integers. For example, 123 is read as the characters 1, 2, and

3. The program should output 123 is 1 hundred and 2 tens and 3 ones. The number should be output as an int value.
Handle numbers with one, two, three, or four digits. Hint: To get the integer value 5 from the character '5' subtract '0',
that is, '5'–'0'==5.

10. A permutation is an ordered subset of a set. For example, say you wanted to pick a combination to a vault. There are 60
possible numbers, and you need three different numbers for the combination. There are P(60,3) permutations for the
combination, where P is defined by the formula

where ! is used as a suffix factorial operator. For example, 4! is 4*3*2*1.
Combinations are similar to permutations, except that the order of the objects doesn’t matter. For example, if you were
making a “banana split” sundae and wished to use three different flavors of ice cream out of five that you had, you
wouldn’t care if you used a scoop of vanilla at the beginning or the end; you would still have used vanilla. The formula
for combinations is

Design a program that asks users for two numbers, asks them whether they want to calculate permutations or
combinations, and prints out the result. This will have several parts. Do an analysis of the above requirements. Write
exactly what the program will have to do. Then, go into the design phase. Write pseudo code for the program, and break
it into sub-components. This program should have error checking. Make sure that all erroneous inputs will generate good
error messages.

Postscript
Making sense of input is one of the fundamental programming activities. Every program somehow faces that problem. Making
sense of something directly produced by a human is among the hardest problems. For example, many aspects of voice
recognition are still a research problem. Simple variations of this problem, such as our calculator, cope by using a grammar to
define the input.



7. Completing a Program

“It ain’t over till the fat lady sings.”
—Opera proverb

Writing a program involves gradually refining your ideas of what you want to do and how you want to express it. In Chapter 6,
we produced the initial working version of a calculator program. Here, we’ll refine it. Completing the program — that is,
making it fit for users and maintainers — involves improving the user interface, doing some serious work on error handling,
adding a few useful features, and restructuring the code for ease of understanding and modification.

7.1 Introduction
7.2 Input and output
7.3 Error handling
7.4 Negative numbers
7.5 Remainder: %
7.6 Cleaning up the code

7.6.1 Symbolic constants
7.6.2 Use of functions
7.6.3 Code layout
7.6.4 Commenting

7.7 Recovering from errors
7.8 Variables

7.8.1 Variables and definitions
7.8.2 Introducing names
7.8.3 Predefined names
7.8.4 Are we there yet?

7.1 Introduction

When your program first starts running “reasonably,” you’re probably about halfway finished. For a large program or a
program that could do harm if it misbehaved, you will be nowhere near halfway finished. Once the program “basically works,”
the real fun begins! That’s when we have enough working code to experiment with ideas.

In this chapter, we will guide you through the considerations a professional programmer might have trying to improve the
calculator from Chapter 6. Note that the questions asked about the program and the issues considered here are far more
interesting than the calculator itself. What we do is to give an example of how real programs evolve under the pressure of
requirements and constraints and of how a programmer can gradually improve code.

7.2 Input and output
If you look back to the beginning of Chapter 6, you’ll find that we decided to prompt the user with

Expression:

and to report back answers with

Result:

In the heat of getting the program to run, we forgot all about that. That’s pretty typical. We can’t think of everything all the time,
so when we stop to reflect, we find that we have forgotten something.

For some programming tasks, the initial requirements cannot be changed. That’s usually too rigid a policy and leads to
programs that are unnecessarily poor solutions to the problems that they are written to solve. So, let’s consider what we would



do, assuming that we can change the specification of what exactly the program should do. Do we really want the program to
write Expression: and Result:? How would we know? Just “thinking” rarely helps. We have to try and see what works best.

2+3; 5*7; 2+9;

currently gives

= 5

= 35

= 11

If we used Expression: and Result:, we’d get

Expression: 2+3; 5*7; 2+9;

Result : 5

Expression: Result: 35

Expression: Result: 11

Expression:

We are sure that some people will like one style and others will like the other. In such cases, we can consider giving people a
choice, but for this simple calculator that would be overkill, so we must decide. We think that writing Expression: and
Result: is a bit too “heavy” and distracting. Using those, the actual expressions and results are only a minor part of what
appears on the screen, and since expressions and results are what matters, nothing should distract from them. On the other hand,
unless we somehow separate what the user types from what the computer outputs, the result can be confusing. During initial
debugging, we added = as a result indicator. We would also like a short “prompt” to indicate that the program wants input. The
> character is often used as a prompt:

> 2+3;

= 5

> 5*7;

= 35

>

This looks much better, and we can get it by a minor change to the main loop of main():
Click here to view code image

double val = 0;

while (cin) {

          cout << "> " ;       // print prompt
          Token t = ts.get();

          if (t.kind == 'q') break;

          if (t.kind == ';')

                    cout << "= " << val << '\n';          // print result
          else

                    ts.putback(t);

          val = expression();

}

Unfortunately, the result of putting several expressions on a line is still messy:

> 2+3; 5*7; 2+9;

= 5

> = 35

> = 11

>

The basic problem is that we didn’t think of multiple expressions on a line when we started out (at least we pretended not to).
What we want is

> 2+3; 5*7; 2+9;

= 5

= 35

= 11

>

This looks right, but unfortunately there is no really obvious way of achieving it. We first looked at main(). Is there a way to
write out > only if it is not immediately followed by a =? We cannot know! We need to write > before the get(), but we do not



know if get() actually reads new characters or simply gives us a Token from characters that it had already read from the
keyboard. In other words, we would have to mess with Token_stream to make this final improvement.

For now, we decide that what we have is good enough. If we find that we have to modify Token_stream, we’ll revisit this
decision. However, it is unwise to make major structural changes to gain a minor advantage, and we haven’t yet thoroughly
tested the calculator.

7.3 Error handling

The first thing to do once you have a program that “basically works” is to try to break it; that is, we try to feed it input in the
hope of getting it to misbehave. We say “hope” because the challenge here is to find as many errors as possible, so that you can
fix them before anybody else finds them. If you go into this exercise with the attitude that “my program works and I don’t make
errors!” you won’t find many bugs and you’ll feel bad when you do find one. You’d be playing head games with yourself! The
right attitude when testing is “I’ll break it! I’m smarter than any program — even my own!” So, we feed the calculator a mix of
correct and incorrect expressions. For example:

1+2+3+4+5+6+7+8

1–2–3–4

!+2

;;;

(1+3;

(1+);

1*2/3%4+5–6;

();

1+;

+1

1++;

1/0

1/0;

1++2;

–2;

–2;;;;

1234567890123456;

'a';

q

1+q

1+2; q

 Try This

Feed a few such “problematic” expressions to the calculator and try to figure out in how many ways you can get it
to misbehave. Can you get it to crash, that is, to get it past our error handling and give a machine error? We don’t
think you can. Can you get it to exit without a useful error message? You can.

Technically, this is known as testing. There are people who do this — break programs — for a living. Testing is a very
important part of software development and can actually be fun. Chapter 26 examines testing in some detail. One big question
is: “Can we test the program systematically, so that we find all of the errors?” There is no general answer to this question; that
is, there is no answer that holds for all programs. However, you can do rather well for many programs when you approach
testing seriously. You try to create test cases systematically, and just in case your strategy for selecting tests isn’t complete, you
do some “unreasonable” tests, such as
Click here to view code image

Mary had a little lamb

srtvrqtiewcbet7rewaewre–wqcntrretewru754389652743nvcqnwq;

!@#$%^&*()~:;

Once, when testing compilers, I got into the habit of feeding email that reported compiler errors straight to the compiler —
mail headers, user’s explanation, and all. That wasn’t “sensible” because “nobody would do that.” However, a program



ideally catches all errors, not just the sensible ones, and soon that compiler was very resilient against “strange input.”
The first really annoying thing we noticed when testing the calculator was that the window closed immediately after inputs

such as

+1;

()

!+2

A little thought (or some tracing of the program’s execution) shows that the problem is that the window is closed immediately
after the error message has been written. This happens because our mechanism for keeping a window alive was to wait for you
to enter a character. However, in all three cases above, the program detected an error before it had read all of the characters,
so that there was a character left on the input line. The program can’t tell such “leftover” characters from a character entered in
response to the Enter a character to close window prompt. That “leftover” character then closed the window.

We could deal with that by modifying main() (see §5.6.3):
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catch (runtime_error& e) {

          cerr << e.what() << '\n';

          // keep_window_open():
          cout << "Please enter the character ~ to close the window\n";

          for (char ch; cin >> ch; )          // keep reading until we find a ~
                    if (ch=='~') return 1;

          return 1;

}

Basically, we replaced keep_window_open() with our own code. Note that we still have our problem if a ~ happens to be
a character to be read after an error, but that’s rather unlikely.

When we encountered this problem we wrote a version of keep_window_open() that takes a string as its argument and
closes the window only when you enter that string after getting the prompt, so a simpler solution is
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catch (runtime_error& e) {

          cerr << e.what() << '\n';

          keep_window_open("~~");

          return 1;

}

Now examples such as

+1

!1~~

()

will cause the calculator to give the proper error messages, then say

Please enter ~~ to exit

and not exit until you enter the string ~~.
The calculator takes input from the keyboard. That makes testing tedious: each time we make an improvement, we have to

type in a lot of test cases (yet again!) to make sure we haven’t broken anything. It would be much better if we could store our
test cases somewhere and run them with a single command. Some operating systems (notably Unix) make it trivial to get cin to
read from a file without modifying the program, and similarly to divert the output from cout to a file. If that’s not convenient,
we must modify the program to use a file (see Chapter 10).

Now consider:

1+2; q

and

1+2 q

We would like both to print the result (3) and then exit the program. Curiously enough,

1+2 q



does that, but the apparently cleaner

1+2; q

elicits a Primary expected error. Where would we look for this error? In main() where ; and q are handled, of course. We
added those “print” and “quit” commands rather quickly to get the calculator to work (§6.7). Now we are paying for that haste.
Consider again:
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double val = 0;

while (cin) {

          cout << "> ";

          Token t = ts.get();

          if (t.kind == 'q') break;

          if (t.kind == ';')

                    cout << "= " << val << '\n';

          else

                    ts.putback(t);

          val = expression();

}

If we find a semicolon, we straightaway proceed to call expression() without checking for q. The first thing that
expression() does is to call term(), which first calls primary(), which finds q. The letter q isn’t a Primary so we get our
error message. So, we should test for q after testing for a semicolon. While we were at it, we felt the need to simplify the logic
a bit, so the complete main() reads
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int main()

try

{

          while (cin) {

                    cout << "> ";

                    Token t = ts.get();

                    while (t.kind == ';') t=ts.get();          // eat ‘;’
                    if (t.kind == 'q') {

                              keep_window_open();

                              return 0;

                    }
                    ts.putback(t);

                    cout << "= " << expression() << '\n';

          }
          keep_window_open();

          return 0;

}

catch (exception& e) {

          cerr << e.what() << '\n';

          keep_window_open("~~");

          return 1;

}

catch (...) {

          cerr << "exception \n";

          keep_window_open("~~");

          return 2;

}

This makes for reasonably robust error handling. So we can start considering what else we can do to improve the calculator.

7.4 Negative numbers
If you tested the calculator, you found that it couldn’t handle negative numbers elegantly. For example, this is an error:

–1/2

We have to write

(0–1)/2

That’s not acceptable.



Finding such problems during late debugging and testing is common. Only now do we have the opportunity to see what our
design really does and get the feedback that allows us to refine our ideas. When planning a project, it is wise to try to preserve
time and flexibility to benefit from the lessons we learn here. All too often, “release 1.0” is shipped without needed
refinements because a tight schedule or a rigid project management strategy prevents “late” changes to the specification; “late”
addition of “features” is especially dreaded. In reality, when a program is good enough for simple use by its designers but not
yet ready to ship, it isn’t “late” in the development sequence; it’s the earliest time when we can benefit from solid experience
with the program. A realistic schedule takes that into account.

In this case, we basically need to modify the grammar to allow unary minus. The simplest change seems to be in Primary.
We have

Primary:

          Number

          "(" Expression ")"

and we need something like

Primary:

          Number

          "(" Expression ")"

          "–" Primary

          "+" Primary

We added unary plus because that’s what C++ does. When we have unary minus, someone always tries unary plus and it’s
easier just to implement that than to explain why it is useless. The code that implements Primary becomes
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double primary()

{

          Token t = ts.get();

          switch (t.kind) {

          case '(':          // handle ‘(’ expression ‘)’
                    {
                              double d = expression();

                              t = ts.get();

                              if (t.kind != ')') error("')' expected");

                              return d;

                    }
          case '8':                                   // we use ‘8’ to represent a number
                    return t.value;              // return the number’s value
          case '–':

                    return – primary();

          case '+':

                    return primary();

default:

                    error("primary expected");

          }
}

That’s so simple that it actually worked the first time.

7.5 Remainder: %
When we first analyzed the ideals for a calculator, we wanted the remainder (modulo) operator: %. However, % is not
defined for floating-point numbers, so we backed off. Now we can consider it again. It should be simple:

1. We add % as a Token.
2. We define a meaning for %.

We know the meaning of % for integer operands. For example:

> 2%3;

= 2

> 3%2;

= 1



> 5%3;

= 2

But how should we handle operands that are not integers? Consider:

> 6.7%3.3;

What should be the resulting value? There is no perfect technical answer. However, modulo is often defined for floating-point
operands. In particular, x%y can be defined as x–y=x–y*int(x/y), so that 6.7%3.3==6.7–3.3*int(6.7/3.3), that is, 0.1. This
is easily done using the standard library function fmod() (floating-point modulo) from <cmath> (§24.8). We modify term()

to include
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case '%':

{        double d = primary();

          if (d == 0) error("divide by zero");

          left = fmod(left,d);

          t = ts.get();

          break;

}

The <cmath> library is where we find all of the standard mathematical functions, such as sqrt(x) (square root of x), abs(x)

(absolute value of x), log(x) (natural logarithm of x), and pow(x,e) (x to the power of y).
Alternatively, we can prohibit the use of % on a floating-point argument. We check if the floating-point operands have

fractional parts and give an error message if they do. The problem of ensuring int operands for % is a variant of the narrowing
problem (§3.9.2 and §5.6.4), so we could solve it using narrow_cast:
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case '%':

{        int i1 = narrow_cast<int>(left);

          int i2 = narrow_cast<int>(primary());

          if (i2 == 0) error("%: divide by zero");

          left = i1%i2;

          t = ts.get();

          break;

}

For a simple calculator, either solution will do.

7.6 Cleaning up the code

We have made several changes to the code. They are, we think, all improvements, but the code is beginning to look a bit messy.
Now is a good time to review the code to see if we can make it clearer and shorter, add and improve comments, etc. In other
words, we are not finished with the program until we have it in a state suitable for someone else to take over maintenance.
Except for the almost total absence of comments, the calculator code really isn’t that bad, but let’s do a bit of cleanup.

7.6.1 Symbolic constants
Looking back, we find the use of '8' to indicate a Token containing a numeric value odd. It doesn’t really matter what value is
used to indicate a number Token as long as the value is distinct from all other values indicating different kinds of Tokens.
However, the code looks a bit odd and we had to keep reminding ourselves in comments:
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case '8':                            // we use '8' to represent a number
          return t.value;       // return the number’s value
case '–':

          return – primary();

To be honest, we also made a few mistakes, typing '0' rather than '8', because we forgot which value we had chosen to use. In
other words, using '8' directly in the code manipulating Tokens was sloppy, hard to remember, and error-prone; '8' is one of



those “magic constants” we warned against in §4.3.1. What we should have done was to introduce a symbolic name for the
constant we used to represent a number:
Click here to view code image

const char number = '8';      // t.kind==number means that t is a number Token

The const modifier simply tells the compiler that we are defining an object that is not supposed to change: for example, an
assignment number='0' would cause the compiler to give an error message. Given that definition of number, we don’t have
to use '8' explicitly anymore. The code fragment from primary above now becomes
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case number:

          return t.value;           // return the number’s value
case '–':

          return – primary();

This requires no comment. We should not say in comments what can be clearly and directly said in code. Repeated comments
explaining something are often an indication that the code should be improved.

Similarly, the code in Token_stream::get() that recognizes numbers becomes
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case '.':

case '0': case '1': case '2': case '3': case '4':

case '5': case '6': case '7': case '8': case '9':

          {    cin.putback(ch);      // put digit back into the input stream
                    double val;

                    cin >> val;             // read a floating-point number
                    return Token(number,val);

          }

We could consider symbolic names for all tokens, but that seems overkill. After all, '(' and '+' are about as obvious a notation
for ( and + as anyone could come up with. Looking through the tokens, only ';' for “print” (or “terminate expression”) and 'q'

for “quit” seem arbitrary. Why not 'p' and 'e'? In a larger program, it is only a matter of time before such obscure and arbitrary
notation becomes a cause of a problem, so we introduce
Click here to view code image

const char quit = 'q';       // t.kind==quit means that t is a quit Token
const char print = ';';      // t.kind==print means that t is a print Token

Now we can write main()’s loop like this:
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while (cin) {

          cout << "> ";

          Token t = ts.get();

          while (t.kind == print) t=ts.get();

          if (t.kind == quit) {

                    keep_window_open();

                    return 0;

          }
          ts.putback(t);

          cout << "= " << expression() << '\n';

}

Introducing symbolic names for “print” and “quit” makes the code easier to read. In addition, it doesn’t encourage someone
reading main() to make assumptions about how “print” and “quit” are represented on input. For example, it should come as no
surprise if we decide to change the representation of “quit” to 'e' (for “exit”). That would now require no change in main().

Now the strings "> " and "= " stand out. Why do we have these “magical” literals in the code? How would a new
programmer reading main() guess their purpose? Maybe we should add a comment? Adding a comment might be a good idea,
but introducing a symbolic name is more effective:



Click here to view code image

const string prompt = "> ";

const string result = "= ";       // used to indicate that what follows is a result

Should we want to change the prompt or the result indicator, we can just modify those consts. The loop now reads
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while (cin) {

          cout << prompt;

          Token t = ts.get();

          while (t.kind ==print) t=ts.get();

          if (t.kind == quit) {

                    keep_window_open();

                    return 0;

          }
          ts.putback(t);

          cout << result << expression() << '\n';

}

7.6.2 Use of functions
The functions we use should reflect the structure of our program, and the names of the functions should identify the logically
separate parts of our code. Basically, our program so far is rather good in this respect: expression(), term(), and primary()

directly reflect our understanding of the expression grammar, and get() handles the input and token recognition. Looking at
main(), though, we notice that it does two logically separate things:

1. main() provides general “scaffolding”: start the program, end the program, and handle “fatal” errors.
2. main() handles the calculation loop.

Ideally, a function performs a single logical action (§4.5.1). Having main() perform both of these actions obscures the
structure of the program. The obvious solution is to make the calculation loop into a separate function calculate():
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void calculate()          // expression evaluation loop
{

          while (cin) {

                    cout << prompt;

                    Token t = ts.get();

                    while (t.kind == print) t=ts.get();         // first discard all “prints”
                    if (t.kind == quit) return;

                    ts.putback(t);

                    cout << result << expression() << '\n';

          }
}

int main()

try {

          calculate();

          keep_window_open();          // cope with Windows console mode
          return 0;

}

catch (runtime_error& e) {

          cerr << e.what() << '\n';

          keep_window_open("~~");

          return 1;

}

catch (. . .) {

          cerr << "exception \n";

          keep_window_open("~~");

          return 2;

}

This reflects the structure much more directly and is therefore easier to understand.

7.6.3 Code layout



Looking through the code for ugly code, we find
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switch (ch) {

case 'q': case ';': case '%': case '(': case ')': case '+': case'–': case '*': case '/':

          return Token{ch};              // let each character represent itself

This wasn’t too bad before we added 'q', ';', and '%', but now it’s beginning to become obscure. Code that is hard to read is
where bugs can more easily hide. And yes, a potential bug lurks here! Using one line per case and adding a couple of comments
help. So, Token_stream’s get() becomes
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Token Token_stream::get()

          // read characters from cin and compose a Token
{

          if (full) {       // check if we already have a Token ready
                    full = false;

                    return buffer;

          }
          char ch;

          cin >> ch;          // note that >> skips whitespace (space, newline, tab, etc.)

          switch (ch) {

          case quit:

          case print:

          case '(':

          case ')':

          case '+':

          case '–':

          case '*':

          case '/':

          case '%':

                    return Token{ch};        // let each character represent itself
          case '.':                                    // a floating-point-literal can start with a dot
          case '0': case '1': case '2': case '3': case '4':

          case '5': case '6': case '7': case '8': case '9':          // numeric literal
          {    cin.putback(ch);               // put digit back into the input stream
                    double val;

                    cin >> val;                      // read a floating-point number
                    return Token{number,val};

          }
          default:

                    error("Bad token");

          }
}

We could of course have put each digit case on a separate line also, but that didn’t seem to buy us any clarity. Also, doing so
would prevent get() from being viewed in its entirety on a screen at once. Our ideal is for each function to fit on the screen;
one obvious place for a bug to hide is in the code that we can’t see because it’s off the screen horizontally or vertically. Code
layout matters.

Note also that we changed the plain 'q' to the symbolic name quit. This improves readability and also guarantees a
compile-time error if we should make the mistake of choosing a value for quit that clashes with another token name.

When we clean up code, we might accidentally introduce errors. Always retest the program after cleanup. Better still, do a
bit of testing after each set of minor improvements so that if something went wrong you can still remember exactly what you
did. Remember: Test early and often.

7.6.4 Commenting

We added a few comments as we went along. Good comments are an important part of writing code. We tend to forget about
comments in the heat of programming. When you go back to the code to clean it up is an excellent time to look at each part of



the program to see if the comments you originally wrote are
1. Still valid (you might have changed the code since you wrote the comment)
2. Adequate for a reader (they usually are not)
3. Not so verbose that they distract from the code

To emphasize that last concern: what is best said in code should be said in code. Avoid comments that explain something that’s
perfectly clear to someone who knows the programming language. For example:
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x = b+c;     // add b and c and assign the result to x

You’ll find such comments in this book, but only when we are trying to explain the use of a language feature that might not yet
be familiar to you.

Comments are for things that code expresses poorly. An example is intent: code says what it does, not what it was intended
to do (§5.9.1). Look at the calculator code. There is something missing: the functions show how we process expressions and
tokens, but there is no indication (except the code) of what we meant expressions and tokens to be. The grammar is a good
candidate for something to put in comments or into some documentation of the calculator.
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/*

          Simple calculator

          Revision history:

                    Revised by Bjarne Stroustrup November 2013
                    Revised by Bjarne Stroustrup May 2007
                    Revised by Bjarne Stroustrup August 2006
                    Revised by Bjarne Stroustrup August 2004
                    Originally written by Bjarne Stroustrup
                               (bs@cs.tamu.edu) Spring 2004.

          This program implements a basic expression calculator.
          Input from cin; output to cout.
          The grammar for input is:

          Statement:
                    Expression
                    Print
                    Quit
          Print:
                    ;

          Quit:
                    q

          Expression:
                    Term
                    Expression + Term
                    Expression – Term
          Term:
                    Primary
                    Term * Primary
                    Term / Primary
                    Term % Primary
          Primary:
                    Number
                    ( Expression )
                    – Primary
                    + Primary
          Number:
                    floating-point-literal



          Input comes from cin through the Token_stream called ts.
*/

Here we used the block comment, which starts with a /* and continues until a */. In a real program, the revision history would
contain indications of what corrections and improvements were made.

Note that the comments are not the code. In fact, this grammar simplifies a bit: compare the rule for Statement with what
really happens (e.g., have a peek at the code in the following section). The comment fails to explain the loop in calculate()

that allows us to do several calculations in a single run of the program. We’ll return to that problem in §7.8.1.

7.7 Recovering from errors
Why do we exit when we find an error? That seemed simple and obvious at the time, but why? Couldn’t we just write an error
message and carry on? After all, we often make little typing errors and such an error doesn’t mean that we have decided not to
do a calculation. So let’s try to recover from an error. That basically means that we have to catch exceptions and continue after
we have cleaned up any messes that were left behind.

Until now, all errors have been represented as exceptions and handled by main(). If we want to recover from errors,
calculate() must catch exceptions and try to clean up the mess before trying to evaluate the next expression:
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void calculate()

{

          while (cin)

          try {

                    cout << prompt;

                    Token t = ts.get();

                    while (t.kind == print) t=ts.get();       // first discard all “prints”
                    if (t.kind == quit) return;

                    ts.putback(t);

                    cout << result << expression() << '\n';

          }
          catch (exception& e) {

                    cerr << e.what() << '\n';                      // write error message
                    clean_up_mess();

          }
}

We simply made the while-loop’s block into a try-block that writes an error message and cleans up the mess. Once that’s
done, we carry on as always.

What would “clean up the mess” entail? Basically, getting ready to compute again after an error has been handled means
making sure that all our data is in a good and predictable state. In the calculator, the only data we keep outside an individual
function is the Token_stream. So what we need to do is to ensure that we don’t have tokens related to the aborted calculation
sitting around to confuse the next calculation. For example,

1++2*3; 4+5;

will cause an error, and 2*3; 4+5 will be left in the Token_stream’s and cin’s buffers after the second + has triggered an
exception. We have two choices:

1. Purge all tokens from the Token_stream.
2. Purge all tokens from the current calculation from the Token_stream.

The first choice discards all (including 4+5;), whereas the second choice just discards 2*3;, leaving 4+5 to be evaluated.
Either could be a reasonable choice and either could surprise a user. As it happens, both are about equally simple to
implement. We chose the second alternative because it simplifies testing.

So we need to read input until we find a semicolon. This seems simple. We have get() to do our reading for us so we can
write a clean_up_mess() like this:
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void clean_up_mess()                      // naive
{

          while (true) {                           // skip until we find a print
                    Token t = ts.get();

                    if (t.kind == print) return;



          }
}

Unfortunately, that doesn’t work all that well. Why not? Consider this input:

1@z; 1+3;

The @ gets us into the catch-clause for the while-loop. Then, we call clean_up_mess() to find the next semicolon. Then,
clean_up_mess() calls get() and reads the z. That gives another error (because z is not a token) and we find ourselves in
main()’s catch(...) handler, and the program exits. Oops! We don’t get a chance to evaluate 1+3. Back to the drawing board!

We could try more elaborate trys and catches, but basically we are heading into an even bigger mess. Errors are hard to
handle, and errors during error handling are even worse than other errors. So, let’s try to devise some way to flush characters
out of a Token_stream that couldn’t possibly throw an exception. The only way of getting input into our calculator is get(),
and that can — as we just discovered the hard way — throw an exception. So we need a new operation. The obvious place to
put that is in Token_stream:
Click here to view code image

class Token_stream {

public:

          Token get();                            // get a Token
          void putback(Token t);         // put a Token back
          void ignore(char c);               // discard characters up to and including a c
private:

          bool full {false};        // is there a Token in the buffer?
          Token buffer;            // here is where we keep a Token put back using
                                               // putback()
};

This ignore() function needs to be a member of Token_stream because it needs to look at Token_stream’s buffer. We
chose to make “the thing to look for” an argument to ignore() — after all, the Token_stream doesn’t have to know what the
calculator considers a good character to use for error recovery. We decided that argument should be a character because we
don’t want to risk composing Tokens — we saw what happened when we tried that. So we get
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void Token_stream::ignore(char c)

          // c represents the kind of Token
{

          // first look in buffer:
          if (full && c==buffer.kind) {

                    full = false;

                    return;

          }
          full = false;

          // now search input:
          char ch = 0;

          while (cin>>ch)

                    if (ch==c) return;

}

This code first looks at the buffer. If there is a c there, we are finished after discarding that c; otherwise, we need to read
characters from cin until we find a c.

We can now write clean_up_mess() rather simply:

void clean_up_mess()

{

          ts.ignore(print);

}

Dealing with errors is always tricky. It requires much experimentation and testing because it is extremely hard to imagine what
errors can occur. Trying to make a program foolproof is always a very technical activity; amateurs typically don’t care. Quality
error handling is one mark of a professional.

7.8 Variables



Having worked on style and error handling, we can return to looking for improvements in the calculator functionality. We now
have a program that works quite well; how can we improve it? The first wish list for the calculator included variables. Having
variables gives us better ways of expressing longer calculations. Similarly, for scientific calculations, we’d like built-in
named values, such as pi and e, just as we have on scientific calculators.

Adding variables and constants is a major extension to the calculator. It will touch most parts of the code. This is the kind of
extension that we should not embark on without good reason and sufficient time. Here, we add variables and constants because
it gives us a chance to look over the code again and try out some more programming techniques.

7.8.1 Variables and definitions
Obviously, the key to both variables and built-in constants is for the calculator program to keep (name,value) pairs so that we
can access the value given the name. We can define a Variable like this:

class Variable {

public:

          string name;

          double value;

};

We will use the name member to identify a Variable and the value member to store the value corresponding to that name.
How can we store Variables so that we can search for a Variable with a given name string to find its value or to give it a

new value? Looking back over the programming tools we have encountered so far, we find only one good answer: a vector of
Variables:

vector<Variable> var_table;

We can put as many Variables as we like into the vector var_table and search for a given name by looking at the vector
elements one after another. We can write a get_value() function that looks for a given name string and returns its
corresponding value:
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double get_value(string s)

          // return the value of the Variable named s
{

          for (const Variable& v : var_table)

                    if (v.name == s) return v.value;

          error("get: undefined variable ", s);

}

The code really is quite simple: go through every Variable in var_table (starting with the first element and continuing until
the last) and see if its name matches the argument string s. If that is the case, return its value.

Similarly, we can define a set_value() function to give a Variable a new value:
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void set_value(string s, double d)

          // set the Variable named s to d
{

          for (Variable& v : var_table)

                    if (v.name == s) {

                              v.value = d;

                              return;

                    }
          error("set: undefined variable ", s);

}

We can now read and write “variables” represented as Variables in var_table. How do we get a new Variable into
var_table? What does a user of our calculator have to write to define a new variable and later to get its value? We could
consider C++’s notation

double var = 7.2;

That would work, but all variables in this calculator hold double values, so saying “double” would be redundant. Could we
make do with



var = 7.2;

Possibly, but then we would be unable to tell the difference between the declaration of a new variable and a spelling mistake:
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var1 = 7.2;      // define a new variable called var1
var1 = 3.2;      // define a new variable called var2

Oops! Clearly, we meant var2 = 3.2; but we didn’t say so (except in the comment). We could live with this, but we’ll follow
the tradition in languages, such as C++, that distinguish declarations (with initializations) from assignments. We could use
double, but for a calculator we’d like something short, so — drawing on another old tradition — we choose the keyword let:

let var = 7.2;

The grammar would be
Click here to view code image

Calculation:

          Statement

          Print

          Quit

          Calculation Statement

Statement:

          Declaration

          Expression

Declaration:

          "let" Name "=" Expression

Calculation is the new top production (rule) of the grammar. It expresses the loop (in calculate()) that allows us to do
several calculations in a run of the calculator program. It relies on the Statement production to handle expressions and
declarations. We can handle a statement like this:
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double statement()

{

          Token t = ts.get();

          switch (t.kind) {

          case let:

                    return declaration();

          default:

                    ts.putback(t);

                    return expression();

          }
}

We can now use statement() instead of expression() in calculate():
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void calculate()

{

          while (cin)

          try {

                    cout << prompt;

                    Token t = ts.get();

                    while (t.kind == print) t=ts.get();       // first discard all “prints”
                    if (t.kind == quit) return;                     // quit
                    ts.putback(t);

                    cout << result << statement() << '\n';

          }
          catch (exception& e) {

                    cerr << e.what() << '\n';                      // write error message
                    clean_up_mess();

          }
}



We now have to write declaration(). What should it do? It should make sure that what comes after a let is a Name followed
by a = followed by an Expression. That’s what our grammar says. What should it do with the name? We should add a
Variable with that name string and the value of the expression to our vector<Variable> called var_table. Once that’s done
we can retrieve the value using get_value() and change it using set_value(). However, before writing this, we have to
decide what should happen if we define a variable twice. For example:

let v1 = 7;

let v1 = 8;

We chose to consider such a redefinition an error. Typically, it is simply a spelling mistake. Instead of what we wrote, we
probably meant

let v1 = 7;

let v2 = 8;

There are logically two parts to defining a Variable with the name var with the value val:
1. Check whether there already is a Variable called var in var_table.
2. Add (var,val) to var_table.

We have no use for uninitialized variables. We defined the functions is_declared() and define_name() to represent those
two logically separate operations:
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bool is_declared(string var)

          // is var already in var_table?
{

          for (const Variable& v : var_table)

                    if (v.name == var) return true;

          return false;

}

double define_name(string var, double val)

          // add (var,val) to var_table
{

          if (is_declared(var)) error(var," declared twice");

          var_table.push_back(Variable(var,val));

          return val;

}

Adding a new Variable to a vector<Variable> is easy; that’s what vector’s push_back() member function does:
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var_table.push_back(Variable(var,val));

The Variable(var,val) makes the appropriate Variable and push_back(), then adds that Variable to the end of var_table.
Given that, and assuming that we can handle let and name tokens, declaration() is straightforward to write:
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double declaration()

          // assume we have seen "let”
          // handle: name = expression
          // declare a variable called "name” with the initial value "expression”
{

          Token t = ts.get();

          if (t.kind != name) error ("name expected in declaration");

          string var_name = t.name;

          Token t2 = ts.get();

          if (t2.kind != '=') error("= missing in declaration of ", var_name);

          double d = expression();

          define_name(var_name,d);

          return d;

}

Note that we returned the value stored in the new variable. That’s useful when the initializing expression is nontrivial. For
example:



let v = d/(t2–t1);

This declaration will define v and also print its value. Additionally, printing the value of a declared variable simplifies the
code in calculate() because every statement() returns a value. General rules tend to keep code simple, whereas special
cases tend to lead to complications.

This mechanism for keeping track of Variables is what is often called a symbol table and could be radically simplified by
the use of a standard library map; see §21.6.1.

7.8.2 Introducing names
This is all very good, but unfortunately, it doesn’t quite work. By now, that shouldn’t come as a surprise. Our first cut never —
well, hardly ever — works. Here, we haven’t even finished the program — it doesn’t yet compile. We have no '=' token, but
that’s easily handled by adding a case to Token_stream::get() (§7.6.3). But how do we represent let and name as tokens?
Obviously, we need to modify get() to recognize these tokens. How? Here is one way:
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const char name = 'a';                         // name token
const char let = 'L';                              // declaration token
const string declkey = "let";              // declaration keyword

Token Token_stream::get()

{

          if (full) {

                    full = false;

                    return buffer;

          }
          char ch;

          cin >> ch;

          switch (ch) {

                    // as before
          default:

                    if (isalpha(ch)) {

                              cin.putback(ch);

                              string s;

                              cin>>s;

                              if (s == declkey) return Token(let);    // declaration keyword
                              return Token{name,s};

                    }
                    error("Bad token");

          }
}

Note first of all the call isalpha(ch). This call answers the question “Is ch a letter?”; isalpha() is part of the standard library
that we get from std_lib_facilities.h. For more character classification functions, see §11.6. The logic for recognizing names
is the same as that for recognizing numbers: find a first character of the right kind (here, a letter), then put it back using
putback() and read in the whole name using >>.

Unfortunately, this doesn’t compile; we have no Token that can hold a string, so the compiler rejects Token{name,s}. To
handle that, we must modify the definition of Token to hold either a string or a double, and handle three forms of
initializers, such as

• Just a kind; for example, Token{'*'}

• A kind and a number; for example, Token{number,4.321}

• A kind and a name; for example, Token{name,"pi"}

We handle that by introducing three initialization functions, known as constructors because they construct objects:
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class Token {

public:

          char kind;

          double value;

          string name;

          Token(char ch) :kind{ch} { }                                // initialize kind with ch



          Token(char ch, double val) :kind{ch}, value{val} { }    // initialize kind
                                                                                                         // and value
          Token(char ch, string n) :kind{ch}, name{n} { }            // initialize kind
                                                                                                         // and name
};

Constructors add an important degree of control and flexibility to initialization. We will examine constructors in detail in
Chapter 9 (§9.4.2, §9.7).
We chose 'L' as the representation of the let token and the string let as our keyword. Obviously, it would be trivial to change
that keyword to double, var, #, or whatever by changing the string declkey that we compare s to.

Now we try the program again. If you type this, you’ll see that it all works:

let x = 3.4;

let y = 2;

x + y * 2;

However, this doesn’t work:

let x = 3.4;

let y = 2;

x+y*2;

What’s the difference between those two examples? Have a look to see what happens.
The problem is that we were sloppy with our definition of Name. We even “forgot” to define our Name production in the

grammar (§7.8.1). What characters can be part of a name? Letters? Certainly. Digits? Certainly, as long as they are not the
starting character. Underscores? Eh? The + character? Well? Eh? Look at the code again. After the initial letter we read into a
string using >>. That accepts every character until it sees whitespace. So, for example, x+y*2; is a single name — even the
trailing semicolon is read as part of the name. That’s unintended and unacceptable.

What must we do instead? First we must specify precisely what we want a name to be, and then we must modify get() to do
that. Here is a workable specification of a name: a sequence of letters and digits starting with a letter. Given this definition,
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a

ab

a1

Z12

asdsddsfdfdasfdsa434RTHTD12345dfdsa8fsd888fadsf

are names and

1a

as_s

#

as*

a car

are not. Except for leaving out the underscore, this is C++’s rule. We can implement that in the default case of get():
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default:

          if (isalpha(ch)) {

                    string s;

                    s += ch;

                    while (cin.get(ch) && (isalpha(ch) || isdigit(ch))) s+=ch;

                    cin.putback(ch);

                    if (s == declkey) return Token{let};    // declaration keyword
                    return Token{name,s};

          }
          error("Bad token");

Instead of reading directly into the string s, we read characters and put those into s as long as they are letters or digits. The
s+=ch statement adds (appends) the character ch to the end of the string s. The curious statement
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while (cin.get(ch) && (isalpha(ch) || isdigit(ch))) s+=ch;



reads a character into ch (using cin’s member function get()) and checks if it is a letter or a digit. If so, it adds ch to s and
reads again. The get() member function works just like >> except that it doesn’t by default skip whitespace.

7.8.3 Predefined names
Now that we have names, we can easily predefine a few common ones. For example, if we imagine that our calculator will be
used for scientific calculations, we’d want pi and e. Where in the code would we define those? In main() before the call of
calculate() or in calculate() before the loop. We’ll put them in main() because those definitions really aren’t part of any
calculation:
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int main()

try {

          // predefine names:
          define_name("pi",3.1415926535);

          define_name("e",2.7182818284);

          calculate();

          keep_window_open();          // cope with Windows console mode
          return 0;

}

catch (exception& e) {

          cerr << e.what() << '\n';

          keep_window_open("~~");

          return 1;

}

catch (...) {

          cerr << "exception \n";

          keep_window_open("~~");

          return 2;

}

7.8.4 Are we there yet?
Not really. We have made so many changes that we need to test everything again, clean up the code, and review the comments.
Also, we could do more definitions. For example, we “forgot” to provide an assignment operator (see exercise 2), and if we
have an assignment we might want to distinguish between variables and constants (exercise 3).

Initially, we backed off from having named variables in our calculator. Looking back over the code that implements them,
we may have two possible reactions:

1. Implementing variables wasn’t all that bad; it took only about three dozen lines of code.
2. Implementing variables was a major extension. It touched just about every function and added a completely new concept

to the calculator. It increased the size of the calculator by 45% and we haven’t even implemented assignment!

In the context of a first program of significant complexity, the second reaction is the correct one. More generally, it’s the right
reaction to any suggestion that adds something like 50% to a program in terms of both size and complexity. When that has to be
done, it is more like writing a new program based on a previous one than anything else, and it should be treated that way. In
particular, if you can build a program in stages as we did with the calculator, and test it at each stage, you are far better off
doing so than trying to do the whole program all at once.

 Drill

1. Starting from the file calculator08buggy.cpp, get the calculator to compile.
2. Go through the entire program and add appropriate comments.
3. As you commented, you found errors (deviously inserted especially for you to find). Fix them; they are not in the text of

the book.
4. Testing: prepare a set of inputs and use them to test the calculator. Is your list pretty complete? What should you look

for? Include negative values, 0, very small, very large, and “silly” inputs.
5. Do the testing and fix any bugs that you missed when you commented.



6. Add a predefined name k meaning 1000.
7. Give the user a square root function sqrt(), for example, sqrt(2+6.7). Naturally, the value of sqrt(x) is the square root

of x; for example, sqrt(9) is 3. Use the standard library sqrt() function that is available through the header
std_lib_facilities.h. Remember to update the comments, including the grammar.

8. Catch attempts to take the square root of a negative number and print an appropriate error message.
9. Allow the user to use pow(x,i) to mean “Multiply x with itself i times”; for example, pow(2.5,3) is 2.5*2.5*2.5.

Require i to be an integer using the technique we used for %.
10. Change the “declaration keyword” from let to #.
11. Change the “quit keyword” from quit to exit. That will involve defining a string for quit just as we did for let in

§7.8.2.

Review
1. What is the purpose of working on the program after the first version works? Give a list of reasons.
2. Why does 1+2; q typed into the calculator not quit after it receives an error?
3. Why did we choose to make a constant character called number?
4. We split main() into two separate functions. What does the new function do and why did we split main()?
5. Why do we split code into multiple functions? State principles.
6. What is the purpose of commenting and how should it be done?
7. What does narrow_cast do?
8. What is the use of symbolic constants?
9. Why do we care about code layout?

10. How do we handle % (remainder) of floating-point numbers?
11. What does is_declared() do and how does it work?
12. The input representation for let is more than one character. How is it accepted as a single token in the modified code?
13. What are the rules for what names can and cannot be in the calculator program?
14. Why is it a good idea to build a program incrementally?
15. When do you start to test?
16. When do you retest?
17. How do you decide what should be a separate function?
18. How do you choose names for variables and functions? List possible reasons.
19. Why do you add comments?
20. What should be in comments and what should not?
21. When do we consider a program finished?

Terms
code layout
commenting
error handling
feature creep
maintenance
recovery
revision history
scaffolding
symbolic constant
testing

Exercises



1. Allow underscores in the calculator’s variable names.
2. Provide an assignment operator, =, so that you can change the value of a variable after you introduce it using let.

Discuss why that can be useful and how it can be a source of problems.
3. Provide named constants that you really can’t change the value of. Hint: You have to add a member to Variable that

distinguishes between constants and variables and check for it in set_value(). If you want to let the user define constants
(rather than just having pi and e defined as constants), you’ll have to add a notation to let the user express that, for
example, const pi = 3.14;.

4. The get_value(), set_value(), is_declared(), and define_name() functions all operate on the variable var_table.
Define a class called Symbol_table with a member var_table of type vector<Variable> and member functions
get(), set(), is_declared(), and declare(). Rewrite the calculator to use a variable of type Symbol_table.

5. Modify Token_stream::get() to return Token(print) when it sees a newline. This implies looking for whitespace
characters and treating newline ('\n') specially. You might find the standard library function isspace(ch), which returns
true if ch is a whitespace character, useful.

6. Part of what every program should do is to provide some way of helping its user. Have the calculator print out some
instructions for how to use the calculator if the user presses the H key (both upper- and lowercase).

7. Change the q and h commands to be quit and help, respectively.
8. The grammar in §7.6.4 is incomplete (we did warn you against overreliance on comments); it does not define sequences

of statements, such as 4+4; 5–6;, and it does not incorporate the grammar changes outlined in §7.8. Fix that grammar.
Also add whatever you feel is needed to that comment as the first comment of the calculator program and its overall
comment.

9. Suggest three improvements (not mentioned in this chapter) to the calculator. Implement one of them.
10. Modify the calculator to operate on ints (only); give errors for overflow and underflow. Hint: Use narrow_cast (§7.5).
11. Revisit two programs you wrote for the exercises in Chapter 4 or 5. Clean up that code according to the rules outlined in

this chapter. See if you find any bugs in the process.

Postscript
As it happens, we have now seen a simple example of how a compiler works. The calculator analyzes input broken down into
tokens and understood according to a grammar. That’s exactly what a compiler does. After analyzing its input, a compiler then
produces a representation (object code) that we can later execute. The calculator immediately executes the expressions it has
analyzed; programs that do this are called interpreters rather than compilers.



8. Technicalities: Functions, etc.

“No amount of genius can overcome
obsession with detail.”d

—Traditional

In this chapter and the next, we change our focus from programming to our main tool for programming: the C++ programming
language. We present language-technical details to give a slightly broader view of C++’s basic facilities and to provide a more
systematic view of those facilities. These chapters also act as a review of many of the programming notions presented so far
and provide an opportunity to explore our tool without adding new programming techniques or concepts.

8.1 Technicalities
8.2 Declarations and definitions

8.2.1 Kinds of declarations
8.2.2 Variable and constant declarations
8.2.3 Default initialization

8.3 Header files
8.4 Scope
8.5 Function call and return

8.5.1 Declaring arguments and return type
8.5.2 Returning a value
8.5.3 Pass-by-value
8.5.4 Pass-by-const-reference
8.5.5 Pass-by-reference
8.5.6 Pass-by-value vs. pass-by-reference
8.5.7 Argument checking and conversion
8.5.8 Function call implementation
8.5.9 constexpr functions

8.6 Order of evaluation
8.6.1 Expression evaluation
8.6.2 Global initialization

8.7 Namespaces
8.7.1 using declarations and using directives

8.1 Technicalities
Given a choice, we’d much rather talk about programming than about programming language features; that is, we consider how
to express ideas as code far more interesting than the technical details of the programming language that we use to express
those ideas. To pick an analogy from natural languages: we’d much rather discuss the ideas in a good novel and the way those
ideas are expressed than study the grammar and vocabulary of English. What matters are ideas and how those ideas can be
expressed in code, not the individual language features.

However, we don’t always have a choice. When you start programming, your programming language is a foreign language
for which you need to look at “grammar and vocabulary.” This is what we will do in this chapter and the next, but please don’t
forget:

• Our primary study is programming.
• Our output is programs/systems.



• A programming language is (only) a tool.
Keeping this in mind appears to be amazingly difficult. Many programmers come to care passionately about apparently minor
details of language syntax and semantics. In particular, too many get the mistaken belief that the way things are done in their
first programming language is “the one true way.” Please don’t fall into that trap. C++ is in many ways a very nice language,
but it is not perfect; neither is any other programming language.

Most design and programming concepts are universal, and many such concepts are widely supported by popular
programming languages. That means that the fundamental ideas and techniques we learn in a good programming course carry
over from language to language. They can be applied — with varying degrees of ease — in all languages. The language
technicalities, however, are specific to a given language. Fortunately, programming languages do not develop in a vacuum, so
much of what you learn here will have reasonably obvious counterparts in other languages. In particular, C++ belongs to a
group of languages that also includes C (Chapter 27), Java, and C#, so quite a few technicalities are shared with those
languages.

Note that when we are discussing language-technical issues, we deliberately use nondescriptive names, such as f, g, X, and
y. We do that to emphasize the technical nature of such examples, to keep those examples very short, and to try to avoid
confusing you by mixing language technicalities and genuine program logic. When you see nondescriptive names (such as
should never be used in real code), please focus on the language-technical aspects of the code. Technical examples typically
contain code that simply illustrates language rules. If you compiled and ran them, you’d get many “variable not used” warnings,
and few such technical program fragments would do anything sensible.

Please note that what we write here is not a complete description of C++’s syntax and semantics — not even for the
facilities we describe. The ISO C++ standard is 1300+ pages of dense technical language and The C++ Programming
Language by Stroustrup is 1300+ pages of text aimed at experienced programmers (both covering both the C++ language and
its standard library). We do not try to compete with those in completeness and comprehensiveness; we compete with them in
comprehensibility and value for time spent reading.

8.2 Declarations and definitions
A declaration is a statement that introduces a name into a scope (§8.4)

• Specifying a type for what is named (e.g., a variable or a function)
• Optionally, specifying an initializer (e.g., an initializer value or a function body)

For example:
Click here to view code image

int a = 7;                             // an int variable
const double cd = 8.7;      // a double-precision floating-point constant
double sqrt(double);        // a function taking a double argument
                                           // and returning a double result
vector<Token> v;              // a vector-of-Tokens variable

Before a name can be used in a C++ program, it must be declared. Consider:

int main()

{

         cout << f(i) << '\n';

}

The compiler will give at least three “undeclared identifier” errors for this: cout, f, and i are not declared anywhere in this
program fragment. We can get cout declared by including the header std_lib_facilities.h, which contains its declaration:
Click here to view code image

#include "std_lib_facilities.h"         // we find the declaration of cout in here
int main()

{

          cout << f(i) << '\n';

}

Now, we get only two “undefined” errors. As you write real-word programs, you’ll find that most declarations are found in
headers. That’s where we define interfaces to useful facilities defined “elsewhere.” Basically, a declaration defines how
something can be used; it defines the interface of a function, variable, or class. Please note one obvious but invisible advantage



of this use of declarations: we didn’t have to look at the details of how cout and its << operators were defined; we just
#included their declarations. We didn’t even have to look at their declarations; from textbooks, manuals, code examples, or
other sources, we just know how cout is supposed to be used. The compiler reads the declarations in the header that it needs
to “understand” our code.

However, we still have to declare f and i. We could do that like this:
Click here to view code image

#include "std_lib_facilities.h"       // we find the declaration of cout in here

int f(int);                                           // declaration of f

int main()

{

          int i = 7;                                  // declaration of i
          cout << f(i) << '\n';

}

This will compile because every name has been declared, but it will not link (§2.4) because we have not defined f(); that is,
nowhere have we specified what f() actually does.

A declaration that (also) fully specifies the entity declared is called a definition. For example:

int a = 7;

vector<double> v;

double sqrt(double d) { /* . . . */ }

Every definition is (by definition ) also a declaration, but only some declarations are also definitions. Here are some
examples of declarations that are not definitions; if the entity it refers to is used, each must be matched by a definition
elsewhere in the code:
Click here to view code image

double sqrt(double);      // no function body here
extern int a;                     // “extern plus no initializer” means “not definition”

When we contrast definitions and declarations, we follow convention and use declarations to mean “declarations that are not
definitions” even though that’s slightly sloppy terminology.

A definition specifies exactly what a name refers to. In particular, a definition of a variable sets aside memory for that
variable. Consequently, you can’t define something twice. For example:
Click here to view code image

double sqrt(double d) { /* . . . */ }        // definition
double sqrt(double d) { /* . . . */ }        // error: double definition

int a;                                                      // definition
int a;                                                      // error: double definition

In contrast, a declaration that isn’t also a definition simply tells how you can use a name; it is just an interface and doesn’t
allocate memory or specify a function body. Consequently, you can declare something as often as you like as long as you do so
consistently:
Click here to view code image

int x = 7;                                             // definition
extern int x;                                       // declaration
extern int x;                                       // another declaration

double sqrt(double);                        // declaration
double sqrt(double d) { /* . . . */ }   // definition
double sqrt(double);                        // another declaration of sqrt
double sqrt(double);                        // yet another declaration of sqrt

int sqrt(double);                                // error: inconsistent declarations of sqrt

Why is that last declaration an error? Because there cannot be two functions called sqrt taking an argument of type double

and returning different types (int and double).



The extern keyword used in the second declaration of x simply states that this declaration of x isn’t a definition. It is rarely
useful. We recommend that you don’t use it, but you’ll see it in other people’s code, especially code that uses too many global
variables (see §8.4 and §8.6.2).

Why does C++ offer both declarations and definitions? The declaration/definition distinction reflects the fundamental
distinction between what we need to use something (an interface) and what we need for that something to do what it is
supposed to (an implementation). For a variable, a declaration supplies the type but only the definition supplies the object (the
memory). For a function, a declaration again provides the type (argument types plus return type) but only the definition supplies
the function body (the executable statements). Note that function bodies are stored in memory as part of the program, so it is
fair to say that function and variable definitions consume memory, whereas declarations don’t.

The declaration/definition distinction allows us to separate a program into many parts that can be compiled separately. The
declarations allow each part of a program to maintain a view of the rest of the program without bothering with the definitions
in other parts. As all declarations (including the one definition) must be consistent, the use of names in the whole program will
be consistent. We’ll discuss that further in §8.3. Here, we’ll just remind you of the expression parser from Chapter 6:
expression() calls term() which calls primary() which calls expression(). Since every name in a C++ program has to be
declared before it is used, there is no way we could just define those three functions:
Click here to view code image

double expression();             // just a declaration, not a definition

double primary()

{

          // . . .
          expression();

          // . . .
}

double term()

{

          // . . .
          primary();

          // . . .
}

double expression()

{

          // . . .
          term();

          // . . .
}

We can order those four functions any way we like; there will always be one call to a function defined below it. Somewhere,
we need a “forward” declaration. Therefore, we declared expression() before the definition of primary() and all is well.
Such cyclic calling patterns are very common.

Why does a name have to be declared before it is used? Couldn’t we just require the language implementation to read the
program (just as we do) and find the definition to see how a function must be called? We could, but that would lead to
“interesting” technical problems, so we decided against that. The C++ definition requires declaration before use (except for
class members; see §9.4.4). After all, this is already the convention for ordinary (non-program) writing: when you read a
textbook, you expect the author to define terminology before using it; otherwise, you have to guess or go to the index all the



time. The “declaration before use” rule simplifies reading for both humans and compilers. In a program, there is a second
reason that “declare before use” is important. In a program of thousands of lines (maybe hundreds of thousands of lines), most
of the functions we want to call will be defined “elsewhere.” That “elsewhere” is often a place we don’t really want to know
about. Having to know the declarations only of what we use saves us (and the compiler) from looking through huge amounts of
program text.

8.2.1 Kinds of declarations
There are many kinds of entities that a programmer can define in C++. The most interesting are

• Variables
• Constants
• Functions (see §8.5)
• Namespaces (see §8.7)
• Types (classes and enumerations; see Chapter 9)
• Templates (see Chapter 19)

8.2.2 Variable and constant declarations
The declaration of a variable or a constant specifies a name, a type, and optionally an initializer. For example:
Click here to view code image

int a;                                          // no initializer
double d = 7;                           // initializer using the = syntax
vector<int> vi(10);                  // initializer using the ( ) syntax
vector<int> vi2 {1,2,3,4};       // initializer using the { } syntax

You can find the complete grammar in the ISO C++ standard.
Constants have the same declaration syntax as variables. They differ in having const as part of their type and requiring an

initializer:
Click here to view code image

const int x = 7;         // initializer using the = syntax
const int x2 {9};       // initializer using the {} syntax
const int y;               // error: no initializer

The reason for requiring an initializer for a const is obvious: how could a const be a constant if it didn’t have a value? It is
almost always a good idea to initialize variables also; an uninitialized variable is a recipe for obscure bugs. For example:
Click here to view code image

void f(int z)

{

          int x;                              // uninitialized
          // . . . no assignment to x here . . .
          x = 7;                             // give x a value
          // . . .
}

This looks innocent enough, but what if the first . . . included a use of x? For example:
Click here to view code image

void f(int z)

{

          int x;                              // uninitialized
          // . . . no assignment to x here . . .
          if (z>x) {

          // . . .
          }
          // . . .
          x = 7;                        // give x a value
          // . . .
}



Because x is uninitialized, executing z>x would be undefined behavior. The comparison z>x could give different results on
different machines and different results in different runs of the program on the same machine. In principle, z>x might cause the
program to terminate with a hardware error, but most often that doesn’t happen. Instead we get unpredictable results.

Naturally, we wouldn’t do something like that deliberately, but if we don’t consistently initialize variables it will eventually
happen by mistake. Remember, most “silly mistakes” (such as using an uninitialized variable before it has been assigned to)
happen when you are busy or tired. Compilers try to warn, but in complicated code — where such errors are most likely to
occur — compilers are not smart enough to catch all such errors. There are people who are not in the habit of initializing their
variables, often because they learned to program in languages that didn’t allow or encourage consistent initialization; so you’ll
see examples in other people’s code. Please just don’t add to the problem by forgetting to initialize the variables you define
yourself.

We have a preference for the { } initializer syntax. It is the most general and it most explicitly says “initializer.” We tend to
use it except for very simple initializations, where we sometimes use = out of old habits, and ( ) for specifying the number of
elements of a vector (see §17.4.4).

8.2.3 Default initialization
You might have noticed that we often don’t provide an initializer for strings, vectors, etc. For example:

vector<string> v;

string s;

while (cin>>s) v.push_back(s);

This is not an exception to the rule that variables must be initialized before use. What is going on here is that string and
vector are defined so that variables of those types are initialized with a default value whenever we don’t supply one
explicitly. Thus, v is empty (it has no elements) and s is the empty string ("") before we reach the loop. The mechanism for
guaranteeing default initialization is called a default constructor; see §9.7.3.

Unfortunately, the language doesn’t allow us to make such guarantees for built-in types. A global variable (§8.4) is default
initialized to 0, but you should minimize the use of global values. The most useful variables, local variables and class
members, are uninitialized unless you provide an initializer (or a default constructor). You have been warned!

8.3 Header files
How do we manage our declarations and definitions? After all, they have to be consistent, and in real-world programs there
can be tens of thousands of declarations; programs with hundreds of thousands of declarations are not rare. Typically, when we
write a program, most of the definitions we use are not written by us. For example, the implementations of cout and sqrt()

were written by someone else many years ago. We just use them.

The key to managing declarations of facilities defined “elsewhere” in C++ is the header. Basically, a header is a collection
of declarations, typically defined in a file, so a header is also called a header file. Such headers are then #included in our
source files. For example, we might decide to improve the organization of the source code for our calculator (Chapters 6 and
7) by separating out the token management. We could define a header file token.h containing declarations needed to use
Token and Token_stream:



The declarations of Token and Token_stream are in the header token.h. Their definitions are in token.cpp. The .h suffix
is the most common for C++ headers, and the .cpp suffix is the most common for C++ source files. Actually, the C++ language
doesn’t care about file suffixes, but some compilers and most program development environments insist, so please use this
convention for your source code.

In principle, #include "file.h" simply copies the declarations from file.h into your file at the point of the #include. For
example, we could write a header f.h:

// f.h
int f(int);

and include it in our file user.cpp:

// user.cpp
#include "f.h"

int g(int i)

{

          return f(i);

}

When compiling user.cpp the compiler would do the #include and compile

int f(int);

int g(int i)

{

          return f(i);

}

Since #includes logically happen before anything else a compiler does, handling #includes is part of what is called
preprocessing (§A.17).

To ease consistency checking, we #include a header both in source files that use its declarations and in source files that
provide definitions for those declarations. That way, the compiler catches errors as soon as possible. For example, imagine
that the implementer of Token_stream::putback() made mistakes:
Click here to view code image

Token Token_stream::putback(Token t)

{

          buffer.push_back(t);

          return t;

}

This looks innocent enough. Fortunately, the compiler catches the mistakes because it sees the (#included) declaration of
Token_stream::putback(). Comparing that declaration with our definition, the compiler finds that putback() should not
return a Token and that buffer is a Token, rather than a vector<Token>, so we can’t use push_back(). Such mistakes



occur when we work on our code to improve it, but don’t quite get a change consistent throughout a program.
Similarly, consider these mistakes:

Click here to view code image

Token t = ts.gett();          // error: no member gett
// . . .
ts.putback();                    // error: argument missing

The compiler would immediately give errors; the header token.h gives it all the information it needs for checking.
Our std_lib_facilities.h header contains declarations for the standard library facilities we use, such as cout, vector, and

sqrt(), together with a couple of simple utility functions, such as error(), that are not part of the standard library. In §12.8 we
show how to use the standard library headers directly.

A header will typically be included in many source files. That means that a header should only contain declarations that can
be duplicated in several files (such as function declarations, class definitions, and definitions of numeric constants).

8.4 Scope

A scope is a region of program text. A name is declared in a scope and is valid (is “in scope”) from the point of its declaration
until the end of the scope in which it was declared. For example:
Click here to view code image

void f()

{

          g();                  // error: g() isn’t (yet) in scope
}

void g()

{

          f();                   // OK: f() is in scope
}

void h()

{

          int x = y;         // error: y isn’t (yet) in scope
          int y = x;         // OK: x is in scope
          g();                  // OK: g() is in scope
}

Names in a scope can be seen from within scopes nested within it. For example, the call of f() is within the scope of g() which
is “nested” in the global scope. The global scope is the scope that’s not nested in any other. The rule that a name must be
declared before it can be used still holds, so f() cannot call g().

There are several kinds of scopes that we use to control where our names can be used:
• The global scope: the area of text outside any other scope
• A namespace scope: a named scope nested in the global scope or in another namespace; see §8.7
• A class scope: the area of text within a class; see §9.2
• A local scope: between { . . . } braces of a block or in a function argument list
• A statement scope: e.g., in a for-statement

The main purpose of a scope is to keep names local, so that they won’t interfere with names declared elsewhere. For example:
Click here to view code image

void f(int x)                  // f is global; x is local to f
{

          int z = x+7;        // z is local
}

int g(int x)                    // g is global; x is local to g
{

          int f = x+2;         // f is local
          return 2*f;

}



Or graphically:

Here f()’s x is different from g()’s x. They don’t “clash” because they are not in the same scope: f()’s x is local to f and g()’s
x is local to g. Two incompatible declarations in the same scope are often referred to as a clash. Similarly, the f defined and
used within g() is (obviously) not the function f().

Here is a logically equivalent but more realistic example of the use of local scope:
Click here to view code image

int max(int a, int b)            // max is global; a and b are local
{

          return (a>=b) ? a : b;

}

int abs(int a)                       // not max()’s a
{

          return (a<0) ? –a : a;

}

You find max() and abs() in the standard library, so you don’t have to write them yourself. The ?: construct is called an
arithmetic if or a conditional expression. The value of (a>=b)?a:b is a if a>=b and b otherwise. A conditional expression
saves us from writing long-winded code like this:
Click here to view code image

int max(int a, int b)          // max is global; a and b are local
{

          int m;                       // m is local
          if (a>=b)

                    m = a;

          else

                    m = b;

          return m;

}

So, with the notable exception of the global scope, a scope keeps names local. For most purposes, locality is good, so keep
names as local as possible. When I declare my variables, functions, etc. within functions, classes, namespaces, etc., they won’t
interfere with yours. Remember: Real programs have many thousands of named entities. To keep such programs manageable,
most names have to be local.

Here is a larger technical example illustrating how names go out of scope at the end of statements and blocks (including
function bodies):
Click here to view code image

// no r, i, or v here
class My_vector {

          vector<int> v;   // v is in class scope
public:

          int largest()

          {
                    int r = 0;                                    // r is local (smallest nonnegative int)
                    for (int i = 0; i<v.size(); ++i)

                              r = max(r,abs(v[i]));      // i is in the for’s statement scope
                    // no I here
                    return r;

          }
          // no r here



};

// no v here
int x;                               // global variable — avoid those where you can
int y;

int f()

{

          int x;                     // local variable, hides the global x
          x = 7;                    // the local x
          {
                    int x = y;    // local x initialized by global y, hides the previous local x
                    ++x;           // the x from the previous line
          }
          ++x;                     // the x from the first line of f()
          return x;

}

Whenever you can, avoid such complicated nesting and hiding. Remember: “Keep it simple!”
The larger the scope of a name is, the longer and more descriptive its name should be: x, y, and f are horrible as global

names. The main reason that you don’t want global variables in your program is that it is hard to know which functions modify
them. In large programs, it is basically impossible to know which functions modify a global variable. Imagine that you are
trying to debug a program and you find that a global variable has an unexpected value. Who gave it that value? Why? What
functions write to that value? How would you know? The function that wrote a bad value to that variable may be in a source
file you have never seen! A good program will have only very few (say, one or two), if any, global variables. For example, the
calculator in Chapters 6 and 7 had two global variables: the token stream, ts, and the symbol table, names.

Note that most C++ constructs that define scopes nest:
• Functions within classes: member functions (see §9.4.2)

Click here to view code image

class C {

public:

          void f();

          void g()    // a member function can be defined within its class
          {
                    // . . .
          }
          // . . .
};

void C::f()         // a member definition can be outside its class
{

          // . . .
}

This is the most common and useful case.
• Classes within classes: member classes (also called nested classes)

class C {

public:

          struct M {

                    // . . .
          };

          // . . .
};

This tends to be useful only in complicated classes; remember that the ideal is to keep classes small and simple.
• Classes within functions: local classes

void f()

{

          class L {

                    // . . .
          };

          // . . .
}



Avoid this; if you feel the need for a local class, your function is probably far too long.
• Functions within functions: local functions (also called nested functions)

Click here to view code image

void f()

{

          void g()          // illegal
          {
                    // . . .
          }
          // . . .
}

This is not legal in C++; don’t do it. The compiler will reject it.
• Blocks within functions and other blocks: nested blocks

void f(int x, int y)

{

          if (x>y) {

                    // . . .
          }
          else {

                    // . . .
                    {
                              // . . .
                    }
                    // . . .
          }
}

Nested blocks are unavoidable, but be suspicious of complicated nesting: it can easily hide errors.
C++ also provides a language feature, namespace, exclusively for expressing scoping; see §8.7.

Note our consistent indentation to indicate nesting. Without consistent indentation, nested constructs become unreadable. For
example:

// dangerously ugly code
struct X {

void f(int x) {

struct Y {

int f() { return 1; } int m; };

int m;

m=x; Y m2;

return f(m2.f()); }

int m; void g(int m) {

if (m) f(m+2); else {

g(m+2); }}

X() { } void m3() {

}

void main() {

X a; a.f(2);}

};

Hard-to-read code usually hides bugs. When you use an IDE, it tries to automatically make your code properly indented
(according to some definition of “properly”), and there exist “code beautifiers” that will reformat a source code file for you
(often offering you a choice of formats). However, the ultimate responsibility for your code being readable rests with you.

8.5 Function call and return

Functions are the way we represent actions and computations. Whenever we want to do something that is worthy of a name, we
write a function. The C++ language gives us operators (such as + and *) with which we can produce new values from
operands in expressions, and statements (such as for and if) with which we can control the order of execution. To organize



code made out of these primitives, we have functions.
To do its job, a function usually needs arguments, and many functions return a result. This section focuses on how arguments

are specified and passed.

8.5.1 Declaring arguments and return type
Functions are what we use in C++ to name and represent computations and actions. A function declaration consists of a return
type followed by the name of the function followed by a list of formal arguments in parentheses. For example:
Click here to view code image

double fct(int a, double d);                               // declaration of fct (no body)
double fct(int a, double d) { return a*d; }       // definition of fct

A definition contains the function body (the statements to be executed by a call), whereas a declaration that isn’t a definition
just has a semicolon. Formal arguments are often called parameters. If you don’t want a function to take arguments, just leave
out the formal arguments. For example:
Click here to view code image

int current_power();         // current_power doesn’t take an argument

If you don’t want to return a value from a function, give void as its return type. For example:
Click here to view code image

void increase_power(int level);       // increase_power doesn’t return a value

Here, void means “doesn’t return a value” or “return nothing.”
You can name a parameter or not as it suits you in both declarations and definitions. For example:

Click here to view code image

// search for s in vs;
// vs[hint] might be a good place to start the search
// return the index of a match; –1 indicates “not found”
int my_find(vector<string> vs, string s, int hint);    // naming arguments

int my_find(vector<string>, string, int);                   // not naming arguments

In declarations, formal argument names are not logically necessary, just very useful for writing good comments. From a
compiler’s point of view, the second declaration of my_find() is just as good as the first: it has all the information necessary
to call my_find().

Usually, we name all the arguments in the definition. For example:
Click here to view code image

int my_find(vector<string> vs, string s, int hint)

// search for s in vs starting at hint
{

          if (hint<0 || vs.size()<=hint) hint = 0;

          for (int i = hint; i<vs.size(); ++i)     // search starting from hint
                    if (vs[i]==s) return i;

          if (0<hint) {                                         // if we didn’t find s search before hint
          for (int i = 0; i<hint; ++i)

                    if (vs[i]==s) return i;

          }
          return –1;

}

The hint complicates the code quite a bit, but the hint was provided under the assumption that users could use it to good effect
by knowing roughly where in the vector a string will be found. However, imagine that we had used my_find() for a while
and then discovered that callers rarely used hint well, so that it actually hurt performance. Now we don’t need hint anymore,
but there is lots of code “out there” that calls my_find() with a hint. We don’t want to rewrite that code (or can’t because it
is someone else’s code), so we don’t want to change the declaration(s) of my_find(). Instead, we just don’t use the last
argument. Since we don’t use it we can leave it unnamed:



Click here to view code image

int my_find(vector<string> vs, string s, int)       // 3rd argument unused
{

          for (int i = 0; i<vs.size(); ++i)

                    if (vs[i]==s) return i;

          return –1;

}

You can find the complete grammar for function definitions in the ISO C++ standard.

8.5.2 Returning a value
We return a value from a function using a return-statement:

T f()         // f() returns a T
{

          V v;

          // . . .
          return v;

}

T x = f();

Here, the value returned is exactly the value we would have gotten by initializing a variable of type T with a value of type V:

V v;

// . . .
T t(v);    // initialize t with v

That is, value return is a form of initialization.
A function declared to return a value must return a value. In particular, it is an error to “fall through the end of the function”:

Click here to view code image

double my_abs(int x)         // warning: buggy code
{

          if (x < 0)

                    return –x;

          else if (x > 0)

                    return x;

}         // error: no value returned if x is 0

Actually, the compiler probably won’t notice that we “forgot” the case x==0. In principle it could, but few compilers are that
smart. For complicated functions, it can be impossible for a compiler to know whether or not you return a value, so be careful.
Here, “being careful” means to make really sure that you have a return-statement or an error() for every possible way out of
the function.

For historical reasons, main() is a special case. Falling through the bottom of main() is equivalent to returning the value 0,
meaning “successful completion” of the program.

In a function that does not return a value, we can use return without a value to cause a return from the function. For
example:
Click here to view code image

void print_until_s(vector<string> v, string quit)

{

          for(int s : v) {

                    if (s==quit) return;

                    cout << s << '\n';

          }
}

As you can see, it is acceptable to “drop through the bottom” of a void function. This is equivalent to a return;.

8.5.3 Pass-by-value



The simplest way of passing an argument to a function is to give the function a copy of the value you use as the argument. An
argument of a function f() is a local variable in f() that’s initialized each time f() is called. For example:
Click here to view code image

// pass-by-value (give the function a copy of the value passed)
int f(int x)

{

          x = x+1;                               // give the local x a new value
          return x;

}

int main()

{

          int xx = 0;

          cout << f(xx) << '\n';         // write: 1
          cout << xx << '\n';             // write: 0; f() doesn’t change xx

          int yy = 7;

          cout << f(yy) << '\n';              // write: 8
          cout << yy << '\n';                  // write: 7; f() doesn’t change yy
}

Since a copy is passed, the x=x+1 in f() does not change the values xx and yy passed in the two calls. We can illustrate a
pass-by-value argument passing like this:

Pass-by-value is pretty straightforward and its cost is the cost of copying the value.

8.5.4 Pass-by-const-reference
Pass-by-value is simple, straightforward, and efficient when we pass small values, such as an int, a double, or a Token

(§6.3.2). But what if a value is large, such as an image (often, several million bits), a large table of values (say, thousands of
integers), or a long string (say, hundreds of characters)? Then, copying can be costly. We should not be obsessed by cost, but
doing unnecessary work can be embarrassing because it is an indication that we didn’t directly express our idea of what we
wanted. For example, we could write a function to print out a vector of floating-point numbers like this:
Click here to view code image

void print(vector<double> v)                     // pass-by-value; appropriate?
{

          cout << "{ ";

          for (int i = 0; i<v.size(); ++i) {

                    cout << v[i];

                    if (i!=v.size()–1) cout << ", ";

          }
          cout << " }\n";

}

We could use this print() for vectors of all sizes. For example:
Click here to view code image

void f(int x)

{

          vector<double> vd1(10);              // small vector
          vector<double> vd2(1000000);    // large vector
          vector<double> vd3(x);            // vector of some unknown size
          // . . . fill vd1, vd2, vd3 with values . . .
          print(vd1);

          print(vd2);

          print(vd3);

}



This code works, but the first call of print() has to copy ten doubles (probably 80 bytes), the second call has to copy a
million doubles (probably 8 megabytes), and we don’t know how much the third call has to copy. The question we must ask
ourselves here is: “Why are we copying anything at all?” We just wanted to print the vectors, not to make copies of their
elements. Obviously, there has to be a way for us to pass a variable to a function without copying it. As an analogy, if you were
given the task to make a list of books in a library, the librarians wouldn’t ship you a copy of the library building and all its
contents; they would send you the address of the library, so that you could go and look at the books. So, we need a way of
giving our print() function “the address” of the vector to print() rather than the copy of the vector. Such an “address” is
called a reference and is used like this:
Click here to view code image

void print(const vector<double>& v)      // pass-by-const-reference
{

          cout << "{ ";

          for (int i = 0; i<v.size(); ++i) {

                    cout << v[i];

                    if (i!=v.size()–1) cout << ", ";

          }
          cout << " }\n";

}

The & means “reference” and the const is there to stop print() modifying its argument by accident. Apart from the change to
the argument declaration, all is the same as before; the only change is that instead of operating on a copy, print() now refers
back to the argument through the reference. Note the phrase “refer back”; such arguments are called references because they
“refer” to objects defined elsewhere. We can call this print() exactly as before:
Click here to view code image

void f(int x)

{

          vector<double> vd1(10);              // small vector
          vector<double> vd2(1000000);    // large vector
          vector<double> vd3(x);                // vector of some unknown size
          // . . . fill vd1, vd2, vd3 with values . . .
          print(vd1);

          print(vd2);

          print(vd3);

}

We can illustrate that graphically:

A const reference has the useful property that we can’t accidentally modify the object passed. For example, if we made a silly
error and tried to assign to an element from within print(), the compiler would catch it:
Click here to view code image

void print(const vector<double>& v)       // pass-by-const-reference
{

          // . . .
          v[i] = 7;                                                // error: v is a const (is not mutable)
          // . . .
}

Pass-by-const-reference is a useful and popular mechanism. Consider again the my_find() function (§8.5.1) that searches for
a string in a vector of strings. Pass-by-value could be unnecessarily costly:



Click here to view code image

int my_find(vector<string> vs, string s);    // pass-by-value: copy

If the vector contained thousands of strings, you might notice the time spent even on a fast computer. So, we could improve
my_find() by making it take its arguments by const reference:
Click here to view code image

// pass-by-const-reference: no copy, read-only access
int my_find(const vector<string>& vs, const string& s);

8.5.5 Pass-by-reference
But what if we did want a function to modify its arguments? Sometimes, that’s a perfectly reasonable thing to wish for. For
example, we might want an init() function that assigns values to vector elements:
Click here to view code image

void init(vector<double>& v)     // pass-by-reference
{

          for (int i = 0; i<v.size(); ++i) v[i] = i;

}

void g(int x)

{

          vector<double> vd1(10);               // small vector
          vector<double> vd2(1000000);     // large vector
          vector<double> vd3(x);                 // vector of some unknown size

          init(vd1);

          init(vd2);

          init(vd3);

}

Here, we wanted init() to modify the argument vector, so we did not copy (did not use pass-by-value) or declare the reference
const (did not use pass-by-const-reference) but simply passed a “plain reference” to the vector.

Let us consider references from a more technical point of view. A reference is a construct that allows a user to declare a
new name for an object. For example, int& is a reference to an int, so we can write

That is, any use of r is really a use of i.
References can be useful as shorthand. For example, we might have a

Click here to view code image

vector< vector<double> > v;      // vector of vector of double

and we need to refer to some element v[f(x)][g(y)] several times. Clearly, v[f(x)][g(y)] is a complicated expression that we
don’t want to repeat more often than we have to. If we just need its value, we could write
Click here to view code image

double val = v[f(x)][g(y)];       // val is the value of v[f(x)][g(y)]

and use val repeatedly. But what if we need to both read from v[f(x)][g(y)] and write to v[f(x)][g(y)]? Then, a reference
comes in handy:
Click here to view code image

double& var = v[f(x)][g(y)];      // var is a reference to v[f(x)][g(y)]

Now we can read and write v[f(x)][g(y)] through var. For example:

var = var/2+sqrt(var);



This key property of references, that a reference can be a convenient shorthand for some object, is what makes them useful as
arguments. For example:
Click here to view code image

// pass-by-reference (let the function refer back to the variable passed)
int f(int& x)

{

          x = x+1;

          return x;

}

int main()

{

          int xx = 0;

          cout << f(xx) << '\n';              // write: 1
          cout << xx << '\n';                  // write: 1; f() changed the value of xx
          int yy = 7;

          cout << f(yy) << '\n';              // write: 8
          cout << yy << '\n';                  // write: 8; f() changed the value of yy
}

We can illustrate a pass-by-reference argument passing like this:

Compare this to the similar example in §8.5.3.

Pass-by-reference is clearly a very powerful mechanism: we can have a function operate directly on any object to which we
pass a reference. For example, swapping two values is an immensely important operation in many algorithms, such as sorting.
Using references, we can write a function that swaps doubles like this:
Click here to view code image

void swap(double& d1, double& d2)

{

          double temp = d1;             // copy d1’s value to temp
          d1 = d2;                                // copy d2’s value to d1
          d2 = temp;                           // copy d1’s old value to d2
}

int main()

{

          double x = 1;

          double y = 2;

          cout << "x == " << x << " y== " << y << '\n';   // write: x==1 y==2
          swap(x,y);

          cout << "x == " << x << " y== " << y << '\n';   // write: x==2 y==1
}

The standard library provides a swap() for every type that you can copy, so you don’t have to write swap() yourself for each
type.

8.5.6 Pass-by-value vs. pass-by-reference
When should you use pass-by-value, pass-by-reference, and pass-by-const-reference? Consider first a technical example:
Click here to view code image

void f(int a, int& r, const int& cr)

{

          ++a;            // change the local a
          ++r;            // change the object referred to by r



          ++cr;          // error: cr is const
}

If you want to change the value of the object passed, you must use a non-const reference: pass-by-value gives you a copy and
pass-by-const-reference prevents you from changing the value of the object passed. So we can try
Click here to view code image

void g(int a, int& r, const int& cr)

{

          ++a;                  // change the local a
          ++r;                  // change the object referred to by r
          int x = cr;         // read the object referred to by cr
}

int main()

{

          int x = 0;

          int y = 0;

          int z = 0;

          g(x,y,z);      // x==0; y==1; z==0
          g(1,2,3);      // error: reference argument r needs a variable to refer to
          g(1,y,3);      // OK: since cr is const we can pass a literal
}

So, if you want to change the value of an object passed by reference, you have to pass an object. Technically, the integer literal
2 is just a value (an rvalue), rather than an object holding a value. What you need for g()’s argument r is an lvalue, that is,
something that could appear on the left-hand side of an assignment.

Note that a const reference doesn’t need an lvalue. It can perform conversions exactly as initialization or pass-by-value.
Basically, what happens in that last call, g(1,y,3), is that the compiler sets aside an int for g()’s argument cr to refer to:
Click here to view code image

g(1,y,3);      // means: int__compiler_generated = 3; g(1,y,__compiler_generated)

Such a compiler-generated object is called a temporary object or just a temporary.
Our rule of thumb is:

1. Use pass-by-value to pass very small objects.
2. Use pass-by-const-reference to pass large objects that you don’t need to modify.
3. Return a result rather than modifying an object through a reference argument.
4. Use pass-by-reference only when you have to.

These rules lead to the simplest, least error-prone, and most efficient code. By “very small” we mean one or two ints, one or
two doubles, or something like that. If we see an argument passed by non-const reference, we must assume that the called
function will modify that argument.

That third rule reflects that you have a choice when you want to use a function to change the value of a variable. Consider:
Click here to view code image

int incr1(int a) { return a+1; }          // return the new value as the result
void incr2(int& a) { ++a; }                // modify object passed as reference

int x = 7;

x = incr1(x);                                        // pretty obvious
incr2(x);                                              // pretty obscure

Why do we ever use non-const-reference arguments? Occasionally, they are essential
• For manipulating containers (e.g., vector) and other large objects
• For functions that change several objects (we can have only one return value)

For example:



Click here to view code image

void larger(vector<int>& v1, vector<int>& v2)

          // make each element in v1 the larger of the corresponding
          // elements in v1 and v2;
          // similarly, make each element of v2 the smaller
{

          if (v1.size()!=v2.size()) error("larger(): different sizes");

          for (int i=0; i<v1.size(); ++i)

                    if (v1[i]<v2[i])

                              swap(v1[i],v2[i]);

}

void f()

{

          vector<int> vx;

          vector<int> vy;

          // read vx and vy from input
          larger(vx,vy);

          // . . .
}

Using pass-by-reference arguments is the only reasonable choice for a function like larger().
It is usually best to avoid functions that modify several objects. In theory, there are always alternatives, such as returning a

class object holding several values. However, there are a lot of programs “out there” expressed in terms of functions that
modify one or more arguments, so you are likely to encounter them. For example, in Fortran — the major programming
language used for numerical calculation for about 50 years — all arguments are traditionally passed by reference. Many
numeric programmers copy Fortran designs and call functions written in Fortran. Such code often uses pass-by-reference or
pass-by-const-reference.

If we use a reference simply to avoid copying, we use a const reference. Consequently, when we see a non-const-
reference argument, we assume that the function changes the value of its argument; that is, when we see a pass-by-non-const-
reference we assume that not only can that function modify the argument passed, but it will, so that we have to look extra
carefully at the call to make sure that it does what we expect it to.

8.5.7 Argument checking and conversion
Passing an argument is the initialization of the function’s formal argument with the actual argument specified in the call.
Consider:
Click here to view code image

void f(T x);

f(y);

T x = y;          // initialize x with y (see §8.2.2)

The call f(y) is legal whenever the initialization T x=y; is, and when it is legal both xs get the same value. For example:
Click here to view code image

void f(double x);

void g(int y)

{

          f(y);

          double x = y;      // initialize x with y (see §8.2.2)
}

Note that to initialize x with y, we have to convert an int to a double. The same happens in the call of f(). The double value
received by f() is the same as the one stored in x.

Conversions are often useful, but occasionally they give surprising results (see §3.9.2). Consequently, we have to be careful
with them. Passing a double as an argument to a function that requires an int is rarely a good idea:
Click here to view code image

void ff(int x);



void gg(double y)

{

          ff(y);                 // how would you know if this makes sense?
          int x = y;          // how would you know if this makes sense?
}

If you really mean to truncate a double value to an int, say so explicitly:
Click here to view code image

void ggg(double x)

{

          int x1 = x;                                     // truncate x
          int x2 = int(x);

          int x3 = static_cast<int>(x);         // very explicit conversion (§17.8)

          ff(x1);

          ff(x2);

          ff(x3);

          ff(x);                                             // truncate x
          ff(int(x));

          ff(static_cast<int>(x));                 // very explicit conversion (§17.8)
}

That way, the next programmer to look at this code can see that you thought about the problem.

8.5.8 Function call implementation
But how does a computer really do a function call? The expression(), term(), and primary() functions from Chapters 6 and
7 are perfect for illustrating this except for one detail: they don’t take any arguments, so we can’t use them to explain how
arguments are passed. But wait! They must take some input; if they didn’t, they couldn’t do anything useful. They do take an
implicit argument: they use a Token_stream called ts to get their input; ts is a global variable. That’s a bit sneaky. We can
improve these functions by letting them take a Token_stream& argument. Here they are with a Token_stream& parameter
added and everything that doesn’t concern function call implementation removed.

First, expression() is completely straightforward; it has one argument (ts) and two local variables (left and t):
Click here to view code image

double expression(Token_stream& ts)

{

          double left = term(ts);

          Token t = ts.get();

          // . . .
}

Second, term() is much like expression(), except that it has an additional local variable (d) that it uses to hold the result of a
divisor for '/':
Click here to view code image

double term(Token_stream& ts)

{

          double left = primary(ts);

          Token t = ts.get();

          // . . .
                    case '/':

                    {
                              double d = primary(ts);

                              // . . .
                    }
          // . . .
}

Third, primary() is much like term() except that it doesn’t have a local variable left:
Click here to view code image

double primary(Token_stream& ts)



{

          Token t = ts.get();

          switch (t.kind) {

          case '(':

                    {       double d = expression(ts);

                             // . . .
                    }
                    // . . .
          }
}

Now they don’t use any “sneaky global variables” and are perfect for our illustration: they have an argument, they have local
variables, and they call each other. You may want to take the opportunity to refresh your memory of what the complete
expression(), term(), and primary() look like, but the salient features as far as function call is concerned are presented
here.

When a function is called, the language implementation sets aside a data structure containing a copy of all its parameters and
local variables. For example, when expression() is first called, the compiler ensures that a structure like this is created:

The “implementation stuff” varies from implementation to implementation, but that’s basically the information that the function
needs to return to its caller and to return a value to its caller. Such a data structure is called a function activation record, and
each function has its own detailed layout of its activation record. Note that from the implementation’s point of view, a
parameter is just another local variable.

So far, so good, and now expression() calls term(), so the compiler ensures that an activation record for this call of
term() is generated:

Note that term() has an extra variable d that needs to be stored, so we set aside space for that in the call even though the code
may never get around to using it. That’s OK. For reasonable functions (such as every function we directly or indirectly use in
this book), the run-time cost of laying down a function activation record doesn’t depend on how big it is. The local variable d
will be initialized only if we execute its case '/'.

Now term() calls primary() and we get



This is starting to get a bit repetitive, but now primary() calls expression():

So this call of expression() gets its own activation record, different from the first call of expression(). That’s good or else
we’d be in a terrible mess, since left and t will be different in the two calls. A function that directly or (as here) indirectly
calls itself is called recursive. As you see, recursive functions follow naturally from the implementation technique we use for
function call and return (and vice versa).

So, each time we call a function the stack of activation records, usually just called the stack, grows by one record.
Conversely, when the function returns, its record is no longer used. For example, when that last call of expression() returns to
primary(), the stack will revert to this:



And when that call of primary() returns to term(), we get back to

And so on. The stack, also called the call stack, is a data structure that grows and shrinks at one end according to the rule “Last
in, first out.”

Please remember that the details of how a call stack is implemented and used vary from C++ implementation to C++
implementation, but the basics are as outlined here. Do you need to know how function calls are implemented to use them? Of
course not; you have done well enough before this implementation subsection, but many programmers like to know and many
use phrases like “activation record” and “call stack,” so it’s better to know what they mean.

8.5.9 constexpr functions
A function represents a calculation, and sometimes we want to do a calculation at compile time. The reason to want a
calculation to be evaluated by the compiler is usually to avoid having the same calculation done millions of times at run time.
We use functions to make our calculations comprehensible, so naturally we sometimes want to use a function in a constant
expression. We convey our intent to have a function evaluated by the compiler by declaring the function constexpr. A
constexpr function can be evaluated by the compiler if it is given constant expressions as arguments. For example:
Click here to view code image

constexpr double xscale = 10;       // scaling factors
constexpr double yscale = 0.8;

constexpr Point scale(Point p) { return {xscale*p.x,yscale*p.y}; };

Assume that Point is a simple struct with members x and y representing 2D coordinates. Now, when we give scale() a
Point argument, it returns a Point with coordinates scaled according to the factors xscale and yscale. For example:
Click here to view code image



void user(Point p1)

{

          Point p2 {10,10};

          Point p3 = scale(p1);     // OK: p3 == {100,8}; run-time evaluation is fine
          Point p4 = scale(p2);     // p4 == {100,8}

          constexpr Point p5 = scale(p1);   // error: scale (p1) is not a constant
                                                                // expression
          constexpr Point p6 = scale(p2);   // p6 == {100,8}
// . . .
}

A constexpr function behaves just like an ordinary function until you use it where a constant is needed. Then, it is calculated
at compile time provided its arguments are constant expressions (e.g., p2) and gives an error if they are not (e.g., p1). To
enable that, a constexpr function must be so simple that the compiler (every standard-conforming compiler) can evaluate it. In
C++11, that means that a constexpr function must have a body consisting of a single return-statement (like scale()); in
C++14, we can also write simple loops. A constexpr function may not have side effects; that is, it may not change the value
of variables outside its own body, except those it is assigned to or uses to initialize.

Here is an example of a function that violates those rules for simplicity:
Click here to view code image

int gob = 9;

constexpr void bad(int & arg)        // error: no return value
{

          ++arg;                                   // error: modifies caller through argument
          glob = 7;                              // error: modifies nonlocal variable
}

If a compiler cannot determine that a constexpr function is “simple enough” (according to detailed rules in the standard), the
function is considered an error.

8.6 Order of evaluation

The evaluation of a program — also called the execution of a program — proceeds through the statements according to the
language rules. When this “thread of execution” reaches the definition of a variable, the variable is constructed; that is, memory
is set aside for the object and the object is initialized. When the variable goes out of scope, the variable is destroyed; that is,
the object it refers to is in principle removed and the compiler can use its memory for something else. For example:
Click here to view code image

string program_name = "silly";

vector<string> v;                                            // v is global

void f()

{

          string s;                                                // s is local to f
          while (cin>>s && s!="quit") {

                    string stripped;                         // stripped is local to the loop
                    string not_letters;

                    for (int i=0; i<s.size(); ++i)       // i has statement scope
                              if (isalpha(s[i]))

                                        stripped += s[i];

                              else

                                        not_letters += s[i];

                    v.push_back(stripped);

                    // . . .
          }
          // . . .
}

Global variables, such as program_name and v, are initialized before the first statement of main() is executed. They “live”
until the program terminates, and then they are destroyed. They are constructed in the order in which they are defined (that is,



program_name before v) and destroyed in the reverse order (that is, v before program_name).
When someone calls f(), first s is constructed; that is, s is initialized to the empty string. It will live until we return from f().
Each time we enter the block that is the body of the while-statement, stripped and not_letters are constructed. Since

stripped is defined before not_letters, stripped is constructed before not_letters. They live until the end of the loop,
where they are destroyed in the reverse order of construction (that is, not_letters before stripped) before the condition is
reevaluated. So, if ten strings are seen before we encounter the string quit, stripped and not_letters will each be
constructed and destroyed ten times.

Each time we reach the for-statement, i is constructed. Each time we exit the for-statement, i is destroyed before we reach
the v.push_back(stripped); statement.

Please note that compilers (and linkers) are clever beasts and they are allowed to — and do — optimize code as long as the
results are equivalent to what we have described here. In particular, compilers are clever at not allocating and deallocating
memory more often than is really necessary.

8.6.1 Expression evaluation

The order of evaluation of sub-expressions is governed by rules designed to please an optimizer rather than to make life simple
for the programmer. That’s unfortunate, but you should avoid complicated expressions anyway, and there is a simple rule that
can keep you out of trouble: if you change the value of a variable in an expression, don’t read or write it twice in that same
expression. For example:
Click here to view code image

v[i] = ++i;                                       // don’t: undefined order of evaluation
v[++i] = i;                                       // don’t: undefined order of evaluation
int x = ++i + ++i;                           // don’t: undefined order of evaluation
cout << ++i << ' ' << i << '\n';      // don’t: undefined order of evaluation
f(++i,++i);                                    // don’t: undefined order of evaluation

Unfortunately, not all compilers warn if you write such bad code; it’s bad because you can’t rely on the results being the same
if you move your code to another computer, use a different compiler, or use a different optimizer setting. Compilers really
differ for such code; just don’t do it.

Note in particular that = (assignment) is considered just another operator in an expression, so there is no guarantee that the
left-hand side of an assignment is evaluated before the right-hand side. That’s why v[++i] = i is undefined.

8.6.2 Global initialization
Global variables (and namespace variables; see §8.7) in a single translation unit are initialized in the order in which they
appear. For example:
Click here to view code image

// file f1.cpp
int x1 = 1;

int y1 = x1+2;        // y1 becomes 3

This initialization logically takes place “before the code in main() is executed.”

Using a global variable in anything but the most limited circumstances is usually not a good idea. We have mentioned the
problem of the programmer having no really effective way of knowing which parts of a large program read and/or write a
global variable (§8.4). Another problem is that the order of initialization of global variables in different translation units is not
defined. For example:
Click here to view code image

// file f2.cpp
extern int y1;

int y2 = y1+2;         // y2 becomes 2 or 5

Such code is to be avoided for several reasons: it uses global variables, it gives the global variables short names, and it uses
complicated initialization of the global variables. If the globals in file f1.cpp are initialized before the globals in f2.cpp, y2



will be initialized to 5 (as a programmer might naively and reasonably expect). However, if the globals in file f2.cpp are
initialized before the globals in f1.cpp, y2 will be initialized to 2 (because the memory used for global variables is initialized
to 0 before complicated initialization is attempted). Avoid such code, and be very suspicious when you see global variables
with nontrivial initializers; consider any initializer that isn’t a constant expression complicated.

But what do you do if you really need a global variable (or constant) with a complicated initializer? A plausible example
would be that we wanted a default value for a Date type we were providing for a library supporting business transactions:
Click here to view code image

const Date default_date(1970,1,1);      // the default date is January 1, 1970

How would we know that default_date was never used before it was initialized? Basically, we can’t know, so we shouldn’t
write that definition. The technique that we use most often is to call a function that returns the value. For example:
Click here to view code image

const Date default_date()                // return the default date
{

          return Date(1970,1,1);

}

This constructs the Date every time we call default_date(). That is often fine, but if default_date() is called often and it is
expensive to construct Date, we’d like to construct the Date once only. That is done like this:
Click here to view code image

const Date& default_date()

{

          static const Date dd(1970,1,1);        // initialize dd first time we get here
          return dd;

}

The static local variable is initialized (constructed) only the first time its function is called. Note that we returned a reference
to eliminate unnecessary copying and, in particular, we returned a const reference to prevent the calling function from
accidentally changing the value. The arguments about how to pass an argument (§8.5.6) also apply to returning values.

8.7 Namespaces
We use blocks to organize code within a function (§8.4). We use classes to organize functions, data, and types into a type
(Chapter 9). A function and a class both do two things for us:

• They allow us to define a number of “entities” without worrying that their names clash with other names in our program.
• They give us a name to refer to what we have defined.

What we lack so far is something to organize classes, functions, data, and types into an identifiable and named part of a
program without defining a type. The language mechanism for such grouping of declarations is a namespace. For example, we
might like to provide a graphics library with classes called Color, Shape, Line, Function, and Text (see Chapter 13):
Click here to view code image

namespace Graph_lib {

          struct Color { /* . . . */ };

          struct Shape { /* . . . */ };

          struct Line : Shape { /* . . . */ };

          struct Function : Shape { /* . . . */ };

          struct Text : Shape { /* . . . */ };

          // . . .
          int gui_main() { /* . . . */ }

}

Most likely somebody else in the world has used those names, but now that doesn’t matter. You might define something called
Text, but our Text doesn’t interfere. Graph_lib::Text is one of our classes and your Text is not. We have a problem only if
you have a class or a namespace called Graph_lib with Text as its member. Graph_lib is a slightly ugly name; we chose it



because the “pretty and obvious” name Graphics had a greater chance of already being used somewhere.
Let’s say that your Text was part of a text manipulation library. The same logic that made us put our graphics facilities into

namespace Graph_lib should make you put your text manipulation facilities into a namespace called something like TextLib:
Click here to view code image

namespace TextLib {

          class Text { /* . . . */ };

          class Glyph { /* . . . */ };

          class Line { /* . . . */ };

          // . . .
}

Had we both used the global namespace, we could have been in real trouble. Someone trying to use both of our libraries would
have had really bad name clashes for Text and Line. Worse, if we both had users for our libraries we would not have been
able to change our names, such as Line and Text, to avoid clashes. We avoided that problem by using namespaces; that is, our
Text is Graph_lib::Text and yours is TextLib::Text. A name composed of a namespace name (or a class name) and a
member name combined by :: is called a fully qualified name.

8.7.1 using declarations and using directives
Writing fully qualified names can be tedious. For example, the facilities of the C++ standard library are defined in namespace
std and can be used like this:
Click here to view code image

#include<string>                // get the string library
#include<iostream>           // get the iostream library
int main()

{

          std::string name;

          std::cout << "Please enter your first name\n";

          std::cin >> name;

          std::cout << "Hello, " << name << '\n';

}

Having seen the standard library string and cout thousands of times, we don’t really want to have to refer to them by their
“proper” fully qualified names std::string and std::cout all the time. A solution is to say that “by string, I mean
std::string,” “by cout, I mean std::cout,” etc.:
Click here to view code image

using std::string;         // string means std::string
using std::cout;           // cout means std::cout
// . . .

That construct is called a using declaration; it is the programming equivalent to using plain “Greg” to refer to Greg Hansen,
when there are no other Gregs in the room.

Sometimes, we prefer an even stronger “shorthand” for the use of names from a namespace: “If you don’t find a declaration
for a name in this scope, look in std.” The way to say that is to use a using directive:
Click here to view code image

using namespace std;      // make names from std directly accessible

So we get this common style:
Click here to view code image

#include<string>                // get the string library
#include<iostream>          // get the iostream library
using namespace std;      // make names from std directly accessible

int main()

{

          string name;

          cout << "Please enter your first name\n";

          cin >> name;

          cout << "Hello, " << name << '\n';



}

The cin is std::cin, the string is std::string, etc. As long as you use std_lib_facilities.h, you don’t need to worry about
standard headers and the std namespace.

It is usually a good idea to avoid using directives for any namespace except for a namespace, such as std, that’s extremely
well known in an application area. The problem with overuse of using directives is that you lose track of which names come
from where, so that you again start to get name clashes. Explicit qualification with namespace names and using declarations
doesn’t suffer from that problem. So, putting a using directive in a header file (so that users can’t avoid it) is a very bad habit.
However, to simplify our initial code we did place a using directive for std in std_lib_facilities.h. That allowed us to
write
Click here to view code image

#include "std_lib_facilities.h"

int main()

{

          string name;

          cout << "Please enter your first name\n";

          cin >> name;

          cout << "Hello, " << name << '\n';

}

We promise never to do that for any namespace except std.

 Drill

1. Create three files: my.h, my.cpp, and use.cpp. The header file my.h contains

extern int foo;

void print_foo();

void print(int);

The source code file my.cpp #includes my.h and std_lib_facilities.h, defines print_foo() to print the value of foo

using cout, and print(int i) to print the value of i using cout.
The source code file use.cpp #includes my.h, defines main() to set the value of foo to 7 and print it using

print_foo(), and to print the value of 99 using print(). Note that use.cpp does not #include std_lib_facilities.h as
it doesn’t directly use any of those facilities.

Get these files compiled and run. On Windows, you need to have both use.cpp and my.cpp in a project and use {
char cc; cin>>cc; } in use.cpp to be able to see your output. Hint: You need to #include <iostream> to use cin.

2. Write three functions swap_v(int,int), swap_r(int&,int&), and swap_cr(const int&, const int&). Each should
have the body

{ int temp; temp = a, a=b; b=temp; }

where a and b are the names of the arguments.
Try calling each swap like this

Click here to view code image

int x = 7;

int y =9;

swap_?(x,y);                      // replace ? by v, r, or cr
swap_?(7,9);

const int cx = 7;

const int cy = 9;

swap_?(cx,cy);

swap_?(7.7,9.9);

double dx = 7.7;

double dy = 9.9;

swap_?(dx,dy);



swap_?(7.7,9.9);

Which functions and calls compiled, and why? After each swap that compiled, print the value of the arguments after the
call to see if they were actually swapped. If you are surprised by a result, consult §8.6.

3. Write a program using a single file containing three namespaces X, Y, and Z so that the following main() works
correctly:

Click here to view code image

int main()

{

          X::var = 7;

          X::print();                  // print X’s var
          using namespace Y;

          var = 9;

          print();                       // print Y’s var
          {          using Z::var;

                      using Z::print;

                      var = 11;

                      print();           // print Z’s var
          }
          print();                      // print Y’s var
          X::print();                // print X’s var
}

Each namespace needs to define a variable called var and a function called print() that outputs the appropriate var using
cout.

Review
1. What is the difference between a declaration and a definition?
2. How do we syntactically distinguish between a function declaration and a function definition?
3. How do we syntactically distinguish between a variable declaration and a variable definition?
4. Why can’t you use the functions in the calculator program from Chapter 6 without declaring them first?
5. Is int a; a definition or just a declaration?
6. Why is it a good idea to initialize variables as they are declared?
7. What can a function declaration consist of?
8. What good does indentation do?
9. What are header files used for?

10. What is the scope of a declaration?
11. What kinds of scope are there? Give an example of each.
12. What is the difference between a class scope and local scope?
13. Why should a programmer minimize the number of global variables?
14. What is the difference between pass-by-value and pass-by-reference?
15. What is the difference between pass-by-reference and pass-by-const-reference?
16. What is a swap()?
17. Would you ever define a function with a vector<double>-by-value parameter?
18. Give an example of undefined order of evaluation. Why can undefined order of evaluation be a problem?
19. What do x&&y and x||y, respectively, mean?
20. Which of the following is standard-conforming C++: functions within functions, functions within classes, classes within

classes, classes within functions?
21. What goes into an activation record?
22. What is a call stack and why do we need one?
23. What is the purpose of a namespace?
24. How does a namespace differ from a class?



25. What is a using declaration?
26. Why should you avoid using directives in a header?
27. What is namespace std?

Terms
activation record
argument
argument passing
call stack
class scope
const

constexpr

declaration
definition
extern

forward declaration
function
function definition
global scope
header file
initializer
local scope
namespace

namespace scope
nested block
parameter
pass-by-const-reference
pass-by-reference
pass-by-value
recursion
return

return value
scope
statement scope
technicalities
undeclared identifier
using declaration
using directive

Exercises
1. Modify the calculator program from Chapter 7 to make the input stream an explicit parameter (as shown in §8.5.8),

rather than simply using cin. Also give the Token_stream constructor (§7.8.2) an istream& parameter so that when
we figure out how to make our own istreams (e.g., attached to files), we can use the calculator for those. Hint: Don’t try
to copy an istream.

2. Write a function print() that prints a vector of ints to cout. Give it two arguments: a string for “labeling” the output
and a vector.

3. Create a vector of Fibonacci numbers and print them using the function from exercise 2. To create the vector, write a



function, fibonacci(x,y,v,n), where integers x and y are ints, v is an empty vector<int>, and n is the number of
elements to put into v; v[0] will be x and v[1] will be y. A Fibonacci number is one that is part of a sequence where each
element is the sum of the two previous ones. For example, starting with 1 and 2, we get 1, 2, 3, 5, 8, 13, 21, . . . . Your
fibonacci() function should make such a sequence starting with its x and y arguments.

4. An int can hold integers only up to a maximum number. Find an approximation of that maximum number by using
fibonacci().

5. Write two functions that reverse the order of elements in a vector<int>. For example, 1, 3, 5, 7, 9 becomes 9, 7, 5, 3, 1.
The first reverse function should produce a new vector with the reversed sequence, leaving its original vector

unchanged. The other reverse function should reverse the elements of its vector without using any other vectors (hint:
swap).

6. Write versions of the functions from exercise 5, but with a vector<string>.
7. Read five names into a vector<string> name, then prompt the user for the ages of the people named and store the ages

in a vector<double> age. Then print out the five (name[i],age[i]) pairs. Sort the names
(sort(name.begin(),name.end())) and print out the (name[i],age[i]) pairs. The tricky part here is to get the age

vector in the correct order to match the sorted name vector. Hint: Before sorting name, take a copy and use that to
make a copy of age in the right order after sorting name. Then, do that exercise again but allowing an arbitrary number
of names.

9. Write a function that given two vector<double>s price and weight computes a value (an “index”) that is the sum of
all price[i]*weight[i]. Make sure to have weight.size()==price.size().

10. Write a function maxv() that returns the largest element of a vector argument.
11. Write a function that finds the smallest and the largest element of a vector argument and also computes the mean and the

median. Do not use global variables. Either return a struct containing the results or pass them back through reference
arguments. Which of the two ways of returning several result values do you prefer and why?

12. Improve print_until_s() from §8.5.2. Test it. What makes a good set of test cases? Give reasons. Then, write a
print_until_ss() that prints until it sees a second occurrence of its quit argument.

13. Write a function that takes a vector<string> argument and returns a vector<int> containing the number of characters
in each string. Also find the longest and the shortest string and the lexicographically first and last string. How many
separate functions would you use for these tasks? Why?

14. Can we declare a non-reference function argument const (e.g., void f(const int);)? What might that mean? Why might
we want to do that? Why don’t people do that often? Try it; write a couple of small programs to see what works.

Postscript
We could have put much of this chapter (and much of the next) into an appendix. However, you’ll need most of the facilities
described here in Part II of this book. You’ll also encounter most of the problems that these facilities were invented to help
solve very soon. Most simple programming projects that you might undertake will require you to solve such problems. So, to
save time and minimize confusion, a somewhat systematic approach is called for, rather than a series of “random” visits to
manuals and appendices.



9. Technicalities: Classes, etc.

“Remember, things take time.”
—Piet Hein

In this chapter, we keep our focus on our main tool for programming: the C++ programming language. We present language
technicalities, mostly related to user-defined types, that is, to classes and enumerations. Much of the presentation of language
features takes the form of the gradual improvement of a Date type. That way, we also get a chance to demonstrate some useful
class design techniques.

9.1 User-defined types
9.2 Classes and members
9.3 Interface and implementation
9.4 Evolving a class

9.4.1 struct and functions
9.4.2 Member functions and constructors
9.4.3 Keep details private
9.4.4 Defining member functions
9.4.5 Referring to the current object
9.4.6 Reporting errors

9.5 Enumerations
9.5.1 “Plain” enumerations

9.6 Operator overloading
9.7 Class interfaces

9.7.1 Argument types
9.7.2 Copying
9.7.3 Default constructors
9.7.4 const member functions
9.7.5 Members and “helper functions”

9.8 The Date class

9.1 User-defined types

The C++ language provides you with some built-in types, such as char, int, and double (§A.8). A type is called built-in if the
compiler knows how to represent objects of the type and which operations can be done on it (such as + and *) without being
told by declarations supplied by a programmer in source code.

Types that are not built-in are called user-defined types (UDTs). They can be standard library types — available to all C++
programmers as part of every ISO standard C++ implementation — such as string, vector, and ostream (Chapter 10), or
types that we build for ourselves, such as Token and Token_stream (§6.5 and §6.6). As soon as we get the necessary
technicalities under our belt, we’ll build graphics types such as Shape, Line, and Text (Chapter 13). The standard library
types are as much a part of the language as the built-in types, but we still consider them user-defined because they are built
from the same primitives and with the same techniques as the types we built ourselves; the standard library builders have no
special privileges or facilities that you don’t have. Like the built-in types, most user-defined types provide operations. For
example, vector has [ ] and size() (§4.6.1, §B.4.8), ostream has <<, Token_stream has get() (§6.8), and Shape has
add(Point) and set_color() (§14.2).



Why do we build types? The compiler does not know all the types we might like to use in our programs. It couldn’t, because
there are far too many useful types — no language designer or compiler implementer could know them all. We invent new ones
every day. Why? What are types good for? Types are good for directly representing ideas in code. When we write code, the
ideal is to represent our ideas directly in our code so that we, our colleagues, and the compiler can understand what we wrote.
When we want to do integer arithmetic, int is a great help; when we want to manipulate text, string is a great help; when we
want to manipulate calculator input, Token and Token_stream are a great help. The help comes in two forms:

• Representation: A type “knows” how to represent the data needed in an object.
• Operations: A type “knows” what operations can be applied to objects.

Many ideas follow this pattern: “something” has data to represent its current value — sometimes called the current state —
and a set of operations that can be applied. Think of a computer file, a web page, a toaster, a music player, a coffee cup, a car
engine, a cell phone, a telephone directory; all can be characterized by some data and all have a more or less fixed set of
standard operations that you can perform. In each case, the result of the operation depends on the data — the “current state” —
of an object.

So, we want to represent such an “idea” or “concept” in code as a data structure plus a set of functions. The question is:
“Exactly how?” This chapter presents the technicalities of the basic ways of doing that in C++.

C++ provides two kinds of user-defined types: classes and enumerations. The class is by far the most general and important,
so we first focus on classes. A class directly represents a concept in a program. A class is a (user-defined) type that specifies
how objects of its type are represented, how those objects can be created, how they are used, and how they can be destroyed
(see §17.5). If you think of something as a separate entity, it is likely that you should define a class to represent that “thing” in
your program. Examples are vector, matrix, input stream, string, FFT (fast Fourier transform), valve controller, robot arm,
device driver, picture on screen, dialog box, graph, window, temperature reading, and clock.

In C++ (as in most modern languages), a class is the key building block for large programs — and very useful for small ones
as well, as we saw for our calculator (Chapters 6 and 7).

9.2 Classes and members

A class is a user-defined type. It is composed of built-in types, other user-defined types, and functions. The parts used to define
the class are called members. A class has zero or more members. For example:
Click here to view code image

class X {

public:

          int m;                                                                      // data member
          int mf(int v) { int old = m; m=v; return old; }   // function member
};

Members can be of various types. Most are either data members, which define the representation of an object of the class, or
function members, which provide operations on such objects. We access members using the object.member notation. For
example:
Click here to view code image

X var;                              // var is a variable of type X
var.m = 7;                       // assign to var’s data member m
int x = var.mf(9);            // call var’s member function mf()

You can read var.m as var’s m. Most people pronounce it “var dot m” or “var’s m.” The type of a member determines what
operations we can do on it. We can read and write an int member, call a function member, etc.

A member function, such as X’s mf(), does not need to use the var.m notation. It can use the plain member name (m in this
example). Within a member function, a member name refers to the member of that name in the object for which the member
function was called. Thus, in the call var.mf(9), the m in the definition of mf() refers to var.m.

9.3 Interface and implementation



Usually, we think of a class as having an interface plus an implementation. The interface is the part of the class’s declaration
that its users access directly. The implementation is that part of the class’s declaration that its users access only indirectly
through the interface. The public interface is identified by the label public: and the implementation by the label private:. You
can think of a class declaration like this:
Click here to view code image

class X {       // this class’s name is X
public:

          // public members:
          //      – the interface to users (accessible by all)
          // functions
          // types
          // data (often best kept private)
private:

          // private members:
          //      – the implementation details (used by members of this class only)
          // functions
          // types
          // data
};

Class members are private by default; that is,

class X {

          int mf(int);

          // . . .
};

means

class X {

private:

          int mf(int);

          // . . .
};

so that
Click here to view code image

X x;                       // variable x of type X
int y = x.mf();      // error: mf is private (i.e., inaccessible)

A user cannot directly refer to a private member. Instead, we have to go through a public function that can use it. For example:
Click here to view code image

class X {

          int m;

          int mf(int);

public:

          int f(int i) { m=i; return mf(i); }

};

X x;

int y = x.f(2);

We use private and public to represent the important distinction between an interface (the user’s view of the class) and
implementation details (the implementer’s view of the class). We explain that and give lots of examples as we go along. Here
we’ll just mention that for something that’s just data, this distinction doesn’t make sense. So, there is a useful simplified
notation for a class that has no private implementation details. A struct is a class where members are public by default:

struct X {

          int m;

          // . . .
};



means

class X {

public:

          int m;

          // . . .
};

structs are primarily used for data structures where the members can take any value; that is, we can’t define any meaningful
invariant (§9.4.3).

9.4 Evolving a class
Let’s illustrate the language facilities supporting classes and the basic techniques for using them by showing how — and why
— we might evolve a simple data structure into a class with private implementation details and supporting operations. We use
the apparently trivial problem of how to represent a date (such as August 14, 1954) in a program. The need for dates in many
programs is obvious (commercial transactions, weather data, calendar programs, work records, inventory management, etc.).
The only question is how we might represent them.

9.4.1 struct and functions
How would we represent a date? When asked, most people answer, “Well, how about the year, the month, and the day of the
month?” That’s not the only answer and not always the best answer, but it’s good enough for our uses, so that’s what we’ll do.
Our first attempt is a simple struct:
Click here to view code image

// simple Date (too simple?)
struct Date {

          int y;       // year
          int m;     // month in year
          int d;      // day of month
};

Date today;    // a Date variable (a named object)

A Date object, such as today, will simply be three ints:

There is no “magic” relying on hidden data structures anywhere related to a Date — and that will be the case for every
version of Date in this chapter.

So, we now have Dates; what can we do with them? We can do everything in the sense that we can access the members of
today (and any other Date) and read and write them as we like. The snag is that nothing is really convenient. Just about
anything that we want to do with a Date has to be written in terms of reads and writes of those members. For example:
Click here to view code image

// set today to December 24, 2005
today.y = 2005;

today.m = 24;

today.d = 12;

This is tedious and error-prone. Did you spot the error? Everything that’s tedious is error-prone! For example, does this make
sense?

Date x;

x.y = –3;

x.m = 13;

x.d = 32;

Probably not, and nobody would write that — or would they? How about

Date y;

y.y = 2000;



y.m = 2;

y.d = 29;

Was year 2000 a leap year? Are you sure?
What we do then is to provide some helper functions to do the most common operations for us. That way, we don’t have to

repeat the same code over and over again and we won’t make, find, and fix the same mistakes over and over again. For just
about every type, initialization and assignment are among the most common operations. For Date, increasing the value of the
Date is another common operation, so we write
Click here to view code image

// helper functions:

void init_day(Date& dd, int y, int m, int d)

{

          // check that (y,m,d) is a valid date
          // if it is, use it to initialize dd
}

void add_day(Date& dd, int n)

{

          // increase dd by n days
}

We can now try to use Date:
Click here to view code image

void f()

{

          Date today;

          init_day(today, 12, 24, 2005);     // oops! (no day 2005 in year 12)
          add_day(today,1);

}

First we note the usefulness of such “operations” — here implemented as helper functions. Checking that a date is valid is
sufficiently difficult and tedious that if we didn’t write a checking function once and for all, we’d skip the check occasionally
and get buggy programs. Whenever we define a type, we want some operations for it. Exactly how many operations we want
and of which kind will vary. Exactly how we provide them (as functions, member functions, or operators) will also vary, but
whenever we decide to provide a type, we ask ourselves, “Which operations would we like for this type?”

9.4.2 Member functions and constructors
We provided an initialization function for Dates, one that provided an important check on the validity of Dates. However,
checking functions are of little use if we fail to use them. For example, assume that we have defined the output operator << for
a Date (§9.8):
Click here to view code image

void f()

{

          Date today;

          // . . .
          cout << today << '\n';               // use today
          // . . .
          init_day(today,2008,3,30);

          // . . .
          Date tomorrow;

          tomorrow.y = today.y;

          tomorrow.m = today.m;

          tomorrow.d = today.d+1;        // add 1 to today
          cout << tomorrow << '\n';       // use tomorrow
}

Here, we “forgot” to immediately initialize today and “someone” used it before we got around to calling init_day().
“Someone else” decided that it was a waste of time to call add_day() — or maybe hadn’t heard of it — and constructed



tomorrow by hand. As it happens, this is bad code — very bad code. Sometimes, probably most of the time, it works, but
small changes lead to serious errors. For example, writing out an uninitialized Date will produce garbage output, and
incrementing a day by simply adding 1 to its member d is a time bomb: when today is the last day of the month, the increment
yields an invalid date. The worst aspect of this “very bad code” is that it doesn’t look bad.

This kind of thinking leads to a demand for an initialization function that can’t be forgotten and for operations that are less
likely to be overlooked. The basic tool for that is member functions, that is, functions declared as members of the class within
the class body. For example:
Click here to view code image

// simple Date
// guarantee initialization with constructor
// provide some notational convenience
struct Date {

          int y, m, d;                            // year, month, day
          Date(int y, int m, int d);      // check for valid date and initialize
          void add_day(int n);           // increase the Date by n days
};

A member function with the same name as its class is special. It is called a constructor and will be used for initialization
(“construction”) of objects of the class. It is an error — caught by the compiler — to forget to initialize an object of a class that
has a constructor that requires an argument, and there is a special convenient syntax for doing such initialization:
Click here to view code image

Date my_birthday;                                  // error: my_birthday not initialized
Date today {12,24,2007};                        // oops! run-time error
Date last {2000,12,31};                            // OK (colloquial style)
Date next = {2014,2,14};                         // also OK (slightly verbose)
Date christmas = Date{1976,12,24};      // also OK (verbose style)

The attempt to declare my_birthday fails because we didn’t specify the required initial value. The attempt to declare today

will pass the compiler, but the checking code in the constructor will catch the illegal date at run time ({12,24,2007} — there is
no day 2007 of the 24th month of year 12).

The definition of last provides the initial value — the arguments required by Date’s constructor — as a { } list immediately
after the name of the variable. That’s the most common style of initialization of variables of a class that has a constructor
requiring arguments. We can also use the more verbose style where we explicitly create an object (here, Date{1976,12,24})
and then use that to initialize the variable using the = initializer syntax. Unless you actually like typing, you’ll soon tire of that.

We can now try to use our newly defined variables:
Click here to view code image

last.add_day(1);

add_day(2);                 // error: what date?

Note that the member function add_day() is called for a particular Date using the dot member-access notation. We’ll show
how to define member functions in §9.4.4.

In C++98, people used parentheses to delimit the initializer list, so you will see a lot of code like this:
Click here to view code image

Date last(2000,12,31);            // OK (old colloquial style)

We prefer { } for initializer lists because that clearly indicates when initialization (construction) is done, and also because that
notation is more widely useful. The notation can also be used for built-in types. For example:
Click here to view code image

int x {7};                  // OK (modern initializer list style)

Optionally, we can use a = before the { } list:
Click here to view code image

Date next = {2014,2,14};             // also OK (slightly verbose)

Some find this combination of older and new style more readable.



9.4.3 Keep details private
We still have a problem: What if someone forgets to use the member function add_day()? What if someone decides to change
the month directly? After all, we “forgot” to provide a facility for that:
Click here to view code image

Date birthday {1960,12,31};        // December 31, 1960
++birthday.d;                                // ouch! Invalid date
                                                        // (birthday.d==32 makes today invalid)

Date today {1970,2,3};

today.m = 14;                               // ouch! Invalid date
                                                       // (today.m==14 makes today invalid)

As long as we leave the representation of Date accessible to everybody, somebody will — by accident or design — mess it
up; that is, someone will do something that produces an invalid value. In this case, we created a Date with a value that doesn’t
correspond to a day on the calendar. Such invalid objects are time bombs; it is just a matter of time before someone innocently
uses the invalid value and gets a run-time error or — usually worse — produces a bad result.

Such concerns lead us to conclude that the representation of Date should be inaccessible to users except through the public
member functions that we supply. Here is a first cut:
Click here to view code image

// simple Date (control access)
class Date {

          int y, m, d;                                          // year, month, day
public:

          Date(int y, int m, int d);                   // check for valid date and initialize
          void add_day(int n);                        // increase the Date by n days
          int month() { return m; }

          int day() { return d; }

          int year() { return y; }

};

We can use it like this:
Click here to view code image

Date birthday {1970, 12, 30};                 // OK
birthday.m = 14;                                      // error: Date::m is private
cout << birthday.month() << '\n';         // we provided a way to read m

The notion of a “valid Date” is an important special case of the idea of a valid value. We try to design our types so that values
are guaranteed to be valid; that is, we hide the representation, provide a constructor that creates only valid objects, and design
all member functions to expect valid values and leave only valid values behind when they return. The value of an object is
often called its state, so the idea of a valid value is often referred to as a valid state of an object.

The alternative is for us to check for validity every time we use an object, or just hope that nobody left an invalid value lying
around. Experience shows that “hoping” can lead to “pretty good” programs. However, producing “pretty good” programs that
occasionally produce erroneous results and occasionally crash is no way to win friends and respect as a professional. We
prefer to write code that can be demonstrated to be correct.

A rule for what constitutes a valid value is called an invariant. The invariant for Date (“A Date must represent a day in the
past, present, or future”) is unusually hard to state precisely: remember leap years, the Gregorian calendar, time zones, etc.
However, for simple realistic uses of Dates we can do it. For example, if we are analyzing internet logs, we need not be
bothered with the Gregorian, Julian, or Mayan calendars. If we can’t think of a good invariant, we are probably dealing with
plain data. If so, use a struct.

9.4.4 Defining member functions



So far, we have looked at Date from the point of view of an interface designer and a user. But sooner or later, we have to
implement those member functions. First, here is a subset of the Date class reorganized to suit the common style of providing
the public interface first:
Click here to view code image

// simple Date (some people prefer implementation details last)
class Date {

public:

          Date(int y, int m, int d);    // constructor: check for valid date and initialize
          void add_day(int n);         // increase the Date by n days
          int month();

          // . . .
private:

          int y, m, d;                         // year, month, day
};

People put the public interface first because the interface is what most people are interested in. In principle, a user need not
look at the implementation details. In reality, we are typically curious and have a quick look to see if the implementation looks
reasonable and if the implementer used some technique that we could learn from. However, unless we are the implementers,
we do tend to spend much more time with the public interface. The compiler doesn’t care about the order of class function and
data members; it takes the declarations in any order you care to present them.

When we define a member outside its class, we need to say which class it is a member of. We do that using the
class_name::member_name notation:
Click here to view code image

Date::Date(int yy, int mm, int dd)         // constructor
          :y{yy}, m{mm}, d{dd}                  // note: member initializers
{

}

void Date::add_day(int n)

{

          // . . .
}

int month()                         // oops: we forgot Date::
{

          return m;                 // not the member function, can’t access m
}

The :y{yy}, m{mm}, d{dd} notation is how we initialize members. It is called a (member) initializer list. We could have
written
Click here to view code image

Date::Date(int yy, int mm, int dd)     // constructor
{

          y = yy;

          m = mm;

          d = dd;

}

but then we would in principle first have default initialized the members and then assigned values to them. We would then also
open the possibility of accidentally using a member before it was initialized. The :y{yy}, m{mm}, d{dd} notation more
directly expresses our intent. The distinction is exactly the same as the one between
Click here to view code image

int x;       // first define the variable x
// . . .
x = 2;      // later assign to x

and
Click here to view code image

int x {2};     // define and immediately initialize with 2

We can also define member functions right in the class definition:



Click here to view code image

// simple Date (some people prefer implementation details last)
class Date {

public:

          Date(int yy, int mm, int dd)

                    :y{yy}, m{mm}, d{dd}

          {
                    // . . .
          }

          void add_day(int n)

          {
                    // . . .
          }

          int month() { return m; }

          // . . .
private:

          int y, m, d;     // year, month, day
};

The first thing we notice is that the class declaration became larger and “messier.” In this example, the code for the constructor
and add_day() could be a dozen or more lines each. This makes the class declaration several times larger and makes it harder
to find the interface among the implementation details. Consequently, we don’t define large functions within a class
declaration.

However, look at the definition of month(). That’s straightforward and shorter than the version that places
Date::month() out of the class declaration. For such short, simple functions, we might consider writing the definition right in
the class declaration.

Note that month() can refer to m even though m is defined after (below) month(). A member can refer to a function or
data member of its class independently of where in the class that other member is declared. The rule that a name must be
declared before it is used is relaxed within the limited scope of a class.

Writing the definition of a member function within the class definition has three effects:

• The function will be inline; that is, the compiler will try to generate code for the function at each point of call rather than
using function-call instructions to use common code. This can be a significant performance advantage for functions, such
as month(), that hardly do anything but are used a lot.

• All uses of the class will have to be recompiled whenever we make a change to the body of an inlined function. If the
function body is out of the class declaration, recompilation of users is needed only when the class declaration is itself
changed. Not recompiling when the body is changed can be a huge advantage in large programs.

• The class definition gets larger. Consequently, it can be harder to find the members among the member function
definitions.

The obvious rule of thumb is: Don’t put member function bodies in the class declaration unless you know that you need the
performance boost from inlining tiny functions. Large functions, say five or more lines of code, don’t benefit from inlining and
make a class declaration harder to read. We rarely inline a function that consists of more than one or two expressions.

9.4.5 Referring to the current object
Consider a simple use of the Date class so far:
Click here to view code image

class Date {

          // . . .
          int month() { return m; }

          // . . .
private:

          int y, m, d;       // year, month, day
};



void f(Date d1, Date d2)

{

          cout << d1.month() << ' ' << d2.month() << '\n';

}

How does Date::month() know to return the value of d1.m in the first call and d2.m in the second? Look again at
Date::month(); its declaration specifies no function argument! How does Date::month() know for which object it was
called? A class member function, such as Date::month(), has an implicit argument which it uses to identify the object for
which it is called. So in the first call, m correctly refers to d1.m and in the second call it refers to d2.m. See §17.10 for more
uses of this implicit argument.

9.4.6 Reporting errors

What do we do when we find an invalid date? Where in the code do we look for invalid dates? From §5.6, we know that the
answer to the first question is “Throw an exception,” and the obvious place to look is where we first construct a Date. If we
don’t create invalid Dates and also write our member functions correctly, we will never have a Date with an invalid value.
So, we’ll prevent users from ever creating a Date with an invalid state:
Click here to view code image

// simple Date (prevent invalid dates)
class Date {

public:

          class Invalid { };                       // to be used as exception
          Date(int y, int m, int d);          // check for valid date and initialize
          // . . .
private:

          int y, m, d;                               // year, month, day
          bool is_valid();                        // return true if date is valid
};

We put the testing of validity into a separate is_valid() function because checking for validity is logically distinct from
initialization and because we might want to have several constructors. As you can see, we can have private functions as well
as private data:
Click here to view code image

Date::Date(int yy, int mm, int dd)

          : y{yy}, m{mm}, d{dd}                       // initialize data members
{

          if (!is_valid()) throw Invalid{};          // check for validity
}

bool Date::is_valid()                                   // return true if date is valid
{

          if (m<1 || 12<m) return false;

          // . . .
}

Given that definition of Date, we can write
Click here to view code image

void f(int x, int y)

try {

          Date dxy {2004,x,y};

          cout << dxy << '\n';              // see §9.8 for a declaration of <<
     dxy.add_day(2);

}

catch(Date::Invalid) {

          error("invalid date");          // error() defined in §5.6.3
}

We now know that << and add_day() will have a valid Date on which to operate.
Before completing the evolution of our Date class in §9.7, we’ll take a detour to describe a couple of general language



facilities that we’ll need to do that well: enumerations and operator overloading.

9.5 Enumerations

An enum (an enumeration) is a very simple user-defined type, specifying its set of values (its enumerators) as symbolic
constants. For example:
Click here to view code image

enum class Month {

          jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec

};

The “body” of an enumeration is simply a list of its enumerators. The class in enum class means that the enumerators are in
the scope of the enumeration. That is, to refer to jan, we have to say Month::jan.

You can give a specific representation value for an enumerator, as we did for jan here, or leave it to the compiler to pick a
suitable value. If you leave it to the compiler to pick, it’ll give each enumerator the value of the previous enumerator plus one.
Thus, our definition of Month gave the months consecutive values starting with 1. We could equivalently have written
Click here to view code image

enum class Month {

          jan=1, feb=2, mar=3, apr=4, may=5, jun=6,

          jul=7, aug=8, sep=9, oct=10, nov=11, dec=12

};

However, that’s tedious and opens the opportunity for errors. In fact, we made two typing errors before getting this latest
version right; it is better to let the compiler do simple, repetitive “mechanical” things. The compiler is better at such tasks than
we are, and it doesn’t get bored.

If we don’t initialize the first enumerator, the count starts with 0. For example:
Click here to view code image

enum class Day {

          monday, tuesday, wednesday, thursday, friday, saturday, sunday

};

Here monday is represented as 0 and sunday is represented as 6. In practice, starting with 0 is often a good choice.
We can use our Month like this:

Click here to view code image

Month m = Month::feb;

Month m2 = feb;                     // error: feb is not in scope
m = 7;                                         // error: can’t assign an int to a Month
int n = m;                                   // error: can’t assign a Month to an int
Month mm = Month(7);         // convert int to Month (unchecked)

Month is a separate type from its “underlying type” int. Every Month has an equivalent integer value, but most ints do not
have a Month equivalent. For example, we really do want this initialization to fail:
Click here to view code image

Month bad = 9999;     // error: can’t convert an int to a Month

If you insist on using the Month(9999) notation, on your head be it! In many cases, C++ will not try to stop a programmer from
doing something potentially silly when the programmer explicitly insists; after all, the programmer might actually know better.
Note that you cannot use the Month{9999} notation because that would allow only values that could be used in an
initialization of a Month, and ints cannot.

Unfortunately, we cannot define a constructor for an enumeration to check initializer values, but it is trivial to write a simple
checking function:



Click here to view code image

Month int_to_month(int x)

{

          if (x<int(Month::jan) || int(Month::dec)<x) error("bad month");

          return Month(x);

}

We use the int(Month::jan) notation to get the int representation of Month::jan. Given that, we can write
Click here to view code image

void f(int m)

{

          Month mm = int_to_month(m);

          // . . .
}

What do we use enumerations for? Basically, an enumeration is useful whenever we need a set of related named integer
constants. That happens all the time when we try to represent sets of alternatives (up, down; yes, no, maybe; on, off; n,
ne, e, se, s, sw, w, nw) or distinctive values (red, blue, green, yellow, maroon, crimson, black).

9.5.1 “Plain” enumerations
In addition to the enum classes, also known as scoped enumerations, there are “plain” enumerations that differ from scoped
enumerations by implicitly “exporting” their enumerators to the scope of the enumeration and allowing implicit conversions to
int. For example:
Click here to view code image

enum Month {                               // note: no “class”
          jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec

};

Month m = feb;                            // OK: feb in scope
Month m2 = Month::feb;          // also OK
m = 7;                                             // error: can’t assign an int to a Month
int n = m;                                  // OK: we can assign a Month to an int
Month mm = Month(7);        // convert int to Month (unchecked)

Obviously, “plain” enums are less strict than enum classes. Their enumerators can “pollute” the scope in which their
enumerator is defined. That can be a convenience, but it occasionally leads to surprises. For example, if you try to use this
Month together with the iostream formatting mechanisms (§11.2.1), you will find that dec for December clashes with dec

for decimal.
Similarly, having an enumeration value convert to int can be a convenience (it saves us from being explicit when we want a

conversion to int), but occasionally it leads to surprises. For example:
Click here to view code image

void my_code(Month m)

{

          If (m==17) do_something();                            // huh: 17th month?
          If (m==monday) do_something_else();        // huh: compare month to
                                                                                 // Monday?
}

If Month is an enum class, neither condition will compile. If monday is an enumerator of a “plain” enum, rather than an
enum class, the comparison of a month to Monday would succeed, most likely with undesirable results.

Prefer the simpler and safer enum classes to “plain” enums, but expect to find “plain” enums in older code: enum

classes are new in C++11.

9.6 Operator overloading
You can define almost all C++ operators for class or enumeration operands. That’s often called operator overloading. We use
it when we want to provide conventional notation for a type we design. For example:
Click here to view code image



enum class Month {

          Jan=1, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

};

Month operator++(Month& m)                                 // prefix increment operator
{

          m = (m==Dec) ? Jan : Month(int(m)+1);       // “wrap around”
          return m;

}

The ? : construct is an “arithmetic if”: m becomes Jan if (m==Dec) and Month(int(m)+1) otherwise. It is a reasonably
elegant way of expressing the fact that months “wrap around” after December. The Month type can now be used like this:
Click here to view code image

Month m = Sep;

++m;       // m becomes Oct
++m;       // m becomes Nov
++m;       // m becomes Dec
++m;       // m becomes Jan (“wrap around”)

You might not think that incrementing a Month is common enough to warrant a special operator. That may be so, but how
about an output operator? We can define one like this:
Click here to view code image

vector<string> month_tbl;

ostream& operator<<(ostream& os, Month m)

{

          return os << month_tbl[int(m)];

}

This assumes that month_tbl has been initialized somewhere so that (for example) month_tbl[int(Month::mar)] is
"March" or some other suitable name for that month; see §10.11.3.

You can define just about any operator provided by C++ for your own types, but only existing operators, such as +, –, *, /,
%, [ ], ( ), ^, !, &, <, <=, >, and >=. You cannot define your own operators; you might like to have ** or $= as operators in
your program, but C++ won’t let you. You can define operators only with their conventional number of operands; for example,
you can define unary –, but not unary <= (less than or equal), and binary +, but not binary ! (not). Basically, the language
allows you to use the existing syntax for the types you define, but not to extend that syntax.

An overloaded operator must have at least one user-defined type as operand:
Click here to view code image

int operator+(int,int);      // error: you can’t overload built-in +
Vector operator+(const Vector&, const Vector &);      // OK
Vector operator+=(const Vector&, int);                          // OK

It is generally a good idea not to define operators for a type unless you are really certain that it makes a big positive change to
your code. Also, define operators only with their conventional meaning: + should be addition, binary * multiplication, [ ]
access, ( ) call, etc. This is just advice, not a language rule, but it is good advice: conventional use of operators, such as + for
addition, can significantly help us understand a program. After all, such use is the result of hundreds of years of experience
with mathematical notation. Conversely, obscure operators and unconventional use of operators can be a significant distraction
and a source of errors. We will not elaborate on this point. Instead, in the following chapters, we will simply use operator
overloading in a few places where we consider it appropriate.

Note that the most interesting operators to overload aren’t +, –, *, and / as people often assume, but =, ==, !=, <, [ ]
(subscript), and ( ) (call).

9.7 Class interfaces
We have argued that the public interface and the implementation parts of a class should be separated. As long as we leave open



the possibility of using structs for types that are “plain old data,” few professionals would disagree. However, how do we
design a good interface? What distinguishes a good public interface from a mess? Part of that answer can be given only by
example, but there are a few general principles that we can list and that are given some support in C++:

• Keep interfaces complete.
• Keep interfaces minimal.
• Provide constructors.
• Support copying (or prohibit it) (see §14.2.4).
• Use types to provide good argument checking.
• Identify nonmodifying member functions (see §9.7.4).
• Free all resources in the destructor (see §17.5).

See also §5.5 (how to detect and report run-time errors).
The first two principles can be summarized as “Keep the interface as small as possible, but no smaller.” We want our

interface to be small because a small interface is easy to learn and easy to remember, and the implementer doesn’t waste a lot
of time implementing unnecessary and rarely used facilities. A small interface also means that when something is wrong, there
are only a few functions to check to find the problem. On average, the more public member functions are, the harder it is to find
bugs — and please don’t get us started on the complexities of debugging classes with public data. But of course, we want a
complete interface; otherwise, it would be useless. We couldn’t use an interface that didn’t allow us to do all we really
needed.

Let’s look at the other — less abstract and more directly supported — ideals.

9.7.1 Argument types
When we defined the constructor for Date in §9.4.3, we used three ints as the arguments. That caused some problems:
Click here to view code image

Date d1 {4,5,2005};   // oops: year 4, day 2005
Date d2 {2005,4,5};   // April 5 or May 4?

The first problem (an illegal day of the month) is easily dealt with by a test in the constructor. However, the second (a month
vs. day-of-the-month confusion) can’t be caught by code written by the user. The second problem is simply that the conventions
for writing month and day-in-month differ; for example, 4/5 is April 5 in the United States and May 4 in England. Since we
can’t calculate our way out of this, we must do something else. The obvious solution is to use a Month type:
Click here to view code image

          enum class Month {

                    jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec

                    };

// simple Date (use Month type)
class Date {

public:

          Date(int y, Month m, int d);       // check for valid date and initialize
          // . . .
private:

          int y;                                               // year
          Month m;

          int d;                                              // day
};

When we use a Month type, the compiler will catch us if we swap month and day, and using an enumeration as the Month

type also gives us symbolic names to use. It is usually easier to read and write symbolic names than to play around with
numbers, and therefore less error-prone:
Click here to view code image

Date dx1 {1998, 4, 3};                            // error: 2nd argument not a Month
Date dx2 {1998, 4, Month::mar};       // error: 2nd argument not a Month
Date dx2 {4, Month::mar, 1998};       // oops: run-time error: day 1998
Date dx2 {Month::mar, 4, 1998};       // error: 2nd argument not a Month



Date dx3 {1998, Month::mar, 30};     // OK

This takes care of most “accidents.” Note the use of the qualification of the enumerator mar with the enumeration name:
Month::mar. We don’t say Month.mar because Month isn’t an object (it’s a type) and mar isn’t a data member (it’s an
enumerator — a symbolic constant). Use :: after the name of a class, enumeration, or namespace (§8.7) and . (dot) after an
object name.

When we have a choice, we catch errors at compile time rather than at run time. We prefer for the compiler to find the error
rather than for us to try to figure out exactly where in the code a problem occurred. Also, errors caught at compile time don’t
require checking code to be written and executed.

Thinking like that, could we catch the swap of the day of the month and the year also? We could, but the solution is not as
simple or as elegant as for Month; after all, there was a year 4 and you might want to represent it. Even if we restricted
ourselves to modern times there would probably be too many relevant years for us to list them all in an enumeration.

Probably the best we could do (without knowing quite a lot about the intended use of Date) would be something like this:
Click here to view code image

class Year {                                                         // year in [min:max) range
          static const int min = 1800;

          static const int max = 2200;

public:

          class Invalid { };

          Year(int x) : y{x} { if (x<min || max<=x) throw Invalid{}; }

          int year() { return y; }

private:

          int y;

};

class Date {

public:

          Date(Year y, Month m, int d);            // check for valid date and initialize
          // . . .
private:

          Year y;

          Month m;

          int d;       // day
};

Now we get
Click here to view code image

Date dx1 {Year{1998}, 4, 3};                            // error: 2nd argument not a Month
Date dx2 {Year{1998}, 4, Month::mar};       // error: 2nd argument not a Month
Date dx2 {4, Month::mar, Year{1998}};       // error: 1st argument not a Year
Date dx2 {Month::mar, 4, Year{1998}};       // error: 2nd argument not a Month
Date dx3 {Year{1998}, Month::mar, 30};     // OK

This weird and unlikely error would still not be caught until run time:
Click here to view code image

Date dx2 {Year{4}, Month::mar, 1998};    // run-time error: Year::Invalid

Is the extra work and notation to get years checked worthwhile? Naturally, that depends on the constraints on the kind of
problem you are solving using Date, but in this case we doubt it and won’t use class Year as we go along.

When we program, we always have to ask ourselves what is good enough for a given application. We usually don’t have the
luxury of being able to search “forever” for the perfect solution after we have already found one that is good enough. Search
further, and we might even come up with something that’s so elaborate that it is worse than the simple early solution. This is
one meaning of the saying “The best is the enemy of the good” (Voltaire).



Note the use of static const in the definitions of min and max. This is the way we define symbolic constants of integer
types within classes. For a class member, we use static to make sure that there is just one copy of the value in the program,
rather than one per object of the class. In this case, because the initializer is a constant expression, we could have used
constexpr instead of const.

9.7.2 Copying
We always have to create objects; that is, we must always consider initialization and constructors. Arguably they are the most
important members of a class: to write them, you have to decide what it takes to initialize an object and what it means for a
value to be valid (what is the invariant?). Just thinking about initialization will help you avoid errors.

The next thing to consider is often: Can we copy our objects? And if so, how do we copy them?
For Date or Month, the answer is that we obviously want to copy objects of that type and that the meaning of copy is

trivial: just copy all of the members. Actually, this is the default case. So as long as you don’t say anything else, the compiler
will do exactly that. For example, if you copy a Date as an initializer or right-hand side of an assignment, all its members are
copied:
Click here to view code image

Date holiday {1978, Month::jul, 4};           // initialization
Date d2 = holiday;

Date d3 = Date{1978, Month::jul, 4};

holiday = Date{1978, Month::dec, 24};   // assignment
d3 = holiday;

This will all work as expected. The Date{1978, Month::dec, 24} notation makes the appropriate unnamed Date object,
which you can then use appropriately. For example:
Click here to view code image

cout << Date{1978, Month::dec, 24};

This is a use of a constructor that acts much as a literal for a class type. It often comes in as a handy alternative to first defining
a variable or const and then using it once.

What if we don’t want the default meaning of copying? We can either define our own (see §18.3) or delete the copy
constructor and copy assignment (see §14.2.4).

9.7.3 Default constructors

Uninitialized variables can be a serious source of errors. To counter that problem, we have the notion of a constructor to
guarantee that every object of a class is initialized. For example, we declared the constructor Date::Date(int,Month,int)

to ensure that every Date is properly initialized. In the case of Date, that means that the programmer must supply three
arguments of the right types. For example:
Click here to view code image

Date d0;                                        // error: no initializer
Date d1 {};                                    // error: empty initializer
Date d2 {1998};                            // error: too few arguments
Date d3 {1,2,3,4};                        // error: too many arguments
Date d4 {1,"jan",2};                    // error: wrong argument type
Date d5 {1,Month::jan,2};        // OK: use the three-argument constructor
Date d6 {d5};                                // OK: use the copy constructor

Note that even though we defined a constructor for Date, we can still copy Dates.
Many classes have a good notion of a default value; that is, there is an obvious answer to the question “What value should it

have if I didn’t give it an initializer?” For example:
Click here to view code image

string s1;                         // default value: the empty string " "
vector<string> v1;        // default value: the empty vector; no elements

This looks reasonable. It even works the way the comments indicate. That is achieved by giving vector and string default



constructors that implicitly provide the desired initialization.
For a type T, T{} is the notation for the default value, as defined by the default constructor, so we could write

Click here to view code image

string s1 = string{};                                      // default value: the empty string " "
vector<string> v1 = vector<string>{};     // default value: the empty vector;
                                                                              // no elements

However, we prefer the equivalent and colloquial
Click here to view code image

string s1;                           // default value: the empty string " "
vector<string> v1;          // default value: the empty vector; no elements

For built-in types, such as int and double, the default constructor notation means 0, so int{} is a complicated way of saying 0,
and double{} a long-winded way of saying 0.0.

Using a default constructor is not just a matter of looks. Imagine that we could have an uninitialized string or vector.
Click here to view code image

string s;

for (int i=0; i<s.size(); ++i)     // oops: loop an undefined number of times
          s[i] = toupper(s[i]);        // oops: read and write a random memory location

vector<string> v;

v.push_back("bad");             // oops: write to random address

If the values of s and v were genuinely undefined, s and v would have no notion of how many elements they contained or (using
the common implementation techniques; see §17.5) where those elements were supposed to be stored. The results would be use
of random addresses — and that can lead to the worst kind of errors. Basically, without a constructor, we cannot establish an
invariant — we cannot ensure that the values in those variables are valid (§9.4.3). We must insist that such variables are
initialized. We could insist on an initializer and then write

string s1 = "";

vector<string> v1 {};

But we don’t think that’s particularly pretty. For string, "" is rather obvious for “empty string.” For vector, { } is pretty for a
vector with no elements. However, for many types, it is not easy to find a reasonable notation for a default value. For many
types, it is better to define a constructor that gives meaning to the creation of an object without an explicit initializer. Such a
constructor takes no arguments and is called a default constructor.

There isn’t an obvious default value for dates. That’s why we haven’t defined a default constructor for Date so far, but let’s
provide one (just to show we can):
Click here to view code image

class Date {

public:

          // . . .
          Date();         // default constructor
          // . . .
private:

          int y;

          Month m;

          int d;

};

We have to pick a default date. The first day of the 21st century might be a reasonable choice:
Click here to view code image

Date::Date()

          :y{2001}, m{Month::jan}, d{1}

{

}



Instead of placing the default values for members in the constructor, we could place them on the members themselves:
Click here to view code image

class Date {

public:

          // . . .
          Date();                                                 // default constructor
                    Date(year, Month, day);

                    Date(int y);                               // January 1 of year y
          // . . .
private:

          int y {2001};

          Month m {Month::jan};

          int d {1};

};

That way, the default values are available to every constructor. For example:
Click here to view code image

Date::Date(int y)                                       // January 1 of year y
          :y{yy}

{

          if (!is_valid()) throw Invalid{};      // check for validity
}

Because Date(int) does not explicitly initialize the month (m) or the day (d), the specified initializers (Month::jan and 1)
are implicitly used. An initializer for a class member specified as part of the member declaration is called an in-class
initializer.

If we didn’t like to build the default value right into the constructor code, we could use a constant (or a variable). To avoid a
global variable and its associated initialization problems, we use the technique from §8.6.2:
Click here to view code image

const Date& default_date()

{

          static Date dd {2001,Month::jan,1};

          return dd;

}

We used static to get a variable (dd) that is created only once, rather than each time default_date() is called, and initialized
the first time default_date() is called. Given default_date(), it is trivial to define a default constructor for Date:
Click here to view code image

Date::Date()

          :y{default_date().year()},

          m{default_date().month()},

          d{default_date().day()}

{

}

Note that the default constructor does not need to check its value; the constructor for default_date already did that. Given this
default Date constructor, we can now define nonempty vectors of Dates without listing element values:
Click here to view code image

vector<Date> birthdays(10);      // ten elements with the default Date value,
                                                              // Date{}

Without the default constructor, we would have had to be explicit:
Click here to view code image

vector<Date> birthdays(10,default_date());   // ten default Dates

vector<Date> birthdays2 = {                             // ten default Dates
          default_date(), default_date(), default_date(), default_date(), default_



                    date(),

          default_date(), default_date(), default_date(), default_date(), default_

                   date()

};

We use parentheses, ( ), when specifying the element counts for a vector, rather than the { } initializer-list notation, to avoid
confusion in the case of a vector<int> (§18.2).

9.7.4 const member functions
Some variables are meant to be changed — that’s why we call them “variables” — but some are not; that is, we have
“variables” representing immutable values. Those, we typically call constants or just consts. Consider:
Click here to view code image

void some_function(Date& d, const Date& start_of_term)

{

          int a = d.day();   // OK
          int b = start_of_term.day();         // should be OK (why?)
          d.add_day(3);                            // fine
          start_of_term.add_day(3);      // error
}

Here we intend d to be mutable, but start_of_term to be immutable; it is not acceptable for some_function() to change
start_of_term. How would the compiler know that? It knows because we told it by declaring start_of_term const. So far,
so good, but then why is it OK to read the day of start_of_term using day()? As the definition of Date stands so far,
start_of_term.day() is an error because the compiler does not know that day() doesn’t change its Date. We never told it, so
the compiler assumes that day() may modify its Date and reports an error.

We can deal with this problem by classifying operations on a class as modifying and nonmodifying. That’s a pretty
fundamental distinction that helps us understand a class, but it also has a very practical importance: operations that do not
modify the object can be invoked for const objects. For example:

Click here to view code image

class Date {

public:

          // . . .
          int day() const;                         // const member: can’t modify the object
          Month month() const;           // const member: can’t modify the object
          int year() const;                       // const member: can’t modify the object

          void add_day(int n);              // non-const member: can modify the object
          void add_month(int n);        // non-const member: can modify the object
          void add_year(int n);            // non-const member: can modify the object
private:

          int y;                                         // year
          Month m;

          int d;                                        // day of month
};

Date d {2000, Month::jan, 20};

const Date cd {2001, Month::feb, 21};

cout << d.day() << " — " << cd.day() << '\n';      // OK
d.add_day(1);                                                             // OK
cd.add_day(1);                                                           // error: cd is a const

We use const right after the argument list in a member function declaration to indicate that the member function can be called
for a const object. Once we have declared a member function const, the compiler holds us to our promise not to modify the
object. For example:
Click here to view code image

int Date::day() const

{

          ++d;       // error: attempt to change object from const member function



          return d;

}

Naturally, we don’t usually try to “cheat” in this way. What the compiler provides for the class implementer is primarily
protection against accident, which is particularly useful for more complex code.

9.7.5 Members and “helper functions”

When we design our interfaces to be minimal (though complete), we have to leave out lots of operations that are merely useful.
A function that can be simply, elegantly, and efficiently implemented as a freestanding function (that is, as a nonmember
function) should be implemented outside the class. That way, a bug in that function cannot directly corrupt the data in a class
object. Not accessing the representation is important because the usual debug technique is “Round up the usual suspects”; that
is, when something goes wrong with a class, we first look at the functions that directly access the representation: one of those
almost certainly did it. If there are a dozen such functions, we will be much happier than if there were 50.

Fifty functions for a Date class! You must wonder if we are kidding. We are not: a few years ago I surveyed a number of
commercially used Date libraries and found them full of functions like next_Sunday(), next_workday(), etc. Fifty is not an
unreasonable number for a class designed for the convenience of the users rather than for ease of comprehension,
implementation, and maintenance.

Note also that if the representation changes, only the functions that directly access the representation need to be rewritten.
That’s another strong practical reason for keeping interfaces minimal. In our Date example, we might decide that an integer
representing the number of days since January 1, 1900, is a much better representation for our uses than (year,month,day). Only
the member functions would have to be changed.

Here are some examples of helper functions:
Click here to view code image

Date next_Sunday(const Date& d)

{

          // access d using d.day(), d.month(), and d.year()
          // make new Date to return
}

Date next_weekday(const Date& d) { /* . . . */ }

bool leapyear(int y) { /* . . . */ }

bool operator==(const Date& a, const Date& b)

{

          return a.year()==b.year()

                    && a.month()==b.month()

                    && a.day()==b.day();

}

bool operator!=(const Date& a, const Date& b)

{

          return !(a==b);

}

Helper functions are also called convenience functions, auxiliary functions, and many other things. The distinction between
these functions and other nonmember functions is logical; that is, “helper function” is a design concept, not a programming
language concept. The helper functions often take arguments of the classes that they are helpers of. There are exceptions,
though: note leapyear(). Often, we use namespaces to identify a group of helper functions; see §8.7:
Click here to view code image

namespace Chrono {

          enum class Month { /* ... */ };

          class Date { /* . . . */ };

          bool is_date(int y, Month m, int d);         // true for valid date
          Date next_Sunday(const Date& d) { /* . . . */ }

          Date next_weekday(const Date& d) { /* . . . */ }



          bool leapyear(int y) { /* . . . */ }                   // see exercise 10
          bool operator==(const Date& a, const Date& b) { /* . . . */ }

// . . .
}

Note the == and != functions. They are typical helpers. For many classes, == and != make obvious sense, but since they don’t
make sense for all classes, the compiler can’t write them for you the way it writes the copy constructor and copy assignment.

Note also that we introduced a helper function is_date(). That function replaces Date::is_valid() because checking
whether a date is valid is largely independent of the representation of a Date. For example, we don’t need to know how Date

objects are represented to know that “January 30, 2008” is a valid date and “February 30, 2008” is not. There still may be
aspects of a date that depend on the representation (e.g., can we represent “January 30, 1066”?), but (if necessary) Date’s
constructor can take care of that.

9.8 The Date class
So, let’s just put it all together and see what that Date class might look like when we combine all of the ideas/concerns. Where
a function’s body is just a . . . comment, the actual implementation is tricky (please don’t try to write those just yet). First we
place the declarations in a header Chrono.h:
Click here to view code image

// file Chrono.h

namespace Chrono {

enum class Month {

          jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec

};

class Date {

public:

          class Invalid { };                               // to throw as exception

          Date(int y, Month m, int d);         // check for valid date and initialize
          Date();                                              // default constructor
          // the default copy operations are fine

          // nonmodifying operations:
          int day() const { return d; }

          Month month() const { return m; }

          int year() const { return y; }

          // modifying operations:
          void add_day(int n);

          void add_month(int n);

          void add_year(int n);

private:

          int y;

          Month m;

          int d;

};

bool is_date(int y, Month m, int d);  // true for valid date
bool leapyear(int y);           // true if y is a leap year

bool operator==(const Date& a, const Date& b);

bool operator!=(const Date& a, const Date& b);

ostream& operator<<(ostream& os, const Date& d);

istream& operator>>(istream& is, Date& dd);

}                                              // Chrono

The definitions go into Chrono.cpp:
Click here to view code image



// Chrono.cpp
#include "Chrono.h"

namespace Chrono {

// member function definitions:

Date::Date(int yy, Month mm, int dd)

          : y{yy}, m{mm}, d{dd}

{

          if (!is_date(yy,mm,dd)) throw Invalid{};

}

const Date& default_date()

{

          static Date dd {2001,Month::jan,1};   // start of 21st century
          return dd;

}

Date::Date()

          :y{default_date().year()},

          m{default_date().month()},

          d{default_date().day()}

{

}

void Date:: add_day(int n)

{

          // . . .
}

void Date::add_month(int n)

{

          // . . .
}

void Date::add_year(int n)

{

          if (m==feb && d==29 && !leapyear(y+n)) {             // beware of leap years!
                    m = mar;                                        // use March 1 instead of February 29
                    d = 1;

          }
          y+=n;

}

// helper functions:

bool is_date(int y, Month m, int d)

{

          // assume that y is valid

          if (d<=0) return false;                        // d must be positive
          if (m<Month::jan || Month::dec<m) return false;

          int days_in_month = 31;                  // most months have 31 days

          switch (m) {

          case Month::feb:                              // the length of February varies
                    days_in_month = (leapyear(y))?29:28;

                    break;

          case Month::apr: case Month::jun: case Month::sep: case Month::nov:

                    days_in_month = 30;               // the rest have 30 days
                    break;

          }

          if (days_in_month<d) return false;

          return true;

}

bool leapyear(int y)

{



          // see exercise 10
}

bool operator==(const Date& a, const Date& b)

{

          return a.year()==b.year()

                    && a.month()==b.month()

                    && a.day()==b.day();

}

bool operator!=(const Date& a, const Date& b)

{

          return !(a==b);

}

ostream& operator<<(ostream& os, const Date& d)

{

          return os << '(' << d.year()

                              << ',' << d.month()

                              << ',' << d.day() << ')';

}

istream& operator>>(istream& is, Date& dd)

{

          int y, m, d;

          char ch1, ch2, ch3, ch4;

          is >> ch1 >> y >> ch2 >> m >> ch3 >> d >> ch4;

          if (!is) return is;

          if (ch1!= '(' || ch2!=',' || ch3!=',' || ch4!=')') {       // oops: format error
                    is.clear(ios_base::failbit);                            // set the fail bit
          return is;

          }

          dd = Date(y, Month(m),d);                                   // update dd

          return is;

}

enum class Day {

          sunday, monday, tuesday, wednesday, thursday, friday, saturday

};

Day day_of_week(const Date& d)

{

          // . . .
}

Date next_Sunday(const Date& d)

{

          // ...
}

Date next_weekday(const Date& d)

{

          // . . .
}

}        // Chrono

The functions implementing >> and << for Date will be explained in detail in §10.8 and §10.9.

 Drill

This drill simply involves getting the sequence of versions of Date to work. For each version define a Date called today

initialized to June 25, 1978. Then, define a Date called tomorrow and give it a value by copying today into it and
increasing its day by one using add_day(). Finally, output today and tomorrow using a << defined as in §9.8.

Your check for a valid date may be very simple. Feel free to ignore leap years. However, don’t accept a month that is not in
the [1,12] range or day of the month that is not in the [1,31] range. Test each version with at least one invalid date (e.g., 2004,



13, –5).
1. The version from §9.4.1
2. The version from §9.4.2
3. The version from §9.4.3
4. The version from §9.7.1
5. The version from §9.7.4

Review
1. What are the two parts of a class, as described in the chapter?
2. What is the difference between the interface and the implementation in a class?
3. What are the limitations and problems of the original Date struct that is created in the chapter?
4. Why is a constructor used for the Date type instead of an init_day() function?
5. What is an invariant? Give examples.
6. When should functions be put in the class definition, and when should they be defined outside the class? Why?
7. When should operator overloading be used in a program? Give a list of operators that you might want to overload (each

with a reason).
8. Why should the public interface to a class be as small as possible?
9. What does adding const to a member function do?

10. Why are “helper functions” best placed outside the class definition?

Terms
built-in types
class

const

constructor
destructor
enum

enumeration
enumerator
helper function
implementation
in-class initializer
inlining
interface
invariant
representation
struct

structure
user-defined types
valid state

Exercises
1. List sets of plausible operations for the examples of real-world objects in §9.1 (such as toaster).
2. Design and implement a Name_pairs class holding (name,age) pairs where name is a string and age is a double.

Represent that as a vector<string> (called name) and a vector<double> (called age) member. Provide an input
operation read_names() that reads a series of names. Provide a read_ages() operation that prompts the user for an age
for each name. Provide a print() operation that prints out the (name[i],age[i]) pairs (one per line) in the order



determined by the name vector. Provide a sort() operation that sorts the name vector in alphabetical order and
reorganizes the age vector to match. Implement all “operations” as member functions. Test the class (of course: test early
and often).

3. Replace Name_pair::print() with a (global) operator << and define == and != for Name_pairs.
4. Look at the headache-inducing last example of §8.4. Indent it properly and explain the meaning of each construct. Note

that the example doesn’t do anything meaningful; it is pure obfuscation.
5. This exercise and the next few require you to design and implement a Book class, such as you can imagine as part of

software for a library. Class Book should have members for the ISBN, title, author, and copyright date. Also store data
on whether or not the book is checked out. Create functions for returning those data values. Create functions for checking
a book in and out. Do simple validation of data entered into a Book; for example, accept ISBNs only of the form n-n-n-

x where n is an integer and x is a digit or a letter. Store an ISBN as a string.
6. Add operators for the Book class. Have the == operator check whether the ISBN numbers are the same for two books.

Have != also compare the ISBN numbers. Have a << print out the title, author, and ISBN on separate lines.
7. Create an enumerated type for the Book class called Genre. Have the types be fiction, nonfiction, periodical,

biography, and children. Give each book a Genre and make appropriate changes to the Book constructor and member
functions.

8. Create a Patron class for the library. The class will have a user’s name, library card number, and library fees (if
owed). Have functions that access this data, as well as a function to set the fee of the user. Have a helper function that
returns a Boolean (bool) depending on whether or not the user owes a fee.

9. Create a Library class. Include vectors of Books and Patrons. Include a struct called Transaction. Have it include a
Book, a Patron, and a Date from the chapter. Make a vector of Transactions. Create functions to add books to the
library, add patrons to the library, and check out books. Whenever a user checks out a book, have the library make sure
that both the user and the book are in the library. If they aren’t, report an error. Then check to make sure that the user
owes no fees. If the user does, report an error. If not, create a Transaction, and place it in the vector of Transactions.
Also write a function that will return a vector that contains the names of all Patrons who owe fees.

10. Implement leapyear() from §9.8.
11. Design and implement a set of useful helper functions for the Date class with functions such as next_workday()

(assume that any day that is not a Saturday or a Sunday is a workday) and week_of_year() (assume that week 1 is the
week with January 1 in it and that the first day of a week is a Sunday).

12. Change the representation of a Date to be the number of days since January 1, 1970 (known as day 0), represented as a
long int, and re-implement the functions from §9.8. Be sure to reject dates outside the range we can represent that way
(feel free to reject days before day 0, i.e., no negative days).

13. Design and implement a rational number class, Rational. A rational number has two parts: a numerator and a
denominator, for example, 5/6 (five-sixths, also known as approximately .83333). Look up the definition if you need to.
Provide assignment, addition, subtraction, multiplication, division, and equality operators. Also, provide a conversion to
double. Why would people want to use a Rational class?

14. Design and implement a Money class for calculations involving dollars and cents where arithmetic has to be accurate
to the last cent using the 4/5 rounding rule (.5 of a cent rounds up; anything less than .5 rounds down). Represent a
monetary amount as a number of cents in a long int, but input and output as dollars and cents, e.g., $123.45. Do not
worry about amounts that don’t fit into a long int.

15. Refine the Money class by adding a currency (given as a constructor argument). Accept a floating-point initializer as
long as it can be exactly represented as a long int. Don’t accept illegal operations. For example, Money*Money

doesn’t make sense, and USD1.23+DKK5.00 makes sense only if you provide a conversion table defining the
conversion factor between U.S. dollars (USD) and Danish kroner (DKK).

16. Define an input operator (>>) that reads monetary amounts with currency denominations, such as USD1.23 and
DKK5.00, into a Money variable. Also define a corresponding output operator (>>).

17. Give an example of a calculation where a Rational gives a mathematically better result than Money.
18. Give an example of a calculation where a Rational gives a mathematically better result than double.

Postscript



There is a lot to user-defined types, much more than we have presented here. User-defined types, especially classes, are the
heart of C++ and the key to many of the most effective design techniques. Most of the rest of the book is about the design and
use of classes. A class — or a set of classes — is the mechanism through which we represent our concepts in code. Here we
primarily introduced the language-technical aspects of classes; elsewhere we focus on how to elegantly express useful ideas as
classes.



Part II: Input and Output



10. Input and Output Streams

“Science is what we have learned about how to keep from fooling ourselves.”
—Richard P. Feynman

In this chapter and the next, we present the C++ standard library facilities for handling input and output from a variety of
sources: I/O streams. We show how to read and write files, how to deal with errors, how to deal with formatted input, and
how to provide and use I/O operators for user-defined types. This chapter focuses on the basic model: how to read and write
individual values, and how to open, read, and write whole files. The final example illustrates the kinds of considerations that
go into a larger piece of code. The next chapter addresses details.

10.1 Input and output
10.2 The I/O stream model
10.3 Files
10.4 Opening a file
10.5 Reading and writing a file
10.6 I/O error handling
10.7 Reading a single value

10.7.1 Breaking the problem into manageable parts
10.7.2 Separating dialog from function

10.8 User-defined output operators
10.9 User-defined input operators
10.10 A standard input loop
10.11 Reading a structured file

10.11.1 In-memory representation
10.11.2 Reading structured values
10.11.3 Changing representations

10.1 Input and output

Without data, computing is pointless. We need to get data into our program to do interesting computations and we need to get
the results out again. In §4.1, we mentioned the bewildering variety of data sources and targets for output. If we don’t watch
out, we’ll end up writing programs that can receive input only from a specific source and deliver output only to a specific
output device. That may be acceptable (and sometimes even necessary) for specialized applications, such as a digital camera
or a sensor for an engine fuel injector, but for more common tasks, we need a way to separate the way our program reads and
writes from the actual input and output devices used. If we had to directly address each kind of device, we’d have to change
our program each time a new screen or disk came on the market, or limit our users to the screens and disks we happen to like.
That would be absurd.

Most modern operating systems separate the detailed handling of I/O devices into device drivers, and programs then access
the device drivers through an I/O library that makes I/O from/to different sources appear as similar as possible. Generally, the
device drivers are deep in the operating system where most users don’t see them, and the I/O library provides an abstraction of
I/O so that the programmer doesn’t have to think about devices and device drivers:



When a model like this is used, input and output can be seen as streams of bytes (characters) handled by the input/output
library. More complex forms of I/O require specialized expertise and are beyond the scope of this book. Our job as
programmers of an application then becomes

1. To set up I/O streams to the appropriate data sources and destinations
2. To read and write from/to those streams

The details of how our characters are actually transmitted to/from the devices are dealt with by the I/O library and the device
drivers. In this chapter and the next, we’ll see how I/O consisting of streams of formatted data is done using the C++ standard
library.

From the programmer’s point of view there are many different kinds of input and output. One classification is

• Streams of (many) data items (usually to/from files, network connections, recording devices, or display devices)
• Interactions with a user at a keyboard
• Interactions with a user through a graphical interface (outputting objects, receiving mouse clicks, etc.)

This classification isn’t the only classification possible, and the distinction between the three kinds of I/O isn’t as clear as it
might appear. For example, if a stream of output characters happens to be an HTTP document aimed at a browser, the result
looks remarkably like user interaction and can contain graphical elements. Conversely, the results of interactions with a GUI
(graphical user interface) may be presented to a program as a sequence of characters. However, this classification fits our
tools: the first two kinds of I/O are provided by the C++ standard library I/O streams and supported rather directly by most
operating systems. We have been using the iostream library since Chapter 1 and will focus on that for this and the next chapter.
The graphical output and graphical user interactions are served by a variety of different libraries, and we will focus on that
kind of I/O in Chapters 12 to 16.

10.2 The I/O stream model
The C++ standard library provides the type istream to deal with streams of input and the type ostream to deal with streams
of output. We have used the standard istream called cin and the standard ostream called cout, so we know the basics of
how to use this part of the standard library (usually called the iostream library).

An ostream

• Turns values of various types into character sequences
• Sends those characters “somewhere” (such as to a console, a file, the main memory, or another computer)

We can represent an ostream graphically like this:



The buffer is a data structure that the ostream uses internally to store the data you give it while communicating with the
operating system. If you notice a “delay” between your writing to an ostream and the characters appearing at their destination,
it’s usually because they are still in the buffer. Buffering is important for performance, and performance is important if you deal
with large amounts of data.

An istream

• Turns character sequences into values of various types
• Gets those characters from somewhere (such as a console, a file, the main memory, or another computer)

We can represent an istream graphically like this:

As with an ostream, an istream uses a buffer to communicate with the operating system. With an istream, the buffering can
be quite visible to the user. When you use an istream that is attached to a keyboard, what you type is left in the buffer until you
hit Enter (return/newline), and you can use the erase (Backspace) key “to change your mind” (until you hit Enter).

One of the major uses of output is to produce data for humans to read. Think of email messages, scholarly articles, web
pages, billing records, business reports, contact lists, tables of contents, equipment status readouts, etc. Therefore, ostreams
provide many features for formatting text to suit various tastes. Similarly, much input is written by humans or is formatted to
make it easy for humans to read it. Therefore, istreams provide features for reading the kind of output produced by ostreams.
We’ll discuss formatting in §11.2 and how to read non-character input in §11.3.2. Most of the complexity related to input has to
do with how to handle errors. To be able to give more realistic examples, we’ll start by discussing how the iostream model
relates to files of data.

10.3 Files
We typically have much more data than can fit in the main memory of our computer, so we store most of it on disks or other
large-capacity storage devices. Such devices also have the desirable property that data doesn’t disappear when the power is
turned off — the data is persistent. At the most basic level, a file is simply a sequence of bytes numbered from 0 upward:

A file has a format; that is, it has a set of rules that determine what the bytes mean. For example, if we have a text file, the first
4 bytes will be the first four characters. On the other hand, if we have a file that uses a binary representation of integers, those



very same first 4 bytes will be taken to be the (binary) representation of the first integer (see §11.3.2). The format serves the
same role for files on disk as types serve for objects in main memory. We can make sense of the bits in a file if (and only if)
we know its format (see §11.2–3).

For a file, an ostream converts objects in main memory into streams of bytes and writes them to disk. An istream does the
opposite; that is, it takes a stream of bytes from disk and composes objects from them:

Most of the time, we assume that these “bytes on disk” are in fact characters in our usual character set. That is not always so,
but we can get an awfully long way with that assumption, and other representations are not that hard to deal with. We also talk
as if all files were on disks (that is, on rotating magnetic storage). Again, that’s not always so (think of flash memory), but at
this level of programming the actual storage makes no difference. That’s one of the beauties of the file and stream abstractions.

To read a file, we must
1. Know its name
2. Open it (for reading)
3. Read in the characters
4. Close it (though that is typically done implicitly)

To write a file, we must
1. Name it
2. Open it (for writing) or create a new file of that name
3. Write out our objects
4. Close it (though that is typically done implicitly)

We already know the basics of reading and writing because an ostream attached to a file behaves exactly as cout for what
we have done so far, and an istream attached to a file behaves exactly as cin for what we have done so far. We’ll present
operations that can only be done for files later (§11.3.3), but for now we’ll just see how to open files and then concentrate on
operations and techniques that apply to all ostreams and all istreams.

10.4 Opening a file
If you want to read from a file or write to a file you have to open a stream specifically for that file. An ifstream is an istream

for reading from a file, an ofstream is an ostream for writing to a file, and an fstream is an iostream that can be used for
both reading and writing. Before a file stream can be used it must be attached to a file. For example:

Click here to view code image

cout << "Please enter input file name: ";

string iname;

cin >> iname;

ifstream ist {iname};          // ist is an input stream for the file named name
if (!ist) error("can't open input file ",iname);

Defining an ifstream with a name string opens the file of that name for reading. The test of !ist checks if the file was properly
opened. After that, we can read from the file exactly as we would from any other istream. For example, assuming that the
input operator, >>, was defined for a type Point, we could write

vector<Point> points;

for (Point p; ist>>p; )



          points.push_back(p);

Output to files is handled in a similar fashion by ofstreams. For example:
Click here to view code image

cout << "Please enter name of output file: ";

string oname;

cin >> oname;

ofstream ost {oname};           // ost is an output stream for a file named oname
if (!ost) error("can't open output file ",oname);

Defining an ofstream with a name string opens the file with that name for writing. The test of !ost checks if the file was
properly opened. After that, we can write to the file exactly as we would to any other ostream. For example:
Click here to view code image

for (int p : points)

          ost << '(' << p.x << ',' << p.y << ")\n";

When a file stream goes out of scope its associated file is closed. When a file is closed its associated buffer is “flushed”; that
is, the characters from the buffer are written to the file.

It is usually best to open files early in a program before any serious computation has taken place. After all, it is a waste to
do a lot of work just to find that we can’t complete it because we don’t have anywhere to write our results.

Opening the file implicitly as part of the creation of an ostream or an istream and relying on the scope of the stream to
take care of closing the file is the ideal. For example:
Click here to view code image

void fill_from_file(vector<Point>& points, string& name)

{

          ifstream ist {name};           // open file for reading
          if (!ist) error("can't open input file ",name);

          // . . . use ist . . .
          // the file is implicitly closed when we leave the function
}

You can also perform explicit open() and close() operations (§B.7.1). However, relying on scope minimizes the chances of
someone trying to use a file stream before it has been attached to a stream or after it was closed. For example:
Click here to view code image

ifstream ifs;

// . . .
ifs >> foo;                                            // won’t succeed: no file opened for ifs
// . . .
ifs.open(name,ios_base::in);         // open file named name for reading
// . . .
ifs.close();                                           // close file
// . . .
ifs >> bar;                                           // won’t succeed: ifs’ file was closed
// . . .

In real-world code the problems would typically be much harder to spot. Fortunately, you can’t open a file stream a second
time without first closing it. For example:
Click here to view code image

fstream fs;

fs.open("foo", ios_base::in) ;         // open for input
// close() missing
fs.open("foo", ios_base::out);      // won’t succeed: fs is already open
if (!fs) error("impossible");

Don’t forget to test a stream after opening it.
Why would you use open() or close() explicitly? Well, occasionally the lifetime of a connection to a file isn’t conveniently

limited by a scope so you have to. But that’s rare enough for us not to have to worry about it here. More to the point, you’ll find



such use in code written by people using styles from languages and libraries that don’t have the scoped idiom used by
iostreams (and the rest of the C++ standard library).

As we’ll see in Chapter 11, there is much more to files, but for now we know enough to use them as a data source and a
destination for data. That’ll allow us to write programs that would be unrealistic if we assumed that a user had to directly type
in all the input. From a programmer’s point of view, a great advantage of a file is that you can repeatedly read it during
debugging until your program works correctly.

10.5 Reading and writing a file
Consider how you might read a set of results of some measurements from a file and represent them in memory. These might be
the temperature readings from a weather station:

0 60.7

1 60.6

2 60.3

3 59.22

. . .

This data file contains a sequence of (hour,temperature) pairs. The hours are numbered 0 to 23 and the temperatures are in
Fahrenheit. No further formatting is assumed; that is, the file does not contain any special header information (such as where
the reading was taken), units for the values, punctuation (such as parentheses around each pair of values), or termination
indicator. This is the simplest case.

We could represent a temperature reading by a Reading type:
Click here to view code image

struct Reading {                              // a temperature reading
          int hour;                                // hour after midnight [0:23]
          double temperature;         // in Fahrenheit
};

Given that, we could read like this:
Click here to view code image

vector<Reading> temps;            // store the readings here
int hour;

double temperature;

while (ist >> hour >> temperature) {

          if (hour < 0 || 23 <hour) error("hour out of range");

          temps.push_back(Reading{hour,temperature});

}

This is a typical input loop. The istream called ist could be an input file stream (ifstream) as shown in the previous section,
(an alias for) the standard input stream (cin), or any other kind of istream. For code like this, it doesn’t matter exactly from
where the istream gets its data. All that our program cares about is that ist is an istream and that the data has the expected
format. The next section addresses the interesting question of how to detect errors in the input data and what we can do after
detecting a format error.

Writing to a file is usually simpler than reading from one. Again, once a stream is initialized we don’t have to know exactly
what kind of stream it is. In particular, we can use the output file stream (ofstream) from the section above just like any other
ostream. For example, we might want to output the readings with each pair of values in parentheses:
Click here to view code image

for (int i=0; i<temps.size(); ++i)

          ost << '(' << temps[i].hour << ',' << temps[i].temperature << ")\n";

The resulting program would then be reading the original temperature reading file and producing a new file with the data in
(hour,temperature) format.

Because the file streams automatically close their files when they go out of scope, the complete program becomes
Click here to view code image

#include "std_lib_facilities.h"



struct Reading {                                  // a temperature reading
          int hour;                                    // hour after midnight [0:23]
          double temperature;             // in Fahrenheit
};

int main()

{

          cout << "Please enter input file name: ";

          string iname;

          cin >> iname;

          ifstream ist {iname};               // ist reads from the file named iname
          if (!ist) error("can't open input file ",iname);

          string oname;

          cout << "Please enter name of output file: ";

          cin >> oname;

          ofstream ost {oname};           // ost writes to a file named oname
          if (!ost) error("can't open output file ",oname);

          vector<Reading> temps;      // store the readings here
          int hour;

          double temperature;

          while (ist >> hour >> temperature) {

                    if (hour < 0 || 23 <hour) error("hour out of range");

                    temps.push_back(Reading{hour,temperature});

          }

          for (int i=0; i<temps.size(); ++i)

                    ost << '(' << temps[i].hour << ','

                              << temps[i].temperature << ")\n";

}

10.6 I/O error handling
When dealing with input we must expect errors and deal with them. What kind of errors? And how? Errors occur because
humans make mistakes (misunderstanding instructions, mistyping, letting the cat walk on the keyboard, etc.), because files fail
to meet specifications, because we (as programmers) have the wrong expectations, etc. The possibilities for input errors are
limitless! However, an istream reduces all to four possible cases, called the stream state:

Unfortunately, the distinction between fail() and bad() is not precisely defined and subject to varying opinions among
programmers defining I/O operations for new types. However, the basic idea is simple: If an input operation encounters a
simple format error, it lets the stream fail(), assuming that you (the user of our input operation) might be able to recover. If, on
the other hand, something really nasty, such as a bad disk read, happens, the input operation lets the stream go bad(), assuming
that there is nothing much you can do except to abandon the attempt to get data from that stream. A stream that is bad() is also
fail(). This leaves us with this general logic:

Click here to view code image

int i = 0;

cin >> i;

if (!cin) {        // we get here (only) if an input operation failed
          if (cin.bad()) error("cin is bad");   // stream corrupted: let’s get out of here!
          if (cin.eof()) {

                    // no more input
                    // this is often how we want a sequence of input operations to end



          }
          if (cin.fail()) {             // stream encountered something unexpected
                    cin.clear();      // make ready for more input
                    // somehow recover
          }
}

The !cin can be read as “cin is not good” or “Something went wrong with cin” or “The state of cin is not good().” It is the
opposite of “The operation succeeded.” Note the cin.clear() where we handle fail(). When a stream has failed, we might be
able to recover. To try to recover, we explicitly take the stream out of the fail() state, so that we can look at characters from it
again; clear() does that — after cin.clear() the state of cin is good().

Here is an example of how we might use the stream state. Consider how to read a sequence of integers that may be
terminated by the character * or an “end of file” (Ctrl+Z on Windows, Ctrl+D on Unix) into a vector. For example:

1 2 3 4 5 *

This could be done using a function like this:
Click here to view code image

void fill_vector(istream& ist, vector<int>& v, char terminator)

          // read integers from ist into v until we reach eof() or terminator
{

          for (int I; ist >> I; ) v.push_back(i);

          if (ist.eof()) return;                            // fine: we found the end of file

          if (ist.bad()) error("ist is bad");       // stream corrupted; let’s get out of here!
          if (ist.fail()) {     // clean up the mess as best we can and report the problem
                    ist.clear();         // clear stream state,
                                               // so that we can look for terminator
                    char c;

                    ist>>c;              // read a character, hopefully terminator
                    if (c != terminator) {                // unexpected character
                    ist.unget();                               // put that character back
                    ist.clear(ios_base::failbit);   // set the state to fail()
                    }
          }
}

Note that when we didn’t find the terminator, we still returned. After all, we may have collected some data and the caller of
fill_vector() may be able to recover from a fail(). Since we cleared the state to be able to examine the character, we have to
set the stream state back to fail(). We do that with ist.clear(ios_base::failbit). Note this potentially confusing use of
clear(): clear() with an argument actually sets the iostream state flags (bits) mentioned and (only) clears flags not
mentioned. By setting the state to fail(), we indicate that we encountered a format error, rather than something more serious.
We put the character back into ist using unget(); the caller of fill_vector() might have a use for it. The unget() function is a
shorter version of putback() (§6.8.2, §B.7.3) that relies on the stream remembering which character it last produced, so that
you don’t have to mention it.

If you called fill_vector() and want to know what terminated the read, you can test for fail() and eof(). You could also
catch the runtime_error exception thrown by error(), but it is understood that getting more data from istream in the bad()

state is unlikely. Most callers won’t bother. This implies that in almost all cases the only thing we want to do if we encounter
bad() is to throw an exception. To make life easier, we can tell an istream to do that for us:

Click here to view code image

// make ist throw if it goes bad
ist.exceptions(ist.exceptions()|ios_base::badbit);

The notation may seem odd, but the effect is simply that from that statement onward, ist will throw the standard library
exception ios_base::failure if it goes bad(). We need to execute that exceptions() call only once in a program. That’ll
allow us to simplify all input loops on ist by ignoring bad():
Click here to view code image



void fill_vector(istream& ist, vector<int>& v, char terminator)

          // read integers from ist into v until we reach eof() or terminator
{

          for (int I; ist >> I; ) v.push_back(i);

          if (ist.eof()) return;       // fine: we found the end of file

          // not good() and not bad() and not eof(), ist must be fail()
          ist.clear();                       // clear stream state

          char c;

          ist>>c;                            // read a character, hopefully terminator

          if (c != terminator) {     // ouch: not the terminator, so we must fail
          ist.unget();                    // maybe my caller can use that character
          ist.clear(ios_base::failbit);        // set the state to fail()
          }
}

The ios_base that appears here and there is the part of an iostream that holds constants such as badbit, exceptions such as
failure, and other useful stuff. You refer to them using the :: operator, for example, ios_base::badbit (§B.7.2). We don’t
plan to go into the iostream library in that much detail; it could take a whole course to explain all of iostreams. For example,
iostreams can handle different character sets, implement different buffering strategies, and also contain facilities for
formatting monetary amounts in various languages; we once had a bug report relating to the formatting of Ukrainian currency.
You can read up on whatever bits you need to know about if you need to; see The C++ Programming Language by Stroustrup
and Standard C++ IOStreams and Locales by Langer.

You can test an ostream for exactly the same states as an istream: good(), fail(), eof(), and bad(). However, for the
kinds of programs we write here, errors are much rarer for output than for input, so we don’t do it as often. For programs
where output devices have a more significant chance of being unavailable, filled, or broken, we would test after each output
operation just as we test after each input operation.

10.7 Reading a single value
So, we know how to read a series of values ending with the end of file or a terminator. We’ll show more examples as we go
along, but let’s just have a look at the ever popular idea of repeatedly asking for a value until an acceptable one is entered.
This example will allow us to examine several common design choices. We’ll discuss these alternatives through a series of
alternative solutions to the simple problem of “how to get an acceptable value from the user.” We start with an unpleasantly
messy obvious “first try” and proceed through a series of improved versions. Our fundamental assumption is that we are
dealing with interactive input where a human is typing input and reading the messages from the program. Let’s ask for an
integer in the range 1 to 10 (inclusive):
Click here to view code image

cout << "Please enter an integer in the range 1 to 10 (inclusive):\n";

int n = 0;

while (cin>>n) {                                // read
          if (1<=n && n<=10) break;    // check range
          cout << "Sorry "

                    << n << " is not in the [1:10] range; please try again\n";

}

// ... use n here ...

This is pretty ugly, but it “sort of works.” If you don’t like using the break (§A.6), you can combine the reading and the range
checking:
Click here to view code image

cout << "Please enter an integer in the range 1 to 10 (inclusive):\n";

int n = 0;

while (cin>>n && !(1<=n && n<=10))      // read and check range
          cout << "Sorry "

                    << n << " is not in the [1:10] range; please try again\n";

// ... use n here ...

However, that’s just a cosmetic change. Why does it only “sort of work”? It works if the user carefully enters integers. If the



user is a poor typist and hits t rather than 6 (t is just below 6 on most keyboards), the program will leave the loop without
changing the value of n, so that n will have an out-of-range value. We wouldn’t call that quality code. A joker (or a diligent
tester) might also send an “end of file” from the keyboard (Ctrl+Z on a Windows machine and Ctrl+D on a Unix machine).
Again, we’d leave the loop with n out of range. In other words, to get a robust read we have to deal with three problems:

1. The user typing an out-of-range value
2. Getting no value (end of file)
3. The user typing something of the wrong type (here, not an integer)

What do we want to do in those three cases? That’s often the question when writing a program: What do we really want? Here,
for each of those three errors, we have three alternatives:

1. Handle the problem in the code doing the read.
2. Throw an exception to let someone else handle the problem (potentially terminating the program).
3. Ignore the problem.

As it happens, those are three very common alternatives for dealing with an error condition. Thus, this is a good example of the
kind of thinking we have to do about errors.

It is tempting to say that the third alternative, ignoring the problem, is always unacceptable, but that would be patronizing. If
I’m writing a trivial program for my own use, I can do whatever I like, including forgetting about error checking with potential
nasty results. However, for a program that I might want to use for more than a few hours after I wrote it, I would probably be
foolish to leave such errors, and if I want to share that program with anyone, I should not leave such holes in the error checking
in the code. Please note that we deliberately use the first-person singular here; “we” would be misleading. We do not consider
alternative 3 acceptable even when just two people are involved.

The choice between alternatives 1 and 2 is genuine; that is, in a given program there can be good reasons to choose either
way. First we note that in most programs there is no local and elegant way to deal with no input from a user sitting at the
keyboard: after the input stream is closed, there isn’t much point in asking the user to enter a number. We could reopen cin

(using cin.clear()), but the user is unlikely to have closed that stream by accident (how would you hit Ctrl+Z by accident?). If
the program wants an integer and finds “end of file,” the part of the program trying to read the integer must usually give up and
hope that some other part of the program can cope; that is, our code requesting input from the user must throw an exception.
This implies that the choice is not between throwing exceptions and handling problems locally, but a choice of which problems
(if any) we should handle locally.

10.7.1 Breaking the problem into manageable parts
Let’s try handling both an out-of-range input and an input of the wrong type locally:
Click here to view code image

cout << "Please enter an integer in the range 1 to 10 (inclusive):\n";

int n = 0;

while (true) {

          cin >> n;

          if (cin) {            // we got an integer; now check it
                    if (1<=n && n<=10) break;

                    cout << "Sorry "

                              << n << " is not in the [1:10] range; please try again\n";

          }
          else if (cin.fail()) {                // we found something that wasn’t an integer
                    cin.clear();                 // set the state back to good();
                                                        // we want to look at the characters
                    cout << "Sorry, that was not a number; please try again\n";

                    for (char ch; cin>>ch && !isdigit(ch); )      // throw away non-digits
                              /* nothing  */  ;

                    if (!cin) error("no input");         // we didn’t find a digit: give up
                    cin.unget();      // put the digit back, so that we can read the number
          }
          else {

                    error("no input");                      // eof or bad: give up
          }
}

// if we get here n is in [1:10]



This is messy, and rather long-winded. In fact, it is so messy that we could not recommend that people write such code each
time they needed an integer from a user. On the other hand, we do need to deal with the potential errors because people do
make them, so what can we do? The reason that the code is messy is that code dealing with several different concerns is all
mixed together:

• Reading values
• Prompting the user for input
• Writing error messages
• Skipping past “bad” input characters
• Testing the input against a range

The way to make code clearer is often to separate logically distinct concerns into separate functions. For example, we can
separate out the code for recovering after seeing a “bad” (i.e., unexpected) character:
Click here to view code image

void skip_to_int()

{

         if (cin.fail()) {              // we found something that wasn’t an integer
                   cin.clear();       // we’d like to look at the characters
                   for (char ch; cin>>ch; ) {      // throw away non-digits
                            if (isdigit(ch) || ch=="-") {

                                     cin.unget();         // put the digit back,
                                                                      // so that we can read the number
                                     return;

                            }
                    }
          }
          error("no input");                         // eof or bad: give up
}

Given the skip_to_int() “utility function,” we can write
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cout << "Please enter an integer in the range 1 to 10 (inclusive):\n";

int n = 0;

while (true) {

          if (cin>>n) {          // we got an integer; now check it
                    if (1<=n && n<=10) break;

                    cout << "Sorry " << n

                              << " is not in the [1:10] range; please try again\n";

          }
          else {

                    cout << "Sorry, that was not a number; please try again\n";

                    skip_to_int();

          }
}

// if we get here n is in [1:10]

This code is better, but it is still too long and too messy to use many times in a program. We’d never get it consistently right,
except after (too) much testing.

What operation would we really like to have? One plausible answer is “a function that reads an int, any int, and another
that reads an int of a given range”:
Click here to view code image

int get_int();                                  // read an int from cin
int get_int(int low, int high);      // read an int in [low:high] from cin

If we had those, we would at least be able to use them simply and correctly. They are not that hard to write:
Click here to view code image



int get_int()

{

          int n = 0;

          while (true) {

                    if (cin >> n) return n;

                    cout << "Sorry, that was not a number; please try again\n";

                    skip_to_int();

          }
}

Basically, get_int() stubbornly keeps reading until it finds some digits that it can interpret as an integer. If we want to get out
of get_int(), we must supply an integer or end of file (and end of file will cause get_int() to throw an exception).

Using that general get_int(), we can write the range-checking get_int():
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int get_int(int low, int high)

{

          cout << "Please enter an integer in the range "

                    << low << " to " << high << " (inclusive):\n";

          while (true) {

                    int n = get_int();

                    if (low<=n && n<=high) return n;

                    cout << "Sorry "

                              << n << " is not in the [" << low << ':' << high

                              << "] range; please try again\n";

          }
}

This get_int() is as stubborn as the other. It keeps getting ints from the non-range get_int() until the int it gets is in the
expected range.

We can now reliably read integers like this:

int n = get_int(1,10);

cout << "n: " << n << '\n';

int m = get_int(2,300);

cout << "m: " << m << '\n';

Don’t forget to catch exceptions somewhere, though, if you want decent error messages for the (probably rare) case when
get_int() really couldn’t read a number for us.

10.7.2 Separating dialog from function
The get_int() functions still mix up reading with writing messages to the user. That’s probably good enough for a simple
program, but in a large program we might want to vary the messages written to the user. We might want to call get_int() like
this:
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int strength = get_int(1,10, "enter strength", "Not in range, try again");

cout << "strength: " << strength << '\n';

int altitude = get_int(0,50000,

                             "Please enter altitude in feet",

                             "Not in range, please try again");

cout << "altitude: " << altitude << "f above sea level\n";

We could implement that like this:
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int get_int(int low, int high, const string& greeting, const string& sorry)

{

          cout << greeting << ": [" << low << ':' << high << "]\n";

          while (true) {

                    int n = get_int();

                    if (low<=n && n<=high) return n;

                    cout << sorry << ": [" << low << ':' << high << "]\n";



          }
}

It is hard to compose arbitrary messages, so we “stylized” the messages. That’s often acceptable, and composing really
flexible messages, such as are needed to support many natural languages (e.g., Arabic, Bengali, Chinese, Danish, English, and
French), is not a task for a novice.

Note that our solution is still incomplete: the get_int() without a range still “blabbers.” The deeper point here is that “utility
functions” that we use in many parts of a program shouldn’t have messages “hardwired” into them. Further, library functions
that are meant for use in many programs shouldn’t write to the user at all — after all, the library writer may not even know that
the program in which the library runs is used on a machine with a human watching. That’s one reason that our error() function
doesn’t just write an error message (§5.6.3); in general, we wouldn’t know where to write.

10.8 User-defined output operators
Defining the output operator, <<, for a given type is typically trivial. The main design problem is that different people might
prefer the output to look different, so it is hard to agree on a single format. However, even if no single output format is good
enough for all uses, it is often a good idea to define << for a user-defined type. That way, we can at least trivially write out
objects of the type during debugging and early development. Later, we might provide a more sophisticated << that allows a
user to provide formatting information. Also, if we want output that looks different from what a << provides, we can simply
bypass the << and write out the individual parts of the user-defined type the way we happen to like them in our application.

Here is a simple output operator for Date from §9.8 that simply prints the year, month, and day comma-separated in
parentheses:
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ostream& operator<<(ostream& os, const Date& d)

{

         return os << '(' << d.year()

                            << ',' << d.month()

                            << ',' << d.day() << ')';

}

This will print August 30, 2004, as (2004,8,30). This simple list-of-elements representation is what we tend to use for types
with a few members unless we have a better idea or more specific needs.

In §9.6, we mention that a user-defined operator is handled by calling its function. Here we can see an example of how that’s
done. Given the definition of << for Date, the meaning of

cout << d1;

where d1 is a Date is the call

operator<<(cout,d1);

Note how operator<<() takes an ostream& as its first argument and returns it again as its return value. That’s the way the
output stream is passed along so that you can “chain” output operations. For example, we could output two dates like this:

cout << d1 << d2;

This will be handled by first resolving the first << and after that the second <<:
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cout << d1 << d2;       // means operator<<(cout,d1) << d2;
                                        // means operator<<(operator<<(cout,d1),d2);

That is, first output d1 to cout and then output d2 to the output stream that is the result of the first output operation. In fact, we
can use any of those three variants to write out d1 and d2. We know which one is easier to read, though.

10.9 User-defined input operators
Defining the input operator, >>, for a given type and input format is basically an exercise in error handling. It can therefore be
quite tricky.



Here is a simple input operator for the Date from §9.8 that will read dates as written by the operator << defined above:
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istream& operator>>(istream& is, Date& dd)

{

          int y, m, d;

          char ch1, ch2, ch3, ch4;

          is >> ch1 >> y >> ch2 >> m >> ch3 >> d >> ch4;

          if (!is) return is;

          if (ch1!='(' || ch2!=',' || ch3!=',' || ch4!=')') {        // oops: format error
                    is.clear(ios_base::failbit);

                    return is;

          }
          dd = Date{y,Date::Month(m),d};                       // update dd
          return is;

}

This >> will read items like (2004,8,20) and try to make a Date out of those three integers. As ever, input is harder to deal
with than output. There is simply more that can — and often does — go wrong with input than with output.

If this >> doesn’t find something in the ( integer , integer , integer ) format, it will leave the stream in a not-good state
(fail, eof, or bad) and leave the target Date unchanged. The clear() member function is used to set the state of the istream.
Obviously, ios_base::failbit puts the stream into the fail() state. Leaving the target Date unchanged in case of a failure to
read is the ideal; it tends to lead to cleaner code. The ideal is for an operator>>() not to consume (throw away) any
characters that it didn’t use, but that’s too difficult in this case: we might have read lots of characters before we caught a format
error. As an example, consider (2004, 8, 30}. Only when we see the final } do we know that we have a format error on our
hands and we cannot in general rely on putting back many characters. One character unget() is all that’s universally
guaranteed. If this operator>>() reads an invalid Date, such as (2004,8,32), Date’s constructor will throw an exception,
which will get us out of this operator>>().

10.10 A standard input loop
In §10.5, we saw how we could read and write files. However, that was before we looked more carefully at errors (§10.6), so
the input loop simply assumed that we could read a file from its beginning until end of file. That can be a reasonable
assumption, because we often apply separate checks to ensure that a file is valid. However, we often want to check our reads
as we go along. Here is a general strategy, assuming that ist is an istream:
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for (My_type var; ist>>var; ) {       // read until end of file
          // maybe check that var is valid
          // do something with var
}

// we can rarely recover from bad; don’t try unless you really have to:
if (ist.bad()) error("bad input stream");

if (ist.fail()) {

          // was it an acceptable terminator?
}

// carry on: we found end of file

That is, we read a sequence of values into variables and when we can’t read any more values, we check the stream state to see
why. As in §10.6, we can improve this a bit by letting the istream throw an exception of type failure if it goes bad. That
saves us the bother of checking for it all the time:
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// somewhere: make ist throw an exception if it goes bad:
ist.exceptions(ist.exceptions()|ios_base::badbit);

We could also decide to designate a character as a terminator:
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for (My_type var; ist>>var; ) {       // read until end of file
          // maybe check that var is valid
          // do something with var
}



if (ist.fail()) {             // use '|' as terminator and/or separator
          ist.clear();

          char ch;

          if (!(ist>>ch && ch=='|')) error("bad termination of input");

}

// carry on: we found end of file or a terminator

If we don’t want to accept a terminator — that is, to accept only end of file as the end — we simply delete the test before the
call of error(). However, terminators are very useful when you read files with nested constructs, such as a file of monthly
readings containing daily readings, containing hourly readings, etc., so we’ll keep considering the possibility of a terminating
character.

Unfortunately, that code is still a bit messy. In particular, it is tedious to repeat the terminator test if we read a lot of files.
We could write a function to deal with that:
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// somewhere: make ist throw if it goes bad:
ist.exceptions(ist.exceptions()|ios_base::badbit);

void end_of_loop(istream& ist, char term, const string& message)

{

          if (ist.fail()) {                // use term as terminator and/or separator
                    ist.clear();

                    char ch;

                    if (ist>>ch && ch==term) return;             // all is fine
                    error(message);

          }
}

This reduces the input loop to
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for (My_type var; ist>>var; ) {                                     // read until end of file
          // maybe check that var is valid

          // . . . do something with var . . .
}

end_of_loop(ist,'|',"bad termination of file");        // test if we can continue

// carry on: we found end of file or a terminator

The end_of_loop() does nothing unless the stream is in the fail() state. We consider that simple enough and general enough
for many purposes.

10.11 Reading a structured file
Let’s try to use this “standard loop” for a concrete example. As usual, we’ll use the example to illustrate widely applicable
design and programming techniques. Assume that you have a file of temperature readings that has been structured like this:

• A file holds years (of months of readings).
• A year starts with { year followed by an integer giving the year, such as 1900, and ends with }.

• A year holds months (of days of readings).
• A month starts with { month followed by a three-letter month name, such as jan, and ends with }.

• A reading holds a time and a temperature.
• A reading starts with a ( followed by day of the month, hour of the day, and temperature and ends with a ).

For example:
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{ year 1990 }

{year 1991 { month jun }}

{ year 1992 { month jan ( 1 0 61.5) }  {month feb (1 1 64) (2 2 65.2) } }

{year 2000

          { month feb (1 1 68 ) (2 3 66.66 ) ( 1 0 67.2)}

          {month dec (15 15 –9.2 ) (15 14 –8.8) (14 0 –2) }

}



This format is somewhat peculiar. File formats often are. There is a move toward more regular and hierarchically structured
files (such as HTML and XML files) in the industry, but the reality is still that we can rarely control the input format offered by
the files we need to read. The files are the way they are, and we just have to read them. If a format is too awful or files contain
too many errors, we can write a format conversion program to produce a format that suits our main program better. On the
other hand, we can typically choose the in-memory representation of data to suit our needs, and we can often pick output
formats to suit needs and tastes.

So, let’s assume that we have been given the temperature reading format above and have to live with it. Fortunately, it has
self-identifying components, such as years and months (a bit like HTML or XML). On the other hand, the format of individual
readings is somewhat unhelpful. For example, there is no information that could help us if someone flipped a day-of-the-month
value with an hour of day or if someone produced a file with temperatures in Celsius and the program expected them in
Fahrenheit or vice versa. We just have to cope.

10.11.1 In-memory representation
How should we represent this data in memory? The obvious first choice is three classes, Year, Month, and Reading, to
exactly match the input. Year and Month are obviously useful when manipulating the data; we want to compare temperatures
of different years, calculate monthly averages, compare different months of a year, compare the same month of different years,
match up temperature readings with sunshine records and humidity readings, etc. Basically, Year and Month match the way
we think about temperatures and weather in general: Month holds a month’s worth of information and Year holds a year’s
worth of information. But what about Reading? That’s a low-level notion matching some piece of hardware (a sensor). The
data of a Reading (day of month, hour of day, temperature) is “odd” and makes sense only within a Month. It is also
unstructured: we have no promise that readings come in day-of-the-month or hour-of-the-day order. Basically, whenever we
want to do anything of interest with the readings we have to sort them.

For representing the temperature data in memory, we make these assumptions:
• If we have any readings for a month, then we tend to have lots of readings for that month.
• If we have any readings for a day, then we tend to have lots of readings for that day.

When that’s the case, it makes sense to represent a Year as a vector of 12 Months, a Month as a vector of about 30 Days,
and a Day as 24 temperatures (one per hour). That’s simple and easy to manipulate for a wide variety of uses. So, Day,
Month, and Year are simple data structures, each with a constructor. Since we plan to create Months and Days as part of a
Year before we know what temperature readings we have, we need to have a notion of “not a reading” for an hour of a day for
which we haven’t (yet) read data.
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const int not_a_reading = –7777;       // less than absolute zero

Similarly, we noticed that we often had a month without data, so we introduced the notion “not a month” to represent that
directly, rather than having to search through all the days to be sure that no data was lurking somewhere:

const int not_a_month = –1;

The three key classes then become
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struct Day {

          vector<double> hour {vector<double>(24,not_a_reading)};

};

That is, a Day has 24 hours, each initialized to not_a_reading.
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struct Month {                                         // a month of temperature readings
          int month {not_a_month};         // [0:11] January is 0
          vector<Day> day {32};                // [1:31] one vector of readings per day
};

We “waste” day[0] to keep the code simple.
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struct Year {               // a year of temperature readings, organized by month
          int year;                                         // positive == A.D.
          vector<Month> month {12};    // [0:11] January is 0
};

Each class is basically a simple vector of “parts,” and Month and Year have an identifying member month and year,
respectively.

There are several “magic constants” here (for example, 24, 32, and 12). We try to avoid such literal constants in code.
These are pretty fundamental (the number of months in a year rarely changes) and will not be used in the rest of the code.
However, we left them in the code primarily so that we could remind you of the problem with “magic constants”; symbolic
constants are almost always preferable (§7.6.1). Using 32 for the number of days in a month definitely requires explanation; 32

is obviously “magic” here.
Why didn’t we write
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struct Day {

          vector<double> hour {24,not_a_reading};

};

That would have been simpler, but unfortunately, we would have gotten a vector of two elements (24 and –1). When we want
to specify the number of elements for a vector for which an integer can be converted to the element type, we unfortunately
have to use the ( ) initializer syntax (§18.2).

10.11.2 Reading structured values
The Reading class will be used only for reading input and is even simpler:
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struct Reading {

          int day;

          int hour;

          double temperature;

};

istream& operator>>(istream& is, Reading& r)

// read a temperature reading from is into r
// format: ( 3 4 9.7 )
// check format, but don’t bother with data validity
{

          char ch1;

          if (is>>ch1 && ch1!='(') {                                // could it be a Reading?
                    is.unget();

                    is.clear(ios_base::failbit);

                    return is;

          }

          char ch2;

          int d;

          int h;

          double t;

          is >> d >> h >> t >> ch2;

          if (!is || ch2!=')') error("bad reading");      // messed-up reading
          r.day = d;

          r.hour = h;

          r.temperature = t;

          return is;

}

Basically, we check if the format begins plausibly, and if it doesn’t we set the file state to fail() and return. This allows us to
try to read the information in some other way. On the other hand, if we find the format wrong after having read some data so
that there is no real chance of recovering, we bail out with error().

The Month input operation is much the same, except that it has to read an arbitrary number of Readings rather than a fixed



set of values (as Reading’s >> did):
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istream& operator>>(istream& is, Month& m)

// read a month from is into m
// format: { month feb . . . }
{

          char ch = 0;

          if (is >> ch && ch!='{') {

                    is.unget();

                    is.clear(ios_base::failbit);                  // we failed to read a Month
                    return is;

          }

          string month_marker;

          string mm;

          is >> month_marker >> mm;

          if (!is || month_marker!="month") error("bad start of month");

          m.month = month_to_int(mm);

          int duplicates = 0;

          int invalids = 0;

          for (Reading r; is >> r; ) {

                    if (is_valid(r)) {

                              if (m.day[r.day].hour[r.hour] != not_a_reading)

                                        ++duplicates;

                              m.day[r.day].hour[r.hour] = r.temperature;

                    }
                    else

                              ++invalids;

          }
          if (invalids) error("invalid readings in month",invalids);

          if (duplicates) error("duplicate readings in month", duplicates);

          end_of_loop(is,'}',"bad end of month");

          return is;

}

We’ll get back to month_to_int() later; it converts the symbolic notation for a month, such as jun, to a number in the [0:11]
range. Note the use of end_of_loop() from §10.10 to check for the terminator. We keep count of invalid and duplicate
Readings; someone might be interested.

Month’s >> does a quick check that a Reading is plausible before storing it:
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constexpr int implausible_min = –200;

constexpr int implausible_max = 200;

bool is_valid(const Reading& r)

// a rough test
{

          if (r.day<1 || 31<r.day) return false;

          if (r.hour<0 || 23<r.hour) return false;

          if (r.temperature<implausible_min|| implausible_max<r.temperature)

                    return false;

          return true;

}

Finally, we can read Years. Year’s >> is similar to Month’s >>:
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istream& operator>>(istream& is, Year& y)

// read a year from is into y
// format: { year 1972 . . . }
{

          char ch;

          is >> ch;

          if (ch!='{') {

                    is.unget();

                    is.clear(ios::failbit);



                    return is;

          }

          string year_marker;

          int yy;

          is >> year_marker >> yy;

          if (!is || year_marker!="year") error("bad start of year");

          y.year = yy;

          while(true) {

                    Month m;            // get a clean m each time around
                    if(!(is >> m)) break;

                    y.month[m.month] = m;

          }

          end_of_loop(is,'}',"bad end of year");

          return is;

}

We would have preferred “boringly similar” to just “similar,” but there is a significant difference. Have a look at the read
loop. Did you expect something like the following?

for (Month m; is >> m; )

          y.month[m.month] = m;

You probably should have, because that’s the way we have written all the read loops so far. That’s actually what we first
wrote, and it’s wrong. The problem is that operator>>(istream& is, Month& m) doesn’t assign a brand-new value to m; it
simply adds data from Readings to m. Thus, the repeated is>>m would have kept adding to our one and only m. Oops! Each
new month would have gotten all the readings from all previous months of that year. We need a brand-new, clean Month to
read into each time we do is>>m. The easiest way to do that was to put the definition of m inside the loop so that it would be
initialized each time around. The alternatives would have been for operator>>(istream& is, Month& m) to assign an
empty month to m before reading into it, or for the loop to do that:
Click here to view code image

for (Month m; is >> m; ) {

          y.month[m.month] = m;

          m = Month{}; // “reinitialize” m
}

Let’s try to use it:
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// open an input file:
cout << "Please enter input file name\n";

string iname;

cin >> iname;

ifstream ist {iname};

if (!ifs) error("can't open input file",iname);

ifs.exceptions(ifs.exceptions()|ios_base::badbit);       // throw for bad()

// open an output file:
cout << "Please enter output file name\n";

string oname;

cin >> oname;

ofstream ost {oname};

if (!ofs) error("can't open output file",oname);

// read an arbitrary number of years:
vector<Year> ys;

while(true) {

          Year y;                  // get a freshly initialized Year each time around
          if (!(ifs>>y)) break;

          ys.push_back(y);

}

cout << "read " << ys.size() << " years of readings\n";



for (Year& y : ys) print_year(ofs,y);

We leave print_year() as an exercise.

10.11.3 Changing representations
To get Month’s >> to work, we need to provide a way of reading symbolic representations of the month. For symmetry, we’ll
provide a matching write using a symbolic representation. The tedious way would be to write an if-statement convert:

if (s=="jan")

          m = 1;

else if (s=="feb")

          m = 2;

. . .

This is not just tedious; it also builds the names of the months into the code. It would be better to have those in a table
somewhere so that the main program could stay unchanged even if we had to change the symbolic representation. We decided
to represent the input representation as a vector<string> plus an initialization function and a lookup function:
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vector<string> month_input_tbl = {

           "jan", "feb", "mar", "apr", "may", "jun", "jul",

           "aug", "sep", "oct", "nov", "dec"

};

int month_to_int(string s)

// is s the name of a month? If so return its index [0:11] otherwise –1
{

          for (int i=0; i<12; ++i) if (month_input_tbl[i]==s) return i;

          return –1;

}

In case you wonder: the C++ standard library does provide a simpler way to do this. See §21.6.1 for a map<string,int>.
When we want to produce output, we have the opposite problem. We have an int representing a month and would like a

symbolic representation to be printed. Our solution is fundamentally similar, but instead of using a table to go from string to
int, we use one to go from int to string:
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vector<string> month_print_tbl = {

          "January", "February", "March", "April", "May", "June", "July",

          "August", "September", "October", "November", "December"

};

string int_to_month(int i)

// months [0:11]
{

          if (i<0 || 12<=i) error("bad month index");

          return month_print_tbl[i];

}

So, did you actually read all of that code and the explanations? Or did your eyes glaze over and skip to the end? Remember that
the easiest way of learning to write good code is to read a lot of code. Believe it or not, the techniques we used for this
example are simple, but not trivial to discover without help. Reading data is fundamental. Writing loops correctly (initializing
every variable used correctly) is fundamental. Converting between representations is fundamental. That is, you will learn to do
such things. The only questions are whether you’ll learn to do them well and whether you learn the basic techniques before
losing too much sleep.

 Drill

1. Start a program to work with points, discussed in §10.4. Begin by defining the data type Point that has two coordinate



members x and y.
2. Using the code and discussion in §10.4, prompt the user to input seven (x,y) pairs. As the data is entered, store it in a

vector of Points called original_points.
3. Print the data in original_points to see what it looks like.
4. Open an ofstream and output each point to a file named mydata.txt. On Windows, we suggest the .txt suffix to make

it easier to look at the data with an ordinary text editor (such as WordPad).
5. Close the ofstream and then open an ifstream for mydata.txt. Read the data from mydata.txt and store it in a new

vector called processed_points.
6. Print the data elements from both vectors.
7. Compare the two vectors and print Something's wrong! if the number of elements or the values of elements differ.

Review
1. When dealing with input and output, how is the variety of devices dealt with in most modern computers?
2. What, fundamentally, does an istream do?
3. What, fundamentally, does an ostream do?
4. What, fundamentally, is a file?
5. What is a file format?
6. Name four different types of devices that can require I/O for a program.
7. What are the four steps for reading a file?
8. What are the four steps for writing a file?
9. Name and define the four stream states.
10. Discuss how the following input problems can be resolved:

a. The user typing an out-of-range value
b. Getting no value (end of file)
c. The user typing something of the wrong type

11. In what way is input usually harder than output?
12. In what way is output usually harder than input?
13. Why do we (often) want to separate input and output from computation?
14. What are the two most common uses of the istream member function clear()?
15. What are the usual function declarations for << and >> for a user-defined type X?

Terms
bad()

buffer

clear()

close()

device driver
eof()

fail()

file
good()

ifstream

input device
input operator
iostream

istream



ofstream

open()

ostream

ouput device
ouput operator
stream state
structured file
terminator
unget()

Exercises
1. Write a program that produces the sum of all the numbers in a file of whitespace-separated integers.
2. Write a program that creates a file of data in the form of the temperature Reading type defined in §10.5. For testing, fill

the file with at least 50 “temperature readings.” Call this program store_temps.cpp and the file it creates
raw_temps.txt.

3. Write a program that reads the data from raw_temps.txt created in exercise 2 into a vector and then calculates the
mean and median temperatures in your data set. Call this program temp_stats.cpp.

4. Modify the store_temps.cpp program from exercise 2 to include a temperature suffix c for Celsius or f for Fahrenheit
temperatures. Then modify the temp_stats.cpp program to test each temperature, converting the Celsius readings to
Fahrenheit before putting them into the vector.

5. Write the function print_year() mentioned in §10.11.2.
6. Define a Roman_int class for holding Roman numerals (as ints) with a << and >>. Provide Roman_int with an

as_int() member that returns the int value, so that if r is a Roman_int, we can write cout << "Roman" << r << "

equals " << r.as_int() << '\n';.
7. Make a version of the calculator from Chapter 7 that accepts Roman numerals rather than the usual Arabic ones, for

example, XXI + CIV == CXXV.
8. Write a program that accepts two file names and produces a new file that is the contents of the first file followed by the

contents of the second; that is, the program concatenates the two files.
9. Write a program that takes two files containing sorted whitespace-separated words and merges them, preserving order.

10. Add a command from x to the calculator from Chapter 7 that makes it take input from a file x. Add a command to y to
the calculator that makes it write its output (both standard output and error output) to file y. Write a collection of test
cases based on ideas from §7.3 and use that to test the calculator. Discuss how you would use these commands for
testing.

11. Write a program that produces the sum of all the whitespace-separated integers in a text file. For example, bears: 17

elephants 9 end should output 26.

Postscript
Much of computing involves moving lots of data from one place to another, for example, copying text from a file to a screen or
moving music from a computer onto an MP3 player. Often, some transformation of the data is needed on the way. The iostream
library is a way of handling many such tasks where the data can be seen as a sequence (a stream) of values. Input and output
can be a surprisingly large part of common programming tasks. This is partly because we (or our programs) need a lot of data
and partly because the point where data enters a system is a place where lots of errors can happen. So, we must try to keep our
I/O simple and try to minimize the chances that bad data “slips through” into our system.



11. Customizing Input and Output

“Keep it simple:
as simple as possible,

but no simpler.”
—Albert Einstein

In this chapter, we concentrate on how to adapt the general iostream framework presented in Chapter 10 to specific needs and
tastes. This involves a lot of messy details dictated by human sensibilities to what they read and also practical constraints on
the uses of files. The final example shows the design of an input stream for which you can specify the set of separators.

11.1 Regularity and irregularity
11.2 Output formatting

11.2.1 Integer output
11.2.2 Integer input
11.2.3 Floating-point output
11.2.4 Precision
11.2.5 Fields

11.3 File opening and positioning
11.3.1 File open modes
11.3.2 Binary files
11.3.3 Positioning in files

11.4 String streams
11.5 Line-oriented input
11.6 Character classification
11.7 Using nonstandard separators
11.8 And there is so much more

11.1 Regularity and irregularity
The iostream library — the input/output part of the ISO C++ standard library — provides a unified and extensible framework
for input and output of text. By “text” we mean just about anything that can be represented as a sequence of characters. Thus,
when we talk about input and output we can consider the integer 1234 as text because we can write it using the four characters
1, 2, 3, and 4.

So far, we have treated all input sources as equivalent. Sometimes, that’s not enough. For example, files differ from other
input sources (such as communications connections) in that we can address individual bytes. Similarly, we worked on the
assumption that the type of an object completely determined the layout of its input and output. That’s not quite right and
wouldn’t be sufficient. For example, we often want to specify the number of digits used to represent a floating-point number on
output (its precision). This chapter presents a number of ways in which we can tailor input and output to our needs.

As programmers, we prefer regularity; treating all in-memory objects uniformly, treating all input sources equivalently, and
imposing a single standard on the way to represent objects entering and exiting the system give the cleanest, simplest, most
maintainable, and often the most efficient code. However, our programs exist to serve humans, and humans have strong
preferences. Thus, as programmers we must strive for a balance between program complexity and accommodation of users’
personal tastes.

11.2 Output formatting



People care a lot about apparently minor details of the output they have to read. For example, to a physicist 1.25 (rounded to
two digits after the dot) can be very different from 1.24670477, and to an accountant (1.25) can be legally different from (
1.2467) and totally different from 1.25 (in financial documents, parentheses are sometimes used to indicate losses, that is,
negative values). As programmers, we aim at making our output as clear and as close as possible to the expectations of the
“consumers” of our program. Output streams (ostreams) provide a variety of ways for formatting the output of built-in types.
For user-defined types, it is up to the programmer to define suitable << operations.

There seem to be an infinite number of details, refinements, and options for output and quite a few for input. Examples are
the character used for the decimal point (usually dot or comma), the way to output monetary values, a way to represent true as
the word true (or vrai or sandt) rather than the number 1 when output, ways to deal with non-ASCII character sets (such as
Unicode), and a way to limit the number of characters read into a string. These facilities tend to be uninteresting until you need
them, so we’ll leave their description to manuals and specialized works such as Langer, Standard C++ IOStreams and
Locales; Chapters 38 and 39 of The C++ Programming Language by Stroustrup; and §22 and §27 of the ISO C++ standard.
Here we’ll present the most frequently useful features and a few general concepts.

11.2.1 Integer output
Integer values can be output as octal (the base-8 number system), decimal (our usual base-10 number system), and hexadecimal
(the base-16 number system). If you don’t know about these systems, read §A.2.1.1 before proceeding here. Most output uses
decimal. Hexadecimal is popular for outputting hardware-related information. The reason is that a hexadecimal digit exactly
represents a 4-bit value. Thus, two hexadecimal digits can be used to present the value of an 8-bit byte, four hexadecimal digits
give the value of 2 bytes (that’s often a half word), and eight hexadecimal digits can present the value of 4 bytes (that’s often
the size of a word or a register). When C++’s ancestor C was first designed (in the 1970s), octal was popular for representing
bit patterns, but now it’s rarely used.

We can specify the output (decimal) value 1234 to be decimal, hexadecimal (often called “hex”), and octal:
Click here to view code image

cout << 1234 << "\t(decimal)\n"

          << hex << 1234 << "\t(hexadecimal)\n"

          << oct << 1234 << "\t(octal)\n";

The '\t' character is “tab” (short for “tabulation character”). This prints

1234  (decimal)

4d2   (hexadecimal)

2322  (octal)

The notations << hex and << oct do not output values. Instead, << hex informs the stream that any further integer values
should be displayed in hexadecimal and << oct informs the stream that any further integer values should be displayed in octal.
For example:
Click here to view code image

cout << 1234 << '\t' << hex << 1234 << '\t' << oct << 1234 << '\n';

cout << 1234 << '\n';  // the octal base is still in effect

This produces
Click here to view code image

1234  4d2   2322

2322  // integers will continue to show as octal until changed

Note that the last output is octal; that is, oct, hex, and dec (for decimal) persist (“stick,” “are sticky”) — they apply to every
integer value output until we tell the stream otherwise. Terms such as hex and oct that are used to change the behavior of a
stream are called manipulators.

 Try This

Output your birth year in decimal, hexadecimal, and octal form. Label each value. Line up your output in columns
using the tab character. Now output your age.



Seeing values of a base different from 10 can often be confusing. For example, unless we tell you otherwise, you’ll assume
that 11 represents the (decimal) number 11, rather than 9 (11 in octal) or 17 (11 in hexadecimal). To alleviate such problems,
we can ask the ostream to show the base of each integer printed. For example:
Click here to view code image

cout << 1234 << '\t' << hex << 1234 << '\t' << oct << 1234 << '\n';

cout << showbase << dec;          // show bases
cout << 1234 << '\t' << hex << 1234 << '\t' << oct << 1234 << '\n';

This prints

1234  4d2    2322

1234  0x4d2  02322

So, decimal numbers have no prefix, octal numbers have the prefix 0, and hexadecimal values have the prefix 0x (or 0X). This
is exactly the notation for integer literals in C++ source code. For example:
Click here to view code image

cout << 1234 << '\t' << 0x4d2 << '\t' << 02322 << '\n';

In decimal form, this will print

1234  1234  1234

As you might have noticed, showbase persists, just like oct and hex. The manipulator noshowbase reverses the action of
showbase, reverting to the default, which shows each number without its base.

In summary, the integer output manipulators are:

11.2.2 Integer input
By default, >> assumes that numbers use the decimal notation, but you can tell it to read hexadecimal or octal integers:
Click here to view code image

int a;

int b;

int c;

int d;

cin >> a >> hex >> b >> oct >> c >> d;

cout << a << '\t' << b << '\t' << c << '\t' << d << '\n';

If you type in

1234  4d2  2322  2322

this will print

1234  1234  1234  1234

Note that this implies that oct, dec, and hex “stick” for input, just as they do for output.

 Try This

Complete the code fragment above to make it into a program. Try the suggested input; then type in



1234  1234  1234  1234

Explain the results. Try other inputs to see what happens.

You can get >> to accept and correctly interpret the 0 and 0x prefixes. To do that, you “unset” all the defaults. For example:
Click here to view code image

cin.unsetf(ios::dec);  // don’t assume decimal (so that 0x can mean hex)
cin.unsetf(ios::oct);   // don’t assume octal (so that 12 can mean twelve)
cin.unsetf(ios::hex);  // don’t assume hexadecimal (so that 12 can mean twelve)

The stream member function unsetf() clears the flag (or flags) given as argument. Now, if you write

cin >>a >> b >> c >> d;

and enter

1234   0x4d2   02322   02322

you get

1234   1234   1234   1234

11.2.3 Floating-point output
If you deal directly with hardware, you’ll need hexadecimal (or possibly octal) notation. Similarly, if you deal with scientific
computation, you must deal with the formatting of floating-point values. They are handled using iostream manipulators in a
manner very similar to that of integer values. For example:
Click here to view code image

cout << 1234.56789 << "\t\t(defaultfloat)\n"         // \t\t to line up columns
          << fixed << 1234.56789 << "\t(fixed)\n"

          << scientific << 1234.56789 << "\t(scientific)\n";

This prints

1234.57                          (general)

1234.567890                  (fixed)

1.234568e+003             (scientific)

The manipulators fixed, scientific, and defaultfloat are used to select floating-point formats; defaultfloat is the default
format (also known as the general format). Now, we can write
Click here to view code image

cout << 1234.56789 << '\t'

          << fixed << 1234.56789 << '\t'

          << scientific << 1234.56789 << '\n';

cout << 1234.56789 << '\n';                               // floating format “sticks”
cout << defaultfloat << 1234.56789 << '\t'      // the default format for
                                                                               // floating-point output
          << fixed << 1234.56789 << '\t'

          << scientific << 1234.56789 << '\n';

This prints
Click here to view code image

1234.57         1234.567890        1.234568e+003

1.234568e+003                                                   // scientific manipulator “sticks”
1234.57         1234.567890        1.234568e+003

In summary, the basic floating-point output-formatting manipulators are:



11.2.4 Precision

By default, a floating-point value is printed using six total digits using the defaultfloat format. The most appropriate format is
chosen and the number is rounded to give the best approximation that can be printed using only six digits (the default precision
for the defaultfloat format). For example:

1234.567 prints as 1234.57

1.2345678 prints as 1.23457

The rounding rule is the usual 4/5 rule: 0 to 4 round down (toward zero) and 5 to 9 round up (away from zero). Note that
floating-point formatting applies only to floating-point numbers, so

1234567 prints as 1234567 (because it’s an integer)
1234567.0 prints as 1.23457e+006

In the latter case, the ostream determines that 1234567.0 cannot be printed using the fixed format using only six digits and
switches to scientific format to preserve the most accurate representation. Basically the defaultfloat format chooses
between scientific and fixed formats to present the user with the most accurate representation of a floating-point value within
the precision of the general format, which defaults to six total digits.

 Try This

Write some code to print the number 1234567.89 three times, first using defaultfloat, then fixed, then
scientific. Which output form presents the user with the most accurate representation? Explain why.

A programmer can set the precision using the manipulator setprecision(). For example:
Click here to view code image

cout << 1234.56789 << '\t'

          << fixed << 1234.56789 << '\t'

          << scientific << 1234.56789 << '\n';

cout << defaultfloat << setprecision(5)

          << 1234.56789 << '\t'

          << fixed << 1234.56789 << '\t'

          << scientific << 1234.56789 << '\n';

cout << defaultfloat << setprecision(8)

          << 1234.56789 << '\t'

          << fixed << 1234.56789 << '\t'

          << scientific << 1234.56789 << '\n';

This prints (note the rounding)
Click here to view code image

1234.57        1234.567890         1.234568e+003

1234.6 1234.56789      1.23457e+003

1234.5679    1234.56789000     1.23456789e+003

The precision is defined as:



Use the default (defaultfloat format with precision 6) unless there is a reason not to. The usual reason not to is “Because we
need greater accuracy of the output.”

11.2.5 Fields
Using scientific and fixed formats, a programmer can control exactly how much space a value takes up on output. That’s
clearly useful for printing tables, etc. The equivalent mechanism for integer values is called fields. You can specify exactly
how many character positions an integer value or string value will occupy using the “set field width” manipulator setw(). For
example:
Click here to view code image

cout << 123456                                            // no field used
          <<'|'<< setw(4) << 123456 << '|'      // 123456 doesn’t fit in a 4-char field
          << setw(8) << 123456 << '|'              // set field width to 8
          << 123456 << "|\n";                          // field sizes don’t stick

This prints

123456|123456|  123456|123456|

Note first the two spaces before the third occurrence of 123456. That’s what we would expect for a six-digit number in an
eight-character field. However, 123456 did not get truncated to fit into a four-character field. Why not? |1234| or |3456| might
be considered plausible outputs for the four-character field. However, that would have completely changed the value printed
without any warning to the poor reader that something had gone wrong. The ostream doesn’t do that; instead it breaks the
output format. Bad formatting is almost always preferable to “bad output data.” In the most common uses of fields (such as
printing out a table), the “overflow” is visually very noticeable, so that it can be corrected.

Fields can also be used for floating-point numbers and strings. For example:
Click here to view code image

cout << 12345 <<'|'<< setw(4) << 12345 << '|'

          << setw(8) << 12345 << '|' << 12345 << "|\n";

cout << 1234.5 <<'|'<< setw(4) << 1234.5 << '|'

          << setw(8) << 1234.5 << '|' << 1234.5 << "|\n";

cout << "asdfg" <<'|'<< setw(4) << "asdfg" << '|'

          << setw(8) << "asdfg" << '|' << "asdfg" << "|\n";

This prints
Click here to view code image

12345|12345|     12345|12345|

1234.5|1234.5|   1234.5|1234.5|

asdfg|asdfg|      asdfg|asdfg|

Note that the field width “doesn’t stick.” In all three cases, the first and the last values are printed in the default “as many
characters as it takes” format. In other words, unless you set the field width immediately before an output operation, the notion
of “field” is not used.

 Try This

Make a simple table including the last name, first name, telephone number, and email address for yourself and at
least five of your friends. Experiment with different field widths until you are satisfied that the table is well
presented.



11.3 File opening and positioning

As seen from C++, a file is an abstraction of what the operating system provides. As described in §10.3, a file is simply a
sequence of bytes numbered from 0 upward:

The question is how we access those bytes. Using iostreams, this is largely determined when we open a file and associate a
stream with it. The properties of a stream determine what operations we can perform after opening the file, and their meaning.
The simplest example of this is that if we open an istream for a file, we can read from the file, whereas if we open a file with
an ostream, we can write to it.

11.3.1 File open modes
You can open a file in one of several modes. By default, an ifstream opens its file for reading and an ofstream opens its file
for writing. That takes care of most common needs. However, you can choose between several alternatives:

A file mode is optionally specified after the name of the file. For example:
Click here to view code image

ofstream of1 {name1};                                   // defaults to ios_base::out
ifstream if1 {name2};                                      // defaults to ios_base::in

ofstream ofs {name, ios_base::app};        // ofstreams by default include
                                                                                 // io_base::out
fstream fs {"myfile", ios_base::in|ios_base::out};            // both in and out

The | in that last example is the “bitwise or” operator (§A.5.5) that can be used to combine modes as shown. The app option is
popular for writing log files where you always add to the end.

In each case, the exact effect of opening a file may depend on the operating system, and if an operating system cannot honor a
request to open a file in a certain way, the result will be a stream that is not in the good() state:
Click here to view code image

if (!fs)           // oops: we couldn’t open that file that way

The most common reason for a failure to open a file for reading is that the file doesn’t exist (at least not with the name we
used):
Click here to view code image

ifstream ifs {"redungs"};

if (!ifs)         // error: can’t open “readings” for reading

In this case, we guess that a spelling error might be the problem.
Note that typically, an operating system will create a new file if you try to open a nonexistent file for output, but (fortunately)

not if you try to open a nonexistent file for input:
Click here to view code image

ofstream ofs {"no-such-file"};                      // create new file called no-such-file



ifstream ifs {"no-file-of-this-name"};          // error: ifs will not be good()

Try not to be clever with file open modes. Operating systems don’t handle “unusual” mode consistently. When you can, stick to
reading from files opened as istreams and writing to files opened as ostreams.

11.3.2 Binary files

In memory, we can represent the number 123 as an integer value or as a string value. For example:

int n = 123;

string s = "123";

In the first case, 123 is stored as a (binary) number in an amount of memory that is the same as for all other ints (4 bytes, that
is, 32 bits, on a PC). Had we chosen the value 12345 instead, the same 4 bytes would have been used. In the second case, 123

is stored as a string of three characters. Had we chosen the string value "12345" it would have used five characters (plus the
fixed overhead for managing a string). We could illustrate this like this (using the ordinary decimal and character
representation, rather than the binary representation actually used within the computer):

When we use a character representation, we must use some character to represent the end of a number in memory, just as we do
on paper: 123456 is one number and 123 456 are two numbers. On “paper,” we use the space character to represent the end of
the number. In memory, we could do the same:

The distinction between storing fixed-size binary representation (e.g., an int) and variable-size character string representation
(e.g., a string) also occurs in files. By default, iostreams deal with character representations; that is, an istream reads a
sequence of characters and turns it into an object of the desired type. An ostream takes an object of a specified type and
transforms it into a sequence of characters which it writes out. However, it is possible to request istream and ostream to
simply copy bytes to and from files. That’s called binary I/O and is requested by opening a file with the mode
ios_base::binary. Here is an example that reads and writes binary files of integers. The key lines that specifically deal with
“binary” are explained below:
Click here to view code image

int main()

{

          // open an istream for binary input from a file:
          cout << "Please enter input file name\n";

          string iname;

          cin >> iname;

          ifstream ifs {iname,ios_base::binary};             // note: stream mode
                    // binary tells the stream not to try anything clever with the bytes
          if (!ifs) error("can't open input file ",iname);

          // open an ostream for binary output to a file:
          cout << "Please enter output file name\n";

          string oname;

          cin >> oname;

          ofstream ofs {oname,ios_base::binary};        // note: stream mode
                    // binary tells the stream not to try anything clever with the bytes
          if (!ofs) error("can't open output file ",oname);

          vector<int> v;

          // read from binary file:



          for(int x; ifs.read(as_bytes(x),sizeof(int)); )   // note: reading bytes
                    v.push_back(x);

          // . . . do something with v . . .

          // write to binary file:
          for(int x : v)

                    ofs.write(as_bytes(x),sizeof(int));         // note: writing bytes
          return 0;

}

We open the files using ios_base::binary as the stream mode:
Click here to view code image

ifstream ifs {iname, ios_base::binary};

ofstream ofs {oname, ios_base::binary};

In both cases, we chose the trickier, but often more compact, binary representation. When we move from character-oriented I/O
to binary I/O, we give up our usual >> and << operators. Those operators specifically turn values into character sequences
using the default conventions (e.g., the string "asdf" turns into the characters a, s, d, f and the integer 123 turns into the
characters 1, 2, 3). If we wanted that, we wouldn’t need to say binary — the default would suffice. We use binary only if we
(or someone else) thought that we somehow could do better than the default. We use binary to tell the stream not to try
anything clever with the bytes.

What “cleverness” might we do to an int? The obvious is to store a 4-byte int in 4 bytes; that is, we can look at the
representation of the int in memory (a sequence of 4 bytes) and transfer those bytes to the file. Later, we can read those bytes
back the same way and reassemble the int:
Click here to view code image

ifs.read(as_bytes(i),sizeof(int))                   // note: reading bytes
ofs.write(as_bytes(v[i]),sizeof(int))            // note: writing bytes

The ostream write() and the istream read() both take an address (supplied here by as_bytes()) and a number of bytes
(characters) which we obtained by using the operator sizeof. That address should refer to the first byte of memory holding the
value we want to read or write. For example, if we had an int with the value 1234, we would get the 4 bytes (using
hexadecimal notation) 00, 00, 04, d2:

The as_bytes() function is needed to get the address of the first byte of an object’s representation. It can — using language
facilities yet to be explained (§17.8 and §19.3) — be defined like this:
Click here to view code image

template<class T>

char* as_bytes(T& i)                          // treat a T as a sequence of bytes
{

          void* addr = &i;                      // get the address of the first byte
                                                                 // of memory used to store the object
          return static_cast<char*>(addr);        // treat that memory as bytes
}

The (unsafe) type conversion using static_cast is necessary to get to the “raw bytes” of a variable. The notion of addresses
will be explored in some detail in Chapters 17 and 18. Here, we just show how to treat any object in memory as a sequence of
bytes for the use of read() and write().

This binary I/O is messy, somewhat complicated, and error-prone. However, as programmers we don’t always have the
freedom to choose file formats, so occasionally we must use binary I/O simply because that’s the format someone chose for the
files we need to read or write. Alternatively, there may be a good logical reason for choosing a non-character representation.
A typical example is an image or a sound file, for which there is no reasonable character representation: a photograph or a
piece of music is basically just a bag of bits.



The character I/O provided by default by the iostream library is portable, human readable, and reasonably supported by the
type system. Use it when you have a choice and don’t mess with binary I/O unless you really have to.

11.3.3 Positioning in files

Whenever you can, just read and write files from the beginning to the end. That’s the easiest and least error-prone way. Many
times, when you feel that you have to make a change to a file, the better solution is to produce a new file containing the change.

However, if you must, you can use positioning to select a specific place in a file for reading or writing. Basically, every file
that is open for reading has a “read/get position” and every file that is open for writing has a “write/put position”:

This can be used like this:
Click here to view code image

fstream fs {name};        // open for input and output
if (!fs) error("can't open ",name);

fs.seekg(5);           // move reading position (g for “get”) to 5 (the 6th character)
char ch;

fs>>ch;                  // read and increment reading position
cout << "character[5] is " << ch << ' (' << int(ch) << ")\n";

fs.seekp(1);           // move writing position (p for “put”) to 1
fs<<'y';                  // write and increment writing position

Note that seekg() and seekp() increment their respective positions, so the figure represents the state of the program after
execution.

Please be careful: there is next to no run-time error checking when you use positioning. In particular, it is undefined what
happens if you try to seek (using seekg() or seekp()) beyond the end of a file, and operating systems really do differ in what
happens then.

11.4 String streams

You can use a string as the source of an istream or the target for an ostream. An istream that reads from a string is called
an istringstream and an ostream that stores characters written to it in a string is called an ostringstream. For example,
an istringstream is useful for extracting numeric values from a string:
Click here to view code image

double str_to_double(string s)

          // if possible, convert characters in s to floating-point value
{

          istringstream is {s};                // make a stream so that we can read from s
          double d;

          is >> d;

          if (!is) error("double format error: ",s);

          return d;

}

double d1 = str_to_double("12.4");                                 // testing
double d2 = str_to_double("1.34e–3");

double d3 = str_to_double("twelve point three");       // will call error()

If we try to read beyond the end of an istringstream’s string, the istringstream will go into eof() state. This means that we
can use “the usual input loop” for an istringstream; an istringstream really is a kind of istream.



Conversely, an ostringstream can be useful for formatting output for a system that requires a simple string argument, such
as a GUI system (see §16.5). For example:
Click here to view code image

void my_code(string label, Temperature temp)

{

           // . . .
          ostringstream os;          // stream for composing a message
          os << setw(8) << label << ": "

                    << fixed << setprecision(5) << temp.temp << temp.unit;

          someobject.display(Point(100,100), os.str().c_str());

          // . . .
}

The str() member function of ostringstream returns the string composed by output operations to an ostringstream. The
c_str() is a member function of string that returns a C-style string as required by many system interfaces.

The stringstreams are generally used when we want to separate actual I/O from processing. For example, a string

argument for str_to_double() will usually originate in a file (e.g., a web log) or from a keyboard. Similarly, the message we
composed in my_code() will eventually end up written to an area of a screen. For example, in §11.7, we use a stringstream

to filter undesirable characters out of our input. Thus, stringstreams can be seen as a mechanism for tailoring I/O to special
needs and tastes.

A simple use of an ostringstream is to construct strings by concatenation. For example:
Click here to view code image

int seq_no = get_next_number();                 // get the number of a log file
ostringstream name;

name << "myfile" << seq_no << ".log";    // e.g., myfile17.log
ofstream logfile{name.str()};                       // e.g., open myfile17.log

Usually, we initialize an istringstream with a string and then read the characters from that string using input operations.
Conversely, we typically initialize an ostringstream to the empty string and then fill it using output operations. There is a
more direct way of accessing characters in a stringstream that is sometimes useful: ss.str() returns a copy of ss’s string, and
ss.str(s) sets ss’s string to a copy of s. §11.7 shows an example where ss.str(s) is essential.

11.5 Line-oriented input
A >> operator reads into objects of a given type according to that type’s standard format. For example, when reading into an
int, >> will read until it encounters something that’s not a digit, and when reading into a string, >> will read until it
encounters whitespace. The standard library istream library also provides facilities for reading individual characters and
whole lines. Consider:
Click here to view code image

string name;

cin >> name;                            // input: Dennis Ritchie
cout << name << '\n';            // output: Dennis

What if we wanted to read everything on that line at once and decide how to format it later? That could be done using the
function getline(). For example:
Click here to view code image

string name;

getline(cin,name);                  // input: Dennis Ritchie
cout << name << '\n';            // output: Dennis Ritchie

Now we have the whole line. Why would we want that? A good answer would be “Because we want to do something that
can’t be done by >>.” Often, the answer is a poor one: “Because the user typed a whole line.” If that’s the best you can think
of, stick to >>, because once you have the line entered, you usually have to parse it somehow. For example:
Click here to view code image



string first_name;

string second_name;

stringstream ss {name};

ss>>first_name;                           // input Dennis
ss>>second_name;                    // input Ritchie

Reading directly into first_name and second_name would have been simpler.
One common reason for wanting to read a whole line is that the definition of whitespace isn’t always appropriate.

Sometimes, we want to consider a newline as different from other whitespace characters. For example, a text communication
with a game might consider a line a sentence, rather than relying on conventional punctuation:
Click here to view code image

go left until you see a picture on the wall to your right

remove the picture and open the door behind it. take the bag from there

In that case, we’d first read a whole line and then extract individual words from that.
Click here to view code image

string command;

getline(cin,command);                         // read the line

stringstream ss {command};

vector<string> words;

for (string s; ss>>s; )

                    words.push_back(s);     // extract the individual words

On the other hand, had we had a choice, we would most likely have preferred to rely on some proper punctuation rather than a
line break.

11.6 Character classification

Usually, we read integers, floating-point numbers, words, etc. as defined by format conventions. However, we can — and
sometimes must — go down a level of abstraction and read individual characters. That’s more work, but when we read
individual characters, we have full control over what we are doing. Consider tokenizing an expression (§7.8.2). For example,
we want 1+4*x<=y/z*5 to be separated into the eleven tokens

1 + 4 * x <= y / z * 5

We could use >> to read the numbers, but trying to read the identifiers as strings would cause x<=y to be read as one string
(since < and = are not whitespace characters) and z* to be read as one string (since * isn’t a whitespace character either).
Instead, we could write
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for (char ch; cin.get(ch); ) {

          if (isspace(ch)) {        // if ch is whitespace
                    // do nothing (i.e., skip whitespace)
          }
          if (isdigit(ch)) {

                   // read a number
          }
          else if (isalpha(ch)) {

                    // read an identifier
          }
          else {

                   // deal with operators
          }
}

The istream::get() function reads a single character into its argument. It does not skip whitespace. Like >>, get() returns a
reference to its istream so that we can test its state.

When we read individual characters, we usually want to classify them: Is this character a digit? Is this character uppercase?
And so forth. There is a set of standard library functions for that:



Note that the classifications can be combined using the “or” operator (||). For example, isalnum(c) means
isalpha(c)||isdigit(c); that is, “Is c either a letter or a digit?”

In addition, the standard library provides two useful functions for getting rid of case differences:

These are useful when you want to ignore case differences. For example, in input from a user Right, right, and rigHT most
likely mean the same thing (rigHT most likely being the result of an unfortunate hit on the Caps Lock key). After applying
tolower() to each character in each of those strings, we get right for each. We can do that for an arbitrary string:
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void tolower(string& s)          // put s into lower case
{

          for (char& x : s) x = tolower(x);

}

We use pass-by-reference (§8.5.5) to actually change the string. Had we wanted to keep the old string we could have written
a function to make a lowercase copy. Prefer tolower() to toupper() because that works better for text in some natural
languages, such as German, where not every lowercase character has an uppercase equivalent.

11.7 Using nonstandard separators
This section provides a semi-realistic example of the use of iostreams to solve a real problem. When we read strings, words
are by default separated by whitespace. Unfortunately, istream doesn’t offer a facility for us to define what characters make
up whitespace or in some other way directly change how >> reads a string. So, what do we do if we need another definition of
whitespace? Consider the example from §4.6.3 where we read in “words” and compared them. Those words were whitespace-
separated, so if we read
Click here to view code image

As planned, the guests arrived; then,

We would get the “words”

As

planned,

the

guests

arrived;

then,

This is not what we’d find in a dictionary: planned, and arrived; are not words. They are words plus distracting and
irrelevant punctuation characters. For most purposes we must treat punctuation just like whitespace. How might we get rid of



such punctuation? We could read characters, remove the punctuation characters — or turn them into whitespace — and then
read the “cleaned-up” input again:
Click here to view code image

string line;

getline(cin,line);           // read into line
for (char& ch : line)     // replace each punctuation character by a space
          switch(ch) {

          case ';': case '.': case ',': case '?': case '!':

                    ch = ' ';

          }

stringstream ss(line);                  // make an istream ss reading from line
vector<string> vs;

for (string word; ss>>word; )   // read words without punctuation characters
          vs.push_back(word);

Using that to read the line, we get the desired

As

planned

the

guests

arrived

then

Unfortunately, the code above is messy and rather special-purpose. What would we do if we had another definition of
punctuation? Let’s provide a more general and useful way of removing unwanted characters from an input stream. What would
that be? What would we like our user code to look like? How about
Click here to view code image

ps.whitespace(";:,.");    // treat semicolon, colon, comma, and dot as whitespace
for (string word; ps>>word; )

                   vs.push_back(word);

How would we define a stream that would work like ps? The basic idea is to read words from an ordinary input stream and
then treat the user-specified “whitespace” characters as whitespace; that is, we do not give “whitespace” characters to the
user, we just use them to separate words. For example,

as.not

should be the two words

as

not

We can define a class to do that for us. It must get characters from an istream and have a >> operator that works just like
istream’s except that we can tell it which characters it should consider to be whitespace. For simplicity, we will not provide
a way of treating existing whitespace characters (space, newline, etc.) as non-whitespace; we’ll just allow a user to specify
additional “whitespace” characters. Nor will we provide a way to completely remove the designated characters from the
stream; as before, we will just turn them into whitespace. Let’s call that class Punct_stream:
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class Punct_stream {          // like an istream, but the user can add to
                                                  // the set of whitespace characters
public:

          Punct_stream(istream& is)

                    : source{is}, sensitive{true} { }

          void whitespace(const string& s)              // make s the whitespace set
                    { white = s; }

          void add_white(char c) { white += c; }    // add to the whitespace set
          bool is_whitespace(char c);                      // is c in the whitespace set?
          void case_sensitive(bool b) { sensitive = b; }

          bool is_case_sensitive() { return sensitive; }

          Punct_stream& operator>>(string& s);



          operator bool();

private:

          istream& source;               // character source
          istringstream buffer;         // we let buffer do our formatting
          string white;                        // characters considered “whitespace”
          bool sensitive;                    // is the stream case-sensitive?
};

The basic idea is — just as in the example above — to read a line at a time from the istream, convert “whitespace”
characters into spaces, and then use the istringstream to do formatting. In addition to dealing with user-defined whitespace,
we have given Punct_stream a related facility: if we ask it to, using case_sensitive(), it can convert case-sensitive input
into non-case-sensitive input. For example, if we ask, we can get a Punct_stream to read

Man bites dog!

as

man

bites

dog

Punct_stream’s constructor takes the istream to be used as a character source and gives it the local name source. The
constructor also defaults the stream to the usual case-sensitive behavior. We can make a Punct_stream that reads from cin

regarding semicolon, colon, and dot as whitespace, and that turns all characters into lower case:
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Punct_stream ps {cin};           // ps reads from cin
ps.whitespace(";:.");             // semicolon, colon, and dot are also whitespace
ps.case_sensitive(false);        // not case-sensitive

Obviously, the most interesting operation is the input operator >>. It is also by far the most difficult to define. Our general
strategy is to read a whole line from the istream into a string (called line). We then convert all of “our” whitespace
characters to the space character (' '). That done, we put the line into the istringstream called buffer. Now we can use the
usual whitespace-separating >> to read from buffer. The code looks a bit more complicated than this because we simply try
reading from the buffer and try to fill it only when we find it empty:
Click here to view code image

Punct_stream& Punct_stream::operator>>(string& s)

{

          while (!(buffer>>s)) {                                  // try to read from buffer
                     if (buffer.bad() || !source.good()) return *this;

                     buffer.clear();

                     string line;

                     getline(source,line);                       // get a line from source

                     // do character replacement as needed:
                     for (char& ch : line)

                               if (is_whitespace(ch))

                                         ch = ' ';                           // to space
                               else if (!sensitive)

                                         ch = tolower(ch);        // to lower case

                     buffer.str(line);                               // put string into stream
          }
          return *this;

}

Let’s consider this bit by bit. Consider first the somewhat unusual

while (!(buffer>>s)) {

If there are characters in the istringstream called buffer, the read buffer>>s will work, and s will receive a “whitespace”-
separated word; then there is nothing more to do. That will happen as long as there are characters in buffer for us to read.
However, when buffer>>s fails — that is, if !(buffer>>s) — we must replenish buffer from source. Note that the



buffer>>s read is in a loop; after we have tried to replenish buffer, we need to try another read, so we get
Click here to view code image

while (!(buffer>>s)) {                                            // try to read from buffer
          if (buffer.bad() || !source.good()) return *this;

          buffer.clear();

          // replenish buffer
}

If buffer is bad() or the source has a problem, we give up; otherwise, we clear buffer and try again. We need to clear
buffer because we get into that “replenish loop” only if a read failed, typically because we hit eof() for buffer; that is, there
were no more characters in buffer for us to read. Dealing with stream state is always messy and it is often the source of subtle
errors that require tedious debugging. Fortunately the rest of the replenish loop is pretty straightforward:
Click here to view code image

string line;

getline(source,line);                   // get a line from source

// do character replacement as needed:
for (char& ch : line)

          if (is_whitespace(ch))

                    ch = ' ';                      // to space
          else if (!sensitive)

                    ch = tolower(ch);    // to lower case

buffer.str(line);                           // put string into stream

We read a line into line. Then we look at each character of that line to see if we need to change it. The is_whitespace()

function is a member of Punct_stream, which we’ll define later. The tolower() function is a standard library function doing
the obvious, such as turning A into a (see §11.6).

Once we have a properly processed line, we need to get it into our istringstream. That’s what buffer.str(line) does; it
can be read as “Set the istringstream buffer’s string to line.”

Note that we “forgot” to test the state of source after reading from it using getline(). We don’t need to because we will
eventually reach the !source.good() test at the top of the loop.

As ever, we return a reference to the stream itself, *this, as the result of >>; see §17.10.
Testing for whitespace is easy; we just compare a character to each character of the string that holds our whitespace set:

Click here to view code image

bool Punct_stream::is_whitespace(char c)

{

          for (char w : white)

                    if (c==w) return true;

          return false;

}

Remember that we left the istringstream to deal with the usual whitespace characters (e.g., newline and space) in the usual
way, so we don’t need to do anything special about those.

This leaves one mysterious function:
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Punct_stream::operator bool()

{

          return !(source.fail() || source.bad()) && source.good();

}

The conventional use of an istream is to test the result of >>. For example:

while (ps>>s) { /* . . . */ }

That means that we need a way of looking at the result of ps>>s as a Boolean value. The result of ps>>s is a Punct_stream,
so we need a way of implicitly turning a Punct_stream into a bool. That’s what Punct_stream’s operator bool() does.



A member function called operator bool() defines a conversion to bool. In particular, it returns true if the operation on the
Punct_stream succeeded.

Now we can write our program:
Click here to view code image

int main()

           // given text input, produce a sorted list of all words in that text
           // ignore punctuation and case differences
           // eliminate duplicates from the output
{

           Punct_stream ps {cin};

           ps.whitespace(";:,.?!()\"{}<>/&$@#%^*|~");     // note \“ means ” in string
           ps.case_sensitive(false);

           cout << "please enter words\n";

           vector<string> vs;

           for (string word; ps>>word; )

                     vs.push_back(word);            // read words

           sort(vs.begin(),vs.end());               // sort in lexicographical order
           for (int i=0; i<vs.size(); ++i)           // write dictionary
                     if (i==0 || vs[i]!=vs[i–1]) cout << vs[i] << '\n';

}

This will produce a properly sorted list of words from input. The test

if (i==0 || vs[i]!=vs[i–1])

will suppress duplicates. Feed this program the input
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There are only two kinds of languages: languages that people complain

about, and languages that people don't use.

and it will output

about

and

are

complain

don't

kind

languages

of

only

people

that

there

two

use

Why did we get don't and not dont? We left the single quote out of the whitespace() call.

Caution: Punct_stream behaves like an istream in many important and useful ways, but it isn’t really an istream. For
example, we can’t ask for its state using rdstate(), eof() isn’t defined, and we didn’t bother providing a >> that reads
integers. Importantly, we cannot pass a Punct_stream to a function expecting an istream. Could we define a
Punct_istream that really is an istream? We could, but we don’t yet have the programming experience, the design concepts,
and the language facilities required to pull off that stunt (if you — much later — want to return to this problem, you have to
look up stream buffers in an expert-level guide or manual).

Did you find Punct_stream easy to read? Did you find the explanations easy to follow? Do you think you could have
written it yourself? If you were a genuine novice a few days ago, the honest answer is likely to be “No, no, no!” or even “NO,
no! Nooo!! — Are you crazy?” We understand — and the answer to the last question/outburst is “No, at least we think not.”



The purpose of the example is
• To show a somewhat realistic problem and solution
• To show what can be achieved with relatively modest means
• To provide an easy-to-use solution to an apparently easy problem
• To illustrate the distinction between the interface and the implementation

To become a programmer, you need to read code, and not just carefully polished solutions to educational problems. This is an
example. In another few days or weeks, this will become easy for you to read, and you will be looking at ways to improve the
solution.

One way to think of this example is as equivalent to a teacher having dropped some genuine English slang into an English-
for-beginners course to give a bit of color and enliven the proceedings.

11.8 And there is so much more

The details of I/O seem infinite. They probably are, since they are limited only by human inventiveness and capriciousness. For
example, we have not considered the complexity implied by natural languages. What is written as 12.35 in English will be
conventionally represented as 12,35 in most other European languages. Naturally, the C++ standard library provides facilities
for dealing with that and many other natural-language-specific aspects of I/O. How do you write Chinese characters? How do
you compare strings written using Malayalam characters? There are answers, but they are far beyond the scope of this book. If
you need to know, look in more specialized or advanced books (such as Langer, Standard C++ IOStreams and Locales, and
Stroustrup, The C++ Programming Language) and in library and system documentation. Look for “locale”; that’s the term
usually applied to facilities for dealing with natural language differences.

Another source of complexity is buffering: the standard library iostreams rely on a concept called streambuf. For
advanced work — whether for performance or functionality — with iostreams these streambufs are unavoidable. If you
feel the need to define your own iostreams or to tune iostreams to new data sources/sinks, see Chapter 38 of The C++
Programming Language by Stroustrup or your system documentation.

When using C++, you may also encounter the C standard printf()/scanf() family of I/O functions. If you do, look them up in
§27.6, §B.10.2, or in the excellent C textbook by Kernighan and Ritchie (The C Programming Language) or one of the
innumerable sources on the web. Each language has its own I/O facilities; they all vary, most are quirky, but most reflect (in
various odd ways) the same fundamental concepts that we have presented in Chapters 10 and 11.

The standard library I/O facilities are summarized in Appendix B.
The related topic of graphical user interfaces (GUIs) is described in Chapters 12–16.

 Drill

1. Start a program called Test_output.cpp. Declare an integer birth_year and assign it the year you were born.
2. Output your birth_year in decimal, hexadecimal, and octal form.
3. Label each value with the name of the base used.
4. Did you line up your output in columns using the tab character? If not, do it.
5. Now output your age.
6. Was there a problem? What happened? Fix your output to decimal.
7. Go back to 2 and cause your output to show the base for each output.
8. Try reading as octal, hexadecimal, etc.:

Click here to view code image

cin >> a >>oct >> b >> hex >> c >> d;

cout << a << '\t'<< b << '\t'<< c << '\t'<< d << '\n' ;

Run this code with the input

1234 1234 1234 1234



Explain the results.
9. Write some code to print the number 1234567.89 three times, first using defaultfloat, then fixed, then scientific

forms. Which output form presents the user with the most accurate representation? Explain why.
10. Make a simple table including last name, first name, telephone number, and email address for yourself and at least five

of your friends. Experiment with different field widths until you are satisfied that the table is well presented.

Review
1. Why is I/O tricky for a programmer?
2. What does the notation << hex do?
3. What are hexadecimal numbers used for in computer science? Why?
4. Name some of the options you may want to implement for formatting integer output.
5. What is a manipulator?
6. What is the prefix for decimal? For octal? For hexadecimal?
7. What is the default output format for floating-point values?
8. What is a field?
9. Explain what setprecision() and setw() do.

10. What is the purpose of file open modes?
11. Which of the following manipulators does not “stick”: hex, scientific, setprecision(), showbase, setw?
12. What is the difference between character I/O and binary I/O?
13. Give an example of when it would probably be beneficial to use a binary file instead of a text file.
14. Give two examples where a stringstream can be useful.
15. What is a file position?
16. What happens if you position a file position beyond the end of file?
17. When would you prefer line-oriented input to type-specific input?
18. What does isalnum(c) do?

Terms
binary
character classification
decimal
defaultfloat

file positioning
fixed

hexadecimal
irregularity
line-oriented input
manipulator
nonstandard separator
noshowbase

octal
output formatting
regularity
scientific

setprecision()

showbase

Exercises



1. Write a program that reads a text file and converts its input to all lower case, producing a new file.
2. Write a program that given a file name and a word outputs each line that contains that word together with the line

number. Hint: getline().
3. Write a program that removes all vowels from a file (“disemvowels”). For example, Once upon a time! becomes nc

pn tm!. Surprisingly often, the result is still readable; try it on your friends.
4. Write a program called multi_input.cpp that prompts the user to enter several integers in any combination of octal,

decimal, or hexadecimal, using the 0 and 0x base suffixes; interprets the numbers correctly; and converts them to decimal
form. Then your program should output the values in properly spaced columns like this:

Click here to view code image

 0x43    hexadecimal   converts to    67  decimal

 0123    octal                 converts to    83  decimal

     65    decimal            converts to    65  decimal

5. Write a program that reads strings and for each string outputs the character classification of each character, as defined by
the character classification functions presented in §11.6. Note that a character can have several classifications (e.g., x is
both a letter and an alphanumeric).

6. Write a program that replaces punctuation with whitespace. Consider . (dot), ; (semicolon), , (comma), ? (question
mark), - (dash), ' (single quote) punctuation characters. Don’t modify characters within a pair of double quotes ("). For
example, “- don't use the as-if rule.” becomes “ don t use the as if rule ”.

7. Modify the program from the previous exercise so that it replaces don't with do not, can't with cannot, etc.; leaves
hyphens within words intact (so that we get “ do not use the as-if rule ”); and converts all characters to lower case.

8. Use the program from the previous exercise to make a dictionary (as an alternative to the approach in §11.7). Run the
result on a multi-page text file, look at the result, and see if you can improve the program to make a better dictionary.

9. Split the binary I/O program from §11.3.2 into two: one program that converts an ordinary text file into binary and one
program that reads binary and converts it to text. Test these programs by comparing a text file with what you get by
converting it to binary and back.

10. Write a function vector<string> split(const string& s) that returns a vector of whitespace-separated substrings
from the argument s.

11. Write a function vector<string> split(const string& s, const string& w) that returns a vector of whitespace-
separated substrings from the argument s, where whitespace is defined as “ordinary whitespace” plus the characters in
w.

12. Reverse the order of characters in a text file. For example, asdfghjkl becomes lkjhgfdsa. Warning: There is no really
good, portable, and efficient way of reading a file backward.

13. Reverse the order of words (defined as whitespace-separated strings) in a file. For example, Norwegian Blue parrot

becomes parrot Blue Norwegian. You are allowed to assume that all the strings from the file will fit into memory at
once.

14. Write a program that reads a text file and writes out how many characters of each character classification (§11.6) are in
the file.

15. Write a program that reads a file of whitespace-separated numbers and outputs a file of numbers using scientific format
and precision 8 in four fields of 20 characters per line.

16. Write a program to read a file of whitespace-separated numbers and output them in order (lowest value first), one value
per line. Write a value only once, and if it occurs more than once write the count of its occurrences on its line. For
example, 7 5 5 7 3 117 5 should give

3

5     3

7     2

117

Postscript



Input and output are messy because our human tastes and conventions have not followed simple-to-state rules and
straightforward mathematical laws. As programmers, we are rarely in a position to dictate that our users depart from their
preferences, and when we are, we should typically be less arrogant than to think that we can provide a simple alternative to
conventions built up over time. Consequently, we must expect, accept, and adapt to a certain messiness of input and output
while still trying to keep our programs as simple as possible — but no simpler.



12. A Display Model

“The world was black and white then.
[It] didn’t turn color

until sometime in the 1930s.”
—Calvin’s dad

This chapter presents a display model (the output part of GUI), giving examples of use and fundamental notions such as screen
coordinates, lines, and color. Line, Lines, Polygons, Axis, and Text are examples of Shapes. A Shape is an object in
memory that we can display and manipulate on a screen. The next two chapters will explore these classes further, with Chapter
13 focusing on their implementation and Chapter 14 on design issues.

12.1 Why graphics?
12.2 A display model
12.3 A first example
12.4 Using a GUI library
12.5 Coordinates
12.6 Shapes
12.7 Using Shape primitives

12.7.1 Graphics headers and main

12.7.2 An almost blank window
12.7.3 Axis

12.7.4 Graphing a function
12.7.5 Polygons
12.7.6 Rectangles
12.7.7 Fill
12.7.8 Text

12.7.9 Images
12.7.10 And much more

12.8 Getting this to run
12.8.1 Source files

12.1 Why graphics?
Why do we spend four chapters on graphics and one on GUIs (graphical user interfaces)? After all, this is a book about
programming, not a graphics book. There is a huge number of interesting software topics that we don’t discuss, and we can at
best scratch the surface on the topic of graphics. So, “Why graphics?” Basically, graphics is a subject that allows us to explore
several important areas of software design, programming, and programming language facilities:

• Graphics are useful. There is much more to programming than graphics and much more to software than code
manipulated through a GUI. However, in many areas good graphics are either essential or very important. For example,
we wouldn’t dream of studying scientific computing, data analysis, or just about any quantitative subject without the
ability to graph data. Chapter 15 gives simple (but general) facilities for graphing data.

• Graphics are fun. There are few areas of computing where the effect of a piece of code is as immediately obvious and
— when finally free of bugs — as pleasing. We’d be tempted to play with graphics even if it wasn’t useful!

• Graphics provide lots of interesting code to read. Part of learning to program is to read lots of code to get a feel for
what good code is like. Similarly, the way to become a good writer of English involves reading a lot of books, articles,
and quality newspapers. Because of the direct correspondence between what we see on the screen and what we write in
our programs, simple graphics code is more readable than most kinds of code of similar complexity. This chapter will
prove that you can read graphics code after a few minutes of introduction; Chapter 13 will demonstrate how you can



write it after another couple of hours.
• Graphics are a fertile source of design examples. It is actually hard to design and implement a good graphics and GUI

library. Graphics are a very rich source of concrete and practical examples of design decisions and design techniques.
Some of the most useful techniques for designing classes, designing functions, separating software into layers (of
abstraction), and constructing libraries can be illustrated with a relatively small amount of graphics and GUI code.

• Graphics provide a good introduction to what is commonly called object-oriented programming and the language
features that support it. Despite rumors to the contrary, object-oriented programming wasn’t invented to be able to do
graphics (see Chapter 22), but it was soon applied to that, and graphics provide some of the most accessible examples of
object-oriented designs.

• Some of the key graphics concepts are nontrivial. So they are worth teaching, rather than leaving it to your own
initiative (and patience) to seek out information. If we did not show how graphics and GUI were done, you might
consider them “magic,” thus violating one of the fundamental aims of this book.

12.2 A display model
The iostream library is oriented toward reading and writing streams of characters as they might appear in a list of numeric
values or a book. The only direct supports for the notion of graphical position are the newline and tab characters. You can
embed notions of color and two-dimensional positions, etc. in a one-dimensional stream of characters. That’s what layout
(typesetting, “markup”) languages such as Troff, TeX, Word, HTML, and XML (and their associated graphical packages) do.
For example:
Click here to view code image

<hr>

<h2>

Organization

</h2>

This list is organized in three parts:

<ul>

          <li><b>Proposals</b>, numbered EPddd, . . .</li>

          <li><b>Issues</b>, numbered EIddd, . . .</li>

          <li><b>Suggestions</b>, numbered ESddd, . . .</li>

</ul>

<p>We try to . . .

<p>

This is a piece of HTML specifying a header (<h2> . . . </h2>), a list (<ul> . . . </ul>) with list items (<li> . . . </li>),
and a paragraph (<p>). We left out most of the actual text because it is irrelevant here. The point is that you can express layout
notions in plain text, but the connection between the characters written and what appears on the screen is indirect, governed by
a program that interprets those “markup” commands. Such techniques are fundamentally simple and immensely useful (just
about everything you read has been produced using them), but they also have their limitations.

In this chapter and the next four, we present an alternative: a notion of graphics and of graphical user interfaces that is
directly aimed at a computer screen. The fundamental concepts are inherently graphical (and two-dimensional, adapted to the
rectangular area of a computer screen), such as coordinates, lines, rectangles, and circles. The aim from a programming point
of view is a direct correspondence between the objects in memory and the images on the screen.

The basic model is as follows: We compose objects with basic objects provided by a graphics system, such as lines. We
“attach” these graphics objects to a window object, representing our physical screen. A program that we can think of as the
display itself, as “a display engine,” as “our graphics library,” as “the GUI library,” or even (humorously) as “the small gnome
writing on the back of the screen,” then takes the objects we have attached to our window and draws them on the screen:



The “display engine” draws lines on the screen, places strings of text on the screen, colors areas of the screen, etc. For
simplicity, we’ll use the phrase “our GUI library” or even “the system” for the display engine even though our GUI library
does much more than just drawing the objects. In the same way that our code lets the GUI library do most of the work for us,
the GUI library delegates much of its work to the operating system.

12.3 A first example
Our job is to define classes from which we can make objects that we want to see on the screen. For example, we might want to
draw a graph as a series of connected lines. Here is a small program presenting a very simple version of that:
Click here to view code image

#include "Simple_window.h"   // get access to our window library
#include "Graph.h"                    // get access to our graphics library facilities

int main()

{

          using namespace Graph_lib;    // our graphics facilities are in Graph_lib

          Point tl {100,100};                        // to become top left corner of window

          Simple_window win {tl,600,400,"Canvas"};     // make a simple window

          Polygon poly;                             // make a shape (a polygon)

          poly.add(Point{300,200});        // add a point
          poly.add(Point{350,100});        // add another point
          poly.add(Point{400,200});        // add a third point

          poly.set_color(Color::red);    // adjust properties of poly

          win.attach (poly);                      // connect poly to the window

          win.wait_for_button();            // give control to the display engine
}

When we run this program, the screen looks something like this:



Let’s go through the program line by line to see what was done. First we include the headers for our graphics interface
libraries:
Click here to view code image

#include "Simple_window.h"           // get access to our window library
#include "Graph.h"                            // get access to our graphics library facilities

Then, in main(), we start by telling the compiler that our graphics facilities are to be found in Graph_lib:
Click here to view code image

using namespace Graph_lib;            // our graphics facilities are in Graph_lib

Then, we define a point that we will use as the top left corner of our window:
Click here to view code image

Point tl {100,100};                              // to become top left corner of window

Next, we create a window on the screen:
Click here to view code image

Simple_window win {tl,600,400,"Canvas"};           // make a simple window

We use a class representing a window in our Graph_lib interface library called Simple_window. The name of this
particular Simple_window is win; that is, win is a variable of class Simple_window. The initializer list for win starts
with the point to be used as the top left corner, tl, followed by 600 and 400. Those are the width and height, respectively, of
the window, as displayed on the screen, measured in pixels. We’ll explain in more detail later, but the main point here is that



we specify a rectangle by giving its width and height. The string Canvas is used to label the window. If you look, you can see
the word Canvas in the top left corner of the window’s frame.

Next, we put an object in the window:
Click here to view code image

Polygon poly;                           // make a shape (a polygon)

poly.add(Point{300,200});      // add a point
poly.add(Point{350,100});      // add another point
poly.add(Point{400,200});      // add a third point

We define a polygon, poly, and then add points to it. In our graphics library, a Polygon starts empty and we can add as many
points to it as we like. Since we added three points, we get a triangle. A point is simply a pair of values giving the x and y
(horizontal and vertical) coordinates within a window.

Just to show off, we then color the lines of our polygon red:
Click here to view code image

poly.set_color(Color::red);            // adjust properties of poly

Finally, we attach poly to our window, win:
Click here to view code image

win.attach(poly);             // connect poly to the window

If the program wasn’t so fast, you would notice that so far nothing had happened to the screen: nothing at all. We created a
window (an object of class Simple_window, to be precise), created a polygon (called poly), painted that polygon red
(Color::red), and attached it to the window (called win), but we have not yet asked for that window to be displayed on the
screen. That’s done by the final line of the program:
Click here to view code image

win.wait_for_button();      // give control to the display engine

To get a GUI system to display objects on the screen, you have to give control to “the system.” Our wait_for_button() does
that, and it also waits for you to “press” (“click”) the “Next” button of our Simple_window before proceeding. This gives
you a chance to look at the window before the program finishes and the window disappears. When you press the button, the
program terminates, closing the window.

In isolation, our window looks like this:

You’ll notice that we “cheated” a bit. Where did that button labeled “Next” come from? We built it into our Simple_window

class. In Chapter 16, we’ll move from Simple_window to “plain” Window, which has no potentially spurious facilities
built in, and show how we can write our own code to control interaction with a window.

For the next three chapters, we’ll simply use that “Next” button to move from one “display” to the next when we want to
display information in stages (“frame by frame”).



You are so used to the operating system putting a frame around each window that you might not have noticed it specifically.
However, the pictures in this and the following chapters were produced on a Microsoft Windows system, so you get the usual
three buttons on the top right “for free.” This can be useful: if your program gets in a real mess (as it surely will sometimes
during debugging), you can kill it by hitting the X button. When you run your program on another system, a different frame will
be added to fit that system’s conventions. Our only contribution to the frame is the label (here, Canvas).

12.4 Using a GUI library

In this book, we will not use the operating system’s graphical and GUI (graphical user interface) facilities directly. Doing so
would limit our programs to run on a single operating system and would also force us to deal directly with a lot of messy
details. As with text I/O, we’ll use a library to smooth over operating system differences, I/O device variations, etc. and to
simplify our code. Unfortunately, C++ does not provide a standard GUI library the way it provides the standard stream I/O
library, so we use one of the many available C++ GUI libraries. So as not to tie you directly into one of those GUI libraries,
and to save you from hitting the full complexity of a GUI library all at once, we use a set of simple interface classes that can be
implemented in a couple of hundred lines of code for just about any GUI library.

The GUI toolkit that we are using (indirectly for now) is called FLTK (Fast Light Tool Kit, pronounced “full tick”) from
www.fltk.org. Our code is portable wherever FLTK is used (Windows, Unix, Mac, Linux, etc.). Our interface classes can also
be re-implemented using other toolkits, so code using them is potentially even more portable.

The programming model presented by our interface classes is far simpler than what common toolkits offer. For example, our
complete graphics and GUI interface library is about 600 lines of C++ code, whereas the extremely terse FLTK documentation
is 370 pages. You can download that from www.fltk.org, but we don’t recommend you do that just yet. You can do without that
level of detail for a while. The general ideas presented in Chapters 12–16 can be used with any popular GUI toolkit. We will
of course explain how our interface classes map to FLTK so that you will (eventually) see how you can use that (and similar
toolkits) directly, if necessary.

We can illustrate the parts of our “graphics world” like this:

Our interface classes provide a simple and user-extensible basic notion of two-dimensional shapes with limited support for the
use of color. To drive that, we present a simple notion of GUI based on “callback” functions triggered by the use of user-
defined buttons, etc. on the screen (Chapter 16).

12.5 Coordinates

A computer screen is a rectangular area composed of pixels. A pixel is a tiny spot that can be given some color. The most
common way of modeling a screen in a program is as a rectangle of pixels. Each pixel is identified by an x (horizontal)
coordinate and a y (vertical) coordinate. The x coordinates start with 0, indicating the leftmost pixel, and increase (toward the
right) to the rightmost pixel. The y coordinates start with 0, indicating the topmost pixel, and increase (toward the bottom) to
the lowest pixel:

http://www.fltk.org
http://www.fltk.org


Please note that y coordinates “grow downward.” Mathematicians, in particular, find this odd, but screens (and windows)
come in many sizes, and the top left point is about all that they have in common.

The number of pixels available depends on the screen: 1024-by-768, 1280-by-1024, 1400-by-1050, and 1600-by-1200 are
common screen sizes.

In the context of interacting with a computer using a screen, a window is a rectangular region of the screen devoted to some
specific purpose and controlled by a program. A window is addressed exactly like a screen. Basically, we see a window as a
small screen. For example, when we said
Click here to view code image

Simple_window win {tl,600,400,"Canvas"};

we requested a rectangular area 600 pixels wide and 400 pixels high that we can address as 0–599 (left to right) and 0–399
(top to bottom). The area of a window that you can draw on is commonly referred to as a canvas. The 600-by-400 area refers
to “the inside” of the window, that is, the area inside the system-provided frame; it does not include the space the system uses
for the title bar, quit button, etc.

12.6 Shapes
Our basic toolbox for drawing on the screen consists of about a dozen classes:

An arrow indicates that the class pointing can be used where the class pointed to is required. For example, a Polygon can be
used where a Shape is required; that is, a Polygon is a kind of Shape.

We will start out presenting and using
• Simple_window, Window

• Shape, Text, Polygon, Line, Lines, Rectangle, Function, etc.
• Color, Line_style, Point

• Axis

Later (Chapter 16), we’ll add GUI (user interaction) classes:
• Button, In_box, Menu, etc.

We could easily add many more classes (for some definition of “easy”), such as
• Spline, Grid, Block_chart, Pie_chart, etc.

However, defining or describing a complete GUI framework with all its facilities is beyond the scope of this book.

12.7 Using Shape primitives
In this section, we will walk you through some of the primitive facilities of our graphics library: Simple_window,



Window, Shape, Text, Polygon, Line, Lines, Rectangle, Color, Line_style, Point, Axis. The aim is to give you a
broad view of what you can do with those facilities, but not yet a detailed understanding of any of those classes. In the next
chapters, we explore the design of each.

We will now walk through a simple program, explaining the code line by line and showing the effect of each on the screen.
When you run the program you’ll see how the image changes as we add shapes to the window and modify existing shapes.
Basically, we are “animating” the progress through the code by looking at the program as it is executed.

12.7.1 Graphics headers and main

First, we include the header files defining our interface to the graphics and GUI facilities:
Click here to view code image

#include "Window.h"              // a plain window
#include "Graph.h"

or
Click here to view code image

#include "Simple_window.h"           // if we want that “Next” button
#include "Graph.h"

As you probably guessed, Window.h contains the facilities related to windows and Graph.h the facilities related to
drawing shapes (including text) into windows. These facilities are defined in the Graph_lib namespace. To simplify notation
we use a namespace directive to make the names from Graph_lib directly available in our program:

using namespace Graph_lib;

As usual, main() contains the code we want to execute (directly or indirectly) and deals with exceptions:
Click here to view code image

int main ()

try

{

           // . . . here is our code . . .

}

catch(exception& e) {

          // some error reporting
          return 1;

}

catch(...) {

          // some more error reporting
          return 2;

}

For this main() to compile, we need to have exception defined. We get that if we include std_lib_facilities.h as usual, or
we could start to deal directly with standard headers and include <stdexcept>.

12.7.2 An almost blank window
We will not discuss error handling here (see Chapter 5, in particular, §5.6.3) but go straight to the graphics within main():
Click here to view code image

Point tl {100,100};              // top left corner of our window

Simple_window win {tl,600,400,"Canvas"};

          // screen coordinate tl for top left corner
          // window size(600*400)
          // title: Canvas
win.wait_for_button();   // display!

This creates a Simple_window, that is, a window with a “Next” button, and displays it on the screen. Obviously, we need to
have #included the header Simple_window.h rather than Window.h to get Simple_window. Here we are specific
about where on the screen the window should go: its top left corner goes at Point{100,100}. That’s near, but not too near, the
top left corner of the screen. Obviously, Point is a class with a constructor that takes a pair of integers and interprets them as



an (x,y) coordinate pair. We could have written
Click here to view code image

Simple_window win {Point{100,100},600,400,"Canvas"};

However, we want to use the point (100,100) several times so it is more convenient to give it a symbolic name. The 600 is the
width and 400 is the height of the window, and Canvas is the label we want put on the frame of the window.

To actually get the window drawn on the screen, we have to give control to the GUI system. We do this by calling
win.wait_for_button() and the result is:

In the background of our window, we see a laptop screen (somewhat cleaned up for the occasion). For people who are curious
about irrelevant details, we can tell you that I took the photo standing near the Picasso library in Antibes looking across the bay
to Nice. The black console window partially hidden behind is the one running our program. Having a console window is
somewhat ugly and unnecessary, but it has the advantage of giving us an effective way of killing our window if a partially
debugged program gets into an infinite loop and refuses to go away. If you look carefully, you’ll notice that we have the
Microsoft C++ compiler running, but you could just as well have used some other compiler (such as Borland or GNU).

For the rest of the presentation we will eliminate the distractions around our window and just show that window by itself:



The actual size of the window (in inches) depends on the resolution of your screen. Some screens have bigger pixels than other
screens.

12.7.3 Axis

An almost blank window isn’t very interesting, so we’d better add some information. What would we like to display? Just to
remind you that graphics is not all fun and games, we will start with something serious and somewhat complicated: an axis. A
graph without axes is usually a disgrace. You just don’t know what the data represents without axes. Maybe you explained it
all in some accompanying text, but it is far safer to add axes; people often don’t read the explanation and often a nice graphical
representation gets separated from its original context. So, a graph needs axes:
Click here to view code image

Axis xa {Axis::x, Point{20,300}, 280, 10, "x axis"};          // make an Axis
                               // an Axis is a kind of Shape
                               // Axis::x means horizontal
                               // starting at (20,300)
                               // 280 pixels long
                               // 10 “notches”
                               // label the axis "x axis"
win.attach(xa);                              // attach xa to the window, win
win.set_label("Canvas #2");       // relabel the window
win.wait_for_button();                // display!

The sequence of actions is: make the axis object, add it to the window, and finally display it:



We can see that an Axis::x is a horizontal line. We see the required number of “notches” (10) and the label “x axis.” Usually,
the label will explain what the axis and the notches represent. Naturally, we chose to place the x axis somewhere near the
bottom of the window. In real life, we’d represent the height and width by symbolic constants so that we could refer to “just
above the bottom” as something like y_max-bottom_margin rather than by a “magic constant,” such as 300 (§4.3.1,
§15.6.2).

To help identify our output we relabeled the screen to Canvas #2 using Window’s member function set_label().
Now, let’s add a y axis:

Click here to view code image

Axis ya {Axis::y, Point{20,300}, 280, 10, "y axis"};

ya.set_color(Color::cyan);                       // choose a color
ya.label.set_color(Color::dark_red);     // choose a color for the text
win.attach(ya);

win.set_label("Canvas #3");

win.wait_for_button();                              // display!

Just to show off some facilities, we colored our y axis cyan and our label dark red.

We don’t actually think that it is a good idea to use different colors for x and y axes. We just wanted to show you how you can
set the color of a shape and of individual elements of a shape. Using lots of color is not necessarily a good idea. In particular,



novices tend to use color with more enthusiasm than taste.

12.7.4 Graphing a function
What next? We now have a window with axes, so it seems a good idea to graph a function. We make a shape representing a
sine function and attach it:
Click here to view code image

Function sine {sin,0,100,Point{20,150},1000,50,50};       // sine curve
          // plot sin() in the range [0:100) with (0,0) at (20,150)
          // using 1000 points; scale x values *50, scale y values *50

win.attach(sine);

win.set_label("Canvas #4");

win.wait_for_button();

Here, the Function named sine will draw a sine curve using the standard library function sin() to generate values. We
explain details about how to graph functions in §15.3. For now, just note that to graph a function we have to say where it starts
(a Point) and for what set of input values we want to see it (a range), and we need to give some information about how to
squeeze that information into our window (scaling):

Note how the curve simply stops when it hits the edge of the window. Points drawn outside our window rectangle are simply
ignored by the GUI system and never seen.

12.7.5 Polygons
A graphed function is an example of data presentation. We’ll see much more of that in Chapter 15. However, we can also draw
different kinds of objects in a window: geometric shapes. We use geometric shapes for graphical illustrations, to indicate user
interaction elements (such as buttons), and generally to make our presentations more interesting. A Polygon is characterized
by a sequence of points, which the Polygon class connects by lines. The first line connects the first point to the second, the
second line connects the second point to the third, and the last line connects the last point to the first:
Click here to view code image

sine.set_color(Color::blue);    // we changed our mind about sine’s color

Polygon poly;                              // a polygon; a Polygon is a kind of Shape
poly.add(Point{300,200});          // three points make a triangle
poly.add(Point{350,100});

poly.add(Point{400,200});

poly.set_color(Color::red);

poly.set_style(Line_style::dash);

win.attach(poly);

win.set_label("Canvas #5");



win.wait_for_button();

This time we change the color of the sine curve (sine) just to show how. Then, we add a triangle, just as in our first example
from §12.3, as an example of a polygon. Again, we set a color, and finally, we set a style. The lines of a Polygon have a
“style.” By default that is solid, but we can also make those lines dashed, dotted, etc. as needed (see §13.5). We get

12.7.6 Rectangles

A screen is a rectangle, a window is a rectangle, and a piece of paper is a rectangle. In fact, an awful lot of the shapes in our
modern world are rectangles (or at least rectangles with rounded corners). There is a reason for this: a rectangle is the
simplest shape to deal with. For example, it’s easy to describe (top left corner plus width plus height, or top left corner plus
bottom right corner, or whatever), it’s easy to tell whether a point is inside a rectangle or outside it, and it’s easy to get
hardware to draw a rectangle of pixels fast.

So, most higher-level graphics libraries deal better with rectangles than with other closed shapes. Consequently, we provide
Rectangle as a class separate from the Polygon class. A Rectangle is characterized by its top left corner plus a width and
height:
Click here to view code image

Rectangle r {Point{200,200}, 100, 50};          // top left corner, width, height
win.attach(r);

win.set_label("Canvas #6");

win.wait_for_button();

From that, we get



Please note that making a polyline with four points in the right places is not enough to make a Rectangle. It is easy to make a
Closed_polyline that looks like a Rectangle on the screen (you can even make an Open_polyline that looks just like a
Rectangle); for example:
Click here to view code image

Closed_polyline poly_rect;

poly_rect.add(Point{100,50});

poly_rect.add(Point{200,50});

poly_rect.add(Point{200,100});

poly_rect.add(Point{100,100});

win.attach(poly_rect);

In fact, the image on the screen of such a poly_rect is a rectangle. However, the poly_rect object in memory is not a
Rectangle and it does not “know” anything about rectangles. The simplest way to prove that is to add another point:

poly_rect.add(Point{50,75});

No rectangle has five points:



It is important for our reasoning about our code that a Rectangle doesn’t just happen to look like a rectangle on the screen; it
maintains the fundamental guarantees of a rectangle (as we know them from geometry). We write code that depends on a
Rectangle really being a rectangle on the screen and staying that way.

12.7.7 Fill
We have been drawing our shapes as outlines. We can also “fill” a rectangle with color:
Click here to view code image

r.set_fill_color(Color::yellow);          // color the inside of the rectangle
poly.set_style(Line_style(Line_style::dash,4));

poly_rect.set_style(Line_style(Line_style::dash,2));

poly_rect.set_fill_color(Color::green);

win.set_label("Canvas #7");

win.wait_for_button();

We also decided that we didn’t like the line style of our triangle (poly), so we set its line style to “fat (thickness four times
normal) dashed.” Similarly, we changed the style of poly_rect (now no longer looking like a rectangle):

If you look carefully at poly_rect, you’ll see that the outline is printed on top of the fill.



It is possible to fill any closed shape (see §13.9). Rectangles are just special in how easy (and fast) they are to fill.

12.7.8 Text

Finally, no system for drawing is complete without a simple way of writing text — drawing each character as a set of lines just
doesn’t cut it. We label the window itself, and axes can have labels, but we can also place text anywhere using a Text object:
Click here to view code image

Text t {Point{150,150}, "Hello, graphical world!"};

win.attach(t);

win.set_label("Canvas #8");

win.wait_for_button();

From the primitive graphics elements you see in this window, you can build displays of just about any complexity and subtlety.
For now, just note a peculiarity of the code in this chapter: there are no loops, no selection statements, and all data was
“hardwired” in. The output was just composed of primitives in the simplest possible way. Once we start composing these
primitives using data and algorithms, things will start to get interesting.

We have seen how we can control the color of text: the label of an Axis (§12.7.3) is simply a Text object. In addition, we
can choose a font and set the size of the characters:

t.set_font(Font::times_bold);

t.set_font_size(20);

win.set_label("Canvas #9");

win.wait_for_button();

We enlarged the characters of the Text string Hello, graphical world! to point size 20 and chose the Times font in bold:



12.7.9 Images
We can also load images from files:
Click here to view code image

Image ii {Point{100,50),"image.jpg"};          // 400*212-pixel jpg
win.attach(ii);

win.set_label("Canvas #10");

win.wait_for_button();

As it happens, the file called image.jpg is a photo of two planes breaking the sound barrier:

That photo is relatively large and we placed it right on top of our text and shapes. So, to clean up our window a bit, let us
move it a bit out of the way:

ii.move(100,200);

win.set_label("Canvas #11");

win.wait_for_button();



Note how the parts of the photo that didn’t fit in the window are simply not represented. What would have appeared outside the
window is “clipped” away.

12.7.10 And much more
And here, without further comment, is some more code:
Click here to view code image

Circle c {Point{100,200},50};

Ellipse e {Point{100,200}, 75,25};

e.set_color(Color::dark_red);

Mark m {Point{100,200),'x'};

ostringstream oss;

oss << "screen size: " << x_max() << "*" << y_max()

          << "; window size: " << win.x_max() << "*" << win.y_max();

Text sizes {Point{100,20},oss.str()};

Image cal {Point{225,225},"snow_cpp.gif"};       // 320*240-pixel gif
cal.set_mask(Point{40,40},200,150);                      // display center part of image
win.attach(c);

win.attach(m);

win.attach(e);

win.attach(sizes);

win.attach(cal);

win.set_label("Canvas #12");

win.wait_for_button();

Can you guess what this code does? Is it obvious?



The connection between the code and what appears on the screen is direct. If you don’t yet see how that code caused that
output, it soon will become clear. Note the way we used an ostringstream (§11.4) to format the text object displaying sizes.

12.8 Getting this to run
We have seen how to make a window and how to draw various shapes in it. In the following chapters, we’ll see how those
Shape classes are defined and show more ways of using them.

Getting this program to run requires more than the programs we have presented so far. In addition to our code in main(), we
need to get the interface library code compiled and linked to our code, and finally, nothing will run unless the FLTK library (or
whatever GUI system we use) is installed and correctly linked to ours.

One way of looking at the program is that it has four distinct parts:
• Our program code (main(), etc.)
• Our interface library (Window, Shape, Polygon, etc.)
• The FLTK library
• The C++ standard library

Indirectly, we also use the operating system. Leaving out the OS and the standard library, we can illustrate the organization of
our graphics code like this:



Appendix D explains how to get all of this to work together.

12.8.1 Source files
Our graphics and GUI interface library consists of just five header files and three code files:

• Headers:
• Point.h

• Window.h

• Simple_window.h

• Graph.h

• GUI.h

• Code files:
• Window.cpp

• Graph.cpp

• GUI.cpp

Until Chapter 16, you can ignore the GUI files.

 Drill

The drill is the graphical equivalent to the “Hello, World!” program. Its purpose is to get you acquainted with the simplest
graphical output tools.

1. Get an empty Simple_window with the size 600 by 400 and a label My window compiled, linked, and run. Note that
you have to link the FLTK library as described in Appendix D; #include Graph.h and Simple_window.h in your
code; and include Graph.cpp and Window.cpp in your project.

2. Now add the examples from §12.7 one by one, testing between each added subsection example.
3. Go through and make one minor change (e.g., in color, in location, or in number of points) to each of the subsection

examples.

Review
1. Why do we use graphics?



2. When do we try not to use graphics?
3. Why is graphics interesting for a programmer?
4. What is a window?
5. In which namespace do we keep our graphics interface classes (our graphics library)?
6. What header files do you need to do basic graphics using our graphics library?
7. What is the simplest window to use?
8. What is the minimal window?
9. What’s a window label?

10. How do you label a window?
11. How do screen coordinates work? Window coordinates? Mathematical coordinates?
12. What are examples of simple “shapes” that we can display?
13. What command attaches a shape to a window?
14. Which basic shape would you use to draw a hexagon?
15. How do you write text somewhere in a window?
16. How would you put a photo of your best friend in a window (using a program you wrote yourself)?
17. You made a Window object, but nothing appears on your screen. What are some possible reasons for that?
18. You have made a shape, but it doesn’t appear in the window. What are some possible reasons for that?

Terms
color
coordinates
display
fill color
FLTK
graphics
GUI
GUI library
HTML
image
JPEG
line style
software layer
window
XML

Exercises
We recommend that you use Simple_window for these exercises.

1. Draw a rectangle as a Rectangle and as a Polygon. Make the lines of the Polygon red and the lines of the Rectangle

blue.
2. Draw a 100-by-30 Rectangle and place the text “Howdy!” inside it.
3. Draw your initials 150 pixels high. Use a thick line. Draw each initial in a different color.
4. Draw a 3-by-3 tic-tac-toe board of alternating white and red squares.
5. Draw a red ¼-inch frame around a rectangle that is three-quarters the height of your screen and two-thirds the width.
6. What happens when you draw a Shape that doesn’t fit inside its window? What happens when you draw a Window

that doesn’t fit on your screen? Write two programs that illustrate these two phenomena.
7. Draw a two-dimensional house seen from the front, the way a child would: with a door, two windows, and a roof with a

chimney. Feel free to add details; maybe have “smoke” come out of the chimney.



8. Draw the Olympic five rings. If you can’t remember the colors, look them up.
9. Display an image on the screen, e.g., a photo of a friend. Label the image both with a title on the window and with a

caption in the window.
10. Draw the file diagram from §12.8.
11. Draw a series of regular polygons, one inside the other. The innermost should be an equilateral triangle, enclosed by a

square, enclosed by a pentagon, etc. For the mathematically adept only: let all the points of each N-polygon touch sides
of the (N+1)-polygon. Hint: The trigonometric functions are found in <cmath> (§24.8, §B.9.2).

12. A superellipse is a two-dimensional shape defined by the equation

Look up superellipse on the web to get a better idea of what such shapes look like. Write a program that draws “starlike”
patterns by connecting points on a superellipse. Take a, b, m, n, and N as arguments. Select N points on the superellipse
defined by a, b, m, and n. Make the points equally spaced for some definition of “equal.” Connect each of those N
points to one or more other points (if you like you can make the number of points to which to connect a point another
argument or just use N–1, i.e., all the other points).

13. Find a way to add color to the lines from the previous exercise. Make some lines one color and other lines another color
or other colors.

Postscript

The ideal for program design is to have our concepts directly represented as entities in our program. So, we often represent
ideas by classes, real-world entities by objects of classes, and actions and computations by functions. Graphics is a domain
where this idea has an obvious application. We have concepts, such as circles and polygons, and we represent them in our
program as class Circle and class Polygon. Where graphics is unusual is that when writing a graphics program, we also have
the opportunity to see objects of those classes on the screen; that is, the state of our program is directly represented for us to
observe — in most applications we are not that lucky. This direct correspondence between ideas, code, and output is what
makes graphics programming so attractive. Please do remember, though, that graphics are just illustrations of the general idea
of using classes to directly represent concepts in code. That idea is far more general and useful: just about anything we can
think of can be represented in code as a class, an object of a class, or a set of classes.



13. Graphics Classes

“A language that doesn’t
change the way you think

isn’t worth learning.”
—Traditional

Chapter 12 gave an idea of what we could do in terms of graphics using a set of simple interface classes, and how we can do
it. This chapter presents many of the classes offered. The focus here is on the design, use, and implementation of individual
interface classes such as Point, Color, Polygon, and Open_polyline and their uses. The following chapter will present
ideas for designing sets of related classes and will also present more implementation techniques.

13.1 Overview of graphics classes
13.2 Point and Line

13.3 Lines

13.4 Color

13.5 Line_style

13.6 Open_polyline

13.7 Closed_polyline

13.8 Polygon

13.9 Rectangle

13.10 Managing unnamed objects
13.11 Text

13.12 Circle

13.13 Ellipse

13.14 Marked_polyline

13.15 Marks

13.16 Mark

13.17 Images

13.1 Overview of graphics classes
Graphics and GUI libraries provide lots of facilities. By “lots” we mean hundreds of classes, often with dozens of functions
applying to each. Reading a description, manual, or documentation is a bit like looking at an old-fashioned botany textbook
listing details of thousands of plants organized according to obscure classifying traits. It is daunting! It can also be exciting —
looking at the facilities of a modern graphics/GUI library can make you feel like a child in a candy store, but it can be hard to
figure out where to start and what is really good for you.

One purpose of our interface library is to reduce the shock delivered by the complexity of a full-blown graphics/GUI
library. We present just two dozen classes with hardly any operations. Yet they allow you to produce useful graphical output.
A closely related goal is to introduce key graphics and GUI concepts through those classes. Already, you can write programs
displaying results as simple graphics. After this chapter, your range of graphics programs will have increased to exceed most
people’s initial requirements. After Chapter 14, you’ll understand most of the design techniques and ideas involved so that you
can deepen your understanding and extend your range of graphical expression as needed. You can do so either by adding to the
facilities described here or by adopting another C++ graphics/GUI library.

The key interface classes are:



Chapter 15 examines Function and Axis. Chapter 16 presents the main GUI interface classes:

The source code is organized into files like this:



In addition to the graphics classes, we present a class that happens to be useful for holding collections for Shapes or
Widgets:

When you read the following sections, please don’t move too fast. There is little that isn’t pretty obvious, but the purpose of
this chapter isn’t just to show you some pretty pictures — you see prettier pictures on your computer screen or television every
day. The main points of this chapter are

• To show the correspondence between code and the pictures produced.
• To get you used to reading code and thinking about how it works.
• To get you to think about the design of code — in particular to think about how to represent concepts as classes in code.
Why do those classes look the way they do? How else could they have looked? We made many, many design decisions,
most of which could reasonably have been made differently, in some cases radically differently.

So please don’t rush. If you do, you’ll miss something important and you might then find the exercises unnecessarily hard.

13.2 Point and Line

The most basic part of any graphics system is the point. To define point is to define how we organize our geometric space.
Here, we use a conventional, computer-oriented layout of two-dimensional points defined by (x,y) integer coordinates. As
described in §12.5, x coordinates go from 0 (representing the left-hand side of the screen) to x_max() (representing the right-
hand side of the screen); y coordinates go from 0 (representing the top of the screen) to y_max() (representing the bottom of
the screen).

As defined in Point.h, Point is simply a pair of ints (the coordinates):
Click here to view code image

struct Point {

          int x, y;

};

bool operator==(Point a, Point b) { return a.x==b.x && a.y==b.y; }

bool operator!=(Point a, Point b) { return !(a==b); }

In Graph.h, we find Shape, which we describe in detail in Chapter 14, and Line:
Click here to view code image

struct Line : Shape {                          // a Line is a Shape defined by two Points
          Line(Point p1, Point p2);        // construct a Line from two Points
};

A Line is a kind of Shape. That’s what : Shape means. Shape is called a base class for Line or simply a base of Line.
Basically, Shape provides the facilities needed to make the definition of Line simple. Once we have a feel for the particular
shapes, such as Line and Open_polyline, we’ll explain what that implies (Chapter 14).

A Line is defined by two Points. Leaving out the “scaffolding” (#includes, etc. as described in §12.3), we can create lines
and cause them to be drawn like this:



Click here to view code image

// draw two lines

constexpr Point x {100,100};

Simple_window win1 {x,600,400,"two lines"};

Line horizontal {x,Point{200,100}};                   // make a horizontal line
Line vertical {Point{150,50},Point{150,150}};   // make a vertical line

win1.attach(horizontal);                                      // attach the lines to the window
win1.attach(vertical);

win1.wait_for_button();                                      // display!

Executing that, we get

As a user interface designed for simplicity, Line works quite well. You don’t need to be Einstein to guess that
Click here to view code image

Line vertical {Point{150,50},Point{150,150}};

creates a (vertical) line from (150,50) to (150,150). There are, of course, implementation details, but you don’t have to know
those to make Lines. The implementation of Line’s constructor is correspondingly simple:
Click here to view code image

Line::Line(Point p1, Point p2)        // construct a line from two points
{



          add(p1);                                    // add p1 to this shape
          add(p2);                                    // add p2 to this shape
}

That is, it simply “adds” two points. Adds to what? And how does a Line get drawn in a window? The answer lies in the
Shape class. As we’ll describe in Chapter 14, Shape can hold points defining lines, knows how to draw lines defined by
pairs of Points, and provides a function add() that allows an object to add a Point to its Shape. The key point (sic!) here is
that defining Line is trivial. Most of the implementation work is done by “the system” so that we can concentrate on writing
simple classes that are easy to use.

From now on we’ll leave out the definition of the Simple_window and the calls of attach(). Those are just more
“scaffolding” that we need for a complete program but that adds little to the discussion of specific Shapes.

13.3 Lines

As it turns out, we rarely draw just one line. We tend to think in terms of objects consisting of many lines, such as triangles,
polygons, paths, mazes, grids, bar graphs, mathematical functions, graphs of data, etc. One of the simplest such “composite
graphical object classes” is Lines:
Click here to view code image

struct Lines : Shape {                                         // related lines
          Lines() {}                                                     // empty
          Lines(initializer_list<Point> lst);            // initialize from a list of Points

          void draw_lines() const;

          void add(Point p1, Point p2);               // add a line defined by two points
};

A Lines object is simply a collection of lines, each defined by a pair of Points. For example, had we considered the two lines
from the Line example in §13.2 as part of a single graphical object, we could have defined them like this:
Click here to view code image

Lines x;

x.add(Point{100,100}, Point{200,100});        // first line: horizontal
x.add(Point{150,50}, Point{150,150});          // second line: vertical

This gives output that is indistinguishable (to the last pixel) from the Line version:

The only way we can tell that this is a different window is that we labeled them differently.

The difference between a set of Line objects and a set of lines in a Lines object is completely one of our view of what’s



going on. By using Lines, we have expressed our opinion that the two lines belong together and should be manipulated
together. For example, we can change the color of all lines that are part of a Lines object with a single command. On the other
hand, we can give lines that are individual Line objects different colors. As a more realistic example, consider how to define
a grid. A grid consists of a number of evenly spaced horizontal and vertical lines. However, we think of a grid as one “thing,”
so we define those lines as part of a Lines object, which we call grid:
Click here to view code image

int x_size = win3.x_max();                                    // get the size of our window
int y_size = win3.y_max();

int x_grid = 80;

int y_grid = 40;

Lines grid;

for (int x=x_grid; x<x_size; x+=x_grid)

          grid.add(Point{x,0},Point{x,y_size});       // vertical line
for (int y = y_grid; y<y_size; y+=y_grid)

          grid.add(Point{0,y},Point{x_size,y});       // horizontal line

Note how we get the dimension of our window using x_max() and y_max(). This is also the first example where we are
writing code that computes which objects we want to display. It would have been unbearably tedious to define this grid by
defining one named variable for each grid line. From that code, we get

Let’s return to the design of Lines. How are the member functions of class Lines implemented? Lines provides just two
constructors and two operations.

The add() function simply adds a line defined by a pair of points to the set of lines to be displayed:
Click here to view code image

void Lines::add(Point p1, Point p2)

{

          Shape::add(p1);

          Shape::add(p2);

}

Yes, the Shape:: qualification is needed because otherwise the compiler would see add(p1) as an (illegal) attempt to call
Lines’ add() rather than Shape’s add().

The draw_lines() function draws the lines defined using add():
Click here to view code image

void Lines::draw_lines() const

{

          if (color().visibility())

                    for (int i=1; i<number_of_points(); i+=2)



                              fl_line(point(i–1).x,point(i–1).y,point(i).x,point(i).y);

}

That is, Lines::draw_lines() takes two points at a time (starting with points 0 and 1) and draws the line between them using
the underlying library’s line-drawing function (fl_line()). Visibility is a property of the Lines’ Color object (§13.4), so we
have to check that the lines are meant to be visible before drawing them.

As we explain in Chapter 14, draw_lines() is called by “the system.” We don’t need to check that the number of points is
even — Lines’ add() can add only pairs of points. The functions number_of_points() and point() are defined in class
Shape (§14.2) and have their obvious meaning. These two functions provide read-only access to a Shape’s points. The
member function draw_lines() is defined to be const (see §9.7.4) because it doesn’t modify the shape.

The default constructor for Lines simply creates an empty object (containing no lines): the model of starting out with no
points and then add()ing points as needed is more flexible than any constructor could be. However, we also added a
constructor taking an initializer_list of pairs of Points, each defining a line. Given that initializer-list constructor (§18.2), we
can simply define Lines starting out with 0, 1, 2, , 3, . . . lines. For example, the first Lines example could be written like this:
Click here to view code image

Lines x = {

                    {Point{100,100}, Point{200,100}},        // first line: horizontal
                    {Point{150,50}, Point{150,150}}            // second line: vertical
};

or even like this:
Click here to view code image

Lines x = {

                    {{100,100}, {200,100}},         // first line: horizontal
                    {{150,50}, {150,150}}             // second line: vertical
};

The initializer-list constructor is easily defined:
Click here to view code image

void Lines::Lines(initializer_list<pair<Point,Point>> lst)

{

          for (auto p : lst) add(p.first,p.second);

}

The auto is a placeholder for the type pair<Point,Point>, and first and second are the names of a pair’s first and second
members. The types initializer_list and pair are defined in the standard library (§B.6.4, §B.6.3).

13.4 Color

Color is the type we use to represent color. We can use Color like this:

grid.set_color(Color::red);

This colors the lines defined in grid red so that we get



Color defines the notion of a color and gives symbolic names to a few of the more common colors:
Click here to view code image

struct Color {

          enum Color_type {

                    red=FL_RED,

                    blue=FL_BLUE,

                    green=FL_GREEN,

                    yellow=FL_YELLOW,

                    white=FL_WHITE,

                    black=FL_BLACK,

                    magenta=FL_MAGENTA,

                    cyan=FL_CYAN,

                    dark_red=FL_DARK_RED,

                    dark_green=FL_DARK_GREEN,

                    dark_yellow=FL_DARK_YELLOW,

                    dark_blue=FL_DARK_BLUE,

                    dark_magenta=FL_DARK_MAGENTA,

                    dark_cyan=FL_DARK_CYAN

          };

          enum Transparency { invisible = 0, visible=255 };

          Color(Color_type cc) :c{Fl_Color(cc)}, v{visible} { }

          Color(Color_type cc, Transparency vv) :c{Fl_Color(cc)}, v{vv} { }

          Color(int cc) :c{Fl_Color(cc)}, v{visible} { }

          Color(Transparency vv) :c{Fl_Color()}, v{vv} { }         // default color

          int as_int() const { return c; }

          char visibility() const { return v; }

          void set_visibility(Transparency vv) { v=vv; }

private:

          char v;         // invisible and visible for now
          Fl_Color c;

};

The purpose of Color is
• To hide the implementation’s notion of color, FLTK’s Fl_Color type
• To map between Fl_Color and Color_type values
• To give the color constants a scope
• To provide a simple version of transparency (visible and invisible)



You can pick colors
• From the list of named colors, for example, Color::dark_blue.
• By picking from a small “palette” of colors that most screens display well by specifying a value in the range 0–255; for
example, Color(99) is a dark green. For a code example, see §13.9.

• By picking a value in the RGB (red, green, blue) system, which we will not explain here. Look it up if you need it. In
particular, a search for “RGB color” on the web gives many sources, such as
http://en.wikipedia.org/wiki/RGB_color_model and www.rapidtables.com/web/color/RGB_Color.htm. See also
exercises 13 and 14.

Note the use of constructors to allow Colors to be created either from the Color_type or from a plain int. The member c is
initialized by each constructor. You could argue that c is too short and too obscure a name to use, but since it is used only
within the small scope of Color and not intended for general use, that’s probably OK. We made the member c private to
protect it from direct use from our users. For our representation of the data member c we use the FLTK type Fl_Color that we
don’t really want to expose to our users. However, looking at a color as an int representing its RGB (or other) value is very
common, so we supplied as_int() for that. Note that as_int() is a const member because it doesn’t actually change the Color

object that it is used for.
The transparency is represented by the member v which can hold the values Color::visible and Color::invisible, with

their obvious meaning. It may surprise you that an “invisible color” can be useful, but it can be most useful to have part of a
composite shape invisible.

13.5 Line_style

When we draw several lines in a window, we can distinguish them by color, by style, or by both. A line style is the pattern
used to outline the line. We can use Line_style like this:
Click here to view code image

grid.set_style(Line_style::dot);

This displays the lines in grid as a sequence of dots rather than a solid line:

That “thinned out” the grid a bit, making it more discreet. By adjusting the width (thickness), we can adjust the grid lines to suit
our taste and needs.

The Line_style type looks like this:
Click here to view code image

struct Line_style {

          enum Line_style_type {

http://en.wikipedia.org/wiki/RGB_color_model
http://www.rapidtables.com/web/color/RGB_Color.htm


                    solid=FL_SOLID,                                      // -------
                    dash=FL_DASH,                                       // - - - -
                    dot=FL_DOT,                                            // .......

                    dashdot=FL_DASHDOT,                        // - . - .
                    dashdotdot=FL_DASHDOTDOT,         // -..-..
          };

          Line_style(Line_style_type ss) :s{ss}, w{0} { }

          Line_style(Line_style_type lst, int ww) :s{lst}, w{ww} { }

          Line_style(int ss) :s{ss}, w{0} { }

                    int width() const { return w; }

                    int style() const { return s; }

          private:

                    int s;

                    int w;

          };

The programming techniques for defining Line_style are exactly the same as the ones we used for Color. Here, we hide the
fact that FLTK uses plain ints to represent line styles. Why is something like that worth hiding? Because it is exactly such a
detail that might change as a library evolves. The next FLTK release might very well have a Fl_linestyle type, or we might
retarget our interface classes to some other GUI library. In either case, we wouldn’t like to have our code and our users’ code
littered with plain ints that we just happened to know represent line styles.

Most of the time, we don’t worry about style at all; we just rely on the default (default width and solid lines). This default
line width is defined by the constructors in the cases where we don’t specify one explicitly. Setting defaults is one of the things
that constructors are good for, and good defaults can significantly help users of a class.

Note that Line_style has two “components”: the style proper (e.g., use dashed or solid lines) and width (the thickness of the
line used). The width is measured in integers. The default width is 1. We can request a fat dashed line like this:
Click here to view code image

grid.set_style(Line_style{Line_style::dash,2});

This produces

Note that color and style apply to all lines of a shape. That is one of the advantages of grouping many lines into a single
graphics object, such as a Lines, Open_polyline, or Polygon. If we want to control the color or style for lines separately,
we must define them as separate Lines. For example:
Click here to view code image

horizontal.set_color(Color::red);



vertical.set_color(Color::green);

This gives us

13.6 Open_polyline

An Open_polyline is a shape that is composed of a series of connected line segments defined by a series of points. Poly is
the Greek word for “many,” and polyline is a fairly conventional name for a shape composed of many lines. For example:
Click here to view code image

Open_polyline opl = {

          {100,100}, {150,200}, {250,250}, {300,200}

};

This draws the shape that you get by connecting the four points:

Basically, an Open_polyline is a fancy word for what we encountered in kindergarten playing “Connect the Dots.”
Class Open_polyline is defined like this:

Click here to view code image

struct Open_polyline : Shape {          // open sequence of lines
          using Shape::Shape;                 // use Shape’s constructors (§A.16)



          void add(Point p) { Shape::add(p); }

};

Open_polyline inherits from Shape. Open_polyline’s add() function is there to allow the users of an Open_polyline

to access the add() from Shape (that is, Shape::add()). We don’t even need to define a draw_lines() because Shape by
default interprets the Points add()ed as a sequence of connected lines.

The declaration using Shape::Shape is a using declaration. It says that an Open_polyline can use the constructors
defined for Shape. Shape has a default constructor (§9.7.3) and an initializer-list constructor (§18.2), so the using

declaration is simply a shorthand for defining those two constructors for Open_polyline. As for Lines, the initializer-list
constructor is there as a shorthand for an initial sequence of add()s.

13.7 Closed_polyline

A Closed_polyline is just like an Open_polyline, except that we also draw a line from the last point to the first. For
example, we could use the same points we used for the Open_polyline in §13.6 for a Closed_polyline:
Click here to view code image

Closed_polyline cpl = {

          {100,100}, {150,200}, {250,250}, {300,200}

};

The result is (of course) identical to that of §13.6 except for that final closing line:

The definition of Closed_polyline is
Click here to view code image

struct Closed_polyline : Open_polyline {            // closed sequence of lines
          using Open_polyline::Open_polyline;     // use Open_polyline’s
                                                                                           // constructors (§A.16)
          void draw_lines() const;

};

void Closed_polyline::draw_lines() const

{

          Open_polyline::draw_lines();         // first draw the “open polyline part”

          // then draw closing line:
          if (2<number_of_points() && color().visibility())

                    fl_line(point(number_of_points()–1).x,

                              point(number_of_points()–1).y,

                              point(0).x,

                              point(0).y);

}



The using declaration (§A.16) says that Closed_polyline has the same constructors as Open_polyline. Closed_polyline

needs its own draw_lines() to draw that closing line connecting the last point to the first.
We only have to do the little detail where Closed_polyline differs from what Open_polyline offers. That’s important

and is sometimes called “programming by difference.” We need to program only what’s different about our derived class
(here, Closed_polyline) compared to what a base class (here, Open_polyline) offers.

So how do we draw that closing line? We use the FLTK line-drawing function fl_line(). It takes four ints representing two
points. So, here the underlying graphics library is again used. Note, however, that — as in every other case — the mention of
FLTK is kept within the implementation of our class rather than being exposed to our users. No user code needs to mention
fl_line() or to know about interfaces where points appear implicitly as integer pairs. If we wanted to, we could replace FLTK
with another GUI library with very little impact on our users’ code.

13.8 Polygon

A Polygon is very similar to a Closed_polyline. The only difference is that for Polygons we don’t allow lines to cross.
For example, the Closed_polyline above is a polygon, but we can add another point:

cpl.add(Point{100,250});

The result is

According to classical definitions, this Closed_polyline is not a polygon. How do we define Polygon so that we correctly
capture the relationship to Closed_polyline without violating the rules of geometry? The presentation above contains a strong
hint. A Polygon is a Closed_polyline where lines do not cross. Alternatively, we could emphasize the way a shape is built
out of points and say that a Polygon is a Closed_polyline where we cannot add a Point that defines a line segment that
intersects one of the existing lines of the Polygon.

Given that idea, we define Polygon like this:
Click here to view code image

struct Polygon : Closed_polyline {         // closed sequence of nonintersecting
                                                                            // lines
          using Closed_polyline::Closed_polyline;      // use Closed_polyline’s
                                                                                                 // constructors
          void add(Point p);

          void draw_lines() const;

};

void Polygon::add(Point p)

{

           // check that the new line doesn’t intersect existing lines (code not shown)
          Closed_polyline::add(p);

}



Here we inherit Closed_polyline’s definition of draw_lines(), thus saving a fair bit of work and avoiding duplication of
code. Unfortunately, we have to check each add(). That yields an inefficient (order N-squared) algorithm — defining a
Polygon with N points requires N*(N–1)/2 calls of intersect(). In effect, we have made the assumption that the Polygon

class will be used for polygons of a low number of points. For example, creating a Polygon with 24 Points involves 24*(24–
1)/2 == 276 calls of intersect(). That’s probably acceptable, but if we wanted a polygon with 2000 points it would cost us
about 2,000,000 calls, and we might look for a better algorithm, which might require a modified interface.

Using the initializer-list constructor, we can create a polygon like this:
Click here to view code image

Polygon poly = {

          {100,100}, {150,200}, {250,250}, {300,200}

};

Obviously, this creates a Polygon that (to the last pixel) is identical to our original Closed_polyline:

Ensuring that a Polygon really represents a polygon turned out to be surprisingly messy. The check for intersection that we left
out of Polygon::add() is arguably the most complicated in the whole graphics library. If you are interested in fiddly
coordinate manipulation of geometry, have a look at the code.

The trouble is that Polygon’s invariant “the points represent a polygon” can’t be verified until all points have been defined;
that is, we are not — as strongly recommended — establishing Polygon’s invariant in its constructor. We considered
removing add() and requiring that a Polygon be completely specified by an initializer list with at least three points, but that
would have complicated uses where a program generated a sequence of points.

13.9 Rectangle

The most common shape on a screen is a rectangle. The reasons for that are partly cultural (most of our doors, windows,
pictures, walls, bookcases, pages, etc. are also rectangular) and partly technical (keeping a coordinate within rectangular
space is simpler than for any other shaped space). Anyway, rectangles are so common that GUI systems support them directly
rather than treating them simply as polygons that happen to have four corners and right angles.
Click here to view code image

struct Rectangle : Shape {

          Rectangle(Point xy, int ww, int hh);

          Rectangle(Point x, Point y);

          void draw_lines() const;

          int height() const { return h; }

          int width() const { return w; }



private:

          int h;     // height
          int w;     // width
};

We can specify a rectangle by two points (top left and bottom right) or by one point (top left) and a width and a height. The
constructors can be defined like this:
Click here to view code image

Rectangle::Rectangle(Point xy, int ww, int hh)

          : w{ww}, h{hh}

{

          if (h<=0 || w<=0)

                    error("Bad rectangle: non-positive side");

          add(xy);

}

Rectangle::Rectangle(Point x, Point y)

          :w{y.x–x.x}, h{y.y–x.y}

{

          if (h<=0 || w<=0)

                    error("Bad rectangle: first point is not top left");

          add(x);

}

Each constructor initializes the members h and w appropriately (using the member initialization syntax; see §9.4.4) and stores
away the top left corner point in the Rectangle’s base Shape (using add()). In addition, it does a simple sanity check: we
don’t really want Rectangles with negative width or height.

One of the reasons that some graphics/GUI systems treat rectangles as special is that the algorithm for determining which
pixels are inside a rectangle is far simpler — and therefore far faster — than for other shapes, such as Polygons and Circles.
Consequently, the notion of “fill color” — that is, the color of the space inside the rectangle — is more commonly used for
rectangles than for other shapes. We can set the fill color in a constructor or by the operation set_fill_color() (provided by
Shape together with the other services related to color):
Click here to view code image

Rectangle rect00 {Point{150,100},200,100};

Rectangle rect11 {Point{50,50},Point{250,150}};

Rectangle rect12 {Point{50,150},Point{250,250}};     // just below rect11
Rectangle rect21 {Point{250,50},200,100};                  // just to the right of rect11
Rectangle rect22 {Point{250,150},200,100};                // just below rect21

rect00.set_fill_color(Color::yellow);

rect11.set_fill_color(Color::blue);

rect12.set_fill_color(Color::red);

rect21.set_fill_color(Color::green);

This produces



When you don’t have a fill color, the rectangle is transparent; that’s how you can see a corner of the yellow rect00.
We can move shapes around in a window (§14.2.3). For example:

Click here to view code image

rect11.move(400,0);     // to the right of rect21
rect11.set_fill_color(Color::white);

win12.set_label("rectangles 2");

This produces

Note how only part of the white rect11 fits in the window. What doesn’t fit is “clipped”; that is, it is not shown anywhere on
the screen.

Note also how shapes are placed one on top of another. This is done just like you would put sheets of paper on a table. The
first one you put will be on the bottom. Our Window (§E.3) provides a simple way of reordering shapes. You can tell a
window to put a shape on top (using Window::put_on_top()). For example:
Click here to view code image

win12.put_on_top(rect00);



win12.set_label("rectangles 3");

This produces

Note that we can see the lines that make up the rectangles even though we have filled (all but one of) them. If we don’t like
those outlines, we can remove them:
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rect00.set_color(Color::invisible);

rect11.set_color(Color::invisible);

rect12.set_color(Color::invisible);

rect21.set_color(Color::invisible);

rect22.set_color(Color::invisible);

We get

Note that with both fill color and line color set to invisible, rect22 can no longer be seen.
Because it has to deal with both line color and fill color, Rectangle’s draw_lines() is a bit messy:

Click here to view code image

void Rectangle::draw_lines() const

{



          if (fill_color().visibility()) {      // fill
                    fl_color(fill_color().as_int());

                    fl_rectf(point(0).x,point(0).y,w,h);

          }

          if (color().visibility()) {             // lines on top of fill
                    fl_color(color().as_int());

                    fl_rect(point(0).x,point(0).y,w,h);

          }
}

As you can see, FLTK provides functions for drawing rectangle fill (fl_rectf()) and rectangle outlines (fl_rect()). By default,
we draw both (with the lines/outline on top).

13.10 Managing unnamed objects
So far, we have named all our graphical objects. When we want lots of objects, this becomes infeasible. As an example, let us
draw a simple color chart of the 256 colors in FLTK’s palette; that is, let’s make 256 colored squares and draw them in a 16-
by-16 matrix that shows how colors with similar color values relate. First, here is the result:

Naming those 256 squares would not only be tedious, it would be silly. The obvious “name” of the top left square is its
location in the matrix (0,0), and any other square is similarly identified (“named”) by a coordinate pair (i,j). What we need for
this example is the equivalent of a matrix of objects. We thought of using a vector<Rectangle>, but that turned out to be not
quite flexible enough. For example, it can be useful to have a collection of unnamed objects (elements) that are not all of the
same type. We discuss that flexibility issue in §14.3. Here, we’ll just present our solution: a vector type that can hold named
and unnamed objects:
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template<class T> class Vector_ref {

public:

          // . . .
          void push_back(T&);          // add a named object
          void push_back(T*);           // add an unnamed object

          T& operator[](int i);           // subscripting: read and write access
          const T& operator[](int i) const;

          int size() const;

};

The way you use it is very much like a standard library vector:
Click here to view code image



Vector_ref<Rectangle> rect;

Rectangle x {Point{100,200},Point{200,300}};

rect.push_back(x);                      // add named

rect.push_back(new Rectangle{Point{50,60},Point{80,90}});     // add unnamed

for (int i=0; i<rect.size(); ++i) rect[i].move(10,10);                        // use rect

We explain the new operator in Chapter 17, and the implementation of Vector_ref is presented in Appendix E. For now, it is
sufficient to know that we can use it to hold unnamed objects. Operator new is followed by the name of a type (here,
Rectangle) optionally followed by an initializer list (here, {Point{50,60},Point{80,90}}). Experienced programmers will
be relieved to hear that we did not introduce a memory leak in this example.

Given Rectangle and Vector_ref, we can play with colors. For example, we can draw a simple color chart of the 256
colors shown above:
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Vector_ref<Rectangle> vr;

for (int i = 0; i<16; ++i)

          for (int j = 0; j<16; ++j) {

                    vr.push_back(new Rectangle{Point{i*20,j*20},20,20});

                    vr[vr.size()–1].set_fill_color(Color{i*16+j});

                    win20.attach(vr[vr.size()–1]);

          }

We make a Vector_ref of 256 Rectangles, organized graphically in the Window as a 16-by-16 matrix. We give the
Rectangles the colors 0, 1, 2, 3, 4, and so on. After each Rectangle is created, we attach it to the window, so that it will be
displayed:

13.11 Text

Obviously, we want to be able to add text to our displays. For example, we might want to label our “odd” Closed_polyline

from §13.8:
Click here to view code image

Text t {Point{200,200},"A closed polyline that isn't a polygon"};

t.set_color(Color::blue);

We get



Basically, a Text object defines a line of text starting at a Point. The Point will be the bottom left corner of the text. The
reason for restricting the string to be a single line is to ensure portability across systems. Don’t try to put in a newline
character; it may or may not be represented as a newline in your window. String streams (§11.4) are useful for composing
strings for display in Text objects (examples in §12.7.7 and §12.7.8). Text is defined like this:
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struct Text : Shape {

          // the point is the bottom left of the first letter
          Text(Point x, const string& s)

                    : lab{s}

                    { add(x); }

          void draw_lines() const;

          void set_label(const string& s) { lab = s; }

          string label() const { return lab; }

          void set_font(Font f) { fnt = f; }

          Font font() const { return fnt; }

          void set_font_size(int s) { fnt_sz = s; }

          int font_size() const { return fnt_sz; }

private:

          string lab;       // label
          Font fnt {fl_font()};

          int fnt_sz {(fl_size()<14)?14:fl_size()} ;

};

If you want the font character size to be less than 14 or larger than the FLTK default, you have to explicitly set it. This is an
example of a test protecting a user from possible variations in the behavior of an underlying library. In this case, an update of
FLTK changed its default in a way that broke existing programs by making the characters tiny, and we decided to prevent that
problem.

We provide the initializers as member initializers, rather than as part of the constructors’ initializer lists, because the
initializers do not depend on constructor arguments.

Text has its own draw_lines() because only the Text class knows how its string is stored:
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void Text::draw_lines() const

{

          fl_draw(lab.c_str(),point(0).x,point(0).y);

}



The color of the characters is determined exactly like the lines in shapes composed of lines (such as Open_polyline and
Circle), so you can choose a color using set_color() and see what color is currently used by color(). The character size and
font are handled analogously. There is a small number of predefined fonts:
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class Font {       // character font
public:

          enum Font_type {

                    helvetica=FL_HELVETICA,

                    helvetica_bold=FL_HELVETICA_BOLD,

                    helvetica_italic=FL_HELVETICA_ITALIC,

                    helvetica_bold_italic=FL_HELVETICA_BOLD_ITALIC,

                    courier=FL_COURIER,

                    courier_bold=FL_COURIER_BOLD,

                    courier_italic=FL_COURIER_ITALIC,

                    courier_bold_italic=FL_COURIER_BOLD_ITALIC,

                    times=FL_TIMES,

                    times_bold=FL_TIMES_BOLD,

                    times_italic=FL_TIMES_ITALIC,

                    times_bold_italic=FL_TIMES_BOLD_ITALIC,

                    symbol=FL_SYMBOL,

                    screen=FL_SCREEN,

                    screen_bold=FL_SCREEN_BOLD,

                    zapf_dingbats=FL_ZAPF_DINGBATS

          };

          Font(Font_type ff) :f{ff} { }

          Font(int ff) :f{ff} { }

          int as_int() const { return f; }

private:

          int f;

};

The style of class definition used to define Font is the same as we used to define Color (§13.4) and Line_style (§13.5).

13.12 Circle

Just to show that the world isn’t completely rectangular, we provide class Circle and class Ellipse. A Circle is defined by a
center and a radius:
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struct Circle : Shape {

          Circle(Point p, int rr);         // center and radius

          void draw_lines() const;

          Point center() const ;

          int radius() const { return r; }

          void set_radius(int rr)

          {
                    set_point(0,Point{center().x–rr,center().y–rr});    // maintain
                                                                                                                   // the center
                    r = rr;

          }
private:

          int r;

};

We can use Circle like this:

Circle c1 {Point{100,200},50};

Circle c2 {Point{150,200},100};

Circle c3 {Point{200,200},150};

This produces three circles of different sizes aligned with their centers in a horizontal line:



The main peculiarity of Circle’s implementation is that the point stored is not the center, but the top left corner of the square
bounding the circle. We could have stored either but chose the one FLTK uses for its optimized circle-drawing routine. That
way, Circle provides another example of how a class can be used to present a different (and supposedly nicer) view of a
concept than its implementation:
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Circle::Circle(Point p, int rr)           // center and radius
          :r{rr}

{

          add(Point{p.x–r,p.y–r});         // store top left corner
}

Point Circle::center() const

{

          return {point(0).x+r, point(0).y+r};

}

void Circle::draw_lines() const

{

          if (color().visibility())

                    fl_arc(point(0).x,point(0).y,r+r,r+r,0,360);

}

Note the use of fl_arc() to draw the circle. The initial two arguments specify the top left corner, the next two arguments specify
the width and the height of the smallest rectangle that encloses the circle, and the final two arguments specify the beginning and
end angle to be drawn. A circle is drawn by going the full 360 degrees, but we can also use fl_arc() to draw parts of a circle
(and parts of an ellipse); see exercise 1.

13.13 Ellipse

An ellipse is similar to Circle but is defined with both a major and a minor axis, instead of a radius; that is, to define an
ellipse, we give the center’s coordinates, the distance from the center to a point on the x axis, and the distance from the center
to a point on the y axis:
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struct Ellipse : Shape {

          Ellipse(Point p, int w, int h);    // center, max and min distance from center

          void draw_lines() const;

          Point center() const;

          Point focus1() const;

          Point focus2() const;



          void set_major(int ww)

          {
                    set_point(0,Point{center().x–ww,center().y–h};     // maintain
                                                                                                                     // the center
                    w = ww;

          }
          int major() const { return w; }

          void set_minor(int hh)

          {
                    set_point(0,Point{center().x–w,center().y–hh});     // maintain
                                                                                                                    // the center
                    h = hh;

          }
          int minor() const { return h; }

private:

          int w;

          int h;

};

We can use Ellipse like this:
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Ellipse e1 {Point{200,200},50,50};

Ellipse e2 {Point{200,200},100,50};

Ellipse e3 {Point{200,200},100,150};

This gives us three ellipses with a common center but different-size axes:

Note that an Ellipse with major()==minor() looks exactly like a circle.
Another popular view of an ellipse specifies two foci plus a sum of distances from a point to the foci. Given an Ellipse, we

can compute a focus. For example:
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Point focus1() const

{

          if (h<=w)     // foci are on the x axis:
                    return {center().x+int(sqrt(double(w*w–h*h))),center().y};

          else             // foci are on the y axis:
                    return {center().x,center().y+int(sqrt(double(h*h–w*w)))};

}



Why is a Circle not an Ellipse? Geometrically, every circle is an ellipse, but not every ellipse is a circle. In particular, a
circle is an ellipse where the two foci are equal. Imagine that we defined our Circle to be an Ellipse. We could do that at the
cost of needing an extra value in its representation (a circle is defined by a point and a radius; an ellipse needs a center and a
pair of axes). We don’t like space overhead where we don’t need it, but the primary reason for our Circle not being an Ellipse

is that we couldn’t define it so without somehow disabling set_major() and set_minor(). After all, it would not be a circle
(as a mathematician would recognize it) if we could use set_major() to get major()!=minor() — at least it would no longer
be a circle after we had done that. We can’t have an object that is of one type sometimes (i.e., when major()!=minor()) and
another type some other time (i.e., when major()==minor()). What we can have is an object (an Ellipse) that can look like a
circle sometimes. A Circle, on the other hand, never morphs into an ellipse with two unequal axes.

When we design classes, we have to be careful not to be too clever and not to be deceived by our “intuition” into defining
classes that don’t make sense as classes in our code. Conversely, we have to take care that our classes represent some coherent
concept and are not just a collection of data and function members. Just throwing code together without thinking about what
ideas/concepts we are representing is “hacking” and leads to code that we can’t explain and that others can’t maintain. If you
don’t feel altruistic, remember that “others” might be you in a few months’ time. Such code is also harder to debug.

13.14 Marked_polyline

We often want to “label” points on a graph. One way of displaying a graph is as an open polyline, so what we need is an open
polyline with “marks” at the points. A Marked_polyline does that. For example:

Marked_polyline mpl {"1234"};

mpl.add(Point{100,100));

mpl.add(Point{150,200));

mpl.add(Point{250,250));

mpl.add(Point{300,200));

This produces

The definition of Marked_polyline is
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struct Marked_polyline : Open_polyline {

          Marked_polyline(const string& m) :mark{m} { if (m=="") mark = "*"; }

          Marked_polyline(const string& m, initializer_list<Point> lst);

          void draw_lines() const;

private:

          string mark;

};



By deriving from Open_polyline, we get the handling of Points “for free”; all we have to do is to deal with the marks. In
particular, draw_lines() becomes
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void Marked_polyline::draw_lines() const

{

          Open_polyline::draw_lines();

          for (int i=0; i<number_of_points(); ++i)

                    draw_mark(point(i),mark[i%mark.size()]);

}

The call Open_polyline::draw_lines() takes care of the lines, so we just have to deal with the “marks.” We supply the
marks as a string of characters and use them in order: the mark[i%mark.size()] selects the character to be used next by
cycling through the characters supplied when the Marked_polyline was created. The % is the modulo (remainder) operator.
This draw_lines() uses a little helper function draw_mark() to actually output a letter at a given point:
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void draw_mark(Point xy, char c)

{

          constexpr int dx = 4;

          constexpr int dy = 4;

          string m {1,c};      // string holding the single char c
          fl_draw(m.c_str(),xy.x–dx,xy.y+dy);

}

The dx and dy constants are used to center the letter over the point. The string m is constructed to contain the single character
c.

The constructor that takes an initializer list simply forwards the list Open_polyline’s initializer-list constructor:
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Marked_polyline(const string& m, initializer_list<Point> lst)

                    :Open_polyline{lst},

                    mark{m}

{

          if (m=="") mark = "*";

}

The test for the empty string is needed to avoid draw_lines() trying to access a character that isn’t there.
Given the constructor that takes an initializer list, we can abbreviate the example to
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Marked_polyline mpl {"1234",{{100,100}, {150,200}, {250,250}, {300,200}}};

13.15 Marks

Sometimes, we want to display marks without lines connecting them. We provide the class Marks for that. For example, we
can mark the four points we have used for our various examples without connecting them with lines:
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Marks pp {"x",{{100,100}, {150,200}, {250,250}, {300,200}}};

This produces



One obvious use of Marks is to display data that represents discrete events so that drawing connecting lines would be
inappropriate. An example would be (height, weight) data for a group of people.

A Marks is simply a Marked_polyline with the lines invisible:
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struct Marks : Marked_polyline {

          Marks(const string& m)

                    :Marked_polyline{m}

          {
                    set_color(Color{Color::invisible});

    }

          Marked_polyline(const string& m, initializer_list<Point> lst)

                    : Marked_polyline{m,lst}

          {
                    set_color(Color{Color::invisible});

    }
};

The :Marked_polyline{m} notation is used to initialize the Marked_polyline part of a Marks object. This notation is a
variant of the syntax used to initialize members (§9.4.4).

13.16 Mark

A Point is simply a location in a Window. It is not something we draw or something we can see. If we want to mark a single
Point so that we can see it, we can indicate it by a pair of lines as in §13.2 or by using Marks. That’s a bit verbose, so we
have a simple version of Marks that is initialized by a point and a character. For example, we could mark the centers of our
circles from §13.12 like this:

Mark m1 {Point{100,200},'x'};

Mark m2 {Point{150,200},'y'};

Mark m3 {Point{200,200},'z'};

c1.set_color(Color::blue);

c2.set_color(Color::red);

c3.set_color(Color::green);

This produces



A Mark is simply a Marks with its initial (and typically only) point given immediately:
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struct Mark : Marks {

          Mark(Point xy, char c) : Marks{string{1,c}}

          {
                    add(xy);

          }
};

The string{1,c} is a constructor for string, initializing the string to contain the single character c.
All Mark provides is a convenient notation for creating a Marks object with a single point marked with a single character.

Is Mark worth our effort to define it? Or is it just “spurious complication and confusion”? There is no clear, logical answer.
We went back and forth on this question, but in the end decided that it was useful for users and the effort to define it was
minimal.

Why use a character as a “mark”? We could have used any small shape, but characters provide a useful and simple set of
marks. It is often useful to be able to use a variety of “marks” to distinguish different sets of points. Characters such as x, o, +,
and * are pleasantly symmetric around a center.

13.17 Images
The average personal computer holds thousands of images in files and can access millions more over the web. Naturally, we
want to display some of those images in even quite simple programs. For example, here is an image (rita_path.gif) of the
projected path of Hurricane Rita as it approached the Texas Gulf Coast:



We can select part of that image and add a photo of Rita as seen from space (rita.jpg):
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Image rita {Point{0,0},"rita.jpg"};

Image path {Point{0,0},"rita_path.gif"};

path.set_mask(Point{50,250},600,400);            // select likely landfall

win.attach(path);

win.attach(rita);

The set_mask() operation selects a sub-picture of an image to be displayed. Here, we selected a (600,400)-pixel image from
rita_path.gif (loaded as path) with its top leftmost point at path’s point (50,250). Selecting only part of an image for
display is so common that we chose to support it directly.

Shapes are laid down in the order they are attached, like pieces of paper on a desk, so we got path “on the bottom” simply



by attaching it before rita.
Images can be encoded in a bewildering variety of formats. Here we deal with only two of the most common, JPEG and

GIF:
Click here to view code image

enum class Suffix { none, jpg, gif };

In our graphics interface library, we represent an image in memory as an object of class Image:
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struct Image : Shape {

          Image(Point xy, string file_name, Suffix e = Suffix::none);

          ~Image() { delete p; }

          void draw_lines() const;

          void set_mask(Point xy, int ww, int hh)

                     { w=ww; h=hh; cx=xy.x; cy=xy.y; }

private:

          int w,h;      // define “masking box” within image relative to position (cx,cy)
          int cx,cy;

          Fl_Image* p;

          Text fn;

};

The Image constructor tries to open a file with the name given to it. Then it tries to create a picture using the encoding
specified as an optional argument or (more often) as a file suffix. If the image cannot be displayed (e.g., because the file wasn’t
found), the Image displays a Bad_image. The definition of Bad_image looks like this:
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struct Bad_image : Fl_Image {

          Bad_image(int h, int w) : Fl_Image{h,w,0} { }

          void draw(int x,int y, int, int, int, int) { draw_empty(x,y); }

};

The handling of images within a graphics library is quite complicated, but the main complexity of our graphics interface class
Image is in the file handling in the constructor:
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// somewhat overelaborate constructor
// because errors related to image files can be such a pain to debug
Image::Image(Point xy, string s, Suffix e)

          :w{0}, h{0}, fn{xy,""}

{

          add(xy);

          if (!can_open(s)) {         // can we open s?
                    fn.set_label("cannot open \""+s+'"');

                    p = new Bad_image(30,20);        // the “error image”
                    return;

          }

          if (e == Suffix::none) e = get_encoding(s);

          switch(e) {        // check if it is a known encoding
          case Suffix::jpg:

                    p = new Fl_JPEG_Image{s.c_str()};

                    break;

          case Suffix::gif:

                    p = new Fl_GIF_Image{s.c_str()};

                    break;

          default:            // unsupported image encoding
                    fn.set_label("unsupported file type \""+s+'"');

                    p = new Bad_image{30,20};       // the “error image”
          }
}

We use the suffix to pick the kind of object we create to hold the image (a Fl_JPEG_Image or a Fl_GIF_Image). We



create that implementation object using new and assign it to a pointer. This is an implementation detail (see Chapter 17 for a
discussion of operator new and pointers) related to the organization of FLTK and is of no fundamental importance here. FLTK
uses C-style strings, so we have to use s.c_str() rather than plain s.

Now, we just have to implement can_open() to test if we can open a named file for reading:
Click here to view code image

bool can_open(const string& s)

          // check if a file named s exists and can be opened for reading
{

          ifstream ff(s);

          return ff;

}

Opening a file and then closing it again is a fairly clumsy way of portably separating errors related to “can’t open the file”
from errors related to the format of the data in the file.

You can look up the get_encoding() function, if you like. It simply looks for a suffix and looks up that suffix in a table of
known suffixes. That lookup table is a standard library map (see §21.6).

 Drill

1. Make an 800-by-1000 Simple_window.
2. Put an 8-by-8 grid on the leftmost 800-by-800 part of that window (so that each square is 100 by 100).
3. Make the eight squares on the diagonal starting from the top left corner red (use Rectangle).
4. Find a 200-by-200-pixel image (JPEG or GIF) and place three copies of it on the grid (each image covering four

squares). If you can’t find an image that is exactly 200 by 200, use set_mask() to pick a 200-by-200 section of a larger
image. Don’t obscure the red squares.

5. Add a 100-by-100 image. Have it move around from square to square when you click the “Next” button. Just put
wait_for_button() in a loop with some code that picks a new square for your image.

Review
1. Why don’t we “just” use a commercial or open-source graphics library directly?
2. About how many classes from our graphics interface library do you need to do simple graphics output?
3. What are the header files needed to use the graphics interface library?
4. What classes define closed shapes?
5. Why don’t we just use Line for every shape?
6. What do the arguments to Point indicate?
7. What are the components of Line_style?
8. What are the components of Color?
9. What is RGB?

10. What are the differences between two Lines and a Lines containing two lines?
11. What properties can you set for every Shape?
12. How many sides does a Closed_polyline defined by five Points have?
13. What do you see if you define a Shape but don’t attach it to a Window?
14. How does a Rectangle differ from a Polygon with four Points (corners)?
15. How does a Polygon differ from a Closed_polyline?
16. What’s on top: fill or outline?
17. Why didn’t we bother defining a Triangle class (after all, we did define Rectangle)?
18. How do you move a Shape to another place in a Window?
19. How do you label a Shape with a line of text?
20. What properties can you set for a text string in a Text?



21. What is a font and why do we care?
22. What is Vector_ref for and how do we use it?
23. What is the difference between a Circle and an Ellipse?
24. What happens if you try to display an Image given a file name that doesn’t refer to a file containing an image?
25. How do you display part of an image?

Terms
closed shape
color
ellipse
fill
font
font size
GIF
image
image encoding
invisible
JPEG
line
line style
open shape
point
polygon
polyline
unnamed object
Vector_ref

visible

Exercises
For each “define a class” exercise, display a couple of objects of the class to demonstrate that they work.

1. Define a class Arc, which draws a part of an ellipse. Hint: fl_arc().
2. Draw a box with rounded corners. Define a class Box, consisting of four lines and four arcs.
3. Define a class Arrow, which draws a line with an arrowhead.
4. Define functions n(), s(), e(), w(), center(), ne(), se(), sw(), and nw(). Each takes a Rectangle argument and returns

a Point. These functions define “connection points” on and in the rectangle. For example, nw(r) is the northwest (top
left) corner of a Rectangle called r.

5. Define the functions from exercise 4 for a Circle and an Ellipse. Place the connection points on or outside the shape but
not outside the bounding rectangle.

6. Write a program that draws a class diagram like the one in §12.6. It will simplify matters if you start by defining a Box

class that is a rectangle with a text label.
7. Make an RGB color chart (e.g., search the web for “RGB color chart”).
8. Define a class Regular_hexagon (a regular hexagon is a six-sided polygon with all sides of equal length). Use the

center and the distance from the center to a corner point as constructor arguments.
9. Tile a part of a window with Regular_hexagons (use at least eight hexagons).

10. Define a class Regular_polygon. Use the center, the number of sides (>2), and the distance from the center to a corner
as constructor arguments.

11. Draw a 300-by-200-pixel ellipse. Draw a 400-pixel-long x axis and a 300-pixel-long y axis through the center of the



ellipse. Mark the foci. Mark a point on the ellipse that is not on one of the axes. Draw the two lines from the foci to the
point.

12. Draw a circle. Move a mark around on the circle (let it move a bit each time you hit the “Next” button).
13. Draw the color matrix from §13.10, but without lines around each color.
14. Define a right triangle class. Make an octagonal shape out of eight right triangles of different colors.
15. “Tile” a window with small right triangles.
16. Do the previous exercise, but with hexagons.
17. Do the previous exercise, but using hexagons of a few different colors.
18. Define a class Poly that represents a polygon but checks that its points really do make a polygon in its constructor. Hint:

You’ll have to supply the points to the constructor.
19. Define a class Star. One parameter should be the number of points. Draw a few stars with differing numbers of points,

differing line colors, and differing fill colors.

Postscript
Chapter 12 showed how to be a user of classes. This chapter moves us one level up the “food chain” of programmers: here we
become tool builders in addition to being tool users.



14. Graphics Class Design

“Functional, durable, beautiful.”
—Vitruvius

The purpose of the graphics chapters is dual: we want to provide useful tools for displaying information, but we also use the
family of graphical interface classes to illustrate general design and implementation techniques. In particular, this chapter
presents some ideas of interface design and the notion of inheritance. Along the way, we have to take a slight detour to examine
the language features that most directly support object-oriented programming: class derivation, virtual functions, and access
control. We don’t believe that design can be discussed in isolation from use and implementation, so our discussion of design is
rather concrete. Maybe you’d better think of this chapter as “Graphics Class Design and Implementation.”

14.1 Design principles
14.1.1 Types
14.1.2 Operations
14.1.3 Naming
14.1.4 Mutability

14.2 Shape

14.2.1 An abstract class
14.2.2 Access control
14.2.3 Drawing shapes
14.2.4 Copying and mutability

14.3 Base and derived classes
14.3.1 Object layout
14.3.2 Deriving classes and defining virtual functions
14.3.3 Overriding
14.3.4 Access
14.3.5 Pure virtual functions

14.4 Benefits of object-oriented programming

14.1 Design principles
What are the design principles for our graphics interface classes? First: What kind of question is that? What are “design
principles” and why do we need to look at those instead of getting on with the serious business of producing neat pictures?

14.1.1 Types

Graphics is an example of an application domain. So, what we are looking at here is an example of how to present a set of
fundamental application concepts and facilities to programmers (like us). If the concepts are presented confusingly,
inconsistently, incompletely, or in other ways poorly represented in our code, the difficulty of producing graphical output is
increased. We want our graphics classes to minimize the effort of a programmer trying to learn and to use them.

Our ideal of program design is to represent the concepts of the application domain directly in code. That way, if you
understand the application domain, you understand the code and vice versa. For example:

• Window — a window as presented by the operating system
• Line — a line as you see it on the screen
• Point — a coordinate point



• Color — as you see it on the screen
• Shape — what’s common for all shapes in our graphics/GUI view of the world

The last example, Shape, is different from the rest in that it is a generalization, a purely abstract notion. We never see just a
shape on the screen; we see a particular shape, such as a line or a hexagon. You’ll find that reflected in the definition of our
types: try to make a Shape variable and the compiler will stop you.

The set of our graphics interface classes is a library; the classes are meant to be used together and in combination. They are
meant to be used as examples to follow when you define classes to represent other graphical shapes and as building blocks for
such classes. We are not just defining a set of unrelated classes, so we can’t make design decisions for each class in isolation.
Together, our classes present a view of how to do graphics. We must ensure that this view is reasonably elegant and coherent.
Given the size of our library and the enormity of the domain of graphical applications, we cannot hope for completeness.
Instead, we aim for simplicity and extensibility.

In fact, no class library directly models all aspects of its application domain. That’s not only impossible; it is also pointless.
Consider writing a library for displaying geographical information. Do you want to show vegetation? National, state, and other
political boundaries? Road systems? Railroads? Rivers? Highlight social and economic data? Seasonal variations in
temperature and humidity? Wind patterns in the atmosphere above? Airline routes? Mark the locations of schools? The
locations of fast-food “restaurants”? Local beauty spots? “All of that!” may be a good answer for a comprehensive
geographical application, but it is not an answer for a single display. It may be an answer for a library supporting such
geographical applications, but it is unlikely that such a library could also cover other graphical applications such as freehand
drawing, editing photographic images, scientific visualization, and aircraft control displays.

So, as ever, we have to decide what’s important to us. In this case, we have to decide which kind of graphics/GUI we want
to do well. Trying to do everything is a recipe for failure. A good library directly and cleanly models its application domain
from a particular perspective, emphasizes some aspects of the application, and deemphasizes others.

The classes we provide here are designed for simple graphics and simple graphical user interfaces. They are primarily
aimed at users who need to present data and graphical output from numeric/scientific/engineering applications. You can build
your own classes “on top of” ours. If that is not enough, we expose sufficient FLTK details in our implementation for you to get
an idea of how to use that (or a similar “full-blown” graphics/GUI library) directly, should you so desire. However, if you
decide to go that route, wait until you have absorbed Chapters 17 and 18. Those chapters contain information about pointers
and memory management that you need for successful direct use of most graphics/GUI libraries.

One key decision is to provide a lot of “little” classes with few operations. For example, we provide Open_polyline,
Closed_polyline, Polygon, Rectangle, Marked_polyline, Marks, and Mark where we could have provided a single
class (possibly called “polyline”) with a lot of arguments and operations that allowed us to specify which kind of polyline an
object was and possibly even mutate a polyline from one kind to another. The extreme of this kind of thinking would be to
provide every kind of shape as part of a single class Shape. We think that using many small classes most closely and most
usefully models our domain of graphics. A single class providing “everything” would leave the user messing with data and
options without a framework to help understanding, debugging, and performance.

14.1.2 Operations

We provide a minimum of operations as part of each class. Our ideal is the minimal interface that allows us to do what we
want. Where we want greater convenience, we can always provide it in the form of added nonmember functions or yet another
class.

We want the interfaces of our classes to show a common style. For example, all functions performing similar operations in
different classes have the same name, take arguments of the same types, and where possible require those arguments in the
same order. Consider the constructors: if a shape requires a location, it takes a Point as its first argument:
Click here to view code image

Line ln {Point{100,200},Point{300,400}};

Mark m {Point{100,200},'x'};          // display a single point as an 'x'



Circle c {Point{200,200},250};

All functions that deal with points use class Point to represent them. That would seem obvious, but many libraries exhibit a
mixture of styles. For example, imagine a function for drawing a line. We could use one of two styles:
Click here to view code image

void draw_line(Point p1, Point p2);                        // from p1 to p2 (our style)
void draw_line(int x1, int y1, int x2, int y2);           // from (x1,y1) to (x2,y2)

We could even allow both, but for consistency, improved type checking, and improved readability we use the first style
exclusively. Using Point consistently also saves us from confusion between coordinate pairs and the other common pair of
integers: width and height. For example, consider:
Click here to view code image

draw_rectangle(Point{100,200}, 300, 400);            // our style
draw_rectangle(100,200,300,400);                           // alternative

The first call draws a rectangle with a point, width, and height. That’s reasonably easy to guess, but how about the second call?
Is that a rectangle defined by points (100,200) and (300,400)? A rectangle defined by a point (100,200), a width 300, and a
height 400? Something completely different (though plausible to someone)? Using the Point type consistently avoids such
confusion.

Incidentally, if a function requires a width and a height, they are always presented in that order (just as we always give an x
coordinate before a y coordinate). Getting such little details consistent makes a surprisingly large difference to the ease of use
and the avoidance of run-time errors.

Logically identical operations have the same name. For example, every function that adds points, lines, etc. to any kind of
shape is called add(), and any function that draws lines is called draw_lines(). Such uniformity helps us remember (by
offering fewer details to remember) and helps us when we design new classes (“just do the usual”). Sometimes, it even allows
us to write code that works for many different types, because the operations on those types have an identical pattern. Such code
is called generic; see Chapters 19–21.

14.1.3 Naming

Logically different operations have different names. Again, that would seem obvious, but consider: why do we “attach” a
Shape to a Window, but “add” a Line to a Shape? In both cases, we “put something into something,” so shouldn’t that
similarity be reflected by a common name? No. The similarity hides a fundamental difference. Consider:

Open_polyline opl;

opl.add(Point{100,100});

opl.add(Point{150,200});

opl.add(Point{250,250});

Here, we copy three points into opl. The shape opl does not care about “our” points after a call to add(); it keeps its own
copies. In fact, we rarely keep copies of the points — we leave that to the shape. On the other hand, consider:

win.attach(opl);

Here, we create a connection between the window win and our shape opl; win does not make a copy of opl — it keeps a
reference to opl. So, it is our responsibility to keep opl valid as long as win uses it. That is, we must not exit opl’s scope
while win is using opl. We can update opl and the next time win comes to draw opl our changes will appear on the screen.
We can illustrate the difference between attach() and add() graphically:



Basically, add() uses pass-by-value (copies) and attach() uses pass-by-reference (shares a single object). We could have
chosen to copy graphical objects into Windows. However, that would have given a different programming model, which we
would have indicated by using add() rather than attach(). As it is, we just “attach” a graphics object to a Window. That has
important implications. For example, we can’t create an object, attach it, allow the object to be destroyed, and expect the
resulting program to work:
Click here to view code image

void f(Simple_window& w)

{

          Rectangle r {Point{100,200},50,30};

          w.attach(r);

}        // oops, the lifetime of r ends here

int main()

{

          Simple_window win {Point{100,100},600,400,"My window"};

          // . . .
          f(win);          // asking for trouble
          // . . .
          win.wait_for_button();

}

By the time we have exited from f() and reached wait_for_button(), there is no r for the win to refer to and display. In
Chapter 17, we’ll show how to create objects within a function and have them survive after the return from the function. Until
then, we must avoid attaching objects that don’t survive until the call of wait_for_button(). We have Vector_ref (§13.10,
§E.4) to help with that.

Note that had we declared f() to take its Window as a const reference argument (as recommended in §8.5.6), the compiler
would have prevented our mistake: we can’t attach(r) to a const Window because attach() needs to make a change to the
Window to record the Window’s interest in r.

14.1.4 Mutability

When we design a class, “Who can modify the data (representation)?” and “How?” are key questions that we must answer. We
try to ensure that modification to the state of an object is done only by its own class. The public/private distinction is key to
this, but we’ll show examples where a more flexible/subtle mechanism (protected) is employed. This implies that we can’t
just give a class a data member, say a string called label; we must also consider if it should be possible to modify it after
construction, and if so, how. We must also decide if code other than our class’s member functions needs to read the value of
label, and if so, how. For example:
Click here to view code image

struct Circle {

          // . . .
private:

          int r;    // radius
};

Circle c {Point{100,200},50};



c.r = –9;            // OK? No — compile-time error: Circle::r is private

As you might have noticed in Chapter 13, we decided to prevent direct access to most data members. Not exposing the data
directly gives us the opportunity to check against “silly” values, such as a Circle with a negative radius. For simplicity of
implementation, we take only limited advantage of this opportunity, so do be careful with your values. The decision not to
consistently and completely check reflects a desire to keep the code short for presentation and the knowledge that if a user
(you, us) supplies “silly” values, the result is simply a messed-up image on the screen and not corruption of precious data.

We treat the screen (seen as a set of Windows) purely as an output device. We can display new objects and remove old
ones, but we never ask “the system” for information that we don’t (or couldn’t) know ourselves from the data structures we
have built up representing our images.

14.2 Shape

Class Shape represents the general notion of something that can appear in a Window on a screen:
• It is the notion that ties our graphical objects to our Window abstraction, which in turn provides the connection to the
operating system and the physical screen.

• It is the class that deals with color and the style used to draw lines. To do that it holds a Line_style, a Color for lines,
and a Color for fill.

• It can hold a sequence of Points and has a basic notion of how to draw them.
Experienced designers will recognize that a class doing three things probably has problems with generality. However, here,
we need something far simpler than the most general solution.

We’ll first present the complete class and then discuss its details:
Click here to view code image

class Shape {             // deals with color and style and holds sequence of lines
public:

          void draw() const;                                  // deal with color and draw lines
          virtual void move(int dx, int dy);         // move the shape +=dx and +=dy

          void set_color(Color col);

          Color color() const;

          void set_style(Line_style sty);

          Line_style style() const;

          void set_fill_color(Color col);

          Color fill_color() const;

          Point point(int i) const;                          // read-only access to points
          int number_of_points() const;

          Shape(const Shape&) = delete;          // prevent copying
          Shape& operator=(const Shape&) = delete;

          virtual ~Shape() { }

protected:

          Shape() { }

          Shape(initializer_list<Point> lst);        // add() the Points to this Shape

          virtual void draw_lines() const;           // draw the appropriate lines
          void add(Point p);                                  // add p to points
          void set_point(int i, Point p);               // points[i]=p;
private:

          vector<Point> points;                            // not used by all shapes
          Color lcolor {fl_color()};         // color for lines and characters (with default)
          Line_style ls {0};

          Color fcolor {Color::invisible};           // fill color
};

This is a relatively complex class designed to support a wide variety of graphics classes and to represent the general concept
of a shape on the screen. However, it still has only four data members and 15 functions. Furthermore, those functions are all



close to trivial so that we can concentrate on design issues. For the rest of this section we will go through the members one by
one and explain their role in the design.

14.2.1 An abstract class
Consider first Shape’s constructors:
Click here to view code image

protected:

          Shape() { }

          Shape(initializer_list<Point> lst);        // add() the Points to this Shape

The constructors are protected. That means that they can only be used directly from classes derived from Shape (using the
:Shape notation). In other words, Shape can only be used as a base for classes, such as Line and Open_polyline. The
purpose of that protected: is to ensure that we don’t make Shape objects directly. For example:
Click here to view code image

Shape ss;            // error: cannot construct Shape

Shape is designed to be a base class only. In this case, nothing particularly nasty would happen if we allowed people to
create Shape objects directly, but by limiting use, we keep open the possibility of modifications to Shape that would render it
unsuitable for direct use. Also, by prohibiting the direct creation of Shape objects, we directly model the idea that we cannot
have/see a general shape, only particular shapes, such as Circle and Closed_polyline. Think about it! What does a shape
look like? The only reasonable response is the counter question “What shape?” The notion of a shape that we represent by
Shape is an abstract concept. That’s an important and frequently useful design notion, so we don’t want to compromise it in
our program. Allowing users to directly create Shape objects would do violence to our ideal of classes as direct
representations of concepts.

The default constructor sets the members to their default values. Here again, the underlying library used for implementation,
FLTK, “shines through.” However, FLTK’s notions of color and style are not mentioned directly by the uses. They are only
part of the implementation of our Shape, Color, and Line_style classes. The vector<Points> defaults to an empty vector.

The initializer-list constructor also uses the default initializers, and then add()s the elements of its argument list to the
Shape:
Click here to view code image

Shape::Shape(initializer_list<Point> lst)

{

          for (Point p : list) add(p);

}

A class is abstract if it can be used only as a base class. The other — more common — way of achieving that is called a
pure virtual function; see §14.3.5. A class that can be used to create objects — that is, the opposite of an abstract class — is
called a concrete class. Note that abstract and concrete are simply technical words for an everyday distinction. We might go
to the store to buy a camera. However, we can’t just ask for a camera and take it home. What brand of camera? Which
particular model camera? The word camera is a generalization; it refers to an abstract notion. An Olympus E-M5 refers to a
specific kind of camera, which we (in exchange for a large amount of cash) might acquire a particular instance of: a particular
camera with a unique serial number. So, “camera” is much like an abstract (base) class; “Olympus E-M5” is much like a
concrete (derived) class, and the actual camera in my hand (if I bought it) would be much like an object.

The declaration

virtual ~Shape() { }

defines a virtual destructor. We won’t use that for now, so we leave the explanation to §17.5.2, where we show a use.

14.2.2 Access control
Class Shape declares all data members private:
Click here to view code image



private:

          vector<Point> points;

          Color lcolor {fl_color()};        // color for lines and characters (with default)
          Line_style ls {0};

          Color fcolor {Color::invisible};           // fill color

The initializers for the data members don’t depend on constructor arguments, so I specified them in the data member
declarations. As ever, the default value for a vector is “empty” so I didn’t have to be explicit about that. The constructor will
apply those default values.

Since the data members of Shape are declared private, we need to provide access functions. There are several possible
styles for doing this. We chose one that we consider simple, convenient, and readable. If we have a member representing a
property X, we provide a pair of functions X() and set_X() for reading and writing, respectively. For example:
Click here to view code image

void Shape::set_color(Color col)

{

          lcolor = col;

}

Color Shape::color() const

{

          return lcolor;

}

The main inconvenience of this style is that you can’t give the member variable the same name as its readout function. As ever,
we chose the most convenient names for the functions because they are part of the public interface. It matters far less what we
call our private variables. Note the way we use const to indicate that the readout functions do not modify their Shape

(§9.7.4).
Shape keeps a vector of Points, called points, that a Shape maintains in support of its derived classes. We provide the

function add() for adding Points to points:
Click here to view code image

void Shape::add(Point p)         // protected
{

          points.push_back(p);

}

Naturally, points starts out empty. We decided to provide Shape with a complete functional interface rather than giving users
— even member functions of classes derived from Shape — direct access to data members. To some, providing a functional
interface is a no-brainer, because they feel that making any data member of a class public is bad design. To others, our design
seems overly restrictive because we don’t allow direct write access to all members of derived classes.

A shape derived from Shape, such as Circle and Polygon, knows what its points mean. The base class Shape does not
“understand” the points; it only stores them. Therefore, the derived classes need control over how points are added. For
example:

• Circle and Rectangle do not allow a user to add points; that just wouldn’t make sense. What would be a rectangle with
an extra point? (§12.7.6)

• Lines allows only pairs of points to be added (and not an individual point; §13.3).
• Open_polyline and Marks allow any number of points to be added.
• Polygon allows a point to be added only by an add() that checks for intersections (§13.8).

We made add() protected (that is, accessible from a derived class only) to ensure that derived classes take control over how
points are added. Had add() been public (everybody can add points) or private (only Shape can add points), this close
match of functionality to our idea of shapes would not have been possible.

Similarly, we made set_point() protected. In general, only a derived class can know what a point means and whether it



can be changed without violating an invariant. For example, if we have a Regular_hexagon class defined as a set of six
points, changing just a single point would make the resulting figure “not a regular hexagon.” On the other hand, if we changed
one of the points of a rectangle, the result would still be a rectangle. In fact, we didn’t find a need for set_point() in our
example classes and code, so set_point() is provided just to ensure that the rule that we can read and set every attribute of a
Shape holds. For example, if we wanted a Mutable_rectangle, we could derive it from Rectangle and provide operations
to change the points.

We made the vector of Points, points, private to protect it against undesired modification. To make it useful, we also
need to provide access to it:
Click here to view code image

void Shape::set_point(int i, Point p)       // not used; not necessary so far
{

          points[i] = p;

}

Point Shape::point(int i) const

{

          return points[i];

}

int Shape::number_of_points() const

{

          return points.size();

}

In derived class member functions, these functions are used like this:
Click here to view code image

void Lines::draw_lines() const

          // draw lines connecting pairs of points
{

          for (int i=1; i<number_of_points(); i+=2)

                    fl_line(point(i–1).x,point(i–1).y,point(i).x,point(i).y);

}

You might worry about all those trivial access functions. Are they not inefficient? Do they slow down the program? Do they
increase the size of the generated code? No, they will all be compiled away (“inlined”) by the compiler. Calling
number_of_points() will take up exactly as many bytes of memory and execute exactly as many instructions as calling
points.size() directly.

These access control considerations and decisions are important. We could have provided this close-to-minimal version of
Shape:
Click here to view code image

struct Shape {            // close-to-minimal definition — too simple — not used
          Shape();

          Shape(initializer_list<Point>);

          void draw() const;                            // deal with color and call draw_lines
          virtual void draw_lines() const;     // draw the appropriate lines
          virtual void move(int dx, int dy);   // move the shape +=dx and +=dy
          virtual ~Shape();

          vector<Point> points;                     // not used by all shapes
          Color lcolor;

          Line_style ls;

          Color fcolor;

};

What value did we add by those extra 12 member functions and two lines of access specifications (private: and
protected:)? The basic answer is that protecting the representation ensures that it doesn’t change in ways unanticipated by a



class designer so that we can write better classes with less effort. This is the argument about “invariants” (§9.4.3). Here, we’ll
point out such advantages as we define classes derived from Shape. One simple example is that earlier versions of Shape

used

Fl_Color lcolor;

int line_style;

This turned out to be too limiting (an int line style doesn’t elegantly support line width, and Fl_Color doesn’t accommodate
invisible) and led to some messy code. Had these two variables been public and used in a user’s code, we could have
improved our interface library only at the cost of breaking that code (because it mentioned the names lcolor and line_style).

In addition, the access functions often provide notational convenience. For example, s.add(p) is easier to read and write
than s.points.push_back(p).

14.2.3 Drawing shapes
We have now described almost all but the real heart of class Shape:
Click here to view code image

void draw() const;                               // deal with color and call draw_lines
virtual void draw_lines() const;        // draw the lines appropriately

Shape’s most basic job is to draw shapes. We could remove all other functionality from Shape or leave it with no data of its
own without doing major conceptual harm (see §14.4), but drawing is Shape’s essential business. It does so using FLTK and
the operating system’s basic machinery, but from a user’s point of view, it provides just two functions:

• draw() applies style and color and then calls draw_lines().
• draw_lines() puts pixels on the screen.

The draw() function doesn’t use any novel techniques. It simply calls FLTK functions to set the color and style to what is
specified in the Shape, calls draw_lines() to do the actual drawing on the screen, and then tries to restore color and style to
what they were before the call:
Click here to view code image

void Shape::draw() const

{

          Fl_Color oldc = fl_color();

          // there is no good portable way of retrieving the current style
          fl_color(lcolor.as_int());                      // set color
          fl_line_style(ls.style(),ls.width());      // set style
          draw_lines();

          fl_color(oldc);                                      // reset color (to previous)
          fl_line_style(0);                                    // reset line style to default
}

Unfortunately, FLTK doesn’t provide a way of obtaining the current style, so the style is just set to a default. That’s the kind of
compromise we sometimes have to accept as the cost of simplicity and portability. We didn’t think it worthwhile to try to
implement that facility in our interface library.

Note that Shape::draw() doesn’t handle fill color or the visibility of lines. Those are handled by the individual
draw_lines() functions that have a better idea of how to interpret them. In principle, all color and style handling could be
delegated to the individual draw_lines() functions, but that would be quite repetitive.

Now consider how we might handle draw_lines(). If you think about it for a bit, you’ll realize that it would be hard for a
Shape function to draw all that needs to be drawn for every kind of shape. To do so would require that every last pixel of
each shape should somehow be stored in the Shape object. If we kept the vector<Point> model, we’d have to store an awful
lot of points. Worse, “the screen” (that is, the graphics hardware) already does that — and does it better.



To avoid that extra work and extra storage, Shape takes another approach: it gives each Shape (that is, each class derived
from Shape) a chance to define what it means to draw it. A Text, Rectangle, or Circle class may have a clever way of
drawing itself. In fact, most such classes do. After all, such classes “know” exactly what they are supposed to represent. For
example, a Circle is defined by a point and a radius, rather than, say, a lot of line segments. Generating the required bits for a
Circle from the point and radius if and when needed isn’t really all that hard or expensive. So Circle defines its own
draw_lines() which we want to call instead of Shape’s draw_lines(). That’s what the virtual in the declaration of
Shape::draw_lines() means:
Click here to view code image

struct Shape {

          // . . .
          virtual void draw_lines() const;        // let each derived class define its
                                                                          // own draw_lines() if it so chooses
          // . . .
};

struct Circle : Shape {

          // . . .
          void draw_lines() const;                    // “override” Shape::draw_lines()
          // . . .
};

So, Shape’s draw_lines() must somehow invoke one of Circle’s functions if the Shape is a Circle and one of Rectangle’s
functions if the Shape is a Rectangle. That’s what the word virtual in the draw_lines() declaration ensures: if a class
derived from Shape has defined its own draw_lines() (with the same type as Shape’s draw_lines()), that draw_lines()

will be called rather than Shape’s draw_lines(). Chapter 13 shows how that’s done for Text, Circle, Closed_polyline,
etc. Defining a function in a derived class so that it can be used through the interfaces provided by a base is called overriding.

Note that despite its central role in Shape, draw_lines() is protected; it is not meant to be called by “the general user”
— that’s what draw() is for — but simply as an “implementation detail” used by draw() and the classes derived from Shape.

This completes our display model from §12.2. The system that drives the screen knows about Window. Window knows
about Shape and can call Shape’s draw(). Finally, draw() invokes the draw_lines() for the particular kind of shape. A call
of gui_main() in our user code starts the display engine.

What gui_main()? So far, we haven’t actually seen gui_main() in our code. Instead we use wait_for_button(), which
invokes the display engine in a more simple-minded manner.

Shape’s move() function simply moves every point stored relative to the current position:
Click here to view code image

void Shape::move(int dx, int dy)   // move the shape +=dx and +=dy
{

          for (int i = 0; i<points.size(); ++i) {

                    points[i].x+=dx;



                    points[i].y+=dy;

          }
}

Like draw_lines(), move() is virtual because a derived class may have data that needs to be moved and that Shape does not
know about. For example, see Axis (§12.7.3 and §15.4).

The move() function is not logically necessary for Shape; we just provided it for convenience and to provide another
example of a virtual function. Every kind of Shape that has points that it didn’t store in its Shape must define its own
move().

14.2.4 Copying and mutability

The Shape class declared the copy constructor and the copy assignment deleted:
Click here to view code image

Shape(const Shape&) =delete;      // prevent copying
Shape& operator=(const Shape&) = delete;

The effect is to eliminate the otherwise default copy operations. For example:
Click here to view code image

void my_fct(Open_polyline& op, const Circle& c)

{

          Open_polyline op2 = op;    // error: Shape’s copy constructor is deleted
          vector<Shape> v;

          v.push_back(c);                     // error: Shape’s copy constructor is deleted
          // . . .
          op = op2;                                // error: Shape’s assignment is deleted
}

But copying is useful in so many places! Just look at that push_back(); without copying, it is hard even to use vectors
(push_back() puts a copy of its argument into its vector). Why would anyone make trouble for programmers by preventing
copying? You prohibit the default copy operations for a type if they are likely to cause trouble. As a prime example of
“trouble,” look at my_fct(). We cannot copy a Circle into a Shape-size element “slot” in v; a Circle has a radius but Shape

does not, so sizeof(Shape)<sizeof(Circle). If that v.push_back(c) were allowed, the Circle would be “sliced” and any
future use of the resulting Shape element would most likely lead to a crash; the Circle operations would assume a radius
member (r) that hadn’t been copied:

The copy construction of op2 and the assignment to op suffer from exactly the same problem. Consider:
Click here to view code image

Marked_polyline mp {"x"};

Circle c(p,10);

my_fct(mp,c);         // the Open_polyline argument refers to a Marked_polyline

Now the copy operations of the Open_polyline would “slice” mp’s string member mark away.

Basically, class hierarchies plus pass-by-reference and default copying do not mix. When you design a class that is meant to
be a base class in a hierarchy, disable its copy constructor and copy assignment using =delete as was done for Shape.

Slicing (yes, that’s really a technical term) is not the only reason to prevent copying. There are quite a few concepts that are



best represented without copy operations. Remember that the graphics system has to remember where a Shape is stored to
display it to the screen. That’s why we “attach” Shapes to a Window, rather than copy. For example, if a Window held only
a copy of a Shape, rather than a reference to the Shape, changes to the original would not affect the copy. So if we changed
the Shape’s color, the Window would not notice the change and would display its copy with the unchanged color. A copy
would in a very real sense not be as good as its original.

If we want to copy objects of types where the default copy operations have been disabled, we can write an explicit function
to do the job. Such a copy function is often called clone(). Obviously, you can write a clone() only if the functions for
reading members are sufficient for expressing what is needed to construct a copy, but that is the case for all Shapes.

14.3 Base and derived classes

Let’s take a more technical view of base and derived classes; that is, let us for this section (only) change the focus of
discussion from programming, application design, and graphics to programming language features. When designing our
graphics interface library, we relied on three key language mechanisms:

• Derivation: a way to build one class from another so that the new class can be used in place of the original. For
example, Circle is derived from Shape, or in other words, “a Circle is a kind of Shape” or “Shape is a base of
Circle.” The derived class (here, Circle) gets all of the members of its base (here, Shape) in addition to its own. This
is often called inheritance because the derived class “inherits” all of the members of its base. In some contexts, a
derived class is called a subclass and a base class is called a superclass.

• Virtual functions: the ability to define a function in a base class and have a function of the same name and type in a
derived class called when a user calls the base class function. For example, when Window calls draw_lines() for a
Shape that is a Circle, it is the Circle’s draw_lines() that is executed, rather than Shape’s own draw_lines(). This
is often called run-time polymorphism, dynamic dispatch, or run-time dispatch because the function called is
determined at run time based on the type of the object used.

• Private and protected members: We kept the implementation details of our classes private to protect them from direct
use that could complicate maintenance. That’s often called encapsulation.

The use of inheritance, run-time polymorphism, and encapsulation is the most common definition of object-oriented
programming. Thus, C++ directly supports object-oriented programming in addition to other programming styles. For
example, in Chapters 20–21, we’ll see how C++ supports generic programming. C++ borrowed — with explicit
acknowledgments — its key mechanisms from Simula67, the first language to directly support object-oriented programming
(see Chapter 22).

That was a lot of technical terminology! But what does it all mean? And how does it actually work on our computers? Let’s
first draw a simple diagram of our graphics interface classes showing their inheritance relationships:



The arrows point from a derived class to its base. Such diagrams help visualize class relationships and often decorate the
blackboards of programmers. Compared to commercial frameworks this is a tiny “class hierarchy” with only 16 classes, and
only in the case of Open_polyline’s many descendants is the hierarchy more than one deep. Clearly the common base
(Shape) is the most important class here, even though it represents an abstract concept so that we never directly make a shape.

14.3.1 Object layout
How are objects laid out in memory? As we saw in §9.4.1, members of a class define the layout of objects: data members are
stored one after another in memory. When inheritance is used, the data members of a derived class are simply added after those
of a base. For example:

A Circle has the data members of a Shape (after all, it is a kind of Shape) and can be used as a Shape. In addition, Circle

has “its own” data member r placed after the inherited data members.

To handle a virtual function call, we need (and have) one more piece of data in a Shape object: something to tell which
function is really invoked when we call Shape’s draw_lines(). The way that is usually done is to add the address of a table
of functions. This table is usually referred to as the vtbl (for “virtual table” or “virtual function table”) and its address is often
called the vptr (for “virtual pointer”). We discuss pointers in Chapters 17–18; here, they act like references. A given
implementation may use different names for vtbl and vptr. Adding the vptr and the vtbls to the picture we get



Since draw_lines() is the first virtual function, it gets the first slot in the vtbl, followed by that of move(), the second virtual
function. A class can have as many virtual functions as you want it to have; its vtbl will be as large as needed (one slot per
virtual function). Now when we call x.draw_lines(), the compiler generates a call to the function found in the draw_lines()

slot in the vtbl for x. Basically, the code just follows the arrows on the diagram. So if x is a Circle, Circle::draw_lines()

will be called. If x is of a type, say Open_polyline, that uses the vtbl exactly as Shape defined it, Shape::draw_lines()

will be called. Similarly, Circle didn’t define its own move() so x.move() will call Shape::move() if x is a Circle.
Basically, code generated for a virtual function call simply finds the vptr, uses that to get to the right vtbl, and calls the
appropriate function there. The cost is about two memory accesses plus the cost of an ordinary function call. This is simple and
fast.

Shape is an abstract class so you can’t actually have an object that’s just a Shape, but an Open_polyline will have
exactly the same layout as a “plain shape” since it doesn’t add a data member or define a virtual function. There is just one
vtbl for each class with a virtual function, not one for each object, so the vtbls tend not to add significantly to a program’s
object code size.

Note that we didn’t draw any non-virtual functions in this picture. We didn’t need to because there is nothing special about
the way such functions are called and they don’t increase the size of objects of their type.

Defining a function of the same name and type as a virtual function from a base class (such as Circle::draw_lines()) so
that the function from the derived class is put into the vtbl instead of the version from the base is called overriding. For
example, Circle::draw_lines() overrides Shape::draw_lines().

Why are we telling you about vtbls and memory layout? Do you need to know about that to use object-oriented
programming? No. However, many people strongly prefer to know how things are implemented (we are among those), and
when people don’t understand something, myths spring up. We have met people who were terrified of virtual functions
“because they are expensive.” Why? How expensive? Compared to what? Where would the cost matter? We explain the
implementation model for virtual functions so that you won’t have such fears. If you need a virtual function call (to select
among alternatives at run time), you can’t code the functionality to be any faster or to use less memory using other language
features. You can see that for yourself.

14.3.2 Deriving classes and defining virtual functions
We specify that a class is to be a derived class by mentioning a base after the class name. For example:

struct Circle : Shape { /* . . . */ };

By default, the members of a struct are public (§9.3), and that will include public members of a base. We could
equivalently have said
Click here to view code image

class Circle : public Shape { public: /* . . . */ };

These two declarations of Circle are completely equivalent, but you can have many long and fruitless discussions with people
about which is better. We are of the opinion that time can be spent more productively on other topics.

Beware of forgetting public when you need it. For example:
Click here to view code image



class Circle : Shape { public: /* . . . */ };    // probably a mistake

This would make Shape a private base of Circle, making Shape’s public functions inaccessible for a Circle. That’s
unlikely to be what you meant. A good compiler will warn about this likely error. There are uses for private base classes, but
those are beyond the scope of this book.

A virtual function must be declared virtual in its class declaration, but if you place the function definition outside the class,
the keyword virtual is neither required nor allowed out there. For example:
Click here to view code image

struct Shape {

          // . . .
          virtual void draw_lines() const;

          virtual void move();

          // . . .
};

virtual void Shape::draw_lines() const { /* . . . */ }      // error
void Shape::move() { /* . . . */ }                                      // OK

14.3.3 Overriding

When you want to override a virtual function, you must use exactly the same name and type as in the base class. For example:
Click here to view code image

struct Circle : Shape {

          void draw_lines(int) const;      // probably a mistake (int argument?)
          void drawlines() const;             // probably a mistake (misspelled name?)
          void draw_lines();                      // probably a mistake (const missing?)
          // . . .
};

Here, the compiler will see three functions that are independent of Shape::draw_lines() (because they have a different name
or a different type) and won’t override them. A good compiler will warn about these likely mistakes. There is nothing you can
or must say in an overriding function to ensure that it actually overrides a base class function.

The draw_lines() example is real and can therefore be hard to follow in all details, so here is a purely technical example
that illustrates overriding:
Click here to view code image

struct B {

          virtual void f() const { cout << "B::f "; }

          void g() const { cout << "B::g "; }         // not virtual
};

struct D : B {

          void f() const { cout << "D::f "; }         // overrides B::f
          void g() { cout << "D::g "; }

};

struct DD : D {

          void f() { cout << "DD::f "; }                // doesn’t override D::f (not const)
          void g() const { cout << "DD::g "; }

};

Here, we have a small class hierarchy with (just) one virtual function f(). We can try using it. In particular, we can try to call
f() and the non-virtual g(), which is a function that doesn’t know what type of object it had to deal with except that it is a B (or
something derived from B):
Click here to view code image

void call(const B& b)

          // a D is a kind of B, so call() can accept a D
          // a DD is a kind of D and a D is a kind of B, so call() can accept a DD
{

          b.f();



          b.g();

}

int main()

{

          B b;

          D d;

          DD dd;

          call(b);

          call(d);

          call(dd);

          b.f();

          b.g();

          d.f();

          d.g();

          dd.f();

          dd.g();

}

You’ll get
Click here to view code image

B::f B::g D::f B::g D::f B::g B::f B::g D::f D::g DD::f DD::g

When you understand why, you’ll know the mechanics of inheritance and virtual functions.
Obviously, it can be hard to keep track of which derived class functions are meant to override which base class functions.

Fortunately, we can get compiler help to check. We can explicitly declare that a function is meant to override. Assuming that
the derived class functions were meant to override, we can say so by adding override and the example becomes
Click here to view code image

struct B {

          virtual void f() const { cout << "B::f "; }

          void g() const { cout << "B::g "; }                      // not virtual
};

struct D : B {

          void f() const override { cout << "D::f "; }      // overrides B::f
          void g() override { cout << "D::g "; }    // error: no virtual B::g to override
};

struct DD : D {

          void f() override { cout << "DD::f "; }                    // error: doesn’t override
                                                                                                  // D::f (not const)
          void g() const override { cout << "DD::g "; }       // error: no virtual D::g
                                                                                                 // to override
};

Explicit use of override is particularly useful in large, complicated class hierarchies.

14.3.4 Access
C++ provides a simple model of access to members of a class. A member of a class can be

• Private: If a member is private, its name can be used only by members of the class in which it is declared.
• Protected: If a member is protected, its name can be used only by members of the class in which it is declared and
members of classes derived from that.

• Public: If a member is public, its name can be used by all functions.
Or graphically:



A base can also be private, protected, or public:
• If a base of class D is private, its public and protected member names can be used only by members of D.
• If a base of class D is protected, its public and protected member names can be used only by members of D and
members of classes derived from D.

• If a base is public, its public member names can be used by all functions.
These definitions ignore the concept of “friend” and a few minor details, which are beyond the scope of this book. If you want
to become a language lawyer you need to study Stroustrup, The Design and Evolution of C++ and The C++ Programming
Language, and the ISO C++ standard. We don’t recommend becoming a language lawyer (someone knowing every little detail
of the language definition); being a programmer (a software developer, an engineer, a user, whatever you prefer to call
someone who actually uses the language) is much more fun and typically much more useful to society.

14.3.5 Pure virtual functions

An abstract class is a class that can be used only as a base class. We use abstract classes to represent concepts that are
abstract; that is, we use abstract classes for concepts that are generalizations of common characteristics of related entities.
Thick books of philosophy have been written trying to precisely define abstract concept (or abstraction or generalization or .
. .). However you define it philosophically, the notion of an abstract concept is immensely useful. Examples are “animal” (as
opposed to any particular kind of animal), “device driver” (as opposed to the driver for any particular kind of device), and
“publication” (as opposed to any particular kind of book or magazine). In programs, abstract classes usually define interfaces
to groups of related classes (class hierarchies).

In §14.2.1, we saw how to make a class abstract by declaring its constructor protected. There is another — and much more
common — way of making a class abstract: state that one or more of its virtual functions needs to be overridden in some
derived class. For example:
Click here to view code image

class B {                                      // abstract base class
public:

          virtual void f() =0;         // pure virtual function
          virtual void g() =0;

};

B b;                                           // error: B is abstract

The curious =0 notation says that the virtual functions B::f() and B::g() are “pure”; that is, they must be overridden in some
derived class. Since B has pure virtual functions, we cannot create an object of class B. Overriding the pure virtual functions
solves this “problem”:
Click here to view code image

class D1 : public B {

public:

          void f() override;

          void g() override;

};



D1 d1;                                        // OK

Note that unless all pure virtual functions are overridden, the resulting class is still abstract:
Click here to view code image

class D2 : public B {

public:

          void f() override;

          // no g()
};

D2 d2;          // error: D2 is (still) abstract

class D3 : public D2 {

public:

          void g() override;

};

D3 d3;          // OK

Classes with pure virtual functions tend to be pure interfaces; that is, they tend to have no data members (the data members will
be in the derived classes) and consequently have no constructors (if there are no data members to initialize, a constructor is
unlikely to be needed).

14.4 Benefits of object-oriented programming

When we say that Circle is derived from Shape, or that Circle is a kind of Shape, we do so to obtain (either or both)
• Interface inheritance: A function expecting a Shape (usually as a reference argument) can accept a Circle (and can use
a Circle through the interface provided by Shape).

• Implementation inheritance: When we define Circle and its member functions, we can take advantage of the facilities
(such as data and member functions) offered by Shape.

A design that does not provide interface inheritance (that is, a design for which an object of a derived class cannot be used as
an object of its public base class) is a poor and error-prone design. For example, we might define a class called
Never_do_this with Shape as its public base. Then we could override Shape::draw_lines() with a function that didn’t
draw the shape, but instead moved its center 100 pixels to the left. That “design” is fatally flawed because even though
Never_do_this provides the interface of a Shape, its implementation does not maintain the semantics (meaning, behavior)
required of a Shape. Never do that!

Interface inheritance gets its name because its benefits come from code using the interface provided by a base class (“an
interface”; here, Shape) and not having to know about the derived classes (“implementations”; here, classes derived from
Shape).

Implementation inheritance gets its name because the benefits come from the simplification in the implementation of derived
classes (e.g., Circle) provided by the facilities offered by the base class (here, Shape).

Note that our graphics design critically depends on interface inheritance: the “graphics engine” calls Shape::draw() which
in turn calls Shape’s virtual function draw_lines() to do the real work of putting images on the screen. Neither the “graphics
engine” nor indeed class Shape knows which kinds of shapes exist. In particular, our “graphics engine” (FLTK plus the
operating system’s graphics facilities) was written and compiled years before our graphics classes! We just define particular
shapes and attach() them to Windows as Shapes (Window::attach() takes a Shape& argument; see §E.3). Furthermore,
since class Shape doesn’t know about your graphics classes, you don’t need to recompile Shape each time you define a new
graphics interface class.



In other words, we can add new Shapes to a program without modifying existing code. This is a holy grail of software
design/development/maintenance: extension of a system without modifying it. There are limits to which changes we can make
without modifying existing classes (e.g., Shape offers a rather limited range of services), and the technique doesn’t apply well
to all programming problems (see, for example, Chapters 17–19 where we define vector; inheritance has little to offer for
that). However, interface inheritance is one of the most powerful techniques for designing and implementing systems that are
robust in the face of change.

Similarly, implementation inheritance has much to offer, but it is no panacea. By placing useful services in Shape, we save
ourselves the bother of repeating work over and over again in the derived classes. That can be most significant in real-world
code. However, it comes at the cost that any change to the interface of Shape or any change to the layout of the data members
of Shape necessitates a recompilation of all derived classes and their users. For a widely used library, such recompilation
can be simply infeasible. Naturally, there are ways of gaining most of the benefits while avoiding most of the problems; see
§14.3.5.

 Drill

Unfortunately, we can’t construct a drill for the understanding of general design principles, so here we focus on the language
features that support object-oriented programming.

1. Define a class B1 with a virtual function vf() and a non-virtual function f(). Define both of these functions within class
B1. Implement each function to output its name (e.g., B1::vf()). Make the functions public. Make a B1 object and call
each function.

2. Derive a class D1 from B1 and override vf(). Make a D1 object and call vf() and f() for it.
3. Define a reference to B1 (a B1&) and initialize that to the D1 object you just defined. Call vf() and f() for that reference.
4. Now define a function called f() for D1 and repeat 1–3. Explain the results.
5. Add a pure virtual function called pvf() to B1 and try to repeat 1–4. Explain the result.
6. Define a class D2 derived from D1 and override pvf() in D2. Make an object of class D2 and invoke f(), vf(), and

pvf() for it.
7. Define a class B2 with a pure virtual function pvf(). Define a class D21 with a string data member and a member

function that overrides pvf(); D21::pvf() should output the value of the string. Define a class D22 that is just like D21

except that its data member is an int. Define a function f() that takes a B2& argument and calls pvf() for its argument.
Call f() with a D21 and a D22.

Review
1. What is an application domain?
2. What are ideals for naming?
3. What can we name?
4. What services does a Shape offer?
5. How does an abstract class differ from a class that is not abstract?
6. How can you make a class abstract?
7. What is controlled by access control?
8. What good can it do to make a data member private?
9. What is a virtual function and how does it differ from a non-virtual function?

10. What is a base class?
11. What makes a class derived?
12. What do we mean by object layout?
13. What can you do to make a class easier to test?



14. What is an inheritance diagram?
15. What is the difference between a protected member and a private one?
16. What members of a class can be accessed from a class derived from it?
17. How does a pure virtual function differ from other virtual functions?
18. Why would you make a member function virtual?
19. Why would you make a virtual member function pure?
20. What does overriding mean?
21. How does interface inheritance differ from implementation inheritance?
22. What is object-oriented programming?

Terms
abstract class
access control
base class
derived class
dispatch
encapsulation
inheritance
mutability
object layout
object-oriented override
polymorphism
private

protected

public

pure virtual function
subclass
superclass
virtual function
virtual function call
virtual function table

Exercises
1. Define two classes Smiley and Frowny, which are both derived from class Circle and have two eyes and a mouth.

Next, derive classes from Smiley and Frowny which add an appropriate hat to each.
2. Try to copy a Shape. What happens?
3. Define an abstract class and try to define an object of that type. What happens?
4. Define a class Immobile_Circle, which is just like Circle but can’t be moved.
5. Define a Striped_rectangle where instead of fill, the rectangle is “filled” by drawing one-pixel-wide horizontal lines

across the inside of the rectangle (say, draw every second line like that). You may have to play with the width of lines
and the line spacing to get a pattern you like.

6. Define a Striped_circle using the technique from Striped_rectangle.
7. Define a Striped_closed_polyline using the technique from Striped_rectangle (this requires some algorithmic

inventiveness).
8. Define a class Octagon to be a regular octagon. Write a test that exercises all of its functions (as defined by you or

inherited from Shape).
9. Define a Group to be a container of Shapes with suitable operations applied to the various members of the Group.



Hint: Vector_ref. Use a Group to define a checkers (draughts) board where pieces can be moved under program
control.

10. Define a class Pseudo_window that looks as much like a Window as you can make it without heroic efforts. It
should have rounded corners, a label, and control icons. Maybe you could add some fake “contents,” such as an image. It
need not actually do anything. It is acceptable (and indeed recommended) to have it appear within a Simple_window.

11. Define a Binary_tree class derived from Shape. Give the number of levels as a parameter (levels==0 means no
nodes, levels==1 means one node, levels==2 means one top node with two sub-nodes, levels==3 means one top node
with two sub-nodes each with two sub-nodes, etc.). Let a node be represented by a small circle. Connect the nodes by
lines (as is conventional). P.S. In computer science, trees grow downward from a top node (amusingly, but logically,
often called the root).

12. Modify Binary_tree to draw its nodes using a virtual function. Then, derive a new class from Binary_tree that
overrides that virtual function to use a different representation for a node (e.g., a triangle).

13. Modify Binary_tree to take a parameter (or parameters) to indicate what kind of line to use to connect the nodes (e.g.,
an arrow pointing down or a red arrow pointing up). Note how this exercise and the last use two alternative ways of
making a class hierarchy more flexible and useful.

14. Add an operation to Binary_tree that adds text to a node. You may have to modify the design of Binary_tree to
implement this elegantly. Choose a way to identify a node; for example, you might give a string "lrrlr" for navigating left,
right, right, left, and right down a binary tree (the root node would match both an initial l and an initial r).

15. Most class hierarchies have nothing to do with graphics. Define a class Iterator with a pure virtual function next() that
returns a double* (see Chapter 17). Now derive Vector_iterator and List_iterator from Iterator so that next() for
a Vector_iterator yields a pointer to the next element of a vector<double> and List_iterator does the same for a
list<double>. You initialize a Vector_iterator with a vector<double> and the first call of next() yields a pointer
to its first element, if any. If there is no next element, return 0. Test this by using a function void print(Iterator&) to
print the elements of a vector<double> and a list<double>.

16. Define a class Controller with four virtual functions on(), off(), set_level(int), and show(). Derive at least two
classes from Controller. One should be a simple test class where show() prints out whether the class is set to on or off
and what is the current level. The second derived class should somehow control the line color of a Shape; the exact
meaning of “level” is up to you. Try to find a third “thing” to control with such a Controller class.

17. The exceptions defined in the C++ standard library, such as exception, runtime_error, and out_of_range (§5.6.3),
are organized into a class hierarchy (with a useful virtual function what() returning a string supposedly explaining what
went wrong). Search your information sources for the C++ standard exception class hierarchy and draw a class hierarchy
diagram of it.

Postscript

The ideal for software is not to build a single program that does everything. The ideal is to build a lot of classes that closely
reflect our concepts and that work together to allow us to build our applications elegantly, with minimal effort (relative to the
complexity of our task), with adequate performance, and with confidence that the results produced are correct. Such programs
are comprehensible and maintainable in a way that code that was simply thrown together to get a particular job done as quickly
as possible is not. Classes, encapsulation (as supported by private and protected), inheritance (as supported by class
derivation), and run-time polymorphism (as supported by virtual functions) are among our most powerful tools for structuring
systems.



15. Graphing Functions and Data

“The best is the enemy of the good.”
—Voltaire

If you are in any empirical field, you need to graph data. If you are in any field that uses math to model phenomena, you need to
graph functions. This chapter discusses basic mechanisms for such graphics. As usual, we show the use of the mechanisms and
also discuss their design. The key examples are graphing a function of one argument and displaying values read from a file.

15.1 Introduction
15.2 Graphing simple functions
15.3 Function

15.3.1 Default arguments
15.3.2 More examples
15.3.3 Lambda expressions

15.4 Axis

15.5 Approximation
15.6 Graphing data

15.6.1 Reading a file
15.6.2 General layout
15.6.3 Scaling data
15.6.4 Building the graph

15.1 Introduction

Compared to the professional software systems you’ll use if such visualization becomes your main occupation, the facilities
presented here are primitive. Our primary aim is not elegance of output, but an understanding of how such graphical output can
be produced and of the programming techniques used. You’ll find the design techniques, programming techniques, and basic
mathematical tools presented here of longer-term value than the graphics facilities presented. Therefore, please don’t skim too
quickly over the code fragments — they contain more of interest than just the shapes they compute and draw.

15.2 Graphing simple functions
Let’s start. Let’s look at examples of what we can draw and what code it takes to draw them. In particular, look at the graphics
interface classes used. Here, first, are a parabola, a horizontal line, and a sloping line:



Actually, since this chapter is about graphing functions, that horizontal line isn’t just a horizontal line; it is what we get from
graphing the function
Click here to view code image

double one(double) { return 1; }

This is about the simplest function we could think of: it is a function of one argument that for every argument returns 1. Since
we don’t need that argument to compute the result, we need not name it. For every x passed as an argument to one() we get the
y value 1; that is, the line is defined by (x,y)==(x,1) for all x.

Like all beginning mathematical arguments, this is somewhat trivial and pedantic, so let’s look at a slightly more
complicated function:
Click here to view code image

double slope(double x) { return x/2; }

This is the function that generated the sloping line. For every x, we get the y value x/2. In other words, (x,y)==(x,x/2). The
point where the two lines cross is (2,1).

Now we can try something more interesting, the square function that seems to reappear regularly in this book:
Click here to view code image

double square(double x) { return x*x; }

If you remember your high school geometry (and even if you don’t), this defines a parabola with its lowest point at (0,0) and
symmetric on the y axis. In other words, (x,y)==(x,x*x). So, the lowest point where the parabola touches the sloping line is
(0,0).

Here is the code that drew those three functions:
Click here to view code image

constexpr int xmax = 600;                 // window size
constexpr int ymax = 400;

constexpr int x_orig = xmax/2;         // position of (0,0) is center of window
constexpr int y_orig = ymax/2;

constexpr Point orig {x_orig,y_orig};

constexpr int r_min = –10;                // range [–10:11)
constexpr int r_max = 11;

constexpr int n_points = 400;           // number of points used in range

constexpr int x_scale = 30;                // scaling factors



constexpr int y_scale = 30;

Simple_window win {Point{100,100},xmax,ymax,"Function graphing"};

Function s {one,r_min,r_max,orig,n_points,x_scale,y_scale};

Function s2 {slope,r_min,r_max,orig,n_points,x_scale,y_scale};

Function s3 {square,r_min,r_max,orig,n_points,x_scale,y_scale};

win.attach(s);

win.attach(s2);

win.attach(s3);

win.wait_for_button();

First, we define a bunch of constants so that we won’t have to litter our code with “magic constants.” Then, we make a
window, define the functions, attach them to the window, and finally give control to the graphics system to do the actual
drawing.

All of this is repetition and “boilerplate” except for the definitions of the three Functions, s, s2, and s3:
Click here to view code image

Function s {one,r_min,r_max,orig,n_points,x_scale,y_scale};

Function s2 {slope,r_min,r_max,orig,n_points,x_scale,y_scale};

Function s3 {square,r_min,r_max,orig,n_points,x_scale,y_scale};

Each Function specifies how its first argument (a function of one double argument returning a double) is to be drawn in a
window. The second and third arguments give the range of x (the argument to the function to be graphed). The fourth argument
(here, orig) tells the Function where the origin (0,0) is to be located within the window.

If you think that the many arguments are confusing, we agree. Our ideal is to have as few arguments as possible, because
having many arguments confuses and provides opportunities for bugs. However, here we need them. We’ll explain the last
three arguments later (§15.3). First, however, let’s label our graphs:

We always try to make our graphs self-explanatory. People don’t always read the surrounding text and good diagrams get
moved around, so that the surrounding text is “lost.” Anything we put in as part of the picture itself is most likely to be noticed
and — if reasonable — most likely to help the reader understand what we are displaying. Here, we simply put a label on each
graph. The code for “labeling” was three Text objects (see §13.11):
Click here to view code image

Text ts {Point{100,y_orig–40},"one"};

Text ts2 {Point{100,y_orig+y_orig/2–20},"x/2"};

Text ts3 {Point{x_orig–100,20},"x*x"};



win.set_label("Function graphing: label functions");

win.wait_for_button();

From now on in this chapter, we’ll omit the repetitive code for attaching shapes to the window, labeling the window, and
waiting for the user to hit “Next.”

However, that picture is still not acceptable. We noticed that x/2 touches x*x at (0,0) and that one crosses x/2 at (2,1) but
that’s far too subtle; we need axes to give the reader an unsubtle clue about what’s going on:

The code for the axes was two Axis objects (§15.4):
Click here to view code image

constexpr int xlength = xmax–40;   // make the axis a bit smaller than the window
constexpr int ylength = ymax–40;

Axis x {Axis::x,Point{20,y_orig},

          xlength, xlength/x_scale, "one notch == 1"};

Axis y {Axis::y,Point{x_orig, ylength+20},

          ylength, ylength/y_scale, "one notch == 1"};

Using xlength/x_scale as the number of notches ensures that a notch represents the values 1, 2, 3, etc. Having the axes cross
at (0,0) is conventional. If you prefer them along the left and bottom edges as is conventional for the display of data (see
§15.6), you can of course do that instead. Another way of distinguishing the axes from the data is to use color:

x.set_color(Color::red);

y.set_color(Color::red);

And we get



This is acceptable, though for aesthetic reasons, we’d probably want a bit of empty space at the top to match what we have at
the bottom and sides. It might also be a better idea to push the label for the x axis further to the left. We left these blemishes so
that we could mention them — there are always more aesthetic details that we can work on. One part of a programmer’s art is
to know when to stop and use the time saved on something better (such as learning new techniques or sleep). Remember: “The
best is the enemy of the good.”

15.3 Function

The Function graphics interface class is defined like this:
Click here to view code image

struct Function : Shape {

          // the function parameters are not stored
          Function(Fct f, double r1, double r2, Point orig,

                    int count = 100, double xscale = 25, double yscale = 25);

};

Function is a Shape with a constructor that generates a lot of line segments and stores them in its Shape part. Those line
segments approximate the values of function f. The values of f are calculated count times for values equally spaced in the
[r1:r2) range:
Click here to view code image

Function::Function(Fct f, double r1, double r2, Point xy,

                                         int count, double xscale, double yscale)

// graph f(x) for x in [r1:r2) using count line segments with (0,0) displayed at xy
// x coordinates are scaled by xscale and y coordinates scaled by yscale
{

          if (r2–r1<=0) error("bad graphing range");

          if (count <=0) error("non-positive graphing count");

          double dist = (r2–r1)/count;

          double r = r1;

          for (int i = 0; i<count; ++i) {

                    add(Point{xy.x+int(r*xscale),xy.y–int(f(r)*yscale)});

                    r += dist;

          }
}

The xscale and yscale values are used to scale the x coordinates and the y coordinates, respectively. We typically need to
scale our values to make them fit appropriately into a drawing area of a window.

Note that a Function object doesn’t store the values given to its constructor, so we can’t later ask a function where its



origin is, redraw it with different scaling, etc. All it does is to store points (in its Shape) and draw itself on the screen. If we
wanted the flexibility to change a Function after construction, we would have to store the values we wanted to change (see
exercise 2).

What is the type Fct that we used to represent a function argument? It is a variant of a standard library type called
std::function that can “remember” a function to be called later. Fct requires its argument to be a double and its return type
to be a double.

15.3.1 Default Arguments
Note the way the Function constructor arguments xscale and yscale were given initializers in the declaration. Such
initializers are called default arguments and their values are used if a caller doesn’t supply values. For example:
Click here to view code image

Function s {one, r_min, r_max,orig, n_points, x_scale, y_scale};

Function s2 {slope, r_min, r_max, orig, n_points, x_scale};     // no yscale
Function s3 {square, r_min, r_max, orig, n_points};     // no xscale, no yscale
Function s4 {sqrt, r_min, r_max, orig};          // no count, no xscale, no yscale

This is equivalent to
Click here to view code image

Function s {one, r_min, r_max, orig, n_points, x_scale, y_scale};

Function s2 {slope, r_min, r_max,orig, n_points, x_scale, 25};

Function s3 {square, r_min, r_max, orig, n_points, 25, 25};

Function s4 {sqrt, r_min, r_max, orig, 100, 25, 25};

Default arguments are used as an alternative to providing several overloaded functions. Instead of defining one constructor
with three default arguments, we could have defined four constructors:
Click here to view code image

struct Function : Shape {           // alternative, not using default arguments
          Function(Fct f, double r1, double r2, Point orig,

                    int count, double xscale, double yscale);

          // default scale of y:
          Function(Fct f, double r1, double r2, Point orig,

                    int count, double xscale);

          // default scale of x and y:
          Function(Fct f, double r1, double r2, Point orig, int count);

          // default count and default scale of x or y:
          Function(Fct f, double r1, double r2, Point orig);

};

It would have been more work to define four constructors, and with the four-constructor version, the nature of the default is
hidden in the constructor definitions rather than being obvious from the declaration. Default arguments are frequently used for
constructors but can be useful for all kinds of functions. You can only define default arguments for trailing parameters. For
example:
Click here to view code image

struct Function : Shape {

          Function(Fct f, double r1, double r2, Point orig,

                    int count = 100, double xscale, double yscale);     // error
};

If a parameter has a default argument, all subsequent parameters must also have one:
Click here to view code image

struct Function : Shape {

          Function(Fct f, double r1, double r2, Point orig,

                    int count = 100, double xscale=25, double yscale=25);

};

Sometimes, picking good default arguments is easy. Examples of that are the default for string (the empty string) and the



default for vector (the empty vector). In other cases, such as Function, choosing a default is less easy; we found the ones we
used after a bit of experimentation and a failed attempt. Remember, you don’t have to provide default arguments, and if you
find it hard to provide one, just leave it to your user to specify that argument.

15.3.2 More examples
We added a couple more functions, a simple cosine (cos) from the standard library, and — just to show how we can compose
functions — a sloping cosine that follows the x/2 slope:
Click here to view code image

double sloping_cos(double x) { return cos(x)+slope(x); }

Here is the result:

The code is
Click here to view code image

Function s4 {cos,r_min,r_max,orig,400,30,30};

s4.set_color(Color::blue);

Function s5 {sloping_cos, r_min,r_max,orig,400,30,30};

x.label.move(–160,0);

x.notches.set_color(Color::dark_red);

In addition to adding those two functions, we also moved the x axis’s label and (just to show how) slightly changed the color of
its notches.

Finally, we graph a log, an exponential, a sine, and a cosine:
Click here to view code image

Function f1 {log,0.000001,r_max,orig,200,30,30};      // log() logarithm, base e
Function f2 {sin,r_min,r_max,orig,200,30,30};            // sin()
f2.set_color(Color::blue);

Function f3 {cos,r_min,r_max,orig,200,30,30};            // cos()
Function f4 {exp,r_min,r_max,orig,200,30,30};            // exp() exponential e^x

Since log(0) is undefined (mathematically, minus infinity), we started the range for log at a small positive number. The result
is



Rather than labeling those functions we used color.
Standard mathematical functions, such as cos(), sin(), and sqrt(), are declared in the standard library header <cmath>.

See §24.8 and §B.9.2 for lists of the standard mathematical functions.

15.3.3 Lambda expressions
It can get tedious to define a function just to have it to pass as an argument to a Function. Consequently, C++ offers a notation
for defining something that acts as a function in the argument position where it is needed. For example, we could define the
sloping_cos shape like this:
Click here to view code image

Function s5 {[](double x) { return cos(x)+slope(x); },

                                         r_min,r_max,orig,400,30,30};

The [](double x) { return cos(x)+slope(x); } is a lambda expression; that is, it is an unnamed function defined right where
it is needed as an argument. The [ ] is called a lambda introducer. After the lambda introducer, the lambda expression
specifies what arguments are required (the argument list) and what actions are to be performed (the function body). The return
type can be deduced from the lambda body. Here, the return type is double because that’s the type of cos(x)+slope(x). Had
we wanted to, we could have specified the return type explicitly:
Click here to view code image

Function s5 {[](double x) -> double { return cos(x)+slope(x); },

                                         r_min,r_max,orig,400,30,30};

Specifying the return type for a lambda expression is rarely necessary. The main reason for that is that lambda expressions
should be kept simple to avoid becoming a source of errors and confusion. If a piece of code does something significant, it
should be given a name and probably requires a comment to be comprehensible to people other than the original programmer.
We recommend using named functions for anything that doesn’t easily fit on a line or two.

The lambda introducer can be used to give the lambda expression access to local variables; see §15.5. See also §21.4.3.

15.4 Axis

We use Axis wherever we present data (e.g., §15.6.4) because a graph without information that allows us to understand its
scale is most often suspect. An Axis consists of a line, a number of “notches” on that line, and a text label. The Axis

constructor computes the axis line and (optionally) the lines used as notches on that line:
Click here to view code image

struct Axis : Shape {

          enum Orientation { x, y, z };



          Axis(Orientation d, Point xy, int length,

                    int number_of_notches=0, string label = "");

          void draw_lines() const override;

          void move(int dx, int dy) override;

          void set_color(Color c);

          Text label;

          Lines notches;

};

The label and notches objects are left public so that a user can manipulate them. For example, you can give the notches a
different color from the line and move() the label to a more convenient location. Axis is an example of an object composed of
several semi-independent objects.

The Axis constructor places the lines and adds the “notches” if number_of_notches is greater than zero:
Click here to view code image

Axis::Axis(Orientation d, Point xy, int length, int n, string lab)

          :label(Point{0,0},lab)

{

          if (length<0) error("bad axis length");

          switch (d){

          case Axis::x:

          {    Shape::add(xy);                                      // axis line
                    Shape::add(Point{xy.x+length,xy.y});

                    if (0<n) {                                                 // add notches
                              int dist = length/n;

                              int x = xy.x+dist;

                              for (int i = 0; i<n; ++i) {

                                        notches.add(Point{x,xy.y},Point{x,xy.y–5});

                                        x += dist;

                              }
                    }

                    label.move(length/3,xy.y+20);         // put the label under the line
                    break;

          }
          case Axis::y:

          {    Shape::add(xy);                                     // a y axis goes up
                    Shape::add(Point{xy.x,xy.y–length});

                    if (0<n) {                                               // add notches
                              int dist = length/n;

                              int y = xy.y–dist;

                              for (int i = 0; i<n; ++i) {

                                        notches.add(Point{xy.x,y},Point{xy.x+5,y});

                                        y –= dist;

                              }
                    }

                    label.move(xy.x–10,xy.y–length–10);          // put the label at top
                    break;

          }
          case Axis::z:

                    error("z axis not implemented");

          }
}

Compared to much real-world code, this constructor is very simple, but please have a good look at it because it isn’t quite
trivial and it illustrates a few useful techniques. Note how we store the line in the Shape part of the Axis (using
Shape::add()) but the notches are stored in a separate object (notches). That way, we can manipulate the line and the
notches independently; for example, we can give each its own color. Similarly, a label is placed in a fixed position relative to
its axes, but since it is a separate object, we can always move it to a better spot. We use the enumeration Orientation to
provide a convenient and non-error-prone notation for users.



Since an Axis has three parts, we must supply functions for when we want to manipulate an Axis as a whole. For example:
Click here to view code image

void Axis::draw_lines() const

{

          Shape::draw_lines();

          notches.draw();       // the notches may have a different color from the line
          label.draw();             // the label may have a different color from the line
}

We use draw() rather than draw_lines() for notches and label to be able to use the color stored in them. The line is stored
in the Axis::Shape itself and uses the color stored there.

We can set the color of the line, the notches, and the label individually, but stylistically it’s usually better not to, so we
provide a function to set all three to the same:

void Axis::set_color(Color c)

{

          Shape::set_color(c);

          notches.set_color(c);

          label.set_color(c);

}

Similarly, Axis::move() moves all the parts of the Axis together:

void Axis::move(int dx, int dy)

{

          Shape::move(dx,dy);

          notches.move(dx,dy);

          label.move(dx,dy);

}

15.5 Approximation
Here we give another small example of graphing a function: we “animate” the calculation of an exponential function. The
purpose is to help you get a feel for mathematical functions (if you haven’t already), to show the way graphics can be used to
illustrate computations, to give you some code to read, and finally to warn about a common problem with computations.

One way of computing an exponential function is to compute the series

ex  1 + x + x2/2! + x3/3! + x4/4! + . . .

The more terms of this sequence we calculate, the more precise our value of ex becomes; that is, the more terms we calculate,
the more digits of the result will be mathematically correct. What we will do is to compute this sequence and graph the result
after each term. The exclamation point here is used with the common mathematical meaning: factorial; that is, we graph these
functions in order:
Click here to view code image

exp0(x) = 0                 // no terms
exp1(x) = 1                 // one term
exp2(x) = 1+x            // two terms; pow(x,1)/fac(1)==x
exp3(x) = 1+x+pow(x,2)/fac(2)

exp4(x) = 1+x+pow(x,2)/fac(2)+pow(x,3)/fac(3)

exp5(x) = 1+x+pow(x,2)/fac(2)+pow(x,3)/fac(3)+pow(x,4)/fac(4)

. . .

Each function is a slightly better approximation of ex than the one before it. Here, pow(x,n) is the standard library function
that returns xn. There is no factorial function in the standard library, so we must define our own:
Click here to view code image

int fac(int n)          // factorial(n); n!
{

          int r = 1;

          while (n>1) {

                    r*=n;

                    ––n;

          }



          return r;

}

For an alternative implementation of fac(), see exercise 1. Given fac(), we can compute the nth term of the series like this:
Click here to view code image

double term(double x, int n) { return pow(x,n)/fac(n); }   // nth term of series

Given term(), calculating the exponential to the precision of n terms is now easy:
Click here to view code image

double expe(double x, int n)           // sum of n terms for x
{

          double sum = 0;

          for (int i=0; i<n; ++i) sum+=term(x,i);

          return sum;

}

Let’s use that to produce some graphics. First, we’ll provide some axes and the “real” exponential, the standard library exp(),
so that we can see how close our approximation using expe() is:
Click here to view code image

Function real_exp {exp,r_min,r_max,orig,200,x_scale,y_scale};

real_exp.set_color(Color::blue);

But how can we use expe()? From a programming point of view, the difficulty is that our graphing class, Function, takes a
function of one argument and expe() needs two arguments. Given C++, as we have seen it so far, there is no really elegant
solution to this problem. However, lambda expressions provide a way (§15.3.3). Consider:
Click here to view code image

for (int n = 0; n<50; ++n) {

          ostringstream ss;

          ss << "exp approximation; n==" << n ;

          win.set_label(ss.str());

          // get next approximation:
          Function e {[n](double x) { return expe(x,n); },

                     r_min,r_max,orig,200,x_scale,y_scale};

          win.attach(e);

          win.wait_for_button();

          win.detach(e);

}

The lambda introducer, [n], says that the lambda expression may access the local variable n. That way, a call of expe(x,n)

gets its n when its Function is created and its x from each call from within the Function.
Note the final detach(e) in that loop. The scope of the Function object e is the block of the for-statement. Each time we

enter that block we get a new Function called e, and each time we exit the block that e goes away, to be replaced by the next.
The window must not remember the old e because it will have been destroyed. Thus, detach(e) ensures that the window does
not try to draw a destroyed object.

This first gives a window with just the axes and the “real” exponential rendered in blue:



We see that exp(0) is 1 so that our blue “real exponential” crosses the y axis at (0,1).
If you look carefully, you’ll see that we actually drew the zero term approximation (exp0(x)==0) as a black line right on top

of the x axis. Hitting “Next,” we get the approximation using just one term. Note that we display the number of terms used in the
approximation in the window label:

That’s the function exp1(x)==1, the approximation using just one term of the sequence. It matches the exponential perfectly at
(0,1), but we can do better:



With two terms (1+x), we get the diagonal crossing the y axis at (0,1). With three terms (1+x+pow(x,2)/fac(2)), we can see
the beginning of a convergence:

With ten terms we are doing rather well, especially for values larger than –3:



If we don’t think too much about it, we might believe that we could get better and better approximations simply by using more
and more terms. However, there are limits, and after 13 terms something strange starts to happen. First, the approximations
start to get slightly worse, and at 18 terms vertical lines appear:

Remember, the computer’s arithmetic is not pure math. Floating-point numbers are simply as good an approximation to real
numbers as we can get with a fixed number of bits. An int overflows if you try to place a too-large integer in it, whereas a
double stores an approximation. When I saw the strange output for larger numbers of terms, I first suspected that our
calculation started to produce values that couldn’t be represented as doubles, so that our results started to diverge from the
mathematically correct answers. Later, I realized that fac() was producing values that couldn’t be stored in an int. Modifying
fac() to produce a double solved the problem. For more information, see exercise 11 of Chapter 5 and §24.2.

This last picture is also a good illustration of the principle that “it looks OK” isn’t the same as “tested.” Before giving a
program to someone else to use, first test it beyond what at first seems reasonable. Unless you know better, running a program
slightly longer or with slightly different data could lead to a real mess — as in this case.

15.6 Graphing data



Displaying data is a highly skilled and highly valued craft. When done well, it combines technical and artistic aspects and can
add significantly to our understanding of complex phenomena. However, that also makes graphing a huge area that for the most
part is unrelated to programming techniques. Here, we’ll just show a simple example of displaying data read from a file. The
data shown represents the age groups of Japanese people over almost a century. The data to the right of the 2008 line is a
projection:

We’ll use this example to discuss the programming problems involved in presenting such data:
• Reading a file
• Scaling data to fit the window
• Displaying the data
• Labeling the graph

We will not go into artistic details. Basically, this is “graphs for geeks,” not “graphical art.” Clearly, you can do better
artistically when you need to.

Given a set of data, we must consider how best to display it. To simplify, we will only deal with data that is easy to display
using two dimensions, but that’s a huge part of the data most people deal with. Note that bar graphs, pie charts, and similar
popular displays really are just two-dimensional data displayed in a fancy way. Three-dimensional data can often be handled
by producing a series of two-dimensional images, by superimposing several two-dimensional graphs onto a single window (as
is done in the “Japanese age” example), or by labeling individual points with information. If we want to go beyond that, we’ll
have to write new graphics classes or adopt another graphics library.

So, our data is basically pairs of values, such as (year,number of children). If we have more data, such as
(year,number of children, number of adults,number of elderly), we simply have to decide which pair of values —
or pairs of values — we want to draw. In our example, we simply graphed (year,number of children), (year,number of

adults), and (year,number of elderly).

There are many ways of looking at a set of (x,y) pairs. When considering how to graph such a set it is important to consider
whether one value is in some way a function of the other. For example, for a (year,steel production) pair it would be quite
reasonable to consider the steel production a function of the year and display the data as a continuous line. Open_polyline

(§13.6) is the obvious choice for graphing such data. If y should not be seen as a function of x, for example (gross domestic

product per person,population of country), Marks (§13.15) can be used to plot unconnected points.
Now, back to our Japanese age distribution example.

15.6.1 Reading a file
The file of age distributions consists of lines like this:

( 1960 : 30 64 6 )



(1970 : 24 69 7 )

(1980 : 23 68 9 )

The first number after the colon is the percentage of children (age 0–14) in the population, the second is the percentage of
adults (age 15–64), and the third is the percentage of the elderly (age 65+). Our job is to read those. Note that the formatting of
the data is slightly irregular. As usual, we have to deal with such details.

To simplify that task, we first define a type Distribution to hold a data item and an input operator to read such data items:
Click here to view code image

struct Distribution {

           int year, young, middle, old;

};

istream& operator>>(istream& is, Distribution& d)

          // assume format: ( year : young middle old )
{

          char ch1 = 0;

          char ch2 = 0;

          char ch3 = 0;

          Distribution dd;

          if (is >> ch1 >> dd.year

                    >> ch2 >> dd.young >> dd.middle >> dd.old

                    >> ch3) {

                    if (ch1!= '(' || ch2!=':' || ch3!=')') {

                              is.clear(ios_base::failbit);

                              return is;

                    }
          }
          else

                    return is;

          d = dd;

          return is;

}

This is a straightforward application of the ideas from Chapter 10. If this code isn’t clear to you, please review that chapter.
We didn’t need to define a Distribution type and a >> operator. However, it simplifies the code compared to a brute-force
approach of “just read the numbers and graph them.” Our use of Distribution splits the code up into logical parts to help
comprehension and debugging. Don’t be shy about introducing types “just to make the code clearer.” We define classes to make
the code correspond more directly to the way we think about the concepts in our code. Doing so even for “small” concepts that
are used only very locally in our code, such as a line of data representing the age distribution for a year, can be most helpful.

Given Distribution, the read loop becomes
Click here to view code image

string file_name = "japanese-age-data.txt";

ifstream ifs {file_name};

if (!ifs) error("can't open ",file_name);

// . . .

for (Distribution d; ifs>>d; ) {

          if (d.year<base_year || end_year<d.year)

                    error("year out of range");

          if (d.young+d.middle+d.old != 100)

                    error("percentages don't add up");

          // . . .
}

That is, we try to open the file japanese-age-data.txt and exit the program if we don’t find that file. It is often a good idea
not to “hardwire” a file name into the source code the way we did here, but we consider this program an example of a small
“one-off” effort, so we don’t burden the code with facilities that are more appropriate for long-lived applications. On the other
hand, we did put japanese-age-data.txt into a named string variable so the program is easy to modify if we want to use it
— or some of its code — for something else.

The read loop checks that the year read is in the expected range and that the percentages add up to 100. That’s a basic sanity
check for the data. Since >> checks the format of each individual data item, we didn’t bother with further checks in the main



loop.

15.6.2 General layout
So what do we want to appear on the screen? You can see our answer at the beginning of §15.6. The data seems to ask for three
Open_polylines — one for each age group. These graphs need to be labeled, and we decided to write a “caption” for each
line at the left-hand side of the window. In this case, that seemed clearer than the common alternative: to place the label
somewhere along the line itself. In addition, we use color to distinguish the graphs and associate their labels.

We want to label the x axis with the years. The vertical line through the year 2008 indicates where the graph goes from hard
data to projected data.

We decided to just use the window’s label as the title for our graph.

Getting graphing code both correct and good-looking can be surprisingly tricky. The main reason is that we have to do a lot
of fiddly calculations of sizes and offsets. To simplify that, we start by defining a set of symbolic constants that defines the way
we use our screen space:
Click here to view code image

constexpr int xmax = 600;     // window size
constexpr int ymax = 400;

constexpr int xoffset = 100;  // distance from left-hand side of window to y axis
constexpr int yoffset = 60;  // distance from bottom of window to x axis

constexpr int xspace = 40;  // space beyond axis
constexpr int yspace = 40;

constexpr int xlength = xmax–xoffset–xspace;           // length of axes
constexpr int ylength = ymax–yoffset–yspace;

Basically this defines a rectangular space (the window) with another rectangle (defined by the axes) within it:

We find that without such a “schematic view” of where things are in our window and the symbolic constants that define it, we
get lost and become frustrated when our output doesn’t reflect our wishes.

15.6.3 Scaling data
Next we need to define how to fit our data into that space. We do that by scaling the data so that it fits into the space defined by
the axes. To do that we need the scaling factors that are the ratio between the data range and the axis range:
Click here to view code image

constexpr int base_year = 1960;

constexpr int end_year = 2040;

constexpr double xscale = double(xlength)/(end_year–base_year);

constexpr double yscale = double(ylength)/100;



We want our scaling factors (xscale and yscale) to be floating-point numbers — or our calculations could be subject to
serious rounding errors. To avoid integer division, we convert our lengths to double before dividing (§4.3.3).

We can now place a data point on the x axis by subtracting its base value (1960), scaling with xscale, and adding the
xoffset. A y value is dealt with similarly. We find that we can never remember to do that quite right when we try to do it
repeatedly. It may be a trivial calculation, but it is fiddly and verbose. To simplify the code and minimize that chance of error
(and minimize frustrating debugging), we define a little class to do the calculation for us:
Click here to view code image

class Scale {                   // data value to coordinate conversion
           int cbase;             // coordinate base
           int vbase;            // base of values
           double scale;

public:

          Scale(int b, int vb, double s) :cbase{b}, vbase{vb}, scale{s} { }

          int operator()(int v) const { return cbase + (v–vbase)*scale; } // see §21.4
};

We want a class because the calculation depends on three constant values that we wouldn’t like to unnecessarily repeat. Given
that, we can define
Click here to view code image

Scale xs {xoffset,base_year,xscale};

Scale ys {ymax–yoffset,0,–yscale};

Note how we make the scaling factor for ys negative to reflect the fact that y coordinates grow downward whereas we usually
prefer higher values to be represented by higher points on a graph. Now we can use xs to convert a year to an x coordinate.
Similarly, we can use ys to convert a percentage to a y coordinate.

15.6.4 Building the graph
Finally, we have all the prerequisites for writing the graphing code in a reasonably elegant way. We start creating a window
and placing the axes:
Click here to view code image

Window win {Point{100,100},xmax,ymax,"Aging Japan"};

Axis x {Axis::x, Point{xoffset,ymax–yoffset}, xlength,

          (end_year–base_year)/10,

          "year      1960      1970       1980      1990      "

          "2000         2010      2020      2030      2040"};

x.label.move(–100,0);

Axis y {Axis::y, Point{xoffset,ymax–yoffset}, ylength, 10,"% of population"};

Line current_year {Point{xs(2008),ys(0)},Point{xs(2008),ys(100)}};

current_year.set_style(Line_style::dash);

The axes cross at Point{xoffset,ymax–yoffset} representing (1960,0). Note how the notches are placed to reflect the data.
On the y axis, we have ten notches each representing 10% of the population. On the x axis, each notch represents ten years, and
the exact number of notches is calculated from base_year and end_year so that if we change that range, the axis would
automatically be recalculated. This is one benefit of avoiding “magic constants” in the code. The label on the x axis violates
that rule: it is simply the result of fiddling with the label string until the numbers were in the right position under the notches.
To do better, we would have to look to a set of individual labels for individual “notches.”

Please note the curious formatting of the label string. We used two adjacent string literals:
Click here to view code image

"year   1960   1970    1980  1990           "

"2000   2010   2020    2030  2040"

Adjacent string literals are concatenated by the compiler, so that’s equivalent to
Click here to view code image

"year    1960    1970    1980    1990    2000    2010    2020    2030    2040"



That can be a useful “trick” for laying out long string literals to make our code more readable.
The current_year is a vertical line that separates hard data from projected data. Note how xs and ys are used to place and

scale the line just right.
Given the axes, we can proceed to the data. We define three Open_polylines and fill them in the read loop:

Click here to view code image

Open_polyline children;

Open_polyline adults;

Open_polyline aged;

for (Distribution d; ifs>>d; ) {

          if (d.year<base_year || end_year<d.year) error("year out of range");

          if (d.young+d.middle+d.old != 100)

                    error("percentages don't add up");

          const int x = xs{d.year};

          children.add(Point{x,ys(d.young)});

          adults.add(Point{x,ys(d.middle)});

          aged.add(Point{x,ys(d.old)});

}

The use of xs and ys makes scaling and placement of the data trivial. “Little classes,” such as Scale, can be immensely
important for simplifying notation and avoiding unnecessary repetition — thereby increasing readability and increasing the
likelihood of correctness.

To make the graphs more readable, we label each and apply color:
Click here to view code image

Text children_label {Point{20,children.point(0).y},"age 0-14"};

children.set_color(Color::red);

children_label.set_color(Color::red);

Text adults_label {Point{20,adults.point(0).y},"age 15-64"};

adults.set_color(Color::blue);

adults_label.set_color(Color::blue);

Text aged_label {Point{20,aged.point(0).y},"age 65+"};

aged.set_color(Color::dark_green);

aged_label.set_color(Color::dark_green);

Finally, we need to attach the various Shapes to the Window and start the GUI system (§14.2.3):

win.attach(children);

win.attach(adults);

win.attach(aged);

win.attach(children_label);

win.attach(adults_label);

win.attach(aged_label);

win.attach(x);

win.attach(y);

win.attach(current_year);

gui_main();

All the code could be placed inside main(), but we prefer to keep the helper classes Scale and Distribution outside together
with Distribution’s input operator.

In case you have forgotten what we were producing, here is the output again:



 Drill

Function graphing drill:
1. Make an empty 600-by-600 Window labeled “Function graphs.”
2. Note that you’ll need to make a project with the properties specified in the “installation of FLTK” note from the course

website.
3. You’ll need to move Graph.cpp and Window.cpp into your project.
4. Add an x axis and a y axis each of length 400, labeled “1 = = 20 pixels” and with a notch every 20 pixels. The axes

should cross at (300,300).
5. Make both axes red.

In the following, use a separate Shape for each function to be graphed:
1. Graph the function double one(double x) { return 1; } in the range [–10,11] with (0,0) at (300,300) using 400 points

and no scaling (in the window).
2. Change it to use x scale 20 and y scale 20.
3. From now on use that range, scale, etc. for all graphs.
4. Add double slope(double x) { return x/2; } to the window.
5. Label the slope with a Text "x/2" at a point just above its bottom left end point.
6. Add double square(double x) { return x*x; } to the window.
7. Add a cosine to the window (don’t write a new function).
8. Make the cosine blue.
9. Write a function sloping_cos() that adds a cosine to slope() (as defined above) and add it to the window.

Class definition drill:
1. Define a struct Person containing a string name and an int age.
2. Define a variable of type Person, initialize it with “Goofy” and 63, and write it to the screen (cout).
3. Define an input (>>) and an output (<<) operator for Person; read in a Person from the keyboard (cin) and write it out

to the screen (cout).
4. Give Person a constructor initializing name and age.
5. Make the representation of Person private, and provide const member functions name() and age() to read the name

and age.
6. Modify >> and << to work with the redefined Person.



7. Modify the constructor to check that age is [0:150) and that name doesn’t contain any of the characters ; : " ' [ ] * & ^

% $ # @ !. Use error() in case of error. Test.
8. Read a sequence of Persons from input (cin) into a vector<Person>; write them out again to the screen (cout). Test

with correct and erroneous input.
9. Change the representation of Person to have first_name and second_name instead of name. Make it an error not to

supply both a first and a second name. Be sure to fix >> and << also. Test.

Review
1. What is a function of one argument?
2. When would you use a (continuous) line to represent data? When do you use (discrete) points?
3. What function (mathematical formula) defines a slope?
4. What is a parabola?
5. How do you make an x axis? A y axis?
6. What is a default argument and when would you use one?
7. How do you add functions together?
8. How do you color and label a graphed function?
9. What do we mean when we say that a series approximates a function?

10. Why would you sketch out the layout of a graph before writing the code to draw it?
11. How would you scale your graph so that the input will fit?
12. How would you scale the input without trial and error?
13. Why would you format your input rather than just having the file contain “the numbers”?
14. How do you plan the general layout of a graph? How do you reflect that layout in your code?

Terms
approximation
default argument
function
lambda
scaling
screen layout

Exercises
1. Here is another way of defining a factorial function:

Click here to view code image

int fac(int n) { return n>1 ? n*fac(n–1) : 1; }    // factorial n!

It will do fac(4) by first deciding that since 4>1 it must be 4*fac(3), and that’s obviously 4*3*fac(2), which again is
4*3*2*fac(1), which is 4*3*2*1. Try to see that it works. A function that calls itself is said to be recursive. The
alternative implementation in §15.5 is called iterative because it iterates through the values (using while). Verify that the
recursive fac() works and gives the same results as the iterative fac() by calculating the factorial of 0, 1, 2, 3, 4, up until
and including 20. Which implementation of fac() do you prefer, and why?

2. Define a class Fct that is just like Function except that it stores its constructor arguments. Provide Fct with “reset”
operations, so that you can use it repeatedly for different ranges, different functions, etc.

3. Modify Fct from the previous exercise to take an extra argument to control precision or whatever. Make the type of that
argument a template parameter for extra flexibility.

4. Graph a sine (sin()), a cosine (cos()), the sum of those (sin(x)+cos(x)), and the sum of the squares of those
(sin(x)*sin(x)+cos(x)*cos(x)) on a single graph. Do provide axes and labels.

5. “Animate” (as in §15.5) the series 1–1/3+1/5–1/7+1/9–1/11+ . . . . It is known as Leibniz’s series and converges to



pi/4.
6. Design and implement a bar graph class. Its basic data is a vector<double> holding N values, and each value should

be represented by a “bar” that is a rectangle where the height represents the value.
7. Elaborate the bar graph class to allow labeling of the graph itself and its individual bars. Allow the use of color.
8. Here is a collection of heights in centimeters together with the number of people in a group of that height (rounded to the

nearest 5cm): (170,7), (175,9), (180,23), (185,17), (190,6), (195,1). How would you graph that data? If you can’t think
of anything better, do a bar graph. Remember to provide axes and labels. Place the data in a file and read it from that file.

9. Find another data set of heights (an inch is 2.54cm) and graph them with your program from the previous exercise. For
example, search the web for “height distribution” or “height of people in the United States” and ignore a lot of rubbish or
ask your friends for their heights. Ideally, you don’t have to change anything for the new data set. Calculating the scaling
from the data is a key idea. Reading in labels from input also helps minimize changes when you want to reuse code.

10. What kind of data is unsuitable for a line graph or a bar graph? Find an example and find a way of displaying it (e.g., as
a collection of labeled points).

11. Find the average maximum temperatures for each month of the year for two or more locations (e.g., Cambridge, England,
and Cambridge, Massachusetts; there are lots of towns called “Cambridge”) and graph them together. As ever, be careful
with axes, labels, use of color, etc.

Postscript
Graphical representation of data is important. We simply understand a well-crafted graph better than the set of numbers that
was used to make it. Most people, when they need to draw a graph, use someone else’s code — a library. How are such
libraries constructed and what do you do if you don’t have one handy? What are the fundamental ideas underlying “an ordinary
graphing tool”? Now you know: it isn’t magic or brain surgery. We covered only two-dimensional graphs; three-dimensional
graphing is also very useful in science, engineering, marketing, etc. and can be even more fun. Explore it someday!



16. Graphical User Interfaces

“Computing is not about
computers any more.

It is about living.”
—Nicholas Negroponte

A graphical user interface (GUI) allows a user to interact with a program by pressing buttons, selecting from menus, entering
data in various ways, and displaying textual and graphical entities on a screen. That’s what we are used to when we interact
with our computers and with websites. In this chapter, we show the basics of how code can be written to define and control a
GUI application. In particular, we show how to write code that interacts with entities on the screen using callbacks. Our GUI
facilities are built “on top of” system facilities. The low-level features and interfaces are presented in Appendix E, which uses
features and techniques presented in Chapters 17 and 18. Here we focus on usage.

16.1 User interface alternatives
16.2 The “Next” button
16.3 A simple window

16.3.1 A callback function
16.3.2 A wait loop
16.3.3 A lambda expression as a callback

16.4 Button and other Widgets
16.4.1 Widgets
16.4.2 Buttons
16.4.3 In_box and Out_box

16.4.4 Menus
16.5 An example
16.6 Control inversion
16.7 Adding a menu
16.8 Debugging GUI code

16.1 User interface alternatives

Every program has a user interface. A program running on a small gadget may be limited to input from a couple of push buttons
and to a blinking light for output. Other computers are connected to the outside world only by a wire. Here, we will consider
the common case in which our program communicates with a user who is watching a screen and using a keyboard and a
pointing device (such as a mouse). In this case, we as programmers have three main choices:

• Use console input and output: This is a strong contender for technical/professional work where the input is simple and
textual, consisting of commands and short data items (such as file names and simple data values). If the output is textual,
we can display it on the screen or store it in files. The C++ standard library iostreams (Chapters 10–11) provide
suitable and convenient mechanisms for this. If graphical output is needed, we can use a graphics display library (as
shown in Chapters 12–15) without making dramatic changes to our programming style.

• Use a graphical user interface (GUI) library: This is what we do when we want our user interaction to be based on the
metaphor of manipulating objects on the screen (pointing, clicking, dragging and dropping, hovering, etc.). Often (but not
always), that style goes together with a high degree of graphically displayed information. Anyone who has used a modern
computer knows examples where that is convenient. Anyone who wants to match the “feel” of Windows/Mac
applications must use a GUI style of interaction.

• Use a web browser interface: For that, we need to use a markup (layout) language, such as HTML, and usually a
scripting language. Showing how to do this is beyond the scope of this book, but it is often the ideal for applications that



require remote access. In that case, the communication between the program and the screen is again textual (using streams
of characters). A browser is a GUI application that translates some of that text into graphical elements and translates the
mouse clicks, etc. into textual data that can be sent back to the program.

To many, the use of GUI is the essence of modern programming, and sometimes the interaction with objects on the screen is
considered the central concern of programming. We disagree: GUI is a form of I/O, and separation of the main logic of an
application from I/O is among our major ideals for software. Wherever possible, we prefer to have a clean interface between
our main program logic and the parts of the program we use to get input and produce output. Such a separation allows us to
change the way a program is presented to a user, to port our programs to use different I/O systems, and — most importantly —
to think about the logic of the program and its interaction with users separately.

That said, GUI is important and interesting from several perspectives. This chapter explores both the ways we can integrate
graphical elements into our applications and how we can keep interface concerns from dominating our thinking.

16.2 The “Next” button
How did we provide that “Next” button that we used to drive the graphics examples in Chapters 12–15? There, we do graphics
in a window using a button. Obviously, that is a simple form of GUI programming. In fact, it is so simple that some would
argue that it isn’t “true GUI.” However, let’s see how it was done because it will lead directly into the kind of programming
that everyone recognizes as GUI programming.

Our code in Chapters 12–15 is conventionally structured like this:
Click here to view code image

// create objects and/or manipulate objects, display them in Window win:
win.wait_for_button();

// create objects and/or manipulate objects, display them in Window win:
win.wait_for_button();

ve input from the keyboard. For example: // create objects and/or manipulate objects, display them in Window win:
win.wait_for_button();

Each time we reach wait_for_button(), we can look at our objects on the screen until we hit the button to get the output from
the next part of the program. From the point of view of program logic, this is no different from a program that writes lines of
output to a screen (a console window), stopping now and then to receive input from the keyboard. For example:
Click here to view code image

// define variables and/or compute values, produce output
cin >> var;      // wait for input

// define variables and/or compute values, produce output
cin >> var;      // wait for input

// define variables and/or compute values, produce output
cin >> var;      // wait for input

From an implementation point of view, these two kinds of programs are quite different. When your program executes cin >>

var, it stops and waits for “the system” to bring back characters you typed. However, the system (the graphical user interface
system) that looks after your screen and tracks the mouse as you use it works on a rather different model: the GUI keeps track
of where the mouse is and what the user is doing with the mouse (clicking, etc.). When your program wants an action, it must

• Tell the GUI what to look for (e.g., “Someone clicked the ‘Next’ button”)
• Tell what is to be done when someone does that
• Wait until the GUI detects an action that the program is interested in

What is new and different here is that the GUI does not just return to our program; it is designed to respond in different ways to
different user actions, such as clicking on one of many buttons, resizing windows, redrawing the window after it has been
obscured by another, and popping up pop-up menus.

For starters, we just want to say, “Please wake me up when someone clicks my button”; that is, “Please continue executing
my program when someone clicks the mouse button and the cursor is in the rectangular area where the image of my button is



displayed.” This is just about the simplest action we could imagine. However, such an operation isn’t provided by “the
system” so we wrote one ourselves. Seeing how that is done is the first step in understanding GUI programming.

16.3 A simple window

Basically, “the system” (which is a combination of a GUI library and the operating system) continuously tracks where the
mouse is and whether its buttons are pressed or not. A program can express interest in an area of the screen and ask “the
system” to call a function when “something interesting” happens. In this particular case, we ask the system to call one of our
functions (a “callback function”) when the mouse button is clicked “on our button.” To do that we must

• Define a button
• Get it displayed
• Define a function for the GUI to call
• Tell the GUI about that button and that function
• Wait for the GUI to call our function

Let’s do that. A button is part of a Window, so (in Simple_window.h) we define our class Simple_window to contain a
member next_button:
Click here to view code image

struct Simple_window : Graph_lib::Window {

          Simple_window(Point xy, int w, int h, const string& title);

          void wait_for_button();     // simple event loop
private:

          Button next_button;         // the “Next” button
          bool button_pushed;       // implementation detail

          static void cb_next(Address, Address);       // callback for next_button
          void next();  // action to be done when next_button is pressed
};

Obviously, Simple_window is derived from Graph_lib’s Window. All our windows must be derived directly or
indirectly from Graph_lib::Window because it is the class that (through FLTK) connects our notion of a window with the
system’s window implementation. For details of Window’s implementation, see §E.3.

Our button is initialized in Simple_window’s constructor:
Click here to view code image

Simple_window::Simple_window(Point xy, int w, int h, const string& title)

          :Window{xy,w,h,title},

          next_button{Point{x_max()–70,0}, 70, 20, "Next", cb_next},

          button_pushed{false}

{

          attach(next_button);

}

Unsurprisingly, Simple_window passes its location (xy), size (w,h), and title (title) on to Graph_lib’s Window to deal
with. Next, the constructor initializes next_button with a location (Point{x_max()–70,0}; that’s roughly the top right
corner), a size (70,20), a label ("Next"), and a “callback” function (cb_next). The first four parameters exactly parallel what
we do for a Window: we place a rectangular shape on the screen and label it.

Finally, we attach() our next_button to our Simple_window; that is, we tell the window that it must display the button
in its position and make sure that the GUI system knows about it.

The button_pushed member is a pretty obscure implementation detail; we use it to keep track of whether the button has
been pushed since last we executed next(). In fact, just about everything here is implementation details, and therefore declared
private. Ignoring the implementation details, we see
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struct Simple_window : Graph_lib::Window {

          Simple_window(Point xy, int w, int h, const string& title);



          void wait_for_button();     // simple event loop

          // . . .
};

That is, a user can make a window and wait for its button to be pushed.

16.3.1 A callback function

The function cb_next() is the new and interesting bit here. This is the function that we want the GUI system to call when it
detects a click on our button. Since we give the function to the GUI for the GUI to “call back to us,” it’s commonly called a
callback function. We indicate cb_next()’s intended use with the prefix cb_ for “callback.” That’s just to help us — no
language or library requires that naming convention. Obviously, we chose the name cb_next because it is to be the callback
for our “Next” button. The definition of cb_next is an ugly piece of “boilerplate.”

Before showing that code, let’s consider what is going on here:

Our program runs on top of several “layers” of code. It uses our graphics library that we implement using the FLTK library,
which is implemented using operating system facilities. In a system, there may be even more layers and sub-layers. Somehow,
a click detected by the mouse’s device driver has to cause our function cb_next() to be called. We pass the address of
cb_next() and the address of our Simple_window down through the layers of software; some code “down there” then calls
cb_next() when the “Next” button is pressed.

The GUI system (and the operating system) can be used by programs written in a variety of languages, so it cannot impose
some nice C++ style on all users. In particular, it does not know about our Simple_window class or our Button class. In
fact, it doesn’t know about classes or member functions at all. The type required for a callback function is chosen so that it is
usable from the lowest level of programming, including C and assembler. A callback function returns no value and takes two
addresses as its arguments. We can declare a C++ member function that obeys those rules like this:
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static void cb_next(Address, Address);   // callback for next_button

The keyword static is there to make sure that cb_next() can be called as an ordinary function, that is, not as a C++ member
function invoked for a specific object. Having the system call a proper C++ member function would have been much nicer.
However, the callback interface has to be usable from many languages, so this is what we get: a static member function. The
Address arguments specify that cb_next() takes arguments that are addresses of “something in memory.” C++ references are
unknown to most languages, so we can’t use those. The compiler isn’t told what the types of those “somethings” are. We are
close to the hardware here and don’t get the usual help from the language. “The system” will invoke a callback function with
the first argument being the address of the GUI entity (Widget) for which the callback was triggered. We won’t use that first
argument, so we don’t bother to name it. The second argument is the address of the window containing that Widget; for



cb_next(), that will be our Simple_window. We can use that information like this:
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void Simple_window::cb_next(Address, Address pw)

// call Simple_window::next() for the window located at pw
{

          reference_to<Simple_window>(pw).next();

}

The reference_to<Simple_window>(pw) tells the compiler that the address in pw is to be considered the address of a
Simple_window; that is, we can use reference_to<Simple_window>(pw) as a reference to a Simple_window. In
Chapters 17 and 18, we will return to the issue of addressing memory. In §E.1, we present the (by then, trivial) definition of
reference_to. For now, we are just glad that we finally obtained a reference to our Simple_window so that we can access
our data and functions exactly as we like and are used to. Finally, we get out of this system-dependent code as quickly as
possible by calling our member function next().

We could have written all the code we wanted to execute in cb_next(), but we — like most good GUI programmers —
prefer to keep messy low-level stuff separate from our nice user code, so we handle a callback with two functions:

• cb_next() simply maps the system conventions for a callback into a call to an ordinary member function (next()).
• next() does what we want done (without having to know about the messy conventions of callbacks).

The fundamental reason for using two functions here is the general principle that “a function should perform a single logical
action”: cb_next() gets us out of the low-level system-dependent part of the system and next() performs our desired action.
Whenever we want a callback (from “the system”) to one of our windows, we define such a pair of functions; for example, see
§16.5–7. Before going further, let’s repeat what is going on here:

• We define our Simple_window.
• Simple_window’s constructor registers its next_button with the GUI system.
• When we click the image of next_button on the screen, the GUI calls cb_next().
• cb_next() converts the low-level system information into a call of our member function next() for our window.
• next() performs whatever action we want done in response to the button click.

That’s a rather elaborate way of getting a function called. But remember that we are dealing with the basic mechanism for
communicating an action of a mouse (or other hardware device) to a program. In particular:

• There are typically many programs running.
• The program is written long after the operating system.
• The program is written long after the GUI library.
• The program can be written in a language that is different from that used in the operating system.
• The technique deals with all kinds of interactions (not just our little button push).
• A window can have many buttons; a program can have many windows.

However, once we understand how next() is called, we basically understand how to deal with every action in a program with
a GUI interface.

16.3.2 A wait loop
So, in this — our simplest — case, what do we want done by Simple_window’s next() each time the button is “pressed”?
Basically, we want an operation that stops the execution of our program at some point, giving us a chance to see what has been
done so far. And, we want next() to restart our program after that wait:
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// create some objects and/or manipulate some objects, display them in a window
win.wait_for_button();           // next() causes the program to proceed from here
// create some objects and/or manipulate some objects

Actually, that’s easily done. Let’s first define wait_for_button():
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void Simple_window::wait_for_button()

          // modified event loop:
          // handle all events (as per default), quit when button_pushed becomes true
          // this allows graphics without control inversion
{

          while (!button_pushed) Fl::wait();

          button_pushed = false;

          Fl::redraw();

}

Like most GUI systems, FLTK provides a function that stops a program until something happens. The FLTK version is called
wait(). Actually, wait() takes care of lots of things because our program gets woken up whenever anything that affects it
happens. For example, when running under Microsoft Windows, it is the job of a program to redraw its window when it is
being moved or becomes visible after having been hidden by another window. It is also the job of the Window to handle
resizing. The Fl::wait() handles all of these tasks in the default manner. Each time wait() has dealt with something, it returns
to give our code a chance to do something.

So, when someone clicks our “Next” button, wait() calls cb_next() and returns (to our “wait loop”). To proceed in
wait_for_button(), next() just has to set the Boolean variable button_pushed to true. That’s easy:
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void Simple_window::next()

{

          button_pushed = true;

}

Of course we also need to define button_pushed somewhere:
Click here to view code image

bool button_pushed;   // initialized to false in the constructor

After waiting, wait_for_button() needs to reset button_pushed and redraw() the window to make sure that any changes
we made can be seen on the screen. So that’s what it did.

16.3.3 A lambda expression as a callback
So for each action on a Widget, we have to define two functions: one to map from the system’s notion of a callback and one to
do our desired action. Consider:
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struct Simple_window : Graph_lib::Window {

          Simple_window{Point xy, int w, int h, const string& title};

          void wait_for_button();     // simple event loop
private:

          Button next_button;         // the “Next” button
          bool button_pushed;       // implementation detail

          static void cb_next(Address, Address);       // callback for next_button
          void next();                  // action to be done when next_button is pressed
};

By using a lambda expression (§15.3.3), we can eliminate the need to explicitly declare the mapping function cb_next().
Instead, we define the mapping in Simple_window’s constructor:
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Simple_window::Simple_window(Point xy, int w, int h, const string& title)

          :Window{xy,w,h,title},

          next_button{Point{x_max()–70,0}, 70, 20, "Next",

                    [](Address, Address pw) { reference_to<Simple_window>

                    (pw).next(); }



},

          button_pushed{false}

{

          attach(next_button);

}

16.4 Button and other Widgets
We define a Button like this:
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struct Button : Widget {

          Button(Point xy, int w, int h, const string& label, Callback cb);

          void attach(Window&);

};

So, a Button is a Widget with a location (xy), a size (w,h), a text label (label), and a callback (cb). Basically, anything that
appears on a screen with an action (e.g., a callback) associated is a Widget.

16.4.1 Widgets
Yes, widget really is a technical term. A more descriptive, but less evocative, name for a widget is a control. We use widgets
to define forms of interaction with a program through a GUI (graphical user interface). Our Widget interface class looks like
this:
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class Widget {

          // Widget is a handle to an Fl_widget — it is *not* an Fl_widget
          // we try to keep our interface classes at arm’s length from FLTK
public:

          Widget(Point xy, int w, int h, const string& s, Callback cb);

          virtual void move(int dx,int dy);

          virtual void hide();

          virtual void show();

          virtual void attach(Window&) = 0;

          Point loc;

          int width;

          int height;

          string label;

          Callback do_it;

protected:

          Window* own;  // every Widget belongs to a Window
          Fl_Widget* pw;  // connection to the FLTK Widget
};

A Widget has two interesting functions that we can use for Button (and also for any other class derived from Widget, e.g., a
Menu; see §16.7):

• hide() makes the Widget invisible.
• show() makes the Widget visible again.

A Widget starts out visible.
Just like a Shape, we can move() a Widget in its Window, and we must attach() it to a Window before it can be used.

Note that we declared attach() to be a pure virtual function (§14.3.5): every class derived from Widget must define what it
means for it to be attached to a Window. In fact, it is in attach() that the system-level widgets are created. The attach()

function is called from Window as part of its implementation of Window’s own attach(). Basically, connecting a window
and a widget is a delicate little dance where each has to do its own part. The result is that a window knows about its widgets
and that each widget knows about its window:



Note that a Window doesn’t know what kind of Widgets it deals with. As described in §14.4, we are using basic object-
oriented programming to ensure that a Window can deal with every kind of Widget. Similarly, a Widget doesn’t know what
kind of Window it deals with.

We have been slightly sloppy, leaving data members accessible. The own and pw members are strictly for the
implementation of derived classes so we have declared them protected.

The definitions of Widget and of the widgets we use here (Button, Menu, etc.) are found in GUI.h.

16.4.2 Buttons
A Button is the simplest Widget we deal with. All it does is to invoke a callback when we click on it:
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class Button : public Widget {

public:

          Button(Point xy, int ww, int hh, const string& s, Callback cb)

                    :Widget{xy,ww,hh,s,cb} { }

          void attach(Window& win);

};

That’s all. The attach() function contains all the (relatively) messy FLTK code. We have banished the explanation to
Appendix E (not to be read until after Chapters 17 and 18). For now, please just note that defining a simple Widget isn’t
particularly difficult.

We do not deal with the somewhat complicated and messy issue of how buttons (and other Widgets) look on the screen.
The problem is that there is a near infinity of choices and that some styles are mandated by certain systems. Also, from a
programming technique point of view, nothing really new is needed for expressing the looks of buttons. If you get desperate,
we note that placing a Shape on top of a button doesn’t affect the button’s ability to function — and you know how to make a
shape look like anything at all.

16.4.3 In_box and Out_box

We provide two Widgets for getting text in and out of our program:
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struct In_box : Widget {

          In_box(Point xy, int w, int h, const string& s)

                    :Widget{xy,w,h,s,0} { }

          int get_int();

          string get_string();

          void attach(Window& win);

};

struct Out_box : Widget {

          Out_box(Point xy, int w, int h, const string& s)

                    :Widget{xy,w,h,s,0} { }

          void put(int);



          void put(const string&);

          void attach(Window& win);

};

An In_box can accept text typed into it, and we can read that text as a string using get_string() or as an integer using
get_int(). If you want to know if text has been entered, you can read using get_string() and see if you get the empty string:
Click here to view code image

string s = some_inbox.get_string();

if (s =="") {

          // deal with missing input
}

An Out_box is used to present some message to a user. In analogy to In_box, we can put() either integers or strings. §16.5
gives examples of the use of In_box and Out_box.

We could have provided get_floating_point(), get_complex(), etc., but we did not bother because you can take the
string, stick it into a stringstream, and do any input formatting you like that way (§11.4).

16.4.4 Menus
We offer a very simple notion of a menu:
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struct Menu : Widget {

          enum Kind { horizontal, vertical };

          Menu(Point xy, int w, int h, Kind kk, const string& label);

          Vector_ref<Button> selection;

          Kind k;

          int offset;

          int attach(Button& b);                // attach Button to Menu
          int attach(Button* p);                 // attach new Button to Menu

          void show()                                   // show all buttons
          {
                    for (Button& b : selection) b.show();

          }
          void hide();                                  // hide all buttons
          void move(int dx, int dy);         // move all buttons

          void attach(Window& win);     // attach all buttons to Window win
};

A Menu is basically a vector of buttons. As usual, the Point xy is the top left corner. The width and height are used to resize
buttons as they are added to the menu. For examples, see §16.5 and §16.7. Each menu button (“a menu item”) is an independent
Widget presented to the Menu as an argument to attach(). In turn, Menu provides an attach() operation to attach all of its
Buttons to a Window. The Menu keeps track of its Buttons using a Vector_ref (§13.10, §E.4). If you want a “pop-up”
menu, you have to make it yourself; see §16.7.

16.5 An example
To get a better feel for the basic GUI facilities, consider the window for a simple application involving input, output, and a bit
of graphics:



This program allows a user to display a sequence of lines (an open polyline; §13.6) specified as a sequence of coordinate
pairs. The idea is that the user repeatedly enters (x,y) coordinates in the “next x” and “next y” boxes; after each pair the user
hits the “Next point” button.

Initially, the “current (x,y)” box is empty and the program waits for the user to enter the first coordinate pair. That done, the
starting point appears in the “current (x,y)” box, and each new coordinate pair entered results in a line being drawn: a line
from the current point (which has its coordinates displayed in the “current (x,y)” box) to the newly entered (x,y) is drawn, and
that (x,y) becomes the new current point.

This draws an open polyline. When the user tires of this activity, there is the “Quit” button for exiting. That’s pretty
straightforward, and the program exercises several useful GUI facilities: text input and output, line drawing, and multiple
buttons. The window above shows the result after entering two coordinate pairs; after seven we can get this:

Let’s define a class for representing such windows. It is pretty straightforward:
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struct Lines_window : Window {

          Lines_window(Point xy, int w, int h, const string& title);

          Open_polyline lines;

private:

          Button next_button;          // add (next_x,next_y) to lines
          Button quit_button;



          In_box next_x;

          In_box next_y;

          Out_box xy_out;

          void next();

          void quit();

};

The line is represented as an Open_polyline. The buttons and boxes are declared (as Buttons, In_boxes, and
Out_boxes), and for each button a member function implementing the desired action is defined. We decided to eliminate the
“boilerplate” callback function and use lambdas instead.

Lines_window’s constructor initializes everything:
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Lines_window::Lines_window(Point xy, int w, int h, const string& title)

          :Window{xy,w,h,title},

          next_button{Point{x_max()–150,0}, 70, 20, "Next point",

                    [](Address, Address pw) {reference_to<Lines_window>(pw).next();},

          quit_button{Point{x_max()–70,0}, 70, 20, "Quit",

                    [](Address, Address pw) {reference_to<Lines_window>(pw).quit();},

          next_x{Point{x_max()–310,0}, 50, 20, "next x:"},

          next_y{Point{x_max()–210,0}, 50, 20, "next y:"},

          xy_out{Point{100,0}, 100, 20, "current (x,y):"}

{

          attach(next_button);

          attach(quit_button);

          attach(next_x);

          attach(next_y);

          attach(xy_out);

          attach(lines);

}

That is, each widget is constructed and then attached to the window.
The “Quit” button deletes the Window. That’s done using the curious FLTK idiom of simply hiding it:
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void Lines_window::quit()

{

          hide();          // curious FLTK idiom to delete window
}

All the real work is done in the “Next point” button: it reads a pair of coordinates, updates the Open_polyline, updates the
position readout, and redraws the window:
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void Lines_window::next()

{

          int x = next_x.get_int();

          int y = next_y.get_int();

          lines.add(Point{x,y});

          // update current position readout:
          ostringstream ss;

          ss << '(' << x << ',' << y << ')';

          xy_out.put(ss.str());

          redraw();

}

That’s all pretty obvious. We get integer coordinates from the In_boxes using get_int(). We use an ostringstream to format
the string to be put into the Out_box; the str() member function lets us get to the string within the ostringstream. The final
redraw() here is needed to present the results to the user; until a Window’s redraw() is called, the old image remains on the
screen.

So what’s odd and different about this program? Let’s see its main():
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#include "GUI.h"

int main()

try {

          Lines_window win {Point{100,100},600,400,"lines"};

          return gui_main();

}

catch(exception& e) {

          cerr << "exception: " << e.what() << '\n';

          return 1;

}

catch (. . .) {

          cerr << "Some exception\n";

          return 2;

}

There is basically nothing there! The body of main() is just the definition of our window, win, and a call to a function
gui_main(). There is not another function, if, switch, or loop — nothing of the kind of code we saw in Chapters 6 and 7 —
just a definition of a variable and a call to the function gui_main(), which is itself just a call of FLTK’s run(). Looking
further, we can find that run() is simply the infinite loop

while(wait());

Except for a few implementation details postponed to Appendix E, we have seen all of the code that makes our “lines”
program run. We have seen all of the fundamental logic. So what happens?

16.6 Control inversion

What happened was that we moved the control of the order of execution from the program to the widgets: whichever widget the
user activates, runs. For example, click on a button and its callback runs. When that callback returns, the program settles back,
waiting for the user to do something else. Basically, wait() tells “the system” to look out for the widgets and invoke the
appropriate callbacks. In theory, wait() could tell you, the programmer, which widget requested attention and leave it to you to
call the appropriate function. However, in FLTK and most other GUI systems, wait() simply invokes the appropriate callback,
saving you the bother of writing code to select it.

A “conventional program” is organized like this:

A “GUI program” is organized like this:

One implication of this “control inversion” is that the order of execution is completely determined by the actions of the user.
This complicates both program organization and debugging. It is hard to imagine what a user will do and hard to imagine every



possible effect of a random sequence of callbacks. This makes systematic testing a nightmare (see Chapter 26). The techniques
for dealing with that are beyond the scope of this book, but we encourage you to be extra careful with code driven by users
through callbacks. In addition to the obvious control flow problems, there are also problems of visibility and difficulties with
keeping track of which widget is connected to what data. To minimize hassle, it is essential to keep the GUI portion of a
program simple and to build a GUI program incrementally, testing at each stage. When working on a GUI program, it is almost
essential to draw little diagrams of the objects and their interactions.

How does the code triggered by the various callbacks communicate? The simplest way is for the functions to operate on data
stored in the window, as was done in the example in §16.5. There, the Lines_window’s next() function, invoked by pressing
the “Next point” button, reads data from the In_boxes (next_x and next_y) and updates the lines member variable and the
Out_box (xy_out). Obviously, a function invoked by a callback can do anything: it could open files, connect to the web, etc.
However, for now, we’ll just consider the simple case in which we hold our data in a window.

16.7 Adding a menu
Let’s explore the control and communication issues raised by “control inversion” by providing a menu for our “lines” program.
First, we’ll simply provide a menu that allows the user to change the color of all lines in the lines member variable. We add
the menu color_menu and its callbacks:
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struct Lines_window : Window {

          Lines_window(Point xy, int w, int h, const string& title);

          Open_polyline lines;

          Menu color_menu;

          static void cb_red(Address, Address);         // callback for red button
          static void cb_blue(Address, Address);       // callback for blue button
          static void cb_black(Address, Address);      // callback for black button

          // the actions:
          void red_pressed() { change(Color::red); }

          void blue_pressed() { change(Color::blue); }

          void black_pressed() { change(Color::black); }

          void change(Color c) { lines.set_color(c); }

          // . . . as before . . .
};

Writing all of those almost identical callback functions and “action” functions is tedious. However, it is conceptually simple,
and offering something that’s significantly simpler to type in is beyond the scope of this book. If you prefer, you can eliminate
the cb_ functions by using lambdas (§16.3.3). When a menu button is pressed, it changes the lines to the requested color.

Having defined the color_menu member, we need to initialize it:
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Lines_window::Lines_window(Point xy, int w, int h, const string& title)

          :Window(xy,w,h,title),

          // . . . as before . . .
          color_menu{Point{x_max()–70,40},70,20,Menu::vertical,"color"}

{

          // . . . as before . . .
          color_menu.attach(new Button{Point{0,0},0,0,"red",cb_red});

          color_menu. attach(new Button{Point{0,0},0,0,"blue",cb_blue});

          color_menu. attach(new Button{Point{0,0},0,0,"black",cb_black});

          attach(color_menu);

}

The buttons are dynamically attached to the menu (using attach()) and can be removed and/or replaced as needed.
Menu::attach() adjusts the size and location of the button and attaches it to the window. That’s all, and we get



Having played with this for a while, we decided that what we really wanted was a “pop-up menu”; that is, we didn’t want to
spend precious screen space on a menu except when we are using it. So, we added a “color menu” button. When we press that,
up pops the color menu, and when we have made a selection, the menu is again hidden and the button appears.

Here first is the window after we have added a few lines:

We see the new “color menu” button and some (black) lines. Press “color menu” and the menu appears:



Note that the “color menu” button is now hidden. We don’t need it until we are finished with the menu. Press “blue” and we get

The lines are now blue and the “color menu” button has reappeared.
To achieve this we added the “color menu” button and modified the “pressed” functions to adjust the visibility of the menu

and the button. Here is the complete Lines_window after all of our modifications:
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struct Lines_window : Window {

          Lines_window(Point xy, int w, int h, const string& title);

private:

          // data:
          Open_polyline lines;

          // widgets:
          Button next_button;   // add (next_x,next_y) to lines
          Button quit_button;   // end program
          In_box next_x;

          In_box next_y;

          Out_box xy_out;

          Menu color_menu;

          Button menu_button;



          void change(Color c) { lines.set_color(c); }

          void hide_menu() { color_menu.hide(); menu_button.show(); }

          // actions invoked by callbacks:
          void red_pressed() { change(Color::red); hide_menu(); }

          void blue_pressed() { change(Color::blue); hide_menu(); }

          void black_pressed() { change(Color::black); hide_menu(); }

          void menu_pressed() { menu_button.hide(); color_menu.show(); }

          void next();

          void quit();

          // callback functions:
          static void cb_red(Address, Address);

          static void cb_blue(Address, Address);

          static void cb_black(Address, Address);

          static void cb_menu(Address, Address);

          static void cb_next(Address, Address);

          static void cb_quit(Address, Address);

};

Note how all but the constructor is private. Basically, that Window class is the program. All that happens, happens through its
callbacks, so no code from outside the window is needed. We sorted the declarations a bit hoping to make the class more
readable. The constructor provides arguments to all of its sub-objects and attaches them to the window:
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Lines_window::Lines_window(Point xy, int w, int h, const string& title)

          :Window{xy,w,h,title},

          next_button{Point{x_max()–150,0}, 70, 20, "Next point", cb_next},

          quit_button{Point{x_max()–70,0}, 70, 20, "Quit", cb_quit},

          next_x{Point{x_max()–310,0}, 50, 20, "next x:"},

          next_y{Point{x_max()–210,0}, 50, 20, "next y:"},

          xy_out{Point{100,0}, 100, 20, "current (x,y):"},

          color_menu{Point{x_max()–70,30},70,20,Menu::vertical,"color"},

          menu_button{Point{x_max()–80,30}, 80, 20, "color menu", cb_menu}

{

          attach(next_button);

          attach(quit_button);

          attach(next_x);

          attach(next_y);

          attach(xy_out);

          xy_out.put("no point");

          color_menu.attach(new Button{Point{0,0},0,0,"red",cb_red));

          color_menu.attach(new Button{Point{0,0},0,0,"blue",cb_blue));

          color_menu.attach(new Button{Point{0,0},0,0,"black",cb_black));

          attach(color_menu);

          color_menu.hide();

          attach(menu_button);

          attach(lines);

}

Note that the initializers are in the same order as the data member definitions. That’s the proper order in which to write the
initializers. In fact, member initializers are always executed in the order their data members were declared. Some compilers
(helpfully) give a warning if a base or member constructor is specified out of order.

16.8 Debugging GUI code
Once a GUI program starts working it is often quite easy to debug: what you see is what you get. However, there is often a
most frustrating period before the first shapes and widgets start appearing in a window or even before a window appears on
the screen. Try this main():
Click here to view code image

int main()

{

          Lines_window {Point{100,100},600,400,"lines"};



          return gui_main();

}

Do you see the error? Whether you see it or not, you should try it; the program will compile and run, but instead of the
Lines_window giving you a chance to draw lines, you get at most a flicker on the screen. How do you find errors in such a
program?

• By carefully using well-tried program parts (classes, function, libraries)
• By simplifying all new code, by slowly “growing” a program from its simplest version, by carefully looking over the
code line by line

• By checking all linker settings
• By comparing the code to already working programs
• By explaining the code to a friend

The one thing that you will find it hard to do is to trace the execution of the code. If you have learned to use a debugger, you
have a chance, but just inserting “output statements” will not work in this case — the problem is that no output appears. Even
debuggers will have problems because there are several things going on at once (“multi-threading”) — your code is not the
only code trying to interact with the screen. Simplification of the code and a systematic approach to understanding the code are
key.

So what was the problem? Here is the correct version (from §16.5):
Click here to view code image

int main()

{

          Lines_window win{Point{100,100},600,400,"lines"};

          return gui_main();

}

We “forgot” the name of the Lines_window, win. Since we didn’t actually need that name that seemed reasonable, but the
compiler then decided that since we didn’t use that window, it could immediately destroy it. Oops! That window existed for
something on the order of a millisecond. No wonder we missed it.

Another common problem is to put one window exactly on top of another. This obviously (or rather not at all obviously)
looks as if there is only one window. Where did the other window go? We can spend significant time looking for nonexistent
bugs in the code. The same problem can occur if we put one shape on top of another.

Finally — to make matters still worse — exceptions don’t always work as we would like them to when we use a GUI
library. Since our code is managed by a GUI library, an exception we throw may never reach our handler — the library or the
operating system may “eat” it (that is, they may rely on error-handling mechanisms that differ from C++ exceptions and may
indeed be completely oblivious of C++).

Common problems found during debugging include Shapes and Widgets not showing because they were not attached and
objects misbehaving because they have gone out of scope. Consider how a programmer might factor out the creation and
attachment of buttons in a menu:
Click here to view code image

// helper function for loading buttons into a menu
void load_disaster_menu(Menu& m)

{

          Point orig {0,0};

          Button b1 {orig,0,0,"flood",cb_flood};

          Button b2 {orig,0,0,"fire",cb_fire};

          // . . .



          m.attach(b1);

          m.attach(b2);

          // . . .
}

int main()

{

          // . . .
          Menu disasters {Point{100,100},60,20,Menu::horizontal,"disasters"};

          load_disaster_menu(disasters);

          win.attach(disasters);

          // . . .
}

This will not work. All those buttons are local to the load_disaster_menu function and attaching them to a menu will not
change that. An explanation can be found in §18.6.4 (Don’t return a pointer to a local variable), and an illustration of the
memory layout for local variables is presented in §8.5.8. The essence of the story is that after load_disaster_menu() has
returned, those local objects have been destroyed and the disasters menu refers to nonexistent (destroyed) objects. The result
is likely to be surprising and not pretty. The solution is to use unnamed objects created by new instead of named local objects:
Click here to view code image

// helper function for loading buttons into a menu
void load_disaster_menu(Menu& m)

{

          Point orig {0,0};

          m.attach(new Button{orig,0,0,"flood",cb_flood});

          m.attach(new Button{orig,0,0,"fire",cb_fire});

          // . . .
}

The correct solution is even simpler than the (all too common) bug.

 Drill

1. Make a completely new project with linker settings for FLTK (as described in Appendix D).
2. Using the facilities of Graph_lib, type in the line-drawing program from §16.5 and get it to run.
3. Modify the program to use a pop-up menu as described in §16.7 and get it to run.
4. Modify the program to have a second menu for choosing line styles and get it to run.

Review
1. Why would you want a graphical user interface?
2. When would you want a non-graphical user interface?
3. What is a software layer?
4. Why would you want to layer software?
5. What is the fundamental problem when communicating with an operating system from C++?
6. What is a callback?
7. What is a widget?
8. What is another name for widget?
9. What does the acronym FLTK mean?

10. How do you pronounce FLTK?
11. What other GUI toolkits have you heard of?
12. Which systems use the term widget and which prefer control?
13. What are examples of widgets?
14. When would you use an inbox?
15. What is the type of the value stored in an inbox?
16. When would you use a button?



17. When would you use a menu?
18. What is control inversion?
19. What is the basic strategy for debugging a GUI program?
20. Why is debugging a GUI program harder than debugging an “ordinary program using streams for I/O”?

Terms
button
callback
console I/O
control
control inversion
dialog box
GUI
menu
software layer
user interface
visible/hidden
waiting for input
wait loop
widget

Exercises
1. Make a My_window that’s a bit like Simple_window except that it has two buttons, next and quit.
2. Make a window (based on My_window) with a 4-by-4 checkerboard of square buttons. When pressed, a button

performs a simple action, such as printing its coordinates in an output box, or turns a slightly different color (until another
button is pressed).

3. Place an Image on top of a Button; move both when the button is pushed. Use this random number generator from
std_lib_facilities.h to pick a new location for the “image button”:

Click here to view code image

#include<random>

inline int rand_int(int min, int max)

{

          static default_random_engine ran;

          return uniform_int_distribution<>{min,max}(ran);

}

It returns a random int in the range [min,max).
4. Make a menu with items that make a circle, a square, an equilateral triangle, and a hexagon, respectively. Make an input

box (or two) for giving a coordinate pair, and place the shape made by pressing a menu item at that coordinate. Sorry, no
drag and drop.

5. Write a program that draws a shape of your choice and moves it to a new point each time you click “Next.” The new
point should be determined by a coordinate pair read from an input stream.

6. Make an “analog clock,” that is, a clock with hands that move. You get the time of day from the operating system through
a library call. A major part of this exercise is to find the functions that give you the time of day and a way of waiting for a
short period of time (e.g., a second for a clock tick) and to learn to use them based on the documentation you found. Hint:
clock(), sleep().

7. Using the techniques developed in the previous exercises, make an image of an airplane “fly around” in a window. Have
a “Start” and a “Stop” button.

8. Provide a currency converter. Read the conversion rates from a file on startup. Enter an amount in an input window and
provide a way of selecting currencies to convert to and from (e.g., a pair of menus).



9. Modify the calculator from Chapter 7 to get its input from an input box and return its results in an output box.
10. Provide a program where you can choose among a set of functions (e.g., sin() and log()), provide parameters for those

functions, and then graph them.

Postscript
GUI is a huge topic. Much of it has to do with style and compatibility with existing systems. Furthermore, much has to do with
a bewildering variety of widgets (such as a GUI library offering many dozens of alternative button styles) that would make a
traditional botanist feel quite at home. However, little of that has to do with fundamental programming techniques, so we won’t
proceed in that direction. Other topics, such as scaling, rotation, morphing, three-dimensional objects, shadowing, etc., require
sophistication in graphical and/or mathematical topics which we don’t assume here.

One thing you should be aware of is that most GUI systems provide a “GUI builder” that allows you to design your window
layouts graphically and attach callbacks and actions to buttons, menus, etc. specified graphically. For many applications, such a
GUI builder is well worth using to reduce the tedium of writing “scaffolding code” such as our callbacks. However, always try
to understand how the resulting programs work. Sometimes, the generated code is equivalent to what you have seen in this
chapter. Sometimes more elaborate and/or expensive mechanisms are used.



Part III: Data and Algorithms



17. Vector and Free Store

“Use vector as the default!”
—Alex Stepanov

This chapter and the next four describe the containers and algorithms part of the C++ standard library, traditionally called the
STL. We describe the key facilities from the STL and some of their uses. In addition, we present the key design and
programming techniques used to implement the STL and some low-level language features used for that. Among those are
pointers, arrays, and free store. The focus of this chapter and the next two is the design and implementation of the most common
and most useful STL container: vector.

17.1 Introduction
17.2 vector basics
17.3 Memory, addresses, and pointers

17.3.1 The sizeof operator
17.4 Free store and pointers

17.4.1 Free-store allocation
17.4.2 Access through pointers
17.4.3 Ranges
17.4.4 Initialization
17.4.5 The null pointer
17.4.6 Free-store deallocation

17.5 Destructors
17.5.1 Generated destructors
17.5.2 Destructors and free store

17.6 Access to elements
17.7 Pointers to class objects
17.8 Messing with types: void* and casts
17.9 Pointers and references

17.9.1 Pointer and reference parameters
17.9.2 Pointers, references, and inheritance
17.9.3 An example: lists
17.9.4 List operations
17.9.5 List use

17.10 The this pointer
17.10.1 More link use

17.1 Introduction

The most useful container in the C++ standard library is vector. A vector provides a sequence of elements of a given type.
You can refer to an element by its index (subscript), extend the vector by using push_back(), ask a vector for the number of
its elements using size(), and have access to the vector checked against attempts to access out-of-range elements. The
standard library vector is a convenient, flexible, efficient (in time and space), statically type-safe container of elements. The
standard string has similar properties, as have other useful standard container types, such as list and map, which we will



describe in Chapter 20. However, a computer’s memory doesn’t directly support such useful types. All that the hardware
directly supports is sequences of bytes. For example, for a vector<double>, the operation v.push_back(2.3) adds 2.3 to a
sequence of doubles and increases the element count of v (v.size()) by 1. At the lowest level, the computer knows nothing
about anything as sophisticated as push_back(); all it knows is how to read and write a few bytes at a time.

In this and the following two chapters, we show how to build vector from the basic language facilities available to every
programmer. Doing so allows us to illustrate useful concepts and programming techniques, and to see how they are expressed
using C++ language features. The language facilities and programming techniques we encounter in the vector implementation
are generally useful and very widely used.

Once we have seen how vector is designed, implemented, and used, we can proceed to look at other standard library
containers, such as map, and examine the elegant and efficient facilities for their use provided by the C++ standard library
(Chapters 20 and 21). These facilities, called algorithms, save us from programming common tasks involving data ourselves.
Instead, we can use what is available as part of every C++ implementation to ease the writing and testing of our libraries. We
have already seen and used one of the standard library’s most useful algorithms: sort().

We approach the standard library vector through a series of increasingly sophisticated vector implementations. First, we
build a very simple vector. Then, we see what’s undesirable about that vector and fix it. When we have done that a few
times, we reach a vector implementation that is roughly equivalent to the standard library vector — shipped with your C++
compiler, the one that you have been using in the previous chapters. This process of gradual refinement closely mirrors the way
we typically approach a new programming task. Along the way, we encounter and explore many classical problems related to
the use of memory and data structures. The basic plan is this:

• Chapter 17 (this chapter): How can we deal with varying amounts of memory? In particular, how can different vectors
have different numbers of elements and how can a single vector have different numbers of elements at different times?
This leads us to examine free store (heap storage), pointers, casts (explicit type conversion), and references.

• Chapter 18: How can we copy vectors? How can we provide a subscript operation for them? We also introduce arrays
and explore their relation to pointers.

• Chapter 19: How can we have vectors with different element types? And how can we deal with out-of-range errors?
To answer those questions, we explore the C++ template and exception facilities.

In addition to the new language facilities and techniques that we introduce to handle the implementation of a flexible, efficient,
and type-safe vector, we will also (re)use many of the language facilities and programming techniques we have already seen.
Occasionally, we’ll take the opportunity to give those a slightly more formal and technical definition.

So, this is the point at which we finally get to deal directly with memory. Why do we have to? Our vector and string are
extremely useful and convenient; we can just use those. After all, containers, such as vector and string, are designed to
insulate us from some of the unpleasant aspects of real memory. However, unless we are content to believe in magic, we must
examine the lowest level of memory management. Why shouldn’t you “just believe in magic”? Or — to put a more positive
spin on it — why shouldn’t you “just trust that the implementers of vector knew what they were doing”? After all, we don’t
suggest that you examine the device physics that allows our computer’s memory to function.

Well, we are programmers (computer scientists, software developers, or whatever) rather than physicists. Had we been
studying device physics, we would have had to look into the details of computer memory design. However, since we are
studying programming, we must look into the detailed design of programs. In theory, we could consider the low-level memory
access and management facilities “implementation details” just as we do the device physics. However, if we did that, you
would not just have to “believe in magic”; you would be unable to implement a new container (should you need one, and that’s
not uncommon). Also, you would be unable to read huge amounts of C and C++ code that directly uses memory. As we will see
over the next few chapters, pointers (a low-level and direct way of referring to an object) are also useful for a variety of
reasons not related to memory management. It is not easy to use C++ well without sometimes using pointers.

More philosophically, I am among the large group of computer professionals who are of the opinion that if you lack a basic
and practical understanding of how a program maps onto a computer’s memory and operations, you will have problems getting
a solid grasp of higher-level topics, such as data structures, algorithms, and operating systems.



17.2 vector basics
We start our incremental design of vector by considering a very simple use:
Click here to view code image

vector<double> age(4);  // a vector with 4 elements of type double
age[0]=0.33;

age[1]=22.0;

age[2]=27.2;

age[3]=54.2;

Obviously, this creates a vector with four elements of type double and gives those four elements the values 0.33, 22.0, 27.2,
and 54.2. The four elements are numbered 0, 1, 2, 3. The numbering of elements in C++ standard library containers always
starts from 0 (zero). Numbering from 0 is very common, and it is a universal convention among C++ programmers. The number
of elements of a vector is called its size. So, the size of age is 4. The elements of a vector are numbered (indexed) from 0 to
size–1. For example, the elements of age are numbered 0 to age.size()–1. We can represent age graphically like this:

How do we make this “graphical design” real in a computer’s memory? How do we get the values stored and accessed like
that? Obviously, we have to define a class and we want to call this class vector. Furthermore, it needs a data member to hold
its size and one to hold its elements. But how do we represent a set of elements where the number of elements can vary? We
could use a standard library vector, but that would — in this context — be cheating: we are building a vector here.

So, how do we represent that arrow in the drawing above? Consider doing without it. We could define a fixed-size data
structure:
Click here to view code image

class vector {

          int size, age0, age1, age2, age3;

          // . . .
};

Ignoring some notational details, we’ll have something like this:

That’s simple and nice, but the first time we try to add an element with push_back() we are sunk: we have no way of adding
an element; the number of elements is fixed to four in the program text. We need something more than a data structure holding a
fixed number of elements. Operations that change the number of elements of a vector, such as push_back(), can’t be
implemented if we defined vector to have a fixed number of elements. Basically, we need a data member that points to the set
of elements so that we can make it point to a different set of elements when we need more space. We need something like the
memory address of the first element. In C++, a data type that can hold an address is called a pointer and is syntactically
distinguished by the suffix *, so that double* means “pointer to double.” Given that, we can define our first version of a
vector class:
Click here to view code image

// a very simplified vector of doubles (like vector<double>)
class vector {

          int sz;                                           // the size
          double* elem;                           // pointer to the first element (of type double)
public:

          vector(int s);                              // constructor: allocate s doubles,
                                                                   // let elem point to them
                                                                   // store s in sz
          int size() const { return sz; }   // the current size



};

Before proceeding with the vector design, let us study the notion of “pointer” in some detail. The notion of “pointer” —
together with its closely related notion of “array” — is key to C++’s notion of “memory.”

17.3 Memory, addresses, and pointers

A computer’s memory is a sequence of bytes. We can number the bytes from 0 to the last one. We call such “a number that
indicates a location in memory” an address. You can think of an address as a kind of integer value. The first byte of memory
has the address 0, the next the address 1, and so on. We can visualize a megabyte of memory like this:

Everything we put in memory has an address. For example:

int var = 17;

This will set aside an “int-size” piece of memory for var somewhere and put the value 17 into that memory. We can also store
and manipulate addresses. An object that holds an address value is called a pointer. For example, the type needed to hold the
address of an int is called a “pointer to int” or an “int pointer” and the notation is int*:
Click here to view code image

int* ptr = &var;            // ptr holds the address of var

The “address of” operator, unary &, is used to get the address of an object. So, if var happens to start at address 4096 (also
known as 212), ptr will hold the value 4096:

Basically, we view our computer’s memory as a sequence of bytes numbered from 0 to the memory size minus 1. On some
machines that’s a simplification, but as an initial programming model of the memory, it will suffice.

Each type has a corresponding pointer type. For example:
Click here to view code image

int x = 17;

int* pi = &x;                    // pointer to int

double e = 2.71828;

double* pd = &e;         // pointer to double

If we want to see the value of the object pointed to, we can do that using the “contents of” operator, unary *. For example:
Click here to view code image

cout << "pi==" << pi << "; contents of pi==" << *pi << "\n";

cout << "pd==" << pd << "; contents of pd==" << *pd << "\n";

The output for *pi will be the integer 17 and the output for *pd will be the double 2.71828. The output for pi and pd will
vary depending on where the compiler allocated our variables x and e in memory. The notation used for the pointer value
(address) may also vary depending on which conventions your system uses; hexadecimal notation (§A.2.1.1) is popular for
pointer values.

The contents of operator (often called the dereference operator) can also be used on the left-hand side of an assignment:
Click here to view code image

*pi = 27;                // OK: you can assign 27 to the int pointed to by pi
*pd = 3.14159;     // OK: you can assign 3.14159 to the double pointed to by pd
*pd = *pi;             // OK: you can assign an int (*pi) to a double (*pd)

Note that even though a pointer value can be printed as an integer, a pointer is not an integer. “What does an int point to?” is



not a well-formed question; ints do not point, pointers do. A pointer type provides the operations suitable for addresses,
whereas int provides the (arithmetic and logical) operations suitable for integers. So pointers and integers do not implicitly
mix:
Click here to view code image

int i = pi;         // error: can’t assign an int* to an int
pi = 7;              // error: can’t assign an int to an int*

Similarly, a pointer to char (a char*) is not a pointer to int (an int*). For example:
Click here to view code image

char* pc = pi;      // error: can’t assign an int* to a char*
pi = pc;                  // error: can’t assign a char* to an int*

Why is it an error to assign pc to pi? Consider one answer: a char is usually much smaller than an int, so consider this:
Click here to view code image

char ch1 = 'a';

char ch2 = 'b';

char ch3 = 'c';

char ch4 = 'd';

int* pi = &ch3;    // point to ch3, a char-size piece of memory
                                 // error: we cannot assign a char* to an int*
                                 // but let’s pretend we could
*pi = 12345;         // write to an int-size piece of memory
*pi = 67890;

Exactly how the compiler allocates variables in memory is implementation defined, but we might very well get something like
this:

Now, had the compiler allowed the code, we would have been writing 12345 to the memory starting at &ch3. That would
definitely have changed the value of some nearby memory, such as ch2 or ch4. If we were really unlucky (which is likely), we
would have overwritten part of pi itself! In that case, the next assignment *pi=67890 would place 67890 in some completely
different part of memory. Be glad that such assignment is disallowed, but this is one of the very few protections offered by the
compiler at this low level of programming.

In the unlikely case that you really need to convert an int to a pointer or to convert one pointer type to another, you can use
reinterpret_cast; see §17.8.

We are really close to the hardware here. This is not a particularly comfortable place to be for a programmer. We have only
a few primitive operations available and hardly any support from the language or the standard library. However, we had to get
here to know how higher-level facilities, such as vector, are implemented. We need to understand how to write code at this
level because not all code can be “high-level” (see Chapter 25). Also, we might better appreciate the convenience and relative
safety of the higher levels of software once we have experienced their absence. Our aim is always to work at the highest level
of abstraction that is possible given a problem and the constraints on its solution. In this chapter and in Chapters 18–19, we
show how to get back to a more comfortable level of abstraction by implementing a vector.

17.3.1 The sizeof operator

So how much memory does an int really take up? A pointer? The operator sizeof answers such questions:
Click here to view code image

void sizes(char ch, int i, int* p)

{

          cout << "the size of char is " << sizeof(char) << ' ' << sizeof (ch) << '\n';

          cout << "the size of int is " << sizeof(int) << ' ' << sizeof (i) << '\n';

          cout << "the size of int* is " << sizeof(int*) << ' ' << sizeof (p) << '\n';

}



As you can see, we can apply sizeof either to a type name or to an expression; for a type, sizeof gives the size of an object of
that type, and for an expression, it gives the size of the type of the result. The result of sizeof is a positive integer and the unit
is sizeof(char), which is defined to be 1. Typically, a char is stored in a byte, so sizeof reports the number of bytes.

 Try This

Execute the example above and see what you get. Then extend the example to determine the size of bool, double,
and some other type.

The size of a type is not guaranteed to be the same on every implementation of C++. These days, sizeof(int) is typically 4
on a laptop or desktop machine. With an 8-bit byte, that means that an int is 32 bits. However, embedded systems processors
with 16-bit ints and high-performance architectures with 64-bit ints are common.

How much memory is used by a vector? We can try
Click here to view code image

vector<int> v(1000);          // vector with 1000 elements of type int
cout << "the size of vector<int>(1000) is " << sizeof (v) << '\n';

The output will be something like
Click here to view code image

the size of vector<int>(1000) is 20

The explanation will become obvious over this chapter and the next (see also §19.2.1), but clearly, sizeof is not counting the
elements.

17.4 Free store and pointers

Consider the implementation of vector from the end of §17.2. From where does the vector get the space for the elements?
How do we get the pointer elem to point to them? When you start a C++ program, the compiler sets aside memory for your
code (sometimes called code storage or text storage) and for the global variables you define (called static storage). It also
sets aside some memory to be used when you call functions, and they need space for their arguments and local variables (that’s
called stack storage or automatic storage). The rest of the computer’s memory is potentially available for other uses; it is
“free.” We can illustrate that graphically:

The C++ language makes this “free store” (also called the heap) available through an operator called new. For example:
Click here to view code image

double* p = new double[4];         // allocate 4 doubles on the free store

This asks the C++ run-time system to allocate four doubles on the free store and return a pointer to the first double to us. We
use that pointer to initialize our pointer variable p. We can represent this graphically:



The new operator returns a pointer to the object it creates. If it created several objects (an array), it returns a pointer to the
first of those objects. If that object is of type X, the pointer returned by new is of type X*. For example:
Click here to view code image

char* q = new double[4];         // error: double* assigned to char*

That new returns a pointer to a double and a double isn’t a char, so we should not (and cannot) assign it to the pointer to
char variable q.

17.4.1 Free-store allocation
We request memory to be allocated on the free store by the new operator:

• The new operator returns a pointer to the allocated memory.

• A pointer value is the address of the first byte of the memory.
• A pointer points to an object of a specified type.
• A pointer does not know how many elements it points to.

The new operator can allocate individual elements or sequences (arrays) of elements. For example:
Click here to view code image

int* pi = new int;                               // allocate one int
int* qi = new int[4];                          // allocate 4 ints (an array of 4 ints)

double* pd = new double;            // allocate one double
double* qd = new double[n];       // allocate n doubles (an array of n doubles)

Note that the number of objects allocated can be a variable. That’s important because that allows us to select how many
objects we allocate at run time. If n is 2, we get

Pointers to objects of different types are different types. For example:
Click here to view code image

pi = pd;      // error: can’t assign a double* to an int*
pd = pi;      // error: can’t assign an int* to a double*

Why not? After all, we can assign an int to a double and a double to an int. The reason is the [ ] operator. It relies on the
size of the element type to figure out where to find an element. For example, qi[2] is two int sizes further on in memory than



qi[0], and qd[2] is two double sizes further on in memory than qd[0]. If the size of an int is different from the size of
double, as it is on many computers, we could get some rather strange results if we allowed qi to point to the memory
allocated for qd.

That’s the “practical explanation.” The theoretical explanation is simply “Allowing assignment of pointers to different types
would allow type errors.”

17.4.2 Access through pointers
In addition to using the dereference operator * on a pointer, we can use the subscript operator [ ]. For example:
Click here to view code image

double* p = new double[4];    // allocate 4 doubles on the free store
double x = *p;                            // read the (first) object pointed to by p
double y = p[2];                         // read the 3rd object pointed to by p

Unsurprisingly, the subscript operator counts from 0 just like vector’s subscript operator, so p[2] refers to the third element;
p[0] is the first element so p[0] means exactly the same as *p. The [ ] and * operators can also be used for writing:
Click here to view code image

*p = 7.7;                    // write to the (first) object pointed to by p
p[2] = 9.9;                  // write to the 3rd object pointed to by p

A pointer points to an object in memory. The “contents of” operator (also called the dereference operator) allows us to read
and write the object pointed to by a pointer p:
Click here to view code image

double x = *p;                  // read the object pointed to by p
*p = 8.8;                             // write to the object pointed to by p

When applied to a pointer, the [ ] operator treats memory as a sequence of objects (of the type specified by the pointer
declaration) with the first one pointed to by a pointer p:
Click here to view code image

double x = p[3];               // read the 4th object pointed to by p
p[3] = 4.4;                          // write to the 4th object pointed to by p
double y = p[0];               // p[0] is the same as *p

That’s all. There is no checking, no implementation cleverness, just simple access to our computer’s memory:

This is exactly the simple and optimally efficient mechanism for accessing memory that we need to implement a vector.

17.4.3 Ranges

The major problem with pointers is that a pointer doesn’t “know” how many elements it points to. Consider:

double* pd = new double[3];

pd[2] = 2.2;

pd[4] = 4.4;

pd[–3] = –3.3;

Does pd have a third element pd[2]? Does it have a fifth element pd[4]? If we look at the definition of pd, we find that the
answers are yes and no, respectively. However, the compiler doesn’t know that; it does not keep track of pointer values. Our
code will simply access memory as if we had allocated enough memory. It will even access pd[–3] as if the location three
doubles before what pd points to was part of our allocation:



We have no idea what the memory locations marked pd[–3] and pd[4] are used for. However, we do know that they weren’t
meant to be used as part of our array of three doubles pointed to by pd. Most likely, they are parts of other objects and we
just scribbled all over those. That’s not a good idea. In fact, it is typically a disastrously poor idea: “disastrous” as in “My
program crashes mysteriously” or “My program gives wrong output.” Try saying that aloud; it doesn’t sound nice at all. We’ll
go a long way to avoid that. Out-of-range access is particularly nasty because apparently unrelated parts of a program are
affected. An out-of-range read gives us a “random” value that may depend on some completely unrelated computation. An out-
of-range write can put some object into an “impossible” state or simply give it a totally unexpected and wrong value. Such
writes typically aren’t noticed until long after they occurred, so they are particularly hard to find. Worse still: run a program
with an out-of-range error twice with slightly different input and it may give different results. Bugs of this kind (“transient
bugs”) are some of the most difficult bugs to find.

We have to ensure that such out-of-range access doesn’t happen. One of the reasons we use vector rather than directly using
memory allocated by new is that a vector knows its size so that it (or we) can easily prevent out-of-range access.

One thing that can make it hard to prevent out-of-range access is that we can assign one double* to another double*

independently of how many objects each points to. A pointer really doesn’t know how many objects it points to. For example:
Click here to view code image

double* p = new double;                // allocate a double
double* q = new double[1000];     // allocate 1000 doubles

q[700] = 7.7;                                        // fine
q = p;                                                   // let q point to the same as p
double d = q[700];                              // out-of-range access!

Here, in just three lines of code, q[700] refers to two different memory locations, and the last use is an out-of-range access and
a likely disaster.

By now, we hope that you are asking, “But why can’t pointers remember the size?” Obviously, we could design a “pointer”
that did exactly that — a vector is almost that, and if you look through the C++ literature and libraries, you’ll find many “smart
pointers” that compensate for weaknesses of the low-level built-in pointers. However, somewhere we need to reach the
hardware level and understand how objects are addressed — and a machine address does not “know” what it addresses. Also,
understanding pointers is essential for understanding lots of real-world code.

17.4.4 Initialization
As ever, we would like to ensure that an object has been given a value before we use it; that is, we want to be sure that our
pointers are initialized and also that the objects they point to have been initialized. Consider:
Click here to view code image

double* p0;                                        // uninitialized: likely trouble
double* p1 = new double;              // get (allocate) an uninitialized double
double* p2 = new double{5.5};      // get a double initialized to 5.5
double* p3 = new double[5];          // get (allocate) 5 uninitialized doubles

Obviously, declaring p0 without initializing it is asking for trouble. Consider:

*p0 = 7.0;



This will assign 7.0 to some location in memory. We have no idea which part of memory that will be. It could be harmless, but
never, never ever, rely on that. Sooner or later, we get the same result as for an out-of-range access: “My program crashed
mysteriously” or “My program gives wrong output.” A scary percentage of serious problems with old-style C++ programs
(“C-style programs”) is caused by access through uninitialized pointers and out-of-range access. We must do all we can to
avoid such access, partly because we aim at professionalism, partly because we don’t care to waste our time searching for that
kind of error. There are few activities as frustrating and tedious as tracking down this kind of bug. It is much more pleasant and
productive to prevent bugs than to hunt for them.

Memory allocated by new is not initialized for built-in types. If you don’t like that for a single object, you can specify a
value, as we did for p2: *p2 is 5.5. Note the use of ( ) for initialization. This contrasts to the use of [ ] to indicate “array.”

We can specify an initializer list for an array of objects allocated by new. For example:
Click here to view code image

double* p4 = new double[5] {0,1,2,3,4};

double* p5 = new double[] {0,1,2,3,4};

Now p4 points to objects of type double containing the values 0.0, 1.0, 2.0, 3.0, and 4.0. So does p5; the number of
elements can be left out when a set of elements is provided.

As usual, we should worry about uninitialized objects and make sure we give them a value before we read them. Beware
that compilers often have a “debug mode” where they by default initialize every variable to a predictable value (often 0). That
implies that when turning off the debug features to ship a program, when running an optimizer, or simply when compiling on a
different machine, a program with uninitialized variables may suddenly run differently. Don’t get caught with an uninitialized
variable.

When we define our own types, we have better control of initialization. If a type X has a default constructor, we get
Click here to view code image

X* px1 = new X;               // one default-initialized X
X* px2 = new X[17];        // 17 default-initialized Xs

If a type Y has a constructor, but not a default constructor, we have to explicitly initialize:
Click here to view code image

Y* py1 = new Y;                  // error: no default constructor
Y* py2 = new Y{13};           // OK: initialized to Y{13}
Y* py3 = new Y[17];           // error: no default constructor
Y* py4 = new Y[17] {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};

Long initializer lists for new can be impractical, but they can come in very handy when we want just a few elements, and that
is typically the most common case.

17.4.5 The null pointer
If you have no other pointer to use for initializing a pointer, use the null pointer, nullptr:
Click here to view code image

double* p0 = nullptr;        // the null pointer

When assigned to a pointer, the value zero is called the null pointer, and often we test whether a pointer is valid (i.e., whether
it points to something) by checking whether it is nullptr. For example:
Click here to view code image

if (p0 != nullptr)              // consider p0 valid

This is not a perfect test, because p0 may contain a “random” value that happens to be nonzero (e.g., if we forgot to initialize)



or the address of an object that has been deleted (see §17.4.6). However, that’s often the best we can do. We don’t actually
have to mention nullptr explicitly because an if-statement really checks whether its condition is nullptr:
Click here to view code image

if (p0)                          // consider p0 valid; equivalent to p0!=nullptr

We prefer this shorter form, considering it a more direct expression of the idea “p0 is valid,” but opinions vary.
We need to use the null pointer when we have a pointer that sometimes points to an object and sometimes not. That’s rarer

than many people think; consider: If you don’t have an object for a pointer to point to, why did you define that pointer?
Couldn’t you wait until you have an object?

The name nullptr for the null pointer is new in C++11, so in older code, people often use 0 (zero) or NULL instead of
nullptr. Both older alternatives can lead to confusion and/or errors, so prefer the more specific nullptr.

17.4.6 Free-store deallocation
The new operator allocates (“gets”) memory from the free store. Since a computer’s memory is limited, it is usually a good
idea to return memory to the free store once we are finished using it. That way, the free store can reuse that memory for a new
allocation. For large programs and for long-running programs such freeing of memory for reuse is essential. For example:
Click here to view code image

double* calc(int res_size, int max)           // leaks memory
{

          double* p = new double[max];

          double* res = new double[res_size];

          // use p to calculate results to be put in res
          return res;

}

double* r = calc(100,1000);

As written, each call of calc() “leaks” the doubles allocated for p. For example, the call calc(100,1000) will render the
space needed for 1000 doubles unusable for the rest of the program.

The operator for returning memory to the free store is called delete. We apply delete to a pointer returned by new to
make the memory available to the free store for future allocation. The example now becomes
Click here to view code image

double* calc(int res_size, int max)

          // the caller is responsible for the memory allocated for res
{

          double* p = new double[max];

          double* res = new double[res_size];

          // use p to calculate results to be put in res
          delete[] p;       // we don’t need that memory anymore: free it
          return res;

}

double* r = calc(100,1000);

// use r
delete[] r;                   // we don’t need that memory anymore: free it

Incidentally, this example demonstrates one of the major reasons for using the free store: we can create objects in a function
and pass them back to a caller.

There are two forms of delete:
• delete p frees the memory for an individual object allocated by new.
• delete[ ] p frees the memory for an array of objects allocated by new.

It is the programmer’s tedious job to use the right version.
Deleting an object twice is a bad mistake. For example:



Click here to view code image

int* p = new int{5};

delete p;              // fine: p points to an object created by new
// . . . no use of p here . . .
delete p;             // error: p points to memory owned by the free-store manager

There are two problems with the second delete p:
• You don’t own the object pointed to anymore so the free-store manager may have changed its internal data structure in
such a way that it can’t correctly execute delete p again.

• The free-store manager may have “recycled” the memory pointed to by p so that p now points to another object; deleting
that other object (owned by some other part of the program) will cause errors in your program.

Both problems occur in a real program; they are not just theoretical possibilities.
Deleting the null pointer doesn’t do anything (because the null pointer doesn’t point to an object), so deleting the null pointer

is harmless. For example:
Click here to view code image

int* p = nullptr;

delete p;              // fine: no action needed
delete p;              // also fine (still no action needed)

Why do we have to bother with freeing memory? Can’t the compiler figure out when we don’t need a piece of memory anymore
and just recycle it without human intervention? It can. That’s called automatic garbage collection or just garbage collection.
Unfortunately, automatic garbage collection is not cost-free and not ideal for all kinds of applications. If you really need
automatic garbage collection, you can plug a garbage collector into your C++ program. Good garbage collectors are available
(see www.stroustrup.com/C++.html). However, in this book we assume that you have to deal with your own “garbage,” and
we show how to do so conveniently and efficiently.

When is it important not to leak memory? A program that needs to run “forever” can’t afford any memory leaks. An operating
system is an example of a program that “runs forever,” and so are most embedded systems (see Chapter 25). A library should
not leak memory because someone might use it as part of a system that shouldn’t leak memory. In general, it is simply a good
idea not to leak. Many programmers consider leaks as proof of sloppiness. However, that’s slightly overstating the point. When
you run a program under an operating system (Unix, Windows, whatever), all memory is automatically returned to the system at
the end of the program. It follows that if you know that your program will not use more memory than is available, you might
reasonably decide to “leak” until the operating system does the deallocation for you. However, if you decide to do that, be sure
that your memory consumption estimate is correct, or people will have good reason to consider you sloppy.

17.5 Destructors
Now we know how to store the elements for a vector. We simply allocate sufficient space for the elements on the free store
and access them through a pointer:
Click here to view code image

// a very simplified vector of doubles
class vector {

          int sz;                                                                        // the size
          double* elem;                                                        // a pointer to the elements
public:

          vector(int s)                                                             // constructor
                    :sz{s},                                                             // initialize sz
                    elem{new double[s]}                                  // initialize elem
                    {
                              for (int i=0; i<s; ++i) elem[i]=0;     // initialize elements
                    }
          int size() const { return sz; }                               // the current size
          // . . .
};

So, sz is the number of elements. We initialize it in the constructor, and a user of vector can get the number of elements by
calling size(). Space for the elements is allocated using new in the constructor, and the pointer returned from the free store is

http://www.stroustrup.com/C++.html


stored in the member pointer elem.
Note that we initialize the elements to their default value (0.0). The standard library vector does that, so we thought it best

to do the same from the start.
Unfortunately, our first primitive vector leaks memory. In the constructor, it allocates memory for the elements using new.

To follow the rule stated in §17.4, we must make sure that this memory is freed using delete. Consider:
Click here to view code image

void f(int n)

{

          vector v(n);            // allocate n doubles
          // . . .
}

When we leave f(), the elements created on the free store by v are not freed. We could define a clean_up() operation for
vector and call that:
Click here to view code image

void f2(int n)

{

          vector v(n);               // define a vector (which allocates another n ints)
          // . . . use v . . .
          v.clean_up();           // clean_up() deletes elem
}

That would work. However, one of the most common problems with the free store is that people forget to delete. The
equivalent problem would arise for clean_up(); people would forget to call it. We can do better than that. The basic idea is to
have the compiler know about a function that does the opposite of a constructor, just as it knows about the constructor.
Inevitably, such a function is called a destructor. In the same way that a constructor is implicitly called when an object of a
class is created, a destructor is implicitly called when an object goes out of scope. A constructor makes sure that an object is
properly created and initialized. Conversely, a destructor makes sure that an object is properly cleaned up before it is
destroyed. For example:
Click here to view code image

// a very simplified vector of doubles
class vector {

          int sz;                                                             // the size
          double* elem;                                             // a pointer to the elements
public:

          vector(int s)                                                  // constructor
                    :sz{s}, elem{new double[s]}          // allocate memory
          {
                    for (int i=0; i<s; ++i) elem[i]=0;    // initialize elements
          }
          ~vector()                                                     // destructor
                    { delete[] elem; }                             // free memory
          // . . .
};

Given that, we can write
Click here to view code image

void f3(int n)

{

          double* p = new double[n];                 // allocate n doubles
          vector v(n);                                                // the vector allocates n doubles
          // . . . use p and v . . .
          delete[ ] p;                                                 // deallocate p’s doubles
}    // vector automatically cleans up after v

Suddenly, that delete[ ] looks rather tedious and error-prone! Given vector, there is no reason to allocate memory using new

just to deallocate it using delete[ ] at the end of a function. That’s what vector does and does better. In particular, a vector



cannot forget to call its destructor to deallocate the memory used for the elements.

We are not going to go into great detail about the uses of destructors here, but they are great for handling resources that we
need to first acquire (from somewhere) and later give back: files, threads, locks, etc. Remember how iostreams clean up after
themselves? They flush buffers, close files, free buffer space, etc. That’s done by their destructors. Every class that “owns” a
resource needs a destructor.

17.5.1 Generated destructors
If a member of a class has a destructor, then that destructor will be called when the object containing the member is destroyed.
For example:
Click here to view code image

struct Customer {

          string name;

          vector<string> addresses;

          // . . .
};

void some_fct()

{

          Customer fred;

          // initialize fred
          // use fred
}

When we exit some_fct(), so that fred goes out of scope, fred is destroyed; that is, the destructors for name and addresses

are called. This is obviously necessary for destructors to be useful and is sometimes expressed as “The compiler generated a
destructor for Customer, which calls the members’ destructors.” That is indeed often how the obvious and necessary
guarantee that destructors are called is implemented.

The destructors for members — and for bases — are implicitly called from a derived class destructor (whether user-defined
or generated). Basically, all the rules add up to: “Destructors are called when the object is destroyed” (by going out of scope,
by delete, etc.).

17.5.2 Destructors and free store
Destructors are conceptually simple but are the foundation for many of the most effective C++ programming techniques. The
basic idea is simple:

• Whatever resources a class object needs to function, it acquires in a constructor.
• During the object’s lifetime it may release resources and acquire new ones.
• At the end of the object’s lifetime, the destructor releases all resources still owned by the object.

The matched constructor/destructor pair handling free-store memory for vector is the archetypical example. We’ll get back to
that idea with more examples in §19.5. Here, we will examine an important application that comes from the use of free-store
and class hierarchies in combination. Consider:
Click here to view code image

Shape* fct()

{

          Text tt {Point{200,200},"Annemarie"};

          // . . .
          Shape* p = new Text{Point{100,100},"Nicholas"};

          return p;

}

void f()

{

          Shape* q = fct();

          // . . .
          delete q;

}



This looks fairly plausible — and it is. It all works, but let’s see how, because that exposes an elegant, important, simple
technique. Inside fct(), the Text (§13.11) object tt is properly destroyed at the exit from fct(). Text has a string member,
which obviously needs to have its destructor called — string handles its memory acquisition and release exactly like vector.
For tt, that’s easy; the compiler just calls Text’s generated destructor as described in §17.5.1. But what about the Text object
that was returned from fct()? The calling function f() has no idea that q points to a Text; all it knows is that it points to a
Shape. Then how does delete q get to call Text’s destructor?

In §14.2.1, we breezed past the fact that Shape has a destructor. In fact, Shape has a virtual destructor. That’s the key.
When we say delete q, delete looks at q’s type to see if it needs to call a destructor, and if so it calls it. So, delete q calls
Shape’s destructor ~Shape(). But ~Shape() is virtual, so — using the virtual call mechanism (§14.3.1) — that call
invokes the destructor of Shape’s derived class, in this case ~Text(). Had Shape::~Shape() not been virtual,
Text::~Text() would not have been called and Text’s string member wouldn’t have been properly destroyed.

As a rule of thumb: if you have a class with a virtual function, it needs a virtual destructor. The reason is:
1. If a class has a virtual function it is likely to be used as a base class, and
2. If it is a base class its derived class is likely to be allocated using new, and
3. If a derived class object is allocated using new and manipulated through a pointer to its base, then
4. It is likely to be deleted through a pointer to its base

Note that destructors are invoked implicitly or indirectly through delete. They are not called directly. That saves a lot of
tricky work.

 Try This

Write a little program using base classes and members where you define the constructors and destructors to output
a line of information when they are called. Then, create a few objects and see how their constructors and
destructors are called.

17.6 Access to elements
For vector to be usable, we need a way to read and write elements. For starters, we can provide simple get() and set()

member functions:
Click here to view code image

// a very simplified vector of doubles
class vector {

          int sz;                                                            // the size
          double* elem;                                            // a pointer to the elements
public:

          vector(int s) :sz{s}, elem{new double[s]} { /* . . . */ }    // constructor
          ~vector() { delete[] elem; }                                                // destructor

          int size() const { return sz; }                                                 // the current size

          double get(int n) const { return elem[n]; }                    // access: read
          void set(int n, double v) { elem[n]=v; }                          // access: write
};

Both get() and set() access the elements using the [ ] operator on the elem pointer: elem[n].
Now we can make a vector of doubles and use it:

Click here to view code image

vector v(5);

for (int i=0; i<v.size(); ++i) {

          v.set(i,1.1*i);

          cout << "v[" << i << "]==" << v.get(i) << '\n';

}



This will output

v[0]==0

v[1]==1.1

v[2]==2.2

v[3]==3.3

v[4]==4.4

This is still an overly simple vector, and the code using get() and set() is rather ugly compared to the usual subscript
notation. However, we aim to start small and simple and then grow our programs step by step, testing along the way. As ever,
this strategy of growth and repeated testing minimizes errors and debugging.

17.7 Pointers to class objects
The notion of “pointer” is general, so we can point to just about anything we can place in memory. For example, we can use
pointers to vectors exactly as we use pointers to chars:
Click here to view code image

vector* f(int s)

{

          vector* p = new vector(s);     // allocate a vector on free store
          // fill *p
          return p;

}

void ff()

{

          vector* q = f(4);

          // use *q
          delete q;                                  // free vector on free store
}

Note that when we delete a vector, its destructor is called. For example:
Click here to view code image

vector* p = new vector(s);             // allocate a vector on free store
delete p;                                            // deallocate

Creating the vector on the free store, the new operator
• First allocates memory for a vector

• Then invokes the vector’s constructor to initialize that vector; the constructor allocates memory for the vector’s
elements and initializes those elements

Deleting the vector, the delete operator
• First invokes the vector’s destructor; the destructor invokes the destructors for the elements (if they have destructors)
and then deallocates the memory used for the vector’s elements

• Then deallocates the memory used for the vector

Note how nicely that works recursively (see §8.5.8). Using the real (standard library) vector we can also do
Click here to view code image

vector<vector<double>>* p = new vector<vector<double>>(10);

delete p;

Here, delete p invokes the destructor for vector<vector<double>>; this destructor in turn invokes the destructor for its
vector<double> elements, and all is neatly cleaned up, leaving no object undestroyed and leaking no memory.

Because delete invokes destructors (for types, such as vector, that have one), delete is often said to destroy objects, not
just deallocate them.

As usual, please remember that a “naked” new outside a constructor is an opportunity to forget to delete the object that
new created. Unless you have a good (that is, really simple, such as Vector_ref from §13.10 and §E.4) strategy for deleting
objects, try to keep news in constructors and deletes in destructors.



So far, so good, but how do we access the members of a vector, given only a pointer? Note that all classes support the
operator . (dot) for accessing members, given the name of an object:

vector v(4);

int x = v.size();

double d = v.get(3);

Similarly, all classes support the operator –> (arrow) for accessing members, given a pointer to an object:

vector* p = new vector(4);

int x = p–>size();

double d = p–>get(3);

Like . (dot), –> (arrow) can be used for both data members and function members. Since built-in types, such as int and
double, have no members, –> doesn’t apply to built-in types. Dot and arrow are often called member access operators.

17.8 Messing with types: void* and casts
Using pointers and free-store-allocated arrays, we are very close to the hardware. Basically, our operations on pointers
(initialization, assignment, *, and [ ]) map directly to machine instructions. At this level, the language offers only a bit of
notational convenience and the compile-time consistency offered by the type system. Occasionally, we have to give up even
that last bit of protection.

Naturally, we don’t want to make do without the protection of the type system, but sometimes there is no logical alternative
(e.g., we need to interact with another language that doesn’t know about C++’s types). There are also an unfortunate number of
cases where we need to interface with old code that wasn’t designed with static type safety in mind. For that, we need two
things:

• A type of pointer that points to memory without knowing what kinds of objects reside in that memory
• An operation to tell the compiler what kind of type to assume (without proof) for memory pointed to by one of those
pointers

The type void* means “pointer to some memory that the compiler doesn’t know the type of.” We use void* when we want to
transmit an address between pieces of code that really don’t know each other’s types. Examples are the “address” arguments of
a callback function (§16.3.1) and the lowest level of memory allocators (such as the implementation of the new operator).

There are no objects of type void, but as we have seen, we use void to mean “no value returned”:
Click here to view code image

void v;         // error: there are no objects of type void
void f();       // f() returns nothing — f() does not return an object of type void

A pointer to any object type can be assigned to a void*. For example:
Click here to view code image

void* pv1 = new int;                    // OK: int* converts to void*
void* pv2 = new double[10];     // OK: double* converts to void*

Since the compiler doesn’t know what a void* points to, we must tell it:
Click here to view code image

void f(void* pv)

{

          void* pv2 = pv;               // copying is OK (copying is what void*s are for)
          double* pd = pv;           // error: cannot convert void* to double*
          *pv = 7;                            // error: cannot dereference a void*
                                                        // (we don’t know what type of object it points to)
          pv[2] = 9;                        // error: cannot subscript a void*
          int* pi = static_cast<int*>(pv);       // OK: explicit conversion
          // . . .
}



A static_cast can be used to explicitly convert between related pointer types, such as void* and double* (§A.5.7). The
name static_cast is a deliberately ugly name for an ugly (and dangerous) operation — use it only when absolutely necessary.
You shouldn’t find it necessary very often — if at all. An operation such as static_cast is called an explicit type conversion
(because that’s what it does) or colloquially a cast (because it is used to support something that’s broken).

C++ offers two casts that are potentially even nastier than static_cast:
• reinterpret_cast can cast between unrelated types, such as int and double*.
• const_cast can “cast away const.”

For example:
Click here to view code image

Register* in = reinterpret_cast<Register*>(0xff);

void f(const Buffer* p)

{

          Buffer* b = const_cast<Buffer*>(p);

          // . . .
}

The first example is the classical necessary and proper use of a reinterpret_cast. We tell the compiler that a certain part of
memory (the memory starting with location 0xFF) is to be considered a Register (presumably with special semantics). Such
code is necessary when you write things like device drivers.

In the second example, const_cast strips the const from the const Buffer* called p. Presumably, we know what we are
doing.

At least static_cast can’t mess with the pointer/integer distinction or with “const-ness,” so prefer static_cast if you feel
the need for a cast. When you think you need a cast, reconsider: Is there a way to write the code without the cast? Is there a
way to redesign that part of the program so that the cast is not needed? Unless you are interfacing to other people’s code or to
hardware, there usually is a way. If not, expect subtle and nasty bugs. Don’t expect code using reinterpret_cast to be
portable.

17.9 Pointers and references
You can think of a reference as an automatically dereferenced immutable pointer or as an alternative name for an object.
Pointers and references differ in these ways:

• Assignment to a pointer changes the pointer’s value (not the pointed-to value).
• To get a pointer you generally need to use new or &.
• To access an object pointed to by a pointer you use * or [ ].
• Assignment to a reference changes the value of the object referred to (not the reference itself).
• You cannot make a reference refer to a different object after initialization.
• Assignment of references does deep copy (assigns to the referred-to object); assignment of pointers does not (assigns to
the pointer object itself).

• Beware of null pointers.
For example:



Click here to view code image

int x = 10;

int* p = &x;                       // you need & to get a pointer
*p = 7;                                // use * to assign to x through p
int x2 = *p;                        // read x through p
int* p2 = &x2;                   // get a pointer to another int
p2 = p;                               // p2 and p both point to x
p = &x2;                            // make p point to another object

The corresponding example for references is
Click here to view code image

int y = 10;

int& r = y;                       // the & is in the type, not in the initializer
r = 7;                                // assign to y through r (no * needed)
int y2 = r;                        // read y through r (no * needed)
int& r2 = y2;              // get a reference to another int
r2 = r;                         // the value of y is assigned to y2
r = &y2;                     // error: you can’t change the value of a reference
                                   // (no assignment of an int* to an int&)

Note the last example; it is not just this construct that will fail — there is no way to get a reference to refer to a different object
after initialization. If you need to point to something different, use a pointer. For ideas of how to use pointers, see §17.9.3.

A reference and a pointer are both implemented by using a memory address. They just use that address differently to provide
you — the programmer — slightly different facilities.

17.9.1 Pointer and reference parameters
When you want to change the value of a variable to a value computed by a function, you have three choices. For example:
Click here to view code image

int incr_v(int x) { return x+1; }      // compute a new value and return it
void incr_p(int* p) { ++*p; }         // pass a pointer
                                                               // (dereference it and increment the result)
void incr_r(int& r) { ++r; }            // pass a reference

How do you choose? We think returning the value often leads to the most obvious (and therefore least error-prone) code; that
is:
Click here to view code image

int x = 2;

x = incr_v(x);           // copy x to incr_v(); then copy the result out and assign it

We prefer that style for small objects, such as an int. In addition, if a “large object” has a move constructor (§18.3.4) we can
efficiently pass it back and forth.

How do we choose between using a reference argument and using a pointer argument? Unfortunately, either way has both
attractions and problems, so again the answer is less than clear-cut. You have to make a decision based on the individual
function and its likely uses.

Using a pointer argument alerts the programmer that something might be changed. For example:
Click here to view code image

int x = 7;

incr_p(&x)             // the & is needed
incr_r(x);

The need to use & in incr_p(&x) alerts the user that x might be changed. In contrast, incr_r(x) “looks innocent.” This leads to
a slight preference for the pointer version.

On the other hand, if you use a pointer as a function argument, the function has to beware that someone might call it with a
null pointer, that is, with a nullptr. For example:
Click here to view code image



incr_p(nullptr);           // crash: incr_p() will try to dereference the null pointer
int* p = nullptr;

incr_p(p);                     // crash: incr_p() will try to dereference the null pointer

This is obviously nasty. The person who writes incr_p() can protect against this:
Click here to view code image

void incr_p(int* p)

{

          if (p==nullptr) error("null pointer argument to incr_p()");

          ++*p;        // dereference the pointer and increment the object pointed to
}

But now incr_p() suddenly doesn’t look as simple and attractive as before. Chapter 5 discusses how to cope with bad
arguments. In contrast, users of a reference (such as incr_r()) are entitled to assume that a reference refers to an object.

If “passing nothing” (passing no object) is acceptable from the point of view of the semantics of the function, we must use a
pointer argument. Note: That’s not the case for an increment operation — hence the need for throwing an exception for
p==nullptr.

So, the real answer is: “The choice depends on the nature of the function”:

• For tiny objects prefer pass-by-value.
• For functions where “no object” (represented by nullptr) is a valid argument use a pointer parameter (and remember to
test for nullptr).

• Otherwise, use a reference parameter.
See also §8.5.6.

17.9.2 Pointers, references, and inheritance
In §14.3, we saw how a derived class, such as Circle, could be used where an object of its public base class Shape was
required. We can express that idea in terms of pointers or references: a Circle* can be implicitly converted to a Shape*

because Shape is a public base of Circle. For example:
Click here to view code image

void rotate(Shape* s, int n);                 // rotate *s n degrees

Shape* p = new Circle{Point{100,100},40};

Circle c {Point{200,200},50};

rotate(p,35);

rotate(&c,45);

And similarly for references:
Click here to view code image

void rotate(Shape& s, int n);           // rotate s n degrees

Shape& r = c;

rotate(r,55);

rotate(*p,65);

rotate(c,75);

This is crucial for most object-oriented programming techniques (§14.3–4).

17.9.3 An example: lists
Lists are among the most common and useful data structures. Usually, a list is made out of “links” where each link holds some
information and pointers to other links. This is one of the classical uses of pointers. For example, we could represent a short
list of Norse gods like this:



A list like this is called a doubly-linked list because given a link, we can find both the predecessor and the successor. A list
where we can find only the successor is called a singly-linked list. We use doubly-linked lists when we want to make it easy
to remove an element. We can define these links like this:
Click here to view code image

struct Link {

          string value;

          Link* prev;

          Link* succ;

          Link(const string& v, Link* p = nullptr, Link* s = nullptr)

                    : value{v}, prev{p}, succ{s} { }

};

That is, given a Link, we can get to its successor using the succ pointer and to its predecessor using the prev pointer. We use
the null pointer to indicate that a Link doesn’t have a successor or a predecessor. We can build our list of Norse gods like this:
Click here to view code image

Link* norse_gods = new Link{"Thor",nullptr,nullptr};

norse_gods = new Link{"Odin",nullptr,norse_gods};

norse_gods–>succ–>prev = norse_gods;

norse_gods = new Link{"Freia",nullptr,norse_gods};

norse_gods–>succ–>prev = norse_gods;

We built that list by creating the Links and tying them together as in the picture: first Thor, then Odin as the predecessor of
Thor, and finally Freia as the predecessor of Odin. You can follow the pointer to see that we got it right, so that each succ and
prev points to the right god. However, the code is obscure because we didn’t explicitly define and name an insert operation:
Click here to view code image

Link* insert(Link* p, Link* n)      // insert n before p (incomplete)
{

             n–>succ = p;                        // p comes after n
          p–>prev–>succ = n;           // n comes after what used to be p’s predecessor
          n–>prev = p–>prev;           // p’s predecessor becomes n’s predecessor
          p–>prev = n;                        // n becomes p’s predecessor
          return n;

}

This works provided that p really points to a Link and that the Link pointed to by p really has a predecessor. Please convince
yourself that this really is so. When thinking about pointers and linked structures, such as a list made out of Links, we
invariably draw little box-and-arrow diagrams on paper to verify that our code works for small examples. Please don’t be too
proud to rely on this effective low-tech design technique.

That version of insert() is incomplete because it doesn’t handle the cases where n, p, or p–>prev is nullptr. We add the
appropriate tests for the null pointer and get the messier, but correct, version:
Click here to view code image

Link* insert(Link* p, Link* n)     // insert n before p; return n
{

          if (n==nullptr) return p;

          if (p==nullptr) return n;

          n–>succ = p;                      // p comes after n
          if (p–>prev) p–>prev–>succ = n;

          n–>prev = p–>prev;         // p’s predecessor becomes n’s predecessor
          p–>prev = n;                      // n becomes p’s predecessor
          return n;

}



Given that, we could write
Click here to view code image

Link* norse_gods = new Link{"Thor"};

norse_gods = insert(norse_gods,new Link{"Odin"});

norse_gods = insert(norse_gods,new Link{"Freia"});

Now all the error-prone fiddling with the prev and succ pointers has disappeared from sight. Pointer fiddling is tedious and
error-prone and should be hidden in well-written and well-tested functions. In particular, many errors in conventional code
come from people forgetting to test pointers against nullptr — just as we (deliberately) did in the first version of insert().

Note that we used default arguments (§15.3.1, §A.9.2) to save users from mentioning predecessors and successors in every
constructor use.

17.9.4 List operations
The standard library provides a list class, which we will describe in §20.4. It hides all link manipulation, but here we will
elaborate on our notion of list based on the Link class to get a feel for what goes on “under the covers” of list classes and see
more examples of pointer use.

What operations does our Link class need to allow its users to avoid “pointer fiddling”? That’s to some extent a matter of
taste, but here is a useful set:

• The constructor
• insert: insert before an element
• add: insert after an element
• erase: remove an element
• find: find a Link with a given value
• advance: get the nth successor

We could write these operations like this:
Click here to view code image

Link* add(Link* p, Link* n)        // insert n after p; return n
{

          // much like insert (see exercise 11)
}

Link* erase(Link* p)                    // remove *p from list; return p’s successor
{

          if (p==nullptr) return nullptr;

          if (p–>succ) p–>succ–>prev = p–>prev;

          if (p–>prev) p–>prev–>succ = p–>succ;

          return p–>succ;

}

Link* find(Link* p, const string& s)              // find s in list;
                                                                             // return nullptr for “not found”
{

          while (p) {

                    if (p–>value == s) return p;

                    p = p–>succ;

          }
          return nullptr;

}

Link* advance(Link* p, int n)                        // move n positions in list
                                                                            // return nullptr for “not found”
          // positive n moves forward, negative backward
{

          if (p==nullptr) return nullptr;

          if (0<n) {

                    while (n––) {

                              if (p–>succ == nullptr) return nullptr;



                              p = p–>succ;

                    }
          }
          else if (n<0) {

                    while (n++) {

                              if (p–>prev == nullptr) return nullptr;

                              p = p–>prev;

                    }
          }
          return p;

}

Note the use of the postfix n++. This form of increment (“post-increment”) yields the value before the increment as its value.

17.9.5 List use
As a little exercise, let’s build two lists:
Click here to view code image

Link* norse_gods = new Link("Thor");

norse_gods = insert(norse_gods,new Link{"Odin"});

norse_gods = insert(norse_gods,new Link{"Zeus"});

norse_gods = insert(norse_gods,new Link{"Freia"});

Link* greek_gods = new Link("Hera");

greek_gods = insert(greek_gods,new Link{"Athena"});

greek_gods = insert(greek_gods,new Link{"Mars"});

greek_gods = insert(greek_gods,new Link{"Poseidon"});

“Unfortunately,” we made a couple of mistakes: Zeus is a Greek god, rather than a Norse god, and the Greek god of war is
Ares, not Mars (Mars is his Latin/Roman name). We can fix that:
Click here to view code image

Link* p = find(greek_gods, "Mars");

if (p) p–>value = "Ares";

Note how we were cautious about find() returning a nullptr. We think that we know that it can’t happen in this case (after all,
we just inserted Mars into greek_gods), but in a real example someone might change that code.

Similarly, we can move Zeus into his correct Pantheon:
Click here to view code image

Link* p = find(norse_gods,"Zeus");

if (p) {

          erase(p);

          insert(greek_gods,p);

}

Did you notice the bug? It’s quite subtle (unless you are used to working directly with links). What if the Link we erase() is
the one pointed to by norse_gods? Again, that doesn’t actually happen here, but to write good, maintainable code, we have to
take that possibility into account:
Click here to view code image

Link* p = find(norse_gods, "Zeus");

if (p) {

          if (p==norse_gods) norse_gods = p–>succ;

          erase(p);

          greek_gods = insert(greek_gods,p);

}

While we were at it, we also corrected the second bug: when we insert Zeus before the first Greek god, we need to make
greek_gods point to Zeus’s Link. Pointers are extremely useful and flexible, but subtle.

Finally, let’s print out those lists:
Click here to view code image

void print_all(Link* p)

{



          cout << "{ ";

          while (p) {

                    cout << p–>value;

                    if (p=p–>succ) cout << ", ";

          }
          cout << " }";

}

print_all(norse_gods);

cout<<"\n";

print_all(greek_gods);

cout<<"\n";

This should give
Click here to view code image

{ Freia, Odin, Thor }

{ Zeus, Poseidon, Ares, Athena, Hera }

17.10 The this pointer
Note that each of our list functions takes a Link* as its first argument and accesses data in that object. That’s the kind of
function that we often make member functions. Could we simplify Link (or link use) by making the operations members? Could
we maybe make the pointers private so that only the member functions have access to them? We could:
Click here to view code image

class Link {

public:

          string value;

          Link(const string& v, Link* p = nullptr, Link* s = nullptr)

                    : value{v}, prev{p}, succ{s} { }

          Link* insert(Link* n) ;                                   // insert n before this object
          Link* add(Link* n) ;                                       // insert n after this object
          Link* erase() ;                                                  // remove this object from list
          Link* find(const string& s);                          // find s in list
          const Link* find(const string& s) const;    // find s in const list (see §18.5.1)

          Link* advance(int n) const;                          // move n positions in list

          Link* next() const { return succ; }

          Link* previous() const { return prev; }

private:

          Link* prev;

          Link* succ;

};

This looks promising. We defined the operations that don’t change the state of a Link into const member functions. We added
(nonmodifying) next() and previous() functions so that users could iterate over lists (of Links) — those are needed now that
direct access to succ and prev is prohibited. We left value as a public member because (so far) we have no reason not to; it
is “just data.”

Now let’s try to implement Link::insert() by copying our previous global insert() and modifying it suitably:
Click here to view code image

Link* Link::insert(Link* n)              // insert n before p; return n
{

          Link* p = this;                          // pointer to this object
          if (n==nullptr) return p;         // nothing to insert
          if (p==nullptr) return n;         // nothing to insert into
          n–>succ = p;                            // p comes after n
          if (p–>prev) p–>prev–>succ = n;

          n–>prev = p–>prev;              // p’s predecessor becomes n’s predecessor
          p–>prev = n;                           // n becomes p’s predecessor
          return n;

}



But how do we get a pointer to the object for which Link::insert() was called? Without help from the language we can’t.
However, in every member function, the identifier this is a pointer that points to the object for which the member function was
called. Alternatively, we could simply use this instead of p:
Click here to view code image

Link* Link::insert(Link* n)            // insert n before this object; return n
{

          if (n==nullptr) return this;

          if (this==nullptr) return n;

          n–>succ = this;                       // this object comes after n
          if (this–>prev) this–>prev–>succ = n;

          n–>prev = this–>prev;          // this object’s predecessor
                                                                // becomes n’s predecessor
          this–>prev = n;                       // n becomes this object’s predecessor
          return n;

}

This is a bit verbose, but we don’t need to mention this to access a member, so we can abbreviate:
Click here to view code image

Link* Link::insert(Link* n)    // insert n before this object; return n
{

          if (n==nullptr) return this;

          if (this==nullptr) return n;

          n–>succ = this;              // this object comes after n
          if (prev) prev–>succ = n;

          n–>prev = prev;            // this object’s predecessor becomes n’s predecessor
          prev = n;                        // n becomes this object’s predecessor
          return n;

}

In other words, we have been using the this pointer — the pointer to the current object — implicitly every time we accessed a
member. It is only when we need to refer to the whole object that we need to mention it explicitly.

Note that this has a specific meaning: it points to the object for which a member function is called. It does not point to any
old object. The compiler ensures that we do not change the value of this in a member function. For example:
Click here to view code image

struct S {

          // . . .
          void mutate(S* p)

          {
                    this = p;       // error: this is immutable
                    // . . .
          }
};

17.10.1 More link use
Having dealt with the implementation issues, we can see how the use now looks:
Click here to view code image

Link* norse_gods = new Link{"Thor"};

norse_gods = norse_gods–>insert(new Link{"Odin"});

norse_gods = norse_gods–>insert(new Link{"Zeus"});

norse_gods = norse_gods–>insert(new Link{"Freia"});

Link* greek_gods = new Link{"Hera"};

greek_gods = greek_gods–>insert(new Link{"Athena"});

greek_gods = greek_gods–>insert(new Link{"Mars"});

greek_gods = greek_gods–>insert(new Link{"Poseidon"});

That’s very much like before. As before, we correct our “mistakes.” Correct the name of the god of war:
Click here to view code image



Link* p = greek_gods–>find("Mars");

if (p) p–>value = "Ares";

Move Zeus into his correct Pantheon:
Click here to view code image

Link* p2 = norse_gods–>find("Zeus");

if (p2) {

          if (p2==norse_gods) norse_gods = p2–>next();

          p2–>erase();

          greek_gods = greek_gods–>insert(p2);

}

Finally, let’s print out those lists:
Click here to view code image

void print_all(Link* p)

{

          cout << "{ ";

          while (p) {

                    cout << p–>value;

                    if (p=p–>next()) cout << ", ";

          }
          cout << " }";

}

print_all(norse_gods);

cout<<"\n";

print_all(greek_gods);

cout<<"\n";

This should again give
Click here to view code image

{ Freia, Odin, Thor }

{ Zeus, Poseidon, Ares, Athena, Hera }

So, which version do you like better: the one where insert(), etc. are member functions or the one where they are freestanding
functions? In this case the differences don’t matter much, but see §9.7.5.

One thing to observe here is that we still don’t have a list class, only a link class. That forces us to keep worrying about
which pointer is the pointer to the first element. We can do better than that — by defining a class List — but designs along the
lines presented here are very common. The standard library list is presented in §20.4.

 Drill

This drill has two parts. The first exercises/builds your understanding of free-store-allocated arrays and contrasts arrays with
vectors:

1. Allocate an array of ten ints on the free store using new.
2. Print the values of the ten ints to cout.
3. Deallocate the array (using delete[]).
4. Write a function print_array10(ostream& os, int* a) that prints out the values of a (assumed to have ten elements) to

os.
5. Allocate an array of ten ints on the free store; initialize it with the values 100, 101, 102, etc.; and print out its values.
6. Allocate an array of 11 ints on the free store; initialize it with the values 100, 101, 102, etc.; and print out its values.
7. Write a function print_array(ostream& os, int* a, int n) that prints out the values of a (assumed to have n elements)

to os.
8. Allocate an array of 20 ints on the free store; initialize it with the values 100, 101, 102, etc.; and print out its values.
9. Did you remember to delete the arrays? (If not, do it.)



10. Do 5, 6, and 8 using a vector instead of an array and a print_vector() instead of print_array().
The second part focuses on pointers and their relation to arrays. Using print_array() from the last drill:

1. Allocate an int, initialize it to 7, and assign its address to a variable p1.
2. Print out the value of p1 and of the int it points to.
3. Allocate an array of seven ints; initialize it to 1, 2, 4, 8, etc.; and assign its address to a variable p2.
4. Print out the value of p2 and of the array it points to.
5. Declare an int* called p3 and initialize it with p2.
6. Assign p1 to p2.
7. Assign p3 to p2.
8. Print out the values of p1 and p2 and of what they point to.
9. Deallocate all the memory you allocated from the free store.

10. Allocate an array of ten ints; initialize it to 1, 2, 4, 8, etc.; and assign its address to a variable p1.
11. Allocate an array of ten ints, and assign its address to a variable p2.
12. Copy the values from the array pointed to by p1 into the array pointed to by p2.
13. Repeat 10–12 using a vector rather than an array.

Review
1. Why do we need data structures with varying numbers of elements?
2. What four kinds of storage do we have for a typical program?
3. What is the free store? What other name is commonly used for it? What operators support it?
4. What is a dereference operator and why do we need one?
5. What is an address? How are memory addresses manipulated in C++?
6. What information about a pointed-to object does a pointer have? What useful information does it lack?
7. What can a pointer point to?
8. What is a leak?
9. What is a resource?

10. How can we initialize a pointer?
11. What is a null pointer? When do we need to use one?
12. When do we need a pointer (instead of a reference or a named object)?
13. What is a destructor? When do we want one?
14. When do we want a virtual destructor?
15. How are destructors for members called?
16. What is a cast? When do we need to use one?
17. How do we access a member of a class through a pointer?
18. What is a doubly-linked list?
19. What is this and when do we need to use it?

Terms
address
address of: &
allocation
cast
container
contents of: *
deallocationa



delete

delete[]

dereference
destructor
free store
link
list
member access: –>

member destructor
memory
memory leak
new

null pointer
nullptr

pointer
range
resource leak
subscripting
subscript: [ ]
this

type conversion
virtual destructor
void*

Exercises
1. What is the output format of pointer values on your implementation? Hint: Don’t read the documentation.
2. How many bytes are there in an int? In a double? In a bool? Do not use sizeof except to verify your answer.
3. Write a function, void to_lower(char* s), that replaces all uppercase characters in the C-style string s with their

lowercase equivalents. For example, Hello, World! becomes hello, world!. Do not use any standard library
functions. A C-style string is a zero-terminated array of characters, so if you find a char with the value 0 you are at the
end.

4. Write a function, char* strdup(const char*), that copies a C-style string into memory it allocates on the free store. Do
not use any standard library functions.

5. Write a function, char* findx(const char* s, const char* x), that finds the first occurrence of the C-style string x in
s.

6. This chapter does not say what happens when you run out of memory using new. That’s called memory exhaustion. Find
out what happens. You have two obvious alternatives: look for documentation, or write a program with an infinite loop
that allocates but never deallocates. Try both. Approximately how much memory did you manage to allocate before
failing?

7. Write a program that reads characters from cin into an array that you allocate on the free store. Read individual
characters until an exclamation mark (!) is entered. Do not use a std::string. Do not worry about memory exhaustion.

8. Do exercise 7 again, but this time read into a std::string rather than to memory you put on the free store (string knows
how to use the free store for you).

9. Which way does the stack grow: up (toward higher addresses) or down (toward lower addresses)? Which way does the
free store initially grow (that is, before you use delete)? Write a program to determine the answers.

10. Look at your solution of exercise 7. Is there any way that input could get the array to overflow; that is, is there any way
you could enter more characters than you allocated space for (a serious error)? Does anything reasonable happen if you
try to enter more characters than you allocated?



11. Complete the “list of gods” example from §17.10.1 and run it.
12. Why did we define two versions of find()?
13. Modify the Link class from §17.10.1 to hold a value of a struct God. struct God should have members of type

string: name, mythology, vehicle, and weapon. For example, God{"Zeus", "Greek", "", "lightning"} and
God{"Odin", "Norse", "Eight-legged flying horse called Sleipner", "Spear called Gungnir"}. Write a
print_all() function that lists gods with their attributes one per line. Add a member function add_ordered() that places
its new element in its correct lexicographical position. Using the Links with the values of type God, make a list of gods
from three mythologies; then move the elements (gods) from that list to three lexicographically ordered lists — one for
each mythology.

14. Could the “list of gods” example from §17.10.1 have been written using a singly-linked list; that is, could we have left
the prev member out of Link? Why might we want to do that? For what kind of examples would it make sense to use a
singly-linked list? Re-implement that example using only a singly-linked list.

Postscript
Why bother with messy low-level stuff like pointers and free store when we can simply use vector? Well, one answer is that
someone has to design and implement vector and similar abstractions, and we’d like to know how that’s done. There are
programming languages that don’t provide facilities equivalent to pointers and thus dodge the problems with low-level
programming. Basically, programmers of such languages delegate the tasks that involve direct access to hardware to C++
programmers (and programmers of other languages suitable for low-level programming). Our favorite reason, however, is
simply that you can’t really claim to understand computers and programming until you have seen how software meets
hardware. People who don’t know about pointers, memory addresses, etc. often have the strangest ideas of how their
programming language facilities work; such wrong ideas can lead to code that’s “interestingly poor.”



18. Vectors and Arrays

“Caveat emptor!”
—Good advice

This chapter describes how vectors are copied and accessed through subscripting. To do that, we discuss copying in general
and consider vector’s relation to the lower-level notion of arrays. We present arrays’ relation to pointers and consider the
problems arising from their use. We also present the five essential operations that must be considered for every type:
construction, default construction, copy construction, copy assignment, and destruction. In addition, a container needs a move
constructor and a move assignment.

18.1 Introduction
18.2 Initialization
18.3 Copying

18.3.1 Copy constructors
18.3.2 Copy assignments
18.3.3 Copy terminology
18.3.4 Moving

18.4 Essential operations
18.4.1 Explicit constructors
18.4.2 Debugging constructors and destructors

18.5 Access to vector elements
18.5.1 Overloading on const

18.6 Arrays
18.6.1 Pointers to array elements
18.6.2 Pointers and arrays
18.6.3 Array initialization
18.6.4 Pointer problems

18.7 Examples: palindrome
18.7.1 Palindromes using string

18.7.2 Palindromes using arrays
18.7.3 Palindromes using pointers

18.1 Introduction
To get into the air, a plane has to accelerate along the runway until it moves fast enough to “jump” into the air. While the plane
is lumbering along the runway, it is little more than a particularly heavy and awkward truck. Once in the air, it soars to become
an altogether different, elegant, and efficient vehicle. It is in its true element.

In this chapter, we are in the middle of a “run” to gather enough programming language features and techniques to get away
from the constraints and difficulties of plain computer memory. We want to get to the point where we can program using types
that provide exactly the properties we want based on logical needs. To “get there” we have to overcome a number of
fundamental constraints related to access to the bare machine, such as the following:

• An object in memory is of fixed size.
• An object in memory is in one specific place.
• The computer provides only a few fundamental operations on such objects (such as copying a word, adding the values
from two words, etc.).

Basically, those are the constraints on the built-in types and operations of C++ (as inherited through C from hardware; see



§22.2.5 and Chapter 27). In Chapter 17, we saw the beginnings of a vector type that controls all access to its elements and
provides us with operations that seem “natural” from the point of view of a user, rather than from the point of view of
hardware.

This chapter focuses on the notion of copying. This is an important but rather technical point: What do we mean by copying a
nontrivial object? To what extent are the copies independent after a copy operation? What copy operations are there? How do
we specify them? And how do they relate to other fundamental operations, such as initialization and cleanup?

Inevitably, we get to discuss how memory is manipulated when we don’t have higher-level types such as vector and string.
We examine arrays and pointers, their relationship, their use, and the traps and pitfalls of their use. This is essential
information to anyone who gets to work with low-level uses of C++ or C code.

Please note that the details of vector are peculiar to vectors and the C++ ways of building new higher-level types from
lower-level ones. However, every “higher-level” type (string, vector, list, map, etc.) in every language is somehow built
from the same machine primitives and reflects a variety of resolutions to the fundamental problems described here.

18.2 Initialization
Consider our vector as it was at the end of Chapter 17:
Click here to view code image

class vector {

          int sz;                            // the size
          double* elem;            // a pointer to the elements
public:

          vector(int s)                                                               // constructor
                    :sz{s}, elem{new double[s]} { /* . . . */ }     // allocates memory
          ~vector()                                                                    // destructor
                    { delete[] elem; }                                            // deallocates memory
          // . . .
};

That’s fine, but what if we want to initialize a vector to a set of values that are not defaults? For example:
Click here to view code image

vector v1 = {1.2, 7.89, 12.34 };

We can do that, and it is much better than initializing to default values and then assigning the values we really want:
Click here to view code image

vector v2(2);           // tedious and error-prone
v2[0] = 1.2;

v2[1] = 7.89;

v2[2] = 12.34;

Compared to v1, the “initialization” of v2 is tedious and error-prone (we deliberately got the number of elements wrong in that
code fragment). Using push_back() can save us from mentioning the size:
Click here to view code image

vector v3;                            // tedious and repetitive
v2.push_back(1.2);

v2.push_back(7.89);

v2.push_back(12.34);

But this is still repetitive, so how do we write a constructor that accepts an initializer list as its argument? A { }-delimited list
of elements of type T is presented to the programmer as an object of the standard library type initializer_list<T>, a list of Ts,
so we can write
Click here to view code image

class vector {

          int sz;                               // the size
          double* elem;               // a pointer to the elements
public:

          vector(int s)                    // constructor (s is the element count)
                    :sz{s}, elem{new double[sz]}    // uninitialized memory for elements
          {



                    for (int i = 0; i<sz; ++i) elem[i] = 0.0;   // initialize
          }

          vector(initializer_list<double> lst)                  // initializer-list constructor
                    :sz{lst.size()}, elem{new double[sz]}   // uninitialized memory
                                                                                         // for elements
          {
                    copy( lst.begin(),lst.end(),elem);    // initialize (using std::copy(); §B.5.2)
          }
          // . . .
};

We used the standard library copy algorithm (§B.5.2). It copies a sequence of elements specified by its first two arguments
(here, the beginning and the end of the initializer_list) to a sequence of elements starting with its third argument (here, the
vector’s elements starting at elem).

Now we can write
Click here to view code image

vector v1 = {1,2,3};       // three elements 1.0, 2.0, 3.0
vector v2(3);                   // three elements each with the (default) value 0.0

Note how we use ( ) for an element count and { } for element lists. We need a notation to distinguish them. For example:
Click here to view code image

vector v1 {3};         // one element with the value 3.0
vector v2(3);           // three elements each with the (default) value 0.0

This is not very elegant, but it is effective. If there is a choice, the compiler will interpret a value in a { } list as an element
value and pass it to the initializer-list constructor as an element of an initializer_list.

In most cases — including all cases we will encounter in this book — the = before an { } initializer list is optional, so we
can write
Click here to view code image

vector v11 = {1,2,3};      // three elements 1.0, 2.0, 3.0
vector v12 {1,2,3};          // three elements 1.0, 2.0, 3.0

The difference is purely one of style.
Note that we pass initializer_list<double> by value. That was deliberate and required by the language rules: an

initializer_list is simply a handle to elements allocated “elsewhere” (see §B.6.4).

18.3 Copying
Consider again our incomplete vector:
Click here to view code image

class vector {

          int sz;                        // the size
          double* elem;         // a pointer to the elements
public:

          vector(int s)                                                                // constructor
                    :sz{s}, elem{new double[s]} { /* . . . */ }      // allocates memory
          ~vector()                                                                     // destructor
                    { delete[] elem; }                                             // deallocates memory
          // . . .
};

Let’s try to copy one of these vectors:
Click here to view code image

void f(int n)

{

          vector v(3);              // define a vector of 3 elements



          v.set(2,2.2);              // set v[2] to 2.2
          vector v2 = v;           // what happens here?
          // . . .
}

Ideally, v2 becomes a copy of v (that is, = makes copies); that is, v2.size()==v.size() and v2[i]==v[i] for all is in the range
[0:v.size()). Furthermore, all memory is returned to the free store upon exit from f(). That’s what the standard library vector

does (of course), but it’s not what happens for our still-far-too-simple vector. Our task is to improve our vector to get it to
handle such examples correctly, but first let’s figure out what our current version actually does. Exactly what does it do
wrong? How? And why? Once we know that, we can probably fix the problems. More importantly, we have a chance to
recognize and avoid similar problems when we see them in other contexts.

The default meaning of copying for a class is “Copy all the data members.” That often makes perfect sense. For example, we
copy a Point by copying its coordinates. But for a pointer member, just copying the members causes problems. In particular,
for the vectors in our example, it means that after the copy, we have v.sz==v2.sz and v.elem==v2.elem so that our
vectors look like this:

That is, v2 doesn’t have a copy of v’s elements; it shares v’s elements. We could write
Click here to view code image

v.set(1,99);                 // set v[1] to 99
v2.set(0,88);               // set v2[0] to 88
cout << v.get(0) << ' ' << v2.get(1);

The result would be the output 88 99. That wasn’t what we wanted. Had there been no “hidden” connection between v and v2,
we would have gotten the output 0 0, because we never wrote to v[0] or to v2[1]. You could argue that the behavior we got is
“interesting,” “neat!” or “sometimes useful,” but that is not what we intended or what the standard library vector provides.
Also, what happens when we return from f() is an unmitigated disaster. Then, the destructors for v and v2 are implicitly called;
v’s destructor frees the storage used for the elements using

delete[] elem;

and so does v2’s destructor. Since elem points to the same memory location in both v and v2, that memory will be freed twice
with likely disastrous results (§17.4.6).

18.3.1 Copy constructors
So, what do we do? We’ll do the obvious: provide a copy operation that copies the elements and make sure that this copy
operation gets called when we initialize one vector with another.

Initialization of objects of a class is done by a constructor. So, we need a constructor that copies. Unsurprisingly, such a
constructor is called a copy constructor. It is defined to take as its argument a reference to the object from which to copy. So,
for class vector we need

vector(const vector&);

This constructor will be called when we try to initialize one vector with another. We pass by reference because we
(obviously) don’t want to copy the argument of the constructor that defines copying. We pass by const reference because we
don’t want to modify our argument (§8.5.6). So we refine vector like this:
Click here to view code image

class vector {

          int sz;

          double* elem;

public:

          vector(const vector&) ;          // copy constructor: define copy
          // . . .
};



The copy constructor sets the number of elements (sz) and allocates memory for the elements (initializing elem) before
copying element values from the argument vector:
Click here to view code image

vector:: vector(const vector& arg)

// allocate elements, then initialize them by copying
          :sz{arg.sz}, elem{new double[arg.sz]}

{

          copy(arg,arg+sz,elem);  // std::copy(); see §B.5.2

}

Given this copy constructor, consider again our example:

vector v2 = v;

This definition will initialize v2 by a call of vector’s copy constructor with v as its argument. Again given a vector with
three elements, we now get

Given that, the destructor can do the right thing. Each set of elements is correctly freed. Obviously, the two vectors are now
independent so that we can change the value of elements in v without affecting v2 and vice versa. For example:
Click here to view code image

v.set(1,99);                            // set v[1] to 99
v2.set(0,88);                          // set v2[0] to 88
cout << v.get(0) << ' ' << v2.get(1);

This will output 0 0.
Instead of saying

vector v2 = v;

we could equally well have said

vector v2 {v};

When v (the initializer) and v2 (the variable being initialized) are of the same type and that type has copying conventionally
defined, those two notations mean exactly the same thing and you can use whichever notation you like better.

18.3.2 Copy assignments

We handle copy construction (initialization), but we can also copy vectors by assignment. As with copy initialization, the
default meaning of copy assignment is memberwise copy, so with vector as defined so far, assignment will cause a double
deletion (exactly as shown for copy constructors in §18.3.1) plus a memory leak. For example:
Click here to view code image

void f2(int n)

{

          vector v(3);               // define a vector
          v.set(2,2.2);

          vector v2(4);

          v2 = v;                       // assignment: what happens here?
          // . . .
}

We would like v2 to be a copy of v (and that’s what the standard library vector does), but since we have said nothing about
the meaning of assignment of our vector, the default assignment is used; that is, the assignment is a memberwise copy so that
v2’s sz and elem become identical to v’s sz and elem, respectively. We can illustrate that like this:



When we leave f2(), we have the same disaster as we had when leaving f() in §18.3 before we added the copy constructor: the
elements pointed to by both v and v2 are freed twice (using delete[]). In addition, we have leaked the memory initially
allocated for v2’s four elements. We “forgot” to free those. The remedy for this copy assignment is fundamentally the same as
for the copy initialization (§18.3.1). We define an assignment that copies properly:
Click here to view code image

class vector {

          int sz;

          double* elem;

public:

          vector& operator=(const vector&) ;         // copy assignment
          // . . .
};

vector& vector::operator=(const vector& a)

          // make this vector a copy of a
{

          double* p = new double[a.sz];                // allocate new space
          copy(a.elem,a.elem+a.sz,elem);             // copy elements
          delete[] elem;                                              // deallocate old space
          elem = p;                                                     // now we can reset elem
          sz = a.sz;

          return *this;                             // return a self-reference (see §17.10)
}

Assignment is a bit more complicated than construction because we must deal with the old elements. Our basic strategy is to
make a copy of the elements from the source vector:
Click here to view code image

          double* p = new double[a.sz];            // allocate new space
          copy(a.elem,a.elem+a.sz,elem);          // copy elements

Then we free the old elements from the target vector:
Click here to view code image

delete[] elem;                                       // deallocate old space

Finally, we let elem point to the new elements:
Click here to view code image

elem = p;                            // now we can reset elem
sz = a.sz;

We can represent the result graphically like this:

We now have a vector that doesn’t leak memory and doesn’t free (delete[]) any memory twice.

When implementing the assignment, you could consider simplifying the code by freeing the memory for the old elements
before creating the copy, but it is usually a very good idea not to throw away information before you know that you can replace
it. Also, if you did that, strange things would happen if you assigned a vector to itself:
Click here to view code image



vector v(10);

                     v = v;      // self-assignment

Please check that our implementation handles that case correctly (if not with optimal efficiency).

18.3.3 Copy terminology

Copying is an issue in most programs and in most programming languages. The basic issue is whether you copy a pointer (or
reference) or copy the information pointed to (referred to):

• Shallow copy copies only a pointer so that the two pointers now refer to the same object. That’s what pointers and
references do.

• Deep copy copies what a pointer points to so that the two pointers now refer to distinct objects. That’s what vectors,
strings, etc. do. We define copy constructors and copy assignments when we want deep copy for objects of our classes.

Here is an example of shallow copy:
Click here to view code image

int* p = new int{77};

int* q = p;                 // copy the pointer p
*p = 88;                     // change the value of the int pointed to by p and q

We can illustrate that like this:

In contrast, we can do a deep copy:
Click here to view code image

int* p = new int{77};

int* q = new int{*p};     // allocate a new int, then copy the value pointed to by p
*p = 88;                            // change the value of the int pointed to by p

We can illustrate that like this:

Using this terminology, we can say that the problem with our original vector was that it did a shallow copy, rather than
copying the elements pointed to by its elem pointer. Our improved vector, like the standard library vector, does a deep copy
by allocating new space for the elements and copying their values. Types that provide shallow copy (like pointers and
references) are said to have pointer semantics or reference semantics (they copy addresses). Types that provide deep copy
(like string and vector) are said to have value semantics (they copy the values pointed to). From a user perspective, types
with value semantics behave as if no pointers were involved — just values that can be copied. One way of thinking of types
with value semantics is that they “work just like integers” as far as copying is concerned.

18.3.4 Moving
If a vector has a lot of elements, it can be expensive to copy. So, we should copy vectors only when we need to. Consider an
example:
Click here to view code image

vector fill(istream& is)

{

          vector res;



          for (double x; is>>x; ) res.push_back(x);

          return res;

}

void use()

{

          vector vec = fill(cin);

          // ... use vec ...
}

Here, we fill the local vector res from the input stream and return it to use(). Copying res out of fill() and into vec could be
expensive. But why copy? We don’t want a copy! We can never use the original (res) after the return. In fact, res is destroyed
as part of the return from fill(). So how can we avoid the copy? Consider again how a vector is represented in memory:

We would like to “steal” the representation of res to use for vec. In other words, we would like vec to refer to the elements of
res without any copy.

After moving res’s element pointer and element count to vec, res holds no elements. We have successfully moved the value
from res out of fill() to vec. Now, res can be destroyed (simply and efficiently) without any undesirable side effects:

We have successfully moved 100,000 doubles out of fill() and into its caller at the cost of four single-word assignments.
How do we express such a move in C++ code? We define move operations to complement the copy operations:

Click here to view code image

class vector {

          int sz;

          double* elem;

public:

          vector(vector&& a);                    // move constructor
          vector& operator=(vector&&);      // move assignment
          // . . .
          };

The funny && notation is called an “rvalue reference.” We use it for defining move operations. Note that move operations do
not take const arguments; that is, we write (vector&&) and not (const vector&&). Part of the purpose of a move operation
is to modify the source, to make it “empty.” The definitions of move operations tend to be simple. They tend to be simpler and
more efficient than their copy equivalents. For vector, we get
Click here to view code image

vector::vector(vector&& a)

          :sz{a.sz}, elem{a.elem}                // copy a’s elem and sz
{

          a.sz = 0;                                          // make a the empty vector
          a.elem = nullptr;

}

vector& vector::operator=(vector&& a) // move a to this vector
{

          delete[] elem;                                // deallocate old space



          elem = a.elem;                              // copy a’s elem and sz
          sz = a.sz;

          a.elem = nullptr;                          // make a the empty vector
          a.sz = 0;

          return *this;                                 // return a self-reference (see §17.10)
}

By defining a move constructor, we make it easy and cheap to move around large amounts of information, such as a vector with
many elements. Consider again:
Click here to view code image

vector fill(istream& is)
{

          vector res;

          for (double x; is>>x; ) res.push_back(x);

          return res;

}

The move constructor is implicitly used to implement the return. The compiler knows that the local value returned (res) is
about to go out of scope, so it can move from it, rather than copying.

The importance of move constructors is that we do not have to deal with pointers or references to get large amounts of
information out of a function. Consider this flawed (but conventional) alternative:
Click here to view code image

vector* fill2(istream& is)

{

          vector* res = new vector;

          for (double x; is>>x; ) res->push_back(x);

          return res;

}

void use2()

{

          vector* vec = fill(cin);

          // ... use vec ...
          delete vec;

}

Now we have to remember to delete the vector. As described in §17.4.6, deleting objects placed on the free store is not as
easy to do consistently and correctly as it might seem.

18.4 Essential operations

We have now reached the point where we can discuss how to decide which constructors a class should have, whether it should
have a destructor, and whether you need to provide copy and move operations. There are seven essential operations to
consider:

• Constructors from one or more arguments
• Default constructor
• Copy constructor (copy object of same type)
• Copy assignment (copy object of same type)
• Move constructor (move object of same type)
• Move assignment (move object of same type)
• Destructor

Usually we need one or more constructors that take arguments needed to initialize an object. For example:
Click here to view code image

string s {"cat.jpg"};                               // initialize s to the character string “cat.jpg”
Image ii {Point{200,300},"cat.jpg"};   // initialize a Point with the



                                                                  // coordinates{200,300},
                                                                  // then display the contents of file
                                                                  // cat.jpg at that Point

The meaning/use of an initializer is completely up to the constructor. The standard string’s constructor uses a character string
as an initial value, whereas Image’s constructor uses the string as the name of a file to open. Usually we use a constructor to
establish an invariant (§9.4.3). If we can’t define a good invariant for a class that its constructors can establish, we probably
have a poorly designed class or a plain data structure.

Constructors that take arguments are as varied as the classes they serve. The remaining operations have more regular
patterns.

How do we know if a class needs a default constructor? We need a default constructor if we want to be able to make objects
of the class without specifying an initializer. The most common example is when we want to put objects of a class into a
standard library vector. The following works only because we have default values for int, string, and vector<int>:
Click here to view code image

vector<double> vi(10);             // vector of 10 doubles, each initialized to 0.0
vector<string> vs(10);                // vector of 10 strings, each initialized to “”
vector<vector<int>> vvi(10);    // vector of 10 vectors, each initialized to vector{}

So, having a default constructor is often useful. The question then becomes: “When does it make sense to have a default
constructor?” An answer is: “When we can establish the invariant for the class with a meaningful and obvious default value.”
For value types, such as int and double, the obvious value is 0 (for double, that becomes 0.0). For string, the empty
string, "", is the obvious choice. For vector, the empty vector serves well. For every type T, T{} is the default value, if a
default exists. For example, double{} is 0.0, string{} is "", and vector<int>{} is the empty vector of ints.

A class needs a destructor if it acquires resources. A resource is something you “get from somewhere” and that you must
give back once you have finished using it. The obvious example is memory that you get from the free store (using new) and
have to give back to the free store (using delete or delete[]). Our vector acquires memory to hold its elements, so it has to
give that memory back; therefore, it needs a destructor. Other resources that you might encounter as your programs increase in
ambition and sophistication are files (if you open one, you also have to close it), locks, thread handles, and sockets (for
communication with processes and remote computers).

Another sign that a class needs a destructor is simply that it has members that are pointers or references. If a class has a
pointer or a reference member, it often needs a destructor and copy operations.

A class that needs a destructor almost always also needs a copy constructor and a copy assignment. The reason is simply
that if an object has acquired a resource (and has a pointer member pointing to it), the default meaning of copy (shallow,
memberwise copy) is almost certainly wrong. Again, vector is the classic example.

Similarly, a class that needs a destructor almost always also needs a move constructor and a move assignment. The reason is
simply that if an object has acquired a resource (and has a pointer member pointing to it), the default meaning of copy
(shallow, memberwise copy) is almost certainly wrong and the usual remedy (copy operations that duplicate the complete
object state) can be expensive. Again, vector is the classic example.

In addition, a base class for which a derived class may have a destructor needs a virtual destructor (§17.5.2).

18.4.1 Explicit constructors
A constructor that takes a single argument defines a conversion from its argument type to its class. This can be most useful. For
example:
Click here to view code image

class complex {



public:

          complex(double);               // defines double-to-complex conversion
          complex(double,double);

          // . . .
};

complex z1 = 3.14;                        // OK: convert 3.14 to (3.14,0)
complex z2 = complex{1.2, 3.4};

However, implicit conversions should be used sparingly and with caution, because they can cause unexpected and undesirable
effects. For example, our vector, as defined so far, has a constructor that takes an int. This implies that it defines a conversion
from int to vector. For example:
Click here to view code image

class vector {

           // . . .
          vector(int);

          // . . .
};

vector v = 10;                      // odd: makes a vector of 10 doubles
v = 20;                                  // eh? Assigns a new vector of 20 doubles to v

void f(const vector&);

f(10);                                    // eh? Calls f with a new vector of 10 doubles

It seems we are getting more than we have bargained for. Fortunately, it is simple to suppress this use of a constructor as an
implicit conversion. A constructor-defined explicit provides only the usual construction semantics and not the implicit
conversions. For example:
Click here to view code image

class vector {

          // . . .
          explicit vector(int);

          // . . .
};

vector v = 10;                     // error: no int-to-vector conversion
v = 20;                                  // error: no int-to-vector conversion
vector v0(10);                      // OK

void f(const vector&);

f(10);                                     // error: no int-to-vector<double> conversion
f(vector(10));                       // OK

To avoid surprising conversions, we — and the standard — define vector’s single-argument constructors to be explicit. It’s a
pity that constructors are not explicit by default; if in doubt, make any constructor that can be invoked with a single argument
explicit.

18.4.2 Debugging constructors and destructors

Constructors and destructors are invoked at well-defined and predictable points of a program’s execution. However, we don’t
always write explicit calls, such as vector(2); rather we do something, such as declaring a vector, passing a vector as a by-
value argument, or creating a vector on the free store using new. This can cause confusion for people who think in terms of
syntax. There is not just a single syntax that triggers a constructor. It is simpler to think of constructors and destructors this way:

• Whenever an object of type X is created, one of X’s constructors is invoked.
• Whenever an object of type X is destroyed, X’s destructor is invoked.

A destructor is called whenever an object of its class is destroyed; that happens when names go out of scope, the program



terminates, or delete is used on a pointer to an object. A constructor (some appropriate constructor) is invoked whenever an
object of its class is created; that happens when a variable is initialized, when an object is created using new (except for
built-in types), and whenever an object is copied.

But when does that happen? A good way to get a feel for that is to add print statements to constructors, assignment
operations, and destructors and then just try. For example:
Click here to view code image

struct X {                    // simple test class
     int val;

          void out(const string& s, int nv)

                    { cerr << this << "–>" << s << ": " << val << " (" << nv << ")\n"; }

          X(){ out("X()",0); val=0; }                                               // default constructor
          X(int v) { val=v; out( "X(int)",v); }

          X(const X& x){ val=x.val; out("X(X&) ",x.val); }        // copy constructor
          X& operator=(const X& a)                                             // copy assignment
                    { out("X::operator=()",a.val); val=a.val; return *this; }

          ~X() { out("~X()",0); }                                                     // destructor
};

Anything we do with this X will leave a trace that we can study. For example:
Click here to view code image

X glob(2);                    // a global variable

X copy(X a) { return a; }

X copy2(X a) { X aa = a; return aa; }

X& ref_to(X& a) { return a; }

X* make(int i) { X a(i); return new X(a); }

struct XX { X a; X b; };

int main()

{

          X loc {4};           // local variable
          X loc2 {loc};      // copy construction
          loc = X{5};                        // copy assignment
          loc2 = copy(loc);             // call by value and return
          loc2 = copy2(loc);

          X loc3 {6};

          X& r = ref_to(loc);          // call by reference and return
          delete make(7);

          delete make(8);

          vector<X> v(4);              // default values
          XX loc4;

          X* p = new X{9};           // an X on the free store
          delete p;

          X* pp = new X[5];        // an array of Xs on the free store
          delete[] pp;

}

Try executing that.

 Try This

We really mean it: do run this example and make sure you understand the result. If you do, you’ll understand most
of what there is to know about construction and destruction of objects.

Depending on the quality of your compiler, you may note some “missing copies” relating to our calls of copy() and



copy2(). We (humans) can see that those functions do nothing: they just copy a value unmodified from input to output. If a
compiler is smart enough to notice that, it is allowed to eliminate the calls to the copy constructor. In other words, a compiler
is allowed to assume that a copy constructor copies and does nothing but copy. Some compilers are smart enough to eliminate
many spurious copies. However, compilers are not guaranteed to be that smart, so if you want portable performance, consider
move operations (§18.3.4).

Now consider: Why should we bother with this “silly class X”? It’s a bit like the finger exercises that musicians have to do.
After doing them, other things — things that matter — become easier. Also, if you have problems with constructors and
destructors, you can insert such print statements in constructors for your real classes to see that they work as intended. For
larger programs, this exact kind of tracing becomes tedious, but similar techniques apply. For example, you can determine
whether you have a memory leak by seeing if the number of constructions minus the number of destructions equals zero.
Forgetting to define copy constructors and copy assignments for classes that allocate memory or hold pointers to objects is a
common — and easily avoidable — source of problems.

If your problems get too big to handle by such simple means, you will have learned enough to be able to start using the
professional tools for finding such problems; they are often referred to as “leak detectors.” The ideal, of course, is not to leak
memory by using techniques that avoid such leaks.

18.5 Access to vector elements
So far (§17.6), we have used set() and get() member functions to access elements. Such uses are verbose and ugly. We want
our usual subscript notation: v[i]. The way to get that is to define a member function called operator[]. Here is our first
(naive) try:
Click here to view code image

class vector {

          int sz;                            // the size
          double* elem;             // a pointer to the elements
public:

          // . . .
          double operator[](int n) { return elem[n]; }       // return element
};

That looks good and especially it looks simple, but unfortunately it is too simple. Letting the subscript operator (operator[]())
return a value enables reading but not writing of elements:
Click here to view code image

vector v(10);

double x = v[2];                // fine
v[3] = x;                              // error: v[3] is not an lvalue

Here, v[i] is interpreted as a call v.operator[](i), and that call returns the value of v’s element number i. For this overly naive
vector, v[3] is a floating-point value, not a floating-point variable.

 Try This

Make a version of this vector that is complete enough to compile and see what error message your compiler
produces for v[3]=x;.

Our next try is to let operator[] return a pointer to the appropriate element:
Click here to view code image

class vector {

          int sz;                               // the size
          double* elem;                // a pointer to the elements
public:

          // . . .
          double* operator[](int n) { return &elem[n]; }       // return pointer
};



Given that definition, we can write
Click here to view code image

vector v(10);

for (int i=0; i<v.size(); ++i) {            // works, but still too ugly
          *v[i] = i;

          cout << *v[i];

}

Here, v[i] is interpreted as a call v.operator[](i), and that call returns a pointer to v’s element number i. The problem is that
we have to write * to dereference that pointer to get to the element. That’s almost as bad as having to write set() and get().
Returning a reference from the subscript operator solves this problem:
Click here to view code image

class vector {

          // . . .
          double& operator[ ](int n) { return elem[n]; }        // return reference
};

Now we can write
Click here to view code image

vector v(10);

for (int i=0; i<v.size(); ++i) {         // works!
          v[i] = i;                                     // v[i] returns a reference element i
          cout << v[i];

}

We have achieved the conventional notation: v[i] is interpreted as a call v.operator[](i), and that returns a reference to v’s
element number i.

18.5.1 Overloading on const

The operator[]() defined so far has a problem: it cannot be invoked for a const vector. For example:
Click here to view code image

void f(const vector& cv)

{

          double d = cv[1];           // error, but should be fine
          cv[1] = 2.0;                       // error (as it should be)
}

The reason is that our vector::operator[]() could potentially change a vector. It doesn’t, but the compiler doesn’t know that
because we “forgot” to tell it. The solution is to provide a version that is a const member function (see §9.7.4). That’s easily
done:
Click here to view code image

class vector {

          // . . .
          double& operator[](int n);             // for non-const vectors
          double operator[](int n) const;      // for const vectors
};

We obviously couldn’t return a double& from the const version, so we returned a double value. We could equally well
have returned a const double&, but since a double is a small object there would be no point in returning a reference
(§8.5.6), so we decided to pass it back by value. We can now write
Click here to view code image

void ff(const vector& cv, vector& v)

{

          double d = cv[1];                             // fine (uses the const [])
          cv[1] = 2.0;                                         // error (uses the const [])
          double d = v[1];                                // fine (uses the non-const [])



          v[1] = 2.0;                                            // fine (uses the non-const [])
}

Since vectors are often passed by const reference, this const version of operator[]() is an essential addition.

18.6 Arrays

For a while, we have used array to refer to a sequence of objects allocated on the free store. We can also allocate arrays
elsewhere as named variables. In fact, they are common

• As global variables (but global variables are most often a bad idea)
• As local variables (but arrays have serious limitations there)
• As function arguments (but an array doesn’t know its own size)
• As class members (but member arrays can be hard to initialize)

Now, you might have detected that we have a not-so-subtle bias in favor of vectors over arrays. Use std::vector where you
have a choice — and you have a choice in most contexts. However, arrays existed long before vectors and are roughly
equivalent to what is offered in other languages (notably C), so you must know arrays, and know them well, to be able to cope
with older code and with code written by people who don’t appreciate the advantages of vector.

So, what is an array? How do we define an array? How do we use an array? An array is a homogeneous sequence of
objects allocated in contiguous memory; that is, all elements of an array have the same type and there are no gaps between the
objects of the sequence. The elements of an array are numbered from 0 upward. In a declaration, an array is indicated by
“square brackets”:
Click here to view code image

const int max = 100;

int gai[max];                    // a global array (of 100 ints); “lives forever”

void f(int n)

{

          char lac[20];          // local array; “lives” until the end of scope
          int lai[60];

          double lad[n];      // error: array size not a constant
          // . . .
}

Note the limitation: the number of elements of a named array must be known at compile time. If you want the number of
elements to be a variable, you must put it on the free store and access it through a pointer. That’s what vector does with its
array of elements.

Just like the arrays on the free store, we access named arrays using the subscript and dereference operators ([ ] and *). For
example:
Click here to view code image

void f2()

{

          char lac[20];        // local array; “lives” until the end of scope

          lac[7] = 'a';

          *lac = 'b';             // equivalent to lac[0]='b'

          lac[–2] = 'b';         // huh?
           lac[200] = 'c';       // huh?
}

This function compiles, but we know that “compiles” doesn’t mean “works correctly.” The use of [ ] is obvious, but there is no



range checking, so f2() compiles, and the result of writing to lac[–2] and lac[200] is (as for all out-of-range access) usually
disastrous. Don’t do it. Arrays do not range check. Again, we are dealing directly with physical memory here; don’t expect
“system support.”

But couldn’t the compiler see that lac has just 20 elements so that lac[200] is an error? A compiler could, but as far as we
know no production compiler does. The problem is that keeping track of array bounds at compile time is impossible in general,
and catching errors in the simplest cases (like the one above) only is not very helpful.

18.6.1 Pointers to array elements
A pointer can point to an element of an array. Consider:
Click here to view code image

double ad[10];

double* p = &ad[5];            // point to ad[5]

We now have a pointer p to the double known as ad[5]:

We can subscript and dereference that pointer:

*p =7;

p[2] = 6;

p[–3] = 9;

We get

That is, we can subscript the pointer with both positive and negative numbers. As long as the resulting element is in range, all
is well. However, access outside the range of the array pointed into is illegal (as with free-store-allocated arrays; see
§17.4.3). Typically, access outside an array is not detected by the compiler and (sooner or later) is disastrous.

Once a pointer points into an array, addition and subscripting can be used to make it point to another element of the array.
For example:
Click here to view code image

p += 2;               // move p 2 elements to the right

We get

And
Click here to view code image

p –= 5;            // move p 5 elements to the left

We get



Using +, –, +=, and –= to move pointers around is called pointer arithmetic. Obviously, if we do that, we have to take great
care to ensure that the result is not a pointer to memory outside the array:
Click here to view code image

p += 1000;                  // insane: p points into an array with just 10 elements
double d = *p;          // illegal: probably a bad value
                                     // (definitely an unpredictable value)
*p = 12.34;                 // illegal: probably scrambles some unknown data

Unfortunately, not all bad bugs involving pointer arithmetic are that easy to spot. The best policy is usually simply to avoid
pointer arithmetic.

The most common use of pointer arithmetic is incrementing a pointer (using ++) to point to the next element and
decrementing a pointer (using ––) to point to the previous element. For example, we could print the value of ad’s elements like
this:
Click here to view code image

for (double* p = &ad[0]; p<&ad[10]; ++p) cout << *p << '\n';

Or backward:
Click here to view code image

for (double* p = &ad[9]; p>=&ad[0]; ––p) cout << *p << '\n';

This use of pointer arithmetic is not uncommon. However, we find the last (“backward”) example quite easy to get wrong. Why
&ad[9] and not &ad[10]? Why >= and not >? These examples could equally well (and equally efficiently) be done using
subscripting. Such examples could be done equally well using subscripting into a vector, which is more easily range checked.

Note that most real-world uses of pointer arithmetic involve a pointer passed as a function argument. In that case, the
compiler doesn’t have a clue how many elements are in the array pointed into: you are on your own. That is a situation we
prefer to stay away from whenever we can.

Why does C++ have (allow) pointer arithmetic at all? It can be such a bother and doesn’t provide anything new once we
have subscripting. For example:
Click here to view code image

double* p1 = &ad[0];

double* p2 = p1+7;

double* p3 = &p1[7];

if (p2 != p3) cout << "impossible!\n";

Mainly, the reason is historical. These rules were crafted for C decades ago and can’t be removed without breaking a lot of
code. Partly, there can be some convenience gained by using pointer arithmetic in some important low-level applications, such
as memory managers.

18.6.2 Pointers and arrays

The name of an array refers to all the elements of the array. Consider:

char ch[100];

The size of ch, sizeof(ch), is 100. However, the name of an array turns into (“decays to”) a pointer with the slightest excuse.
For example:



char* p = ch;

Here p is initialized to &ch[0] and sizeof(p) is something like 4 (not 100).
This can be useful. For example, consider a function strlen() that counts the number of characters in a zero-terminated array

of characters:
Click here to view code image

int strlen(const char* p)        // similar to the standard library strlen()
{

          int count = 0;

          while (*p) { ++count; ++p; }

          return count;

}

We can now call this with strlen(ch) as well as strlen(&ch[0]). You might point out that this is a very minor notational
advantage, and we’d have to agree.

One reason for having array names convert to pointers is to avoid accidentally passing large amounts of data by value.
Consider:
Click here to view code image

int strlen(const char a[])       // similar to the standard library strlen()
{

          int count = 0;

          while (a[count]) { ++count; }

          return count;

}

char lots [100000];

void f()

{

          int nchar = strlen(lots);

          // . . .
}

Naively (and quite reasonably), you might expect this call to copy the 100,000 characters specified as the argument to strlen(),
but that’s not what happens. Instead, the argument declaration char p[] is considered equivalent to char* p, and the call
strlen(lots) is considered equivalent to strlen(&lots[0]). This saves you from an expensive copy operation, but it should
surprise you. Why should it surprise you? Because in every other case, when you pass an object and don’t explicitly declare an
argument to be passed by reference (§8.5.3–6), that object is copied.

Note that the pointer you get from treating the name of an array as a pointer to its first element is a value and not a variable,
so you cannot assign to it:
Click here to view code image

char ac[10];

ac = new char [20];                 // error: no assignment to array name
&ac[0] = new char [20];          // error: no assignment to pointer value

Finally! A problem that the compiler will catch!
As a consequence of this implicit array-name-to-pointer conversion, you can’t even copy arrays using assignment:

Click here to view code image

int x[100];

int y[100];

// . . .
x = y;                                // error
int z[100] = y;                  // error

This is consistent, but often a bother. If you need to copy an array, you must write some more elaborate code to do so. For
example:
Click here to view code image

for (int i=0; i<100; ++i) x[i]=y[i];      // copy 100 ints
memcpy(x,y,100*sizeof(int));           // copy 100*sizeof(int) bytes



copy(y,y+100, x);                                // copy 100 ints

Note that the C language doesn’t support anything like vector, so in C, you must use arrays extensively. This implies that a lot
of C++ code uses arrays (§27.1.2). In particular, C-style strings (zero-terminated arrays of characters; see §27.5) are very
common.

If we want assignment, we have to use something like the standard library vector. The vector equivalent to the copying
code above is
Click here to view code image

vector<int> x(100);

vector<int> y(100);

// . . .
x = y;                                                           // copy 100 ints

18.6.3 Array initialization

An array of chars can be initialized with a string literal. For example:
Click here to view code image

char ac[] = "Beorn";               // array of 6 chars

Count those characters. There are five, but ac becomes an array of six characters because the compiler adds a terminating zero
character at the end of a string literal:

A zero-terminated string is the norm in C and many systems. We call such a zero-terminated array of characters a C-style
string. All string literals are C-style strings. For example:
Click here to view code image

char* pc = "Howdy";               // pc points to an array of 6 chars

Graphically:

Note that the char with the numeric value 0 is not the character '0' or any other letter or digit. The purpose of that terminating
zero is to allow functions to find the end of the string. Remember: An array does not know its size. Relying on the terminating
zero convention, we can write
Click here to view code image

int strlen(const char* p)              // similar to the standard library strlen()
{

          int n = 0;

          while (p[n]) ++n;

          return n;

}

Actually, we don’t have to define strlen() because it is a standard library function defined in the <string.h> header (§27.5,
§B.11.3). Note that strlen() counts the characters, but not the terminating 0; that is, you need n+1 chars to store n characters in
a C-style string.

Only character arrays can be initialized by literal strings, but all arrays can be initialized by a list of values of their element
type. For example:
Click here to view code image

int ai[] = { 1, 2, 3, 4, 5, 6 };                   // array of 6 ints
int ai2[100] = {0,1,2,3,4,5,6,7,8,9};     // the last 90 elements are initialized to 0
double ad[100] = { };                           // all elements initialized to 0.0
char chars[]= {'a', 'b', 'c'};                 // no terminating 0!



Note that the number of elements of ai is six (not seven) and the number of elements for chars is three (not four) — the “add a
0 at the end” rule is for literal character strings only. If an array isn’t given a size, that size is deduced from the initializer list.
That’s a rather useful feature. If there are fewer initializer values than array elements (as in the definitions of ai2 and ad), the
remaining elements are initialized by the element type’s default value.

18.6.4 Pointer problems
Like arrays, pointers are often overused and misused. Often, the problems people get themselves into involve both pointers and
arrays, so we’ll summarize the problems here. In particular, all serious problems with pointers involve trying to access
something that isn’t an object of the expected type, and many of those problems involve access outside the bounds of an array.
Here we will consider

• Access through the null pointer
• Access through an uninitialized pointer
• Access off the end of an array
• Access to a deallocated object
• Access to an object that has gone out of scope

In all cases, the practical problem for the programmer is that the actual access looks perfectly innocent; it is “just” that the
pointer hasn’t been given a value that makes the use valid. Worse (in the case of a write through the pointer), the problem may
manifest itself only a long time later when some apparently unrelated object has been corrupted. Let’s consider examples:

Don’t access through the null pointer:

int* p = nullptr;

*p = 7;            // ouch!

Obviously, in real-world programs, this typically occurs when there is some code in between the initialization and the use. In
particular, passing p to a function and receiving it as the result from a function are common examples. We prefer not to pass
null pointers around, but if you have to, test for the null pointer before use:
Click here to view code image

int* p = fct_that_can_return_a_nullptr();

if (p == nullptr) {

          // do something
}

else {

          // use p
          *p = 7;

}

and
Click here to view code image

void fct_that_can_receive_a_nullptr(int* p)

{

          if (p == nullptr) {

                    // do something
          }
          else {

                    // use p
                    *p = 7;

          }
}

Using references (§17.9.1) and using exceptions to signal errors (§5.6 and §19.5) are the main tools for avoiding null pointers.
Do initialize your pointers:

int* p;

*p = 9;            // ouch!



In particular, don’t forget to initialize pointers that are class members.
Don’t access nonexistent array elements:

int a[10];

int* p = &a[10];

*p = 11;           // ouch!
a[10] = 12;       // ouch!

Be careful with the first and last elements of a loop, and try not to pass arrays around as pointers to their first elements. Instead
use vectors. If you really must use an array in more than one function (passing it as an argument), then be extra careful and
pass its size along.

Don’t access through a deleted pointer:

int* p = new int{7};

// . . .
delete p;

// . . .
*p = 13;         // ouch!

The delete p or the code after it may have scribbled all over *p or used it for something else. Of all of these problems, we
consider this one the hardest to systematically avoid. The most effective defense against this problem is not to have “naked”
news that require “naked” deletes: use new and delete in constructors and destructors or use a container, such as
Vector_ref (§E.4), to handle deletes.

Don’t return a pointer to a local variable:

Click here to view code image

int* f()

{

          int x = 7;

          // . . .
          return &x;

}

// . . .

int* p = f();

// . . .
*p = 15;            // ouch!

The return from f() or the code after it may have scribbled all over *p or used it for something else. The reason for that is that
the local variables of a function are allocated (on the stack) upon entry to the function and deallocated again at the exit from the
function. In particular, destructors are called for local variables of classes with destructors (§17.5.1). Compilers could catch
most problems related to returning pointers to local variables, but few do.

Consider a logically equivalent example:
Click here to view code image

vector& ff()

{

          vector x(7);     // 7 elements
          // . . .
          return x;

}        // the vector x is destroyed here

// . . .

vector& p = ff();

// . . .
p[4] = 15;               // ouch!



Quite a few compilers catch this variant of the return problem.

It is common for programmers to underestimate these problems. However, many experienced programmers have been
defeated by the innumerable variations and combinations of these simple array and pointer problems. The solution is not to
litter your code with pointers, arrays, news, and deletes. If you do, “being careful” simply isn’t enough in realistically sized
programs. Instead, rely on vectors, RAII (“Resource Acquisition Is Initialization”; see §19.5), and other systematic approaches
to the management of memory and other resources.

18.7 Examples: palindrome
Enough technical examples! Let’s try a little puzzle. A palindrome is a word that is spelled the same from both ends. For
example, anna, petep, and malayalam are palindromes, whereas ida and homesick are not. There are two basic ways of
determining whether a word is a palindrome:

• Make a copy of the letters in reverse order and compare that copy to the original.
• See if the first letter is the same as the last, then see if the second letter is the same as the second to last, and keep going
until you reach the middle.

Here, we’ll take the second approach. There are many ways of expressing this idea in code depending on how we represent the
word and how we keep track of how far we have come with the comparison of characters. We’ll write a little program that
tests whether words are palindromes in a few different ways just to see how different language features affect the way the code
looks and works.

18.7.1 Palindromes using string

First, we try a version using the standard library string with int indices to keep track of how far we have come with our
comparison:
Click here to view code image

bool is_palindrome(const string& s)

{

          int first = 0;                        // index of first letter
          int last = s.length()–1;      // index of last letter
          while (first < last) {             // we haven’t reached the middle
                    if (s[first]!=s[last]) return false;

                    ++first;                      // move forward
                    ––last;                        // move backward
          }
          return true;

}

We return true if we reach the middle without finding a difference. We suggest that you look at this code to convince yourself
that it is correct when there are no letters in the string, just one letter in the string, an even number of letters in the string, and an
odd number of letters in the string. Of course, we should not just rely on logic to see that our code is correct. We should also
test. We can exercise is_palindrome() like this:
Click here to view code image

int main()

{

          for (string s; cin>>s; ) {

                    cout << s << " is";

                    if (!is_palindrome(s)) cout << " not";

                    cout << " a palindrome\n";

          }
}

Basically, the reason we are using a string is that “strings are good for dealing with words.” It is simple to read a
whitespace-separated word into a string, and a string knows its size. Had we wanted to test is_palindrome() with strings
containing whitespace, we could have read using getline() (§11.5). That would have shown ah ha and as df fd sa to be
palindromes.

18.7.2 Palindromes using arrays



What if we didn’t have strings (or vectors), so that we had to use an array to store the characters? Let’s see:
Click here to view code image

bool is_palindrome(const char s[], int n)

          // s points to the first character of an array of n characters
{

          int first = 0;                               // index of first letter
          int last = n–1;                           // index of last letter
          while (first < last) {                  // we haven’t reached the middle
                    if (s[first]!=s[last]) return false;

                    ++first;                           // move forward
                    ––last;                            // move backward
          }
          return true;

}

To exercise is_palindrome(), we first have to get characters read into the array. One way to do that safely (i.e., without risk
of overflowing the array) is like this:
Click here to view code image

istream& read_word(istream& is, char* buffer, int max)

          // read at most max–1 characters from is into buffer
{

          is.width(max);          // read at most max–1 characters in the next >>
          is >> buffer;             // read whitespace-terminated word,
                                             // add zero after the last character read into buffer
          return is;

}

Setting the istream’s width appropriately prevents buffer overflow for the next >> operation. Unfortunately, it also means that
we don’t know if the read terminated by whitespace or by the buffer being full (so that we need to read more characters). Also,
who remembers the details of the behavior of width() for input? The standard library string and vector are really better as
input buffers because they expand to fit the amount of input. The terminating 0 character is needed because most popular
operations on arrays of characters (C-style strings) assume 0 termination. Using read_word() we can write
Click here to view code image

int main()

{

          constexpr int max = 128;

          for (char s[max]; read_word(cin,s,max); ) {

                    cout << s << " is";

                    if (!is_palindrome(s,strlen(s))) cout << " not";

                    cout << " a palindrome\n";

          }
}

The strlen(s) call returns the number of characters in the array after the call of read_word(), and cout<<s outputs the
characters in the array up to the terminating 0.

We consider this “array solution” significantly messier than the “string solution,” and it gets much worse if we try to
seriously deal with the possibility of long strings. See exercise 10.

18.7.3 Palindromes using pointers
Instead of using indices to identify characters, we could use pointers:
Click here to view code image

bool is_palindrome(const char* first, const char* last)

          // first points to the first letter, last to the last letter
{

          while (first < last) {             // we haven’t reached the middle
                    if (*first!=*last) return false;

                    ++first;                      // move forward
                    ––last;                       // move backward



          }
          return true;

}

Note that we can actually increment and decrement pointers. Increment makes a pointer point to the next element of an array
and decrement makes a pointer point to the previous element. If the array doesn’t have such a next element or previous element,
you have a serious uncaught out-of-range error. That’s another problem with pointers.

We call this is_palindrome() like this:
Click here to view code image

int main()

{

          const int max = 128;

          for (char s[max]; read_word(cin,s,max); ) {

                    cout << s << " is";

                    if (!is_palindrome(&s[0],&s[strlen(s)–1])) cout << " not";

                    cout << " a palindrome\n";

          }
}

Just for fun, we rewrite is_palindrome() like this:
Click here to view code image

bool is_palindrome(const char* first, const char* last)

          // first points to the first letter, last to the last letter
{

          if (first<last) {

                    if (*first!=*last) return false;

                    return is_palindrome(first+1,last–1);

          }
          return true;

}

This code becomes obvious when we rephrase the definition of palindrome: a word is a palindrome if the first and the last
characters are the same and if the substring you get by removing the first and the last characters is a palindrome.

 Drill

In this chapter, we have two drills: one to exercise arrays and one to exercise vectors in roughly the same manner. Do both
and compare the effort involved in each.

Array drill:
1. Define a global int array ga of ten ints initialized to 1, 2, 4, 8, 16, etc.
2. Define a function f() taking an int array argument and an int argument indicating the number of elements in the array.
3. In f():

a. Define a local int array la of ten ints.
b. Copy the values from ga into la.
c. Print out the elements of la.
d. Define a pointer p to int and initialize it with an array allocated on the free store with the same number of

elements as the argument array.
e. Copy the values from the argument array into the free-store array.
f. Print out the elements of the free-store array.
g. Deallocate the free-store array.

4. In main():
a. Call f() with ga as its argument.
b. Define an array aa with ten elements, and initialize it with the first ten factorial values (1, 2*1, 3*2*1, 4*3*2*1,



etc.).
c. Call f() with aa as its argument.

Standard library vector drill:
1. Define a global vector<int> gv; initialize it with ten ints, 1, 2, 4, 8, 16, etc.
2. Define a function f() taking a vector<int> argument.
3. In f():

a. Define a local vector<int> lv with the same number of elements as the argument vector.
b. Copy the values from gv into lv.
c. Print out the elements of lv.
d. Define a local vector<int> lv2; initialize it to be a copy of the argument vector.
e. Print out the elements of lv2.

4. In main():
a. Call f() with gv as its argument.
b. Define a vector<int> vv, and initialize it with the first ten factorial values (1, 2*1, 3*2*1, 4*3*2*1, etc.).
c. Call f() with vv as its argument.

Review
1. What does “Caveat emptor!” mean?
2. What is the default meaning of copying for class objects?
3. When is the default meaning of copying of class objects appropriate? When is it inappropriate?
4. What is a copy constructor?
5. What is a copy assignment?
6. What is the difference between copy assignment and copy initialization?
7. What is shallow copy? What is deep copy?
8. How does the copy of a vector compare to its source?
9. What are the five “essential operations” for a class?

10. What is an explicit constructor? Where would you prefer one over the (default) alternative?
11. What operations may be invoked implicitly for a class object?
12. What is an array?
13. How do you copy an array?
14. How do you initialize an array?
15. When should you prefer a pointer argument over a reference argument? Why?
16. What is a C-style string?
17. What is a palindrome?

Terms
array
array initialization
copy assignment
copy constructor
deep copy
default constructor
essential operations
explicit constructor
move assignment



move construction
palindrome
shallow copy

Exercises
1. Write a function, char* strdup(const char*), that copies a C-style string into memory it allocates on the free store. Do

not use any standard library functions. Do not use subscripting; use the dereference operator * instead.
2. Write a function, char* findx(const char* s, const char* x), that finds the first occurrence of the C-style string x in

s. Do not use any standard library functions. Do not use subscripting; use the dereference operator * instead.
3. Write a function, int strcmp(const char* s1, const char* s2), that compares C-style strings. Let it return a negative

number if s1 is lexicographically before s2, zero if s1 equals s2, and a positive number if s1 is lexicographically after
s2. Do not use any standard library functions. Do not use subscripting; use the dereference operator * instead.

4. Consider what happens if you give strdup(), findx(), and strcmp() an argument that is not a C-style string. Try it! First
figure out how to get a char* that doesn’t point to a zero-terminated array of characters and then use it (never do this in
real — non-experimental — code; it can create havoc). Try it with free-store-allocated and stack-allocated “fake C-style
strings.” If the results still look reasonable, turn off debug mode. Redesign and re-implement those three functions so that
they take another argument giving the maximum number of elements allowed in argument strings. Then, test that with
correct C-style strings and “bad” strings.

5. Write a function, string cat_dot(const string& s1, const string& s2), that concatenates two strings with a dot in
between. For example, cat_dot("Niels", "Bohr") will return a string containing Niels.Bohr.

6. Modify cat_dot() from the previous exercise to take a string to be used as the separator (rather than dot) as its third
argument.

7. Write versions of the cat_dot()s from the previous exercises to take C-style strings as arguments and return a free-store-
allocated C-style string as the result. Do not use standard library functions or types in the implementation. Test these
functions with several strings. Be sure to free (using delete) all the memory you allocated from free store (using new).
Compare the effort involved in this exercise with the effort involved for exercises 5 and 6.

8. Rewrite all the functions in §18.7 to use the approach of making a backward copy of the string and then comparing; for
example, take "home", generate "emoh", and compare those two strings to see that they are different, so home isn’t a
palindrome.

9. Consider the memory layout in §17.4. Write a program that tells the order in which static storage, the stack, and the free
store are laid out in memory. In which direction does the stack grow: upward toward higher addresses or downward
toward lower addresses? In an array on the free store, are elements with higher indices allocated at higher or lower
addresses?

10. Look at the “array solution” to the palindrome problem in §18.7.2. Fix it to deal with long strings by (a) reporting if an
input string was too long and (b) allowing an arbitrarily long string. Comment on the complexity of the two versions.

11. Look up (e.g., on the web) skip list and implement that kind of list. This is not an easy exercise.
12. Implement a version of the game “Hunt the Wumpus.” “Hunt the Wumpus” (or just “Wump”) is a simple (non-graphical)

computer game originally invented by Gregory Yob. The basic premise is that a rather smelly monster lives in a dark
cave consisting of connected rooms. Your job is to slay the wumpus using bow and arrow. In addition to the wumpus, the
cave has two hazards: bottomless pits and giant bats. If you enter a room with a bottomless pit, it’s the end of the game
for you. If you enter a room with a bat, the bat picks you up and drops you into another room. If you enter the room with
the wumpus or he enters yours, he eats you. When you enter a room you will be told if a hazard is nearby:

“I smell the wumpus”: It’s in an adjoining room.
“I feel a breeze”: One of the adjoining rooms is a bottomless pit.
“I hear a bat”: A giant bat is in an adjoining room.

For your convenience, rooms are numbered. Every room is connected by tunnels to three other rooms. When entering
a room, you are told something like “You are in room 12; there are tunnels to rooms 1, 13, and 4; move or shoot?”
Possible answers are m13 (“Move to room 13”) and s13–4–3 (“Shoot an arrow through rooms 13, 4, and 3”). The range
of an arrow is three rooms. At the start of the game, you have five arrows. The snag about shooting is that it wakes up the
wumpus and he moves to a room adjoining the one he was in — that could be your room.

Probably the trickiest part of the exercise is to make the cave by selecting which rooms are connected with which



other rooms. You’ll probably want to use a random number generator (e.g., randint() from std_lib_facilities.h) to
make different runs of the program use different caves and to move around the bats and the wumpus. Hint: Be sure to have
a way to produce a debug output of the state of the cave.

Postscript
The standard library vector is built from lower-level memory management facilities, such as pointers and arrays, and its
primary role is to help us avoid the complexities of those facilities. Whenever we design a class, we must consider
initialization, copying, and destruction.



19. Vector, Templates, and Exceptions

“Success is never final.”
—Winston Churchill

This chapter completes the design and implementation of the most common and most useful STL container: vector. Here, we
show how to implement containers where the number of elements can vary, how to specify containers where the element type is
a parameter, and how to deal with range errors. As usual, the techniques used are generally applicable, rather than simply
restricted to the implementation of vector, or even to the implementation of containers. Basically, we show how to deal safely
with varying amounts of data of a variety of types. In addition, we add a few doses of realism as design lessons. The
techniques rely on templates and exceptions, so we show how to define templates and give the basic techniques for resource
management that are the keys to good use of exceptions.

19.1 The problems
19.2 Changing size

19.2.1 Representation
19.2.2 reserve and capacity

19.2.3 resize

19.2.4 push_back

19.2.5 Assignment
19.2.6 Our vector so far

19.3 Templates
19.3.1 Types as template parameters
19.3.2 Generic programming
19.3.3 Concepts
19.3.4 Containers and inheritance
19.3.5 Integers as template parameters
19.3.6 Template argument deduction
19.3.7 Generalizing vector

19.4 Range checking and exceptions
19.4.1 An aside: design considerations
19.4.2 A confession: macros

19.5 Resources and exceptions
19.5.1 Potential resource management problems
19.5.2 Resource acquisition is initialization
19.5.3 Guarantees
19.5.4 unique_ptr

19.5.5 Return by moving
19.5.6 RAII for vector

19.1 The problems
At the end of Chapter 18, our vector reached the point where we can

• Create vectors of double-precision floating-point elements (objects of class vector) with whatever number of elements
we want

• Copy our vectors using assignment and initialization
• Rely on vectors to correctly release their memory when they go out of scope



• Access vector elements using the conventional subscript notation (on both the right-hand side and the left-hand side of
an assignment)

That’s all good and useful, but to reach the level of sophistication we expect (based on experience with the standard library
vector), we need to address three more concerns:

• How do we change the size of a vector (change the number of elements)?
• How do we catch and report out-of-range vector element access?
• How do we specify the element type of a vector as an argument?

For example, how do we define vector so that this is legal:
Click here to view code image

vector<double> vd;              // elements of type double
for (double d; cin>>d; )

          vd.push_back(d);       // grow vd to hold all the elements

vector<char> vc(100);         // elements of type char
int n;

cin>>n;

vc.resize(n);                        // make vc have n elements

Obviously, it is nice and useful to have vectors that allow this, but why is it important from a programming point of view?
What makes it interesting to someone collecting useful programming techniques for future use? We are using two kinds of
flexibility. We have a single entity, the vector, for which we can vary two things:

• The number of elements
• The type of elements

Those kinds of variability are useful in rather fundamental ways. We always collect data. Looking around my desk, I see piles
of bank statements, credit card bills, and phone bills. Each of those is basically a list of lines of information of various types:
strings of letters and numeric values. In front of me lies a phone; it keeps lists of phone numbers and names. In the bookcases
across the room, there is shelf after shelf of books. Our programs tend to be similar: we have containers of elements of various
types. We have many different kinds of containers (vector is just the most widely useful), and they contain information such as
phone numbers, names, transaction amounts, and documents. Essentially all the examples from my desk and my room originated
in some computer program or another. The obvious exception is the phone: it is a computer, and when I look at the numbers on
it I’m looking at the output of a program just like the ones we’re writing. In fact, those numbers may very well be stored in a
vector<Number>.

Obviously, not all containers have the same number of elements. Could we live with a vector that had its size fixed by its
initial definition; that is, could we write our code without push_back(), resize(), and equivalent operations? Sure we could,
but that would put an unnecessary burden on the programmer: the basic trick for living with fixed-size containers is to move the
elements to a bigger container when the number of elements grows too large for the initial size. For example, we could read
into a vector without ever changing the size of a vector like this:
Click here to view code image

// read elements into a vector without using push_back:
vector<double>* p = new vector<double>(10);

int n = 0;               // number of elements
for (double d; cin>>d; ) {

          if (n==p–>size()) {

                    vector<double>* q = new vector<double>(p–>size()*2);

                    copy(p–>begin(), p–>end(), q–>begin());

                    delete p;

                    p = q;

          }
          (*p)[n] = d;

          ++n;

}

That’s not pretty. Are you convinced that we got it right? How can you be sure? Note how we suddenly started to use pointers
and explicit memory management. What we did was to imitate the style of programming we have to use when we are “close to



the machine,” using only the basic memory management techniques dealing with fixed-size objects (arrays; see §18.6). One of
the reasons to use containers, such as vector, is to do better than that; that is, we want vector to handle such size changes
internally to save us — its users — the bother and the chance to make mistakes. In other words, we prefer containers that can
grow to hold the exact number of elements we happen to need. For example:
Click here to view code image

vector<double> vd;

for (double d; cin>>d; ) vd.push_back(d);

Are such changes of size common? If they are not, facilities for changing size are simply minor conveniences. However, such
size changes are very common. The most obvious example is reading an unknown number of values from input. Other examples
are collecting a set of results from a search (we don’t in advance know how many results there will be) and removing elements
from a collection one by one. Thus, the question is not whether we should handle size changes for containers, but how.

Why do we bother with changing sizes at all? Why not “just allocate enough space and be done with it!”? That appears to be
the simplest and most efficient strategy. However, it is that only if we can reliably allocate enough space without allocating
grossly too much space — and we can’t. People who try that tend to have to rewrite code (if they carefully and systematically
checked for overflows) and deal with disasters (if they were careless with their checking).

Obviously, not all vectors have the same type of elements. We need vectors of doubles, temperature readings, records (of
various kinds), strings, operations, GUI buttons, shapes, dates, pointers to windows, etc. The possibilities are endless.

There are many kinds of containers. This is an important point, and because it has important implications it should not be
accepted without thought. Why can’t all containers be vectors? If we could make do with a single kind of container (e.g.,
vector), we could dispense with all the concerns about how to program it and just make it part of the language. If we could
make do with a single kind of container, we needn’t bother learning about different kinds of containers; we’d just use vector

all the time.
Well, data structures are the key to most significant applications. There are many thick and useful books about how to

organize data, and much of that information could be described as answers to the question “How do I best store my data?” So,
the answer is that we need many different kinds of containers, but it is too large a subject to adequately address here. However,
we have already used vectors and strings (a string is a container of characters) extensively. In the next chapters, we will see
lists, maps (a map is a tree of pairs of values), and matrices. Because we need many different containers, the language
features and programming techniques needed to build and use containers are widely useful. In fact, the techniques we use to
store and access data are among the most fundamental and most useful for all nontrivial forms of computing.

At the most basic memory level, all objects are of a fixed size and no types exist. What we do here is to introduce language
facilities and programming techniques that allow us to provide containers of objects of various types for which we can vary the
number of elements. This gives us a fundamentally useful degree of flexibility and convenience.

19.2 Changing size
What facilities for changing size does the standard library vector offer? It provides three simple operations. Given
Click here to view code image

vector<double> v(n);        // v.size()==n

we can change its size in three ways:
Click here to view code image

v.resize(10);                     // v now has 10 elements

v.push_back(7);             // add an element with the value 7 to the end of v
                                             // v.size() increases by 1

v = v2;                              // assign another vector; v is now a copy of v2
                                             // v.size() now equals v2.size()



The standard library vector offers more operations that can change a vector’s size, such as erase() and insert() (§B.4.7),
but here we will just see how we can implement those three operations for our vector.

19.2.1 Representation
In §19.1, we showed the simplest strategy for changing size: just allocate space for the new number of elements and copy the
old elements into the new space. However, if you resize often, that’s inefficient. In practice, if we change the size once, we
usually do so many times. In particular, we rarely see just one push_back(). So, we can optimize our programs by
anticipating such changes in size. In fact, all vector implementations keep track of both the number of elements and an amount
of “free space” reserved for “future expansion.” For example:
Click here to view code image

class vector {

          int sz;                          // number of elements
          double* elem;          // address of first element
          int space;                   // number of elements plus “free space”/“slots”
                                                  // for new elements (“the current allocation”)
public:

          // . . .
};

We can represent this graphically like this:

Since we count elements starting with 0, we represent sz (the number of elements) as referring to one beyond the last element
and space as referring to one beyond the last allocated slot. The pointers shown are really elem+sz and elem+space.

When a vector is first constructed, space==sz; that is, there is no “free space”:

We don’t start allocating extra slots until we begin changing the number of elements. Typically, space==sz, so there is no
memory overhead unless we use push_back().

The default constructor (creating a vector with no elements) sets the integer members to 0 and the pointer member to
nullptr:
Click here to view code image

vector::vector() :sz{0}, elem{nullptr}, space{0} { }

That gives



That one-beyond-the-end element is completely imaginary. The default constructor does no free-store allocation and occupies
minimal storage (but see exercise 16).

Please note that our vector illustrates techniques that can be used to implement a standard vector (and other data
structures), but a fair amount of freedom is given to standard library implementations so that std::vector on your system may
use different techniques.

19.2.2 reserve and capacity

The most fundamental operation when we change sizes (that is, when we change the number of elements) is
vector::reserve(). That’s the operation we use to add space for new elements:
Click here to view code image

void vector::reserve(int newalloc)

{

          if (newalloc<=space) return;                    // never decrease allocation
          double* p = new double[newalloc];      // allocate new space
          for (int i=0; i<sz; ++i) p[i] = elem[i];      // copy old elements
          delete[] elem;                                              // deallocate old space
          elem = p;

          space = newalloc;

}

Note that we don’t initialize the elements of the reserved space. After all, we are just reserving space; using that space for
elements is the job of push_back() and resize().

Obviously the amount of free space available in a vector can be of interest to a user, so we (like the standard) provide a
member function for obtaining that information:
Click here to view code image

int vector::capacity() const { return space; }

That is, for a vector called v, v.capacity()–v.size() is the number of elements we could push_back() to v without causing
reallocation.

19.2.3 resize

Given reserve(), implementing resize() for our vector is fairly simple. We have to handle several cases:
• The new size is larger than the old allocation.
• The new size is larger than the old size, but smaller than or equal to the old allocation.
• The new size is equal to the old size.
• The new size is smaller than the old size.

Let’s see what we get:
Click here to view code image

void vector::resize(int newsize)

          // make the vector have newsize elements
          // initialize each new element with the default value 0.0
{

          reserve(newsize);

          for (int i=sz; i<newsize; ++i) elem[i] = 0;          // initialize new elements
          sz = newsize;

}



We let reserve() do the hard work of dealing with memory. The loop initializes new elements (if there are any).
We didn’t explicitly deal with any cases here, but you can verify that all are handled correctly nevertheless.

 Try This

What cases do we need to consider (and test) if we want to convince ourselves that this resize() is correct? How
about newsize == 0? How about newsize == –77?

19.2.4 push_back

When we first think of it, push_back() may appear complicated to implement, but given reserve() it is quite simple:
Click here to view code image

void vector::push_back(double d)

          // increase vector size by one; initialize the new element with d
{

          if (space==0)

                    reserve(8);                   // start with space for 8 elements
          else if (sz==space)

                    reserve(2*space);   // get more space
          elem[sz] = d;                      // add d at end
          ++sz;                                    // increase the size (sz is the number of elements)
}

In other words, if we have no spare space, we double the size of the allocation. In practice that turns out to be a very good
choice for the vast majority of uses of vector, and that’s the strategy used by most implementations of the standard library
vector.

19.2.5 Assignment
We could have defined vector assignment in several different ways. For example, we could have decided that assignment was
legal only if the two vectors involved had the same number of elements. However, in §18.3.2 we decided that vector
assignment should have the most general and arguably the most obvious meaning: after assignment v1=v2, the vector v1 is a
copy of v2. Consider:

Obviously, we need to copy the elements, but what about the spare space? Do we “copy” the “free space” at the end? We
don’t: the new vector will get a copy of the elements, but since we have no idea how that new vector is going to be used, we
don’t bother with extra space at the end:



The simplest implementation of that is:
• Allocate memory for a copy.
• Copy the elements.
• Delete the old allocation.
• Set the sz, elem, and space to the new values.

Like this:
Click here to view code image

vector& vector::operator=(const vector& a)

          // like copy constructor, but we must deal with old elements
{

          double* p = new double[a.sz];                     // allocate new space
          for (int i = 0; i<a.sz; ++i) p[i] = a.elem[i];    // copy elements
          delete[] elem;                                                    // deallocate old space
          space = sz = a.sz;                                             // set new size
          elem = p;                                                           // set new elements
          return *this;                                                      // return self-reference
}

By convention, an assignment operator returns a reference to the object assigned to. The notation for that is *this, which is
explained in §17.10.

This implementation is correct, but when we look at it a bit we realize that we do a lot of redundant allocation and
deallocation. What if the vector we assign to has more elements than the one we assign? What if the vector we assign to has
the same number of elements as the vector we assign? In many applications, that last case is very common. In either case, we
can just copy the elements into space already available in the target vector:
Click here to view code image

vector& vector::operator=(const vector& a)

{

          if (this==&a) return *this;      // self-assignment, no work needed

          if (a.sz<=space) {                     // enough space, no need for new allocation
                    for (int i = 0; i<a.sz; ++i) elem[i] = a.elem[i];        // copy elements
                    sz = a.sz;

                    return *this;

          }

          double* p = new double[a.sz];                         // allocate new space
          for (int i = 0; i<a.sz; ++i) p[i] = a.elem[i];        // copy elements
          delete[] elem;                                    // deallocate old space
          space = sz = a.sz;                             // set new size
          elem = p;                                           // set new elements
          return *this;                                      // return a self-reference
}

Here, we first test for self-assignment (e.g., v=v); in that case, we just do nothing. That test is logically redundant but
sometimes a significant optimization. It does, however, show a common use of the this pointer checking if the argument a is the
same object as the object for which a member function (here, operator=()) was called. Please convince yourself that this
code actually works if we remove the this==&a line. The a.sz<=space is also just an optimization. Please convince yourself
that this code actually works if we remove the a.sz<=space case.

19.2.6 Our vector so far
Now we have an almost real vector of doubles:
Click here to view code image

// an almost real vector of doubles:
class vector {

/*

          invariant:
          if 0<=n<sz, elem[n] is element n
          sz<=space;
          if sz<space there is space for (space–sz) doubles after elem[sz–1]



*/

      int sz;                          // the size
           double* elem;      // pointer to the elements (or 0)
           int space;               // number of elements plus number of free slots
public:

          vector() : sz{0}, elem{nullptr}, space{0} { }

          explicit vector(int s) :sz{s}, elem{new double[s]}, space{s}

          {
                    for (int i=0; i<sz; ++i) elem[i]=0;        // elements are initialized
          }

          vector(const vector&);                                   // copy constructor
          vector& operator=(const vector&);            // copy assignment

          vector(vector&&);                                          // move constructor
          vector& operator=(vector&&);                   // move assignment

          ~vector() { delete[] elem; }                                      // destructor

          double& operator[ ](int n) { return elem[n]; }    // access: return reference
          const double& operator[](int n) const { return elem[n]; }

          int size() const { return sz; }

          int capacity() const { return space; }

          void resize(int newsize);                                        // growth
          void push_back(double d);

          void reserve(int newalloc);

};

Note how it has the essential operations (§18.4): constructor, default constructor, copy operations, destructor. It has an
operation for accessing data (subscripting: [ ]) and for providing information about that data (size() and capacity()) and for
controlling growth (resize(), push_back(), and reserve()).

19.3 Templates
But we don’t just want vectors of doubles; we want to freely specify the element type for our vectors. For example:
Click here to view code image

vector<double>

vector<int>

vector<Month>

vector<Window*>                        // vector of pointers to Windows
vector<vector<Record>>            // vector of vectors of Records
vector<char>

To do that, we must see how to define templates. We have used templates from day one, but until now we haven’t had a need to
define one. The standard library provides what we have needed so far, but we mustn’t believe in magic, so we need to examine
how the designers and implementers of the standard library provided facilities such as the vector type and the sort() function
(§21.1, §B.5.4). This is not just of theoretical interest, because — as usual — the tools and techniques used for the standard
library are among the most useful for our own code. For example, in Chapters 21 and 22, we show how templates can be used
for implementing the standard library containers and algorithms. In Chapter 24, we show how to design matrices for scientific
computation.

Basically, a template is a mechanism that allows a programmer to use types as parameters for a class or a function. The
compiler then generates a specific class or function when we later provide specific types as arguments.

19.3.1 Types as template parameters

We want to make the element type a parameter to vector. So we take our vector and replace double with T where T is a



parameter that can be given “values” such as double, int, string, vector<Record>, and Window*. The C++ notation for
introducing a type parameter T is the template<typename T> prefix, meaning “for all types T.” For example:
Click here to view code image

// an almost real vector of Ts:
template<typename T>

class vector {                // read “for all types T” (just like in math)
          int sz;                                                                       // the size
          T* elem;                                                                  // a pointer to the elements
          int space;                                                                // size + free space
public:

          vector() : sz{0}, elem{nullptr}, space{0} { }

          explicit vector(int s) :sz{s}, elem{new T[s]}, space{s}

          {
                    for (int i=0; i<sz; ++i) elem[i]=0;              // elements are initialized
          }

          vector(const vector&);                                         // copy constructor
          vector& operator=(const vector&);                  // copy assignment

          vector(vector&&);                                                // move constructor
          vector& operator=(vector&&);                         // move assignment

          ~vector() { delete[] elem; }                                 // destructor

          T& operator[](int n) { return elem[n]; }           // access: return reference
          const T& operator[](int n) const { return elem[n]; }

          int size() const { return sz; }                              // the current size
          int capacity() const { return space; }

          void resize(int newsize);                                   // growth
          void push_back(const T& d);

          void reserve(int newalloc);

};

That’s just our vector of doubles from §19.2.6 with double replaced by the template parameter T. We can use this class
template vector like this:
Click here to view code image

vector<double> vd;              // T is double
vector<int> vi;                        // T is int
vector<double*> vpd;          // T is double*
vector<vector<int>> vvi;      // T is vector<int>, in which T is int

One way of thinking about what a compiler does when we use a template is that it generates the class with the actual type (the
template argument) in place of the template parameter. For example, when the compiler sees vector<char> in the code, it
(somewhere) generates something like this:
Click here to view code image

class vector_char {

          int sz;                            // the size
          char* elem;                  // a pointer to the elements
          int space;                      // size + free space
public:

          vector() : sz{0}, elem{nullptr}, space{0} { }

          explicit vector_char(int s) :sz{s}, elem{new char[s]}, space{s}

          {
                    for (int i=0; i<sz; ++i) elem[i]=0;                  // elements are initialized
          }

          vector_char(const vector_char&);                          // copy constructor
          vector_char& operator=(const vector_char&);   // copy assignment

          vector_char(vector_char&&);                                 // move constructor



          vector_char& operator=(vector_char&&);          // move assignment

          ~vector_char ();                                                        // destructor

          char& operator[] (int n) ) { return elem[n];         // access: return reference
          const char& operator[] (int n) const ) { return elem[n]; }

          int size() const;                                                        // the current size
          int capacity() const;

          void resize(int newsize);                                      // growth
          void push_back(const char& d);

          void reserve(int newalloc);

};

For vector<double>, the compiler generates roughly the vector (of double) from §19.2.6 (using a suitable internal name
meaning vector<double>).

Sometimes, we call a class template a type generator. The process of generating types (classes) from a class template given
template arguments is called specialization or template instantiation. For example, vector<char> and
vector<Poly_line*> are said to be specializations of vector. In simple cases, such as our vector, instantiation is a pretty
simple process. In the most general and advanced cases, template instantiation is horrendously complicated. Fortunately for the
user of templates, that complexity is in the domain of the compiler writer, not the template user. Template instantiation
(generation of template specializations) takes place at compile time or link time, not at run time.

Naturally, we can use member functions of such a class template. For example:

void fct(vector<string>& v)

{

          int n = v.size();

          v.push_back("Norah");

          // . . .
}

When such a member function of a class template is used, the compiler generates the appropriate function. For example, when
the compiler sees v.push_back("Norah"), it generates a function
Click here to view code image

void vector<string>::push_back(const string& d) { /* . . . */ }

from the template definition
Click here to view code image

template<typename T> void vector<T>::push_back(const T& d) { /* . . . */ };

That way, there is a function for v.push_back("Norah") to call. In other words, when you need a function for given object
and argument types, the compiler will write it for you based on its template.

Instead of writing template<typename T>, you can write template<class T>. The two constructs mean exactly the
same thing, but some prefer typename “because it is clearer” and “because nobody gets confused by typename thinking that
you can’t use a built-in type, such as int, as a template argument.” We are of the opinion that class already means type, so it
makes no difference. Also, class is shorter.

19.3.2 Generic programming

Templates are the basis for generic programming in C++. In fact, the simplest definition of “generic programming” in C++ is
“using templates.” That definition is a bit too simpleminded, though. We should not define fundamental programming concepts
in terms of programming language features. Programming language features exist to support programming techniques — not the
other way around. As with most popular notions, there are many definitions of “generic programming.” We think that the most
useful simple definition is

Generic programming: Writing code that works with a variety of types presented as arguments, as long as those argument



types meet specific syntactic and semantic requirements.

For example, the elements of a vector must be of a type that we can copy (by copy construction and copy assignment), and in
Chapters 20 and 21 we will see templates that require arithmetic operations on their arguments. When what we parameterize is
a class, we get a class template, what is often called a parameterized type or a parameterized class. When what we
parameterize is a function, we get a function template, what is often called a parameterized function and sometimes also
called an algorithm. Thus, generic programming is sometimes referred to as “algorithm-oriented programming”; the focus of
the design is more the algorithms than the data types they use.

Since the notion of parameterized types is so central to programming, let’s explore the somewhat bewildering terminology a
bit further. That way we have a chance of not getting too confused when we meet such notions in other contexts.

This form of generic programming relying on explicit template parameters is often called parametric polymorphism. In
contrast, the polymorphism you get from using class hierarchies and virtual functions is called ad hoc polymorphism and that
style of programming is called object-oriented programming (§14.3–4). The reason that both styles of programming are called
polymorphism is that each style relies on the programmer to present many versions of a concept by a single interface.
Polymorphism is Greek for “many shapes,” referring to the many different types you can manipulate through a common
interface. In the Shape examples from Chapters 16–19 we literally accessed many shapes (such as Text, Circle, and
Polygon) through the interface defined by Shape. When we use vectors, we use many vectors (such as vector<int>,
vector<double>, and vector<Shape*>) through the interface defined by the vector template.

There are several differences between object-oriented programming (using class hierarchies and virtual functions) and
generic programming (using templates). The most obvious is that the choice of function invoked when you use generic
programming is determined by the compiler at compile time, whereas for object-oriented programming, it is not determined
until run time. For example:
Click here to view code image

v.push_back(x);           // put x into the vector v
s.draw();                         // draw the shape s

For v.push_back(x) the compiler will determine the element type for v and use the appropriate push_back(), but for
s.draw() the compiler will indirectly call some draw() function (using s’s vtbl; see §14.3.1). This gives object-oriented
programming a degree of freedom that generic programming lacks, but leaves run-of-the-mill generic programming more
regular, easier to understand, and better performing (hence the “ad hoc” and “parametric” labels).

To sum up:
• Generic programming: supported by templates, relying on compile-time resolution

• Object-oriented programming: supported by class hierarchies and virtual functions, relying on run-time resolution
Combinations of the two are possible and useful. For example:
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void draw_all(vector<Shape*>& v)

{

          for (int I = 0; i<v.size(); ++i) v[i]–>draw();

}

Here we call a virtual function (draw()) on a base class (Shape) using a virtual function — that’s certainly object-oriented
programming. However, we also kept Shape*s in a vector, which is a parameterized type, so we also used (simple) generic
programming.

So — assuming you have had your fill of philosophy for now — what do people actually use templates for? For unsurpassed
flexibility and performance:

• Use templates where performance is essential (e.g., numerics and hard real time; see Chapters 24 and 25).
• Use templates where flexibility in combining information from several types is essential (e.g., the C++ standard library;



see Chapters 20–21).

19.3.3 Concepts

Templates have many useful properties, such as great flexibility and near-optimal performance, but unfortunately they are not
perfect. As usual, the benefits have corresponding weaknesses. For templates, the main problem is that the flexibility and
performance come at the cost of poor separation between the “inside” of a template (its definition) and its interface (its
declaration). This manifests itself in poor error diagnostics — often spectacularly poor error messages. Sometimes, these error
messages come much later in the compilation process than we would prefer.

When compiling a use of a template, the compiler “looks into” the template and also into the template arguments. It does so
to get the information to generate optimal code. To have all that information available, current compilers tend to require that a
template must be fully defined wherever it is used. That includes all of its member functions and all template functions called
from those. Consequently, template writers tend to place template definitions in header files. This is not actually required by
the standard, but until radically improved implementations are widely available, we recommend that you do so for your own
templates: place the definition of any template that is to be used in more than one translation unit in a header file.

Initially, write only very simple templates yourself and proceed carefully to gain experience. One useful development
technique is to do as we did for vector: First develop and test a class using specific types. Once that works, replace the
specific types with template parameters and test with a variety of template arguments. Use template-based libraries, such as the
C++ standard library, for generality, type safety, and performance. Chapters 20 and 21 are devoted to the containers and
algorithms of the standard library and will give you examples of the use of templates.

C++14 provides a mechanism for vastly improved checking of template interfaces. For example, in C++11 we write
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template<typename T>        // for all types T
class vector {

          // . . .
};

We cannot precisely state what is expected of an argument type T. The standard says what these requirements are, but only in
English, rather than in code that the compiler can understand. We call a set of requirements on a template argument a concept.
A template argument must meet the requirements, the concepts, of the template to which it is applied. For example, a vector

requires that its elements can be copied or moved, can have their address taken, and be default constructed (if needed). In other
words, an element must meet a set of requirements, which we could call Element. In C++14, we can make that explicit:
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template<typename T>              // for all types T
          requires Element<T>()      // such that T is an Element
class vector {

                    // . . .
};

This shows that a concept is really a type predicate, that is, a compile-time-evaluated (constexpr) function that returns true if
the type argument (here, T) has the properties required by the concept (here, Element) and false if it does not. This is a bit
long-winded, but a shorthand notation brings us to
Click here to view code image

template<Element T>             // for all types T, such that Element<T>() is true
class vector {

          // . . .
};

If we don’t have a C++14 compiler that supports concepts, we can specify our requirements in names and in comments:
Click here to view code image

template<typename Elem>        // requires Element<Elem>()
class vector {

          // . . .



};

The compiler doesn’t understand our names or read our comments, but being explicit about concepts helps us think about our
code, improves our design of generic code, and helps other programmers understand our code. As we go along, we will use
some common and useful concepts:

• Element<E>(): E can be an element in a container.
• Container<C>(): C can hold Elements and be accessed as a [begin():end()) sequence.
• Forward_iterator<For>(): For can be used to traverse a sequence [b:e) (like a linked list, a vector, or an array).
• Input_iterator<In>(): In can be used to read a sequence [b:e) once only (like an input stream).
• Output_iterator<Out>(): A sequence can be output using Out.
• Random_access_iterator<Ran>(): Ran can be used to read and write a sequence [b:e) repeatedly and supports
subscripting using [ ].

• Allocator<A>(): A can be used to acquire and release memory (like the free store).
• Equal_comparable<T>(): We can compare two Ts for equality using == to get a Boolean result.
• Equal_comparable<T,U>(): We can compare a T to a U for equality using == to get a Boolean result.
• Predicate<P,T>(): We can call P with an argument of type T to get a Boolean result.
• Binary_predicate<P,T>(): We can call P with two arguments of type T to get a Boolean result.
• Binary_predicate<P,T,U>(): We can call P with arguments of types T and U to get a Boolean result.
• Less_comparable<L,T>(): We can use L to compare two Ts for less than using < to get a Boolean result.
• Less_comparable<L,T,U>(): We can use L to compare a T to a U for less than using < to get a Boolean result.
• Binary_operation<B,T,U>(): We can use B to do an operation on two Ts.
• Binary_operation<B,T,U>(): We can use B to do an operation on a T and a U.
• Number<N>(): N behaves like a number, supporting +, -, *, and /.

For standard library containers and algorithms, these concepts (and many more) are specified in excruciating detail. Here,
especially in Chapters 20 and 21, we will use them informally to document our containers and algorithms.

A container type and an iterator type, T, have a value type (written as Value_type<T>), which is the element type. Often,
that Value_type<T> is a member type T::value_type; see vector and list (§20.5).

19.3.4 Containers and inheritance
There is one kind of combination of object-oriented programming and generic programming that people always try, but it
doesn’t work: attempting to use a container of objects of a derived class as a container of objects of a base class. For example:
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vector<Shape> vs;

vector<Circle> vc;

vs = vc;                       // error: vector<Shape> required
void f(vector<Shape>&);

f(vc);                           // error: vector<Shape> required

But why not? After all, you say, I can convert a Circle to a Shape! Actually, no, you can’t. You can convert a Circle* to a
Shape* and a Circle& to a Shape&, but we deliberately disabled assignment of Shapes, so that you wouldn’t have to
wonder what would happen if you put a Circle with a radius into a Shape variable that doesn’t have a radius (§14.2.4). What
would have happened — had we allowed it — would have been what is called “slicing” and is the class object equivalent of
integer truncation (§3.9.2).

So we try again using pointers:
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vector<Shape*> vps;

vector<Circle*> vpc;

vps = vpc;                        // error: vector<Shape*> required
void f(vector<Shape*>&);



f(vpc);                              // error: vector<Shape*> required

Again, the type system resists; why? Consider what f() might do:
Click here to view code image

void f(vector<Shape*>& v)

{

          v.push_back(new Rectangle{Point{0,0},Point{100,100}});

}

Obviously, we can put a Rectangle* into a vector<Shape*>. However, if that vector<Shape*> was elsewhere
considered to be a vector<Circle*>, someone would get a nasty surprise. In particular, had the compiler accepted the
example above, what would a Rectangle* be doing in vpc? Inheritance is a powerful and subtle mechanism and templates do
not implicitly extend its reach. There are ways of using templates to express inheritance, but they are beyond the scope of this
book. Just remember that “D is a B” does not imply “C<D> is a C<B>” for an arbitrary template C — and we should value
that as a protection against accidental type violations. See also §25.4.4.

19.3.5 Integers as template parameters

Obviously, it is useful to parameterize classes with types. How about parameterizing classes with “other things,” such as
integer values and string values? Basically, any kind of argument can be useful, but we’ll consider only type and integer
parameters. Other kinds of parameters are less frequently useful, and C++’s support for other kinds of parameters is such that
their use requires quite detailed knowledge of language features.

Consider an example of the most common use of an integer value as a template argument, a container where the number of
elements is known at compile time:
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template<typename T, int N> struct array {

          T elem[N];                      // hold elements in member array

          // rely on the default constructors, destructor, and assignment

          T& operator[] (int n);                       // access: return reference
          const T& operator[] (int n) const;

          T* data() { return elem; }               // conversion to T*
          const T* data() const { return elem; }

          int size() const { return N; }

};

We can use array (see also §20.7) like this:
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array<int,256> gb;                        // 256 integers
array<double,6> ad = { 0.0, 1.1, 2.2, 3.3, 4.4, 5.5 };

const int max = 1024;

void some_fct(int n)

{

          array<char,max> loc;

          array<char,n> oops;         // error: the value of n not known to compiler
          // . . .
          array<char,max> loc2 = loc;     // make backup copy
          // . . .
          loc = loc2;                                   // restore
          // . . .
}

Clearly, array is very simple — much simpler and less powerful than vector — so why would anyone want to use an array

rather than a vector? One answer is “efficiency.” We know the size of an array at compile time, so the compiler can allocate



static memory (for global objects, such as gb) and stack memory (for local objects, such as loc) rather than using the free
store. When we do range checking, the checks can be against constants (the size parameter N). For most programs the
efficiency improvement is insignificant, but if you are writing a crucial system component, such as a network driver, even a
small difference can matter. More importantly, some programs simply can’t be allowed to use the free store. Such programs
are typically embedded systems programs and/or safety-critical programs (see Chapter 25). In such programs, array gives us
many of the advantages of vector without violating a critical restriction (no free-store use).

Let’s ask the opposite question: not “Why can’t we just use vector?” but “Why not just use built-in arrays?” As we saw in
§18.6, arrays can be rather ill behaved: they don’t know their own size, they convert to pointers at the slightest provocation,
they don’t copy properly; like vector, array doesn’t have those problems. For example:
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double* p = ad;                      // error: no implicit conversion to pointer
double* q = ad.data();           // OK: explicit conversion

template<typename C> void printout(const C& c)        // function template
{

          for (int i = 0; i<c.size(); ++i) cout << c[i] <<'\n';

}

This printout() can be called by an array as well as a vector:

Click here to view code image

printout(ad);                       // call with array
vector<int> vi;

// . . .
printout(vi);                        // call with vector

This is a simple example of generic programming applied to data access. It works because the interface used for array and
vector (size() and subscripting) is the same. Chapters 20 and 21 will explore this style of programming in some detail.

19.3.6 Template argument deduction
For a class template, you specify the template arguments when you create an object of some specific class. For example:
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array<char,1024> buf;              // for buf, T is char and N is 1024
array<double,10> b2;               // for b2, T is double and N is 10

For a function template, the compiler usually deduces the template arguments from the function arguments. For example:
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template<class T, int N> void fill(array<T,N>& b, const T& val)

{

          for (int i = 0; i<N; ++i) b[i] = val;

}

void f()

{

          fill(buf,'x');                 // for fill(), T is char and N is 1024
                                               // because that’s what buf has
          fill(b2,0.0);                 // for fill(), T is double and N is 10
                                              // because that’s what b2 has
}

Technically, fill(buf,'x') is shorthand for fill<char,1024>(buf,'x'), and fill(b2,0) is shorthand for fill<double,10>(b2,0),
but fortunately we don’t often have to be that specific. The compiler figures it out for us.

19.3.7 Generalizing vector

When we generalized vector from a class “vector of double” to a template “vector of T,” we didn’t review the definitions
of push_back(), resize(), and reserve(). We must do that now because as they are defined in §19.2.2 and §19.2.3 they make
assumptions that are true for doubles, but not true for all types that we’d like to use as vector element types:



• How do we handle a vector<X> where X doesn’t have a default value?
• How do we ensure that elements are destroyed when we are finished with them?

Must we solve those problems? We could say, “Don’t try to make vectors of types without default values” and “Don’t use
vectors for types with destructors in ways that cause problems.” For a facility that is aimed at “general use,” such restrictions
are annoying to users and give the impression that the designer hasn’t thought the problem through or doesn’t really care about
users. Often, such suspicions are correct, but the designers of the standard library didn’t leave these warts in place. To mirror
the standard library vector, we must solve these two problems.

We can handle types without a default by giving the user the option to specify the value to be used when we need a “default
value”:
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template<typename T> void vector<T>::resize(int newsize, T def = T());

That is, use T() as the default value unless the user says otherwise. For example:
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vector<double> v1;

v1.resize(100);                // add 100 copies of double(), that is, 0.0
v1.resize(200, 0.0);         // add 100 copies of 0.0 — mentioning 0.0 is redundant
v1.resize(300, 1.0);         // add 100 copies of 1.0

struct No_default {

          No_default(int);                 // the only constructor for No_default
          // . . .
};

vector<No_default> v2(10);     // error: tries to make 10 No_default()s
vector<No_default> v3;

v3.resize(100, No_default(2));       // add 100 copies of No_default(2)
v3.resize(200);                                  // error: tries to add 100 No_default()s

The destructor problem is harder to address. Basically, we need to deal with something really awkward: a data structure
consisting of some initialized data and some uninitialized data. So far, we have gone a long way to avoid uninitialized data and
the programming errors that usually accompany it. Now — as implementers of vector — we have to face that problem so that
we — as users of vector — don’t have to in our applications.

First, we need to find a way of getting and manipulating uninitialized storage. Fortunately, the standard library provides a
class allocator, which provides uninitialized memory. A slightly simplified version looks like this:
Click here to view code image

template<typename T> class allocator {

public:

          // . . .
          T* allocate(int n);                          // allocate space for n objects of type T
          void deallocate(T* p, int n);        // deallocate n objects of type T starting at p

          void construct(T* p, const T& v);    // construct a T with the value v in p
          void destroy(T* p);                             // destroy the T in p
};

Should you need the full story, have a look in The C++ Programming Language, <memory> (§B.1.1), or the standard.
However, what is presented here shows the four fundamental operations that allow us to

• Allocate memory of a size suitable to hold an object of type T without initializing
• Construct an object of type T in uninitialized space
• Destroy an object of type T, thus returning its space to the uninitialized state
• Deallocate uninitialized space of a size suitable for an object of type T

Unsurprisingly, an allocator is exactly what we need for implementing vector<T>::reserve(). We start by giving vector an
allocator parameter:
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template<typename T, typename A = allocator<T>> class vector {

          A alloc;             // use allocate to handle memory for elements
          // . . .
};

Except for providing an allocator — and using the standard one by default instead of using new — all is as before. As users
of vector, we can ignore allocators until we find ourselves needing a vector that manages memory for its elements in some
unusual way. As implementers of vector and as students trying to understand fundamental problems and learn fundamental
techniques, we must see how a vector can deal with uninitialized memory and present properly constructed objects to its
users. The only code affected is vector member functions that directly deal with memory, such as vector<T>::reserve():
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template<typename T, typename A>

void vector<T,A>::reserve(int newalloc)

{

          if (newalloc<=space) return;               // never decrease allocation
          T* p = alloc.allocate(newalloc);          // allocate new space
          for (int i=0; i<sz; ++i) alloc.construct(&p[i],elem[i]);       // copy
          for (int i=0; i<sz; ++i) alloc.destroy(&elem[i]);                 // destroy
          alloc.deallocate(elem,space);             // deallocate old space
          elem = p;

          space = newalloc;

}

We move an element to the new space by constructing a copy in uninitialized space and then destroying the original. We can’t
use assignment because for types such as string, assignment assumes that the target area has been initialized.

Given reserve(), vector<T,A>::push_back() is simple to write:
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template<typename T, typename A>

void vector<T,A>::push_back(const T& val)

{

          if (space==0) reserve(8);                            // start with space for 8 elements
          else if (sz==space) reserve(2*space);      // get more space
          alloc.construct(&elem[sz],val);                 // add val at end
          ++sz;                                                              // increase the size
}

Similarly, vector<T,A>::resize() is not too difficult:
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template<typename T, typename A>

void vector<T,A>::resize(int newsize, T val = T())

{

          reserve(newsize);

          for (int i=sz; i<newsize; ++i) alloc.construct(&elem[i],val);   // construct
          for (int i = newsize; i<sz; ++i) alloc.destroy(&elem[i]);            // destroy
          sz = newsize;

}

Note that because some types do not have a default constructor, we again provide the option to supply a value to be used as an
initial value for new elements.

The other new thing here is the destruction of “surplus elements” in the case where we are resizing to a smaller vector.
Think of the destructor as turning a typed object into “raw memory.”

“Messing with allocators” is pretty advanced stuff, and tricky. Leave it alone until you are ready to become an expert.

19.4 Range checking and exceptions
We look at our vector so far and find (with horror?) that access isn’t range checked. The implementation of operator[] is
simply
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template<typename T, typename A> T& vector<T,A>::operator[](int n)

{

          return elem[n];

}

So, consider:
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vector<int> v(100);

v[–200] = v[200];           // oops!
int i;

cin>>i;

v[i] = 999;                       // maul an arbitrary memory location

This code compiles and runs, accessing memory not owned by our vector. This could mean big trouble! In a real program,
such code is unacceptable. Let’s try to improve our vector to deal with this problem. The simplest approach would be to add
a checked access operation, called at():
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struct out_of_range { /* . . . */ };   // class used to report range access errors

template<typename T, typename A = allocator<T>> class vector {

           // . . .
           T& at(int n);                            // checked access
           const T& at(int n) const;      // checked access

          T& operator[](int n);                                     // unchecked access
          const T& operator[](int n) const;               // unchecked access
          // . . .
};

template<typename T, typename A > T& vector<T,A>::at(int n)

{

          if (n<0 || sz<=n) throw out_of_range();

          return elem[n];

}

template<typename T, typename A > T& vector<T,A>::operator[](int n)

         // as before
{

         return elem[n];

}

Given that, we could write
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void print_some(vector<int>& v)

{

          int i = –1;

          while(cin>>i && i!=–1)

          try {

                    cout << "v[" << i << "]==" << v.at(i) << "\n";

          }
          catch(out_of_range) {

                    cout << "bad index: " << i << "\n";

          }
}

Here, we use at() to get range-checked access, and we catch out_of_range in case of an illegal access.
The general idea is to use subscripting with [ ] when we know that we have a valid index and at() when we might have an

out-of-range index.

19.4.1 An aside: design considerations
So far, so good, but why didn’t we just add the range check to operator[]()? Well, the standard library vector provides



checked at() and unchecked operator[]() as shown here. Let’s try to explain how that makes some sense. There are basically
four arguments:

1. Compatibility: People have been using unchecked subscripting since long before C++ had exceptions.
2. Efficiency: You can build a checked-access operator on top of an optimally fast unchecked-access operator, but you

cannot build an optimally fast access operator on top of a checked-access operator.
3. Constraints: In some environments, exceptions are unacceptable.
4. Optional checking: The standard doesn’t actually say that you can’t range check vector, so if you want checking, use an

implementation that checks.

19.4.1.1 Compatibility
People really, really don’t like to have their old code break. For example, if you have a million lines of code, it could be a
very costly affair to rework it all to use exceptions correctly. We can argue that the code would be better for the extra work,
but then we are not the ones who have to pay (in time or money). Furthermore, maintainers of existing code usually argue that
unchecked code may be unsafe in principle, but their particular code has been tested and used for years and all the bugs have
already been found. We can be skeptical about that argument, but again nobody who hasn’t had to make such decisions about
real code should be too judgmental. Naturally, there was no code using the standard library vector before it was introduced
into the C++ standard, but there were many millions of lines of code that used very similar vectors that (being pre-standard)
didn’t use exceptions. Much of that code was later modified to use the standard.

19.4.1.2 Efficiency

Yes, range checking can be a burden in extreme cases, such as buffers for network interfaces and matrices in high-performance
scientific computations. However, the cost of range checking is rarely a concern in the kind of “ordinary computing” that most
of us spend most of our time on. Thus, we recommend and use a range-checked implementation of vector whenever we can.

19.4.1.3 Constraints
Again, the argument holds for some programmers and some applications. In fact, it holds for a whole lot of programmers and
shouldn’t be lightly ignored. However, if you are starting a new program in an environment that doesn’t involve hard real time
(see §25.2.1), prefer exception-based error handling and range-checked vectors.

19.4.1.4 Optional checking
The ISO C++ standard simply states that out-of-range vector access is not guaranteed to have any specific semantics, and that
such access should be avoided. It is perfectly standards-conforming to throw an exception when a program tries an out-of-
range access. So, if you like vector to throw and don’t need to be concerned by the first three reasons for a particular
application, use a range-checked implementation of vector. That’s what we are doing for this book.

The long and the short of this is that real-world design can be messier than we would prefer, but there are ways of coping.

19.4.2 A confession: macros
Like our vector, most implementations of the standard library vector don’t guarantee to range check the subscript operator ([
]) but provide at() that checks. So where did those std::out_of_range exceptions in our programs come from? Basically, we
chose “option 4” from §19.4.1: a vector implementation is not obliged to range check [ ], but it is not prohibited from doing so
either, so we arranged for checking to be done. What you might have been using is our debug version, called Vector, which
does check [ ]. That’s what we use when we develop code. It cuts down on errors and debug time at little cost to performance:
Click here to view code image

struct Range_error : out_of_range {   // enhanced vector range error reporting
          int index;

          Range_error(int i) :out_of_range("Range error"), index(i) { }

};

template<typename T> struct Vector : public std::vector<T> {



          using size_type = typename std::vector<T>::size_type;

          using vector<T>::vector;                // use vector<T>’s constructors (§20.5)

          T& operator[](size_type i)                // rather than return at(i);
          {
                    if (i<0||this–>size()<=i) throw Range_error(i);

                    return std::vector<T>::operator[](i);
          }
          const T& operator[](size_type i) const

          {

                    if (i<0||this–>size()<=i) throw Range_error(i);

                    return std::vector<T>::operator[](i);
          }
};

We use Range_error to make the offending index available for debugging. Deriving from std::vector gives us all of
vector’s member functions for Vector. The first using introduces a convenient synonym for std::vector’s size_type; see
§20.5. The second using gives us all of vector’s constructors for Vector.

This Vector has been useful in debugging nontrivial programs. The alternative is to use a systematically checked
implementation of the complete standard library vector — in fact, that may indeed be what you have been using; we have no
way of knowing exactly what degree of checking your compiler and library provide (beyond what the standard guarantees).

In std_lib_facilities.h, we use the nasty trick (a macro substitution) of redefining vector to mean Vector:
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// disgusting macro hack to get a range-checked vector:
#define vector Vector

That means that whenever you wrote vector, the compiler saw Vector. This trick is nasty because what you see looking at the
code is not what the compiler sees. In real-world code, macros are a significant source of obscure errors (§27.8, §A.17.2).

We did the same to provide range-checked access for string.
Unfortunately, there is no standard, portable, and clean way of getting range checking from an implementation of vector’s [

]. It is, however, possible to do a much cleaner and more complete job of a range-checked vector (and string) than we did.
However, that usually involves replacement of a vendor’s standard library implementation, adjusting installation options, or
messing with standard library source code. None of those options is appropriate for a beginner’s first week of programming —
and we used string in Chapter 2.

19.5 Resources and exceptions
So, vector can throw exceptions, and we recommend that when a function cannot perform its required action, it throws an
exception to tell that to its callers (Chapter 5). Now is the time to consider what to do when we write code that must deal with
exceptions thrown by vector operations and other functions that we call. The naive answer — “Use a try-block to catch the
exception, write an error message, and then terminate the program” — is too crude for most nontrivial systems.

One of the fundamental principles of programming is that if we acquire a resource, we must — somehow, directly or
indirectly — return it to whatever part of the system manages that resource. Examples of resources are

• Memory
• Locks
• File handles
• Thread handles
• Sockets
• Windows

Basically, we define a resource as something that is acquired and must be given back (released) or reclaimed by some



“resource manager.” The simplest example is free-store memory that we acquire using new and return to the free store using
delete. For example:
Click here to view code image

void suspicious(int s, int x)

{

          int* p = new int[s];        // acquire memory
          // . . .
          delete[] p;                       // release memory
}

As we saw in §17.4.6, we have to remember to release the memory, and that’s not always easy to do. When we add exceptions
to the picture, resource leaks can become common; all it takes is ignorance or some lack of care. In particular, we view code,
such as suspicious(), that explicitly uses new and assigns the resulting pointer to a local variable with great suspicion.

We call an object, such as a vector, that is responsible for releasing a resource the owner or a handle of the resource for
which it is responsible.

19.5.1 Potential resource management problems

One reason for suspicion of apparently innocuous pointer assignments such as
Click here to view code image

int* p = new int[s];              // acquire memory

is that it can be hard to verify that the new has a corresponding delete. At least suspicious() has a delete[] p; statement
that might release the memory, but let’s imagine a few things that might cause that release not to happen. What could we put in
the . . . part to cause a memory leak? The problematic examples we find should give you cause for thought and make you
suspicious of such code. They should also make you appreciate the simple and powerful alternative to such code.

Maybe p no longer points to the object when we get to the delete:
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void suspicious(int s, int x)

{

          int* p = new int[s];       // acquire memory
          // . . .
          if (x) p = q;                     // make p point to another object
          // . . .
          delete[] p;                     // release memory
}

We put that if (x) there to be sure that you couldn’t know whether we had changed the value of p. Maybe we never get to the
delete:
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void suspicious(int s, int x)

{

          int* p = new int[s];       // acquire memory
          // . . .
          if (x) return;

          // . . .
          delete[] p;                    // release memory
}

Maybe we never get to the delete because we threw an exception:
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void suspicious(int s, int x)

{

          int* p = new int[s];         // acquire memory
          vector<int> v;



          // . . .
          if (x) p[x] = v.at(x);

          // . . .
          delete[] p;                     // release memory
}

It is this last possibility that concerns us most here. When people first encounter this problem, they tend to consider it a
problem with exceptions rather than a resource management problem. Having misclassified the root cause, they come up with a
solution that involves catching the exception:
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void suspicious(int s, int x)       // messy code
{

          int* p = new int[s];           // acquire memory
          vector<int> v;

          // . . .
          try {

                    if (x) p[x] = v.at(x);

                    // . . .
          } catch (. . .) {                     // catch every exception
                    delete[] p;                // release memory
                    throw;                      // re-throw the exception
          }
          // . . .
          delete[] p;                         // release memory
}

This solves the problem at the cost of some added code and a duplication of the resource release code (here, delete[] p;). In
other words, this solution is ugly; worse, it doesn’t generalize well. Consider acquiring more resources:
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void suspicious(vector<int>& v, int s)

{

          int* p = new int[s];

          vector<int>v1;

          // . . .
          int* q = new int[s];

          vector<double> v2;

          // . . .
          delete[] p;

          delete[] q;

}

Note that if new fails to find free-store memory to allocate, it will throw the standard library exception bad_alloc. The try . .

. catch technique works for this example also, but you’ll need several try-blocks, and the code is repetitive and ugly. We
don’t like repetitive and ugly code because “repetitive” translates into code that is a maintenance hazard, and “ugly” translates
into code that is hard to get right, hard to read, and a maintenance hazard.

 Try This

Add try-blocks to this last example to ensure that all resources are properly released in all cases where an
exception might be thrown.

19.5.2 Resource acquisition is initialization
Fortunately, we don’t need to plaster our code with complicated try . . . catch statements to deal with potential resource
leaks. Consider:

void f(vector<int>& v, int s)

{

          vector<int> p(s);



          vector<int> q(s);

          // . . .
}

This is better. More importantly, it is obviously better. The resource (here, free-store memory) is acquired by a constructor and
released by the matching destructor. We actually solved this particular “exception problem” when we solved the memory leak
problems for vectors. The solution is general; it applies to all kinds of resources: acquire a resource in the constructor for
some object that manages it, and release it again in the matching destructor. Examples of resources that are usually best dealt
with in this way include database locks, sockets, and I/O buffers (iostreams do it for you). This technique is usually referred
to by the awkward phrase “Resource Acquisition Is Initialization,” abbreviated to RAII.

Consider the example above. Whichever way we leave f(), the destructors for p and q are invoked appropriately: since p
and q aren’t pointers, we can’t assign to them, a return-statement will not prevent the invocation of destructors, and neither
will throwing an exception. This general rule holds: when the thread of execution leaves a scope, the destructors for every
fully constructed object and sub-object are invoked. An object is considered constructed when its constructor completes.
Exploring the detailed implications of those two statements might cause a headache, but they simply mean that constructors and
destructors are invoked as needed.

In particular, use vector rather than explicit new and delete when you need a nonconstant amount of storage within a
scope.

19.5.3 Guarantees
What can we do where we can’t keep the vector within a single scope (and its sub-scopes)? For example:
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vector<int>* make_vec()                                  // make a filled vector
{

          vector<int>* p = new vector<int>;     // we allocate on free store
          // . . . fill the vector with data; this may throw an exception . . .
          return p;

}

This is an example of a common kind of code: we call a function to construct a complicated data structure and return that data
structure as the result. The snag is that if an exception is thrown while “filling” the vector, make_vec() leaks that vector. An
unrelated problem is that if the function succeeds, someone will have to delete the object returned by make_vec() (see
§17.4.6).

We can add a try-block to deal with the possibility of a throw:
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vector<int>* make_vec()                                // make a filled vector
{

          vector<int>* p = new vector<int>;    // we allocate on free store
          try {

                    // fill the vector with data; this may throw an exception
                    return p;

          }
          catch (. . .) {

                    delete p;        // do our local cleanup
                    throw;            // re-throw to allow our caller to deal with the fact
                                            // that make_vec() couldn’t do what was
                                            // required of it
          }
}

This make_vec() function illustrates a very common style of error handling: it tries to do its job and if it can’t, it cleans up
any local resources (here the vector on the free store) and indicates failure by throwing an exception. Here, the exception
thrown is one that some other function (e.g., vector::at()) threw; make_vec() simply re-throws it using throw;. This is a



simple and effective way of dealing with errors and can be used systematically.

• The basic guarantee: The purpose of the try . . . catch code is to ensure that make_vec() either succeeds or throws an
exception without having leaked any resources. That’s often called the basic guarantee. All code that is part of a
program that we expect to recover from an exception throw should provide the basic guarantee. All standard library
code provides the basic guarantee.

• The strong guarantee: If, in addition to providing the basic guarantee, a function also ensures that all observable values
(all values not local to the function) are the same after failure as they were when we called the function, that function is
said to provide the strong guarantee. The strong guarantee is the ideal when we write a function: either the function
succeeded at doing everything it was asked to do or else nothing happened except that an exception was thrown to
indicate failure.

• The no-throw guarantee: Unless we could do simple operations without any risk of failing and throwing an exception,
we would not be able to write code to meet the basic guarantee and the strong guarantee. Fortunately, essentially all
built-in facilities in C++ provide the no-throw guarantee: they simply can’t throw. To avoid throwing, simply avoid
throw itself, new, and dynamic_cast of reference types (§A.5.7).

The basic guarantee and the strong guarantee are most useful for thinking about correctness of programs. RAII is essential for
implementing code written according to those ideals simply and with high performance.

Naturally, we should always avoid undefined (and usually disastrous) operations, such as dereferencing 0, dividing by 0,
and accessing an array beyond its range. Catching exceptions does not save you from violations of the fundamental language
rules.

19.5.4 unique_ptr

So, make_vec() is a useful kind of function that obeys the basic rules for good resource management in the presence of
exceptions. It provides the basic guarantee — as all good functions should — when we want to recover from exception throws.
Unless something nasty is done with nonlocal data in the “fill the vector with data” part, it even provides the strong guarantee.
However, that try . . . catch code is still ugly. The solution is obvious: somehow we must use RAII; that is, we need to
provide an object to hold that vector<int> so that it can delete the vector if an exception occurs. In <memory>, the
standard library provides unique_ptr for that:
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vector<int>* make_vec()              // make a filled vector
{

          unique_ptr<vector<int>> p {new vector<int>};   // allocate on free store
          // . . . fill the vector with data; this may throw an exception . . .
          return p.release();             // return the pointer held by p
}

A unique_ptr is an object that holds a pointer. We immediately initialize it with the pointer we got from new. You can use –
> and * on a unique_ptr exactly like a built-in pointer (e.g., p–>at(2) or (*p).at(2)), so we think of unique_ptr as a kind
of pointer. However, the unique_ptr owns the object pointed to: when the unique_ptr is destroyed, it deletes the object it
points to. That means that if an exception is thrown while the vector<int> is being filled, or if we return prematurely from
make_vec, the vector<int> is properly destroyed. The p.release() extracts the contained pointer (to the vector<int>)
from p so that we can return it, and it also makes p hold the nullptr so that destroying p (as is done by the return) does not
destroy anything.

Using unique_ptr simplifies make_vec() immensely. Basically, it makes make_vec() as simple as the naive but unsafe
version. Importantly, having unique_ptr allows us to repeat our recommendation to look upon explicit try-blocks with
suspicion; most can — as in make_vec() — be replaced by some variant of the “Resource Acquisition Is Initialization”
technique.

The version of make_vec() that uses a unique_ptr is fine, except that it still returns a pointer, so that someone still has to
remember to delete that pointer. Returning a unique_ptr would solve that:
Click here to view code image



unique_ptr<vector<int>> make_vec()                               // make a filled vector
{

          unique_ptr<vector<int>> p {new vector<int>};   // allocate on free store
          // . . . fill the vector with data; this may throw an exception . . .
          return p;

}

A unique_ptr is very much like an ordinary pointer, but it has one significant restriction: you cannot assign one unique_ptr

to another to get two unique_ptrs to the same object. That has to be so, or confusion could arise about which unique_ptr

owned the pointed-to object and had to delete it. For example:
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void no_good()

{
          unique_ptr<X> p { new X };

          unique_ptr<X> q {p};       // error: fortunately
          // . . .
} // here p and q both delete the X

If you want to have a “smart” pointer that both guarantees deletion and can be copied, use a shared_ptr (§B.6.5). However,
that is a more heavyweight solution that involves a use count to ensure that the last copy destroyed destroys the object referred
to.

A unique_ptr has the interesting property of having no overhead compared to an ordinary pointer.

19.5.5 Return by moving
The technique of returning a lot of information by placing it on the free store and returning a pointer to it is very common. It is
also a source of a lot of complexity and one of the major sources of memory management errors: Who deletes a pointer to the
free store returned from a function? Are we sure that a pointer to an object on the free store is properly deleted in case of an
exception? Unless we are systematic about the management of pointers (or use “smart” pointers such as unique_ptr and
shared_ptr), the answer will be something like “Well, we think so,” and that’s not good enough.

Fortunately, when we added move operations to vector, we solved that problem for vectors: just use a move constructor to
get the ownership of the elements out of the function. For example:
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vector<int> make_vec()    // make a filled vector
{

          vector<int> res;

          // . . . fill the vector with data; this may throw an exception . . .
          return res;               // the move constructor efficiently transfers ownership
}

This (final) version of make_vec() is the simplest and the one we recommend. The move solution generalizes to all
containers and further still to all resource handles. For example, fstream uses this technique to keep track of file handles. The
move solution is simple and general. Using resource handles simplifies code and eliminates a major source of errors.
Compared to the direct use of pointers, the run-time overhead of using such handles is nothing, or very minor and predictable.

19.5.6 RAII for vector

Even using a smart pointer, such as unique_ptr, may seem to be a bit ad hoc. How can we be sure that we have spotted all
pointers that require protection? How can we be sure that we have released all pointers to objects that should not be destroyed
at the end of a scope? Consider reserve() from §19.3.7:
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template<typename T, typename A>

void vector<T,A>::reserve(int newalloc)

{

          if (newalloc<=space) return;          // never decrease allocation
          T* p = alloc.allocate(newalloc);     // allocate new space
          for (int i=0; i<sz; ++i) alloc.construct(&p[i],elem[i]);       // copy
          for (int i=0; i<sz; ++i) alloc.destroy(&elem[i]);                 // destroy
          alloc.deallocate(elem,space);       // deallocate old space
          elem = p;



          space = newalloc;

}

Note that the copy operation for an old element, alloc.construct(&p[i],elem[i]), might throw an exception. So, p is an
example of the problem we warned about in §19.5.1. Ouch! We could apply the unique_ptr solution. A better solution is to
step back and realize that “memory for a vector” is a resource; that is, we can define a class vector_base to represent the
fundamental concept we have been using all the time, the picture with the three elements defining a vector’s memory use:

In code, that is (after adding the allocator for completeness)
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template<typename T, typename A>

struct vector_base {

          A alloc;             // allocator
          T* elem;           // start of allocation
          int sz;               // number of elements
          int space;        // amount of allocated space

          vector_base(const A& a, int n)

                     : alloc{a}, elem{alloc.allocate(n)}, sz{n}, space{n}{ }

          ~vector_base() { alloc.deallocate(elem,space); }

};

Note that vector_base deals with memory rather than (typed) objects. Our vector implementation can use that to hold objects
of the desired element type. Basically, vector is simply a convenient interface to vector_base:
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template<typename T, typename A = allocator<T>>

class vector : private vector_base<T,A> {

public:

          // . . .
};

We can then rewrite reserve() to something simpler and more correct:
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template<typename T, typename A>

void vector<T,A>::reserve(int newalloc)

{

          if (newalloc<=this–>space) return;         // never decrease allocation
          vector_base<T,A> b(this–>alloc,newalloc);    // allocate new space
          uninitialized_copy(b.elem,&b.elem[this–>sz],this–>elem);    // copy
          for (int i=0; i<this–>sz; ++i)

                    this–>alloc.destroy(&this–>elem[i]);      // destroy old
          swap<vector_base<T,A>>(*this,b);                 // swap representations
}

We use the standard library function uninitialized_copy to construct copies of the elements from b because it correctly
handles throws from an element copy constructor and because calling a function is simpler than writing a loop. When we exit
reserve(), the old allocation is automatically freed by vector_base’s destructor if the copy operation succeeded. If instead
that exit is caused by the copy operation throwing an exception, the new allocation is freed. The swap() function is a standard
library algorithm (from <algorithm>) that exchanges the value of two objects. We used swap<vector_base<T,A>>

(*this,b) rather than the simpler swap(*this,b) because *this and b are of different types (vector and vector_base,



respectively), so we had to be explicit about which swap specialization we wanted. Similarly, we have to explicitly use this–

> when we refer to a member of the base class vector_base<T,A> from a member of the derived class vector<T,A>, such
as vector<T,A>::reserve().

 Try This

Modify reserve to use unique_ptr. Remember to release before returning. Compare that solution to the
vector_base one. Consider which is easier to write and which is easier to get correct.

 Drill

1. Define template<typename T> struct S { T val; };.
2. Add a constructor, so that you can initialize with a T.
3. Define variables of types S<int>, S<char>, S<double>, S<string>, and S<vector<int>>; initialize them with

values of your choice.
4. Read those values and print them.
5. Add a function template get() that returns a reference to val.
6. Put the definition of get() outside the class.
7. Make val private.
8. Do 4 again using get().
9. Add a set() function template so that you can change val.

10. Replace set() with an S<T>::operator=(const T&). Hint: Much simpler than §19.2.5.
11. Provide const and non-const versions of get().
12. Define a function template<typename T> read_val(T& v) that reads from cin into v.
13. Use read_val() to read into each of the variables from 3 except the S<vector<int>> variable.
14. Bonus: Define input and output operators (>> and <<) for vector<T>s. For both input and output use a { val, val, val }

format. That will allow read_val() to also handle the S<vector<int>> variable.
Remember to test after each step.

Review
1. Why would we want to change the size of a vector?
2. Why would we want to have different element types for different vectors?
3. Why don’t we just always define a vector with a large enough size for all eventualities?
4. How much spare space do we allocate for a new vector?
5. When must we copy vector elements to a new location?
6. Which vector operations can change the size of a vector after construction?
7. What is the value of a vector after a copy?
8. Which two operations define copy for vector?
9. What is the default meaning of copy for class objects?

10. What is a template?
11. What are the two most useful types of template arguments?
12. What is generic programming?
13. How does generic programming differ from object-oriented programming?
14. How does array differ from vector?
15. How does array differ from the built-in array?



16. How does resize() differ from reserve()?
17. What is a resource? Define and give examples.
18. What is a resource leak?
19. What is RAII? What problem does it address?
20. What is unique_ptr good for?

Terms
#define

at()

basic guarantee
exception
guarantees
handle
instantiation
macro
owner
push_back()

RAII
resize()

resource
re-throw
self-assignment
shared_ptr

specialization
strong guarantee
template
template parameter
this

throw;

unique_ptr

Exercises
For each exercise, create and test (with output) a couple of objects of the defined classes to demonstrate that your design and
implementation actually do what you think they do. Where exceptions are involved, this can require careful thought about
where errors can occur.

1. Write a template function f() that adds the elements of one vector<T> to the elements of another; for example, f(v1,v2)

should do v1[i]+=v2[i] for each element of v1.
2. Write a template function that takes a vector<T> vt and a vector<U> vu as arguments and returns the sum of all

vt[i]*vu[i]s.
3. Write a template class Pair that can hold a pair of values of any type. Use this to implement a simple symbol table like

the one we used in the calculator (§7.8).
4. Modify class Link from §17.9.3 to be a template with the type of value as the template argument. Then redo exercise 13

from Chapter 17 with Link<God>.
5. Define a class Int having a single member of class int. Define constructors, assignment, and operators +, –, *, / for it.

Test it, and improve its design as needed (e.g., define operators << and >> for convenient I/O).
6. Repeat the previous exercise, but with a class Number<T> where T can be any numeric type. Try adding % to

Number and see what happens when you try to use % for Number<double> and Number<int>.



7. Try your solution to exercise 2 with some Numbers.
8. Implement an allocator (§19.3.7) using the basic allocation functions malloc() and free() (§B.11.4). Get vector as

defined by the end of §19.4 to work for a few simple test cases. Hint: Look up “placement new” and “explicit call of
destructor” in a complete C++ reference.

9. Re-implement vector::operator=() (§19.2.5) using an allocator (§19.3.7) for memory management.
10. Implement a simple unique_ptr supporting only a constructor, destructor, –>, *, and release(). In particular, don’t try

to implement an assignment or a copy constructor.
11. Design and implement a counted_ptr<T> that is a type that holds a pointer to an object of type T and a pointer to a

“use count” (an int) shared by all counted pointers to the same object of type T. The use count should hold the number of
counted pointers pointing to a given T. Let the counted_ptr’s constructor allocate a T object and a use count on the free
store. Let counted_ptr’s constructor take an argument to be used as the initial value of the T elements. When the last
counted_ptr for a T is destroyed, counted_ptr’s destructor should delete the T. Give the counted_ptr operations
that allow us to use it as a pointer. This is an example of a “smart pointer” used to ensure that an object doesn’t get
destroyed until after its last user has stopped using it. Write a set of test cases for counted_ptr using it as an argument
in calls, container elements, etc.

12. Define a File_handle class with a constructor that takes a string argument (the file name), opens the file in the
constructor, and closes it in the destructor.

13. Write a Tracer class where its constructor prints a string and its destructor prints a string. Give the strings as
constructor arguments. Use it to see where RAII management objects will do their job (i.e., experiment with Tracers as
local objects, member objects, global objects, objects allocated by new, etc.). Then add a copy constructor and a copy
assignment so that you can use Tracer objects to see when copying is done.

14. Provide a GUI interface and a bit of graphical output to the “Hunt the Wumpus” game from the exercises in Chapter 18.
Take the input in an input box and display a map of the part of the cave currently known to the player in a window.

15. Modify the program from the previous exercise to allow the user to mark rooms based on knowledge and guesses, such
as “maybe bats” and “bottomless pit.”

16. Sometimes, it is desirable that an empty vector be as small as possible. For example, someone might use
vector<vector<vector<int>>> a lot but have most element vectors empty. Define a vector so that
sizeof(vector<int>)==sizeof(int*), that is, so that the vector itself consists only of a pointer to a representation
consisting of the elements, the number of elements, and the space pointer.

Postscript
Templates and exceptions are immensely powerful language features. They support programming techniques of great flexibility
— mostly by allowing people to separate concerns, that is, to deal with one problem at a time. For example, using templates,
we can define a container, such as vector, separately from the definition of an element type. Similarly, using exceptions, we
can write the code that detects and signals an error separately from the code that handles that error. The third major theme of
this chapter, changing the size of a vector, can be seen in a similar light: push_back(), resize(), and reserve() allow us to
separate the definition of a vector from the specification of its size.



20. Containers and Iterators

“Write programs that do one thing
and do it well. Write programs

to work together.”
—Doug McIlroy

This chapter and the next present the STL, the containers and algorithms part of the C++ standard library. The STL is an
extensible framework for dealing with data in a C++ program. After a first simple example, we present the general ideals and
the fundamental concepts. We discuss iteration, linked-list manipulation, and STL containers. The key notions of sequence and
iterator are used to tie containers (data) together with algorithms (processing). This chapter lays the groundwork for the
general, efficient, and useful algorithms presented in the next chapter. As an example, it also presents a framework for text
editing as a sample application.

20.1 Storing and processing data
20.1.1 Working with data
20.1.2 Generalizing code

20.2 STL ideals
20.3 Sequences and iterators

20.3.1 Back to the example
20.4 Linked lists

20.4.1 List operations
20.4.2 Iteration

20.5 Generalizing vector yet again
20.5.1 Container traversal
20.5.2 auto

20.6 An example: a simple text editor
20.6.1 Lines
20.6.2 Iteration

20.7 vector, list, and string

20.7.1 insert and erase

20.8 Adapting our vector to the STL
20.9 Adapting built-in arrays to the STL
20.10 Container overview

20.10.1 Iterator categories

20.1 Storing and processing data
Before looking into dealing with larger collections of data items, let’s consider a simple example that points to ways of
handling a large class of data-processing problems. Jack and Jill are each measuring vehicle speeds, which they record as
floating-point values. Jack was brought up as a C programmer and stores his values in an array, whereas Jill stores hers in a
vector. Now we’d like to use their data in our program. How might we do this?

We could have Jack’s and Jill’s programs write out the values to a file and then read them back into our program. That way,
we are completely insulated from their choices of data structures and interfaces. Often, such isolation is a good idea, and if
that’s what we decide to do we can use the techniques from Chapters 10–11 for input and a vector<double> for our
calculations.

But, what if using files isn’t a good option for the task we want to do? Let’s say that the data-gathering code is designed to
be invoked as a function call to deliver a new set of data every second. Once a second, we call Jack’s and Jill’s functions to
deliver data for us to process:



Click here to view code image

double* get_from_jack(int* count);  // Jack puts doubles into an array and
                                                                       // returns the number of elements in *count
vector<double>* get_from_jill();      // Jill fills the vector

void fct()

{

          int jack_count = 0;

          double* jack_data = get_from_jack(&jack_count);

          vector<double>* jill_data = get_from_jill();

          // . . . process . . .
          delete[] jack_data;

          delete jill_data;

}

The assumption is that the data is stored on the free store and that we should delete it when we are finished using it. Another
assumption is that we can’t rewrite Jack’s and Jill’s code, or wouldn’t want to.

20.1.1 Working with data
Clearly, this is a somewhat simplified example, but it is not dissimilar to a vast number of real-world problems. If we can
handle this example elegantly, we can handle a huge number of common programming problems. The fundamental problem here
is that we don’t control the way in which our “data suppliers” store the data they give us. It’s our job to either work with the
data in the form in which we get it or to read it and store it the way we like better.

What do we want to do with that data? Sort it? Find the highest value? Find the average value? Find every value over 65?
Compare Jill’s data with Jack’s? See how many readings there were? The possibilities are endless, and when writing a real
program we will simply do the computation required. Here, we just want to do something to learn how to handle data and do
computations involving lots of data. Let’s first do something really simple: find the element with the highest value in each data
set. We can do that by inserting this code in place of the “. . . process . . .” comment in fct():
Click here to view code image

// . . .
double h = –1;

double* jack_high;  // jack_high will point to the element with the highest value
double* jill_high;    // jill_high will point to the element with the highest value
for (int i=0; i<jack_count; ++i)

          if (h<jack_data[i]) {

                    jack_high = &jack_data[i];   // save address of largest element
                    h = jack_data[i];                    // update “largest element”
     }

h = –1;

for (int i=0; i< jill_data –>size(); ++i)

          if (h<(*jill_data)[i]) {

                    jill_high = &(*jill_data)[i];   // save address of largest element
                    h = (*jill_data)[i];                 // update “largest element”
     }

cout << "Jill's max: " << *jill_high

          << "; Jack's max: " << *jack_high;

// . . .

Note the ugly notation we use to access Jill’s data: (*jill_data)[i]. The function get_from_jill() returns a pointer to a vector,
a vector<double>*. To get to the data, we first have to dereference the pointer to get to the vector, *jill_data, then we can
subscript that. However, *jill_data[i] isn’t what we want; that means *(jill_data[i]) because [ ] binds tighter than *, so we
need the parentheses around *jill_data and get (*jill_data)[i].

 Try This

If you were able to change Jill’s code, how would you redesign its interface to get rid of the ugliness?



20.1.2 Generalizing code

What we would like is a uniform way of accessing and manipulating data so that we don’t have to write our code differently
each time we get data presented to us in a slightly different way. Let’s look at Jack’s and Jill’s code as examples of how we
can make our code more abstract and uniform.

Obviously, what we do for Jack’s data strongly resembles what we do for Jill’s. However, there are some annoying
differences: jack_count vs. jill_data–>size() and jack_data[i] vs. (*jill_data)[i]. We could eliminate the latter difference
by introducing a reference:
Click here to view code image

vector<double>& v = *jill_data;

for (int i=0; i<v.size(); ++i)

          if (h<v[i]) {

                    jill_high = &v[i];

                    h = v[i];

          }

This is tantalizingly close to the code for Jack’s data. What would it take to write a function that could do the calculation for
Jill’s data as well as for Jack’s? We can think of several ways (see exercise 3), but for reasons of generality which will
become clear over the next two chapters, we chose a solution based on pointers:
Click here to view code image

double* high(double* first, double* last)

// return a pointer to the element in [first,last) that has the highest value
{

          double h = –1;

          double* high;

          for(double* p = first; p!=last; ++p)

                    if (h<*p) { high = p; h = *p; }

          return high;

}

Given that, we can write
Click here to view code image

double* jack_high = high(jack_data,jack_data+jack_count);

vector<double>& v = *jill_data;

double* jill_high = high(&v[0],&v[0]+v.size());

This looks better. We don’t introduce so many variables and we write the loop and the loop body only once (in high()). If we
want to know the highest values, we can look at *jack_high and *jill_high. For example:
Click here to view code image

cout << "Jill's max: " << *jill_high

          << "; Jack's max: " << *jack_high;

Note that high() relies on a vector storing its elements in an array, so that we can express our “find highest element” algorithm
in terms of pointers into an array.

 Try This

We left two potentially serious errors in this little program. One can cause a crash, and the other will give wrong
answers if high() is used in many other programs where it might have been useful. The general techniques that we
describe below will make them obvious and show how to systematically avoid them. For now, just find them and
suggest remedies.

This high() function is limited in that it is a solution to a single specific problem:
• It works for arrays only. We rely on the elements of a vector being stored in an array, but there are many more ways of



storing data, such as lists and maps (see §20.4 and §21.6.1).
• It can be used for vectors and arrays of doubles, but not for arrays or vectors with other element types, such as
vector<double*> and char[10].

• It finds the element with the highest value, but there are many more simple calculations that we want to do on such data.
Let’s explore how we can support this kind of calculation on sets of data in far greater generality.

Please note that by deciding to express our “find highest element” algorithm in terms of pointers, we “accidentally”
generalized it to do more than we required: we can — as desired — find the highest element of an array or a vector, but we
can also find the highest element in part of an array or in part of a vector. For example:
Click here to view code image

// . . .
vector<double>& v = *jill_data;

double* middle = &v[0]+v.size()/2;

double* high1 = high(&v[0], middle);                      // max of first half
double* high2 = high(middle, &v[0]+v.size());       // max of second half
// . . .

Here high1 will point to the element with the largest value in the first half of the vector and high2 will point to the element
with the largest value in the second half. Graphically, it will look something like this:

We used pointer arguments for high(). That’s a bit low-level and can be error-prone. We suspect that for many programmers,
the obvious function for finding the element with the largest value in a vector would look like this:
Click here to view code image

double* find_highest(vector<double>& v)

{

          double h = –1;

          double* high = 0;

          for (int i=0; i<v.size(); ++i)

                    if (h<v[i]) { high = &v[i]; h = v[i]; }

          return high;

}

However, that wouldn’t give us the flexibility we “accidentally” obtained from high() — we can’t use find_highest() to find
the element with the highest value in part of a vector. We actually achieved a practical benefit from writing a function that
could be used for both arrays and vectors by “messing with pointers.” We will remember that: generalization can lead to
functions that are useful for more problems.

20.2 STL ideals
The C++ standard library provides a framework for dealing with data as sequences of elements, called the STL. STL is usually
said to be an acronym for “standard template library.” The STL is the part of the ISO C++ standard library that provides
containers (such as vector, list, and map) and generic algorithms (such as sort, find, and accumulate). Thus we can —
and do — refer to facilities, such as vector, as being part of both “the STL” and “the standard library.” Other standard library
features, such as ostream (Chapter 10) and C-style string functions (§B.11.3), are not part of the STL. To better appreciate
and understand the STL, we will first consider the problems we must address when dealing with data and the ideals we have
for a solution.

There are two major aspects of computing: the computation and the data. Sometimes we focus on the computation and talk
about if-statements, loops, functions, error handling, etc. At other times, we focus on the data and talk about arrays, vectors,



strings, files, etc. However, to get useful work done we need both. A large amount of data is incomprehensible without
analysis, visualization, and searching for “the interesting bits.” Conversely, we can compute as much as we like, but it’s going
to be tedious and sterile unless we have some data to tie our computation to something real. Furthermore, the “computation
part” of our program has to elegantly interact with the “data part.”

When we talk about data in this way, we think of lots of data: dozens of Shapes, hundreds of temperature readings, thousands
of log records, millions of points, billions of web pages, etc.; that is, we talk about processing containers of data, streams of
data, etc. In particular, this is not a discussion of how best to choose a couple of values to represent a small object, such as a
complex number, a temperature reading, or a circle. For such types, see Chapters 9, 11, and 14.

Consider some simple examples of something we’d like to do with “a lot of data”:
• Sort the words in dictionary order.
• Find a number in a phone book, given a name.
• Find the highest temperature.
• Find all values larger than 8800.
• Find the first occurrence of the value 17.
• Sort the telemetry records by unit number.
• Sort the telemetry records by time stamp.
• Find the first value larger than “Petersen.”
• Find the largest amount.
• Find the first difference between two sequences.
• Compute the pair-wise product of the elements of two sequences.
• Find the highest temperature for each day in a month.
• Find the top ten best sellers in the sales records.
• Count the number of occurrences of “Stroustrup” on the web.
• Compute the sum of the elements.

Note that we can describe each of these tasks without actually mentioning how the data is stored. Clearly, we must be dealing
with something like lists, vectors, files, input streams, etc. for these tasks to make sense, but we don’t have to know the details
about how the data is stored (or gathered) to talk about what to do with it. What is important is the type of the values or objects
(the element type), how we access those values or objects, and what we want to do with them.

These kinds of tasks are very common. Naturally, we want to write code performing such tasks simply and efficiently.
Conversely, the problems for us as programmers are:

• There is an infinite variation of data types (“kinds of data”).
• There is a bewildering number of ways to store collections of data elements.
• There is a huge variety of tasks we’d like to do with collections of data.

To minimize the effect of these problems, we’d like our code to take advantage of commonalities among types, among the ways
of storing data, and among our processing tasks. In other words, we want to generalize our code to cope with these kinds of
variations. We really don’t want to hand-craft each solution from scratch; that would be a tedious waste of time.

To get an idea of what support we would like for writing our code, consider a more abstract view of what we do with data:
• Collect data into containers

• Such as vector, list, and array
• Organize data

• For printing



• For fast access
• Retrieve data items

• By index (e.g., the 42nd element)
• By value (e.g., the first record with the “age field” 7)
• By properties (e.g., all records with the “temperature field” >32 and <100)

• Modify a container
• Add data
• Remove data
• Sort (according to some criteria)

• Perform simple numeric operations (e.g., multiply all elements by 1.7)
We’d like to do these things without getting sucked into a swamp of details about differences among containers, differences in
ways of accessing elements, and differences among element types. If we can do that, we’ll have come a long way toward our
goal of simple and efficient use of large amounts of data.

Looking back at the programming tools and techniques from the previous chapters, we note that we can (already) write
programs that are similar independently of the data type used:

• Using an int isn’t all that different from using a double.
• Using a vector<int> isn’t all that different from using a vector<string>.
• Using an array of double isn’t all that different from using a vector<double>.

We’d like to organize our code so that we have to write new code only when we want to do something really new and
different. In particular, we’d like to provide code for common programming tasks so that we don’t have to rewrite our solution
each time we find a new way of storing the data or find a slightly different way of interpreting the data.

• Finding a value in a vector isn’t all that different from finding a value in an array.
• Looking for a string ignoring case isn’t all that different from looking at a string considering uppercase letters different

from lowercase ones.
• Graphing experimental data with exact values isn’t all that different from graphing data with rounded values.
• Copying a file isn’t all that different from copying a vector.

We want to build on these observations to write code that’s
• Easy to read
• Easy to modify
• Regular
• Short
• Fast

To minimize our programming work, we would like

• Uniform access to data
• Independently of how it is stored
• Independently of its type

• Type-safe access to data
• Easy traversal of data
• Compact storage of data
• Fast

• Retrieval of data
• Addition of data
• Deletion of data

• Standard versions of the most common algorithms



• Such as copy, find, search, sort, sum, . . .
The STL provides that, and more. We will look at it not just as a very useful set of facilities, but also as an example of a
library designed for maximal flexibility and performance. The STL was designed by Alex Stepanov to provide a framework
for general, correct, and efficient algorithms operating on data structures. The ideal was the simplicity, generality, and
elegance of mathematics.

The alternative to dealing with data using a framework with clearly articulated ideals and principles is for each programmer
to craft each program out of the basic language facilities using whatever ideas seem good at the time. That’s a lot of extra
work. Furthermore, the result is often an unprincipled mess; rarely is the result a program that is easily understood by people
other than its original designer, and only by chance is the result code that we can use in other contexts.

Having considered the motivation and the ideals, let’s look at the basic definitions of the STL, and then finally get to the
examples that’ll show us how to approximate those ideals — to write better code for dealing with data and to do so with
greater ease.

20.3 Sequences and iterators

The central concept of the STL is the sequence. From the STL point of view, a collection of data is a sequence. A sequence has
a beginning and an end. We can traverse a sequence from its beginning to its end, optionally reading or writing the value of
each element. We identify the beginning and the end of a sequence by a pair of iterators. An iterator is an object that identifies
an element of a sequence. We can think of a sequence like this:

Here, begin and end are iterators; they identify the beginning and the end of the sequence. An STL sequence is what is usually
called “half-open”; that is, the element identified by begin is part of the sequence, but the end iterator points one beyond the
end of the sequence. The usual mathematical notation for such sequences (ranges) is [begin:end). The arrows from one
element to the next indicate that if we have an iterator to one element we can get an iterator to the next.

What is an iterator? An iterator is a rather abstract notion:

• An iterator points to (refers to) an element of a sequence (or one beyond the last element).
• You can compare two iterators using == and !=.
• You can refer to the value of the element pointed to by an iterator using the unary * operator (“dereference” or “contents
of”).

• You can get an iterator to the next element by using ++.
For example, if p and q are iterators to elements of the same sequence:

Clearly, the idea of an iterator is related to the idea of a pointer (§17.4). In fact, a pointer to an element of an array is an



iterator. However, many iterators are not just pointers; for example, we could define a range-checked iterator that throws an
exception if you try to make it point outside its [begin:end) sequence or dereference end. It turns out that we get enormous
flexibility and generality from having iterator as an abstract notion rather than as a specific type. This chapter and the next will
give several examples.

 Try This

Write a function void copy(int* f1, int* e1, int* f2) that copies the elements of an array of ints defined by
[f1:e1) into another [f2:f2+(e1–f1)). Use only the iterator operations mentioned above (not subscripting).

Iterators are used to connect our code (algorithms) to our data. The writer of the code knows about the iterators (and not
about the details of how the iterators actually get to the data), and the data provider supplies iterators rather than exposing
details about how the data is stored to all users. The result is pleasingly simple and offers an important degree of independence
between algorithms and containers. To quote Alex Stepanov: “The reason STL algorithms and containers work so well
together is that they don’t know anything about each other.” Instead, both understand about sequences defined by pairs of
iterators.

In other words, my algorithms no longer have to know about the bewildering variety of ways of storing and accessing data; they
just have to know about iterators. Conversely, if I’m a data provider, I no longer have to write code to serve a bewildering
variety of users; I just have to implement an iterator for my data. At the most basic level, an iterator is defined by just the *,
++, ==, and != operators. That makes them simple and fast.

The STL framework consists of about ten containers and about 60 algorithms connected by iterators (see Chapter 21). In
addition, many organizations and individuals provide containers and algorithms in the style of the STL. The STL is probably
the currently best-known and most widely used example of generic programming (§19.3.2). If you know the basic concepts and
a few examples, you can use the rest.

20.3.1 Back to the example
Let’s see how we can express the “find the element with the largest value” problem using the STL notion of a sequence:
Click here to view code image

template<typename Iterator>

Iterator high(Iterator first, Iterator last)

          // return an iterator to the element in [first:last) that has the highest value
{

          Iterator high = first;

          for (Iterator p = first; p!=last; ++p)

                    if (*high<*p) high = p;

          return high;

}

Note that we eliminated the local variable h that we had used to hold the highest value seen so far. When we don’t know the
name of the actual type of the elements of the sequence, the initialization by –1 seems completely arbitrary and odd. That’s
because it was arbitrary and odd! It was also an error waiting to happen: in our example –1 worked only because we happened
not to have any negative velocities. We knew that “magic constants,” such as –1, are bad for code maintenance (§4.3.1, §7.6.1,
§10.11.1, etc.). Here, we see that they can also limit the utility of a function and can be a sign of incomplete thought about the



solution; that is, “magic constants” can be — and often are — a sign of sloppy thinking.
Note that this “generic” high() can be used for any element type that can be compared using <. For example, we could use

high() to find the lexicographically last string in a vector<string> (see exercise 7).
The high() template function can be used for any sequence defined by a pair of iterators. For example, we can exactly

replicate our example program:
Click here to view code image

double* get_from_jack(int* count);        // Jack puts doubles into an array and
                                                                 // returns the number of elements in *count
vector<double>* get_from_jill();             // Jill fills the vector

void fct()

{

          int jack_count = 0;

          double* jack_data = get_from_jack(&jack_count);

          vector<double>* jill_data = get_from_jill();

          double* jack_high = high(jack_data,jack_data+jack_count);

          vector<double>& v = *jill_data;

          double* jill_high = high(&v[0],&v[0]+v.size());

          cout << "Jill's high " << *jill_high << "; Jack's high " << *jack_high;

          // . . .
          delete[] jack_data;

          delete jill_data;

}

For the two calls here, the Iterator template argument type for high() is double*. Apart from (finally) getting the code for
high() correct, there is apparently no difference from our previous solution. To be precise, there is no difference in the code
that is executed, but there is a most important difference in the generality of our code. The templated version of high() can be
used for every kind of sequence that can be described by a pair of iterators. Before looking at the detailed conventions of the
STL and the useful standard algorithms that it provides to save us from writing common tricky code, let’s consider a couple of
more ways of storing collections of data elements.

 Try This

We again left a serious error in that program. Find it, fix it, and suggest a general remedy for that kind of problem.

20.4 Linked lists

Consider again the graphical representation of the notion of a sequence:

Compare it to the way we visualize a vector in memory:

Basically, the subscript 0 identifies the same element as does the iterator v.begin(), and the subscript v.size() identifies the
one-beyond-the-last element also identified by the iterator v.end().

The elements of the vector are consecutive in memory. That’s not required by STL’s notion of a sequence, and it so happens
that there are many algorithms where we would like to insert an element in between two existing elements without moving



those existing elements. The graphical representation of the abstract notion suggests the possibility of inserting elements (and of
deleting elements) without moving other elements. The STL notion of iterators supports that.

The data structure most directly suggested by the STL sequence diagram is called a linked list. The arrows in the abstract
model are usually implemented as pointers. An element of a linked list is part of a “link” consisting of the element and one or
more pointers. A linked list where a link has just one pointer (to the next link) is called a singly-linked list and a list where a
link has pointers to both the previous and the next link is called a doubly-linked list. We will sketch the implementation of a
doubly-linked list, which is what the C++ standard library provides under the name of list. Graphically, it can be represented
like this:

This can be represented in code as
Click here to view code image

template<typename Elem>

struct Link {

          Link* prev;               // previous link
          Link* succ;               // successor (next) link
          Elem val;                   // the value
};

template<typename Elem> struct list {

          Link<Elem>* first;

          Link<Elem>* last;    // one beyond the last link
};

The layout of a Link is

There are many ways of implementing linked lists and presenting them to users. A description of the standard library version
can be found in Appendix B. Here, we’ll just outline the key properties of a list — you can insert and delete elements without
disturbing existing elements — show how we can iterate over a list, and give an example of list use.

When you try to think about lists, we strongly encourage you to draw little diagrams to visualize the operations you are
considering. Linked-list manipulation really is a topic where a picture is worth 1K words.

20.4.1 List operations
What operations do we need for a list?

• The operations we have for vector (constructors, size, etc.), except subscripting
• Insert (add an element) and erase (remove an element)
• Something that can be used to refer to elements and to traverse the list: an iterator

In the STL, that iterator type is a member of its class, so we’ll do the same:
Click here to view code image

template<typename Elem>

class list {

          // representation and implementation details



public:

          class iterator;                 // member type: iterator

          iterator begin();            // iterator to first element
          iterator end( );              // iterator to one beyond last element

          iterator insert(iterator p, const Elem& v);        // insert v into list after p
          iterator erase(iterator p);                                    // remove p from the list

          void push_back(const Elem& v);                      // insert v at end
          void push_front(const Elem& v);                     // insert v at front
          void pop_front();          // remove the first element
          void pop_back();          // remove the last element

          Elem& front();               // the first element
          Elem& back();               // the last element

          // . . .
};

Just as “our” vector is not the complete standard library vector, this list is not the complete definition of the standard library
list. There is nothing wrong with this list; it simply isn’t complete. The purpose of “our” list is to convey an understanding of
what linked lists are, how a list might be implemented, and how to use the key features. For more information see Appendix B
or an expert-level C++ book.

The iterator is central to the definition of an STL list. Iterators are used to identify places for insertion and elements for
removal (erasure). They are also used for “navigating” through a list rather than using subscripting. This use of iterators is very
similar to the way we used pointers to traverse arrays and vectors in §20.1 and §20.3.1. This style of iterators is the key to the
standard library algorithms (§21.1–3).

Why not subscripting for list? We could subscript a list, but it would be a surprisingly slow operation: lst[1000] would
involve starting from the first element and then visiting each link along the way until we reached element number 1000. If we
want to do that, we can do it ourselves (or use advance(); see §20.6.2). Consequently, the standard library list doesn’t
provide the innocuous-looking subscript syntax.

We made list’s iterator type a member (a nested class) because there was no reason for it to be global. It is used only with
lists. Also, this allows us to name every container’s iterator type iterator. In the standard library, we have
list<T>::iterator, vector<T>::iterator, map<K,V>::iterator, and so on.

20.4.2 Iteration
The list iterator must provide *, ++, ==, and !=. Since the standard library list is a doubly-linked list, it also provides –– for
iterating “backward” toward the front of the list:
Click here to view code image

template<typename Elem>         // requires Element<Elem>() (§19.3.3)
class list<Elem>::iterator {

          Link<Elem>* curr;              // current link
public:

          iterator(Link<Elem>* p) :curr{p} { }

          iterator& operator++() {curr = curr–>succ; return *this; }   // forward
          iterator& operator––() { curr = curr–>prev; return *this; }   // backward
          Elem& operator*() { return curr–>val; }   // get value (dereference)

          bool operator==(const iterator& b) const { return curr==b.curr; }

          bool operator!= (const iterator& b) const { return curr!=b.curr; }

};

These functions are short and simple, and obviously efficient: there are no loops, no complicated expressions, and no
“suspicious” function calls. If the implementation isn’t clear to you, just have a quick look at the diagrams above. This list

iterator is just a pointer to a link with the required operations. Note that even though the implementation (the code) for a
list<Elem>::iterator is very different from the simple pointer we have used as an iterator for vectors and arrays, the



meaning (the semantics) of the operations is identical. Basically, the list iterator provides suitable ++, ––, *, ==, and != for a
Link pointer.

Now look at high() again:
Click here to view code image

template<typename Iter>  // requires Input_iterator<Iter>() (§19.3.3)

Iterator high(Iter first, Iter last)

          // return an iterator to the element in [first,last) that has the highest value
{

          Iterator high = first;

          for (Iterator p = first; p!=last; ++p)

                    if (*high<*p) high = p;

          return high;

          }

We can use it for a list:
Click here to view code image

void f()

{

          list<int> lst; for (int x; cin >> x; ) lst.push_front(x);

          list<int>::iterator p = high(lst.begin(), lst.end());

          cout << "the highest value was " << *p << '\n';

}

Here, the “value” of the Iterator argument is list<int>::iterator, and the implementation of ++, *, and != has changed
dramatically from the array case, but the meaning is still the same. The template function high() still traverses the data (here a
list) and finds the highest value. We can insert an element anywhere in a list, so we used push_front() to add elements at the
front just to show that we could. We could equally well have used push_back() as we do for vectors.

 Try This

The standard library vector doesn’t provide push_front(). Why not? Implement push_front() for vector and
compare it to push_back().

Now, finally, is the time to ask, “But what if the list is empty?” In other words, “What if lst.begin()==lst.end()?” In that
case, *p will be an attempt to dereference the one-beyond-the-last element, lst.end(): disaster! Or — potentially worse — the
result could be a random value that might be mistaken for a correct answer.

The last formulation of the question strongly hints at the solution: we can test whether a list is empty by comparing begin()

and end() — in fact, we can test whether any STL sequence is empty by comparing its beginning and end:

That’s the deeper reason for having end point one beyond the last element rather than at the last element: the empty sequence is
not a special case. We dislike special cases because — by definition — we have to remember to write special-case code for
them.

In our example, we could use that like this:
Click here to view code image

list<int>::iterator p = high(lst.begin(), lst.end());

if (p==lst.end())             // did we reach the end?
          cout << "The list is empty";

else



          cout << "the highest value is " << *p << '\n';

We use testing the return value against end() — indicating “not found” — systematically with STL algorithms.
Because the standard library provides a list, we won’t go further into the implementation here. Instead, we’ll have a brief

look at what lists are good for (see exercises 12–14 if you are interested in list implementation details).

20.5 Generalizing vector yet again
Obviously, from the examples in §20.3–4, the standard library vector has an iterator member type and begin() and end()

member functions (just like std::list). However, we did not provide those for our vector in Chapter 19. What does it really
take for different containers to be used more or less interchangeably in the STL generic programming style presented in §20.3?
First, we’ll outline the solution (ignoring allocators to simplify) and then explain it:
Click here to view code image

template<typename T>   // requires Element<T>() (§19.3.3)
class vector {

public:

          using size_type = unsigned long;

          using value_type = T;

          using iterator = T*;

          using const_iterator = const T*;

          // . . .

          iterator begin();

          const_iterator begin() const;

          iterator end();

          const_iterator end() const;

          size_type size();

          // . . .
};

A using declaration creates an alias for a type; that is, for our vector, iterator is a synonym, another name, for the type we
chose to use as our iterator: T*. Now, for a vector called v, we can write
Click here to view code image

vector<int>::iterator p = find(v.begin(), v.end(),32);

and
Click here to view code image

for (vector<int>::size_type i = 0; i<v.size(); ++i) cout << v[i] << '\n';

The point is that to write that, we don’t actually have to know what types are named by iterator and size_type. In particular,
the code above, because it is expressed in terms of iterator and size_type, will work with vectors where size_type is not
an unsigned long (as it is not on many embedded systems processors) and where iterator is not a plain pointer, but a class
(as it is on many popular C++ implementations).

The standard defines list and the other standard containers similarly. For example:
Click here to view code image

template<typename T>               // requires Element<T>()  (§19.3.3)
class list {

public:

          class Link;

          using size_type = unsigned long;

          using value_type = T;

          class iterator;                  // see §20.4.2
          class const_iterator;      // like iterator, but not allowing writes to elements

          // . . .



          iterator begin();

          const_iterator begin() const;

          iterator end();

          const_iterator end() const;

          size_type size();

          // . . .
};

That way, we can write code that does not care whether it uses a list or a vector. All the standard library algorithms are
defined in terms of these member type names, such as iterator and size_type, so that they don’t unnecessarily depend on the
implementations of containers or exactly which kind of container they operate on (see Chapter 21).

As an alternative to saying C::iterator for some container C, we often prefer Iterator<C>. This can be achieved through
a simple template alias:
Click here to view code image

template<typename C>

using Iterator = typename C::iterator;    // Iterator<C> means typename
                                                                              // C::iterator

The fact that for language-technical reasons we need to prefix C::iterator with typename to say that iterator is a type is
part of the reason we prefer Iterator<C>. Similarly, we define
Click here to view code image

template<typename C>

using Value_type = typename C::value_type;

That way, we can write Value_type<C>. These type aliases are not in the standard library, but you can find them in
std_lib_facilities.h.

A using declaration is a C++11 notation for and a generalization of what was known in C and C++ as a typedef (§A.16).

20.5.1 Container traversal
Using size(), we can traverse one of our vectors from its first element to its last. For example:
Click here to view code image

void print1(const vector<double>& v)

{

          for (int i = 0; i<v.size(); ++i)

                    cout << v[i] << '\n';

}

This doesn’t work for lists because list does not provide subscripting. However, we can traverse a standard library vector

and list using the simpler range-for-loop (§4.6.1). For example:
Click here to view code image

void print2(const vector<double>& v, const list<double>& lst)

{

          for (double x : v)

                    cout << x << '\n';

          for (double x : lst)

                    cout << x << '\n';

}

This works for both the standard library containers and for “our” vector and list. How? The “trick” is that the range-for-loop
is defined in terms of begin() and end() functions returning iterators to the first and one beyond the end of our vector

elements. The range-for-loop is simply “syntactic sugar” for a loop over a sequence using iterators. When we defined begin()

and end() for our vector and list we “accidentally” provided what the range-for needed.

20.5.2 auto



When we have to write out loops over a generic structure, naming the iterators can be a real nuisance. Consider:
Click here to view code image

template<typename T>           // requires Element<T>()
void user(vector<T>& v, list<T>& lst)

{

          for (vector<T>::iterator p = v.begin(); p!=v.end(); ++p) cout << *p << '\n';

          list<T>::iterator q = find(lst.begin(), lst.end(),T{42});

}

The most annoying aspect of this is that the compiler obviously already knows the iterator type for the list and the size_type

for the vector. Why should we have to tell the compiler what it already knows? Doing so just annoys the poor typists among us
and opens opportunities for mistakes. Fortunately, we don’t have to: we can declare a variable auto, meaning use the type of
the iterator as the type of the variable:
Click here to view code image

template<typename T>           // requires Element<T>()
void user(vector<T>& v, list<T>& lst)

{

          for (auto p = v.begin(); p!=v.end(); ++p) cout << *p << '\n';

          auto q = find(lst.begin(), lst.end(),T{42});

}

Here, p is a vector<T>::iterator and q is a list<T>::iterator. We can use auto in just about every definition that includes
an initializer. For example:
Click here to view code image

auto x = 123;    // x is an int
auto c = 'y';      // c is a char
auto& r = x;     // r is an int&
auto y = r;        // y is an int (references are implicitly dereferenced)

Note that a string literal has the type const char*, so using auto for string literals might lead to an unpleasant surprise:
Click here to view code image

auto s1 = "San Antonio";            // s1 is a const char* (Surprise!?)
string s2 = "Fredericksburg";     // s2 is a string

When we know exactly which type we want, we can often say so as easily as we can use auto.
One common use of auto is to specify the loop variable in a range-for-loop. Consider:

Click here to view code image

template<typename C>              // requires Container<T>
void print3(const C& cont)

{

          for (const auto& x : cont)

                    cout << x << '\n';

}

Here, we use auto because it is not all that easy to name the element type of the container cont. We use const because we are
not writing to the container elements, and we use & (for reference) in case the elements are so large that copying them would
be costly.

20.6 An example: a simple text editor

The essential feature of a list is that you can add and remove elements without moving other elements of the list. Let’s try a
simple example that illustrates that. Consider how to represent the characters of a text document in a simple text editor. The
representation should make operations on the document simple and reasonably efficient.

Which operations? Let’s assume that a document will fit in your computer’s main memory. That way, we can choose any
representation that suits us and simply convert it to a stream of bytes when we want to store it in a file. Similarly, we can read



a stream of bytes from a file and convert those to our in-memory representation. That decided, we can concentrate on choosing
a convenient in-memory representation. Basically, there are five things that our representation must support well:

• Constructing it from a stream of bytes from input
• Inserting one or more characters
• Deleting one or more characters
• Searching for a string
• Generating a stream of bytes for output to a file or a screen

The simplest representation would be a vector<char>. However, to add or delete a character we would have to move every
following character in the document. Consider:
Click here to view code image

This is he start of a very long document.

There are lots of . . .

We could add the t needed to get
Click here to view code image

This is the start of a very long document.

There are lots of . . .

However, if those characters were stored in a single vector<char>, we’d have to move every character from h onward one
position to the right. That could be a lot of copying. In fact for a 70,000-character-long document (such as this chapter, counting
spaces), we would, on average, have to move 35,000 characters to insert or delete a character. The resulting real-time delay is
likely to be noticeable and annoying to users. Consequently, we “break down” our representation into “chunks” so that we can
change part of the document without moving a lot of characters around. We represent a document as a list of “lines,”
list<Line>, where a Line is a vector<char>. For example:

Now, when we inserted that t, we only had to move the rest of the characters on that line. Furthermore, when we need to, we
can add a new line without moving any characters. For example, we could insert This is a new line. after document. to get
Click here to view code image

This is the start of a very long document.

This is a new line.

There are lots of . . .

All we needed to do was to insert a new “line” in the middle:

The logical reason that it is important to be able to insert new links in a list without moving existing links is that we might have
iterators pointing to those links or pointers (and references) pointing to the objects in those links. Such iterators and pointers
are unaffected by insertions or deletions of lines. For example, a word processor may keep a vector<list<Line>::iterator>

holding iterators to the beginning of every title and subtitle in the current Document:



We can add lines to “paragraph 20.2” without invalidating the iterator to “paragraph 20.3.”

In conclusion, we use a list of lines rather than a vector of lines or a vector of all the characters for both logical and
performance reasons. Please note that situations where these reasons apply are rather rare so that the “by default, use vector”
rule of thumb still holds. You need a specific reason to prefer a list over a vector — even if you think of your data as a list of
elements! (See §20.7.) A list is a logical concept that you can represent in your program as a (linked) list or as a vector. The
closest STL analog to our everyday concept of a list (e.g., a to-do list, a list of groceries, or a schedule) is a sequence, and
most sequences are best represented as vectors.

20.6.1 Lines
How do we decide what’s a “line” in our document? There are three obvious choices:

1. Rely on newline indicators (e.g., '\n') in user input.
2. Somehow parse the document and use some “natural” punctuation (e.g., .).
3. Split any line that grows beyond a given length (e.g., 50 characters) into two.

There are undoubtedly also some less obvious choices. For simplicity, we use alternative 1 here.
We will represent a document in our editor as an object of class Document. Stripped of all refinements, our document type

looks like this:
Click here to view code image

using Line = vector<char>;             // a line is a vector of characters

struct Document {

          list<Line> line;                        // a document is a list of lines
          Document() { line.push_back(Line{}); }

};

Every Document starts out with a single empty line: Document’s constructor makes an empty line and pushes it into the list
of lines.

Reading and splitting into lines can be done like this:
Click here to view code image

istream& operator>>(istream& is, Document& d)

{

          for (char ch; is.get(ch); ) {

                    d.line.back().push_back(ch);         // add the character
          if (ch=='\n')

                              d.line.push_back(Line{});     // add another line
          }
          if (d.line.back().size()) d.line.push_back(Line{});    // add final empty line
          return is;

}

Both vector and list have a member function back() that returns a reference to the last element. To use it, you have to be sure
that there really is a last element for back() to refer to — don’t use it on an empty container. That’s why we defined a
Document to end with an empty Line. Note that we store every character from input, even the newline characters ('\n').
Storing those newline characters greatly simplifies output, but you have to be careful how you define a character count (just
counting characters will give a number that includes space and newline characters).

20.6.2 Iteration



20.6.2 Iteration
If the document was just a vector<char> it would be simple to iterate over it. How do we iterate over a list of lines?
Obviously, we can iterate over the list using list<Line>::iterator. However, what if we wanted to visit the characters one
after another without any fuss about line breaks? We could provide an iterator specifically designed for our Document:
Click here to view code image

class Text_iterator {      // keep track of line and character position within a line
          list<Line>::iterator ln;

          Line::iterator pos;

public:

          // start the iterator at line ll’s character position pp:
          Text_iterator(list<Line>::iterator ll, Line::iterator pp)

                    :ln{ll}, pos{pp} { }

          char& operator*() { return *pos; }

          Text_iterator& operator++();

          bool operator==(const Text_iterator& other) const

                    { return ln==other.ln && pos==other.pos; }

          bool operator!=(const Text_iterator& other) const

                    { return !(*this==other); }

};

Text_iterator& Text_iterator::operator++()

{

          ++pos;                                       // proceed to next character
          if (pos==(*ln).end()) {

                    ++ln;                                // proceed to next line
                    pos = (*ln).begin();       // bad if ln==line.end(); so make sure it isn’t
          }
          return *this;

}

To make Text_iterator useful, we need to equip class Document with conventional begin() and end() functions:
Click here to view code image

struct Document {

          list<Line> line;

          Text_iterator begin()               // first character of first line
                    { return Text_iterator(line.begin(), (*line.begin()).begin()); }

          Text_iterator end()                 // one beyond the last character of the last line
          {
                    auto last = line.end();

                    ––last;          // we know that the document is not empty
                    return Text_iterator(last, (*last).end());

          }
};

We need the curious (*line.begin()).begin() notation because we want the beginning of what line.begin() points to; we
could alternatively have used line.begin()–> begin() because the standard library iterators support –>.

We can now iterate over the characters of a document like this:

void print(Document& d)

{

          for (auto p : d) cout << *p;

}

print(my_doc);

Presenting the document as a sequence of characters is useful for many things, but usually we traverse a document looking for
something more specific than a character. For example, here is a piece of code to delete line n:
Click here to view code image

void erase_line(Document& d, int n)

{

          if (n<0 || d.line.size()–1<=n) return;



          auto  p = d.line.begin();

          advance(p,n);

          d.line.erase(p);

}

A call advance(p,n) moves an iterator p n elements forward; advance() is a standard library function, but we could have
implemented it ourselves like this:
Click here to view code image

template<typename Iter>     // requires Forward_iterator<Iter>
void advance(Iter& p, int n)

{

          while (0<n) { ++p; ––n; }

}

Note that advance() can be used to simulate subscripting. In fact, for a vector called v, p=v.begin; advance(p,n); *p=x

is roughly equivalent to v[n]=x. Note that “roughly” means that advance() laboriously moves past the first n–1 elements one
by one, whereas the subscript goes straight to the nth element. For a list, we have to use the laborious method. It’s a price we
have to pay for the more flexible layout of the elements of a list.

For an iterator that can move both forward and backward, such as the iterator for list, a negative argument to the standard
library advance() will move the iterator backward. For an iterator that can handle subscripting, such as the iterator for a
vector, the standard library advance() will go directly to the right element rather than slowly moving along using ++.
Clearly, the standard library advance() is a bit smarter than ours. That’s worth noticing: typically, the standard library
facilities have had more care and time spent on them than we could afford, so prefer the standard facilities to “home brew.”

 Try This

Rewrite advance() so that it will “go backward” when you give it a negative argument.

Probably, a search is the kind of iteration that is most obvious to a user. We search for individual words (such as milkshake

or Gavin), for sequences of letters that can’t easily be considered words (such as secret\nhomestead — i.e., a line ending
with secret followed by a line starting with homestead), for regular expressions (e.g., [bB]\w*ne — i.e., an upper- or
lowercase B followed by 0 or more letters followed by ne; see Chapter 23), etc. Let’s show how to handle the second case,
finding a string, using our Document layout. We use a simple — non-optimal — algorithm:

• Find the first character of our search string in the document.
• See if that character and the following characters match our search string.
• If so, we are finished; if not, we look for the next occurrence of that first character.

For generality, we adopt the STL convention of defining the text in which to search as a sequence defined by a pair of iterators.
That way we can use our search function for any part of a document as well as a complete document. If we find an occurrence
of our string in the document, we return an iterator to its first character; if we don’t find an occurrence, we return an iterator to
the end of the sequence:
Click here to view code image

Text_iterator find_txt(Text_iterator first, Text_iterator last, const string& s)

{

          if (s.size()==0) return last;      // can’t find an empty string
          char first_char = s[0];

          while (true) {

                    auto p = find(first,last,first_char);

                    if (p==last || match(p,last,s)) return p;

                    first = ++p;                     // look at the next character
          }
}

Returning the end of the sequence to indicate “not found” is an important STL convention. The match() function is trivial; it
just compares two sequences of characters. Try writing it yourself. The find() used to look for a character in the sequence of



characters is arguably the simplest standard library algorithm (§21.2). We can use our find_txt() like this:
Click here to view code image

auto p = find_txt(my_doc.begin(), my_doc.end(), "secret\nhomestead");

if (p==my_doc.end())

          cout << "not found";

else {

          // do something
}

Our “text processor” and its operations are very simple. Obviously, we are aiming for simplicity and reasonable efficiency,
rather than at providing a “feature-rich” editor. Don’t be fooled into thinking that providing efficient insertion, deletion, and
search for arbitrary character sequences is trivial, though. We chose this example to illustrate the power and generality of the
STL concepts sequence, iterator, and container (such as list and vector) together with some STL programming conventions
(techniques), such as returning the end of a sequence to indicate failure. Note that if we wanted to, we could develop
Document into an STL container — by providing Text_iterator we have done the key part of representing a Document as
a sequence of values.

20.7 vector, list, and string

Why did we use a list for the lines and a vector for the characters? More precisely, why did we use a list for the sequence of
lines and a vector for the sequence of characters? Furthermore, why didn’t we use a string to hold a line?

We can ask a slightly more general variant of this question. We have now seen four ways to store a sequence of characters:
• char[] (array of characters)
• vector<char>

• string

• list<char>

How do we choose among them for a given problem? For really simple tasks, they are interchangeable; that is, they have very
similar interfaces. For example, given an iterator, we can walk through each using ++ and use * to access the characters. If we
look at the code examples related to Document, we can actually replace our vector<char> with list<char> or string

without any logical problems. Such interchangeability is fundamentally good because it allows us to choose based on
performance. However, before we consider performance, we should look at logical properties of these types: what can each
do that the others can’t?

• Elem[]: Doesn’t know its own size. Doesn’t have begin(), end(), or any of the other useful container member functions.
Can’t be systematically range checked. Can be passed to functions written in C and C-style functions. The elements are
allocated contiguously in memory. The size of the array is fixed at compile time. Comparison (== and !=) and output
(<<) use the pointer to the first element of the array, not the elements.

• vector<Elem>: Can do just about everything, including insert() and erase(). Provides subscripting. List operations,
such as insert() and erase(), typically involve moving elements (that can be inefficient for large elements and large
numbers of elements). Can be range checked. The elements are allocated contiguously in memory. A vector is
expandable (e.g., use push_back()). Elements of a vector are stored (contiguously) in an array. Comparison operators
(==, !=, <, <=, >, and >=) compare elements.

• string: Provides all the common and useful operations plus specific text manipulation operations, such as concatenation
(+ and +=). The elements are guaranteed to be contiguous in memory. A string is expandable. Comparison operators
(==, !=, <, <=, >, and >=) compare elements.

• list<Elem>: Provides all the common and usual operations, except subscripting. We can insert() and erase() without
moving other elements. Needs two words extra (for link pointers) for each element. A list is expandable. Comparison
operators (==, !=, <, <=, >, and >=) compare elements.

As we have seen (§17.2, §18.6), arrays are useful and necessary for dealing with memory at the lowest possible level and for



interfacing with code written in C (§27.1.2, §27.5). Apart from that, vector is preferred because it is easier to use, more
flexible, and safer.

 Try This

What does that list of differences mean in real code? For each array of char, vector<char>, list<char>, and
string, define one with the value "Hello", pass it to a function as an argument, write out the number of characters
in the string passed, try to compare it to "Hello" in that function (to see if you really did pass "Hello"), and
compare the argument to "Howdy" to see which would come first in a dictionary. Copy the argument into another
variable of the same type.

 Try This

Do the previous Try this for an array of int, vector<int>, and list<int> each with the value { 1, 2, 3, 4, 5 }.

20.7.1 insert and erase

The standard library vector is our default choice for a container. It has most of the desired features, so we use alternatives
only if we have to. Its main problem is its habit of moving elements when we do list operations (insert() and erase()); that
can be costly when we deal with vectors with many elements or vectors of large elements. Don’t be too worried about that,
though. We have been quite happy reading half a million floating-point values into a vector using push_back() —
measurements confirmed that pre-allocation didn’t make a noticeable difference. Always measure before making significant
changes in the interest of performance; even for experts, guessing about performance is very hard.

As pointed out in §20.6, moving elements also implies a logical constraint: don’t hold iterators or pointers to elements of a
vector when you do list operations (such as insert(), erase(), and push_back()): if an element moves, your iterator or
pointer will point to the wrong element or to no element at all. This is the principal advantage of lists (and maps; see §21.6)
over vectors. If you need a collection of large objects or of objects that you point to from many places in a program, consider
using a list.

Let’s compare insert() and erase() for a vector and a list. First we take an example designed only to illustrate the key
points:

Note that q is now invalid. The elements may have been reallocated as the size of the vector grew. If v had spare capacity, so



that it grew in place, q most likely points to the element with the value 3 rather than the element with the value 4, but don’t try
to take advantage of that.

That is, an insert() followed by an erase() of the inserted element leaves us back where we started, but with q invalidated.
However, in between, we moved all the elements after the insertion point, and maybe all elements were relocated as v grew.

To compare, we’ll do exactly the same with a list:

Note that q still points to the element with the value 4.

Again we find ourselves back where we started. However, for list as opposed to for vector, we didn’t move any elements
and q was valid at all times.

A list<char> takes up at least three times as much memory as the other three alternatives — on a PC a list<char> uses 12
bytes per element; a vector<char> uses 1 byte per element. For large numbers of characters, that can be significant.

In what way is a vector superior to a string? Looking at the lists of their properties, it seems that a string can do all that a
vector can, and more. That’s part of the problem: since string has to do more things, it is harder to optimize. In fact, vector

tends to be optimized for “memory operations” such as push_back(), whereas string tends not to be. Instead, string tends to
be optimized for handling of copying, for dealing with short strings, and for interaction with C-style strings. In the text editor
example, we chose vector because we were using insert() and delete(). That is a performance reason, though. The major
logical difference is that you can have a vector of just about any element type. We have a choice only when we are thinking
about characters. In conclusion, prefer vector to string unless you need string operations, such as concatenation or reading
whitespace-separated words.

20.8 Adapting our vector to the STL



After adding begin(), end(), and the type aliases in §20.5, vector now just lacks insert() and erase() to be as close an
approximation of std::vector as we need it to be:
Click here to view code image

template<typename T, typename A = allocator<T>>

          // requires Element<T>() && Allocator<A>() (§19.3.3)
class vector {

          int sz;              // the size
          T* elem;         // a pointer to the elements
          int space;       // number of elements plus number of free space “slots”
          A alloc;           // use allocate to handle memory for elements
public:

          // . . . all the other stuff from Chapter 19 and §20.5 . . .
          using iterator = T*;      // T* is the simplest possible iterator

          iterator insert(iterator p, const T& val);

          iterator erase(iterator p);

};

We again used a pointer to the element type, T*, as the iterator type. That’s the simplest possible solution. We left providing a
range-checked iterator as an exercise (exercise 18).

Typically, people don’t provide list operations, such as insert() and erase(), for data types that keep their elements in
contiguous storage, such as vector. However, list operations, such as insert() and erase(), are immensely useful and
surprisingly efficient for short vectors or small numbers of elements. We have repeatedly seen the usefulness of
push_back(), which is another operation traditionally associated with lists.

Basically, we implement vector<T,A>::erase() by copying all elements after the element we erase (remove, delete).
Using the definition of vector from §19.3.7 with the additions above, we get
Click here to view code image

template<typename T, typename A>            // requires Element<T>() &&
                                                                              // Allocator<A>() (§19.3.3)
vector<T,A>::iterator vector<T,A>::erase(iterator p)

{

          if (p==end()) return p;

          for (auto pos = p+1; pos!=end(); ++pos)

                    *(pos–1) = *pos;                 // copy element “one position to the left”
          alloc.destroy(&*(end()–1));        // destroy surplus copy of last element
          ––sz;

          return p;

}

It is easier to understand such code if you look at a graphical representation:

The code for erase() is quite simple, but it may be a good idea to try out a couple of examples by drawing them on paper. Is
the empty vector correctly handled? Why do we need the p==end() test? What if we erased the last element of a vector?
Would this code have been easier to read if we had used the subscript notation?

Implementing vector<T,A>::insert() is a bit more complicated:
Click here to view code image

template<typename T, typename A>             // requires Element<T>() &&
                                                                                // Allocator<A>() (§19.3.3)



vector<T,A>::iterator vector<T,A>::insert(iterator p, const T& val)

{

          int index = p–begin();

          if (size()==capacity())

                    reserve(size()==0?8:2*size());   // make sure we have space

          // first copy last element into uninitialized space:
          alloc.construct(elem+sz,*back());

          ++sz;

          iterator pp = begin()+index;      // the place to put val
          for (auto pos = end()–1; pos!=pp; ––pos)

                    *pos = *(pos–1);                // copy elements one position to the right
          *(begin()+index) = val;               // “insert” val
          return pp;

}

Please note:
• An iterator may not point outside its sequence, so we use pointers, such as elem+sz, for that. That’s one reason that
allocators are defined in terms of pointers and not iterators.

• When we use reserve(), the elements may be moved to a new area of memory. Therefore, we must remember the index
at which the element is to be inserted, rather than the iterator to it. When vector reallocates its elements, iterators into
that vector become invalid — you can think of them as pointing to the old memory.

• Our use of the allocator argument, A, is intuitive, but inaccurate. If you should ever need to implement a container, you’ll
have to do some careful reading of the standard.

• It is subtleties like these that make us avoid dealing with low-level memory issues whenever we can. Naturally, the
standard library vector — and all other standard library containers — get that kind of important semantic detail right.
That’s one reason to prefer the standard library over “home brew.”

For performance reasons, you wouldn’t use insert() and erase() in the middle of a 100,000-element vector; for that, lists
(and maps; see §21.6) are better. However, the insert() and erase() operations are available for all vectors, and their
performance is unbeatable when you are just moving a few words of data — or even a few dozen words — because modern
computers are really good at this kind of copying; see exercise 20. Avoid (linked) lists for representing a list of a few small
elements.

20.9 Adapting built-in arrays to the STL
We have repeatedly pointed out the weaknesses of the built-in arrays: they implicitly convert to pointers at the slightest
provocation, they can’t be copied using assignment, they don’t know their own size (§18.6.2), etc. We have also pointed out
their main strength: they model physical memory almost perfectly.

To get the best of both worlds, we can build an array container that provides the benefits of arrays without the weaknesses.
A version of array was introduced into the standard as part of a Technical Report. Since a feature from a TR is not required to
be part of every implementation, array may not be part of the implementation you use. However, the idea is simple and useful:

Click here to view code image

template <typename T, int N>                        // requires Element<T>()
struct array {                                                        // not quite the standard array
          using value_type = T;

          using iterator = T*;

          using const_iterator = const T*;

          using size_type = unsigned int;           // the type of a subscript

          T elems[N];

          // no explicit construct/copy/destroy needed

          iterator begin() { return elems; }

          const_iterator begin() const { return elems; }

          iterator end() { return elems+N; }

          const_iterator end() const { return elems+N; }



          size_type size() const;

          T& operator[](int n) { return elems[n]; }

          const T& operator[](int n) const { return elems[n]; }

          const T& at(int n) const;                       // range-checked access
          T& at(int n);                                             // range-checked access

          T * data() { return elems; }

          const T * data() const { return elems; }

};

This definition isn’t complete or completely standards-conforming, but it will give you the idea. It will also give you something
to use if your implementation doesn’t yet provide the standard array. If available, it is in <array>. Note that because
array<T,N> “knows” that its size is N, we can (and do) provide assignment, ==, !=, etc. just as for vector.

As an example, let’s use an array with the STL version of high() from §20.4.2:
Click here to view code image

void f()

{

          array<double,6> a = { 0.0, 1.1, 2.2, 3.3, 4.4, 5.5 };

          array<double,6>::iterator p = high(a.begin(), a.end());

          cout << "the highest value was " << *p << '\n';

}

Note that we did not think of array when we wrote high(). Being able to use high() for an array is a simple consequence of
following standard conventions for both.

20.10 Container overview
The STL provides quite a few containers:



You can look up incredible amounts of additional information on these containers and their use in books and online
documentation. Here are a few quality information sources:
Josuttis, Nicholai M. The C++ Standard Library: A Tutorial and Reference. Addison-Wesley, 2012. ISBN 978-0321623218.

Use only the 2nd edition.
Lippman, Stanley B., Jose Lajoie, and Barbara E. Moo. The C++ Primer. Addison-Wesley, 2005. ISBN 0201721481. Use

only the 5th edition.
Stroustrup, Bjarne. The C++ Programming Language. Addison-Wesley, 2012. ISBN 978-0321714114. Use only the 4th

edition.
The documentation for the SGI implementation of the STL and the iostream library: www.sgi.com/tech/stl. Note that they also

provide complete code.

Do you feel cheated? Do you think we should explain all about containers and their use to you? That’s just not possible.
There are too many standard facilities, too many useful techniques, and too many useful libraries for you to absorb them all at
once. Programming is too rich a field for anyone to know all facilities and techniques — it can also be a noble art. As a
programmer, you must acquire the habit of seeking out new information about language facilities, libraries, and techniques.
Programming is a dynamic and rapidly developing field, so just being content with what you know and are comfortable with is
a recipe for being left behind. “Look it up” is a perfectly reasonable answer to many problems, and as your skills grow and
mature, it will more and more often be the answer.

On the other hand, you will find that once you understand vector, list, and map and the standard algorithms presented in
Chapter 21, you’ll find other STL and STL-style containers easy to use. You’ll also find that you have the basic knowledge to
understand non-STL containers and code using them.

What is a container? You can find the definition of an STL container in all of the sources above. Here we will just give an
informal definition. An STL container

• Is a sequence of elements [begin():end()).
• Provides copy operations that copy elements. Copying can be done with assignment or a copy constructor.
• Names its element type value_type.
• Has iterator types called iterator and const_iterator. Iterators provide *, ++ (both prefix and postfix), ==, and !=

with the appropriate semantics. The iterators for list also provide –– for moving backward in the sequence; that’s called
a bidirectional iterator. The iterators for vector also provide ––, [ ], +, and — and are called random-access
iterators. (See §20.10.1.)

• Provides insert() and erase(), front() and back(), push_back() and pop_back(), size(), etc.; vector and map also
provide subscripting (e.g., operator [ ]).

• Provides comparison operators (==, !=, <, <=, >, and >=) that compare the elements. Containers use lexicographical
ordering for <, <=, >, and >=; that is, they compare the elements in order starting with the first.

The aim of this list is to give you an overview. For more detail see Appendix B. For a more precise specification and
complete list, see The C++ Programming Language or the standard.

Some data types provide much of what is required from a standard container, but not all. We sometimes refer to those as

http://www.sgi.com/tech/stl


“almost containers.” The most interesting of those are:

In addition, many people and many organizations have produced containers that meet the standard container requirements, or
almost do so.

If in doubt, use vector. Unless you have a solid reason not to, use vector.

20.10.1 Iterator categories
We have talked about iterators as if all iterators are interchangeable. They are interchangeable if you do only the simplest
operations, such as traversing a sequence once reading each value once. If you want to do more, such as iterating backward or
subscripting, you need one of the more advanced iterators.

From the operations offered, we can see that wherever we can use an output iterator or an input iterator, we can use a forward
iterator. A bidirectional iterator is also a forward iterator, and a random-access iterator is also a bidirectional iterator.
Graphically, we can represent the iterator categories like this:



Note that since the iterator categories are not classes, this hierarchy is not a class hierarchy implemented using derivation.

 Drill

1. Define an array of ints with the ten elements { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }.
2. Define a vector<int> with those ten elements.
3. Define a list<int> with those ten elements.
4. Define a second array, vector, and list, each initialized as a copy of the first array, vector, and list, respectively.
5. Increase the value of each element in the array by 2; increase the value of each element in the vector by 3; increase the

value of each element in the list by 5.
6. Write a simple copy() operation,

Click here to view code image

template<typename Iter1, typename Iter2>

          // requires Input_iterator<Iter1>() && Output_iterator<Iter2>()
Iter2 copy(Iter1 f1, Iter1 e1, Iter2 f2);

that copies [f1,e1) to [f2,f2+(e1–f1)) and returns f2+(e1–f1) just like the standard library copy function. Note that if
f1==e1 the sequence is empty, so that there is nothing to copy.

7. Use your copy() to copy the array into the vector and to copy the list into the array.
8. Use the standard library find() to see if the vector contains the value 3 and print out its position if it does; use find() to

see if the list contains the value 27 and print out its position if it does. The “position” of the first element is 0, the
position of the second element is 1, etc. Note that if find() returns the end of the sequence, the value wasn’t found.

Remember to test after each step.

Review
1. Why does code written by different people look different? Give examples.
2. What are simple questions we ask of data?
3. What are a few different ways of storing data?
4. What basic operations can we do to a collection of data items?
5. What are some ideals for the way we store our data?
6. What is an STL sequence?
7. What is an STL iterator? What operations does it support?
8. How do you move an iterator to the next element?
9. How do you move an iterator to the previous element?

10. What happens if you try to move an iterator past the end of a sequence?
11. What kinds of iterators can you move to the previous element?
12. Why is it useful to separate data from algorithms?
13. What is the STL?



14. What is a linked list? How does it fundamentally differ from a vector?
15. What is a link (in a linked list)?
16. What does insert() do? What does erase() do?
17. How do you know if a sequence is empty?
18. What operations does an iterator for a list provide?
19. How do you iterate over a container using the STL?
20. When would you use a string rather than a vector?
21. When would you use a list rather than a vector?
22. What is a container?
23. What should begin() and end() do for a container?
24. What containers does the STL provide?
25. What is an iterator category? What kinds of iterators does the STL offer?
26. What operations are provided by a random-access iterator, but not a bidirectional iterator?

Terms
algorithm
array container
auto

begin()

container
contiguous
doubly-linked list
element
empty sequence
end()

erase()

insert()

iteration
iterator
linked list
sequence
singly-linked list
size_type

STL
traversal
using

type alias
value_type

Exercises
1. If you haven’t already, do all Try this exercises in the chapter.
2. Get the Jack-and-Jill example from §20.1.2 to work. Use input from a couple of small files to test it.
3. Look at the palindrome examples (§18.7); redo the Jack-and-Jill example from §20.1.2 using that variety of techniques.
4. Find and fix the errors in the Jack-and-Jill example from §20.3.1 by using STL techniques throughout.
5. Define an input and an output operator (>> and <<) for vector.
6. Write a find-and-replace operation for Documents based on §20.6.2.



7. Find the lexicographical last string in an unsorted vector<string>.
8. Define a function that counts the number of characters in a Document.
9. Define a program that counts the number of words in a Document. Provide two versions: one that defines word as “a

whitespace-separated sequence of characters” and one that defines word as “a sequence of consecutive alphabetic
characters.” For example, with the former definition, alpha.numeric and as12b are both single words, whereas with
the second definition they are both two words.

10. Define a version of the word-counting program where the user can specify the set of whitespace characters.
11. Given a list<int> as a (by-reference) parameter, make a vector<double> and copy the elements of the list into it.

Verify that the copy was complete and correct. Then print the elements sorted in order of increasing value.
12. Complete the definition of list from §20.4.1–2 and get the high() example to run. Allocate a Link to represent one past

the end.
13. We don’t really need a “real” one-past-the-end Link for a list. Modify your solution to the previous exercise to use 0 to

represent a pointer to the (nonexistent) one-past-the-end Link (list<Elem>::end()); that way, the size of an empty list
can be equal to the size of a single pointer.

14. Define a singly-linked list, slist, in the style of std::list. Which operations from list could you reasonably eliminate
from slist because it doesn’t have back pointers?

15. Define a pvector to be like a vector of pointers except that it contains pointers to objects and its destructor deletes
each object.

16. Define an ovector that is like pvector except that the [ ] and * operators return a reference to the object pointed to by
an element rather than the pointer.

17. Define an ownership_vector that hold pointers to objects like pvector but provides a mechanism for the user to
decide which objects are owned by the vector (i.e., which objects are deleted by the destructor). Hint: This exercise is
simple if you were awake for Chapter 13.

18. Define a range-checked iterator for vector (a random-access iterator).
19. Define a range-checked iterator for list (a bidirectional iterator).
20. Run a small timing experiment to compare the cost of using vector and list. You can find an explanation of how to time

a program in §26.6.1. Generate N random int values in the range [0:N). As each int is generated, insert it into a
vector<int> (which grows by one element each time). Keep the vector sorted; that is, a value is inserted after every
previous value that is less than or equal to the new value and before every previous value that is larger than the new
value. Now do the same experiment using a list<int> to hold the ints. For which N is the list faster than the vector?
Try to explain your result. This experiment was first suggested by John Bentley.

Postscript

If we have N kinds of containers of data and M things we’d like to do with them, we can easily end up writing N*M pieces of
code. If the data is of K different types, we could even end up with N*M*K pieces of code. The STL addresses this
proliferation by having the element type as a parameter (taking care of the K factor) and by separating access to data from
algorithms. By using iterators to access data in any kind of container from any algorithm, we can make do with N+M
algorithms. This is a huge simplification. For example, if we have 12 containers and 60 algorithms, the brute-force approach
would require 720 functions, whereas the STL strategy requires only 60 functions and 12 definitions of iterators: we just saved
ourselves 90% of the work. In fact, this underestimates the saved effort because many algorithms take two pairs of iterators and
the pairs need not be of the same type (e.g., see exercise 6). In addition, the STL provides conventions for defining algorithms
that simplify writing correct code and composable code, so the saving is greater still.



21. Algorithms and Maps

“In theory, practice is simple.”
—Trygve Reenskaug

This chapter completes our presentation of the fundamental ideas of the STL and our survey of the facilities it offers. Here, we
focus on algorithms. Our primary aim is to introduce you to about a dozen of the most useful ones, which will save you days, if
not months, of work. Each is presented with examples of its uses and of programming techniques that it supports. Our second
aim here is to give you sufficient tools to write your own — elegant and efficient — algorithms if and when you need more than
what the standard library and other available libraries have to offer. In addition, we introduce three more containers: map,
set, and unordered_map.

21.1 Standard library algorithms
21.2 The simplest algorithm: find()

21.2.1 Some generic uses
21.3 The general search: find_if()

21.4 Function objects
21.4.1 An abstract view of function objects
21.4.2 Predicates on class members
21.4.3 Lambda expressions

21.5 Numerical algorithms
21.5.1 Accumulate
21.5.2 Generalizing accumulate()

21.5.3 Inner product
21.5.4 Generalizing inner_product()

21.6 Associative containers
21.6.1 map

21.6.2 map overview
21.6.3 Another map example
21.6.4 unordered_map

21.6.5 set

21.7 Copying
21.7.1 Copy
21.7.2 Stream iterators
21.7.3 Using a set to keep order
21.7.4 copy_if

21.8 Sorting and searching
21.9 Container algorithms

21.1 Standard library algorithms
The standard library offers about 80 algorithms. All are useful for someone sometimes; we focus on some that are often useful
for many and on some that are occasionally very useful for someone:



By default, comparison for equality is done using == and ordering is done based on < (less than). The standard library
algorithms are found in <algorithm>. For more information, see §B.5 and the sources listed in §21.2–21.5. These algorithms
take one or more sequences. An input sequence is defined by a pair of iterators; an output sequence is defined by an iterator to
its first element. Typically an algorithm is parameterized by one or more operations that can be defined as function objects or
as functions. The algorithms usually report “failure” by returning the end of an input sequence. For example, find(b,e,v)

returns e if it doesn’t find v.

21.2 The simplest algorithm: find()

Arguably, the simplest useful algorithm is find(). It finds an element with a given value in a sequence:
Click here to view code image

template<typename In, typename T>

          // requires Input_iterator<In>()  
          //        && Equality_comparable<Value_type<T>>() (§19.3.3)
In find(In first, In last, const T& val)

          // find the first element in [first,last) that equals val
{

          while (first!=last && *first != val) ++first;

          return first;

}

Let’s have a look at the definition of find(). Naturally, you can use find() without knowing exactly how it is implemented —
in fact, we have used it already (e.g., §20.6.2). However, the definition of find() illustrates many useful design ideas, so it is
worth looking at.



First of all, find() operates on a sequence defined by a pair of iterators. We are looking for the value val in the half-open
sequence [first:last). The result returned by find() is an iterator. That result points either to the first element of the sequence
with the value val or to last. Returning an iterator to the one-beyond-the-last element of a sequence is the most common STL
way of reporting “not found.” So we can use find() like this:
Click here to view code image

void f(vector<int>& v, int x)

{

          auto p = find(v.begin(),v.end(),x);

          if (p!=v.end()) {

                    // we found x in v
          }
          else {

                    // no x in v
          }
          // . . .
}

Here, as is common, the sequence consists of all the elements of a container (an STL vector). We check the returned iterator
against the end of our sequence to see if we found our value. The type of the value returned is the iterator passed as an
argument.

To avoid naming the type returned, we used auto. An object defined with the “type” auto gets the type of its initializer. For
example:

auto ch = 'c';  // ch is a char
auto d = 2.1;  // d is a double

The auto type specifier is particularly useful in generic code, such as find() where it can be tedious to name the actual type
(here, vector<int>::iterator).

We now know how to use find() and therefore also how to use a bunch of other algorithms that follow the same conventions
as find(). Before proceeding with more uses and more algorithms, let’s just have a closer look at that definition:
Click here to view code image

template<typename In, typename T>

          // requires Input_iterator<In>()
          //        && Equality_comparable<Value_type<T>>() (§19.3.3)
In find(In first, In last, const T& val)

          // find the first element in [first,last) that equals val
{

          while (first!=last && *first != val) ++first;

          return first;

}

Did you find that loop obvious at first glance? We didn’t. It is actually minimal, efficient, and a direct representation of the
fundamental algorithm. However, until you have seen a few examples, it is not obvious. Let’s write it “the pedestrian way” and
see how that version compares:
Click here to view code image

template<typename In, typename T>

          // requires Input_iterator<In>()
          //        && Equality_comparable<Value_type<T>>() (§19.3.3)
In find(In first, In last, const T& val)

          // find the first element in [first,last) that equals val
{

          for (In p = first; p!=last; ++p)

                    if (*p == val) return p;

          return last;

}

These two definitions are logically equivalent, and a really good compiler will generate the same code for both. However, in
reality many compilers are not good enough to eliminate that extra variable (p) and to rearrange the code so that all the testing



is done in one place. Why worry and explain? Partly, because the style of the first (and preferred) version of find() has
become very popular, and you must understand it to read other people’s code; partly, because performance matters exactly for
small, frequently used functions that deal with lots of data.

 Try This

Are you sure those two definitions are logically equivalent? How would you be sure? Try constructing an
argument for their being equivalent. That done, try both on some data. A famous computer scientist (Don Knuth)
once said, “I have only proven the algorithm correct, not tested it.” Even mathematical proofs can contain errors.
To be confident, you need to both reason and test.

21.2.1 Some generic uses

The find() algorithm is generic. That means that it can be used for different data types. In fact, it is generic in two ways; it can
be used for

• Any STL-style sequence
• Any element type

Here are some examples (consult the diagrams in §20.4 if you get confused):
Click here to view code image

void f(vector<int>& v, int x)                  // works for vector of int
{

          vector<int>::iterator p = find(v.begin(),v.end(),x);

          if (p!=v.end()) { /* we found x */ }

          // . . .
}

Here, the iteration operations used by find() are those of a vector<int>::iterator; that is, ++ (in ++first) simply moves a
pointer to the next location in memory (where the next element of the vector is stored) and * (in *first) dereferences such a
pointer. The iterator comparison (in first!=last) is a pointer comparison, and the value comparison (in *first!=val) simply
compares two integers.

Let’s try with a list:
Click here to view code image

void f(list<string>& v, string x)             // works for list of string
{

          list<string>::iterator p = find(v.begin(),v.end(),x);

          if (p!=v.end()) { /* we found x */ }

          // . . .
}

Here, the iteration operations used by find() are those of a list<string>::iterator. The operators have the required meaning,
so that the logic is the same as for the vector<int> above. The implementation is very different, though; that is, ++ (in
++first) simply follows a pointer in the Link part of the element to where the next element of the list is stored, and * (in
*first) finds the value part of a Link. The iterator comparison (in first!=last) is a pointer comparison of Link*s and the value
comparison (in *first!=val) compares strings using string’s != operator.

So, find() is extremely flexible: as long as we obey the simple rules for iterators, we can use find() to find elements for any
sequence we can think of and for any container we care to define. For example, we can use find() to look for a character in a
Document as defined in §20.6:
Click here to view code image



void f(Document& v, char x)                 // works for Document of char
{

          Text_iterator p = find(v.begin(),v.end(),x);

          if (p!=v.end()) { /* we found x */ }

          // . . .
}

This kind of flexibility is the hallmark of the STL algorithms and makes them more useful than most people imagine when they
first encounter them.

21.3 The general search: find_if()

We don’t actually look for a specific value all that often. More often, we are interested in finding a value that meets some
criteria. We could get a much more useful find operation if we could define our search criteria ourselves. Maybe we want to
find a value larger than 42. Maybe we want to compare strings without taking case (upper case vs. lower case) into account.
Maybe we want to find the first odd value. Maybe we want to find a record where the address field is "17 Cherry Tree

Lane".
The standard algorithm that searches based on a user-supplied criterion is find_if():

Click here to view code image

template<typename In, typename Pred>

          // requires Input_iterator<In>() && Predicate<Pred,Value_type<In>>()
In find_if(In first, In last, Pred pred)

{

          while (first!=last && !pred(*first)) ++first;

          return first;

}

Obviously (when you compare the source code), it is just like find() except that it uses !pred(*first) rather than *first!=val;
that is, it stops searching once the predicate pred() succeeds rather than when an element equals a value.

A predicate is a function that returns true or false. Clearly, find_if() requires a predicate that takes one argument so that it
can say pred(*first). We can easily write a predicate that checks some property of a value, such as “Does the string contain
the letter x?” “Is the value larger than 42?” “Is the number odd?” For example, we can find the first odd value in a vector of
ints like this:
Click here to view code image

bool odd(int x) { return x%2; }           // % is the modulo operator

void f(vector<int>& v)

{

          auto p = find_if(v.begin(), v.end(), odd);

          if (p!=v.end()) { /* we found an odd number */ }

          // . . .
}

For that call of find_if(), find_if() calls odd() for each element until it finds the first odd value. Note that when you pass a
function as an argument, you don’t add () to its name because doing so would call it.

Similarly, we can find the first element of a list with a value larger than 42 like this:
Click here to view code image

bool larger_than_42(double x) { return x>42; }

void f(list<double>& v)

{

          auto p = find_if(v.begin(), v.end(), larger_than_42);

          if (p!=v.end()) { /* we found a value > 42 */ }

          // . . .
}

This last example is not very satisfying, though. What if we next wanted to find an element larger than 41? We would have to
write a new function. Find an element larger than 19? Write yet another function. There has to be a better way!



If we want to compare to an arbitrary value v, we need somehow to make v an implicit argument to find_if()’s predicate.
We could try (choosing v_val as a name that is less likely to clash with other names)
Click here to view code image

double v_val;           // the value to which larger_than_v() compares its argument
bool larger_than_v(double x) { return x>v_val; }

void f(list<double>& v, int x)

{

          v_val = 31;  // set v_val to 31 for the next call of larger_than_v
          auto p = find_if(v.begin(), v.end(), larger_than_v);

          if (p!=v.end()) { /* we found a value > 31 */ }

          v_val = x;   // set v_val to x for the next call of larger_than_v
          auto q = find_if(v.begin(), v.end(), larger_than_v);

          if (q!=v.end()) { /* we found a value > x */ }

          // . . .
}

Yuck! We are convinced that people who write such code will eventually get what they deserve, but we pity their users and
anyone who gets to maintain their code. Again: there has to be a better way!

 Try This

Why are we so disgusted with that use of v? Give at least three ways this could lead to obscure errors. List three
applications in which you’d particularly hate to find such code.

21.4 Function objects
So, we want to pass a predicate to find_if(), and we want that predicate to compare elements to a value we specify as some
kind of argument. In particular, we want to write something like this:
Click here to view code image

void f(list<double>& v, int x)

{

          auto p = find_if(v.begin(), v.end(), Larger_than(31));

          if (p!=v.end()) { /* we found a value > 31 */ }

          auto q = find_if(v.begin(), v.end(), Larger_than(x));

          if (q!=v.end()) { /* we found a value > x */ }

          // . . .
}

Obviously, Larger_than must be something that
• We can call as a predicate, e.g., pred(*first)

• Can store a value, such as 31 or x, for use when called

For that we need a “function object,” that is, an object that can behave like a function. We need an object because objects can
store data, such as the value with which to compare. For example:
Click here to view code image

class Larger_than {

          int v;

public:

          Larger_than(int vv) : v(vv) { }                             // store the argument
          bool operator()(int x) const { return x>v; }    // compare
};



Interestingly, this definition makes the example above work as specified. Now we just have to figure out why it works. When
we say Larger_than(31) we (obviously) make an object of class Larger_than holding 31 in its data member v. For example:
Click here to view code image

find_if(v.begin(),v.end(),Larger_than(31))

Here, we pass that object to find_if() as its parameter called pred. For each element of v, find_if() makes a call

pred(*first)

This invokes the call operator, called operator(), for our function object using the argument *first. The result is a comparison
of the element’s value, *first, with 31.

What we see here is that a function call can be seen as an operator, the “( ) operator,” just like any other operator. The “( )

operator” is also called the function call operator and the application operator. So ( ) in pred(*first) is given a meaning by
Larger_than::operator(), just as subscripting in v[i] is given a meaning by vector::operator[ ].

21.4.1 An abstract view of function objects

We have here a mechanism that allows for a “function” to “carry around” data that it needs. Clearly, function objects provide
us with a very general, powerful, and convenient mechanism. Consider a more general notion of a function object:
Click here to view code image

class F {                   // abstract example of a function object
          S s;                // state
public:

          F(const S& ss) :s(ss) { /* establish initial state */ }

          T operator() (const S& ss) const

          {
                    // do something with ss to s
                    // return a value of type T (T is often void, bool, or S)
          }

          const S& state() const { return s; }          // reveal state
          void reset(const S& ss) { s = ss; }            // reset state
};

An object of class F holds data in its member s. If needed, a function object can have many data members. Another way of
saying that something holds data is that it “has state.” When we create an F, we can initialize that state. Whenever we want to,
we can read that state. For F, we provided an operation, state(), to read that state and another, reset(), to write it. However,
when we design a function object we are free to provide any way of accessing its state that we consider appropriate. And, of
course, we can directly or indirectly call the function object using the normal function call notation. We defined F to take a
single argument when it is called, but we can define function objects with as many parameters as we need.

Use of function objects is the main method of parameterization in the STL. We use function objects to specify what we are
looking for in searches (§21.3), for defining sorting criteria (§21.4.2), for specifying arithmetic operations in numerical
algorithms (§21.5), for defining what it means for values to be equal (§21.8), and for much more. The use of function objects is
a major source of flexibility and generality.

Function objects are usually very efficient. In particular, passing a small function object by value to a template function
typically leads to optimal performance. The reason is simple, but surprising to people more familiar with passing functions as
arguments: typically, passing a function object leads to significantly smaller and faster code than passing a function! This is
true only if the object is small (something like zero, one, or two words of data) or passed by reference and if the function call
operator is small (e.g., a simple comparison using <) and defined to be inline (e.g., has its definition within its class itself).
Most of the examples in this chapter — and in this book — follow this pattern. The basic reason for the high performance of
small and simple function objects is that they preserve sufficient type information for compilers to generate optimal code. Even



older compilers with unsophisticated optimizers can generate a simple “greater-than” machine instruction for the comparison
in Larger_than rather than calling a function. Calling a function typically takes 10 to 50 times longer than executing a simple
comparison operation. In addition, the code for a function call is several times larger than the code for a simple comparison.

21.4.2 Predicates on class members
As we have seen, standard algorithms work well with sequences of elements of basic types, such as int and double.
However, in some application areas, containers of class values are far more common. Consider an example that is key to
applications in many areas, sorting a record by several criteria:
Click here to view code image

struct Record {

          string name;                // standard string for ease of use
          char addr[24];            // old style to match database layout
          // . . .
};

vector<Record> vr;

Sometimes we want to sort vr by name, and sometimes we want to sort it by address. Unless we can do both elegantly and
efficiently, our techniques are of limited practical interest. Fortunately, doing so is easy. We can write
Click here to view code image

// . . .
sort(vr.begin(), vr.end(), Cmp_by_name());           // sort by name
// . . .
sort(vr.begin(), vr.end(), Cmp_by_addr());            // sort by addr
// . . .

Cmp_by_name is a function object that compares two Records by comparing their name members. Cmp_by_addr is a
function object that compares two Records by comparing their addr members. To allow the user to specify such comparison
criteria, the standard library sort algorithm takes an optional third argument specifying the sorting criteria. Cmp_by_name()

creates a Cmp_by_name for sort() to use to compare Records. That looks OK — meaning that we wouldn’t mind
maintaining code that looked like that. Now all we have to do is to define Cmp_by_name and Cmp_by_addr:
Click here to view code image

// different comparisons for Record objects:

struct Cmp_by_name {

          bool operator()(const Record& a, const Record& b) const

                    { return a.name < b.name; }

};

struct Cmp_by_addr {

          bool operator()(const Record& a, const Record& b) const

                    { return strncmp(a.addr, b.addr, 24) < 0; }          // !!!
};

The Cmp_by_name class is pretty obvious. The function call operator, operator()(), simply compares the name strings
using the standard string’s < operator. However, the comparison in Cmp_by_addr is ugly. That is because we chose an ugly
representation of the address: an array of 24 characters (not zero terminated). We chose that partly to show how a function
object can be used to hide ugly and error-prone code and partly because this particular representation was once presented to
me as a challenge: “an ugly and important real-world problem that the STL can’t handle.” Well, the STL could. The
comparison function uses the standard C (and C++) library function strncmp() that compares fixed-length character arrays,
returning a negative number if the second “string” comes lexicographically after the first. Look it up should you ever need to do
such an obscure comparison (e.g., §B.11.3).

21.4.3 Lambda expressions
Defining a function object (or a function) in one place in a program and then using it in another can be a bit tedious. In
particular, it is a nuisance if the action we want to perform is very easy to specify, easy to understand, and will never again be



needed. In that case, we can use a lambda expression (§15.3.3). Probably the best way of thinking about a lambda expression is
as a shorthand notation for defining a function object (a class with an operator ( )) and then immediately creating an object of
it. For example, we could have written
Click here to view code image

// . . .
sort(vr.begin(), vr.end(),                 // sort by name
          [](const Record& a, const Record& b)

                   { return a.name < b.name; }

);

// . . .
sort(vr.begin(), vr.end(),                 // sort by addr
          [](const Record& a, const Record& b)

                    { return strncmp(a.addr, b.addr, 24) < 0; }

);

// . . .

In this case, we wonder if a named function object wouldn’t give more maintainable code. Maybe Cmp_by_name and
Cmp_by_addr have other uses.

However, consider the find_if() example from §21.4. There, we needed to pass an operation as an argument and that
operation needed to carry data with it:
Click here to view code image

void f(list<double>& v, int x)

{

          auto p = find_if(v.begin(), v.end(), Larger_than(31));

          if (p!=v.end()) { /* we found a value > 31 */ }

          auto q = find_if(v.begin(), v.end(), Larger_than(x));

          if (q!=v.end()) { /* we found a value > x */ }

          // . . .
}

Alternatively, and equivalently, we could write
Click here to view code image

void f(list<double>& v, int x)

{

          auto p = find_if(v.begin(), v.end(), [](double a) { return a>31; });

          if (p!=v.end()) { /* we found a value > 31 */ }

          auto q = find_if(v.begin(), v.end(), [&](double a) { return a>x; });

          if (q!=v.end()) { /* we found a value > x */ }

          // . . .
}

The comparison to the local variable x makes the lambda version attractive.

21.5 Numerical algorithms
Most of the standard library algorithms deal with data management issues: they copy, sort, search, etc. data. However, a few
help with numerical computations. These numerical algorithms can be important when you compute, and they serve as
examples of how you can express numerical algorithms within the STL framework.

There are just four STL-style standard library numerical algorithms:



They are found in <numeric>. We’ll describe the first two here and leave it for you to explore the other two if you feel the
need.

21.5.1 Accumulate
The simplest and most useful numerical algorithm is accumulate(). In its simplest form, it adds a sequence of values:
Click here to view code image

template<typename In, typename T>

           // requres Input_iterator<T>() && Number<T>()
T accumulate(In first, In last, T init)

{

          while (first!=last) {

                    init = init + *first;

                    ++first;

          }
          return init;

}

Given an initial value, init, it simply adds every value in the [first:last) sequence to it and returns the sum. The variable in
which the sum is computed, init, is often referred to as the accumulator. For example:
Click here to view code image

int a[] = { 1, 2, 3, 4, 5 };

cout << accumulate(a, a+sizeof(a)/sizeof(int), 0);

This will print 15, that is, 0+1+2+3+4+5 (0 is the initial value). Obviously, accumulate() can be used for all kinds of
sequences:
Click here to view code image

void f(vector<double>& vd, int* p, int n)

{

          double sum = accumulate(vd.begin(), vd.end(), 0.0);

          int sum2 = accumulate(p,p+n,0);

}

The type of the result (the sum) is the type of the variable that accumulate() uses to hold the accumulator. This gives a degree
of flexibility that can be important. For example:
Click here to view code image

void g(int* p, int n)

{

          int s1 = accumulate(p, p+n, 0);                    // sum into an int
          long sl = accumulate(p, p+n, long{0});      // sum the ints into a long
          double s2 = accumulate(p, p+n, 0.0);        // sum the ints into a double
}



A long has more significant digits than an int on some computers. A double can represent larger (and smaller) numbers than
an int, but possibly with less precision. We’ll revisit the role of range and precision in numerical computations in Chapter 24.

Using the variable in which you want the result as the initializer is a popular idiom for specifying the type of the
accumulator:
Click here to view code image

void f(vector<double>& vd, int* p, int n)

{

          double s1 = 0;

          s1 = accumulate(vd.begin(), vd.end(), s1);

          int s2 = accumulate(vd.begin(), vd.end(), s2);          // oops
          float s3 = 0;

          accumulate(vd.begin(), vd.end(), s3);                        // oops
}

Do remember to initialize the accumulator and to assign the result of accumulate() to the variable. In this example, s2 was
used as an initializer before it was itself initialized; the result is therefore undefined. We passed s3 to accumulate() (pass-
by-value; see §8.5.3), but the result is never assigned anywhere; that compilation is just a waste of time.

21.5.2 Generalizing accumulate()

So, the basic three-argument accumulate() adds. However, there are many other useful operations, such as multiply and
subtract, that we might like to do on a sequence, so the STL offers a second four-argument version of accumulate() where we
can specify the operation to be used:
Click here to view code image

template<typename In, typename T, typename BinOp>

          // requires Input_iterator<In>() && Number<T>()
          //        && Binary_operator<BinOp,Value_type<In>,T>()
T accumulate(In first, In last, T init, BinOp op)

{

          while (first!=last) {

                    init = op(init, *first);

                    ++first;

          }
          return init;

}

Any binary operation that accepts two arguments of the accumulator’s type can be used here. For example:
Click here to view code image

vector<double> a = { 1.1, 2.2, 3.3, 4.4 };

cout << accumulate(a.begin(),a.end(), 1.0, multiplies<double>());

This will print 35.1384, that is, 1.0*1.1*2.2*3.3*4.4 (1.0 is the initial value). The binary operator supplied here,
multiplies<double>(), is a standard library function object that multiplies; multiplies<double> multiplies doubles,
multiplies<int> multiplies ints, etc. There are other binary function objects: plus (it adds), minus (it subtracts), divides,
and modulus (it takes the remainder). They are all defined in <functional> (§B.6.2).

Note that for products of floating-point numbers, the obvious initial value is 1.0.

As in the sort() example (§21.4.2), we are often interested in data within class objects, rather than just plain built-in types.
For example, we might want to calculate the total cost of items given the unit prices and number of units:
Click here to view code image

struct Record {

          double unit_price;

          int units;                // number of units sold



          // . . .
};

We can let accumulate’s operator extract the units from a Record element as well as multiplying it to the accumulator
value:
Click here to view code image

double price(double v, const Record& r)

{

           return v + r.unit_price * r.units;    // calculate price and accumulate
}

void f(const vector<Record>& vr)

{

          double total = accumulate(vr.begin(), vr.end(), 0.0, price);

          // . . .
}

We were “lazy” and used a function, rather than a function object, to calculate the price — just to show that we could do that
also. We tend to prefer function objects

• If they need to store a value between calls, or
• If they are so short that inlining can make a difference (at most a handful of primitive operations)

In this example, we might have chosen a function object for the second reason.

 Try This

Define a vector<Record>, initialize it with four records of your choice, and compute their total price using the
functions above.

21.5.3 Inner product

Take two vectors, multiply each pair of elements with the same subscript, and add all of those products. That’s called the inner
product of the two vectors and is a most useful operation in many areas (e.g., physics and linear algebra; see §24.6). If you
prefer code to words, here is the STL version:
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template<typename In, typename In2, typename T>

          // requires Input_iterator<In> && Input_iterator<In2>
          //        && Number<T> (§19.3.3)
T inner_product(In first, In last, In2 first2, T init)

          // note: this is the way we multiply two vectors (yielding a scalar)
{

          while(first!=last) {

                    init = init + (*first) * (*first2);         // multiply pairs of elements
                    ++first;

                    ++first2;

          }
          return init;

}

This generalizes the notion of inner product to any kind of sequence of any type of element. As an example, consider a stock
market index. The way that works is to take a set of companies and assign each a “weight.” For example, in the Dow Jones
Industrial index Alcoa had a weight of 2.4808 when last we looked. To get the current value of the index, we multiply each
company’s share price with its weight and add all the resulting weighted prices together. Obviously, that’s the inner product of
the prices and the weights. For example:
Click here to view code image

// calculate the Dow Jones Industrial index:
vector<double> dow_price = {           // share price for each company
          81.86, 34.69, 54.45,

          // . . .
};



list<double> dow_weight = {              // weight in index for each company
          5.8549, 2.4808, 3.8940,

          // . . .
};

double dji_index = inner_product(     // multiply (weight,value) pairs and add
                    dow_price.begin(), dow_price.end(),

                    dow_weight.begin(),

                    0.0);

cout << "DJI value " << dji_index << '\n';

Note that inner_product() takes two sequences. However, it takes only three arguments: only the beginning of the second
sequence is mentioned. The second sequence is supposed to have at least as many elements as the first. If not, we have a run-
time error. As far as inner_product() is concerned, it is OK for the second sequence to have more elements than the first;
those “surplus elements” will simply not be used.

The two sequences need not be of the same type, nor do they need to have the same element types. To illustrate this point, we
used a vector to hold the prices and a list to hold the weights.

21.5.4 Generalizing inner_product()

The inner_product() can be generalized just as accumulate() was. For inner_product() we need two extra arguments,
though: one to combine the accumulator with the new value, exactly as for accumulate(), and one for combining the element
value pairs:
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template<typename In, typename In2, typename T, typename BinOp,

typename BinOp2>

          // requires Input_iterator<In> && Input_iterator<In2> && Number<T>
          //        && Binary_operation<BinOp,T, Value_type<In>()
          //        && Binary_operation<BinOp2,T, Value_type<In2>()
T inner_product(In first, In last, In2 first2, T init, BinOp op, BinOp2 op2)

{

          while(first!=last) {

                    init = op(init, op2(*first, *first2));

                    ++first;

                    ++first2;

          }
          return init;

}

In §21.6.3, we return to the Dow Jones example and use this generalized inner_product() as part of a more elegant solution.

21.6 Associative containers

After vector, the most useful standard library container is probably the map. A map is an ordered sequence of (key,value)
pairs in which you can look up a value based on a key; for example, my_phone_book["Nicholas"] could be the phone
number of Nicholas. The only potential competitor to map in a popularity contest is unordered_map (see §21.6.4), and
that’s a map optimized for keys that are strings. Data structures similar to map and unordered_map are known under many
names, such as associative arrays, hash tables, and red-black trees. Popular and useful concepts always seem to have many
names. In the standard library, we collectively call all such data structures associative containers.

The standard library provides eight associative containers:



These containers are found in <map>, <set>, <unordered_map>, and <unordered_set>.

21.6.1 map

Consider a conceptually simple task: make a list of the number of occurrences of words in a text. The obvious way of doing
this is to keep a list of words we have seen together with the number of times we have seen each. When we read a new word,
we see if we have already seen it; if we have, we increase its count by one; if not, we insert it in our list and give it the value
1. We could do that using a list or a vector, but then we would have to do a search for each word we read. That could be
slow. A map stores its keys in a way that makes it easy to see if a key is present, thus making the searching part of our task
trivial:
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int main()

{

          map<string,int> words;         // keep (word,frequency) pairs

          for (string s; cin>>s; )

                    ++words[s];                   // note: words is subscripted by a string

          for (const auto& p : words)

                    cout << p.first << ": " << p.second << '\n';

}

The really interesting part of the program is ++words[s]. As we can see from the first line of main(), words is a map of
(string,int) pairs; that is, words maps strings to ints. In other words, given a string, words can give us access to its
corresponding int. So, when we subscript words with a string (holding a word read from our input), words[s] is a
reference to the int corresponding to s. Let’s look at a concrete example:

words["sultan"]

If we have not seen the string "sultan" before, "sultan" will be entered into words with the default value for an int, which
is 0. Now, words has an entry ("sultan",0). It follows that if we haven’t seen "sultan" before, ++words["sultan"] will
associate the value 1 with the string "sultan". In detail: the map will discover that "sultan" wasn’t found, insert a
("sultan",0) pair, and then ++ will increment that value, yielding 1.

Now look again at the program: ++words[s] takes every “word” we get from input and increases its value by one. The first
time a new word is seen, it gets the value 1. Now the meaning of the loop is clear:
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for (string s; cin>>s; )

          ++words[s];              // note: words is subscripted by a string

This reads every (whitespace-separated) word on input and computes the number of occurrences for each. Now all we have to
do is to produce the output. We can iterate through a map, just like any other STL container. The elements of a
map<string,int> are of type pair<string,int>. The first member of a pair is called first and the second member second,
so the output loop becomes
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          for (const auto& p : words)

                    cout << p.first << ": " << p.second << '\n';

As a test, we can feed the opening statements of the first edition of The C++ Programming Language to our program:
C++ is a general purpose programming language designed to make programming more enjoyable for the serious
programmer. Except for minor details, C++ is a superset of the C programming language. In addition to the facilities
provided by C, C++ provides flexible and efficient facilities for defining new types.

We get the output

C: 1

C++: 3

C,: 1

Except: 1

In: 1

a: 2

addition: 1

and: 1

by: 1

defining: 1

designed: 1

details,: 1

efficient: 1

enjoyable: 1

facilities: 2

flexible: 1

for: 3

general: 1

is: 2

language: 1

language.: 1

make: 1

minor: 1

more: 1

new: 1

of: 1

programmer.: 1

programming: 3

provided: 1

provides: 1

purpose: 1

serious: 1

superset: 1

the: 3

to: 2

types.: 1

If we don’t like to distinguish between upper- and lowercase letters or would like to eliminate punctuation, we can do so: see
exercise 13.

21.6.2 map overview

So what is a map? There is a variety of ways of implementing maps, but the STL map implementations tend to be balanced
binary search trees; more specifically, they are red-black trees. We will not go into the details, but now you know the technical
terms, so you can look them up in the literature or on the web, should you want to know more.

A tree is built up from nodes (in a way similar to a list being built from links; see §20.4). A Node holds a key, its
corresponding value, and pointers to two descendant Nodes.



Here is the way a map<Fruit,int> might look in memory assuming we had inserted (Kiwi,100), (Quince,0), (Plum,8),
(Apple,7), (Grape,2345), and (Orange,99) into it:

Given that the name of the Node member that holds the key value is first, the basic rule of a binary search tree is
Click here to view code image

left–>first<first && first<right–>first

That is, for every node,
• Its left sub-node has a key that is less than the node’s key, and
• The node’s key is less than the key of its right sub-node

You can verify that this holds for each node in the tree. That allows us to search “down the tree from its root.” Curiously
enough, in computer science literature trees grow downward from their roots. In the example, the root node is (Orange, 99).
We just compare our way down the tree until we find what we are looking for or the place where it should have been. A tree is
called balanced when (as in the example above) each sub-tree has approximately as many nodes as every other sub-tree that’s
equally far from the root. Being balanced minimizes the average number of nodes we have to visit to reach a node.

A Node may also hold some more data which the map will use to keep its tree of nodes balanced. A tree is balanced when
each node has about as many descendants to its left as to its right. If a tree with N nodes is balanced, we have to at most look at
log2(N) nodes to find a node. That’s much better than the average of N/2 nodes we would have to examine if we had the keys in
a list and searched from the beginning (the worst case for such a linear search is N). (See also §21.6.4.) For example, have a
look at an unbalanced tree:

This tree still meets the criteria that the key of every node is greater than that of its left sub-node and less than that of its right
sub-node:
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left–>first<first && first<right–>first

However, this version of the tree is unbalanced, so we now have three “hops” to reach Apple and Kiwi, rather than the two we
had in the balanced tree. For trees of many nodes the difference can be very significant, so the trees used to implement maps
are balanced.

We don’t have to understand about trees to use map. It is just reasonable to assume that professionals understand at least the
fundamentals of their tools. What we do have to understand is the interface to map provided by the standard library. Here is a
slightly simplified version:
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template<typename Key, typename Value, typename Cmp = less<Key>>

          // requires Binary_operation<Cmp,Value>() (§19.3.3)
class map {

          // . . .
          using value_type = pair<Key,Value>; // a map deals in (Key,Value) pairs

          using iterator = sometype1;                  // similar to a pointer to a tree node
          using const_iterator = sometype2;

          iterator begin();                                       // points to first element
          iterator end();                                          // points one beyond the last element

          Value& operator[](const Key& k);      // subscript with k

          iterator find(const Key& k);                 // is there an entry for k?

           void erase(iterator p);                          // remove element pointed to by p
          pair<iterator, bool> insert(const value_type&);   // insert a (key,value) pair
          // . . .
};

You can find the real version in <map>. You can imagine the iterator to be similar to a Node*, but you cannot rely on your
implementation using that specific type to implement iterator.

The similarity to the interfaces for vector and list (§20.5 and §B.4) is obvious. The main difference is that when you iterate,
the elements are pairs — of type pair<Key,Value>. That type is another useful STL type:
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template<typename T1, typename T2>

struct pair {                                           // simplified version of std::pair
          using first_type = T1;

          using second_type = T2;

          T1 first;

          T2 second;

          // . . .
};

template<typename T1, typename T2>

pair<T1,T2> make_pair(T1 x, T2 y)

{

          return {x,y};

}

We copied the complete definition of pair and its useful helper function make_pair() from the standard.

Note that when you iterate over a map, the elements will come in the order defined by the key. For example, if we iterated
over the fruits in the example, we would get
Click here to view code image



(Apple,7) (Grape,2345) (Kiwi,100) (Orange,99) (Plum,8) (Quince,0)

The order in which we inserted those fruits doesn’t matter.
The insert() operation has an odd return value, which we most often ignore in simple programs. It is a pair of an iterator to

the (key,value) element and a bool which is true if the (key,value) pair was inserted by this call of insert(). If the key was
already in the map, the insertion fails and the bool is false.

Note that you can define the meaning of the order used by a map by supplying a third argument (Cmp in the map
declaration). For example:

map<string, double, No_case> m;

No_case defines case-insensitive compare; see §21.8. By default the order is defined by less<Key>, meaning “less than.”

21.6.3 Another map example
To better appreciate the utility of map, let’s return to the Dow Jones example from §21.5.3. The code there was correct if and
only if all weights appear in the same position in their vector as their corresponding name. That’s implicit and could easily be
the source of an obscure bug. There are many ways of attacking that problem, but one attractive one is to keep each weight
together with its company’s ticker symbol, e.g., (“AA”,2.4808). A “ticker symbol” is an abbreviation of a company name used
where a terse representation is needed. Similarly we can keep the company’s ticker symbol together with its share price, e.g.,
(“AA”,34.69). Finally, for those of us who don’t regularly deal with the U.S. stock market, we can keep the company’s ticker
symbol together with the company name, e.g., (“AA”,“Alcoa Inc.”); that is, we could keep three maps of corresponding values.

First we make the (symbol,price) map:
Click here to view code image

map<string,double> dow_price = {   // Dow Jones Industrial index (symbol,price);
                                                                       // for up-to-date quotes see
                                                                       // www.djindexes.com
          {"MMM",81.86},

          {"AA",34.69},

          {"MO",54.45},

          // . . .
};

The (symbol,weight) map:
Click here to view code image

map<string,double> dow_weight = {    // Dow (symbol,weight)
          {"MMM", 5.8549},

          {"AA",2.4808},

          {"MO",3.8940},

          // . . .
};

The (symbol,name) map:
Click here to view code image

map<string,string> dow_name = {     // Dow (symbol,name)
          {"MMM","3M Co."},

          {"AA"] = "Alcoa Inc."},

          {"MO"] = "Altria Group Inc."},

          // . . .
};

Given those maps, we can conveniently extract all kinds of information. For example:
Click here to view code image

double alcoa_price = dow_price ["AAA"];                 // read values from a map
double boeing_price = dow_price ["BA"];

if (dow_price.find("INTC") != dow_price.end())      // find an entry in a map
          cout << "Intel is in the Dow\n";



Iterating through a map is easy. We just have to remember that the key is called first and the value is called second:
Click here to view code image

// write price for each company in the Dow index:
for (const auto& p : dow_price) {

          const string& symbol = p.first;                         // the “ticker” symbol
          cout << symbol << '\t'

                   << p.second << '\t'

                   << dow_name[symbol] << '\n';

}

We can even do some computation directly using maps. In particular, we can calculate the index, just as we did in §21.5.3. We
have to extract share values and weights from their respective maps and multiply them. We can easily write a function for
doing that for any two map<string,double>s:
Click here to view code image

double weighted_value(

          const pair<string,double>& a,

          const pair<string,double>& b

                    )   // extract values and multiply
{

          return a.second * b.second;

}

Now we just plug that function into the generalized version of inner_product() and we have the value of our index:
Click here to view code image

double dji_index =

          inner_product(dow_price.begin(), dow_price.end(),     // all companies
                    dow_weight.begin(),              // their weights
                    0.0,                                             // initial value
                    plus<double>(),                     // add (as usual)
                    weighted_value);                   // extract values and weights
                                                                          // and multiply

Why might someone keep such data in maps rather than vectors? We used a map to make the association between the
different values explicit. That’s one common reason. Another is that a map keeps its elements in the order defined by its key.
When we iterated through dow above, we output the symbols in alphabetical order; had we used a vector we would have had
to sort. The most common reason to use a map is simply that we want to look up values based on the key. For large sequences,
finding something using find() is far slower than looking it up in a sorted structure, such as a map.

 Try This

Get this little example to work. Then add a few companies of your own choice, with weights of your choice.

21.6.4 unordered_map

To find an element in a vector, find() needs to examine all the elements from the beginning to the element with the right value
or to the end. On average, the cost is proportional to the length of the vector (N); we call that cost O(N).

To find an element in a map, the subscript operator needs to examine all the elements of the tree from the root to the element
with the right value or to a leaf. On average the cost is proportional to the depth of the tree. A balanced binary tree holding N
elements has a maximum depth of log2(N); the cost is O(log2(N)). O(log2(N)) — that is, cost proportional to log2(N) — is
actually pretty good compared to O(N):



The actual cost will depend on how soon in our search we find our values and how expensive comparisons and iterations are.
It is usually somewhat more expensive to chase pointers (as the map lookup does) than to increment a pointer (as find() does
in a vector).

For some types, notably integers and character strings, we can do even better than a map’s tree search. We will not go into
details, but the idea is that given a key, we compute an index into a vector. That index is called a hash value and a container
that uses this technique is typically called a hash table. The number of possible keys is far larger than the number of slots in the
hash table. For example, we often use a hash function to map from the billions of possible strings into an index for a vector

with 1000 elements. This can be tricky, but it can be handled well and is especially useful for implementing large maps. The
main virtue of a hash table is that on average the cost of a lookup is (near) constant and independent of the number of elements
in the table, that is, O(1). Obviously, that can be a significant advantage for large maps, say a map of 500,000 web addresses.
For more information about hash lookup, you can look at the documentation for unordered_map (available on the web) or
just about any basic text on data structures (look for “hash table” and “hashing”).

We can illustrate lookup in an (unsorted) vector, a balanced binary tree, and a hash table graphically like this:
• Lookup in unsorted vector:

• Lookup in map (balanced binary tree):

• Lookup in unordered_map (hash table):

The STL unordered_map is implemented using a hash table, just as the STL map is implemented using a balanced binary
tree, and an STL vector is implemented using an array. Part of the utility of the STL is to fit all of these ways of storing and
accessing data into a common framework together with algorithms. The rule of thumb is:

• Use vector unless you have a good reason not to.
• Use map if you need to look up based on a value (and if your key type has a reasonable and efficient less-than
operation).

• Use unordered_map if you need to do a lot of lookup in a large map and you don’t need an ordered traversal (and if
you can find a good hash function for your key type).

Here, we will not describe unordered_map in any detail. You can use an unordered_map with a key of type string or
int exactly like a map, except that when you iterate over the elements, the elements will not be ordered. For example, we
could rewrite part of the Dow Jones example from §21.6.3 like this:
Click here to view code image



unordered_map<string,double> dow_price;

for (const auto& p : dow_price) {

          const string& symbol = p.first;             // the “ticker” symbol
          cout << symbol << '\t'

                   << p.second << '\t'

                   << dow_name[symbol] << '\n';

}

Lookup in dow might now be faster. However, that would not be significant because there are only 30 companies in that index.
Had we been keeping the prices of all the companies on the New York Stock Exchange, we might have noticed a performance
difference. We will, however, notice a logical difference: the output from the iteration will now not be in alphabetical order.

The unordered maps are new in the context of the C++ standard and not yet quite “first-class members,” as they are defined
in a Technical Report rather than in the standard proper. They are widely available, though, and where they are not you can
often find their ancestors, called something like hash_map.

 Try This

Write a small program using #include<unordered_map>. If that doesn’t work, unordered_map wasn’t
shipped with your C++ implementation. If your C++ implementation doesn’t provide unordered_map, you have
to download one of the available implementations (e.g., see www.boost.org).

21.6.5 set

We can think of a set as a map where we are not interested in the values, or rather as a map without values. We can visualize
a set node like this:

We can represent the set of fruits used in the map example (§21.6.2) like this:

What are sets useful for? As it happens, there are lots of problems that require us to remember if we have seen a value.
Keeping track of which fruits are available (independently of price) is one example; building a dictionary is another. A slightly
different style of usage is having a set of “records”; that is, the elements are objects that potentially contain “lots of”
information — we simply use a member as the key. For example:
Click here to view code image

struct Fruit {

          string name;

          int count;

          double unit_price;

          Date last_sale_date;

          // . . .
};

http://www.boost.org


struct Fruit_order {

          bool operator()(const Fruit& a, const Fruit& b) const

          {
                    return a.name<b.name;

          }
};

set<Fruit, Fruit_order> inventory;       // use Fruit_order(x,y) to compare Fruits

Here again, we see how using a function object can significantly increase the range of problems for which an STL component
is useful.

Since set doesn’t have a value type, it doesn’t support subscripting (operator[]()) either. We must use “list operations,”
such as insert() and erase(), instead. Unfortunately, map and set don’t support push_back() either — the reason is
obvious: the set and not the programmer determines where the new value is inserted. Instead use insert(). For example:
Click here to view code image

inventory.insert(Fruit("quince",5));

inventory.insert(Fruit("apple",200,0.37));

One advantage of set over map is that you can use the value obtained from an iterator directly. Since there is no (key,value)
pair as for map (§21.6.3), the dereference operator gives a value of the element type:
Click here to view code image

for (auto p = inventory.begin(), p!=inventory.end(); ++p)

          cout << *p << '\n';

Assuming, of course, that you have defined << for Fruit. Or we could equivalently write

for (const auto& x : inventory)

          cout << x << '\n';

21.7 Copying
In §21.2, we deemed find() “the simplest useful algorithm.” Naturally, that point can be argued. Many simple algorithms are
useful — even some that are trivial to write. Why bother to write new code when you can use what others have written and
debugged for you, however simple? When it comes to simplicity and utility, copy() gives find() a run for its money. The STL
provides three versions of copy:

21.7.1 Copy
The basic copy algorithm is defined like this:
Click here to view code image

template<typename In, typename Out>

          // requires Input_iterator<In>() && Output_iterator<Out>()
Out copy(In first, In last, Out res)

{

          while (first!=last) {

                    *res = *first;        // copy element
                    ++res;

                    ++first;

          }
          return res;

}



Given a pair of iterators, copy() copies a sequence into another sequence specified by an iterator to its first element. For
example:
Click here to view code image

void f(vector<double>& vd, list<int>& li)

          // copy the elements of a list of ints into a vector of doubles
{

          if (vd.size() < li.size()) error("target container too small");

          copy(li.begin(), li.end(), vd.begin());

          // . . .
}

Note that the type of the input sequence of copy() can be different from the type of the output sequence. That’s a useful
generality of STL algorithms: they work for all kinds of sequences without making unnecessary assumptions about their
implementation. We remembered to check that there was enough space in the output sequence to hold the elements we put there.
It’s the programmer’s job to check such sizes. STL algorithms are programmed for maximal generality and optimal
performance; they do not (by default) do range checking or other potentially expensive tests to protect their users. At times,
you’ll wish they did, but when you want checking, you can add it as we did above.

21.7.2 Stream iterators

You will have heard the phrases “copy to output” and “copy from input.” That’s a nice and useful way of thinking of some
forms of I/O, and we can actually use copy() to do exactly that.

Remember that a sequence is something
• With a beginning and an end
• Where we can get to the next element using ++

• Where we can get the value of the current element using *
We can easily represent input and output streams that way. For example:
Click here to view code image

ostream_iterator<string> oo{cout};     // assigning to *oo is to write to cout

*oo = "Hello, ";                                       // meaning cout << "Hello, "
++oo;                                                        // “get ready for next output operation”
*oo = "World!\n";                                 // meaning cout << "World!\n"

You can imagine how this could be implemented. The standard library provides an ostream_iterator type that works like
that; ostream_iterator<T> is an iterator that you can use to write values of type T.

Similarly, the standard library provides the type istream_iterator<T> for reading values of type T:
Click here to view code image

istream_iterator<string> ii{cin};     // reading *ii is to read a string from cin

string s1 = *ii;                                    // meaning cin>>s1
++ii;                                                        // “get ready for the next input operation”
string s2 = *ii;                                   // meaning cin>>s2

Using ostream_iterator and istream_iterator, we can use copy() for our I/O. For example, we can make a “quick and
dirty” dictionary like this:
Click here to view code image

int main()

{

          string from, to;

          cin >> from >> to;                 // get source and target file names

          ifstream is {from};                  // open input stream
          ofstream os {to};                    // open output stream

          istream_iterator<string> ii {is};                // make input iterator for stream



          istream_iterator<string> eos;                  // input sentinel
          ostream_iterator<string> oo {os,"\n"}; // make output iterator for stream

          vector<string> b {ii,eos};                         // b is a vector initialized from input
          sort(b.begin() ,b.end());                           // sort the buffer
          copy(b.begin() ,b.end() ,oo);                 // copy buffer to output

}

The iterator eos is the stream iterator’s representation of “end of input.” When an istream reaches end of input (often referred
to as eof), its istream_iterator will equal the default istream_iterator (here called eos).

Note that we initialized the vector by a pair of iterators. As the initializers for a container, a pair of iterators (a,b) means
“Read the sequence [a:b) into the container.” Naturally, the pair of iterators that we used was (ii,eos) — the beginning and
end of input. That saves us from explicitly using >> and push_back(). We strongly advise against the alternative
Click here to view code image

vector<string> b(max_size);          // don’t guess about the amount of input!
copy(ii,eos,b.begin());

People who try to guess the maximum size of input usually find that they have underestimated, and serious problems emerge —
for them or for their users — from the resulting buffer overflows. Such overflows are also a source of security problems.

 Try This

First get the program as written to work and test it with a small file of, say, a few hundred words. Then try the
emphatically not recommended version that guesses about the size of input and see what happens when the input
buffer b overflows. Note that the worst-case scenario is that the overflow led to nothing bad in your particular
example, so that you would be tempted to ship it to users.

In our little program, we read in the words and then sorted them. That seemed an obvious way of doing things at the time, but
why should we put words in “the wrong place” so that we later have to sort? Worse yet, we find that we store a word and print
it as many times as it appears in the input.

We can solve the latter problem by using unique_copy() instead of copy(). A unique_copy() simply doesn’t copy
repeated identical values. For example, using plain copy() the program will take

the man bit the dog
and produce

bit

dog

man

the

the

If we used unique_copy(), the program would write

bit

dog

man

the

Where did those newlines come from? Outputting with separators is so common that the ostream_iterator’s constructor
allows you to (optionally) specify a string to be printed after each value:
Click here to view code image

ostream_iterator<string> oo {os,"\n"};     // make output iterator for stream



Obviously, a newline is a popular choice for output meant for humans to read, but maybe we prefer spaces as separators? We
could write
Click here to view code image

ostream_iterator<string> oo {os," "};      // make output iterator for stream

This would give us the output

bit dog man the

21.7.3 Using a set to keep order
There is an even easier way of getting that output; use a set rather than a vector:
Click here to view code image

int main()

{

          string from, to;

          cin >> from >> to;               // get source and target file names

          ifstream is {from};               // make input stream
          ofstream os {to};                // make output stream

          set<string> b {istream_iterator<string>{is}, istream_iterator<string>{}};

          copy(b.begin() ,b.end() , ostream_iterator<string>{os," "});  // copy buffer
                                                                                                                                // to output
}

When we insert values into a set, duplicates are ignored. Furthermore, the elements of a set are kept in order so no sorting is
needed. With the right tools, most tasks are easy.

21.7.4 copy_if

The copy() algorithm copies unconditionally. The unique_copy() algorithm suppresses adjacent elements with the same
value. The third copy algorithm copies only elements for which a predicate is true:
Click here to view code image

template<typename In, typename Out, typename Pred>

          // requires Input_iterator<In>() && Output_operator<Out>() &&
          // Predicate<Pred, Value_type<In>>()
Out copy_if(In first, In last, Out res, Pred p)

          // copy elements that fulfill the predicate
{

          while (first!=last) {

                    if (p(*first)) *res++ = *first;

                    ++first;

          }
          return res;

}

Using our Larger_than function object from §21.4, we can find all elements of a sequence larger than 6 like this:
Click here to view code image

void f(const vector<int>& v)

          // copy all elements with a value larger than 6
{

          vector<int> v2(v.size());

          copy_if(v.begin(), v.end(), v2.begin(), Larger_than(6));

          // . . .
}

Thanks to a mistake I made, this algorithm is missing from the 1998 ISO standard. This mistake has now been remedied, but
you can still find implementations without copy_if. If so, just use the definition from this section.



21.8 Sorting and searching

Often, we want our data ordered. We can achieve that either by using a data structure that maintains order, such as map and
set, or by sorting. The most common and useful sort operation in the STL is the sort() that we have already used several times.
By default, sort() uses < as the sorting criterion, but we can also supply our own criteria:
Click here to view code image

template<typename Ran>

          // requires Random_access_iterator<Ran>()
void sort(Ran first, Ran last);

template<typename Ran, typename Cmp>

          // requires Random_access_iterator<Ran>()
          // && Less_than_comparable<Cmp,Value_type<Ran>>()
void sort(Ran first, Ran last, Cmp cmp);

As an example of sorting based on a user-specified criterion, we’ll show how to sort strings without taking case into account:
Click here to view code image

struct No_case {          // is lowercase(x) < lowercase(y)?
          bool operator()(const string& x, const string& y) const

          {
                    for (int i = 0; i<x.length(); ++i) {

                              if (i == y.length()) return false;           // y<x
                              char xx = tolower(x[i]);

                              char yy = tolower(y[i]);

                              if (xx<yy) return true;                          // x<y
                              if (yy<xx) return false;                         // y<x
                    }
                    if (x.length()==y.length()) return false;     // x==y
                    return true;                   // x<y (fewer characters in x)
          }
};

void sort_and_print(vector<string>& vc)

{

          sort(vc.begin(),vc.end(),No_case());

          for (const auto& s : vc)

                    cout << s << '\n';

}

Once a sequence is sorted, we no longer need to search from the beginning using find(); we can use the order to do a binary
search. Basically, a binary search works like this:

Assume that we are looking for the value x; look at the middle element:
• If the element’s value equals x, we found it!
• If the element’s value is less than x, any element with value x must be to the right, so we look at the right half (doing a
binary search on that half).

• If the value of x is less than the element’s value, any element with value x must be to the left, so we look at the left half
(doing a binary search on that half).

• If we have reached the last element (going left or right) without finding x, then there is no element with that value.

For longer sequences, a binary search is much faster than find() (which is a linear search). The standard library algorithms for
binary search are binary_search() and equal_range(). What do we mean by “longer”? It depends, but ten elements are
usually sufficient to give binary_search() an advantage over find(). For a sequence of 1000 elements, binary_search() will
be something like 200 times faster than find() because its cost is O(log2(N)); see §21.6.4.



The binary_search algorithm comes in two variants:
Click here to view code image

template<typename Ran, typename T>

bool binary_search(Ran first, Ran last, const T& val);

template<typename Ran, typename T, typename Cmp>

bool binary_search(Ran first, Ran last, const T& val, Cmp cmp);

These algorithms require and assume that their input sequence is sorted. If it isn’t, “interesting things,” such as infinite loops,
might happen. A binary_search() simply tells us whether a value is present:
Click here to view code image

void f(vector<string>& vs)          // vs is sorted
{

          if (binary_search(vs.begin(),vs.end(),"starfruit")) {

                    // we have a starfruit
          }

          // . . .
}

So, binary_search() is ideal when all we care about is whether a value is in a sequence or not. If we care about the element
we find, we can use lower_bound(), upper_bound(), or equal_range() (§B.5.4, §23.4). In the cases where we care
which element is found, the reason is usually that it is an object containing more information than just the key, that there can be
many elements with the same key, or that we want to know which element met a search criterion.

21.9 Container algorithms
So, we define standard library algorithms in terms of sequences of elements specified by iterators. An input sequence is
defined as a pair of iterators [b:e) where b points to the first element of the sequence and e to the one-past-the-end element of
the sequence (§20.3). An output sequence is specified as simply an iterator to its first element. For example:
Click here to view code image

void test(vector<int> & v)
{
     sort(v.begin(),v.end());   // sort v’s element from v.begin() to v.end()
}

This is nice and general. For example, we can sort half a vector:
Click here to view code image

void test(vector<int> & v)
{
     sort(v.begin(),v.begin()+v.size());    // sort first half of v’s elements
     sort(v.begin()+v.size(),v.end());       // sort second half of v’s elements
}

However, specifying the range of elements is a bit verbose, and most of the time, we sort all of a vector and not just half. So,
most of the time, we want to write

void test(vector<int> & v)
{
     sort(v);   // sort v
}

That variant of sort() is not provided by the standard library, but we can define it for ourselves:
Click here to view code image

template<typename C>  // requires Container<C>()
void sort(C& c)
{



     std::sort(c.begin(),c.end());
}

In fact, we found it so useful that we added it to std_lib_facilities.h.
Input sequences are easily handled like that, but to keep things simple, we tend to leave return types as iterators. For

example:
Click here to view code image

template<typename C, typename V>     // requires Container<C>()
Iterator<C> find(C& c, Val v)
{
     return std::find(c.begin(),c.end(),v);
}

Naturally, Iterator<C> is C’s iterator type.

 Drill

After each operation (as defined by a line of this drill) print the vector.
1. Define a struct Item { string name; int iid; double value; /* . . . */ };, make a vector<Item>, vi, and fill it with

ten items from a file.
2. Sort vi by name.
3. Sort vi by iid.
4. Sort vi by value; print it in order of decreasing value (i.e., largest value first).
5. Insert Item("horse shoe",99,12.34) and Item("Canon S400", 9988,499.95).
6. Remove (erase) two Items identified by name from vi.
7. Remove (erase) two Items identified by iid from vi.
8. Repeat the exercise with a list<Item> rather than a vector<Item>.

Now try a map:
1. Define a map<string,int> called msi.
2. Insert ten (name,value) pairs into it, e.g., msi["lecture"]=21.
3. Output the (name,value) pairs to cout in some format of your choice.
4. Erase the (name,value) pairs from msi.
5. Write a function that reads value pairs from cin and places them in msi.
6. Read ten pairs from input and enter them into msi.
7. Write the elements of msi to cout.
8. Output the sum of the (integer) values in msi.
9. Define a map<int,string> called mis.

10. Enter the values from msi into mis; that is, if msi has an element ("lecture",21), mis should have an element
(21,"lecture").

11. Output the elements of mis to cout.
More vector use:

1. Read some floating-point values (at least 16 values) from a file into a vector<double> called vd.
2. Output vd to cout.
3. Make a vector vi of type vector<int> with the same number of elements as vd; copy the elements from vd into vi.
4. Output the pairs of (vd[i],vi[i]) to cout, one pair per line.
5. Output the sum of the elements of vd.
6. Output the difference between the sum of the elements of vd and the sum of the elements of vi.
7. There is a standard library algorithm called reverse that takes a sequence (pair of iterators) as arguments; reverse vd,



and output vd to cout.
8. Compute the mean value of the elements in vd; output it.
9. Make a new vector<double> called vd2 and copy all elements of vd with values lower than (less than) the mean into

vd2.
10. Sort vd; output it again.

Review
1. What are examples of useful STL algorithms?
2. What does find() do? Give at least five examples.
3. What does count_if() do?
4. What does sort(b,e) use as its sorting criterion?
5. How does an STL algorithm take a container as an input argument?
6. How does an STL algorithm take a container as an output argument?
7. How does an STL algorithm usually indicate “not found” or “failure”?
8. What is a function object?
9. In which ways does a function object differ from a function?

10. What is a predicate?
11. What does accumulate() do?
12. What does inner_product() do?
13. What is an associative container? Give at least three examples.
14. Is list an associative container? Why not?
15. What is the basic ordering property of binary tree?
16. What (roughly) does it mean for a tree to be balanced?
17. How much space per element does a map take up?
18. How much space per element does a vector take up?
19. Why would anyone use an unordered_map when an (ordered) map is available?
20. How does a set differ from a map?
21. How does a multimap differ from a map?
22. Why use a copy() algorithm when we could “just write a simple loop”?
23. What is a binary search?

Terms
accumulate()

algorithm
application: ()
associative container
balanced tree
binary_search()

copy()

copy_if()

equal_range()

find()

find_if()

function object
generic



hash function
inner_product()

lambda
lower_bound()

map

predicate
searching
sequence
set

sort()

sorting
stream iterator
unique_copy()

unordered_map

upper_bound()

Exercises
1. Go through the chapter and do all Try this exercises that you haven’t already done.
2. Find a reliable source of STL documentation and list every standard library algorithm.
3. Implement count() yourself. Test it.
4. Implement count_if() yourself. Test it.
5. What would we have to do if we couldn’t return end() to indicate “not found”? Redesign and re-implement find() and

count() to take iterators to the first and last elements. Compare the results to the standard versions.
6. In the Fruit example in §21.6.5, we copy Fruits into the set. What if we didn’t want to copy the Fruits? We could have

a set<Fruit*> instead. However, to do that, we’d have to define a comparison operation for that set. Implement the Fruit
example using a set<Fruit*, Fruit_comparison>. Discuss the differences between the two implementations.

7. Write a binary search function for a vector<int> (without using the standard one). You can choose any interface you
like. Test it. How confident are you that your binary search function is correct? Now write a binary search function for a
list<string>. Test it. How much do the two binary search functions resemble each other? How much do you think they
would have resembled each other if you had not known about the STL?

8. Take the word-frequency example from §21.6.1 and modify it to output its lines in order of frequency (rather than in
lexicographical order). An example line would be 3: C++ rather than C++: 3.

9. Define an Order class with (customer) name, address, data, and vector<Purchase> members. Purchase is a class
with a (product) name, unit_price, and count members. Define a mechanism for reading and writing Orders to and
from a file. Define a mechanism for printing Orders. Create a file of at least ten Orders, read it into a
vector<Order>, sort it by name (of customer), and write it back out to a file. Create another file of at least ten Orders
of which about a third are the same as in the first file, read it into a list<Order>, sort it by address (of customer), and
write it back out to a file. Merge the two files into a third using std::merge().

10. Compute the total value of the orders in the two files from the previous exercise. The value of an individual Purchase

is (of course) its unit_price*count.
11. Provide a GUI interface for entering Orders into files.
12. Provide a GUI interface for querying a file of Orders; e.g., “Find all orders from Joe,” “Find the total value of orders

in file Hardware,” and “List all orders in file Clothing.” Hint: First design a non-GUI interface; then, build the GUI on
top of that.

13. Write a program to “clean up” a text file for use in a word query program; that is, replace punctuation with whitespace,
put words into lower case, replace don’t with do not (etc.), and remove plurals (e.g., ships becomes ship). Don’t be too
ambitious. For example, it is hard to determine plurals in general, so just remove an s if you find both ship and ships. Use
that program on a real-world text file with at least 5000 words (e.g., a research paper).



14. Write a program (using the output from the previous exercise) to answer questions such as: “How many occurrences of
ship are there in a file?” “Which word occurs most frequently?” “Which is the longest word in the file?” “Which is the
shortest?” “List all words starting with s.” “List all four-letter words.”

15. Provide a GUI for the program from the previous exercise.

Postscript

The STL is the part of the ISO C++ standard library concerned with containers and algorithms. As such it provides very
general, flexible, and useful basic tools. It can save us a lot of work: reinventing the wheel can be fun, but it is rarely
productive. Unless there are strong reasons not to, use the STL containers and basic algorithms. What is more, the STL is an
example of generic programming, showing how concrete problems and concrete solutions can give rise to a collection of
powerful and general tools. If you need to manipulate data — and most programmers do — the STL provides an example, a set
of ideas, and an approach that often can help.



Part IV: Broadening the View



22. Ideals and History

“When someone says,
‘I want a programming language

in which I need only say what I wish done,’
give him a lollipop.”

—Alan Perlis

This chapter is a very brief and very selective history of programming languages and the ideals they have been designed to
serve. The ideals and the languages that express them are the basis for professionalism. Because C++ is the language we use in
this book, we focus on C++ and languages that influenced C++. The aim is to give a background and a perspective to the ideas
presented in this book. For each language, we present its designer or designers: a language is not just an abstract creation, but a
concrete solution designed by individuals in response to problems they faced at the time.

22.1 History, ideals, and professionalism
22.1.1 Programming language aims and philosophies
22.1.2 Programming ideals
22.1.3 Styles/paradigms

22.2 Programming language history overview
22.2.1 The earliest languages
22.2.2 The roots of modern languages
22.2.3 The Algol family
22.2.4 Simula
22.2.5 C
22.2.6 C++
22.2.7 Today
22.2.8 Information sources

22.1 History, ideals, and professionalism

“History is bunk,” Henry Ford famously declared. The contrary opinion has been widely quoted since antiquity: “He who does
not know history is condemned to repeat it.” The problem is to choose which parts of history to know and which parts to
discard: “95% of everything is bunk” is another relevant quote (with which we concur, though 95% is probably an
underestimate). Our view of the relation of history to current practice is that there can be no professionalism without some
understanding of history. If you know too little of the background of your field, you are gullible because the history of any field
of work is littered with plausible ideas that didn’t work. The “real meat” of history is ideas and ideals that have proved their
worth in practical use.

We would have loved to talk about the origins of key ideas in many more languages and in all kinds of software, such as
operating systems, databases, graphics, networking, the web, scripting, etc., but you’ll have to find those important and useful
areas of software and programming elsewhere. We have barely enough space to scratch the surface of the ideals and history of
programming languages.

The ultimate aim of programming is always to produce useful systems. In the heat of discussions about programming
techniques and programming languages, that’s easily forgotten. Don’t forget that! If you need a reminder, take another look at
Chapter 1.

22.1.1 Programming language aims and philosophies



22.1.1 Programming language aims and philosophies

What is a programming language? What is a programming language supposed to do for us? Popular answers to “What is a
programming language?” include

• A tool for instructing machines
• A notation for algorithms
• A means of communication among programmers
• A tool for experimentation
• A means of controlling computerized devices
• A way of expressing relationships among concepts
• A means of expressing high-level designs

Our answer is “All of the above — and more!” Clearly, we are thinking about general-purpose programming languages here,
as we will throughout this chapter. In addition, there are special-purpose languages and domain-specific languages serving
narrower and typically more precisely defined aims.

What properties of a programming language do we consider desirable?
• Portability
• Type safety
• Precisely defined
• High performance
• Ability to concisely express ideas
• Anything that eases debugging
• Anything that eases testing
• Access to all system resources
• Platform independence
• Runs on all platforms (e.g., Linux, Windows, smartphones, embedded systems)
• Stability over decades
• Prompt improvements in response to changes in application areas
• Ease of learning
• Small
• Support for popular programming styles (e.g., object-oriented programming and generic programming)
• Whatever helps analysis of programs
• Lots of facilities
• Supported by a large community
• Supportive of novices (students, learners)
• Comprehensive facilities for experts (e.g., infrastructure builders)
• Lots of software development tools available
• Lots of software components available (e.g., libraries)
• Supported by an open software community
• Supported by major platform vendors (Microsoft, IBM, etc.)

Unfortunately, we can’t have all this at the same time. That’s sad because every one of these “properties” is objectively a good
thing: each provides benefits, and a language that doesn’t provide them imposes added work and complications on its users.
The reason we can’t have it all is equally fundamental: several of the properties are mutually exclusive. For example, you
cannot be 100% platform independent and also access all system resources; a program that accesses a resource that is not
available on every platform cannot run everywhere. Similarly, we obviously want a language (and the tools and libraries we
need to use it) that is small and easy to learn, but that can’t be achieved while providing comprehensive support for
programming on all kinds of systems and for all kinds of application areas.



This is where ideals become important. Ideals are what guide the technical choices and trade-offs that every language,
library, tool, and program designer must make. Yes, when you write a program you are a designer and must make design
choices.

22.1.2 Programming ideals
The preface of The C++ Programming Language starts, “C++ is a general purpose programming language designed to make
programming more enjoyable for the serious programmer.” Say what? Isn’t programming all about delivering products? About
correctness, quality, and maintainability? About time-to-market? About efficiency? About supporting software engineering?
That, too, of course, but we shouldn’t forget the programmer. Consider another example: Don Knuth said, “The best thing about
the Alto is that it doesn’t run faster at night.” The Alto was a computer from the Xerox Palo Alto Research Center (PARC) that
was one of the first “personal computers,” as opposed to the shared computers for which there was a lot of competition for
daytime access.

Our tools and techniques for programming exist to make a programmer, a human, work better and produce better results.
Please don’t forget that. So what guidelines can we articulate to help a programmer produce the best software with the least
pain? We have made our ideals explicit throughout the book so this section is basically a summary.

The main reason we want our code to have a good structure is that the structure is what allows us to make changes without
excessive effort. The better the structure, the easier it is to make a change, find and fix a bug, add a new feature, port it to a new
architecture, make it run faster, etc. That’s exactly what we mean by “good.”

For the rest of this section, we will
• Revisit what we are trying to achieve, that is, what we want from our code
• Present two general approaches to software development and decide that a combination is better than either alternative
by itself

• Consider key aspects of program structure as expressed in code:
• Direct expression of ideas
• Abstraction level
• Modularity
• Consistency and minimalism

Ideals are meant to be used. They are tools for thinking, not simply fancy phrases to trot out to please managers and examiners.
Our programs are meant to approximate our ideals. When we get stuck in a program, we step back to see if our problems come
from a departure from some ideal; sometimes that helps. When we evaluate a program (preferably before we ship it to users),
we look for departures from the ideals that might cause problems in the future. Apply ideals as widely as possible, but
remember that practical concerns (e.g., performance and simplicity) and weaknesses in a language (no language is perfect) will
often prevent you from achieving more than a good approximation of the ideals.

Ideals can guide us when making specific technical decisions. For example, we can’t just make every single decision about
interfaces for a library individually and in isolation (§14.1). The result would be a mess. Instead we must go back to our first
principles, decide what is important about this particular library, and then produce a consistent set of interfaces. Ideally, we
would articulate our design principles and trade-offs for that particular design in the documentation and in comments in the
code.

During the start of a project, review the ideals and see how they relate to the problems and the early ideas for their solution.
This can be a good way to get ideas and to refine ideas. Later in the design and development process, when you are stuck, step
back and see where your code has most departed from the ideals — this is where the bugs are most likely to lurk and the design
problems are most likely to occur. This is an alternative to the default technique of repetitively looking in the same place and
trying the same techniques to find the bug. “The bug is always where you are not looking — or you would have found it
already.”



22.1.2.1 What we want
Typically, we want

• Correctness: Yes, it can be difficult to define what we mean by “correct,” but doing so is an important part of the
complete job. Often, others define for us what is correct for a given project, but then we have to interpret what they say.

• Maintainability: Every successful program will be changed over time; it will be ported to new hardware and software
platforms, it will be extended with new facilities, and new bugs will be found that must be fixed. The sections below
about ideals for program structure address this ideal.

• Performance: Performance (“efficiency”) is a relative term. Performance has to be adequate for the program’s purpose.
It is often claimed that efficient code is necessarily low-level and that concerns with a good, high-level structure of the
code cause inefficiency. On the contrary, we find that acceptable performance is often achieved through adherence to the
ideals and approaches we recommend. The STL is an example of code that is simultaneously abstract and very efficient.
Poor performance can as easily arise from an obsession with low-level details as it can from disdain for such details.

• On-time delivery: Delivering the perfect program a year late is usually not good enough. Obviously, people expect the
impossible, but we need to deliver quality software in a reasonable time. There is a myth that “completed on time”
implies shoddiness. On the contrary, we find that emphasis on good structure (e.g., resource management, invariants, and
interface design), design for testability, and use of appropriate libraries (often designed for a specific application or
application area) is a good way to meet deadlines.

This leads to a concern for structure in our code:
• If there is a bug in a program (and every large program has bugs), it is easier to find in a program with a clear structure.
• If a program needs to be understood by a new person or needs to be modified in some way, a clear structure is
comprehensible with far less effort than a mess of low-level details.

• If a program hits a performance problem, it is often easier to tune a high-level program (one that is a good approximation
of the ideals and has a well-defined structure) than a low-level or messy one. For starters, the high-level one is more
likely to be understandable. Second, the high-level one is often ready for testing and tuning long before the low-level one.

Note the point about a program being understandable. Anything that helps us understand a program and helps us reason about it
is good. Fundamentally, regularity is better than irregularity — as long as the regularity is not achieved through
oversimplification.

22.1.2.2 General approaches
There are two approaches to writing correct software:

• Bottom-up: Compose the system using only components proved to be correct.
• Top-down: Compose the system out of components assumed to contain errors and catch all errors.

Interestingly, the most reliable systems combine these two — apparently contrary — approaches. The reason for that is simple:
for a large real-world system, neither approach will deliver the needed correctness, adaptability, and maintainability:

• We can’t build and “prove” enough basic components to eliminate all sources of errors.
• We can’t completely compensate for the flaws of buggy basic components (libraries, subsystems, class hierarchies, etc.)
when combining them in the final system.

However, a combination of approximations to the two approaches can deliver more than either in isolation: we can produce
(or borrow or buy) components that are sufficiently good, so that the problems that remain can be compensated for by error
handling and systematic testing. Also, if we keep building better components, a larger part of a system can be constructed from
them, reducing the amount of “messy ad hoc code” needed.

Testing is an essential part of software development. It is discussed in some detail in Chapter 26. Testing is the systematic
search for errors. “Test early and often” is a popular slogan. We try to design our programs to simplify testing and to make it
harder for errors to “hide” in messy code.

22.1.2.3 Direct expression of ideas



22.1.2.3 Direct expression of ideas

When we express something — be it high-level or low-level — the ideal is to express it directly in code, rather than through
work-arounds. The fundamental ideal of representing our ideas directly in code has a few specific variants:

• Represent ideas directly in code. For example, it is better to represent an argument as a specific type (e.g., Month or
Color) than as a more general one (e.g., int).

• Represent independent ideas independently in code. For example, with a few exceptions, the standard sort() can sort
any standard container of any element type; the concepts of sorting, sorting criteria, container, and element type are
independent. Had we built a “vector of objects allocated on the free store where the elements are of a class derived
from Object with a before() member function defined for use by vector::sort()” we would have a far less general
sort() because we made assumptions about storage, class hierarchy, available member functions, ordering, etc.

• Represent relationships among ideas directly in code. The most common relationships that can be directly represented
are inheritance (e.g., a Circle is a kind of Shape) and parameterization (e.g., a vector<T> represents what’s common
for all vectors independently of a particular element type).

• Combine ideas expressed in code freely — where and only where combinations make sense. For example, sort()

allows us to use a variety of element types and a variety of containers, but the elements must support < (if they do not, we
use the sort() with an extra argument specifying the comparison criteria), and the containers we sort must support
random-access iterators.

• Express simple ideas simply. Following the ideals listed above can lead to overly general code. For example, we may
end up with class hierarchies with a more complicated taxonomy (inheritance structure) than anyone needs or with seven
parameters to every (apparently) simple class. To avoid every user having to face every possible complication, we try to
provide simple versions that deal with the most common or most important cases. For example, we have a sort(b,e) that
implicitly sorts using less than in addition to the general version sort(b,e,op) that sorts using op. We could also
provide versions sort(c) for sorting a standard container using less than and sort(c,op) for sorting a standard container
using op.

22.1.2.4 Abstraction level

We prefer to work at the highest feasible level of abstraction; that is, our ideal is to express our solutions in as general a way
as possible.

For example, consider how to represent entries for a phone book (as we might keep it on a PDA or a cell phone). We could
represent a set of (name,value) pairs as a vector<pair<string,Value_type>>. However, if we essentially always accessed
that set using a name, map<string,Value_type> would be a higher level of abstraction, saving us the bother of writing (and
debugging) access functions. On the other hand, vector<pair<string,Value_type>> is itself a higher level of abstraction
than two arrays, string[max] and Value_type[max], where the relationship between the string and its value is implicit. The
lowest level of abstraction would be something like an int (number of elements) plus two void*s (pointing to some form of
representation, known to the programmer but not to the compiler). In our example, every suggestion so far could be seen as too
low-level because it focuses on the representation of the pair of values, rather than their function. We could move closer to the
application by defining a class that directly reflects a use. For example, we could write our application code using a class
Phonebook with an interface designed for convenient use. That Phonebook class could be implemented using any one of
the representations suggested.

The reason for preferring the higher level of abstraction (when we have an appropriate abstraction mechanism and if our
language supports it with acceptable efficiency) is that such formulations are closer to the way we think about our problems
and solutions than solutions that have been expressed at the level of computer hardware.

The reason given for dropping to a lower level of abstraction is typically “efficiency.” This should be done only when really
needed (§25.2.2). Using a lower-level (more primitive) language feature does not necessarily give better performance.
Sometimes, it eliminates optimization opportunities. For example, using a Phonebook class, we have a choice of
implementations, say, between string[max] plus Value_type[max] and map<string,Value_type>. For some applications
the former is more efficient and for others the latter is. Naturally, performance would not be a major concern in an application



involving only your personal directory. However, this kind of trade-off becomes interesting when we have to keep track of —
and manipulate — millions of entries. More seriously, after a while, the use of low-level features soaks up the programmer’s
time so that opportunities for improvements (performance or otherwise) are missed because of lack of time.

22.1.2.5 Modularity

Modularity is an ideal. We want to compose our systems out of “components” (functions, classes, class hierarchies, libraries,
etc.) that we can build, understand, and test in isolation. Ideally, we also want to design and implement such components so
that they can be used in more than one program (“reused”). Reuse is the building of systems out of previously tested
components that have been used elsewhere — and the design and use of such components. We have touched upon this in our
discussions of classes, class hierarchies, interface design, and generic programming. Much of what we say about
“programming styles” (in §22.1.3) relates to the design, implementation, and use of potentially “reusable” components. Please
note that not every component can be used in more than one program; some code is simply too specialized and is not easily
improved to be usable elsewhere.

Modularity in code should reflect important logical distinctions in the application. We do not “increase reuse” simply by
putting two completely separate classes A and B into a “reusable component” called C. By providing the union of A’s and B’s
interfaces, the introduction of C complicates our code:

Here, both User 1 and User 2 use C. Unless you look into C, you might think that User 1 and User 2 gained benefits from
sharing a popular component. Benefits from sharing (“reuse”) would (in this case, wrongly) be assumed to include better
testing, less total code, larger user base, etc. Unfortunately, except for a bit of oversimplification, this is not a particularly rare
phenomenon.

What would help? Maybe a common interface to A and B could be provided:

These diagrams are intended to suggest inheritance and parameterization, respectively. In both cases, the interface provided
must be smaller than a simple union of A’s and B’s interfaces for the exercise to be worthwhile. In other words, A and B have
to have a fundamental commonality for users to benefit from. Note how we again came back to interfaces (§9.7, §25.4.2) and
by implication to invariants (§9.4.3).

22.1.2.6 Consistency and minimalism
Consistency and minimalism are primarily ideals for expressing ideas. So we might dismiss them as being about appearance.
However, it is really hard to present a messy design elegantly, so demands of consistency and minimalism can be used as
design criteria and affect even the most minute details of a program:



• Don’t add a feature if you are in doubt about its utility.
• Do give similar facilities similar interfaces (and names), but only if the similarity is fundamental.
• Do give different facilities different names (and possibly different interface styles), but only if the differences are
fundamental.

Consistent naming, interface style, and implementation style help maintenance. When code is consistent, a new programmer
doesn’t have to learn a new set of conventions for every part of a large system. The STL is an example (Chapters 20–21,
§B.4–6). When such consistency is impossible (for example, for ancient code or code in another language), it can be an idea to
supply an interface that matches the style of the rest of the program. The alternative is to let the foreign (“strange,” “poor”)
style infect every part of a program that needs to access the offending code.

One way of preserving minimalism and consistency is to carefully (and consistently) document every interface. That way,
inconsistencies and duplication are more likely to be noticed. Documenting pre-conditions, post-conditions, and invariants can
be especially useful as can careful attention to resource management and error reporting. A consistent error-handling and
resource management strategy is essential for simplicity (§19.5).

To some programmers, the key design principle is KISS (“Keep It Simple, Stupid”). We have even heard it claimed that
KISS is the only worthwhile design principle. However, we prefer less evocative formulations, such as “Keep simple things
simple” and “Keep it simple: as simple as possible, but no simpler.” The latter is a quote from Albert Einstein, which reflects
that there is a danger of simplifying beyond the point where it makes sense, thus damaging the design. The obvious question is,
“Simple for whom and compared to what?”

22.1.3 Styles/paradigms

When we design and implement a program, we aim for a consistent style. C++ supports four major styles that can be
considered fundamental:

• Procedural programming
• Data abstraction
• Object-oriented programming
• Generic programming

These are sometimes (somewhat pompously) called “programming paradigms.” There are many more “paradigms,” such as
functional programming, logic programming, rule-based programming, constraints-based programming, and aspect-oriented
programming. However, C++ doesn’t support those directly, and we just can’t cover everything in a single beginner’s book, so
we’ll leave those to “future work” together with the mass of details that we must leave out about the paradigms/styles we do
cover:

• Procedural programming: the idea of composing a program out of functions operating on arguments. Examples are
libraries of mathematical functions, such as sqrt() and cos(). C++ supports this style of programming through the notion
of functions (Chapter 8). The ability to choose to pass arguments by value, by reference, and by const reference can be
most valuable. Often, data is organized into data structures represented as structs. Explicit abstraction mechanisms
(such as private data members or member functions of a class) are not used. Note that this style of programming — and
functions — is an integral part of every other style.

• Data abstraction: the idea of first providing a set of types suitable for an application area and then writing the program
using those. Matrices provide a classic example (§24.3–6). Explicit data hiding (e.g., the use of private data members of
a class) is heavily used. The standard string and vector are popular examples, which show the strong relationship
between data abstraction and parameterization as used by generic programming. This is called “abstraction” because a
type is used through an interface, rather than by directly accessing its implementation.

• Object-oriented programming: the idea of organizing types into hierarchies to express their relationships directly in
code. The classic example is the Shape hierarchy from Chapter 14. This is obviously valuable when the types really
have fundamental hierarchical relationships. However, there has been a strong tendency to overuse; that is, people built
hierarchies of types that do not belong together for fundamental reasons. When people derive, ask why. What is being
expressed? How does the base/derived distinction help me in this particular case?

• Generic programming: the idea of taking concrete algorithms and “lifting” them to a higher level of abstraction by
adding parameters to express what can be varied without changing the essence of an algorithm. The high() example from



Chapter 20 is a simple example of lifting. The find() and sort() algorithms from the STL are classic algorithms
expressed in very general forms using generic programming. See Chapters 20–21 and the following example.

All together now! Often, people talk about programming styles (“paradigms”) as if they were simple disjointed alternatives:
either you use generic programming or you use object-oriented programming. If your aim is to express solutions to problems in
the best possible way, you will use a combination of styles. By “best,” we mean easy to read, easy to write, easy to maintain,
and sufficiently efficient. Consider an example: the classic “Shape example” originated with Simula (§22.2.4) and is usually
seen as an example of object-oriented programming. A first solution might look like this:
Click here to view code image

void draw_all(vector<Shape*>& v)

{

          for(int i = 0; i<v.size(); ++i) v[i]–>draw();

}

This does indeed look “rather object-oriented.” It critically relies on a class hierarchy and on the virtual function call finding
the right draw() function for every given Shape; that is, for a Circle, it calls Circle::draw() and for an Open_polyline, it
calls Open_polyline::draw(). But the vector<Shape*> is basically a generic programming construct: it relies on a
parameter (the element type) that is resolved at compile time. We could emphasize that by using a simple standard library
algorithm to express the iteration over all elements:
Click here to view code image

void draw_all(vector<Shape*>& v)

{

          for_each(v.begin(),v.end(),mem_fun(&Shape::draw));

}

The third argument of for_each() is a function to be called for each element of the sequence specified by the first two
arguments (§B.5.1). Now, that third function call is assumed to be an ordinary function (or a function object) called using the
f(x) syntax, rather than a member function called by the p–>f() syntax. So, we use the standard library function mem_fun()

(§B.6.2) to say that we really want to call a member function (the virtual function Shape::draw()). The point is that
for_each() and mem_fun(), being templates, really aren’t very “OO-like”; they clearly belong to what we usually consider
generic programming. More interesting still, mem_fun() is a freestanding (template) function returning a class object. In other
words, it can easily be classified as plain data abstraction (no inheritance) or even procedural programming (no data hiding).
So, we could claim that this one line of code uses key aspects of all of the four fundamental styles supported by C++.

But why would we write the second version of the “draw all Shapes” example? It fundamentally does the same thing as the
first version; it even takes a few more characters to write it in that way! We could argue that expressing the loop using
for_each() is “more obvious and less error-prone” than writing out the for-loop, but for many that’s not a terribly convincing
argument. A better one is that “for_each() says what is to be done (iterate over a sequence) rather than how it is to be done.”
However, for most people the convincing argument is simply that “it’s useful”: it points the way to a generalization (in the best
generic programming tradition) that allows us to solve more problems. Why are the shapes in a vector? Why not a list? Why
not a general sequence? So we can write a third (and more general) version:
Click here to view code image

template<class Iter> void draw_all(Iter b, Iter e)

{

          for_each(b,e,mem_fun(&Shape::draw));

}

This will now work for all kinds of sequences of shapes. In particular, we can even call it for the elements of an array of
Shapes:
Click here to view code image

Point p {0,100};

Point p2 {50,50};

Shape* a[] = { new Circle(p,50), new Triangle(p,p2,Point(25,25)) };

draw_all(a,a+2);



We could also provide a version that is simpler to use by restricting it to work on containers:
Click here to view code image

template<class Cont> void draw_all(Cont& c)

{

          for (auto& p : c) p->draw();

}

Or even, using C++14 concepts (§19.3.3):
Click here to view code image

void draw_all(Container& c)

{

          for (auto& p : c) p->draw();

}

The point is still that this code is clearly object-oriented, generic, and very like ordinary procedural code. It relies on data
abstraction in its class hierarchy and the implementation of the individual containers. For lack of a better term, programming
using the most appropriate mix of styles has been called multi-paradigm programming. However, I have come to think of this
as simply programming: the “paradigms” primarily reflect a restricted view of how problems can be solved and weaknesses
in the programming languages we use to express our solutions. I predict a bright future for programming with significant
improvements in technique, programming languages, and support tools.

22.2 Programming language history overview
In the very beginning, programmers chiseled the zeros and ones into stones by hand! Well, almost. Here, we’ll start (almost)
from the beginning and quickly introduce some of the major developments in the history of programming languages as they
relate to programming using C++.

There are a lot of programming languages. The rate of language invention is at least 2000 a decade, and the rate of “language
death” is about the same. Here, we cover almost 60 years by briefly mentioning ten languages. For more information, see
http://research.ihost.com/hopl/HOPL.html. There, you can find links to all the articles of the three ACM SIGPLAN HOPL
(History of Programming Languages) conferences. These are extensively peer-reviewed papers — and therefore far more
trustworthy and complete than the average web source of information. The languages we discuss here were all represented at
HOPL. Note that if you type the full title of a famous paper into a web search engine, there is a good chance that you’ll find the
paper. Also, most computer scientists mentioned here have home pages where you can find much information about their work.

Our presentation of a language in this chapter is necessarily very brief: each language mentioned — and hundreds not
mentioned — deserves a whole book. We are also very selective in what we mention about a language. We hope you take this
as a challenge to learn more rather than thinking, “So that’s all there is to language X!” Remember, every language mentioned
here was a major accomplishment and made an important contribution to our world. There is just no way we could do justice
to these languages in this short space — but not mentioning any would be worse. We would have liked to supply a bit of code
for each language, but sorry, this is not the place for such a project (see exercises 5 and 6).

Far too often, an artifact (e.g., a programming language) is presented as simply what it is or as the product of some
anonymous “development process.” This misrepresents history: typically — especially in the early and formative years — a
language is the result of the ideals, work, personal tastes, and external constraints on one or (typically) more individuals. Thus,
we emphasize key people associated with the languages. IBM, Bell Labs, Cambridge University, etc. do not design languages;
individuals from such organizations do — typically in collaboration with friends and colleagues.

Please note a curious phenomenon that often skews our view of history. Photographs of famous scientists and engineers are
most often taken when they are famous and distinguished, members of national academies, Fellows of the Royal Society,
Knights of St. John, recipients of the Turing Award, etc. — in other words, when they are decades older than when they did
their most spectacular work. Almost all were/are among the most productive members of their profession until late in life.
However, when you look back to the birth of your favorite language features and programming techniques, try to imagine a
young man (there are still far too few women in science and engineering) trying to figure out if he has sufficient cash to invite a
girlfriend out to a decent restaurant or a parent trying to decide if a crucial paper can be submitted to a conference at a time and
place that can be combined with a vacation for a young family. The gray beards, balding heads, and dowdy clothes come much
later.

http://research.ihost.com/hopl/HOPL.html


22.2.1 The earliest languages

When — starting in 1949 — the first “modern” stored-program electronic computers appeared, each had its own language.
There was a one-to-one correspondence between the expression of an algorithm (say, a calculation of a planetary orbit) and
instructions for a specific machine. Obviously, the scientist (the users were most often scientists) had notes with mathematical
formulas, but the program was a list of machine instructions. The first primitive lists were decimal or octal numbers — exactly
matching their representation in the computer’s memory. Later, assemblers and “auto codes” appeared; that is, people
developed languages where machine instructions and machine facilities (such as registers) had symbolic names. So, a
programmer might write “LD R0 123” to load the contents of the memory with the address 123 into register 0. However, each
machine had its own set of instructions and its own language.

David Wheeler from the University of Cambridge Computer Laboratory is the obvious candidate for representing
programming language designers of that time. In 1949, he wrote the first real program ever to run on a stored-program
computer (the “table of squares” program we saw in §4.4.2.1). He is one of about ten people who have a claim on having
written the first compiler (for a machine-specific “auto code”). He invented the function call (yes, even something so
apparently simple needs to have been invented at some point). He wrote a brilliant paper on how to design libraries in 1951;
that paper was at least 20 years ahead of its time! He was co-author with Maurice Wilkes (look him up) and D.J. Gill of the
first book about programming. He received the first Ph.D. in computer science (from Cambridge in 1951) and later made major
contributions to hardware (cache architectures and early local-area networks) and algorithms (e.g., the TEA encryption
algorithm [§25.5.6] and the “Burrows-Wheeler transform” [the compression algorithm used in bzip2]). David Wheeler
happens to have been Bjarne Stroustrup’s Ph.D. thesis adviser — computer science is a young discipline. David Wheeler did
some of his most important work as a grad student. He worked on to become a professor at Cambridge and a Fellow of the
Royal Society.
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22.2.2 The roots of modern languages
Here is a chart of important early languages:

These languages are important partly because they were (and in some cases still are) widely used or because they became the
ancestors to important modern languages — often direct descendants with the same name. In this section, we address the three
early languages — Fortran, COBOL, and Lisp — to which most modern languages trace their ancestry.

22.2.2.1 Fortran

The introduction of Fortran in 1956 was arguably the most significant step in the development of programming languages.
“Fortran” stands for “Formula Translation,” and the fundamental idea was to generate efficient machine code from a notation
designed for people rather than machines. The model for the Fortran notation was what scientists and engineers wrote when
solving problems using mathematics, rather than the machine instructions provided by the (then very new) electronic
computers.

From a modern perspective, Fortran can be seen as the first attempt to directly represent an application domain in code. It
allowed programmers to write linear algebra much as they found it in textbooks. Fortran provided arrays, loops, and standard
mathematical functions (using the standard mathematical notation, such as x+y and sin(x)). There was a standard library of
mathematical functions, mechanisms for I/O, and a user could define additional functions and libraries.

The notation was largely machine independent so that Fortran code could often be moved from computer to computer with
only minor modification. This was a huge improvement over the state of the art. Therefore, Fortran is considered the first high-
level programming language.

It was considered essential that the machine code generated from the Fortran source code was close to optimally efficient:
machines were room size and enormously expensive (many times the yearly salary of a team of good programmers), they were
(by modern standards) ridiculously slow (such as 100,000 instructions/second), and they had absurdly small memories (such
as 8K bytes). However, people were fitting useful programs into those machines, and an improvement in notation (leading to
better programmer productivity and portability) could not be allowed to get in the way of that.

Fortran was hugely successful in its target domain of scientific and engineering calculations and has been under continuous
evolution ever since. The main versions of the Fortran language are II, IV, 77, 90, 95, 03. It is still debated whether Fortran77
or Fortran90 is more widely used today.



The first definition of and implementation of Fortran were done by a team at IBM led by John Backus: “We did not know
what we wanted and how to do it. It just sort of grew.” How could he have known? Nothing like that had been done before, but
along the way they developed or discovered the basic structure of compilers: lexical analysis, syntax analysis, semantic
analysis, and optimization. To this day, Fortran leads in the optimization of numerical computations. One thing that emerged
(after the initial Fortran) was a notation for specifying grammars: the Backus-Naur Form (BNF). It was first used for Algol60
(§22.2.3.1) and is now used for most modern languages. We use a version of BNF for our grammars in Chapters 6 and 7.

Much later, John Backus pioneered a whole new branch of programming languages (“functional programming”), advocating
a mathematical approach to programming as opposed to the machine view based on reading and writing memory locations.
Note that pure math does not have the notion of assignment, or even actions. Instead you “simply” state what must be true given
a set of conditions. Some of the roots of functional programming are in Lisp (§22.2.2.3), and some of the ideas from functional
programming are reflected in the STL (Chapter 21).
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22.2.2.2 COBOL
COBOL (“The Common Business-Oriented Language”) was (and sometimes still is) for business programmers what Fortran
was (and sometimes still is) for scientific programmers. The emphasis was on data manipulation:

• Copying
• Storing and retrieving (record keeping)
• Printing (reports)

Calculation/computation was (often correctly in COBOL’s core application domains) seen as a minor matter. It was
hoped/claimed that COBOL was so close to “business English” that managers could program and programmers would soon
become redundant. That is a hope we have heard frequently repeated over the years by managers keen on cutting the cost of
programming. It has never been even remotely true.

COBOL was initially designed by a committee (CODASYL) in 1959–60 at the initiative of the U.S. Department of Defense



and a group of major computer manufacturers to address the needs of business-related computing. The design built directly on
the FLOW-MATIC language invented by Grace Hopper. One of her contributions was the use of a close-to-English syntax (as
opposed to the mathematical notation pioneered by Fortran and still dominant today). Like Fortran — and like all successful
languages — COBOL underwent continuous evolution. The major revisions were 60, 61, 65, 68, 70, 80, 90, and 04.

Grace Murray Hopper had a Ph.D. in mathematics from Yale University. She worked for the U.S. Navy on the very first
computers during World War II. She returned to the navy after a few years in the early computer industry:

“Rear Admiral Dr. Grace Murray Hopper (U.S. Navy) was a remarkable woman who grandly rose to the challenges of
programming the first computers. During her lifetime as a leader in the field of software development concepts, she
contributed to the transition from primitive programming techniques to the use of sophisticated compilers. She
believed that ‘we’ve always done it that way’ was not necessarily a good reason to continue to do so.”

—Anita Borg, at the “Grace Hopper Celebration of
Women in Computing” conference, 1994

Grace Murray Hopper is often credited with being the first person to call an error in a computer a “bug.” She certainly was
among the early users of the term and documented a use:

As can be seen, that bug was real (a moth), and it affected the hardware directly. Most modern bugs appear to be in the
software and have less graphical appeal.
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Programming Languages Conference.

22.2.2.3 Lisp
Lisp was originally designed in 1958 by John McCarthy at MIT for linked-list and symbolic processing (hence its name: “LISt
Processing”). Initially Lisp was (and is often still) interpreted, as opposed to compiled. There are dozens (most likely
hundreds) of Lisp dialects. In fact, it is often claimed that “Lisp has an implied plural.” The current most popular dialects are
Common Lisp and Scheme. This family of languages has been (and is) the mainstay of artificial intelligence (AI) research
(though delivered products have often been in C or C++). One of the main sources of inspiration for Lisp was the
(mathematical notion of) lambda calculus.

Fortran and COBOL were specifically designed to help deliver solutions to real-world problems in their respective
application areas. The Lisp community was much more concerned with programming itself and the elegance of programs. Often
these efforts were successful. Lisp was the first language to separate its definition from the hardware and base its semantics on
a form of math. If Lisp had a specific application domain, it is far harder to define precisely: “AI” and “symbolic computation”
don’t map as clearly into common everyday tasks as “business processing” and “scientific programming.” Ideas from Lisp (and
from the Lisp community) can be found in many more modern languages, notably the functional languages.

John McCarthy’s B.S. was in mathematics from the California Institute of Technology and his Ph.D. was in mathematics
from Princeton University. You may notice that there are a lot of math majors among the programming language designers.
After his memorable work at MIT, McCarthy moved to Stanford in 1962 to help found the Stanford AI lab. He is widely
credited for inventing the term artificial intelligence and made many contributions to that field.
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22.2.3 The Algol family
In the late 1950s, many felt that programming was getting too complicated, too ad hoc, and too unscientific. They felt that the
variety of programming languages was unnecessarily great and that those languages were put together with insufficient concern
for generality and sound fundamental principles. This is a sentiment that has surfaced many times since then, but a group of
people came together under the auspices of IFIP (the International Federation of Information Processing), and in just a couple
of years they created a new language that revolutionized the way we think about languages and their definition. Most modern



languages — including C++ — owe much to this effort.

22.2.3.1 Algol60

The “ALGOrithmic Language,” Algol, which resulted from the efforts of the IFIP 2.1 group, was a breakthrough of modern
programming language concepts:

• Lexical scope
• Use of grammar to define the language
• Clear separation of syntactic and semantic rules
• Clear separation of language definition and implementation
• Systematic use of (static, i.e., compile-time) types
• Direct support for structured programming

The very notion of a “general-purpose programming language” came with Algol. Before that, languages were scientific (e.g.,
Fortran), business (e.g., COBOL), list manipulation (e.g., Lisp), simulation, etc. Of these languages, Algol60 is most closely
related to Fortran.

Unfortunately, Algol60 never reached major nonacademic use. It was seen as “too weird” by many in the industry, “too
slow” by Fortran programmers, “not supportive of business processing” by COBOL programmers, “not flexible enough” by
Lisp programmers, “too academic” by most people in the industry (including the managers who controlled investment in tools),
and “too European” by many Americans. Most of the criticisms were correct. For example, the Algol60 report didn’t define
any I/O mechanism! However, similar criticisms could have been leveled at just about any contemporary language — and
Algol set the new standard for many areas.

One problem with Algol60 was that no one knew how to implement it. That problem was solved by a team of programmers
led by Peter Naur (the editor of the Algol60 report) and Edsger Dijkstra:

Peter Naur was educated (as an astronomer) at the University of Copenhagen and worked at the Technical University of
Copenhagen (DTH) and for the Danish computer manufacturer Regnecentralen. He learned programming early (1950–51) in the
Computer Laboratory in Cambridge, England (Denmark didn’t have computers that early), and later had a distinguished career
spanning the academia/industry gulf. He was co-inventor of BNF (the Backus-Naur Form) used to describe grammars and a
very early proponent of formal reasoning about programs (Bjarne Stroustrup first — in 1971 or so — learned the use of
invariants from Peter Naur’s technical articles). Naur consistently maintained a thoughtful perspective on computing, always
considering the human aspects of programming. In fact, his later work could reasonably be considered part of philosophy



(except that he considers conventional academic philosophy utter nonsense). He was the first professor of Datalogi at the
University of Copenhagen (the Danish term datalogi is best translated as “informatics”; Peter Naur hates the term computer
science as a misnomer — computing is not primarily about computers).

Edsger Dijkstra was another of computer science’s all-time greats. He studied physics in Leyden but did his early work in
computing in Mathematisch Centrum in Amsterdam. He later worked in quite a few places, including Eindhoven University of
Technology, Burroughs Corporation, and the University of Texas (Austin). In addition to his seminal work on Algol, he was a
pioneer and strong proponent of the use of mathematical logic in programming, algorithms, and one of the designers and
implementers of THE operating system — one of the first operating systems to systematically deal with concurrency. THE
stands for “Technische Hogeschool Eindhoven” — the university where Edsger Dijkstra worked at the time. Arguably, his
most famous paper was “Go-To Statement Considered Harmful,” which convincingly demonstrated the problems with
unstructured control flows.

The Algol family tree is impressive:

Note Simula67 and Pascal. These languages are the ancestors to many (probably most) modern languages.
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22.2.3.2 Pascal
The Algol68 language mentioned in the Algol family tree was a large and ambitious project. Like Algol60, it was the work of
“the Algol committee” (IFIP working group 2.1), but it took “forever” to complete and many were impatient and doubtful that
something useful would ever come from that project. One member of the Algol committee, Niklaus Wirth, decided simply to
design and implement his own successor to Algol. In contrast to Algol68, that language, called Pascal, was a simplification of
Algol60.

Pascal was completed in 1970 and was indeed simple and somewhat inflexible as a result. It was often claimed to be
intended just for teaching, but early papers describe it as an alternative to Fortran on the supercomputers of the day. Pascal was
indeed easy to learn, and after a very portable implementation became available it became very popular as a teaching
language, but it proved to be no threat to Fortran.

Pascal was the work of Professor Niklaus Wirth (photos from 1969 and 2004) of the Technical University of Switzerland in
Zurich (ETH). His Ph.D. (in electrical engineering and computer science) is from the University of California at Berkeley, and
he maintains a lifelong connection with California. Professor Wirth is the closest thing the world has had to a professional
language designer. Over a period of 25 years, he designed and implemented

• Algol W
• PL/360
• Euler
• Pascal
• Modula
• Modula-2
• Oberon
• Oberon-2
• Lola (a hardware description language)

Niklaus Wirth describes this as his unending quest for simplicity. His work has been most influential. Studying that series of
languages is a most interesting exercise. Professor Wirth is the only person ever to present two languages at HOPL.

In the end, pure Pascal proved to be too simple and rigid for industrial success. In the 1980s, it was saved from extinction
primarily through the work of Anders Hejlsberg. Anders Hejlsberg was one of the three founders of Borland. He first designed
and implemented Turbo Pascal (providing, among other things, more flexible argument-passing facilities) and later added a
C++-like object model (but with just single inheritance and a nice module mechanism). He was educated at the Technical
University in Copenhagen, where Peter Naur occasionally lectured — it’s sometimes a very small world. Anders Hejlsberg
later designed Delphi for Borland and C# for Microsoft.



The (necessarily simplified) Pascal family tree looks like this:
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22.2.3.3 Ada
The Ada programming language was designed to be a language for all the programming needs of the U.S. Department of
Defense. In particular, it was to be a language in which to deliver reliable and maintainable code for embedded systems
programming. Its most obvious ancestors are Pascal and Simula (see §22.2.3.2 and §22.2.4). The leader of the group that
designed Ada was Jean Ichbiah — a past chairman of the Simula Users’ Group. The Ada design emphasized

• Data abstraction (but no inheritance until 1995)
• Strong static type checking
• Direct language support concurrency

The design of Ada aimed to be the embodiment of software engineering in programming languages. Consequently, the U.S.
DoD did not design the language; it designed an elaborate process for designing the language. A huge number of people and
organizations contributed to the design process, which progressed through a series of competitions, to produce the best
specification and next to produce the best language embodying the ideas of the winning specification. This immense 20-year
project (1975–98) was from 1980 managed by a department called AJPO (Ada Joint Program Office).

In 1979, the resulting language was named after Lady Augusta Ada Lovelace (a daughter of Lord Byron, the poet). Lady
Lovelace could be claimed to have been the first programmer of modern times (for some definition of “modern”) because she
had worked with Charles Babbage (the Lucasian Professor of Mathematics in Cambridge — that’s Newton’s chair!) on a
revolutionary mechanical computer in the 1840s. Unfortunately, Babbage’s machine was unsuccessful as a practical tool.
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Thanks to the elaborate process, Ada has been considered the ultimate design-by-committee language. The lead designer of
the winning design team, Jean Ichbiah from the French company Honeywell Bull, emphatically denied that. However, I suspect
(based on discussion with him) that he could have designed a better language, had he not been so constrained by the process.

Ada’s use was mandated for military applications by the DoD for many years, leading to the saying “Ada, it’s not just a good
idea, it’s the law!” Initially, the use of Ada was just “mandated,” but when many projects received “waivers” to use other
languages (typically C++), the U.S. Congress passed a law requiring the use of Ada in most military applications. That law
was later rescinded in the face of commercial and technical realities. Bjarne Stroustrup is one of the very few people to have
had his work banned by the U.S. Congress.

That said, we insist that Ada is a much better language than its reputation would indicate. We suspect that if the U.S. DoD
had been less heavy-handed about its use and the exact way in which it was to be used (standards for application development
processes, software development tools, documentation, etc.), it could have become noticeably more successful. To this day,
Ada is important in aerospace applications and similar advanced embedded systems application areas.

Ada became a military standard in 1980, an ANSI standard in 1983 (the first implementation was done in 1983 — three
years after the first standard!), and an ISO standard in 1987. The ISO standard was extensively (but of course compatibly)
revised for a 1995 ISO standard. Notable improvements included more flexibility in the concurrency mechanisms and support
for inheritance.
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22.2.4 Simula
Simula was developed in the early to mid-1960s by Kristen Nygaard and Ole-Johan Dahl at the Norwegian Computing Center
and Oslo University. Simula is indisputably a member of the Algol family of languages. In fact, Simula is almost completely a
superset of Algol60. However, we choose to single out Simula for special attention because it is the source of most of the
fundamental ideas that today are referred to as “object-oriented programming.” It was the first language to provide inheritance
and virtual functions. The words class for “user-defined type” and virtual for a function that can be overridden and called
through the interface provided by a base class come from Simula.

Simula’s contribution is not limited to language features. It came with an articulated notion of object-oriented design based
on the idea of modeling real-world phenomena in code:

• Represent ideas as classes and class objects.

http://www.adaic.org/


• Represent hierarchical relations as class hierarchies (inheritance).
Thus, a program becomes a set of interacting objects rather than a monolith.

Kristen Nygaard — the co-inventor (with Ole-Johan Dahl, to the left, wearing glasses) of Simula67 — was a giant by most
measures (including height), with an intensity and generosity to match. He conceived of the fundamental ideas of object-
oriented programming and design, notably inheritance, and pursued their implications over decades. He was never satisfied
with simple, short-term, and shortsighted answers. He had a constant social involvement that lasted over decades. He can be
given a fair bit of credit for Norway staying out of the European Union, which he saw as a potential centralized and
bureaucratic nightmare that would be insensitive to the needs of a small country at the far edge of the Union — Norway. In the
mid-1970s Kristen Nygaard spent significant time in the computer science department of the University of Aarhus, Denmark
(where, at the time, Bjarne Stroustrup was studying for his master’s degree).

Kristen Nygaard’s master’s degree is in mathematics from the University of Oslo. He died in 2002, just a month before he
was (together with his lifelong friend Ole-Johan Dahl) to receive the ACM’s Turing Award, arguably the highest professional
honor for a computer scientist.

Ole-Johan Dahl was a more conventional academic. He was very interested in specification languages and formal methods.
In 1968, he became the first full professor of informatics (computer science) at Oslo University.

In August 2000 Dahl and Nygaard were made Commanders of the Order of Saint Olav by the King of Norway. Even true
geeks can gain recognition in their hometown!
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22.2.5 C

In 1970, it was “well known” that serious systems programming — in particular the implementation of an operating system —
had to be done in assembly code and could not be done portably. That was much as the situation had been for scientific
programming before Fortran. Several individuals and groups set out to challenge that orthodoxy. In the long run, the C
programming language (Chapter 27) was by far the most successful of those efforts.

Dennis Ritchie designed and implemented the C programming language in Bell Telephone Laboratories’ Computer Science
Research Center in Murray Hill, New Jersey. The beauty of C is that it is a deliberately simple programming language sticking
very close to the fundamental aspects of hardware. Most of the current complexities (most of which reappear in C++ for
compatibility reasons) were added after his original design and in several cases over Dennis Ritchie’s objections. Part of C’s
success was its early wide availability, but its real strength was its direct mapping of language features to hardware facilities
(see §25.4–5). Dennis Ritchie succinctly described C as “a strongly typed, but weakly checked language”; that is, C has a static
(compile-time) type system, and a program that uses an object in a way that differs from its definition is not legal. However, a
C compiler can’t check that. That made sense when the C compiler had to run in 48K bytes of memory. Soon after C came into
use, people devised a program, called lint, that separately from the compiler verified conformance to the type system.

Together with Ken Thompson, Dennis Ritchie is the co-inventor of Unix, easily the most influential operating system of all
times. C was — and is — associated with the Unix operating system and through that with Linux and the open-source
movement.

For 40 years, Dennis Ritchie worked in Bell Laboratories’ Computer Science Research Center. He was a graduate of
Harvard University (physics); his Ph.D. in applied mathematics from Harvard University was never granted because he either
forgot to or refused to pay a small ($60) registration fee.



In the early years, 1974–79, many people in Bell Labs influenced the design of C and its adoption. Doug McIlroy was
everybody’s favorite critic, discussion partner, and ideas man. He influenced C, C++, Unix, and much more.

Brian Kernighan is a programmer and writer extraordinaire. Both his code and his prose are models of clarity. The style of
this book is in part derived from the tutorial sections of his masterpiece, The C Programming Language (known as “K&R”
after its co-authors, Brian Kernighan and Dennis Ritchie).

It is not enough to have good ideas; to be useful on a large scale, those ideas have to be reduced to their simplest form and
articulated clearly in a way that is accessible to large numbers of people in their target audience. Verbosity is among the worst
enemies of such presentation of ideas; so is obfuscation and over-abstraction. Purists often scoff at the results of such
popularization and prefer “original results” presented in a way accessible only to experts. We don’t: getting a nontrivial, but
valuable, idea into the head of a novice is difficult, essential to the growth of professionalism, and valuable to society at large.

Over the years, Brian Kernighan has been involved with many influential programming and publishing projects. Two
examples are AWK — an early scripting language named by the initials of its authors (Aho, Weinberger, and Kernighan) —
and AMPL, “A Mathematical Programming Language.”

Brian Kernighan is currently a professor at Princeton University; he is of course an excellent teacher, specializing in making
otherwise complex topics clear. For more than 30 years he worked in Bell Laboratories’ Computer Science Research Center.
Bell Labs later became AT&T Bell Labs and later still split into AT&T Labs and Lucent Bell Labs. He is a graduate of the
University of Toronto (physics); his Ph.D. is in electrical engineering from Princeton University.

The C language family tree looks like this:



The origins of C lay in the never-completed CPL project in England, the BCPL (Basic CPL) language that Martin Richards
did while visiting MIT on leave from Cambridge University, and an interpreted language, called B, done by Ken Thompson.
Later, C was standardized by ANSI and the ISO, and there were a lot of influences from C++ (e.g., function argument checking
and consts).

CPL was a joint project between Cambridge University and Imperial College in London. Initially, the project had been done
in Cambridge, so “C” officially stood for “Cambridge.” When Imperial College became a partner, the official explanation of
the “C” became “Combined.” In reality (or so we are told), it always stood for “Christopher” after Christopher Strachey,
CPL’s main designer.
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22.2.6 C++

C++ is a general-purpose programming language with a bias toward systems programming that
• Is a better C
• Supports data abstraction
• Supports object-oriented programming
• Supports generic programming

It was originally designed and implemented by Bjarne Stroustrup in Bell Telephone Laboratories’ Computer Science Research
Center in Murray Hill, New Jersey, that is, down the corridor from Dennis Ritchie, Brian Kernighan, Ken Thompson, Doug
McIlroy, and other Unix greats.
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Bjarne Stroustrup received a master’s degree (in mathematics with computer science) from the university in his hometown,
Aarhus in Denmark. Then he went to Cambridge, where he got his Ph.D. (in computer science) working for David Wheeler.
The main contributions of C++ were to

• Make abstraction techniques affordable and manageable for mainstream projects
• Pioneer the use of object-oriented and generic programming techniques in application areas where efficiency is a
premium

Before C++, these techniques (often sloppily lumped together under the label of “object-oriented programming”) were mostly
unknown in the industry. As with scientific programming before Fortran and systems programming before C, it was “well
known” that these techniques were too expensive for real-world use and also too complicated for “ordinary programmers” to
master.

The work on C++ started in 1979 and led to a commercial release in 1985. After its initial design and implementation,
Bjarne Stroustrup developed it further together with friends at Bell Labs and elsewhere until its standardization officially
started in 1990. Since then, the definition of C++ has been developed by first ANSI (the national standards body for the United
States) and since 1991 by ISO (the international standards organization). Bjarne Stroustrup has taken a major part in that effort
as the chairman of the key subgroup in charge of new language features. The first international standard (C++98) was ratified
in 1998 and the second in 2011 (C++11). The next ISO standard will be C++14, and the one after that, sometimes referred to
as C++1y, may become C++17.

The most significant development in C++ after its initial decade of growth was the STL — the standard library’s facilities
for containers and algorithms. It was the outcome of work — primarily by Alexander Stepanov — over decades aiming at
producing the most general and efficient software, inspired by the beauty and utility of mathematics.



Alex Stepanov is the inventor of the STL and a pioneer of generic programming. He is a graduate of the University of
Moscow and has worked on robotics, algorithms, and more, using a variety of languages (including Ada, Scheme, and C++).
Since 1979, he has worked in U.S. academia and industry, notably at GE Labs, AT&T Bell Labs, Hewlett-Packard, Silicon
Graphics, and Adobe.

The C++ family tree looks like this:

“C with Classes” was Bjarne Stroustrup’s initial synthesis of C and Simula ideas. It died immediately following the
implementation of its successor, C++.

Language discussions often focus on elegance and advanced features. However, C and C++ didn’t become two of the most
successful languages in the history of computing that way. Their strengths were flexibility, performance, and stability. Major
software systems live over decades, often exhaust their hardware resources, and often suffer completely unexpected changes of
requirements. C and C++ have been able to thrive in that environment. Our favorite Dennis Ritchie quote is, “Some languages
are designed to prove a point; others are designed to solve a problem.” By “others,” he primarily meant C. Bjarne Stroustrup is
fond of saying, “Even I knew how to design a prettier language than C++.” The aim for C++ — as for C — was not abstract
beauty (though we strongly appreciate that when we can get it), but utility.
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22.2.7 Today
What programming languages are currently used and for what? That’s a really hard question to answer. The family tree of
current languages is — even in a most abbreviated form — somewhat crowded and messy:

In fact, most of the statistics we find on the web (and elsewhere) are hardly better than rumors because they measure things that
are only weakly correlated with use, such as number of web postings containing the name of a programming language, compiler
shipments, academic papers, book sales, etc. All such measures favor the new over the established. Anyway, what is a
programmer? Someone who uses a programming language every day? How about a student who writes small programs just to
learn? A professor who just talks about programming? A physicist who writes a program almost every year? Is a professional
programmer who — almost by definition — uses several programming languages every week counted many times or just once?
We have seen each of these questions answered each way for different statistics.

However, we feel obliged to give you an opinion, so in 2014 there are about 10 million professional programmers in the
world. For that opinion we rely on IDC (a data-gathering firm), discussions with publishers and compiler suppliers, and
various web sources. Feel free to quibble, but we know the number is larger than 1 million and less than 100 million for any
halfway reasonable definition of programmer. Which language do they use? Ada, C, C++, C#, COBOL, Fortran, Java, PERL,
PHP, Python, and Visual Basic probably (just probably) account for significantly more than 90% of all programs.

In addition to the languages mentioned here, we could list dozens or even hundreds more. Apart from trying to be fair to
interesting or important languages, we see no point. Please seek out information yourself as needed. A professional knows
several languages and learns new ones as needed. There is no “one true language” for all people and all applications. In fact,
all major systems we can think of use more than one language.

22.2.8 Information sources
Each individual language description above has a reference list. These are references covering several languages:

More language designer links/photos
www.angelfire.com/tx4/cus/people/.

A few examples of languages
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Textbooks
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History books
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Iconoclasts—The Programmers Who Created the Software Revolution. Basic Books, 2002. ISBN 978-0465042265.
Sammet, Jean. Programming Languages: History and Fundamentals. Prentice Hall, 1969. ISBN 0137299885.
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Review
1. What are some uses of history?
2. What are some uses of a programming language? List examples.
3. List some fundamental properties of programming languages that are objectively good.
4. What do we mean by abstraction? By higher level of abstraction?
5. What are our four high-level ideals for code?
6. List some potential advantages of high-level programming.
7. What is reuse and what good might it do?
8. What is procedural programming? Give a concrete example.
9. What is data abstraction? Give a concrete example.

10. What is object-oriented programming? Give a concrete example.
11. What is generic programming? Give a concrete example.
12. What is multi-paradigm programming? Give a concrete example.
13. When was the first program run on a stored-program computer?
14. What work made David Wheeler noteworthy?
15. What was the primary contribution of John Backus’s first language?
16. What was the first language designed by Grace Murray Hopper?
17. In which field of computer science did John McCarthy primarily work?
18. What were Peter Naur’s contributions to Algol60?
19. What work made Edsger Dijkstra noteworthy?
20. What languages did Niklaus Wirth design and implement?
21. What languages did Anders Hejlsberg design?
22. What was Jean Ichbiah’s role in the Ada project?
23. What style of programming did Simula pioneer?
24. Where (outside Oslo) did Kristen Nygaard teach?
25. What work made Ole-Johan Dahl noteworthy?
26. Ken Thompson was the main designer of which operating system?
27. What work made Doug McIlroy noteworthy?
28. What is Brian Kernighan’s most famous book?
29. Where did Dennis Ritchie work?
30. What work made Bjarne Stroustrup noteworthy?
31. What languages did Alex Stepanov use trying to design the STL?
32. List ten languages not described in §22.2.
33. Scheme is a dialect of which language?
34. What are C++’s two most prominent ancestors?
35. What does the “C” in C++ stand for?
36. Is Fortran an acronym? If so, what for?
37. Is COBOL an acronym? If so, what for?
38. Is Lisp an acronym? If so, what for?
39. Is Pascal an acronym? If so, what for?
40. Is Ada an acronym? If so, what for?



41. Which is the best programming language?

Terms
In this chapter “Terms” are really languages, people, and organizations.

• Languages:
• Ada
• Algol
• BCPL
• C
• C++
• COBOL
• Fortran
• Lisp
• Pascal
• Scheme
• Simula

• People:
• Charles Babbage
• John Backus
• Ole-Johan Dahl
• Edsger Dijkstra
• Anders Hejlsberg
• Grace Murray Hopper
• Jean Ichbiah
• Brian Kernighan
• John McCarthy
• Doug McIlroy
• Peter Naur
• Kristen Nygaard
• Dennis Ritchie
• Alex Stepanov
• Bjarne Stroustrup
• Ken Thompson
• David Wheeler
• Niklaus Wirth

• Organizations:
• Bell Laboratories
• Borland
• Cambridge University (England)
• ETH (Swiss Federal Technical University)
• IBM
• MIT
• Norwegian Computer Center
• Princeton University
• Stanford University
• Technical University of Copenhagen
• U.S. Department of Defense



• U.S. Navy

Exercises
1. Define programming.
2. Define programming language.
3. Go through the book and look at the chapter vignettes. Which ones were from computer scientists? Write one paragraph

summarizing what each of those scientists contributed.
4. Go through the book and look at the chapter vignettes. Which ones were not from computer scientists? Identify the

country of origin and field of work of each.
5. Write a “Hello, World!” program in each of the languages mentioned in this chapter.
6. For each language mentioned in this chapter, look at a popular textbook and see what is used as the first complete

program. Write that program in all of the other languages. Warning: This could easily be a 100-program project.
7. We have obviously “missed” many important languages. In particular, we essentially had to cut all developments after

C++. Make a list of five modern languages that you think ought to be covered and write a page and a half — along the
lines of the language sections in this chapter — on three of those.

8. What is C++ used for and why? Write a 10- to 20-page report.
9. What is C used for and why? Write a 10- to 20-page report.

10. Pick one language (not C or C++) and write a 10- to 20-page description of its origins, aims, and facilities. Give plenty
of concrete examples. Who uses it and for what?

11. Who currently holds the Lucasian Chair in Cambridge?
12. Of the language designers mentioned in this chapter, who has a degree in mathematics? Who does not?
13. Of the language designers mentioned in this chapter, who has a Ph.D.? In which field? Who does not have a Ph.D.?
14. Of the language designers mentioned in this chapter, who has received the Turing Award? What is that? Find the actual

Turing Award citations for the winners mentioned here.
15. Write a program that, given a file of (name,year) pairs, such as (Algol,1960) and (C,1974), graphs the names on a

timeline.
16. Modify the program from the previous exercise so that it reads a file of (name,year,(ancestors)) tuples, such as

(Fortran,1956,()), (Algol,1960,(Fortran)), and (C++,1985,(C,Simula)), and graphs them on a timeline with arrows from
ancestors to descendants. Use this program to draw improved versions of the diagrams in §22.2.2 and §22.2.7.

Postscript
Obviously, we have only scratched the surface of both the history of programming languages and of the ideals that fuel the quest
for better software. We consider history and ideals sufficiently important to feel really bad about that. We hope to have
conveyed some of our excitement and some idea of the immensity of the quest for better software and better programming as it
manifests itself through the design and implementation of programming languages. That said, please remember that
programming — the development of quality software — is the fundamental and important topic; a programming language is just
a tool for that.



23. Text Manipulation

“Nothing is so obvious that it’s obvious . . . The use of the word ‘obvious’ indicates
the absence of a logical argument.”

—Errol Morris

This chapter is mostly about extracting information from text. We store lots of our knowledge as words in documents, such as
books, email messages, or “printed” tables, just to later have to extract it into some form that is more useful for computation.
Here, we review the standard library facilities most used in text processing: strings, iostreams, and maps. Then, we
introduce regular expressions (regexs) as a way of expressing patterns in text. Finally, we show how to use regular
expressions to find and extract specific data elements, such as ZIP codes (postal codes), from text and to verify the format of
text files.

23.1 Text
23.2 Strings
23.3 I/O streams
23.4 Maps

23.4.1 Implementation details
23.5 A problem
23.6 The idea of regular expressions

23.6.1 Raw string literals
23.7 Searching with regular expressions
23.8 Regular expression syntax

23.8.1 Characters and special characters
23.8.2 Character classes
23.8.3 Repeats
23.8.4 Grouping
23.8.5 Alternation
23.8.6 Character sets and ranges
23.8.7 Regular expression errors

23.9 Matching with regular expressions
23.10 References

23.1 Text
We manipulate text essentially all the time. Our books are full of text, much of what we see on our computer screens is text, and
our source code is text. Our communication channels (of all sorts) overflow with words. Everything that is communicated
between two humans could be represented as text, but let’s not go overboard. Images and sound are usually best represented as
images and sound (i.e., just bags of bits), but just about everything else is fair game for program text analysis and
transformation.

We have been using iostreams and strings since Chapter 3, so here, we’ll just briefly review those libraries. Maps
(§23.4) are particularly useful for text processing, so we present an example of their use for email analysis. After this review,
this chapter is concerned with searching for patterns in text using regular expressions (§23.5–10).

23.2 Strings
A string contains a sequence of characters and provides a few useful operations, such as adding a character to a string,
giving the length of the string, and concatenating strings. Actually, the standard string provides quite a few operations, but
most are useful only when you have to do fairly complicated text manipulation at a low level. Here, we just mention a few of
the more useful. You can look up their details (and the full set of string operations) in a manual or expert-level textbook



should you need them. They are found in <string> (note: not <string.h>):

The I/O operations are explained in Chapters 10 and 11 and summarized in §23.3. Note that the input operations into a string

expand the string as needed, so that overflow cannot happen.
The insert() and append() operations may move characters to make room for new characters. The erase() operation

moves characters “forward” in the string to make sure that no gap is left where we erased a character.

The standard library string is really a template, called basic_string, that supports a variety of character sets, such as
Unicode, providing thousands of characters (such as £, Ω, μ, δ, , and  in addition to “ordinary characters”). For example, if
you have a type holding a Unicode character, such as Unicode, you can write
Click here to view code image

basic_string<Unicode> a_unicode_string;

The standard string, string, which we have been using, is simply the basic_string of an ordinary char:
Click here to view code image

using string = basic_string<char>;     // string means basic_string<char> (§20.5)



We do not cover Unicode characters or Unicode strings here, but if you need them you can look them up, and you’ll find that
they can be handled (by the language, by string, by iostreams, and by regular expressions) much as ordinary characters and
strings. If you need to use Unicode characters, it is best to ask someone experienced for advice; to be useful, your code has to
follow not just the language rules but also some system conventions.

In the context of text processing, it is important that just about anything can be represented as a string of characters. For
example, here on this page, the number 12.333 is represented as a string of six characters (surrounded by whitespace). If we
read this number, we must convert those characters to a floating-point number before we can do arithmetic operations on the
number. This leads to a need to convert values to strings and strings to values. In §11.4, we saw how to turn an integer into a
string using an ostringstream. This technique can be generalized to any type that has a << operator:
Click here to view code image

template<typename T> string to_string(const T& t)

{

          ostringstream os;

          os << t;

          return os.str();

}

For example:
Click here to view code image

string s1 = to_string(12.333);

string s2 = to_string(1+5*6–99/7);

The value of s1 is now "12.333" and the value of s2 is "17". In fact, to_string() can be used not just for numeric values, but
for any class T with a << operator. The opposite conversion, from strings to numeric values, is about as easy, and as useful:
Click here to view code image

struct bad_from_string : std::bad_cast {  // class for reporting string cast errors
          const char* what() const override

          {
                    return "bad cast from string";

          }
};

template<typename T> T from_string(const string& s)

{

          istringstream is {s};

          T t;

          if (!(is >> t)) throw bad_from_string{};
          return t;

}

For example:
Click here to view code image

double d = from_string<double>("12.333");

void do_something(const string& s)

try

{

          int i = from_string<int>(s);

          // . . .
}

catch (bad_from_string e) {

          error("bad input string",s);

}

The added complication of from_string() compared to to_string() comes because a string can represent values of many
types. This implies that we must say which type of value we want to extract from a string. It also implies that the string we



are looking at may not hold a representation of a value of the type we expect. For example:
Click here to view code image

int d = from_string<int>("Mary had a little lamb");           // oops!

So there is a possibility of error, which we have represented by the exception bad_from_string. In §23.9, we demonstrate
how from_string() (or an equivalent function) is essential for serious text processing because we need to extract numeric
values from text fields. In §16.4.3, we saw how an equivalent function get_int() was used in GUI code.

Note how to_string() and from_string() are similar in function. In fact, they are roughly inverses of each other; that is
(ignoring details of whitespace, rounding, etc.), for every “reasonable type T” we have
Click here to view code image

s==to_string(from_string<T>(s))        // for all s

and
Click here to view code image

t==from_string<T>(to_string(t))       // for all t

Here, “reasonable” means that T should have a default constructor, a >> operator, and a matching << operator defined.
Note also how the implementations of to_string() and from_string() both use a stringstream to do all the hard work.

This observation has been used to define a general conversion operation between any two types with matching << and >>

operations:

Click here to view code image

template<typename Target, typename Source>

Target to(Source arg)

{

          stringstream interpreter;

          Target result;

          if (!(interpreter << arg)                                       // write arg into stream
                    || !(interpreter >> result)                          // read result from stream
                    || !(interpreter >> std::ws).eof())           // stuff left in stream?
                              throw runtime_error{"to<>() failed"};

          return result;

}

The curious and clever !(interpreter>>std::ws).eof() reads any whitespace that might be left in the stringstream after
we have extracted the result. Whitespace is allowed, but there should be no more characters in the input and we can check that
by seeing if we are at “end of file.” So if we try to read an int from a string, both to<int>("123") and to<int>("123 ") will
succeed, but to<int>("123.5") will not because of that last .5.

23.3 I/O streams

Considering the connection between strings and other types, we get to I/O streams. The I/O stream library doesn’t just do input
and output; it also performs conversions between string formats and types in memory. The standard library I/O streams provide
facilities for reading, writing, and formatting strings of characters. The iostream library is described in Chapters 10 and 11, so
here we’ll just summarize:



The standard streams are organized into a class hierarchy (§14.3):

Together, these classes supply us with the ability to do I/O to and from files and strings (and anything that can be made to look
like a file or a string, such as a keyboard and a screen; see Chapter 10). As described in Chapters 10 and 11, the iostreams
provide fairly elaborate formatting facilities. The arrows indicate inheritance (see §14.3), so that, for example, a
stringstream can be used as an iostream or as an istream or as an ostream.

Like string, iostreams can be used with larger character sets such as Unicode, much like ordinary characters. Please again
note that if you need to use Unicode I/O, it is best to ask someone experienced for advice; to be useful, your code has to follow
not just the language rules but also some system conventions.

23.4 Maps
Associative arrays (maps, hash tables) are key (pun intended) to a lot of text processing. The reason is simply that when we
process text, we collect information, and that information is often associated with text strings, such as names, addresses, postal
codes, Social Security numbers, job titles, etc. Even if some of those text strings could be converted into numeric values, it is
often more convenient and simpler to treat them as text and use that text for identification. The word-counting example (§21.6)
is a good simple example. If you don’t feel comfortable using maps, please reread §21.6 before proceeding.

Consider email. We often search and analyze email messages and email logs — usually with the help of some program (e.g.,
Thunderbird or Outlook). Mostly, those programs save us from seeing the complete source of the messages, but all the
information about who sent, who received, where the message went along the way, and much more is presented to the programs
as text in a message header. That’s a complete message. There are thousands of tools for analyzing the headers. Most use
regular expressions (as described in §23.5–9) to extract information and some form of associative arrays to associate related
messages. For example, we often search a mail file to collect all messages with the same sender, the same subject, or
containing information on a particular topic.

Here, we will use a very simplified mail file to illustrate some of the techniques for extracting data from text files. The
headers are real RFC2822 headers from www.faqs.org/rfcs/rfc2822.html. Consider:
Click here to view code image

xxx

xxx

––––
From: John Doe <jdoe@machine.example>

To: Mary Smith <mary@example.net>

Subject: Saying Hello

Date: Fri, 21 Nov 1997 09:55:06 –0600

Message–ID: <1234@local.machine.example>

This is a message just to say hello.

So, "Hello".

––––
From: Joe Q. Public <john.q.public@example.com>

To: Mary Smith <@machine.tld:mary@example.net>, , jdoe@test   .example

Date: Tue, 1 Jul 2003 10:52:37 +0200

Message–ID: <5678.21–Nov–1997@example.com>

http://www.faqs.org/rfcs/rfc2822.html


Hi everyone.

––––
To: "Mary Smith: Personal Account" <smith@home.example>

From: John Doe <jdoe@machine.example>

Subject: Re: Saying Hello

Date: Fri, 21 Nov 1997 11:00:00 –0600

Message–ID: <abcd.1234@local.machine.tld>

In–Reply–To: <3456@example.net>

References: <1234@local.machine.example> <3456@example.net>

This is a reply to your reply.

––––
––––

Basically, we have abbreviated the file by throwing most of the information away and eased the analysis by terminating each
message by a line containing just –––– (four dashes). We will write a small “toy application” that finds all messages sent by
“John Doe” and write out their “Subject.” If we can do that, we can do many interesting things.

First, we must consider whether we want random access to the data or just to analyze it as it streams by in an input stream.
We choose the former because in a real program, we would probably be interested in several senders or in several pieces of
information from a given sender. Also, it’s actually the harder of the two tasks, so it will allow us to examine more techniques.
In particular, we get to use iterators again.

Our basic idea is to read a complete mail file into a structure (which we call a Mail_file). This structure will hold all the
lines of the mail file (in a vector<string>) and indicators of where each individual message starts and ends (in a
vector<Message>):

To this, we will add iterators and begin() and end() functions, so that we can iterate through the lines and through the
messages in the usual way. This “boilerplate” will allow us convenient access to the messages. Given that, we will write our
“toy application” to gather all the messages from each sender so that they are easy to access together:



Finally, we will write out all the subject headers of messages from “John Doe” to illustrate a use of the access structures we
have created.

We use many of the basic standard library facilities:

#include<string>

#include<vector>

#include<map>

#include<fstream>

#include<iostream>

using namespace std;

We define a Message as a pair of iterators into a vector<string> (our vector of lines):
Click here to view code image

typedef vector<string>::const_iterator Line_iter;

class Message {   // a Message points to the first and the last lines of a message
          Line_iter first;

          Line_iter last;

public:

          Message(Line_iter p1, Line_iter p2) :first{p1}, last{p2} { }

          Line_iter begin() const { return first; }

          Line_iter end() const { return last; }

          // . . .
};

We define a Mail_file as a structure holding lines of text and messages:
Click here to view code image

using Mess_iter = vector<Message>::const_iterator;

struct Mail_file {                                  // a Mail_file holds all the lines from a file
                                                                   // and simplifies access to messages
          string name;                              // file name
          vector<string> lines;               // the lines in order
          vector<Message> m;              // Messages in order

          Mail_file(const string& n);     // read file n into lines

          Mess_iter begin() const { return m.begin(); }

          Mess_iter end() const { return m.end(); }

};

Note how we added iterators to the data structures to make it easy to systematically traverse them. We are not actually going to
use standard library algorithms here, but if we wanted to, the iterators are there to allow it.



To find information in a message and extract it, we need two helper functions:
Click here to view code image

// find the name of the sender in a Message;
// return true if found
// if found, place the sender’s name in s:
bool find_from_addr(const Message* m, string& s);

// return the subject of the Message, if any, otherwise "":
string find_subject(const Message* m);

Finally, we can write some code to extract information from a file:
Click here to view code image

int main()

{

          Mail_file mfile {"my–mail–file.txt"};           // initialize mfile from a file

          // first gather messages from each sender together in a multimap:

          multimap<string, const Message*> sender;

          for (const auto& m : mfile) {

                    string s;

                    if (find_from_addr(&m,s))

                              sender.insert(make_pair(s,&m));

          }

          // now iterate through the multimap
          // and extract the subjects of John Doe’s messages:
          auto pp = sender.equal_range("John Doe <jdoe@machine.example>");

          for(auto p = pp.first; p!=pp.second; ++p)

                    cout << find_subject(p–>second) << '\n';

}

Let us examine the use of maps in detail. We used a multimap (§20.10, §B.4) because we wanted to gather many messages
from the same address together in one place. The standard library multimap does that (makes it easy to access elements with
the same key). Obviously (and typically), we have two parts to our task:

• Build the map.
• Use the map.

We build the multimap by traversing all the messages and inserting them into the multimap using insert():
Click here to view code image

for (const auto& m : mfile) {

          string s;

          if (find_from_addr(&m,s))

                    sender.insert(make_pair(s,&m));

}

What goes into a map is a (key,value) pair, which we make with make_pair(). We use our “homemade” find_from_addr()

to find the name of the sender.
Why did we first put the Messages in a vector and then later build a multimap? Why didn’t we just put the Messages

into a map immediately? The reason is simple and fundamental:
• First, we build a general structure that we can use for many things.
• Then, we use that for a particular application.

That way, we build up a collection of more or less reusable components. Had we immediately built a map in the Mail_file,
we would have had to redefine it whenever we wanted to do some different task. In particular, our multimap (significantly
called sender) is sorted based on the Address field of a message. Most other applications would not find that order
particularly useful: they might be looking at Return fields, Recipients, Copy-to fields, Subject fields, time stamps, etc.



This way of building applications in stages (or layers, as the parts are sometimes called) can dramatically simplify the
design, implementation, documentation, and maintenance of programs. The point is that each part does only one thing and does
it in a straightforward way. On the other hand, doing everything at once would require cleverness. Obviously, our “extracting
information from an email header” program was just a tiny example of an application. The value of keeping separate things
separate, modularization, and gradually building an application increases with size.

To extract information, we simply find all the entries with the key "John Doe" using the equal_range() function
(§B.4.10). Then we iterate through all the elements in the sequence [first,second) returned by equal_range(), extracting the
subject by using find_subject():
Click here to view code image

auto pp = sender.equal_range("John Doe <jdoe@machine.example>");

for (auto p = pp.first; p!=pp.second; ++p)

          cout << find_subject(p–>second) << '\n';

When we iterate over the elements of a map, we get a sequence of (key,value) pairs, and as with all pairs, the first element
(here, the string key) is called first and the second (here, the Message value) is called second (§21.6).

23.4.1 Implementation details
Obviously, we need to implement the functions we use. It was tempting to save a tree by leaving this as an exercise, but we
decided to make this example complete. The Mail_file constructor opens the file and constructs the lines and m vectors:
Click here to view code image

Mail_file::Mail_file(const string& n)

          // open file named n
          // read the lines from n into lines
          // find the messages in the lines and compose them in m
          // for simplicity assume every message is ended by a –––– line
{

          ifstream in {n};                               // open the file
          if (!in) {

                    cerr << "no " << n << '\n';

                    exit(1);                                   // terminate the program
          }

          for (string s; getline(in,s); )         // build the vector of lines
                    lines.push_back(s);

          auto first = lines.begin();            // build the vector of Messages
          for (auto p = lines.begin(); p!=lines.end(); ++p) {

                    if (*p == "––––") {               // end of message
                              m.push_back(Message(first,p));

                              first = p+1;                 // –––– not part of message
                    }
          }
}

The error handling is rudimentary. If this were a program we planned to give to friends to use, we’d have to do better.

 Try This

We really mean it: do run this example and make sure you understand the result. What would be “better error
handling”? Modify Mail_file’s constructor to handle likely formatting errors related to the use of ––––.

The find_from_addr() and find_subject() functions are simple placeholders until we can do a better job of identifying
information in a file (using regular expressions; see §23.6–10):
Click here to view code image

int is_prefix(const string& s, const string& p)



          // is p the first part of s?
{

          int n = p.size();

          if (string(s,0,n)==p) return n;

          return 0;

}

bool find_from_addr(const Message* m, string& s)

{

          for (const auto& x : m)

                    if (int n = is_prefix(x, "From: ")) {

                              s = string(x,n);

                              return true;

                    }
          return false;

}

string find_subject(const Message* m)

{

          for (const auto& x : m)

                    if (int n = is_prefix(x, "Subject: ")) return string(x,n);

          return "";

}

Note the way we use substrings: string(s,n) constructs a string consisting of the tail of s from s[n] onward (s[n]..s[s.size()–

1]), whereas string(s,0,n) constructs a string consisting of the characters s[0]..s[n–1]. Since these operations actually
construct new strings and copy characters, they should be used with care where performance matters.

Why are the find_from_addr() and find_subject() functions so different? For example, one returns a bool and the other
a string. They are different because we wanted to make a point:

• find_from_addr() distinguishes between finding an address line with an empty address ("") and finding no address
line. In the first case, find_from_addr() returns true (because it found an address) and sets s to "" (because the
address just happens to be empty). In the second case, it returns false (because there was no address line).

• find_subject() returns "" if there was an empty subject or if there was no subject line.
Is the distinction made by find_from_addr() useful? Necessary? We think that the distinction can be useful and that we
definitely should be aware of it. It is a distinction that comes up again and again when looking for information in a data file:
did we find the field we were looking for and was there something useful in it? In a real program, both the find_from_addr()

and find_subject() functions would have been written in the style of find_from_addr() to allow users to make that
distinction.

This program is not tuned for performance, but it is probably fast enough for most uses. In particular, it reads its input file
only once, and it does not keep multiple copies of the text from that file. For large files, it may be a good idea to replace the
multimap with an unordered_multimap, but unless you measure, you’ll never know.

See §21.6 for an introduction to the standard library associative containers (map, multimap, set, unordered_map, and
unordered_multimap).

23.5 A problem
I/O streams and string help us read and write sequences of characters, help us store them, and help with basic manipulation.
However, it is very common to do operations on text where we need to consider the context of a string or involve many similar
strings. Consider a trivial example. Take an email message (a sequence of words) and see if it contains a U.S. state
abbreviation and ZIP code (two letters followed by five digits):
Click here to view code image

for (string s; cin>>s; ) {

          if (s.size()==7

          && isalpha(s[0]) && isalpha(s[1])

          && isdigit(s[2]) && isdigit(s[3]) && isdigit(s[4])



          && isdigit(s[5]) && isdigit(s[6]))

                    cout << "found " << s << '\n';

}

Here, isalpha(x) is true if x is a letter and isdigit(x) is true if x is a digit (see §11.6).
There are several problems with this simple (too simple) solution:

• It’s verbose (four lines, eight function calls).
• We miss (intentionally?) every postal code not separated from its context by whitespace (such as "TX77845", TX77845–

1234, and ATX77845).
• We miss (intentionally?) every postal code with a space between the letters and the digits (such as TX 77845).
• We accept (intentionally?) every postal code with the letters in lower case (such as tx77845).
• If we decide to look for a postal code in a different format (such as CB3 0FD), we have to completely rewrite the code.

There has to be a better way! Before revealing that way, let’s just consider the problems we would encounter if we decided to
stay with the “good old simple way” of writing more code to handle more cases.

• If we want to deal with more than one format, we’d have to start adding if-statements or switch-statements.
• If we want to deal with upper and lower case, we’d explicitly have to convert (usually to lower case) or add yet another
if-statement.

• We need to somehow (how?) describe the context of what we want to find. That implies that we must deal with
individual characters rather than with strings, and that implies that we lose many of the advantages provided by
iostreams (§7.8.2).

If you like, you can try to write the code for that, but it is obvious that on this track we are headed for a mess of if-statements
dealing with a mess of special cases. Even for this simple example, we need to deal with alternatives (e.g., both five- and
nine-digit ZIP codes). For many other examples, we need to deal with repetition (e.g., any number of digits followed by an
exclamation mark, such as 123! and 123456!). Eventually, we would also have to deal with both prefixes and suffixes. As we
observed (§11.1–2), people’s tastes in output formats are not limited by a programmer’s desire for regularity and simplicity.
Just think of the bewildering variety of ways people write dates:

2007–06–05

June 5, 2007

jun 5, 2007

5 June 2007

6/5/2007

5/6/07

. . .

At this point — if not earlier — the experienced programmer declares, “There has to be a better way!” (than writing more
ordinary code) and proceeds to look for it. The simplest and most popular solution is using what are called regular
expressions. Regular expressions are the backbone of much text processing, the basis for the Unix grep command (see exercise
8), and an essential part of languages heavily used for such processing (such as AWK, PERL, and PHP).

The regular expressions we will use are part of the C++ standard library. They are compatible with the regular expressions
in PERL. This makes many explanations, tutorials, and manuals available. For example, see the C++ standard committee’s
working paper (look for “WG21” on the web), John Maddock’s boost::regex documentation, and most PERL tutorials.
Here, we will describe the fundamental concepts and some of the most basic and useful ways of using regular expressions.

 Try This

The last two paragraphs “carelessly” used several names and acronyms without explanation. Do a bit of web
browsing to see what we are referring to.

23.6 The idea of regular expressions
The basic idea of a regular expression is that it defines a pattern that we can look for in a text. Consider how we might
concisely describe the pattern for a simple U.S. postal code, such as TX77845. Here is a first attempt:

wwddddd



Here, w represents “any letter” and d represents “any digit.” We use w (for “word”) because l (for “letter”) is too easily
confused with the digit 1. This notation works for this simple example, but let’s try it for the nine-digit ZIP code format (such
as TX77845–5629). How about

wwddddd–dddd

That looks OK, but how come that d means “any digit” but – means “plain” dash? Somehow, we ought to indicate that w and d
are special: they represent character classes rather than themselves (w means “an a or a b or a c or . . .” and d means “a 1 or a
2 or a 3 or . . .”). That’s too subtle. Let’s prefix a letter that is a name of a class of characters with a backslash in the way
special characters have always been indicated in C++ (e.g., \n is newline in a string literal). This way we get

\w\w\d\d\d\d\d–\d\d\d\d

This is a bit ugly, but at least it is unambiguous, and the backslashes make it obvious that “something unusual is going on.”
Here, we represent repetition of a character by simply repeating. That can be a bit tedious and is potentially error-prone.
Quick: Did we really get the five digits before the dash and four after it right? We did, but nowhere did we actually say 5 and
4, so you had to count to make sure. We could add a count after a character to indicate repetition. For example:

\w2\d5–\d4

However, we really ought to have some syntax to show that the 2, 5, and 4 in that pattern are counts, rather than just the
alphanumeric characters 2, 5, and 4. Let’s indicate counts by putting them in curly braces:

\w{2}\d{5}–\d{4}

That makes { special in the same way as \ (backslash) is special, but that can’t be helped and we can deal with that.
So far, so good, but we have to deal with two more messy details: the final four digits in a ZIP code are optional. We

somehow have to be able to say that we will accept both TX77845 and TX77845–5629. There are two fundamental ways of
expressing that:

\w{2}\d{5} or \w{2}\d{5}–\d{4}

and

\w{2}\d{5} and optionally –\d{4}

To say that concisely and precisely, we first have to express the idea of grouping (or sub-pattern) to be able to speak about the
\w{2}\d{5} and –\d{4} parts of \w{2}\d{5}–\d{4}. Conventionally, we use parentheses to express grouping:

(\w{2}\d{5})(–\d{4})

Now we have split the pattern into two sub-patterns, so we just have to say what we want to do with them. As usual, the cost
of introducing a new facility is to introduce another special character: ( is now “special” just like \ and {. Conventionally | is
used to express “or” (alternatives) and ? is used to express something conditional (optional), so we might write

(\w{2}\d{5})|(\w{2}\d{5}–\d{4})

and

(\w{2}\d{5})(–\d{4})?

As with the curly braces in the count notation (e.g., \w{2}), we use the question mark (?) as a suffix. For example, (–\d{4})?

means “optionally –\d{4}”; that is, we accept four digits preceded by a dash as a suffix. Actually, we are not using the
parentheses around the pattern for the five-digit ZIP code (\w{2}\d{5}) for anything, so we could leave them out:

\w{2}\d{5}(–\d{4})?

To complete our solution to the problem stated in §23.5, we could add an optional space after the two letters:

\w{2} ?\d{5}(–\d{4})?



That “ ?” looks a bit odd, but of course it’s a space character followed by the ?, indicating that the space character is optional.
If we wanted to avoid a space being so unobtrusive that it looks like a bug, we could put it in parentheses:

\w{2}( )?\d{5}((–\d{4})?

If someone considered that still too obscure, we could invent a notation for a whitespace character, such as \s (s for “space”).
That way we could write

\w{2}\s?\d{5}(–\d{4})?

But what if someone wrote two spaces after the letters? As defined so far, the pattern would accept TX77845 and TX 77845

but not TX 77845. That’s a bit subtle. We need to be able to say “zero or more whitespace characters,” so we introduce the
suffix * to mean “zero or more” and get

\w{2}\s*\d{5}(–\d{4})?

This makes sense if you followed every step of the logical progression. This notation for patterns is logical and extremely
terse. Also, we didn’t pick our design choices at random: this particular notation is extremely common and popular. For many
text-processing tasks, you need to read and write this notation. Yes, it looks a bit as if a cat walked over the keyboard, and yes,
typing a single character wrong (even a space) completely changes the meaning, but please just get used to it. We can’t suggest
anything dramatically better, and this style of notation has already been wildly popular for more than 30 years since it was first
introduced for the Unix grep command — and it wasn’t completely new even then.

23.6.1 Raw string literals
Note all of those backslashes in the regular expression patterns. To get a backslash (\) into a C++ string literal we have to
precede it with a backslash. Consider our postal code pattern:

\w{2}\s*\d{5}(–\d{4})?

To represent that pattern as a string literal, we have to write

"\\w{2}\\s*\\d{5}(–\\d{4})?"

Thinking a bit ahead, we realize that many of the patterns we would like to match contain double quotes ("). To get a double
quote into a string literal we have to precede it with a backslash. This can quickly become unmanageable. In fact, in real use
this “special character problem” gets so annoying that C++ and other languages have introduced the notion of raw string
literals to be able to cope with realistic regular expression patterns. In a raw string literal a backslash is simply a backslash
character (rather than an escape character) and a double quote is simply a double quote character (rather than an end of string).
As a raw string literal our postal code pattern becomes

R"(\w{2}\s*\d{5}(–\d{4})?)"

The R"( starts the string and )" terminates it, so the 22 characters of the string are

\w{2}\s*\d{5}(–\d{4})?

not counting the terminating zero.

23.7 Searching with regular expressions
Now, we will use the postal code pattern from the previous section to find postal codes in a file. The program defines the
pattern and then reads a file line by line, searching for the pattern. If the program finds an occurrence of the pattern in a line, it
writes out the line number and what it found:
Click here to view code image

#include <regex>

#include <iostream>

#include <string>

#include <fstream>

using namespace std;

int main()

{



          ifstream in {"file.txt"};                                         // input file
          if (!in) cerr << "no file\n";

          regex pat {R"(\w{2}\s*\d{5}(–\d{4})?)"};           // postal code pattern

          int lineno = 0;

          for (string line; getline(in,line); ) {     // read input line into input buffer
                    ++lineno;

                    smatch matches;                         // matched strings go here
                    if (regex_search(line, matches, pat))

                              cout << lineno << ": " << matches[0] << '\n';

          }
}

This requires a bit of a detailed explanation. We find the standard library regular expressions in <regex>. Given that, we can
define a pattern pat:
Click here to view code image

regex pat {R"(\w{2}\s*\d{5}(–\d{4})?)"};     // postal code pattern

A regex pattern is a kind of string, so we can initialize it with a string. Here, we used a raw string literal. However, a
regex is not just a string, but the somewhat sophisticated mechanism for pattern matching that is created when you initialize a
regex (or assign to one) is hidden and beyond the scope of this book. However, once we have initialized a regex with our
pattern for postal codes, we can apply it to each line of our file:
Click here to view code image

smatch matches;

if (regex_search(line, matches, pat))

          cout << lineno << ": " << matches[0] << '\n';

The regex_search(line, matches, pat) searches the line for anything that matches the regular expression stored in pat, and
if it finds any matches, it stores them in matches. Naturally, if no match was found, regex_search(line, matches, pat)

returns false.
The matches variable is of type smatch. The s stands for “sub” or for “string.” Basically, an smatch is a vector of sub-

matches of type string. The first element, here matches[0], is the complete match. We can treat matches[i] as a string if
i<matches.size(). So if — for a given regular expression — the maximum number of sub-patterns is N, we find
matches.size()==N+1.

So, what is a sub-pattern? A good first answer is “Anything in parentheses in the pattern.” Looking at \w{2}\s*\d{5}(–

\d{4})?, we see the parentheses around the four-digit extension of the ZIP code. That’s the only sub-pattern we see, so we
guess (correctly) that matches.size()==2. We also guess that we can easily access those last four digits. For example:
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for (string line; getline(in,line); ) {

          smatch matches;

          if (regex_search(line, matches, pat)) {

                    cout << lineno << ": " << matches[0] << '\n';       // whole match
                    if (1<matches.size() && matches[1].matched)

                              cout  << "\t: " << matches[1] << '\n';            // sub-match
          }
}

Strictly speaking, we didn’t have to test 1<matches.size() because we already had a good look at the pattern, but we felt like
being paranoid (because we have been experimenting with a variety of patterns in pat and they didn’t all have just one sub-
pattern). We can ask if a sub-match succeeded by looking at its matched member, here matches[1].matched. In case you
wonder: when matches[i].matched is false, the unmatched sub-pattern matches[i] prints as the empty string. Similarly, a



sub-pattern that doesn’t exist, such as matches[17] for the pattern above, is treated as an unmatched sub-pattern.
We tried this program with a file containing

Click here to view code image

address TX77845

ffff tx 77843 asasasaa

ggg TX3456–23456

howdy

zzz TX23456–3456sss ggg TX33456–1234

cvzcv TX77845–1234 sdsas

xxxTx77845xxx

TX12345–123456

and got the output
Click here to view code image

pattern: "\w{2}\s*\d{5}(–\d{4})?"

1: TX77845

2: tx 77843

5: TX23456–3456

          : –3456

6: TX77845–1234

          : –1234

7: Tx77845

8: TX12345–1234

          : –1234

Note that we
• Did not get fooled by the ill-formatted “postal code” on the line that starts with ggg (what’s wrong with that one?)
• Only found the first postal code from the line with zzz (we only asked for one per line)
• Found the correct suffixes on lines 5 and 6
• Found the postal code “hidden” among the xxxs on line 7
• Found (unfortunately?) the postal code “hidden” in TX12345–123456

23.8 Regular expression syntax
We have seen a rather basic example of regular expression matching. Now is the time to consider regular expressions (in the
form they are used in the regex library) a bit more systematically and completely.

Regular expressions (“regexps” or “regexs”) is basically a little language for expressing patterns of characters. It is a
powerful (expressive) and terse language, and as such it can be quite cryptic. After decades of use, there are many subtle
features and several dialects. Here, we will just describe a (large and useful) subset of what appears to be the currently most
widely used dialect (the PERL one). Should you need more to express what you need to say or to understand the regular
expressions of others, go look on the web. Tutorials (of wildly differing quality) and specifications abound.

The library also supports the ECMAScript, POSIX, awk, grep, and egrep notations and a host of search options. This can be
extremely useful, especially if you need to match some pattern specified in another language. You can look up those options if
you feel the need to go beyond the basic facilities described here. However, remember that “using the most features” is not an
aim of good programming. Whenever you can, take pity on the poor maintenance programmer (maybe yourself in a couple of
months) who has to read and understand your code: write code that is not unnecessarily clever and avoid obscure features
whenever you can.

23.8.1 Characters and special characters
A regular expression specifies a pattern that can be used to match characters from a string. By default, a character in a pattern
matches itself in a string. For example, the regular expression (pattern) "abc" will match the abc in Is there an abc here?

The real power of regular expressions comes from “special characters” and character combinations that have special
meanings in a pattern:



For example,

x.y

matches any three-character string starting with an x and ending with a y, such as xxy, x3y, and xay, but not yxy, 3xy, and xy.
Note that { . . . }, *, +, and ? are suffix operators. For example, \d+ means “one or more decimal digits.”
If you want to use one of the special characters in a pattern, you have to “escape it” using a backslash; for example, in a

pattern + is the one-or-more operator, but \+ is a plus sign.

23.8.2 Character classes
The most common combinations of characters are represented in a terse form as “special characters”:

Note that an uppercase special character means “not the lowercase version of that special character.” In particular, \W means
“not a letter” rather than “an uppercase letter.”

The entries in the third column (e.g., [[:digit:]]) give an alternative syntax using a longer name.
Like the string and iostream libraries, the regex library can handle large character sets, such as Unicode. As with string

and iostream, we just mention this so that you can look for help and more information should you need it. Dealing with
Unicode text manipulation is beyond the scope of this book.

23.8.3 Repeats
Repeating patterns are specified by the suffix operators:



For example,

Ax*

matches an A followed by zero or more xs, such as
Click here to view code image

A

Ax

Axx

Axxxxxxxxxxxxxxxxxxxxxxxxxxxxx

If you want at least one occurrence, use + rather than *. For example,

Ax+

matches an A followed by one or more xs, such as
Click here to view code image

Ax

Axx

Axxxxxxxxxxxxxxxxxxxxxxxxxxxxx

but not

A

The common case of zero or one occurrence (“optional”) is represented by a question mark. For example,

\d–?\d

matches the two digits with an optional dash between them, such as

1–2

12

but not

1––2

To specify a specific number of occurrences or a specific range of occurrences, use curly braces. For example,

\w{2}–\d{4,5}

matches exactly two letters and a dash (–) followed by four or five digits, such as

Ab–1234

XX–54321

22–54321

but not

Ab–123

?b–1234

Yes, digits are \w characters.



23.8.4 Grouping
To specify a regular expression as a sub-pattern, you group it using parentheses. For example:

(\d*:)

This defines a sub-pattern of zero or more digits followed by a colon. A group can be used as part of a more elaborate pattern.
For example:

(\d*:)?(\d+)

This specifies an optional and possibly empty sequence of digits followed by a colon followed by a sequence of one or more
digits. No wonder people invented a terse and precise way of saying such things!

23.8.5 Alternation
The “or” character (|) specifies an alternative. For example:

Subject: (FW:|Re:)?(.*)

This recognizes an email subject line with an optional FW: or Re: followed by zero or more characters. For example:

Subject: FW: Hello, world!

Subject: Re:

Subject: Norwegian Blue

but not

SUBJECT: Re: Parrots

Subject  FW: No subject!

An empty alternative is not allowed:

(|def)           // error

However, we can specify several alternatives at once:

(bs|Bs|bS|BS)

23.8.6 Character sets and ranges
The special characters provide a shorthand for the most common classes of characters: digits (\d); letters, digits, and
underscore (\w); etc. (§23.7.2). However, it is easy and often useful to define our own. For example:

In a character class specification, a – (dash) is used to specify a range, such as [1–3] (1, 2, or 3) and [w–z] (w, x, y, or z).
Please use such ranges carefully: not every language has the same letters and not every letter encoding has the same ordering. If
you feel the need for any range that isn’t a sub-range of the most common letters and digits of the English alphabet, consult the
documentation.

Note that we can use the special characters, such as \w (meaning “any word character”), within a character class
specification. So, how do we get a backslash (\) into a character class? As usual, we “escape it” with a backslash: \\.

When the first character of a character class specification is ^, that ^ means “negation.” For example:



In the last regular expression, the ^ wasn’t the first character after the [, so it was just a character, not a negation operator.
Regular expressions can be subtle.

An implementation of regex also supplies a set of named character classes for use in matching. For example, if you want to
match any alphanumeric character (that is, a letter or a digit: a–z or A–Z or 0–9), you can do it by the regular expression
[[:alnum:]]. Here, alnum is the name of a set a characters (the set of alphanumeric characters). A pattern for a nonempty
quoted string of alphanumeric characters would be "[[:alnum:]]+". To put that regular expression into an ordinary string
literal, we have to escape the quotes:

string s {"\" [[:alnum:]]+\""};

Furthermore, to put that string literal into a regex, we must escape the backslashes:
Click here to view code image

regex s {"\\\" [[:alnum:]]+\\\""};

Using a raw string literal is simpler:
Click here to view code image

regex s2 {R"(" [[:alnum:]]+")"};

Prefer raw string literals for patterns containing backslashes or double quotes. That turns out to be most patterns in many
applications.
Using regular expressions leads to a lot of notational conventions. Anyway, here is a list of the standard character classes:

An implementation of regex may provide more character classes, but if you decide to use a named class not listed here, be
sure to check if it is portable enough for your intended use.

23.8.7 Regular expression errors
What happens if we specify an illegal regular expression? Consider:
Click here to view code image

regex pat1 {"(|ghi)"};           // missing alternative



regex pat2 {"[c–a]"};           // not a range

When we assign a pattern to a regex, the pattern is checked, and if the regular expression matcher can’t use it for matching
because it’s illegal or too complicated, a bad_expression exception is thrown.

Here is a little program that’s useful for getting a feel for regular expression matching:
Click here to view code image

#include <regex>

#include <iostream>

#include <string>

#include <fstream>

#include<sstream>

using namespace std;

// accept a pattern and a set of lines from input
// check the pattern and search for lines with that pattern

int main()

{

          regex pattern;

          string pat;

          cout << "enter pattern: ";

          getline(cin,pat);            // read pattern

          try {

                    pattern = pat;      // this checks pat
                    cout << "pattern: " << pat << '\n';

          }
          catch (bad_expression) {

                    cout << pat << " is not a valid regular expression\n";

                    exit(1);

          }

          cout << "now enter lines:\n";

          int lineno = 0;

          for (string line; getline(cin,line); ) {

                    ++lineno;

                    smatch matches;

                    if (regex_search(line, matches, pattern)) {

                              cout << "line " << lineno << ": " << line << '\n';

                              for (int i = 0; i<matches.size(); ++i)

                                        cout << "\tmatches[" << i << "]: "

                                                  <<  matches[i] << '\n';

                    }
                    else

                              cout << "didn't match\n";

          }
}

 Try This

Get the program to run and use it to try out some patterns, such as abc, x.*x, (.*), \([^)]*\), and \w+ \w+( Jr\.)?.

23.9 Matching with regular expressions
There are two basic uses of regular expressions:

• Searching for a string that matches a regular expression in an (arbitrarily long) stream of data — regex_search() looks



for its pattern as a substring in the stream.
• Matching a regular expression against a string (of known size) — regex_match() looks for a complete match of its
pattern and the string.

The search for ZIP codes in §23.6 was an example of searching. Here, we will examine an example of matching. Consider
extracting data from a table like this:

This table (of the number of students in Bjarne Stroustrup’s old primary school in 2007) was extracted from a context (a web
page) where it looks nice and is fairly typical of the kind of data we need to analyze:

• It has numeric data fields.
• It has character fields with strings meaningful only to people who understand the context of the table. (Here, that point is
emphasized by the use of Danish.)

• The character strings include spaces.



• The “fields” of this data are separated by a “separation indicator,” which in this case is a tab character.

We chose this table to be “fairly typical” and “not too difficult,” but note one subtlety we must face: we can’t actually see the
difference between spaces and tab characters; we have to leave that problem to our code.

We will illustrate the use of regular expressions to
• Verify that this table is properly laid out (i.e., every row has the right number of fields)
• Verify that the numbers add up (the last line claims to be the sum of the columns above)

If we can do that, we can do just about anything! For example, we could make a new table where the rows with the same initial
digit (indicating the year: first grades start with 1) are merged or see if the number of students is increasing or decreasing over
the years in question (see exercises 10–11).

To analyze the table, we need two patterns: one for the header line and one for the rest of the lines:
Click here to view code image

regex header {R"(^[\w ]+(           [\w ]+)*$)"};

regex row {R"(^[\w ]+(                 \d+)(  \d+)(   \d+)$)"};

Please remember that we praised the regular expression syntax for terseness and utility; we did not praise it for ease of
comprehension by novices. In fact, regular expressions have a well-earned reputation for being a “write-only language.” Let us
start with the header. Since it does not contain any numeric data, we could just have thrown away that first line, but — to get
some practice — let us parse it. It consists of four “word fields” (“alphanumeric fields”) separated by tabs. These fields can
contain spaces, so we cannot simply use plain \w to specify its characters. Instead, we use [\w ], that is, a word character
(letter, digit, or underscore) or a space. One or more of those is written [\w ]+. We want the first of those at the start of a line,
so we get ^[\w ]+. The “hat” (^) means “start of line.” Each of the rest of the fields can be expressed as a tab followed by
some words: ( [\w ]+). Now we take an arbitrary number of those followed by an end of line: ( [\w ]+)*$. The dollar sign ($)
means “end of line.”

Note how we can’t see that the tab characters are really tabs, but in this case they expand in the typesetting to reveal
themselves.

Now for the more interesting part of the exercise: the pattern for the lines from which we want to extract the numeric data.
The first field is as before: ^[\w ]+. It is followed by exactly three numeric fields, each preceded by a tab, ( \d+), so that we
get
Click here to view code image

^[\w ]+(           \d+)(           \d+)(           \d+)$

which, after putting it into a raw string literal, is
Click here to view code image

R"(^[\w ]+(           \d+)(           \d+)(           \d+)$)"

Now all we have to do is to use those patterns. First we will just validate the table layout:
Click here to view code image

int main()

{

          ifstream in {"table.txt"};        // input file
          if (!in) error("no input file\n");

          string line;                                // input buffer
          int lineno = 0;

          regex header {R"(^[\w ]+(           [\w ]+)*$)"};                      // header line
          regex row {R"(^[\w ]+(              \d+)(  \d+)(   \d+)$)"};        // data line

          if (getline(in,line)) {                  // check header line
                    smatch matches;



                    if (!regex_match(line, matches, header))

                              error("no header");

          }
          while (getline(in,line)) {         // check data line
                    ++lineno;

                    smatch matches;

                    if (!regex_match(line, matches, row))

                              error("bad line",to_string(lineno));

          }
}

For brevity, we left out the #includes. We are checking all the characters on each line, so we use regex_match() rather than
regex_search(). The difference between those two is exactly that regex_match() must match every character of its input to
succeed, whereas regex_search() looks at the input trying to find a substring that matches. Mistakenly typing regex_match()

when you meant regex_search() (or vice versa) can be a most frustrating bug to find. However, both of those functions use
their “matches” argument identically.

We can now proceed to verify the data in that table. We keep a sum of the number of pupils in the boys (“drenge”) and girls
(“piger”) columns. For each row, we check that last field (“ELEVER IALT”) really is the sum of the first two fields. The last
row (“Alle klasser”) purports to be the sum of the columns above. To check that, we modify row to make the text field a sub-
match so that we can recognize “Alle klasser”:
Click here to view code image

int main()

{

          ifstream in {"table.txt"};              // input file
          if (!in) error("no input file");

          string line;                                      // input buffer
          int lineno = 0;

          regex header {R"(^[\w ]+(           [\w ]+)*$)"};                   // header line
          regex row {R"(^[\w ]+(              \d+)(  \d+)(   \d+)$)"};      // data line

          if (getline(in,line)) {                      // check header line
                    smatch matches;

                    if (regex_match(line, matches, header)) {

                              error("no header");

                    }
          }

          // column totals:
          int boys = 0;

          int girls = 0;

          while (getline(in,line)) {

                    ++lineno;

                    smatch matches;

                    if (!regex_match(line, matches, row))

                              cerr << "bad line: " <<  lineno << '\n';

                    if (in.eof()) cout << "at eof\n";

                    // check row:
                    int curr_boy = from_string<int>(matches[2]);

                    int curr_girl = from_string<int>(matches[3]);

                    int curr_total = from_string<int>(matches[4]);

                    if (curr_boy+curr_girl != curr_total)  error("bad row sum \n");

                    if (matches[1]=="Alle klasser") {           // last line
                              if (curr_boy != boys) error("boys don't add up\n");

                              if (curr_girl != girls) error("girls don't add up\n");

                              if (!(in>>ws).eof()) error("characters after total line");

                              return 0;

                    }

                    // update totals:



                    boys += curr_boy;

                    girls += curr_girl;

          }

          error("didn't find total line");

}

The last row is semantically different from the other rows — it is their sum. We recognize it by its label (“Alle klasser”). We
decided to accept no more non-whitespace characters after that last one (using the technique from to<>(); §23.2) and to give
an error if we did not find it.

We used from_string() from §23.2 to extract an integer value from the data fields. We had already checked that those
fields consisted exclusively of digits so we did not have to check that the string-to-int conversion succeeded.

23.10 References
Regular expressions are a popular and useful tool. They are available in many programming languages and in many formats.
They are supported by an elegant theory based on formal languages and by an efficient implementation technique based on state
machines. The full generality of regular expressions, their theory, their implementation, and the use of state machines in general
are beyond the scope of this book. However, because these topics are rather standard in computer science curricula and
because regular expressions are so popular, it is not hard to find more information (should you need it or just be interested).

For more information, see:
Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools, Second

Edition (usually called “The Dragon Book”). Addison-Wesley, 2007. ISBN 0321547985.
Cox, Russ. “Regular Expression Matching Can Be Simple and Fast (but Is Slow in Java, Perl, PHP, Python, Ruby, . . .).”

http://swtch.com/~rsc/regexp/regexp1.html.
Maddock, J. boost::regex documentation. www.boost.org/.
Schwartz, Randal L., Tom Phoenix, and Brian D. Foy. Learning Perl, Fourth Edition. O’Reilly, 2005. ISBN 0596101058.

 Drill

1. Find out if regex is shipped as part of your standard library. Hint: Try std::regex and tr1::regex.
2. Get the little program from §23.7 to work; that may involve figuring out how to set the project and/or command-line

options to link to the regex library and use the regex headers.
3. Use the program from drill 2 to test the patterns from §23.7.

Review
1. Where do we find “text”?
2. What are the standard library facilities most frequently useful for text analysis?
3. Does insert() add before or after its position (or iterator)?
4. What is Unicode?
5. How do you convert to and from a string representation (to and from some other type)?
6. What is the difference between cin>>s and getline(cin,s) assuming s is a string?
7. List the standard streams.
8. What is the key of a map? Give examples of useful key types.
9. How do you iterate over the elements of a map?

10. What is the difference between a map and a multimap? Which useful map operation is missing for multimap, and
why?

11. What operations are required for a forward iterator?
12. What is the difference between an empty field and a nonexistent field? Give two examples.
13. Why do we need an escape character to express regular expressions?
14. How do you get a regular expression into a regex variable?
15. What does \w+\s\d{4} match? Give three examples. What string literal would you use to initialize a regex variable

http://swtch.com/~rsc/regexp/regexp1.html
http://www.boost.org/


with that pattern?
16. How (in a program) do you find out if a string is a valid regular expression?
17. What does regex_search() do?
18. What does regex_match() do?
19. How do you represent the character dot (.) in a regular expression?
20. How do you represent the notion of “at least three” in a regular expression?
21. Is 7 a \w character? Is _ (underscore)?
22. What is the notation for an uppercase character?
23. How do you specify your own character set?
24. How do you extract the value of an integer field?
25. How do you represent a floating-point number as a regular expression?
26. How do you extract a floating-point value from a match?
27. What is a sub-match? How do you access one?

Terms
match
multimap

pattern
regex_match()

regex_search()

regular expression
search
smatch

sub-pattern

Exercises
1. Get the email file example to run; test it using a larger file of your own creation. Be sure to include messages that are

likely to trigger errors, such as messages with two address lines, several messages with the same address and/or same
subject, and empty messages. Also test the program with something that simply isn’t a message according to that
program’s specification, such as a large file containing no –––– lines.

2. Add a multimap and have it hold subjects. Let the program take an input string from the keyboard and print out every
message with that string as its subject.

3. Modify the email example from §23.4 to use regular expressions to find the subject and sender.
4. Find a real email message file (containing real email messages) and modify the email example to extract subject lines

from sender names taken as input from the user.
5. Find a large email message file (thousands of messages) and then time it as written with a multimap and with that

multimap replaced by an unordered_multimap. Note that our application does not take advantage of the ordering of
the multimap.

6. Write a program that finds dates in a text file. Write out each line containing at least one date in the format line–

number: line. Start with a regular expression for a simple format, e.g., 12/24/2000, and test the program with that.
Then, add more formats.

7. Write a program (similar to the one in the previous exercise) that finds credit card numbers in a file. Do a bit of research
to find out what credit card formats are really used.

8. Modify the program from §23.8.7 so that it takes as inputs a pattern and a file name. Its output should be the numbered
lines (line–number: line) that contain a match of the pattern. If no matches are found, no output should be produced.

9. Using eof() (§B.7.2), it is possible to determine which line of a table is the last. Use that to (try to) simplify the table-
checking program from §23.9. Be sure to test your program with files that end with empty lines after the table and with
files that don’t end with a newline at all.



10. Modify the table-checking program from §23.9 to write a new table where the rows with the same initial digit
(indicating the year: first grades start with 1) are merged.

11. Modify the table-checking program from §23.9 to see if the number of students is increasing or decreasing over the years
in question.

12. Write a program, based on the program that finds lines containing dates (exercise 6), that finds all dates and reformats
them to the ISO yyyy-mm-dd format. The program should take an input file and produce an output file that is identical to
the input file except for the changed date formatting.

13. Does dot (.) match '\n'? Write a program to find out.
14. Write a program that, like the one in §23.8.7, can be used to experiment with pattern matching by typing in a pattern.

However, have it read a file into memory (representing a line break with the newline character, '\n'), so that you can
experiment with patterns spanning line breaks. Test it and document a dozen test patterns.

15. Describe a pattern that cannot be expressed as a regular expression.
16. For experts only: Prove that the pattern found in the previous exercise really isn’t a regular expression.

Postscript

It is easy to get trapped into the view that computers and computation are all about numbers, that computing is a form of math.
Obviously, it is not. Just look at your computer screen; it is full of text and pictures. Maybe it’s busy playing music. For every
application, it is important to use proper tools. In the context of C++, that means using appropriate libraries. For text
manipulation, the regular expression library is often a key tool — and don’t forget the maps and the standard algorithms.



24. Numerics

“For every complex problem there is an answer that is
clear, simple, and wrong.”

—H. L. Mencken

This chapter is an overview of some fundamental language and library facilities supporting numeric computation. We present
the basic problems of size, precision, and truncation. The central part of the chapter is a discussion of multidimensional arrays
— both C-style and an N-dimensional matrix library. We introduce random numbers as frequently needed for testing,
simulation, and games. Finally, we list the standard mathematical functions and briefly introduce the basic functionality of the
standard library complex numbers.

24.1 Introduction
24.2 Size, precision, and overflow

24.2.1 Numeric limits
24.3 Arrays
24.4 C-style multidimensional arrays
24.5 The Matrix library

24.5.1 Dimensions and access
24.5.2 1D Matrix

24.5.3 2D Matrix

24.5.4 Matrix I/O
24.5.5 3D Matrix

24.6 An example: solving linear equations
24.6.1 Classical Gaussian elimination
24.6.2 Pivoting
24.6.3 Testing

24.7 Random numbers
24.8 The standard mathematical functions
24.9 Complex numbers
24.10 References

24.1 Introduction

For some people, numerics — that is, serious numerical computations — are everything. Many scientists, engineers, and
statisticians are in this category. For many people, numerics are sometimes essential. A computer scientist occasionally
collaborating with a physicist would be in this category. For most people, a need for numerics — beyond simple arithmetic of
integers and floating-point numbers — is rare. The purpose of this chapter is to address language-technical details needed to
deal with simple numerical problems. We do not attempt to teach numerical analysis or the finer points of floating-point
operations; such topics are far beyond the scope of this book and blend with domain-specific topics in the application areas.
Here, we present

• Issues related to the built-in types having fixed size, such as precision and overflow
• Arrays, both the built-in notion of multidimensional arrays and a Matrix library that is better suited to numerical
computation

• A most basic description of random numbers
• The standard library mathematical functions



• Complex numbers
The emphasis is on the Matrix library that makes handling of matrices (multidimensional arrays) trivial.

24.2 Size, precision, and overflow

When we use the built-in types and usual computational techniques, numbers are stored in fixed amounts of memory; that is, the
integer types (int, long, etc.) are only approximations of the mathematical notion of integers (whole numbers) and the floating-
point types (float, double, etc.) are (only) approximations of the mathematical notion of real numbers. This implies that from
a mathematical point of view, some computations are imprecise or wrong. Consider:
Click here to view code image

float x = 1.0/333;

float sum = 0;

for (int i=0; i<333; ++i) sum+=x;

cout << setprecision(15) << sum << "\n";

Running this, we do not get 1 as someone might naively expect, but rather

0.999999463558197

We expected something like that. What we see here is an effect of a rounding error. A floating-point number has only a fixed
number of bits, so we can always “fool it” by specifying a computation that requires more bits to represent a result than the
hardware provides. For example, the rational number 1/3 cannot be represented exactly as a decimal number (however many
decimals we use). Neither can 1/333, so when we add 333 copies of x (the machine’s best approximation of 1/333 as a float),
we get something that is slightly different from 1. Whenever we make significant use of floating-point numbers, rounding errors
will occur; the only question is whether the error significantly affects the result.

Always check that your results are plausible. When you compute, you must have some notion of what a reasonable result
would look like or you could easily get fooled by some “silly bug” or computation error. Be aware of the possibility of
rounding errors and if in doubt, consult an expert or read up on numerical techniques.

 Try This

Replace 333 in the example with 10 and run the example again. What result would you expect? What result did
you get? You have been warned!

The effects of integers being of fixed size can surface more dramatically. The reason is that floating-point numbers are by
definition approximations of (real) numbers, so they tend to lose precision (i.e., lose the least significant bits). Integers, on the
other hand, tend to overflow (i.e., lose the most significant bits). That tends to make floating-point errors sneaky (and often
unnoticed by novices) and integer errors spectacular (and typically hard not to notice). Remember that we prefer errors to
manifest themselves early and spectacularly so that we can fix them.

Consider an integer problem:

short int y = 40000;

int i = 1000000;

cout << y << "   " << i*i << "\n";

Running this, we got the output

–25536      –727379968

That was expected. What we see here is the effect of overflow. Integer types represent (relatively) small integers only. There
just aren’t enough bits to exactly represent every number we need in a way that’s amenable to efficient computation. Here, a 2-
byte short integer could not represent 40,000 and a 4-byte int can’t represent 1,000,000,000,000. The exact sizes of C++



built-in types (§A.8) depend on the hardware and the compiler; sizeof(x) gives you the size of x in bytes for a variable x or a
type x. By definition, sizeof(char)==1. We can illustrate sizes like this:

These sizes are for Windows using a Microsoft compiler. C++ supplies integers and floating-point numbers of a variety of
sizes, but unless you have a very good reason for something else, stick to char, int, and double. In most (but of course not
all) programs, the remaining integer and floating-point types are more trouble than they are worth.

You can assign an integer to a floating-point variable. If the integer is larger than the floating-point type can represent, you
lose precision. For example:
Click here to view code image

cout << "sizes: " << sizeof(int) << ' ' << sizeof(float) << '\n';

int x = 2100000009;      // large int
float f = x;

cout << x << ' ' << f << '\n';

cout << setprecision(15) << x << ' ' << f << '\n';

On our machine, this produced

Sizes: 4 4

2100000009 2.1e+009

2100000009 2100000000

A float and an int take up the same amount of space (4 bytes). A float is represented as a “mantissa” (typically a value
between 0 and 1) and an exponent (mantissa*10exponent), so it cannot represent exactly the largest int. (If we tried to, where
would we find space for the mantissa after we had taken the space needed for the exponent?) As it should, f represented
2100000009 as approximately correct as it could. However, that last 9 was too much for it to represent exactly — and that was
of course why we chose that number.

On the other hand, when you assign a floating-point number to an integer, you get truncation; that is, the fractional part — the
digits after the decimal point — is simply thrown away. For example:

float f = 2.8;

int x = f;

cout << x << ' ' << f << '\n';

The value of x will be 2. It will not be 3 as you might imagine if you are used to “4/5 rounding rules.” C++ float-to-int

conversions truncate rather than round.

When you calculate, you must be aware of possible overflow and truncation. C++ will not catch such problems for you.
Consider:
Click here to view code image

void f(int i, double fpd)

{

          char c = i;            // yes: chars really are very small integers
          short s = i;          // beware: an int may not fit in a short int
          i = i+1;                // what if i was the largest int?
          long lg = i*i;      // beware: a long may not be any larger than an int
          float fps = fpd;  // beware: a large double may not fit in a float
          i = fpd;               // truncates: e.g., 5.7 –> 5
          fps = i;               // you can lose precision (for very large int values)



}

void g()

{

          char ch = 0;

          for (int i = 0; i<500; ++i)

                    cout << int(ch++) << '\t';

}

If in doubt, check, experiment! Don’t just despair and don’t just read the documentation. Unless you are experienced, it is easy
to misunderstand the highly technical documentation related to numerics.

 Try This

Run g(). Modify f() to print out c, s, i, etc. Test it with a variety of values.

The representation of integers and their conversions will be examined further in §25.5.3. When we can, we prefer to limit
ourselves to a few data types. That can help minimize confusion. For example, by not using float in a program, but only
double, we eliminate the possibility of double-to-float conversion problems. In fact, we prefer to limit our use to int,
double, and complex (see §24.9) for computation, char for characters, and bool for logical entities. We deal with the rest
of the arithmetic types only when we have to.

24.2.1 Numeric limits

In <limits>, <climits>, <limits.h>, and <float.h>, each C++ implementation specifies properties of the built-in types, so
that programmers can use those properties to check against limits, set sentinels, etc. These values are listed in §B.9.1 and can
be critically important to low-level tool builders. If you think you need them, you are probably too close to the hardware, but
there are other uses. For example, it is not uncommon to be curious about aspects of the language implementation, such as
“How big is an int?” or “Are chars signed?” Trying to find the definite and correct answers in the system documentation can
be difficult, and the standard only specifies minimum requirements. However, a program giving the answer is trivial to write:
Click here to view code image

cout << "number of bytes in an int: " << sizeof(int) << '\n';

cout << "largest int: " << INT_MAX << '\n';

cout << "smallest int value: " << numeric_limits<int>::min() << '\n';

if (numeric_limits<char>::is_signed)

          cout << "char is signed\n";

else

          cout << "char is unsigned\n";

char ch = numeric_limits<char>::min() ;         // smallest positive value
cout << "the char with the smallest positive value: " << ch << '\n';

cout << "the int value of the char with the smallest positive value: "

          << int(ch) << '\n';

When you write code intended to run on several kinds of hardware, it occasionally becomes immensely valuable to have this
kind of information available to the program. The alternative would typically be to hand-code the answers into the program,
thereby creating a maintenance hazard.

These limits can also be useful when you want to detect overflow.

24.3 Arrays
An array is a sequence of elements where we can access an element by its index (position). Another word for that general
notion is vector. Here we are particularly concerned with arrays where the elements are themselves arrays: multidimensional
arrays. A common word for a multidimensional array is matrix. The variety of names is a sign of the popularity and utility of
the general concept. The standard vector (§B.4), array (§20.9), and the built-in array (§A.8.2) are one-dimensional. So, what



if we need two dimensions (e.g., a matrix)? If we need seven dimensions?
We can visualize one- and two-dimensional arrays like this:

Arrays are fundamental to most computing (“number crunching”). Most interesting scientific, engineering, statistics, and
financial computations rely heavily on arrays.

We often refer to an array as consisting of rows and columns:

A column is a sequence of elements with the same first (x) coordinate. A row is a set of elements with the same second (y)
coordinate.

24.4 C-style multidimensional arrays
The C++ built-in array can be used as a multidimensional array. We simply treat a multidimensional array as an array of
arrays, that is, an array with arrays as elements. For example:
Click here to view code image

int ai[4];                     // 1-dimensional array
double ad[3][4];      // 2-dimensional array
char ac[3][4][5];       // 3-dimensional array
ai[1] = 7;

ad[2][3] = 7.2;

ac[2][3][4] = 'c';

This approach inherits the virtues and the disadvantages of the one-dimensional array:
• Advantages

• Direct mapping to hardware
• Efficient for low-level operations
• Direct language support

• Problems
• C-style multidimensional arrays are arrays of arrays (see below).
• Fixed sizes (i.e., fixed at compile time). If you want to determine a size at run time, you’ll have to use the free store.
• Can’t be passed cleanly. An array turns into a pointer to its first element at the slightest provocation.
• No range checking. As usual, an array doesn’t know its own size.
• No array operations, not even assignment (copy).

Built-in arrays are widely used for numeric computation. They are also a major source of bugs and complexity. For most
people, they are a serious pain to write and debug. Look them up if you are forced to use them (e.g., The C++ Programming



Language). Unfortunately, C++ shares its multidimensional arrays with C, so there is a lot of code “out there” that uses them.

The most fundamental problem is that you can’t pass multidimensional arrays cleanly, so you have to fall back on pointers
and explicit calculation of locations in a multidimensional array. For example:
Click here to view code image

void f1(int a[3][5]);                            // useful for [3][5] matrices only

void f2(int [ ][5], int dim1);             // 1st dimension can be a variable

void f3(int [5 ][ ], int dim2);            // error: 2nd dimension cannot be a variable

void f4(int[ ][ ], int dim1, int dim2);   // error (and wouldn’t work anyway)

void f5(int* m, int dim1, int dim2)     // odd, but works
{

          for (int i=0; i<dim1; ++i)

                    for (int j = 0; j<dim2; ++j) m[i*dim2+j] = 0;

}

Here, we pass m as an int* even though it is a two-dimensional array. As long as the second dimension needs to be a variable
(a parameter), there really isn’t any way of telling the compiler that m is a (dim1,dim2) array, so we just pass a pointer to the
start of the memory that holds it. The expression m[i*dim2+j] really means m[i,j], but because the compiler doesn’t know
that m is a two-dimensional array, we have to calculate the position of m[i,j] in memory.

This is too complicated, primitive, and error-prone for our taste. It can also be slow because calculating the location of an
element explicitly complicates optimization. Instead of trying to teach you all about it, we will concentrate on a C++ library
that eliminates the problems with the built-in arrays.

24.5 The Matrix library
What are the basic “things” we want from an array/matrix aimed at numerical computation?

• “My code should look very much like what I find in my math/engineering textbook text about arrays.”
• Or about vectors, matrices, tensors.

• Compile-time and run-time checked.
• Arrays of any dimension.
• Arrays with any number of elements in a dimension.

• Arrays are proper variables/objects.
• You can pass them around.

• Usual array operations:
• Subscripting: ( )
• Slicing: [ ]
• Assignment: =
• Scaling operations (+=, –=, *=, %=, etc.)
• Fused vector operations (e.g., res[i] = a[i]*c+b[2])
• Dot product (res = sum of a[i]*b[i]; also known as the inner_product)

• Basically, transforms conventional array/vector notation into the code you would laboriously have had to write yourself
(and runs at least as efficiently as that).

• You can extend it yourself as needed (no “magic” was used in its implementation).
The Matrix library does that and only that. If you want more, such as advanced array functions, sparse arrays, control over
memory layout, etc., you must write it yourself or (preferably) use a library that better approximates your needs. However,
many such needs can be served by building algorithm and data structures on top of Matrix. The Matrix library is not part of
the ISO C++ standard library. You find it on the book support site as Matrix.h. It defines its facilities in namespace



Numeric_lib. We chose the name “matrix” because “vector” and “array” are even more overused in C++ libraries. The
plural of matrix is matrices (with matrixes as a rarer form). Where Matrix refers to a C++ language entity, we will use
Matrixes as the plural to avoid confusion. The implementation of the Matrix library uses advanced techniques and will not be
described here.

24.5.1 Dimensions and access
Consider a simple example:
Click here to view code image

#include "Matrix.h"

using namespace Numeric_lib;

void f(int n1, int n2, int n3)

{

          Matrix<double,1> ad1(n1);        // elements are doubles; one dimension
          Matrix<int,1> ai1(n1);                  // elements are ints; one dimension
          ad1(7) = 0;                                      // subscript using ( ) — Fortran style
          ad1[7] = 8;                                      // [ ] also works — C style

          Matrix<double,2> ad2(n1,n2);          // 2-dimensional
          Matrix<double,3> ad3(n1,n2,n3);    // 3-dimensional
          ad2(3,4) = 7.5;                                       // true multidimensional subscripting
          ad3(3,4,5) = 9.2;

}

So, when you define a Matrix (an object of a Matrix class), you specify the element type and the number of dimensions.
Obviously, Matrix is a template, and the element type and the number of dimensions are template parameters. The result of
giving a pair of arguments to Matrix (e.g., Matrix<double,2>) is a type (a class) of which you can define objects by
supplying arguments (e.g., Matrix<double,2> ad2(n1,n2)); those arguments specify the dimensions. So, ad2 is a two-
dimensional array with dimensions n1 and n2, also known as an n1-by-n2 matrix. To get an element of the declared element
type from a one-dimensional Matrix, you subscript with one index; to get an element of the declared element type from a two-
dimensional Matrix, you subscript with two indices; and so on.

Like built-in arrays, and vectors, our Matrix indices are zero-based (rather than 1-based like Fortran arrays); that is, the
elements of a Matrix are numbered [0,max), where max is the number of elements.

This is simple and “straight out of the textbook.” If you have problems with this, you need to look at an appropriate math
textbook, not a programmer’s manual. The only “cleverness” here is that you can leave out the number of dimensions for a
Matrix: “one-dimensional” is the default. Note also that we can use [ ] for subscripting (C and C++ style) or ( ) for
subscripting (Fortran style). Having both allows us to better deal with multiple dimensions. The [x] subscript notation always
takes a single subscript, yielding the appropriate row of the Matrix; if a is an N-dimensional Matrix, a[x] is an N–1-
dimensional Matrix. The (x,y,z) subscript notation takes one or more subscripts, yielding the appropriate element of the
Matrix; the number of subscripts must equal the number of dimensions.

Let’s see what happens when we make mistakes:
Click here to view code image

void f(int n1, int n2, int n3)

{

          Matrix<int,0> ai0;           // error: no 0D matrices

          Matrix<double,1> ad1(5);

          Matrix<int,1> ai(5);

          Matrix<double,1> ad11(7);

          ad1(7) = 0;                       // Matrix_error exception (7 is out of range)
          ad1 = ai;                           // error: different element types
          ad1 = ad11;                     // Matrix_error exception (different dimensions)



          Matrix<double,2> ad2(n1);         // error: length of 2nd dimension missing
          ad2(3) = 7.5;                                   // error: wrong number of subscripts
          ad2(1,2,3) = 7.5;                            // error: wrong number of subscripts

          Matrix<double,3> ad3(n1,n2,n3);

          Matrix<double,3> ad33(n1,n2,n3);

          ad3 = ad33;                     // OK: same element type, same dimensions
}

We catch mismatches between the declared number of dimensions and their use at compile time. Range errors we catch at run
time and throw a Matrix_error exception.

The first dimension is the row and the second the column, so we index a 2D matrix (two-dimensional array) with
(row,column). We can also use the [row] [column] notation because subscripting a 2D matrix with a single index gives the 1D
matrix that is the row. We can visualize that like this:

This Matrix will be laid out in memory in “row-first” order:

A Matrix “knows” its dimensions, so we can address the elements of a Matrix passed as an argument very simply:
Click here to view code image

void init(Matrix<int,2>& a)       // initialize each element to a characteristic value
{

          for (int i=0; i<a.dim1(); ++i)

                    for (int j = 0; j<a.dim2(); ++j)

                              a(i,j) = 10*i+j;

}

void print(const Matrix<int,2>& a)    // print the elements row by row
{

          for (int i=0; i<a.dim1(); ++i) {

                    for (int j = 0; j<a.dim2(); ++j)

                              cout << a(i,j) <<'\t';

                    cout << '\n';

          }
}

So, dim1() is the number of elements in the first dimension, dim2() the number of elements in the second dimension, and so
on. The type of the elements and the number of dimensions are part of the Matrix type, so we cannot write a function that takes
any Matrix as an argument (but we could write a template to do that):
Click here to view code image

void init(Matrix& a);    // error: element type and number of dimensions missing

Note that the Matrix library doesn’t supply matrix operations, such as adding two 4D Matrixes or multiplying a 2D Matrix

with a 1D Matrix. Doing so elegantly and efficiently is currently beyond the scope of this library. Matrix libraries of a variety
of designs could be built on top of the Matrix library (see exercise 12).

24.5.2 1D Matrix

What can we do to the simplest Matrix, the 1D (one-dimensional) Matrix?
We can leave the number of dimensions out of a declaration because 1D is the default:

Click here to view code image



Matrix<int,1> a1(8);     // a1 is a 1D Matrix of ints
Matrix<int> a(8);          // means Matrix<int,1> a(8);

So, a and a1 are of the same type (Matrix<int,1>). We can ask for the size (the number of elements) and the dimension (the
number of elements in a dimension). For a 1D Matrix, those are the same.
Click here to view code image

a.size();                 // number of elements in Matrix
a.dim1();               // number of elements in 1st dimension

We can ask for the elements as laid out in memory, that is, a pointer to the first element:
Click here to view code image

int* p = a.data();        // extract data as a pointer to an array

This is useful for passing Matrix data to C-style functions taking pointer arguments. We can subscript:
Click here to view code image

a(i);            // ith element (Fortran style), but range checked
a[i];            // ith element (C style), range checked
a(1,2);       // error: a is a 1D Matrix

It is common for algorithms to refer to part of a Matrix. Such a “part” is called a slice() (a sub-Matrix or a range of
elements) and we provide two versions:
Click here to view code image

a.slice(i);         // the elements from a[i] to the last
a.slice(i,n);     // the n elements from a[i] to a[i+n–1]

Subscripts and slices can be used on the left-hand side of an assignment as well as on the right. They refer to the elements of
their Matrix without making copies of them. For example:
Click here to view code image

a.slice(4,4) = a.slice(0,4);       // assign first half of a to second half

For example, if a starts out as

{ 1 2 3 4 5 6 7 8 }

we get

{ 1 2 3 4 1 2 3 4 }

Note that the most common slices are the “initial elements” of a Matrix and the “last elements”; that is, a.slice(0,j) is the
range [0:j) and a.slice(j) is the range [j:a.size()). In particular, the example above is most easily written
Click here to view code image

a.slice(4) = a.slice(0,4);       // assign first half of a to second half

That is, the notation favors the common cases. You can specify i and n so that a.slice(i,n) is outside the range of a. However,
the resulting slice will refer only to the elements actually in a. For example, a.slice(i,a.size()) refers to the range
[i:a.size()), and a.slice(a.size()) and a.slice(a.size(),2) are empty Matrixes. This happens to be a useful convention for
many algorithms. We borrowed that convention from math. Obviously, a.slice(i,0) is an empty Matrix. We wouldn’t write
that deliberately, but there are algorithms that are simpler if a.slice(i,n) where n happens to be 0 is an empty Matrix (rather
than an error we have to avoid).

We have the usual (for C++ objects) copy operations that copy all elements:
Click here to view code image

Matrix<int> a2 = a;         // copy initialization



a = a2;                               // copy assignment

We can apply a built-in operation to each element of a Matrix:
Click here to view code image

a *= 7;                         // scaling: a[i]*=7 for each i (also +=, –=, /=, etc.)
a = 7;                          // a[i]=7 for each i

This works for every assignment and every composite assignment operator (=, +=, –=, /=, *=, %=, ^=, &=, |=, >>=, <<=)
provided the element type supports that operator. We can also apply a function to each element of a Matrix:
Click here to view code image

a.apply(f);               // a[i]=f(a[i]) for each element a[i]
a.apply(f,7);            // a[i]=f(a[i],7) for each element a[i]

The composite assignment operators and apply() modify the elements of their Matrix argument. If we instead want to create a
new Matrix as the result, we can use
Click here to view code image

b = apply(abs,a);    // make a new Matrix with b(i)==abs(a(i))

This abs is the standard library’s absolute value function (§24.8). Basically, apply(f,x) relates to x.apply(f) as + relates to
+=. For example:
Click here to view code image

b = a*7;                     // b[i] = a[i]*7 for each i
a *= 7;                       // a[i] = a[i]*7 for each i
y = apply(f,x);         // y[i] = f(x[i]) for each i
x.apply(f);               // x[i] = f(x[i]) for each i

Here we get a==b and x==y.

In Fortran, this second apply is called a “broadcast” function and is typically written f(x) rather than apply(f,x). To make
this facility available for every function f (rather than just a selected few functions as in Fortran), we need a name for the
“broadcast” operation, so we (re)use apply.

In addition, to match the two-argument version of the member apply, a.apply(f,x), we provide
Click here to view code image

b = apply(f,a,x);                   // b[i]=f(a[i],x) for each i

For example:
Click here to view code image

double scale(double d, double s) { return d*s; }

b = apply(scale,a,7);                // b[i] = a[i]*7 for each i

Note that the “freestanding” apply() takes a function that produces a result from its argument; apply() then uses that result to
initialize the resulting Matrix. Typically it does not modify the Matrix to which it is applied. The member apply() differs in
that it takes a function that modifies its argument; that is, it modifies elements of the Matrix to which it is applied. For
example:
Click here to view code image

void scale_in_place(double& d, double s) { d *= s; }

b.apply(scale_in_place,7);     // b[i] *= 7 for each i

We also supply a couple of the most useful functions from traditional numerics libraries:
Click here to view code image

Matrix<int> a3 = scale_and_add(a,8,a2);         // fused multiply and add



int r = dot_product(a3,a);                                   // dot product

The scale_and_add() operation is often referred to as fused multiply-add or simply fma; its definition is
result(i)=arg1(i)*arg2+arg3(i) for each i in the Matrix. The dot product is also known as the inner_product and is
described in §21.5.3; its definition is result+=arg1(i)*arg2(i) for each i in the Matrix where result starts out as 0.

One-dimensional arrays are very common; you can represent one as a built-in array, a vector, or a Matrix. You use Matrix

if you need the matrix operations provided, such as *=, or if the Matrix has to interact with higher-dimensional Matrixes.

You can explain the utility of a library like this as “It matches the math better” or “It saves you from writing all those loops
to do things for each element.” Either way, the resulting code is significantly shorter and there are fewer opportunities to make
mistakes writing it. The Matrix operations — such as copy, assignment to all elements, and operations on all elements — save
us from reading or writing a loop (and from wondering if we got the loop exactly right).

Matrix supports two constructors for copying data from a built-in array into a Matrix. For example:
Click here to view code image

void some_function(double* p, int n)

{

          double val[] = { 1.2, 2.3, 3.4, 4.5 };

          Matrix<double> data(p,n);

          Matrix<double> constants(val);

          // . . .
}

These are often useful when we have our data delivered in terms of arrays or vectors from parts of a program not using
Matrixes.

Note that the compiler is able to deduce the number of elements of an initialized array, so we don’t have to give the number
of elements when we define constants — it is 4. On the other hand, the compiler doesn’t know the number of elements given
only a pointer, so for data we have to specify both the pointer (p) and the number of elements (n).

24.5.3 2D Matrix

The general idea of the Matrix library is that Matrixes of different dimensions really are quite similar, except where you need
to be specific about dimensions, so most of what we said about a 1D Matrix applies to a 2D Matrix:
Click here to view code image

Matrix<int,2> a(3,4);

int s = a.size();                // number of elements
int d1 = a.dim1();           // number of elements in a row
int d2 = a.dim2();           // number of elements in a column
int* p = a.data();            // extract data as a pointer to a C-style array

We can ask for the total number of elements and the number of elements of each dimension. We can get a pointer to the
elements as they are laid out in memory as a matrix.

We can subscript:
Click here to view code image

a(i,j);                            // (i,j)th element (Fortran style), but range checked
a[i];                              // ith row (C style), range checked
a[i][j];                          // (i,j)th element (C style)

For a 2D Matrix, subscripting with [i] yields the 1D Matrix that is the ith row. This means that we can extract rows and pass
them to operations and functions that require a 1D Matrix or even a built-in array (a[i].data()). Note that a(i,j) may be faster
than a[i][j], though that will depend a lot on the compiler and optimizer.



We can take slices:
Click here to view code image

a.slice(i);                      // the rows from the a[i] to the last
a.slice(i,n);                  // the rows from the a[i] to the a[i+n–1]

Note that a slice of a 2D Matrix is itself a 2D Matrix (possibly with fewer rows).
The distributed operations are the same as for 1D Matrixes. These operations don’t care how we organize the elements;

they just apply to all elements in the order those elements are laid down in memory:
Click here to view code image

Matrix<int,2> a2 = a;         // copy initialization
a = a2;                                  // copy assignment
a *= 7;                                  // scaling (and +=, –=, /=, etc.)
a.apply(f);                           // a(i,j)=f(a(i,j)) for each element a(i,j)
a.apply(f,7);                        // a(i,j)=f(a(i,j),7) for each element a(i,j)
b=apply(f,a);                      // make a new Matrix with b(i,j)==f(a(i,j))
b=apply(f,a,7);                  // make a new Matrix with b(i,j)==f(a(i,j),7)

It turns out that swapping rows is often useful, so we supply that:
Click here to view code image

a.swap_rows(1,2);            // swap rows a[1] <–> a[2]

There is no swap_columns(). If you need it, write it yourself (exercise 11). Because of the row-first layout, rows and
columns are not completely symmetrical concepts. This asymmetry also shows up in that [i] yields a row (and we have not
provided a column selection operator). In that (i,j), the first index, i, selects the row. The asymmetry also reflects deep
mathematical properties.

There seems to be an infinite number of “things” that are two-dimensional and thus obvious candidates for applications of
2D Matrixes:
Click here to view code image

enum Piece { none, pawn, knight, queen, king, bishop, rook };

Matrix<Piece,2> board(8,8);          // a chessboard

const int white_start_row = 0;

const int black_start_row = 7;

Matrix<Piece> start_row

          = {rook, knight, bishop, queen, king, bishop, knight, rook};

Matrix<Piece> clear_row(8) ;   // 8 elements of the default value

The initialization of clear_row takes advantage of none==0 and that elements are by default initialized to 0.
We can use start_row and clear_row like this:

Click here to view code image

board[white_start_row] = start_row;                    // reset white pieces



for (int i = 1; i<7; ++i) board[i] = clear_row;      // clear middle of the board
board[black_start_row] = start_row;                   // reset black pieces

Note when we extract a row, using [i], we get an lvalue (§4.3); that is, we can assign to the result of board[i].

24.5.4 Matrix I/O
The Matrix library provides very simple I/O for 1D and 2D Matrixes:

Matrix<double> a(4);

cin >> a;

cout << a;

This will read four whitespace-separated doubles delimited by curly braces; for example:

{ 1.2 3.4 5.6 7.8 }

The output is very similar, so that you can read in what you wrote out.
The I/O for 2D Matrixes simply reads and writes a curly-brace-delimited sequence of 1D Matrixes. For example:

Matrix<int,2> m(2,2);

cin >> m;

cout << m;

This will read

{

{ 1 2 }

{ 3 4 }

}

The output will be very similar.
The Matrix << and >> operators are provided primarily to make the writing of simple programs simple. For more

advanced uses, it is likely that you will need to replace them with your own. Consequently, the Matrix << and >> are placed
in the MatrixIO.h header (rather than in Matrix.h) so that you don’t have to include it to use Matrixes.

24.5.5 3D Matrix

Basically, a 3D (and higher-dimension) Matrix is just like a 2D Matrix, except with more dimensions. Consider:
Click here to view code image

Matrix<int,3> a(10,20,30);

a.size();                            // number of elements
a.dim1();                          // number of elements in dimension 1
a.dim2();                          // number of elements in dimension 2
a.dim3();                          // number of elements in dimension 3
int* p = a.data();             // extract data as a pointer to a C-style array
a(i,j,k);                              // (i,j,k)th element (Fortran style), but range checked
a[i];                                    // ith row (C style), range checked
a[i][j][k];                            // (i,j,k)th element (C style)
a.slice(i);                           // the rows from the ith to the last
a.slice(i,j);                         // the rows from the ith to the jth
Matrix<int,3> a2 = a;      // copy initialization
a = a2;                                // copy assignment
a *= 7;                                // scaling (and +=, –=, /=, etc.)
a.apply(f);                          // a(i,j,k)=f(a(i,j,k)) for each element a(i,j,k)
a.apply(f,7);                       // a(i,j,k)=f(a(i,j,k),7) for each element a(i,j,k)
b=apply(f,a);                     // make a new Matrix with b(i,j,k)==f(a(i,j,k))
b=apply(f,a,7);                  // make a new Matrix with b(i,j,k)==f(a(i,j,k),7)
a.swap_rows(7,9);            // swap rows a[7] <–> a[9]

If you understand 2D Matrixes, you understand 3D Matrixes. For example, here a is 3D, so a[i] is 2D (provided i is in
range), a[i][j] is 1D (provided j is in range), and a[i][j][k] is the int element (provided k is in range).

We tend to see the world as three-dimensional. That leads to obvious uses of 3D Matrixes in modeling (e.g., a physics
simulation using a Cartesian grid):



Click here to view code image

int grid_nx;                     // grid resolution; set at startup
int grid_ny;

int grid_nz;

Matrix<double,3> cube(grid_nx, grid_ny, grid_nz);

And then if we add time as a fourth dimension, we get a 4D space needing a 4D Matrix. And so on.
For a more advanced version of Matrix, supporting general N-dimensional matrices, see Chapter 29 of The C++

Programming Language.

24.6 An example: solving linear equations

The code for a numerical computation makes sense if you understand the math that it expresses and tends to appear to be utter
nonsense if you don’t. The example used here should be rather trivial if you have learned basic linear algebra; if not, just see it
as an example of transcribing a textbook solution into code with minimal rewording.

The example here is chosen to demonstrate a reasonably realistic and important use of Matrixes. We will solve a set (any
set) of linear equations of this form:

Here, the xs designate the n unknowns; as and bs are given constants. For simplicity, we assume that the unknowns and the
constants are floating-point values. The goal is to find values for the unknowns that simultaneously satisfy the n equations.
These equations can compactly be expressed in terms of a matrix and two vectors:

Ax = b

Here, A is the square n-by-n matrix defined by the coefficients:

The vectors x and b are the vectors of unknowns and constants, respectively:

This system may have zero, one, or an infinite number of solutions, depending on the coefficients of the matrix A and the vector
b. There are various methods for solving linear systems. We use a classic scheme, called Gaussian elimination (see Freeman
and Phillips, Parallel Numerical Algorithms; Stewart, Matrix Algorithms, Volume I; and Wood, Introduction to Numerical
Analysis). First, we transform A and b so that A is an upper-triangular matrix. By upper-triangular, we mean all the
coefficients below the diagonal of A are zero. In other words, the system looks like this:

This is easily done. A zero for position a(i,j) is obtained by multiplying the equation for row i by a constant so that a(i,j)
equals another element in column j, say a(k,j). That done, we just subtract the two equations and a(i,j) == 0 and the other
values in row i change appropriately.

If we can get all the diagonal coefficients to be nonzero, then the system has a unique solution, which can be found by “back
substitution.” The last equation is easily solved:

an,nxn = bn



Obviously, x[n] is b[n]/a(n,n). That done, eliminate row n from the system and proceed to find the value of x[n–1], and so on,
until the value for x[1] is computed. For each n, we divide by a(n,n) so the diagonal values must be nonzero. If that does not
hold, the back substitution method fails, meaning that the system has zero or an infinite number of solutions.

24.6.1 Classical Gaussian elimination
Now let us look at the C++ code to express this. First, we’ll simplify our notation by conventionally naming the two Matrix

types that we are going to use:
Click here to view code image

typedef Numeric_lib::Matrix<double, 2> Matrix;

typedef Numeric_lib::Matrix<double, 1> Vector;

Next we will express our desired computation:
Click here to view code image

Vector classical_gaussian_elimination(Matrix A, Vector b)

{

          classical_elimination(A, b);

          return back_substitution(A, b);

}

That is, we make copies of our inputs A and b (using call by value), call a function to solve the system, and then calculate the
result to return by back substitution. The point is that our breakdown of the problem and our notation for the solution are right
out of the textbook. To complete our solution, we have to implement classical_elimination() and back_substitution().
Again, the solution is in the textbook:
Click here to view code image

void classical_elimination(Matrix& A, Vector& b)

{

          const Index n = A.dim1();

          // traverse from 1st column to the next-to-last
          // filling zeros into all elements under the diagonal:
          for (Index j = 0; j<n-1; ++j) {

                    const double pivot = A(j,j);

                    if (pivot == 0) throw Elim_failure(j);

                    // fill zeros into each element under the diagonal of the ith row:
                    for (Index i = j+1; i<n; ++i) {

                              const double mult = A(i,j) / pivot;

                              A[i].slice(j) = scale_and_add(A[j].slice(j), –mult, A[i].slice(j));

                              b(i) –= mult*b(j);       // make the corresponding change to b
                    }
          }
}

The “pivot” is the element that lies on the diagonal of the row we are currently dealing with. It must be nonzero because we
need to divide by it; if it is zero we give up by throwing an exception:
Click here to view code image

Vector back_substitution(const Matrix& A, const Vector& b)

{

          const Index n = A.dim1();

          Vector x(n);

          for (Index i = n–1; i>= 0; ––i) {

                    double s = b(i)–dot_product(A[i].slice(i+1),x.slice(i+1));

                    if (double m = A(i,i))

                              x(i) = s/m;

                    else

                              throw Back_subst_failure(i);

          }

          return x;

}



24.6.2 Pivoting
We can avoid the divide-by-zero problem and also achieve a more robust solution by sorting the rows to get zeros and small
values away from the diagonal. By “more robust” we mean less sensitive to rounding errors. However, the values change as
we go along placing zeros under the diagonal, so we have to also reorder to get small values away from the diagonal (that is,
we can’t just reorder the matrix and then use the classical algorithm):
Click here to view code image

void elim_with_partial_pivot(Matrix& A, Vector& b)

{

          const Index n = A.dim1();

          for (Index j = 0; j<n; ++j) {

                    Index pivot_row = j;

                    // look for a suitable pivot:
          for (Index k = j+1; k<n; ++k)

                              if (abs(A(k,j)) > abs(A(pivot_row,j))) pivot_row = k;

                    // swap the rows if we found a better pivot:
                    if (pivot_row!=j) {

                              A.swap_rows(j,pivot_row);

                              std::swap(b(j), b(pivot_row));

                    }

                    // elimination:
                    for (Index i = j+1; i<n; ++i) {

                              const double pivot = A(j,j);

                              if (pivot==0) error("can't solve: pivot==0");

                              const double mult = A(i,j)/pivot;

                              A[i].slice(j) = scale_and_add(A[j].slice(j), –mult, A[i].slice(j));

                              b(i) –= mult*b(j);

                    }
          }
}

We use swap_rows() and scale_and_multiply() to make the code more conventional and to save us from writing an
explicit loop.

24.6.3 Testing
Obviously, we have to test our code. Fortunately, there is a simple way to do that:
Click here to view code image

void solve_random_system(Index n)

{

          Matrix A = random_matrix(n);         // see §24.7
          Vector b = random_vector(n);

          cout << "A = " << A << '\n';

          cout << "b = " << b << '\n';

          try {

                    Vector x = classical_gaussian_elimination(A, b);

                    cout << "classical elim solution is x = " << x << '\n';

                    Vector v = A*x;

                    cout << " A*x = " << v << '\n';

          }
          catch(const exception& e) {

                    cerr << e.what() << '\n';

          }
}

We can get to the catch clause in three ways:
• A bug in the code (but, being optimists, we don’t think there are any)
• An input that trips up classical_elimination (elim_with_partial_pivot could do better in many cases)



• Rounding errors
However, our test is not as realistic as we’d like because genuinely random matrices are unlikely to cause problems for
classical_elimination.

To verify our solution, we print out A*x, which had better equal b (or close enough for our purpose, given rounding errors).
The likelihood of rounding errors is the reason we didn’t just do
Click here to view code image

if (A*x!=b) error("substitution failed");

Because floating-point numbers are just approximations to real numbers, we have to accept approximately correct answers. In
general, using == and != on the result of a floating-point computation is best avoided: floating point is inherently an
approximation.

The Matrix library doesn’t define multiplication of a matrix with a vector, so we did that for this program:
Click here to view code image

Vector operator*(const Matrix& m, const Vector& u)

{

          const Index n = m.dim1();

          Vector v(n);

          for (Index i = 0; i<n; ++i) v(i) = dot_product(m[i],u);

          return v;

}

Again, a simple Matrix operation did most of the work for us. The Matrix output operations came from MatrixIO.h as
described in §24.5.4. The random_matrix() and random_vector() functions are simple uses of random numbers (§24.7)
and are left as an exercise. Index is a type alias (§A.16) for the index type used by the Matrix library. We brought it into
scope with a using declaration:

using Numeric_lib::Index;

24.7 Random numbers

If you ask people for a random number, most say 7 or 17, so it has been suggested that those are the “most random” numbers.
People essentially never give the answer 0. Zero is seen to be such a nice round number that it is not perceived as “random”
and could therefore be deemed the “least random” number. From a mathematical point of view this is utter nonsense: it is not
an individual number that is random. What we often need, and what we often refer to as random numbers, is a sequence of
numbers that conform to some distribution and where you cannot easily predict the next number in the sequence given the
previous ones. Such numbers are most useful in testing (that’s one way of generating a lot of test cases), in games (that is one
way of making sure that the next run of the game differs from the previous run), and in simulations (we can make a simulated
entity behave in a “random” fashion within the limits of its parameters).

As a practical tool and a mathematical problem, random numbers reach a high degree of sophistication to match their real-
world importance. Here, we will just touch the basics as needed for simple testing and simulation. In <random>, the standard
library provides a sophisticated set of facilities for generating random numbers to match a variety of mathematical
distributions. The standard library random number facilities are based on two fundamental notions:

• Engines (random number engines): An engine is a function object that generates a uniformly distributed sequence of
integer values.

• Distributions: A distribution is a function object that generates a sequence of values according to a mathematical
formula given a sequence of values from an engine as inputs.

For example, consider the function random_vector() that was used in §24.6.3. A call random_vector(n) produces a
Matrix<double,1> with n elements of type double with random values in the range [0:n):
Click here to view code image

Vector random_vector(Index n)

{

          Vector v(n);



          default_random_engine ran{};                        // generates integers
          uniform_real_distribution<> ureal{0,max};   // maps ints into doubles
                                                                                                 // in [0:max)

          for (Index i = 0; i < n; ++i)

                    v(i) = ureal(ran);

          return v;

}

The default engine (default_random_engine) is simple, cheap to run, and good enough for casual use. For more
professional uses, the standard library offers a variety of engines with better randomness properties and different running costs.
Examples are linear_congurential_engine, mersenne_twister_engine, and random_device. If you want to use those,
and in general if you need to do better than the default_random_engine, you have a bit of reading to do. To get an idea of
the quality of your system’s random number generator, do exercise 10.

The two random number generators from std_lib_facilities.h were defined as
Click here to view code image

int randint(int min, int max)

{

          static default_random_engine ran;

          return uniform_int_distribution<>{min,max}(ran);

}

int randint(int max)

{

          return randint(0,max);

}

These simple functions can be most useful, but just to try something else, let us generate a normal distribution:
Click here to view code image

auto gen = bind(normal_distribution<double>{15,4.0},

                              default_random_engine{});

The standard library function bind() from <functional> constructs a function object that when invoked calls its first argument
with its second as the argument. So here, gen() returns values according to the normal distribution with its mean at 15 and a
variance of 4.0 using the default_random_engine. We could use it like this:
Click here to view code image

vector<int> hist(2*15);

for (int i = 0; i < 500; ++i)                      // generate histogram of 500 values
          ++hist[int(round(gen()))];

for (int i = 0; i != hist.size(); ++i) {       // write out histogram
          cout << i << '\t';

          for (int j = 0; j != hist[i]; ++j)

          cout << '*';

          cout << '\n';

}

We got
Click here to view code image
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The normal distribution is very common and also known as the Gaussian distribution or (for obvious reasons) simply “the bell
curve.” Other distributions include bernoulli_distribution, exponential_distribution, and chi_squared_distribution.
You can find them described in The C++ Programming Language. Integer distributions return values in a closed interval
[a:b], whereas real (floating-point) distributions return values in open intervals [a:b).

By default, an engine (except possibly random_device) gives the same sequence each time a program is run. That is most
convenient for initial debugging. If we want different sequences from an engine, we need to initialize it with different values.
Such initializers are conventionally called “seeds.” For example:
Click here to view code image

auto gen1 = bind(uniform_int_distribution<>{0,9},

          default_random_engine{});
auto gen2 = bind(uniform_int_distribution<>{0,9},

          default_random_engine{10});

auto gen3 = bind(uniform_int_distribution<>{0,9},

          default_random_engine{5});

To get an unpredictable sequence, people often use the time of day (down to the last nanosecond; §26.6.1) or something like
that as the seed.

24.8 The standard mathematical functions
The standard mathematical functions (cos, sin, log, etc.) are provided by the standard library. Their declarations are found in
<cmath>.



The standard mathematical functions are provided for types float, double, long double, and complex (§24.9) arguments. If
you do floating-point computations, you’ll find these functions useful. If you need more details, documentation is widely
available; your online documentation would be a good place to start.

If a standard mathematical function cannot produce a mathematically valid result, it sets the variable errno. For example:
Click here to view code image

errno = 0;

double s2 = sqrt(–1);

if (errno) cerr << "something went wrong with something somewhere";

if (errno == EDOM)            // domain error
          cerr << "sqrt() not defined for negative argument";

pow(very_large,2);            // not a good idea
if (errno==ERANGE)         // range error
          cerr << "pow(" << very_large << ",2) too large for a double";

If you do serious mathematical computations, you must check errno to ensure that it is still 0 after you get your result. If not,
something went wrong. Look at your manual or online documentation to see which mathematical functions can set errno and
which values they use for errno.

As indicated in the example, a nonzero errno simply means “Something went wrong.” It is not uncommon for functions not
in the standard library to set errno in case of error, so you have to look more carefully at the value of errno to get an idea of
exactly what went wrong. If you test errno immediately after a standard library function and if you made sure that errno==0

before calling it, you can rely on the values as we did with EDOM and ERANGE in the example. EDOM is set for a domain
error (i.e., a problem with the result). ERANGE is set for a range error (i.e., a problem with the arguments).

Error handling based on errno is somewhat primitive. It dates from the first (1975 vintage) C mathematical functions.

24.9 Complex numbers
Complex numbers are widely used in scientific and engineering computations. We assume that if you need them, you will know
about their mathematical properties, so we’ll just show you how complex numbers are expressed in the ISO C++ standard



library. You find the declaration of complex numbers and their associated standard mathematical functions in <complex>:
Click here to view code image

template<class Scalar> class complex {

          // a complex is a pair of scalar values, basically a coordinate pair
          Scalar re, im;

public:

          constexpr complex(const Scalar & r, const Scalar & i) :re(r), im(i) { }

          constexpr complex(const Scalar & r) :re(r),im(Scalar ()) { }

          complex() :re(Scalar ()), im(Scalar ()) { }

          constexpr Scalar real() { return re; }           // real part
          constexpr Scalar imag() { return im; }        // imaginary part

          // operators: = += –= *= /=
};

The standard library complex is guaranteed to be supported for scalar types float, double, and long double. In addition to
the members of complex and the standard mathematical functions (§24.8), <complex> offers a host of useful operations:

Note: complex does not provide < or %.
Use complex<T> exactly like a built-in type, such as double. For example:

Click here to view code image

Using cmplx = complex<double>;  // sometimes complex<double> gets verbose

void f(cmplx z, vector<cmplx>& vc)

{

          cmplx z2 = pow(z,2);

          cmplx z3 = z2*9.3+vc[3];

          cmplx sum = accumulate(vc.begin(), vc.end(), cmplx{});
          // . . .
}

Remember that not all operations that we are used to from int and double are defined for a complex. For example:
Click here to view code image

if (z2<z3)     // error: there is no < for complex numbers



Note that the representation (layout) of the C++ standard library complex numbers is compatible with their corresponding types
in C and Fortran.

24.10 References
Basically, the issues discussed in this chapter, such as rounding errors, Matrix operations, and complex arithmetic, are of no
interest and make no sense in isolation. We simply describe (some of) the support provided by C++ to people with the need for
and knowledge of mathematical concepts and techniques to do numerical computations.

In case you are a bit rusty in those areas or simply curious, we can recommend some information sources:
The MacTutor History of Mathematics archive, http://www-gap.dcs.st-and.ac.uk/~history

• A great link for anyone who likes math or simply needs to use math
• A great link for someone who would like to see the human side of mathematics; for example, who is the only major
mathematician to win an Olympic medal?
• Famous mathematicians: biographies, accomplishments
• Curio

• Famous curves
• Famous problems
• Mathematical topics

• Algebra
• Analysis
• Numbers and number theory
• Geometry and topology
• Mathematical physics
• Mathematical astronomy

• The history of mathematics
• . . .

Freeman, T. L., and Chris Phillips. Parallel Numerical Algorithms. Prentice Hall, 1992.
Gullberg, Jan. Mathematics — From the Birth of Numbers. W. W. Norton, 1996. ISBN 039304002X. One of the most

enjoyable books on basic and useful mathematics. A (rare) math book that you can read for pleasure and also use to look up
specific topics, such as matrices.

Knuth, Donald E. The Art of Computer Programming, Volume 2: Seminumerical Algorithms, Third Edition. Addison-
Wesley, 1998. ISBN 0201896842.

Stewart, G. W. Matrix Algorithms, Volume I: Basic Decompositions. SIAM, 1998. ISBN 0898714141.
Wood, Alistair. Introduction to Numerical Analysis. Addison-Wesley, 1999. ISBN 020194291X.

 Drill

1. Print the size of a char, a short, an int, a long, a float, a double, an int*, and a double* (use sizeof, not
<limits>).

2. Print out the size as reported by sizeof of Matrix<int> a(10), Matrix<int> b(100), Matrix<double> c(10),
Matrix<int,2> d(10,10), Matrix<int,3> e(10,10,10).

3. Print out the number of elements of each of the Matrixes from 2.
4. Write a program that takes ints from cin and outputs the sqrt() of each int, or “no square root” if sqrt(x) is illegal for

some x (i.e., check your sqrt() return values).
5. Read ten floating-point values from input and put them into a Matrix<double>. Matrix has no push_back() so be

careful to handle an attempt to enter a wrong number of doubles. Print out the Matrix.
6. Compute a multiplication table for [0,n)*[0,m) and represent it as a 2D Matrix. Take n and m from cin and print out

the table nicely (assume that m is small enough that the results fit on a line).
7. Read ten complex<double>s from cin (yes, cin supports >> for complex) and put them into a Matrix. Calculate

and output the sum of the ten complex numbers.

http://www-gap.dcs.st-and.ac.uk/~history


8. Read six ints into a Matrix<int,2> m(2,3) and print them out.

Review
1. Who uses numerics?
2. What is precision?
3. What is overflow?
4. What is a common size of a double? Of an int?
5. How can you detect overflow?
6. Where do you find numeric limits, such as the largest int?
7. What is an array? A row? A column?
8. What is a C-style multidimensional array?
9. What are the desirable properties of language support (e.g., a library) for matrix computation?

10. What is a dimension of a matrix?
11. How many dimensions can a matrix have (in theory/math)?
12. What is a slice?
13. What is a broadcast operation? List a few.
14. What is the difference between Fortran-style and C-style subscripting?
15. How do you apply an operation to each element of a matrix? Give examples.
16. What is a fused operation?
17. Define dot product.
18. What is linear algebra?
19. What is Gaussian elimination?
20. What is a pivot? (In linear algebra? In “real life”?)
21. What makes a number random?
22. What is a uniform distribution?
23. Where do you find the standard mathematical functions? For which argument types are they defined?
24. What is the imaginary part of a complex number?
25. What is the square root of –1?

Terms
array
C
column
complex number
dimension
dot product
element-wise operation
errno

Fortran
fused operation
imaginary
Matrix

multidimensional
random number
real
row



scaling
size
sizeof

slicing
subscripting
uniform distribution

Exercises
1. The function arguments f for a.apply(f) and apply(f,a) are different. Write a triple() function for each and use each to

triple the elements of an array { 1 2 3 4 5 }. Define a single triple() function that can be used for both a.apply(triple)

and apply(triple,a). Explain why it could be a bad idea to write every function to be used by apply() that way.
2. Do exercise 1 again, but with function objects, rather than functions. Hint: Matrix.h contains examples.
3. Expert level only (this cannot be done with the facilities described in this book): Write an apply(f,a) that can take a

void (T&), a T (const T&), and their function object equivalents. Hint: Boost::bind.
4. Get the Gaussian elimination program to work; that is, complete it, get it to compile, and test it with a simple example.
5. Try the Gaussian elimination program with A=={ {0 1} {1 0} } and b=={ 5 6 } and watch it fail. Then, try

elim_with_partial_pivot().
6. In the Gaussian elimination example, replace the vector operations dot_product() and scale_and_add() with loops.

Test, and comment on the clarity of the code.
7. Rewrite the Gaussian elimination program without using the Matrix library; that is, use built-in arrays or vectors

instead of Matrixes.
8. Animate the Gaussian elimination.
9. Rewrite the nonmember apply() functions to return a Matrix of the return type of the function applied; that is,

apply(f,a) should return a Matrix<R> where R is the return type of f. Warning: The solution requires information about
templates not available in this book.

10. How random is your default_random_engine? Write a program that takes two integers n and d as inputs and calls
randint(n) d times, recording the result. Output the number of draws for each of [0:n) and “eyeball” how similar the
counts are. Try with low values for n and with low values for d to see if drawing only a few random numbers causes
obvious biases.

11. Write a swap_columns() to match swap_rows() from §24.5.3. Obviously, to do that you have to read and understand
some of the existing Matrix library code. Don’t worry too much about efficiency: it is not possible to get
swap_columns() to run as fast as swap_rows().

12. Implement
Click here to view code image

Matrix<double> operator*(Matrix<double,2>&,Matrix<double>&);

and
Click here to view code image

Matrix<double,N> operator+(Matrix<double,N>&,Matrix<double,N>&)

If you need to, look up the mathematical definitions in a textbook.

Postscript
If you don’t feel comfortable with mathematics, you probably didn’t like this chapter and you’ll probably choose a field of
work where you are unlikely to need the information presented here. On the other hand, if you do like mathematics, we hope
that you appreciate how closely the fundamental concepts of mathematics can be represented in code.



25. Embedded Systems Programming

“‘Unsafe’ means ‘Somebody may die.’”
—Safety officer

We present a view of embedded systems programming; that is, we discuss topics primarily related to writing programs for
“gadgets” that do not look like conventional computers with screens and keyboards. We focus on the principles, programming
techniques, language facilities, and coding standards needed to work “close to the hardware.” The main language issues
addressed are resource management, memory management, pointer and array use, and bit manipulation. The emphasis is on safe
use and on alternatives to the use of the lowest-level features. We do not attempt to present specialized machine architectures
or direct access to hardware devices; that is what specialized literature and manuals are for. As an example, we present the
implementation of an encryption/decryption algorithm.

25.1 Embedded systems
25.2 Basic concepts

25.2.1 Predictability
25.2.2 Ideals
25.2.3 Living with failure

25.3 Memory management
25.3.1 Free-store problems
25.3.2 Alternatives to the general free store
25.3.3 Pool example
25.3.4 Stack example

25.4 Addresses, pointers, and arrays
25.4.1 Unchecked conversions
25.4.2 A problem: dysfunctional interfaces
25.4.3 A solution: an interface class
25.4.4 Inheritance and containers

25.5 Bits, bytes, and words
25.5.1 Bits and bit operations
25.5.2 bitset

25.5.3 Signed and unsigned
25.5.4 Bit manipulation
25.5.5 Bitfields
25.5.6 An example: simple encryption

25.6 Coding standards
25.6.1 What should a coding standard be?
25.6.2 Sample rules
25.6.3 Real coding standards

25.1 Embedded systems

Most computers in the world are not immediately recognizable as computers. They are simply a part of a larger system or
“gadget.” For example:

• Cars: A modern car may have many dozens of computers, controlling the fuel injection, monitoring engine performance,
adjusting the radio, controlling the brakes, watching for underinflated tires, controlling the windshield wipers, etc.



• Telephones: A mobile telephone contains at least two computers; often one of those is specialized for signal processing.
• Airplanes: A modern airplane contains computers for everything from running the passenger entertainment system to

wiggling the wing tips for optimal flight properties.
• Cameras: There are cameras with five processors and for which each lens even has its own separate processor.
• Credit cards (of the “smart card” variety)
• Medical equipment monitors and controllers (e.g., CAT scanners)
• Elevators (lifts)
• PDAs (Personal Digital Assistants)
• Printer controllers
• Sound systems
• MP3 players
• Kitchen appliances (such as rice cookers and bread machines)
• Telephone switches (typically consisting of thousands of specialized computers)
• Pump controllers (for water pumps and oil pumps, etc.)
• Welding robots: some for use in tight or dangerous places where a human welder cannot go
• Wind turbines: some capable of generating megawatts of power and 200m (650ft) tall
• Sea-wall gate controllers
• Assembly-line quality monitors
• Bar code readers
• Car assembly robots
• Centrifuge controllers (as used in many medical analysis processes)
• Disk-drive controllers

These computers are parts of larger systems. Such “large systems” usually don’t look like computers and we don’t usually think
of them as computers. When we see a car coming down the street, we don’t say, “Look, there’s a distributed computer system!”
Well, the car is also a distributed computer system, but its operation is so integrated with the mechanical, electronic, and
electrical parts that we can’t really consider the computers in isolation. The constraints on their computations (in time and
space) and the very definition of program correctness cannot be separated from the larger system. Often, an embedded
computer controls a physical device, and the correct behavior of the computer is defined as the correct operation of the
physical device. Consider a large marine diesel engine:

Note the engineer at the head of cylinder number 5. This is a big engine, the kind of engine that powers the largest ships. If an
engine like this fails, you’ll read about it on the front page of your morning newspaper. On this engine, a cylinder control
system, consisting of three computers, sits on each cylinder head. Each cylinder control system is connected to the engine
control system (another three computers) through two independent networks. The engine control system is then connected to the
control room where the engineers can communicate with it through a specialized GUI system. The complete system can also be
remotely monitored via radio (through satellites) from a shipping-line control center. For more examples, see Chapter 1.



So, from a programmer’s point of view, what’s special about the programs running in the computers that are parts of that
engine? More generally, what are examples of concerns that become prominent for various kinds of embedded systems that we
don’t typically have to worry too much about for “ordinary programs”?

• Often, reliability is critical: Failure can be spectacular, expensive (as in “billions of dollars”), and potentially lethal
(for the people on board a wreck or the animals in its environment).

• Often, resources (memory, processor cycles, power) are limited: That’s not likely to be a problem on the engine
computer, but think of smartphones, sensors, computers on board space probes, etc. In a world where dual-processor
2GHz laptops with 8GB of memory are common, a critical computer in an airplane or a space probe may have just
60MHz and 256KB, and a small gadget just sub-1MHz and a few hundred words of RAM. Computers made resilient to
environmental hazards (vibration, bumps, unstable electricity supplies, heat, cold, humidity, workers stepping on them,
etc.) are typically far slower than what powers a student’s laptop.

• Often, real-time response is essential: If the fuel injector misses an injection cycle, bad things can happen to a very
complex system generating 100,000Hp; miss a few cycles — that is, fail to function correctly for a second or so — and
strange things can start happening to propellers that can be up to 33ft (10m) in diameter and weigh up to 130 tons. You
really don’t want that to happen.

• Often, a system must function uninterrupted for years: Maybe the system is running in a communications satellite
orbiting the earth, or maybe the system is just so cheap and exists in so many copies that any significant repair rate would
ruin its maker (think of MP3 players, credit cards with embedded chips, and automobile fuel injectors). In the United
States, the mandated reliability criterion for backbone telephone switches is 20 minutes of downtime in 20 years (don’t
even think of taking such a switch down each time you want to change its program).

• Often, hands-on maintenance is infeasible or very rare: You can take a large ship into a harbor to service the
computers every second year or so when other parts of the ship require service and the necessary computer specialists
are available in the right place at the right time. Unscheduled, hands-on maintenance is infeasible (no bugs are allowed
while the ship is in a major storm in the middle of the Pacific). You simply can’t send someone to repair a space probe in
orbit around Mars.

Few systems suffer all of these constraints, and any system that suffers even one is the domain of experts. Our aim is not to
make you an “instant expert”; attempting to do that would be quite silly and very irresponsible. Our aim is to acquaint you with
the basic problems and the basic concepts involved in their solution so that you can appreciate some of the skills needed to
build such systems. Maybe you could become interested in acquiring such valuable skills. People who design and implement
embedded systems are critical to many aspects of our technological civilization. This is an area where a professional can do a
lot of good.

Is this relevant to novices? To C++ programmers? Yes and yes. There are many more embedded systems processors than
there are conventional PCs. A huge fraction of programming jobs relate to embedded systems programming, so your first real
job may involve embedded systems programming. Furthermore, the list of examples of embedded systems that started this
section is drawn from what I have personally seen done using C++.

25.2 Basic concepts

Much programming of computers that are part of an embedded system can be just like other programming, so most of the ideas
presented in this book apply. However, the emphasis is often different: we must adjust our use of programming language
facilities to the constraints of the task, and often we must manipulate our hardware at the lowest level:

• Correctness: This is even more important than usual. “Correctness” is not just an abstract concept. In the context of an
embedded system, what it means for a program to be correct becomes not just a question of producing the correct results,
but also producing them at the right time, in the right order, and using only an acceptable set of resources. Ideally, the
details of what constitutes correctness are carefully specified, but often such a specification can be completed only after
some experimentation. Often, critical experiments can be performed only after the complete system (of which the
computer running the program is a part) has been built. Completely specifying correctness for an embedded system can at
the same time be extremely difficult and extremely important. Here, “extremely difficult” can mean “impossible given the



time and resources available”; we must try our best using all available tools and techniques. Fortunately, the range of
specification, simulation, testing, and other techniques in a given area can be quite impressive. Here, “extremely
important” can mean “failure leads to injury or ruin.”

• Fault tolerance: We must be careful to specify the set of conditions that a program is supposed to handle. For example,
for an ordinary student program, you might find it unfair if we kicked the cord out of the power supply during a
demonstration. Losing power is not among the conditions an ordinary PC application is supposed to deal with. However,
losing power is not uncommon for embedded systems, and some are expected to deal with that. For example, a critical
part of a system may have dual power sources, backup batteries, etc. Worse, “But I assumed that the hardware worked
correctly” is no excuse for some applications. Over a long time and over a large range of conditions, hardware simply
doesn’t work correctly. For example, some telephone switches and some aerospace applications are written based on the
assumption that sooner or later some bit in the computer’s memory will just “decide” to change its value (e.g., from 0 to
1). Alternatively, it may “decide” that it likes the value 1 and ignore attempts to change that 1 to a 0. Such erroneous
behavior happens eventually if you have enough memory and use it for a long enough time. It happens sooner if you
expose the memory to hard radiation, such as you find beyond the earth’s atmosphere. When we work on a system
(embedded or not), we have to decide what kind of tolerance to hardware failure we must provide. The usual default is
to assume that hardware works as specified. As we deal with more critical systems, that assumption must be modified.

• No downtime: Embedded systems typically have to run for a long time without changes to the software or intervention by
a skilled operator with knowledge of the implementation. “A long time” can be days, months, years, or the lifetime of the
hardware. This is not unique for embedded systems, but it is a difference from the vast majority of “ordinary
applications” and from all examples and exercises in this book (so far). This “must run forever” requirement implies an
emphasis on error handling and resource management. What is a “resource”? A resource is something of which a
machine has only a limited supply; from a program you acquire a resource through some explicit action (“acquire the
resource,” “allocate”) and return it (“release,” “free,” “deallocate”) to the system explicitly or implicitly. Examples of
resources are memory, file handles, network connections (sockets), and locks. A program that is part of a long-running
system must release every resource it requires except a few that it permanently owns. For example, a program that forgets
to close a file every day will on most operating systems not survive for more than about a month. A program that fails to
deallocate 100 bytes every day will waste more than 32K a year — that’s enough to crash a small gadget after a few
months. The nasty thing about such resource “leaks” is that the program will work perfectly for months before it suddenly
ceases to function. If a program will crash, we prefer it to crash as soon as possible so that we can remedy the problem.
In particular, we prefer it to crash long before it is given to users.

• Real-time constraints: We can classify an embedded system as hard real time if a certain response must occur before a
deadline. If a response must occur before a deadline most of the time, but we can afford an occasional time overrun, we
classify the system as soft real time. Examples of soft real time are a controller for a car window and a stereo amplifier.
A human will not notice a fraction of a second’s delay in the movement of the window, and only a trained listener would
be able to hear a millisecond’s delay in a change of pitch. An example of hard real time is a fuel injector that has to
“squirt” at exactly the right time relative to the movement of the piston. If the timing is off by even a fraction of a
millisecond, performance suffers and the engine starts to deteriorate; a major timing problem could completely stop the
engine, possibly leading to accident or disaster.

• Predictability: This is a key notion in embedded systems code. Obviously, the term has many intuitive meanings, but
here — in the context of programming embedded systems — we will use a specialized technical meaning: an operation is
predictable if it takes the same amount of time to execute every time it is executed on a given computer, and if all such
operations take the same amount of time to execute. For example, when x and y are integers, x+y takes the same amount
of time to execute every time and xx+yy takes the same amount of time when xx and yy are two other integers. Usually,
we can ignore minor variations in execution speed related to machine architecture (e.g., differences caused by caching
and pipelining) and simply rely on there being a fixed, constant upper limit on the time needed. Operations that are not
predictable (in this sense of the word) can’t be used in hard real-time systems and must be used with great care in all
real-time systems. A classic example of an unpredictable operation is a linear search of a list (e.g., find()) where the



number of elements is unknown and not easily bounded. Only if we can reliably predict the number of elements or at least
the maximum number of elements does such a search become acceptable in a hard real-time system; that is, to guarantee
a response within a given fixed time we must be able to — possibly aided by code analysis tools — calculate the time
needed for every possible code sequence leading up to the deadline.

• Concurrency: An embedded system typically has to respond to events from the external world. This leads to programs
where many things happen “at once” because they correspond to real events that really happen at once. A program that
simultaneously deals with several actions is called concurrent or parallel. Unfortunately the fascinating, difficult, and
important issue of concurrency is beyond the scope of this book.

25.2.1 Predictability

From the point of view of predictability, C++ is pretty good, but it isn’t perfect. All facilities in the C++ language (including
virtual function calls) are predictable, except

• Free-store allocation using new and delete (see §25.3)
• Exceptions (§19.5)
• dynamic_cast (§A.5.7)

These facilities must be avoided for hard real-time applications. The problems with new and delete are described in detail
in §25.3; those are fundamental. Note that the standard library string and the standard containers (vector, map, etc.)
indirectly use the free store, so they are not predictable either. The problem with dynamic_cast is a problem with current
implementations but is not fundamental.

The problem with exceptions is that when looking at a particular throw, the programmer cannot — without looking at large
sections of code — know how long it will take to find a matching catch or even if there is such a catch. In an embedded
systems program, there had better be a catch because we can’t rely on a C++ programmer sitting ready to use the debugger.
The problems with exceptions can in principle be dealt with by a tool that for each throw tells you exactly which catch will
be invoked and how long it will take the throw to get there, but currently, that’s a research problem, so if you need
predictability, you’ll have to make do with error handling based on return codes and other old-fashioned and tedious, but
predictable, techniques.

25.2.2 Ideals

When writing an embedded systems program there is a danger that the quest for performance and reliability will lead the
programmer to regress to exclusively using low-level language facilities. That strategy is workable for individual small pieces
of code. However, it can easily leave the overall design a mess, make it difficult to be confident about correctness, and
increase the time and money needed to build a system.

As ever, our ideal is to work at the highest level of abstraction that is feasible given the constraints on our problem. Don’t
get reduced to writing glorified assembler code! As ever, represent your ideas as directly in code as you can (given all
constraints). As ever, try hard to write the clearest, cleanest, most maintainable code. Don’t optimize until you have to.
Performance (in time or space) is often essential for an embedded system, but trying to squeeze performance out of every little
piece of code is misguided. Also, for many embedded systems the key is to be correct and fast enough; beyond “fast enough”
the system simply idles until another action is needed. Trying to write every few lines of code to be as efficient as possible
takes a lot of time, causes a lot of bugs, and often leads to missed opportunities for optimization as algorithms and data
structures get hard to understand and hard to change. For example, that “low-level optimization” approach often leads to
missed opportunities for memory optimization because almost similar code appears in many places and can’t be shared
because of incidental differences.

John Bentley — famous for his highly efficient code — offers two “laws of optimization”:
• First law: Don’t do it.
• Second law (for experts only): Don’t do it yet.



Before optimizing, make sure that you understand the system. Only then can you be confident that it is — or can become —
correct and reliable. Focus on algorithms and data structures. Once an early version of the system runs, carefully measure and
tune it as needed. Fortunately, pleasant surprises are not uncommon: clean code sometimes runs fast enough and doesn’t take up
excessive memory space. Don’t count on that, though; measure. Unpleasant surprises are not uncommon either.

25.2.3 Living with failure
Imagine that we are to design and implement a system that may not fail. By “not fail” let’s say that we mean “will run without
human intervention for a month.” What kind of failures must we protect against? We can exclude dealing with the sun going
nova and probably also with the system being trampled by an elephant. However, in general we cannot know what might go
wrong. For a specific system, we can and must make assumptions about what kinds of errors are more common than others.
Examples:

• Power surges/failure
• Connector vibrating out of its socket
• System hit by falling debris crushing a processor
• Falling system (disk might be destroyed by impact)
• X-rays causing some memory bits to change value in ways impossible according to the language definition

Transient errors are usually the hardest to find. A transient error is one that happens “sometimes” but not every time a
program is run. For example, we have heard of a processor that misbehaved only when the temperature exceeded 130°F
(54°C). It was never supposed to get that hot; however, it did when the system was (unintentionally and occasionally) covered
up on the factory floor, never in the lab while being tested.

Errors that occur away from the lab are the hardest to fix. You will have a hard time imagining the design and
implementation effort involved in letting the JPL engineers diagnose software and hardware failures on the Mars Rovers (20
minutes away from the lab for a signal traveling at the speed of light) and update the software to fix a problem once
understood.

Domain knowledge — that is, knowledge about a system, its environment, and its use — is essential for designing and
implementing a system with a good resilience against errors. Here, we will touch only upon generalities. Note that every
“generality” we mention here has been the subject of thousands of papers and decades of research and development.

• Prevent resource leaks: Don’t leak. Be specific about what resources your program uses and be sure you conserve them
(perfectly). Any leak will kill your system or subsystem eventually. The most fundamental resources are time and
memory. Typically, a program will also use other resources, such as locks, communication channels, and files.

• Replicate: If a system critically needs a hardware resource (e.g., a computer, an output device, a wheel) to function, then
the designer is faced with a basic choice: should the system contain several copies of the critical resource? We can
either accept failure if the hardware breaks or provide a spare and let the software switch to using the spare. For
example, the fuel injector controllers for the marine diesel engine are triplicate computers connected by duplicate
networks. Note that “the spare” need not be identical to the original (e.g., a space probe may have a primary strong
antenna and a weaker backup). Note also that “the spare” can typically be used to boost performance when the system
works without a problem.

• Self-check: Know when the program (or hardware) is misbehaving. Hardware components (e.g., storage devices) can be
very helpful in this respect, monitoring themselves for errors, correcting minor errors, and reporting major failures.
Software can check for consistency of its data structures, check invariants (§9.4.3), and rely on internal “sanity checks”
(assertions). Unfortunately, self-checking can itself be unreliable, and care must be taken that reporting an error doesn’t
itself cause an error — it is really hard to completely check error checking.

• Have a quick way out of misbehaving code: Make systems modular. Base error handling on modules: each module has a
specific task to do. If a module decides it can’t do its task, it can report that to some other module. Keep the error
handling within a module simple (so that it is more likely to be correct and efficient), and have some other module
responsible for serious errors. A good reliable system is modular and multi-level. At each level, serious errors are
reported to a module at the next level — in the end, maybe to a person. A module that has been notified of a serious error
(one that another module couldn’t handle itself) can then take appropriate action — maybe involving a restart of the



module that detected the error or running with a less sophisticated (but more robust) “backup” module. Defining exactly
what “a module” is for a given system is part of the overall system design, but you can think of it as a class, a library, a
program, or all the programs on a computer.

• Monitor subsystems in case they can’t or don’t notice a problem themselves. In a multi-level system higher levels can
monitor lower levels. Many systems that really aren’t allowed to fail (e.g., the marine engines or space station
controllers) have three copies of critical subsystems. This triplication is not done just to have two spares, but also so that
disagreements about which subsystem is misbehaving can be settled by 2-to-1 votes. Triplication is especially useful
where a multi-level organization is difficult (i.e., at the highest level of a system or subsystem that may not fail).

We can design as much as we like and be as careful with the implementation as we know how to, but the system will still
misbehave. Before delivering a system to users, it must be systematically and thoroughly tested; see Chapter 26.

25.3 Memory management
The two most fundamental resources in a computer are time (to execute instructions) and space (memory to hold data and
code). In C++, there are three ways to allocate memory to hold data (§17.4, §A.4.2):

• Static memory: allocated by the linker and persisting as long as the program runs
• Stack (automatic) memory: allocated when we call a function and freed when we return from the function
• Dynamic (heap) memory: allocated by new and freed for possible reuse by delete

Let’s consider these from the perspective of embedded systems programming. In particular, we will consider memory
management from the perspective of tasks where predictability (§25.2.1) is considered essential, such as hard real-time
programming and safety-critical programming.

Static memory poses no special problem in embedded systems programming: all is taken care of before the program starts to
run and long before a system is deployed.

Stack memory can be a problem because it is possible to use too much of it, but this is not hard to take care of. The designers
of a system must determine that for no execution of the program will the stack grow over an acceptable limit. This usually
means that the maximum nesting of function calls must be limited; that is, we must be able to demonstrate that a chain of calls
(e.g., f1 calls f2 calls . . . calls fn) will never be too long. In some systems, that has caused a ban on recursive calls. Such a
ban can be reasonable for some systems and for some recursive functions, but it is not fundamental. For example, I know that
factorial(10) will call factorial at most ten times. However, an embedded systems programmer might very well prefer an
iterative implementation of factorial (§15.5) to avoid any doubt or accident.

Dynamic memory allocation is usually banned or severely restricted; that is, new is either banned or its use restricted to a
startup period, and delete is banned. The basic reasons are

• Predictability: Free-store allocation is not predictable; that is, it is not guaranteed to be a constant time operation.
Usually, it is not: in many implementations of new, the time needed to allocate a new object can increase dramatically
after many objects have been allocated and deallocated.

• Fragmentation: The free store may fragment; that is, after allocating and deallocating objects the remaining unused
memory may be “fragmented” into a lot of little “holes” of unused space that are useless because each hole is too small to
hold an object of the kind used by the application. Thus, the size of the useful free store can be far less than the size of the
initial free store minus the size of the allocated objects.

The next section explains how this unacceptable state of affairs can arise. The bottom line is that we must avoid programming
techniques that use both new and delete for hard real-time or safety-critical systems. The following sections explain how we
can systematically avoid problems with the free store using stacks and pools.

25.3.1 Free-store problems
What’s the problem with new? Well, really it’s a problem with new and delete used together. Consider the result of this
sequence of allocations and deallocations:
Click here to view code image



Message* get_input(Device&);                // make a Message on the free store

while(/* . . . */) {

          Message* p = get_input(dev);

          // . . .
          Node* n1 = new Node(arg1,arg2);

          // . . .
          delete p;

          Node* n2 = new Node (arg3,arg4);

          // . . .
}

Each time around the loop we create two Nodes, and in the process of doing so we create a Message and delete it again.
Such code would not be unusual as part of building a data structure based on input from some “device.” Looking at this code,
we might expect to “consume” 2*sizeof(Node) bytes of memory (plus free-store overhead) each time around the loop.
Unfortunately, it is not guaranteed that the “consumption” of memory is restricted to the expected and desired 2*sizeof(Node)

bytes. In fact, it is unlikely to be the case.
Assume a simple (though not unrealistic) memory manager. Assume also that a Message is a bit larger than a Node. We

can visualize the use of free space like this, using orange for the Message, green for the Nodes, and plain white for “a hole”
(that is, “unused space”):

So, we are leaving behind some unused space (“a hole”) on the free store each time we execute the loop. That may be just a
few bytes, but if we can’t use those holes it will be as bad as a memory leak — and even a small leak will eventually kill a
long-running program. Having the free space in our memory scattered in many “holes” too small for allocating new objects is
called memory fragmentation. Basically, the free-store manager will eventually use up all “holes” that are big enough to hold
the kind of objects that the program uses, leaving only holes that are too small to be useful. This is a serious problem for
essentially all long-running programs that use new and delete extensively; it is not uncommon to find unusable fragments
taking up most of the memory. That usually dramatically increases the time needed to execute new as it has to search through
lots of objects and fragments for a suitably sized chunk of memory. Clearly this is not the kind of behavior we can accept for an
embedded system. This can also be a serious problem in naively designed non-embedded systems.

Why can’t “the language” or “the system” deal with this? Alternatively, can’t we just write our program to not create such
“holes”? Let’s first examine the most obvious solution to having all those little useless “holes” in our memory: let’s move the
Nodes so that all the free space gets compacted into one contiguous area that we can use to allocate more objects.

Unfortunately, “the system” can’t do that. The reason is that C++ code refers directly to objects in memory. For example, the
pointers n1 and n2 contain real memory addresses. If we moved the objects pointed to, those addresses would no longer point
to the right objects. Assume that we (somewhere) keep pointers to the nodes we created. We could represent the relevant part
of our data structure like this:

Now we compact memory by moving an object so that all the unused memory is in one place:



Unfortunately, we now have made a mess of those pointers by moving the objects they pointed to without updating the pointers.
Why don’t we just update the pointers when we move the objects? We could write a program to do that, but only if we knew
the details of the data structure. In general, “the system” (the C++ run-time support system) has no idea where the pointers are;
that is, given an object, the question “Which pointers in the program point to this object right now?” has no good answer. Even
if that problem could be easily solved, this approach (known as compacting garbage collection) is not always the right one.
For example, to work well, it typically requires more than twice the memory that the program ever needs to be able to keep
track of pointers and to move objects around in. That extra memory may not be available on an embedded system. In addition,
an efficient compacting garbage collector is hard to make predictable.

We could of course answer that “Where are the pointers?” question for our own data structures and compact those. That
would work, but a simpler approach is to avoid fragmentation in the first place. In the example here, we could simply have
allocated both Nodes before allocating the message:
Click here to view code image

while( . . . ) {

          Node* n1 = new Node;

          Node* n2 = new Node;

          Message* p = get_input(dev);

          // . . . store information in nodes . . .
          delete p;

          // . . .
}

However, rearranging code to avoid fragmentation isn’t easy in general. Doing so reliably is at best very difficult and often
incompatible with other rules for good code. Consequently, we prefer to restrict the use of the free store to ways that don’t
cause fragmentation in the first place. Often, preventing a problem is better than solving it.

 Try This

Complete the program above and print out the addresses and sizes of the objects created to see if and how “holes”
appear on your machine. If you have time, you might draw memory layouts like the ones above to better visualize
what’s going on.

25.3.2 Alternatives to the general free store
So, we mustn’t cause fragmentation. What do we do then? The first simple observation is that new cannot by itself cause
fragmentation; it needs delete to create the holes. So we start by banning delete. That implies that once an object is
allocated, it will stay part of the program forever.

In the absence of delete, is new predictable; that is, do all new operations take the same amount of time? Yes, in all
common implementations, but it is not actually guaranteed by the standard. Usually, an embedded system has a startup sequence
of code that establishes the system as “ready to run” after initial power-up or restart. During that period, we can allocate
memory any way we like up to an allowed maximum. We could decide to use new during startup. Alternatively (or
additionally) we could set aside global (static) memory for future use. For reasons of program structure, global data is often
best avoided, but it can be sensible to use that language mechanism to pre-allocate memory. The exact rules for this should be
laid down in a coding standard for a system (see §25.6).

There are two data structures that are particularly useful for predictable memory allocation:
• Stacks: A stack is a data structure where you can allocate an arbitrary amount of memory (up to a given maximum size)



and deallocate the last allocation (only); that is, a stack can grow and shrink only at the top. There can be no
fragmentation, because there can be no “hole” between two allocations.

• Pools: A pool is a collection of objects of the same size. We can allocate and deallocate objects as long as we don’t
allocate more objects than the pool can hold. There can be no fragmentation because all objects are of the same size.

For both stacks and pools, both allocation and deallocation are predictable and fast.
So, for a hard real-time or critical system we can define stacks and pools as needed. Better yet, we ought to be able to use

stacks and pools as specified, implemented, and tested by someone else (as long as the specification meets our needs).

Note that the C++ standard containers (vector, map, etc.) and the standard string are not to be used because they indirectly
use new. You can build (buy or borrow) “standard-like” containers to be predictable, but the default ones that come with your
implementation are not constrained for embedded systems use.

Note that embedded systems typically have very stringent reliability requirements, so whatever solution we choose, we must
make sure not to compromise our programming style by regressing into using lots of low-level facilities directly. Code that is
full of pointers, explicit conversions, etc. is unreasonably hard to guarantee as correct.

25.3.3 Pool example
A pool is a data structure from which we can allocate objects of a given type and later deallocate (free) such objects. A pool
contains a maximum number of objects; that number is specified when the pool is created. Using green for “allocated object”
and blue for “space ready for allocation as an object,” we can visualize a pool like this:

A Pool can be defined like this:
Click here to view code image

template<typename T, int N>

class Pool {                               // Pool of N objects of type T
public:

          Pool();                            // make pool of N Ts
          T* get();                         // get a T from the pool; return 0 if no free Ts
          void free(T*);               // return a T given out by get() to the pool
          int available() const;   // number of free Ts
private:

          // space for T[N] and data to keep track of which Ts are allocated
          // and which are not (e.g., a list of free objects)
};

Each Pool object has a type of elements and a maximum number of objects. We can use a Pool like this:
Click here to view code image

Pool<Small_buffer,10> sb_pool;

Pool<Status_indicator,200> indicator_pool;

Small_buffer* p = sb_pool.get();

// . . .
sb_pool.free(p);

It is the job of the programmer to make sure that a pool is never exhausted. The exact meaning of “make sure” depends on the
application. For some systems, the programmer must write the code such that get() is never called unless there is an object to
allocate. On other systems, a programmer can test the result of get() and take some remedial action if that result is 0. A
characteristic example of the latter is a telephone system engineered to handle at most 100,000 calls at a time. For each call,
some resource, such as a dial buffer, is allocated. If the system runs out of dial buffers (e.g., dial_buffer_pool.get() returns
0), the system refuses to set up new connections (and may “kill” a few existing calls to create capacity). The would-be caller
can try again later.

Naturally, our Pool template is only one variation of the general idea of a pool. For example, where the restraints on
memory allocation are less Draconian, we can define pools where the number of elements is specified in the constructor or
even pools where the number of elements can be changed later if we need more objects than initially specified.



25.3.4 Stack example
A stack is a data structure from which we can allocate chunks of memory and deallocate the last allocated chunk. Using green
for “allocated memory” and blue for “space ready for allocation,” we can visualize a stack like this:

As indicated, this stack “grows” toward the right.
We could define a stack of objects, just as we defined a pool of objects:

Click here to view code image

template<typename T, int N>

class Stack {                              // stack of N objects of type T
          // . . .
};

However, most systems have a need for allocation of objects of varying sizes. A stack can do that whereas a pool cannot, so
we’ll show how to define a stack from which we allocate “raw” memory of varying sizes rather than fixed-size objects:
Click here to view code image

template<int N>

class Stack {                               // stack of N bytes
public:

          Stack();                             // make an N-byte stack
          void* get(int n);              // allocate n bytes from the stack;
                                                        // return 0 if no free space
          void free();                      // return the last value returned by get() to the stack
          int available() const;      // number of available bytes
private:

          // space for char[N] and data to keep track of what is allocated
          // and what is not (e.g., a top-of-stack pointer)
};

Since get() returns a void* pointing to the required number of bytes, it is our job to convert that memory to the kinds of
objects we want. We can use such a stack like this:
Click here to view code image

Stack<50*1024> my_free_store;      // 50K worth of storage to be used as a stack

void* pv1 = my_free_store.get(1024);

int* buffer = static_cast<int*>(pv1);

void* pv2 = my_free_store.get(sizeof(Connection));

Connection* pconn = new(pv2) Connection(incoming,outgoing,buffer);

The use of static_cast is described in §17.8. The new(pv2) construct is a “placement new.” It means “Construct an object in
the space pointed to by pv2.” It doesn’t allocate anything. The assumption here is that the type Connection has a constructor
that will accept the argument list (incoming,outgoing,buffer). If that’s not the case, the program won’t compile.

Naturally, our Stack template is only one variation of the general idea of a stack. For example, where the restraints on
memory allocation are less Draconian, we can define stacks where the number of bytes available for allocation is specified in
the constructor.

25.4 Addresses, pointers, and arrays

Predictability is a need of some embedded systems; reliability is a concern of all. This leads to attempts to avoid language
features and programming techniques that have proved error-prone (in the context of embedded systems programming, if not
necessarily everywhere). Careless use of pointers is the main suspect here. Two problem areas stand out:

• Explicit (unchecked and unsafe) conversions
• Passing pointers to array elements



The former problem can typically be handled simply by severely restricting the use of explicit type conversions (casts). The
pointer/array problems are more subtle, require understanding, and are best dealt with using (simple) classes or library
facilities (such as array, §20.9). Consequently, this section focuses on how to address the latter problems.

25.4.1 Unchecked conversions
Physical resources (e.g., control registers for external devices) and their most basic software controls typically exist at
specific addresses in a low-level system. We have to enter such addresses into our programs and give a type to such data. For
example:
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Device_driver* p = reinterpret_cast<Device_driver*>(0xffb8);

See also §17.8. This is the kind of programming you do with a manual or online documentation open. The correspondence
between a hardware resource — the address of the resource’s register(s) (expressed as an integer, often a hexadecimal
integer) — and pointers to the software that manipulates the hardware resource is brittle. You have to get it right without much
help from the compiler (because it is not a programming language issue). Usually, a simple (nasty, completely unchecked)
reinterpret_cast from an int to a pointer type is the essential link in the chain of connections from an application to its
nontrivial hardware resources.

Where explicit conversions (reinterpret_cast, static_cast, etc.; see §A.5.7) are not essential, avoid them. Such
conversions (casts) are necessary far less frequently than is typically assumed by programmers whose primary experience is
with C and C-style C++.

25.4.2 A problem: dysfunctional interfaces
As mentioned (§18.6.1), an array is often passed to a function as a pointer to an element (often, a pointer to the first element).
Thereby, they “lose” their size, so that the receiving function cannot directly tell how many elements are pointed to, if any. This
is a cause of many subtle and hard-to-fix bugs. Here, we examine examples of those array/pointer problems and present an
alternative. We start with an example of a very poor (but unfortunately not rare) interface and proceed to improve it. Consider:
Click here to view code image

void poor(Shape* p, int sz)                      // poor interface design
{

          for (int i = 0; i<sz; ++i) p[i].draw();

}

void f(Shape* q, vector<Circle>& s0)   // very bad code
{

          Polygon s1[10];

          Shape s2[10];

          // initialize
          Shape* p1 = new Rectangle{Point{0,0},Point{10,20}};

          poor(&s0[0],s0.size());          // #1 (pass the array from the vector)
          poor(s1,10);                            // #2
          poor(s2,20);                            // #3
          poor(p1,1);                             // #4
          delete p1;

          p1 = 0;

          poor(p1,1);                              // #5
          poor(q,max);                          // #6
}

The function poor() is an example of poor interface design: it provides an interface that provides the caller ample opportunity
for mistakes but offers the implementer essentially no opportunity to defend against such mistakes.

 Try This

Before reading further, try to see how many errors you can find in f(). Specifically, which of the calls of poor()

could cause the program to crash?



At first glance, the calls look fine, but this is the kind of code that costs a programmer long nights of debugging and gives a
quality engineer nightmares.

1. Passing the wrong element type, e.g., poor(&s0[0],s0.size()). Also, s0 might be empty, in which case &s0[0] is wrong.
2. Use of a “magic constant” (here, correct): poor(s1,10). Also, wrong element type.
3. Use of a “magic constant” (here, incorrect): poor(s2,20).
4. Correct (easily verified): first call poor(p1,1).
5. Passing a null pointer: second call poor(p1,1).
6. May be correct: poor(q,max). We can’t be sure from looking at this code fragment. To see if q points to an array with

at least max elements, we have to find the definitions of q and max and determine their values at our point of use.
In each case, the errors are simple. We are not dealing with some subtle algorithmic or data structure problem. The problem is
that poor()’s interface, involving an array passed as a pointer, opens the possibility of a collection of problems. You may
appreciate how the problems were obscured by our use of “technical” unhelpful names, such as p1 and s0. However,
mnemonic, but misleading, names can make such problems even harder to spot.

In theory, a compiler could catch a few of these errors (such as the second call of poor(p1,1) where p1==0), but
realistically we are saved from disaster for this particular example only because the compiler catches the attempt to define
objects of the abstract class Shape. However, that is unrelated to poor()’s interface problems, so we should not take too
much comfort from that. In the following, we use a variant of Shape that is not abstract so as not to get distracted from the
interface problems.

How come the poor(&s0[0],s0.size()) call is an error? The &s0[0] refers to the first element of an array of Circles; it is a
Circle*. We expect a Shape* and we pass a pointer to an object of a class derived from Shape (here, a Circle*). That’s
obviously acceptable: we need that conversion so that we can do object-oriented programming, accessing objects of a variety
of types through their common interface (here, Shape) (§14.2). However, poor() doesn’t just use that Shape* as a pointer; it
uses it as an array, subscripting its way through that array:
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for (int i = 0; i<sz; ++i) p[i].draw();

That is, it looks at the objects starting at memory locations &p[0], &p[1], &p[2], etc.:

In terms of memory addresses, these pointers are sizeof(Shape) apart (§17.3.1). Unfortunately for poor()’s caller,
sizeof(Circle) is larger than sizeof(Shape), so that the memory layout can be visualized like this:

That is, poor() is calling draw() with a pointer into the middle of the Circles! This is likely to lead to immediate disaster
(crash).

The call poor(s1,10) is sneakier. It relies on a “magic constant” so it is immediately suspect as a maintenance hazard, but
there is a deeper problem. The only reason the use of an array of Polygons doesn’t immediately suffer the problem we saw
for Circles is that a Polygon didn’t add data members to its base class Shape (whereas Circle did; see §13.8 and §13.12);
that is, sizeof(Shape)==sizeof(Polygon) and — more generally — a Polygon has the same memory layout as a Shape. In
other words, we were “just lucky”; a slight change in the definition of Polygon will cause a crash. So poor(s1,10) works,
but it is a bug waiting to happen. This is emphatically not quality code.

What we see here is the implementation reason for the general language rule that “a D is a B” does not imply “a
Container<D> is a Container<B>” (§19.3.3). For example:
Click here to view code image



class Circle : public Shape { /* . . . */ };

void fv(vector<Shape>&);

void f(Shape &);

void g(vector<Circle>& vd, Circle & d)

{

          f(d);         // OK: implicit conversion from Circle to Shape
          fv(vd);    // error: no conversion from vector<Circle> to vector<Shape>
}

OK, so the use of poor() is very bad code, but can such code be considered embedded systems code; that is, should this kind
of problem concern us in areas where safety or performance matters? Can we dismiss it as a hazard for programmers of non-
critical systems and just tell them, “Don’t do that”? Well, many modern embedded systems rely critically on a GUI, which is
almost always organized in the object-oriented manner of our example. Examples include the iPod user interface, the interfaces
of some cell phones, and operator’s displays on “gadgets” up to and including airplanes. Another example is that controllers of
similar gadgets (such as a variety of electric motors) can constitute a classic class hierarchy. In other words, this kind of code
— and in particular, this kind of function declaration — is exactly the kind of code we should worry about. We need a safer
way of passing information about collections of data without causing other significant problems.

So, we don’t want to pass a built-in array to a function as a pointer plus a size. What do we do instead? The simplest
solution is to pass a reference to a container, such as a vector. The problems we saw for

void poor(Shape* p, int sz);

simply cannot occur for

void general(vector<Shape>&);

If you are programming where std::vector (or the equivalent) is acceptable, simply use vector (or the equivalent)
consistently in interfaces; never pass a built-in array as a pointer plus a size.

If you can’t restrict yourself to vector or equivalents, you enter a territory that is more difficult and the solutions there
involve techniques and language features that are not simple — even though the use of the class (Array_ref) we provide is
straightforward.

25.4.3 A solution: an interface class
Unfortunately, we cannot use std::vector in many embedded systems because it relies on the free store. We can solve that
problem either by having a special implementation of vector or (more easily) by using a container that behaves like a vector

but doesn’t do memory management. Before outlining such an interface class, let’s consider what we want from it:

• It is a reference to objects in memory (it does not own objects, allocate objects, delete objects, etc.).
• It “knows” its size (so that it is potentially range checked).
• It “knows” the exact type of its elements (so that it cannot be the source of type errors).
• It is as cheap to pass (copy) as a (pointer,count) pair.
• It does not implicitly convert to a pointer.
• It is easy to express a subrange of the range of elements described by an interface object.
• It is as easy to use as built-in arrays.

We will only be able to approximate “as easy to use as built-in arrays.” We don’t want it to be so easy to use that errors start
to become likely.

Here is one such class:
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template<typename T>

class Array_ref {

public:



          Array_ref(T* pp, int s) :p{pp}, sz{s} { }

          T& operator[ ](int n) { return p[n]; }

          const T& operator[ ](int n) const { return p[n]; }

          bool assign(Array_ref a)

          {
                    if (a.sz!=sz) return false;

                    for (int i=0; i<sz; ++i) { p[i]=a.p[i]; }

                    return true;

          }

          void reset(Array_ref a) { reset(a.p,a.sz); }

          void reset(T* pp, int s) { p=pp; sz=s; }

          int size() const { return sz; }

          // default copy operations:
          // Array_ref doesn’t own any resources
          // Array_ref has reference semantics
private:

          T* p;

          int sz;

};

Array_ref is close to minimal:
• No push_back() (that would require the free store) and no at() (that would require exceptions).
• Array_ref is a form of reference, so copying simply copies (p,sz).
• By initializing with different arrays, we can have Array_refs that are of the same type but have different sizes.
• By updating (p,size) using reset(), we can change the size of an existing Array_ref (many algorithms require
specification of subranges).

• No iterator interface (but that could be easily added if we needed it). In fact, an Array_ref is in concept very close to a
range described by two iterators.

An Array_ref does not own its elements; it does no memory management; it is simply a mechanism for accessing and passing a
sequence of elements. In that, it differs from the standard library array (§20.9).

To ease the creation of Array_refs, we supply a few useful helper functions:
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template<typename T> Array_ref<T> make_ref(T* pp, int s)

{

          return (pp) ? Array_ref<T>{pp,s} : Array_ref<T>{nullptr,0};

}

If we initialize an Array_ref with a pointer, we have to explicitly supply a size. That’s an obvious weakness because it
provides us with an opportunity to give the wrong size. It also gives us an opportunity to use a pointer that is a result of an
implicit conversion of an array of a derived class to a pointer to a base class, such as Polygon[10] to Shape* (the original
horrible problem from §25.4.2), but sometimes we simply have to trust the programmer.

We decided to be careful about null pointers (because they are a common source of problems), and we took a similar
precaution for empty vectors:
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template<typename T> Array_ref<T> make_ref(vector<T>& v)

{

          return (v.size()) ? Array_ref<T>{&v[0],v.size()} : Array_ref<T>{nullptr,0};

}

The idea is to pass the vector’s array of elements. We concern ourselves with vector here even though it is often not suitable
in the kind of system where Array_ref can be useful. The reason is that it shares key properties with containers that can be
used there (e.g., pool-based containers; see §25.3.3).



Finally, we deal with built-in arrays where the compiler knows the size:
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template <typename T, int s> Array_ref<T> make_ref(T (&pp)[s])

{

          return Array_ref<T>{pp,s};

}

The curious T(&pp)[s] notation declares the argument pp to be a reference to an array of s elements of type T. That allows us
to initialize an Array_ref with an array, remembering its size. We can’t declare an empty array, so we don’t have to test for
zero elements:
Click here to view code image

Polygon ar[0];            // error: no elements

Given Array_ref, we can try to rewrite our example:
Click here to view code image

void better(Array_ref<Shape> a)

{

          for (int i = 0; i<a.size(); ++i) a[i].draw();

}

void f(Shape* q, vector<Circle>& s0)

{

          Polygon s1[10];

          Shape s2[20];

          // initialize
          Shape* p1 = new Rectangle{Point{0,0},Point{10,20}};

          better(make_ref(s0));             // error: Array_ref<Shape> required
          better(make_ref(s1));             // error: Array_ref<Shape> required
          better(make_ref(s2));             // OK (no conversion required)
          better(make_ref(p1,1));         // OK: one element
          delete p1;

          p1 = 0;

          better(make_ref(p1,1));         // OK: no elements
          better(make_ref(q,max));      // OK (if max is OK)
}

We see improvements:
• The code is simpler. The programmer rarely has to think about sizes, but when necessary they are in a specific place (the
creation of an Array_ref), rather than scattered throughout the code.

• The type problem with the Circle[]-to-Shape[] and Polygon[]-to-Shape[] conversions is caught.
• The problems with the wrong number of elements for s1 and s2 are implicitly dealt with.
• The potential problem with max (and other element counts for pointers) becomes more visible — it’s the only place we
have to be explicit about size.

• We deal implicitly and systematically with null pointers and empty vectors.

25.4.4 Inheritance and containers
But what if we wanted to treat a collection of Circles as a collection of Shapes, that is, if we really wanted better() (which
is a variant of our old friend draw_all(); see §19.3.2, §22.1.3) to handle polymorphism? Well, basically, we can’t. In §19.3.3
and §25.4.2, we saw that the type system has very good reasons for refusing to accept a vector<Circle> as a
vector<Shape>. For the same reason, it refuses to accept an Array_ref<Circle> as an Array_ref<Shape>. If you have a
problem remembering why, it might be a good idea to reread §19.3.3, because the point is pretty fundamental even though it can
be inconvenient.

Furthermore, to preserve run-time polymorphic behavior, we have to manipulate our polymorphic objects through pointers
(or references): the dot in a[i].draw() in better() was a giveaway. We should have expected problems with polymorphism
the second we saw that dot rather than an arrow (–>).



So what can we do? First we must use pointers (or references) rather than objects directly, so we’ll try to use
Array_ref<Circle*>, Array_ref<Shape*>, etc. rather than Array_ref<Circle>, Array_ref<Shape>, etc.

However, we still cannot convert an Array_ref<Circle*> to an Array_ref<Shape*> because we might then proceed to
put elements into the Array_ref<Shape*> that are not Circle*s. But there is a loophole:

• Here, we don’t want to modify our Array_ref<Shape*>; we just want to draw the Shapes! This is an interesting and
useful special case: our argument against the Array_ref<Circle*>-to-Array_ref<Shape*> conversion doesn’t apply to
a case where we don’t modify the Array_ref<Shape*>.

• All arrays of pointers have the same layout (independently of what kinds of objects they point to), so we don’t get into
the layout problem from §25.4.2.

That is, there would be nothing wrong with treating an Array_ref<Circle*> as an immutable Array_ref<Shape*>. So, we
“just” have to find a way to treat an Array_ref<Circle*> as an immutable Array_ref<Shape*>. Consider:

There is no logical problem treating that array of Circle* as an immutable array of Shape* (from an Array_ref).

We seem to have strayed into expert territory. In fact, this problem is genuinely tricky and is unsolvable with the tools
supplied so far. However, let’s see what it takes to produce a close-to-perfect alternative to our dysfunctional — but all too
popular — interface style (pointer plus element count; see §25.4.2). Please remember: Don’t go into “expert territory” just to
prove how clever you are. Most often, it is a better strategy to find a library where some experts have done the design,
implementation, and testing for you.

First, we rework better() to something that uses pointers and guarantees that we don’t “mess with” the argument container:
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void better2(const Array_ref<Shape*const> a)

{

          for (int i = 0; i<a.size(); ++i)

                    if (a[i])

                              a[i]–>draw();

}

We are now dealing with pointers, so we should check for null pointers. To make sure that better2() doesn’t modify our
arrays and vectors in unsafe ways through Array_ref, we added a couple of consts. The first const ensures that we do not
apply modifying (mutating) operations, such as assign() and reset(), on our Array_ref. The second const is placed after the
* to indicate that we want a constant pointer (rather than a pointer to constants); that is, we don’t want to modify the element
pointers even if we have operations available for that.

Next, we have to solve the central problem: how do we express the idea that Array_ref<Circle*> can be converted
• To something like Array_ref<Shape*> (that we can use in better2())
• But only to an immutable version of Array_ref<Shape*>

We can do that by adding a conversion operator to Array_ref:



Click here to view code image

template<typename T>

class Array_ref {

public:

          // as before

          template<typename Q>

          operator const Array_ref<const Q>()

          {
                    // check implicit conversion of elements:
                    static_cast<Q>(*static_cast<T*>(nullptr));  // check element
                                                                                                       // conversion
                    return Array_ref<const Q>{reinterpret_cast<Q*>(p),sz}; // convert
                                                                                                                 // Array_ref
          }

          // as before
};

This is headache-inducing, but basically:
• The operator casts to Array_ref<const Q> for every type Q provided we can cast an element of Array_ref<T> to an
element of Array_ref<Q> (we don’t use the result of that cast; we just check that we can cast the element types).

• We construct a new Array_ref<const Q> by using brute force (reinterpret_cast) to get a pointer to the desired
element type. Brute-force solutions often come at a cost; in this case, never use an Array_ref conversion from a class
using multiple inheritance (§A.12.4).

• Note that const in Array_ref<const Q>: that’s what ensures that we cannot copy an Array_ref<const Q> into a
plain old mutable Array_ref<Q>.

We did warn you that this was “expert territory” and “headache-inducing.” However, this version of Array_ref is easy to use
(it’s only the definition/implementation that is tricky):
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void f(Shape* q, vector<Circle*>& s0)

{

          Polygon* s1[10];

          Shape* s2[20];

          // initialize
          Shape* p1 = new Rectangle{Point{0,0},10};

          better2(make_ref(s0));            // OK: converts to Array_ref<Shape*const>
          better2(make_ref(s1));            // OK: converts to Array_ref<Shape*const>
          better2(make_ref(s2));            // OK (no conversion needed)
          better2(make_ref(p1,1));        // error
          better2(make_ref(q,max));     // error
}

The attempts to use pointers result in errors because they are Shape*s whereas better2() expects an Array_ref<Shape*>;
that is, better2() expects something that holds pointers rather than a pointer. If we want to pass pointers to better2(), we have
to put them into a container (e.g., a built-in array or a vector) and pass that. For an individual pointer, we could use the
awkward make_ref(&p1,1). However, there is no solution for arrays (with more than one element) that doesn’t involve
creating a container of pointers to objects.

In conclusion, we can create simple, safe, easy-to-use, and efficient interfaces to compensate for the weaknesses of arrays.
That was the major aim of this section. “Every problem is solved by another indirection” (quote by David Wheeler) has been
proposed as “the first law of computer science.” That was the way we solved this interface problem.

25.5 Bits, bytes, and words
We have talked about hardware memory concepts, such as bits, bytes, and words, before, but in general programming those are
not the ones we think much about. Instead we think in terms of objects of specific types, such as double, string, Matrix, and
Simple_window. Here, we will look at a level of programming where we have to be more aware of the realities of the
underlying memory.



If you are uncertain about your knowledge of binary and hexadecimal representations of integers, this may be a good time to
review §A.2.1.1.

25.5.1 Bits and bit operations

Think of a byte as a sequence of 8 bits:

Note the convention of numbering bits in a byte from the right (the least significant bit) to the left (the most significant bit).
Now think of a word as a sequence of 4 bytes:

Again, we number right to left, that is, least significant byte to most significant byte. These pictures oversimplify what is found
in the real world: there have been computers where a byte was 9 bits (but we haven’t seen one for a decade), and machines
where a word is 2 bytes are not rare. However, as long as you remember to check your system’s manual before taking
advantage of “8 bits” and “4 bytes,” you should be fine.

In code meant to be portable, use <limits> (§24.2.1) to make sure your assumptions about sizes are correct. It is possible to
place assertions in the code for the compiler to check:
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static_assert(4<=sizeof(int),"ints are too small");

static_assert(!numeric_limits<char>::is_signed,"char is signed");

The first argument of a static_assert is a constant expression assumed to be true. If it is not true, that is, the assertion failed,
the compiler writes the second argument, a string, as part of an error message.

How do we represent a set of bits in C++? The answer depends on how many bits we need and what kinds of operations we
want to be convenient and efficient. We can use the integer types as sets of bits:

• bool — 1 bit, but takes up a whole byte of space
• char — 8 bits
• short — 16 bits
• int — typically 32 bits, but many embedded systems have 16-bit ints
• long int — 32 bits or 64 bits (but at least as many bits as int)
• long long int — 32 bits or 64 bits (but at least as many bits as long)

The sizes quoted are typical, but different implementations may have different sizes, so if you need to know, test. In addition,
the standard library provides ways of dealing with bits:

• std::vector<bool> — when we need more than 8*sizeof(long) bits
• std::bitset — when we need more than 8*sizeof(long) bits
• std::set — an unordered collection of named bits (see §21.6.5)
• A file: lots of bits (see §25.5.6)

Furthermore, we can use two language features to represent bits:
• Enumerations (enums); see §9.5
• Bitfields; see §25.5.5

This variety of ways to represent “bits” reflects the fact that ultimately everything in computer memory is a set of bits, so
people have felt the urge to provide a variety of ways of looking at bits, naming bits, and doing operations on bits. Note that the
built-in facilities deal with a set of a fixed number of bits (e.g., 8, 16, 32, and 64) so that the computer can do logical
operations on them at optimal speed using operations provided directly by hardware. In contrast, the standard library facilities
provide an arbitrary number of bits. This may limit performance, but don’t prejudge efficiency issues: the library facilities can



be — and often are — optimized to run well if you pick a number of bits that maps well to the underlying hardware.
Let’s first look at the integers. For these, C++ basically provides the bitwise logical operations that the hardware directly

implements. These operations apply to each bit of their operands:

You might find the inclusion of “exclusive or” (^, sometimes called “xor”) as a fundamental operation odd. However, that’s
the essential operation in much graphics and encryption code.

The compiler won’t confuse a bitwise logical << for an output operator, but you might. To avoid confusion, remember that
an output operator takes an ostream as its left-hand operand, whereas a bitwise logical operator takes an integer as its left-
hand operand.

Note that & differs from && and | differs from || by operating individually on every bit of its operands (§A.5.5), producing a
result with as many bits as its operands. In contrast, && and || just return true or false.

Let’s try a couple of examples. We usually express bit patterns using hexadecimal notation. For a half byte (4 bits) we have

For numbers up to 9 we could have used decimal, but using hexadecimal helps us to remember that we are thinking about bit
patterns. For bytes and words, hexadecimal becomes really useful. The bits in a byte can be expressed as two hexadecimal
digits. For example:

So, using unsigned (§25.5.3) to keep things as simple as possible, we can write



Note that a 0 is “shifted in” from beyond bit 0 (the least significant bit) to fill up the byte. The leftmost bit (bit 7) simply
disappears.

Note that two 0s are “shifted in” from beyond bit 7 (the most significant bit) to fill up the byte. The rightmost 2 bits (bit 1 and
bit 0) simply disappear.

We can draw bit patterns like this and it is good to get a feel for bit patterns, but it soon becomes tedious. Here is a little
program that converts integers to their bit representation:
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int main()

{

          for (int i; cin>>I; )

                    cout << dec << i << "=="

                              << hex << "0x" << i << "=="

                              << bitset<8*sizeof(int)>{i} << '\n';

}

To print the individual bits of the integer, we use a standard library bitset:

bitset<8*sizeof(int)>{i}

A bitset is a fixed number of bits. In this case, we use the number of bits in an int — 8*sizeof(int) — and initialize that
bitset with our integer i.



 Try This

Get the bits example to work and try out a few values to develop a feel for binary and hexadecimal
representations. If you get confused about the representation of negative values, just try again after reading
§25.5.3.

25.5.2 bitset

The standard library template class bitset from <bitset> is used to represent and manipulate sets of bits. Each bitset is of a
fixed size, specified at construction:

bitset<4> flags;

bitset<128> dword_bits;

bitset<12345> lots;

A bitset is by default initialized to “all zeros” but is typically given an initializer; bitset initializers can be unsigned integers
or strings of zeros and ones. For example:
Click here to view code image

bitset<4> flags = 0xb;

bitset<128> dword_bits {string{"1010101010101010"}};

bitset<12345> lots;

Here lots will be all zeros, and dword_bits will have 112 zeros followed by the 16 bits we explicitly specified. If you try to
initialize with a string that has characters different from '0' and '1', a std::invalid_argument exception is thrown:
Click here to view code image

string s;

cin>>s;

bitset<12345> my_bits{s};  // may throw std::invalid_argument

We can use the usual bit manipulation operators for bitsets. Assume that b1, b2, and b3 are bitsets:
Click here to view code image

b1 = b2&b3;           // and
b1 = b2|b3;            // or
b1 = b2^b3;          // xor
b1 = ~b2;              // complement
b1 = b2<<2;         // shift left
b1 = b2>>3;         // shift right

Basically, for bit operations (bitwise logical operations), a bitset acts like an unsigned int (§25.5.3) of an arbitrary, user-
specified size. What you can do to an unsigned int (with the exception of arithmetic operations), you can do to a bitset. In
particular, bitsets are useful for I/O:
Click here to view code image

cin>>b;                                  // read a bitset from input
cout<<bitset<8>{'c'};          // output the bit pattern for the character 'c'

When reading into a bitset, an input stream looks for zeros and ones. Consider:

10121

This is read as 101, leaving 21 unread in the stream.
As for a byte and a word, the bits of a bitset are numbered right to left (from the least significant bit toward the most

significant), so that, for example, the numerical value of bit 7 is 27:

For bitsets, the numbering is not just a convention because a bitset supports subscripting of bits. For example:
Click here to view code image



int main()

{

          constexpr int max = 10;

          for (bitset<max> b; cin>>b; ) {

                    cout << b << '\n';

                    for (int i =0; i<max; ++i) cout << b[i];  // reverse order
                    cout << '\n';

          }
}

If you need a more complete picture of bitsets, look them up in your online documentation, a manual, or an expert-level
textbook.

25.5.3 Signed and unsigned
Like most languages, C++ supports both signed and unsigned integers. Unsigned integers are trivial to represent in memory:
bit0 means 1, bit1 means 2, bit2 means 4, and so on. However, signed integers pose a problem: how do we distinguish
between positive and negative numbers? C++ gives the hardware designers some freedom of choice, but almost all
implementations use the two’s complement representation. The leftmost (most significant bit) is taken as the “sign bit”:

If the sign bit is 1, the number is negative. Almost universally, the two’s complement representation is used. To save paper, we
consider how we would represent signed numbers in a 4-bit integer:

The bit pattern for –(x+1) can be described as the complement of the bits in x (also known as ~x; see §25.5.1).

So far, we have just used signed integers (e.g., int). A slightly better set of rules would be:
• Use signed integers (e.g., int) for numbers.
• Use unsigned integers (e.g., unsigned int) for sets of bits.

That’s not a bad rule of thumb, but it’s hard to stick to because some people prefer unsigned integers for some forms of
arithmetic and we sometimes need to use their code. In particular, for historical reasons going back to the early days of C when
ints were 16 bits and every bit mattered, v.size() for a vector is an unsigned integer. For example:

Click here to view code image

vector<int> v;

// . . .
for (int i = 0; i<v.size(); ++i) cout << v[i] << '\n';

A “helpful” compiler may warn us that we are mixing signed (i.e., i) and unsigned (i.e., v.size()) values. Mixing signed and
unsigned variables could lead to disaster. For example, the loop variable i might overflow; that is, v.size() might be larger
than the largest signed int. Then, i would reach the highest value that could represent a positive integer in a signed int (the
number of bits in an int minus 1 to the power of two, minus 1, e.g., 215–1). Then, the next ++ couldn’t yield the next-highest
integer and would instead result in a negative value. The loop would never terminate! Each time we reached the largest integer,
we would start again from the smallest negative int value. So for 16-bit ints that loop is a (probably very serious) bug if
v.size() is 32*1024 or larger; for 32-bit ints the problem occurs if i reaches 2*1024*1024*1024.

So, technically, most of the loops in this book have been sloppy and could have caused problems. In other words, for an



embedded system, we should either have verified that the loop could never reach the critical point or replaced it with a
different form of loop. To avoid this problem we can use the size_type provided by vector, iterators, or a range-for-
statement:
Click here to view code image

for (vector<int>::size_type i = 0; i<v.size(); ++i) cout << v[i] << '\n';

for (vector<int>::iterator p = v.begin(); p!=v.end(); ++p) cout << *p << '\n';

for (int x : v) cout << x << '\n';

The size_type is guaranteed to be unsigned, so the first (unsigned integer) form has one more bit to play with than the int

version above. That can be significant, but it still gives only a single bit of range (doubling the number of iterations that can be
done). The loop using iterators has no such limitation.

 Try This

The following example may look innocent, but it is an infinite loop:
Click here to view code image

void infinite()

{

           unsigned char max = 160;        // very large
           for (signed char i=0; i<max; ++i) cout << int(i) << '\n';

}

Run it and explain why.

Basically, there are two reasons for using unsigned integers as integers, as opposed to using them simply as sets of bits (i.e.,
not using +, –, *, and /):

• To gain that extra bit of precision
• To express the logical property that the integer can’t be negative

The former is what programmers get out of using an unsigned loop variable.
The problem with using both signed and unsigned types is that in C++ (as in C) they convert to each other in surprising and

hard-to-remember ways. Consider:

unsigned int ui = –1;

int si = ui;

int si2 = ui+2;

unsigned ui2 = ui+2;

Surprisingly, the first initialization succeeds and ui gets the value 4294967295, which is the unsigned 32-bit integer with the
same representation (bit pattern) as the signed integer –1 (“all ones”). Some people consider that neat and use –1 as shorthand
for “all ones”; others consider that a problem. The same conversion rule applies from unsigned to signed, so si gets the value –
1. As we would expect, si2 becomes 1 (–1+2 == 1), and so does ui2. The result for ui2 ought to surprise you for a second:
why should 4294967295+2 be 1? Look at 4294967295 as a hexadecimal number (0xffffffff) and things become clearer:
4294967295 is the largest unsigned 32-bit integer, so 4294967297 cannot be represented as a 32-bit integer — unsigned or
not. So we say either that 4294967295+2 overflowed or (more precisely) that unsigned integers support modular arithmetic;
that is, arithmetic on 32-bit integers is modulo-32 arithmetic.

Is everything clear so far? Even if it is, we hope we have convinced you that playing with that extra bit of precision in an
unsigned integer is playing with fire. It can be confusing and is therefore a potential source of errors.



What happens if an integer overflows? Consider:

Click here to view code image

Int i = 0;

while (++i) print(i);     // print i as an integer followed by a space

What sequence of values will be printed? Obviously, this depends on the definition of Int (no, for once, the use of the capital I
isn’t a typo). For an integer type with a limited number of bits, we will eventually overflow. If Int is unsigned (e.g., unsigned

char, unsigned int, or unsigned long long), the ++ is modulo arithmetic, so after the largest number that can be
represented we get 0 (and the loop terminates). If Int is a signed integer (e.g., signed char), the numbers will suddenly turn
negative and start working their way back up to 0 (where the loop will terminate). For example, for a signed char, we will
see 1 2 . . . 126 127 –128 –127 . . . –2 –1.

What happens if an integer overflows? The answer is that we proceed as if we had enough bits, but throw away whichever
part of the result doesn’t fit in the integer into which we store our result. That strategy will lose us the leftmost (most
significant) bits. That’s the same effect we see when we assign:
Click here to view code image

int si = 257;                    // doesn’t fit into a char
char c = si;                    // implicit conversion to char
unsigned char uc = si;

signed char sc = si;

print(si); print(c); print(uc); print(sc); cout << '\n';

si = 129;                        // doesn’t fit into a signed char
c = si;

uc = si;

sc = si;

print(si); print(c); print(uc); print(sc);

We get

The explanation of this result is that 257 is two more than will fit into 8 bits (255 is “8 ones”) and 129 is two more than can fit
into 7 bits (127 is “7 ones”) so the sign bit gets set. Aside: This program shows that chars on our machine are signed (c
behaves as sc and differs from uc).

 Try This

Draw out the bit patterns on a piece of paper. Using paper, then figure out what the answer would be for si=128.
Then run the program to see if your machine agrees.

An aside: Why did we introduce that print() function? We could try

cout << i << ' ';

However, if i was a char, we would then output it as a character rather than an integer value. So, to treat all integer types
uniformly, we defined
Click here to view code image

template<typename T> void print(T i) { cout << i << '\t'; }

void print(char i) { cout << int(i) << '\t'; }

void print(signed char i) { cout << int(i) << '\t'; }

void print(unsigned char i) { cout << int(i) << '\t'; }



To conclude: You can use unsigned integers exactly as signed integers (including ordinary arithmetic), but avoid that when you
can because it is tricky and error-prone.

• Try never to use unsigned just to get another bit of precision.
• If you need one extra bit, you’ll soon need another.

Unfortunately, you can’t completely avoid unsigned arithmetic:

• Subscripting for standard library containers uses unsigned.
• Some people like unsigned arithmetic.

25.5.4 Bit manipulation

Why do we actually manipulate bits? Well, most of us prefer not to. “Bit fiddling” is low-level and error-prone, so when we
have alternatives, we take them. However, bits are both fundamental and very useful, so many of us can’t just pretend they
don’t exist. This may sound a bit negative and discouraging, but that’s deliberate. Some people really love to play with bits and
bytes, so it is worth remembering that bit fiddling is something you do when you must (quite possibly having some fun in the
process), but bits shouldn’t be everywhere in your code. To quote John Bentley: “People who play with bits will be bitten”
and “People who play with bytes will be bytten.”

So, when do we manipulate bits? Sometimes the natural objects of our application simply are bits, so that some of the
natural operations in our application domain are bit operations. Examples of such domains are hardware indicators (“flags”),
low-level communications (where we have to extract values of various types out of byte streams), graphics (where we have to
compose pictures out of several levels of images), and encryption (see the next section).

For example, consider how to extract (low-level) information from an integer (maybe because we wanted to transmit it as
bytes, the way binary I/O does):
Click here to view code image

void f(short val)                                             // assume 16-bit, 2-byte short integer
{

          unsigned char right = val&0xff;      // rightmost (least significant) byte
          unsigned char left = val>>8;           // leftmost (most significant) byte
          // . . .
          bool negative = val&0x8000;           // sign bit
          // . . .
}

Such operations are common. They are known as “shift and mask.” We “shift” (using << or >>) to place the bits we want to
consider to the rightmost (least significant) part of the word where they are easy to manipulate. We “mask” using and (&)
together with a bit pattern (here 0xff) to eliminate (set to zero) the bits we do not want in the result.

When we want to name bits, we often use enumerations. For example:

enum Printer_flags {

          acknowledge=1,

          paper_empty=1<<1,

          busy=1<<2,

          out_of_black=1<<3,

          out_of_color=1<<4,

          // . . .
};

This defines each enumerator to have exactly the value that its name indicates:
Click here to view code image

out_of_color    16   0x10   0001 0000

out_of_black    8     0x8    0000 1000

busy                  4     0x4    0000 0100

paper_empty    2     0x2    0000 0010

acknowledge    1     0x1    0000 0001



Such values are useful because they can be combined independently:
Click here to view code image

unsigned char x = out_of_color | out_of_black;     // x becomes 24 (16+8)
x |= paper_empty;                                                         // x becomes 26 (24+2)

Note how |= can be read as “set a bit” (or as “set some bits”). Similarly, & can be read as “Is a bit set?” For example:
Click here to view code image

if (x& out_of_color) {          // is out_of_color set? (yes, it is)
// . . .
}

We can still use & to mask:
Click here to view code image

unsigned char y = x &(out_of_color | out_of_black);   // y becomes 24

Now y has a copy of the bits from x’s positions 4 and 3 (out_of_color and out_of_black).
It is very common to use an enum as a set of bits. When doing that, we need a conversion to get the result of a bitwise

logical operation “back into” the enum. For example:
Click here to view code image

Flags z = Printer_flags(out_of_color | out_of_black);  // the cast is necessary

The reason that the cast is needed is that the compiler cannot know that the result of out_of_color | out_of_black is a valid
value for a Flags variable. The compiler’s skepticism is warranted: after all, no enumerator has a value 24 (out_of_color |

out_of_black), but in this case, we know the assignment to be reasonable (but the compiler does not).

25.5.5 Bitfields

As mentioned, the hardware interface is one area where bits occur frequently. Typically, an interface is defined as a mixture of
bits and numbers of various sizes. These “bits and numbers” are typically named and occur in specific positions of a word,
often called a device register. C++ has a specific language facility to deal with such fixed layouts: bitfields. Consider a page
number as used in the page manager deep in an operating system. Here is a diagram from an operating system manual:

The 32-bit word is used as two numeric fields (one of 22 bits and one of 3 bits) and four flags (1 bit each). The sizes and
positions of these pieces of data are fixed. There is even an unused (and unnamed) “field” in the middle. We can express this
as a struct:
Click here to view code image

struct PPN {                                       // R6000 Physical Page Number
          unsigned int PFN : 22 ;         // Page Frame Number
          int : 3 ;                                     // unused
          unsigned int CCA : 3 ;         // Cache Coherency Algorithm
          bool nonreachable : 1 ;

          bool dirty : 1 ;

          bool valid : 1 ;

          bool global : 1 ;

};

We had to read the manual to see that PFN and CCA should be interpreted as unsigned integers, but otherwise we could write
out that struct directly from the diagram. Bitfields fill a word left to right. You give the number of bits as an integer value after
a colon. You can’t specify an absolute position (e.g., bit 8). If you “consume” more bits with bitfields than a word can hold, the
fields that don’t fit are put into the next word. Hopefully, that’s what you want. Once defined, a bitfield is used exactly like
other variables:



Click here to view code image

void part_of_VM_system(PPN * p )

{

          // . . .
          if (p–>dirty) { // contents changed
                    // copy to disk
                    p–>dirty = 0 ;

         }
         // . . .
}

Bitfields primarily save you the bother of shifting and masking to get to information placed in the middle of a word. For
example, given a PPN called pn we could extract CCA like this:
Click here to view code image

unsigned int x = pn.CCA;        // extract CCA

Had we used an int called pni to represent the same bits, we could instead have written
Click here to view code image

unsigned int y = (pni>>4)&0x7;   // extract CCA

That is, shift pn right so that CCA is the leftmost bit, then mask all other bits off with 0x7 (i.e., last three bits set). If you look
at the machine code, you’ll most likely find that the generated code is identical for those two lines.

The “acronym soup” (CCA, PPN, PFN) is typical of code at this level and makes little sense out of context.

25.5.6 An example: simple encryption
As an example of manipulation of data at the level of the data’s representation as bits and bytes, let us consider a simple
encryption algorithm: the Tiny Encryption Algorithm (TEA). It was originally written by David Wheeler of Cambridge
University (§22.2.1). It is small but the protection against undesired decryption is excellent.

Don’t look too hard at the code (unless you really want to and are willing to risk a headache). We present the code simply to
give you the flavor of some real-world and useful bit manipulation code. If you want to make a study of encryption, you need a
separate textbook for that. For more information and variants of the algorithm in other languages, see
http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm and the TEA website of Professor Simon Shepherd, Bradford
University, England. The code is not meant to be self-explanatory (no comments!).

The basic idea of enciphering/deciphering (also known as encryption/decryption) is simple. I want to send you some text,
but I don’t want others to read it. Therefore, I transform the text in a way that renders it unreadable to people who don’t know
exactly how I modified it — but in such a way that you can reverse my transformation and read the text. That’s called
enciphering. To encipher I use an algorithm (which we must assume an uninvited listener knows) and a string called the “key.”
Both you and I have the key (and we hope that the uninvited listener does not). When you get the enciphered text, you decipher
it using the “key”; that is, you reconstitute the “clear text” that I sent.

TEA takes as argument an array of two unsigned longs (v[0],v[1]) representing eight characters to be enciphered, an array
of two unsigned longs (w[0],w[1]) into which the enciphered output is written, and an array of four unsigned longs
(k[0]..k[3]), which is the key:
Click here to view code image

void encipher(

          const unsigned long *const v,

          unsigned long *const w,

          const unsigned long * const k)

{

          static_assert(sizeof(long)==4,"size of long wrong for TEA");

          unsigned long y = v[0];

          unsigned long z = v[1];

          unsigned long sum = 0;

          const unsigned long delta = 0x9E3779B9;

          for (unsigned long n = 32; n––>0; ) {

http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm


                    y += (z<<4 ^ z>>5) + z^sum + k[sum&3];

                    sum += delta;

                    z += (y<<4 ^ y>>5) + y^sum + k[sum>>11 & 3];

          }
          w[0]=y;

          w[1]=z;

}

Note how all data is unsigned so that we can perform bitwise operations on it without fear of surprises caused by special
treatment related to negative numbers. Shifts (<< and >>), exclusive or (^), and bitwise and (&) do the essential work with an
ordinary (unsigned) addition thrown in for good measure. This code is specifically written for a machine where there are 4
bytes in a long. The code is littered with “magic” constants (e.g., it assumes that sizeof(long) is 4). That’s generally not a
good idea, but this particular piece of software fits on a single sheet of paper. As a mathematical formula, it fits on the back of
an envelope or — as originally intended — in the head of a programmer with a good memory. David Wheeler wanted to be
able to encipher things while he was traveling without bringing notes, a laptop, etc. In addition to being small, this code is also
fast. The variable n determines the number of iterations: the higher the number of iterations, the stronger the encryption. To the
best of our knowledge, for n==32 TEA has never been broken.

Here is the corresponding deciphering function:
Click here to view code image

void decipher(

          const unsigned long *const v,

          unsigned long *const w,

          const unsigned long * const k)

{

          static_assert(sizeof(long)==4,"size of long wrong for TEA");

          unsigned long y = v[0];

          unsigned long z = v[1];

          unsigned long sum = 0xC6EF3720;

          const unsigned long delta = 0x9E3779B9;

          // sum = delta<<5, in general sum = delta * n
          for (unsigned long n = 32; n–– > 0; ) {

                    z –= (y << 4 ^ y >> 5) + y ^ sum + k[sum>>11 & 3];

                    sum –= delta;

                    y –= (z << 4 ^ z >> 5) + z ^ sum + k[sum&3];

          }
          w[0]=y;

          w[1]=z;

}

We can use TEA like this to produce a file to be sent over an unsafe connection:
Click here to view code image

int main()           // sender
{

          const int nchar = 2*sizeof(long);        // 64 bits
          const int kchar = 2*nchar;                   // 128 bits

          string op;

          string key;

          string infile;

          string outfile;

          cout << "please enter input file name, output file name, and key:\n";

          cin >> infile >> outfile >> key;

          while (key.size()<kchar) key += '0';    // pad key
          ifstream inf(infile);

          ofstream outf(outfile);

          if (!inf || !outf) error("bad file name");

          const unsigned long* k =

                    reinterpret_cast<const unsigned long*>(key.data());

          unsigned long outptr[2];

          char inbuf[nchar];



          unsigned long* inptr = reinterpret_cast<unsigned long*>(inbuf);

          int count = 0;

          while (inf.get(inbuf[count])) {

                    outf << hex;                               // use hexadecimal output
                    if (++count == nchar) {

                              encipher(inptr,outptr,k);

                              // pad with leading zeros:
                              outf << setw(8) << setfill('0') << outptr[0] << ' '

                                        << setw(8) << setfill('0') << outptr[1] << ' ';

                              count = 0;

                    }
          }

          if (count) {  // pad
                    while(count != nchar) inbuf[count++] = '0';

                    encipher(inptr,outptr,k);

                    outf << outptr[0] << ' ' << outptr[1] << ' ';

          }
}

The essential piece of code is the while-loop; the rest is just support. The while-loop reads characters into the input buffer,
inbuf, and every time it has eight characters as needed by TEA it passes them to encipher(). TEA doesn’t care about
characters; in fact, it has no idea what it is enciphering. For example, you could encipher a photo or a phone conversation. All
TEA cares about is that it is given 64 bits (two unsigned longs) so that it can produce a corresponding 64 bits. So, we take a
pointer to the inbuf and cast it to an unsigned long* and pass that to TEA. We do the same for the key; TEA will use the first
128 bits (four unsigned longs) of the key, so we “pad” the user’s input to be sure that there are 128 bits. The last statement
pads the text with zeros to make up the multiple of 64 bits (8 bytes) required by TEA.

How do we transmit the enciphered text? We have a free choice, but since it is “just bits” rather than ASCII or Unicode
characters, we can’t really treat it as ordinary text. Binary I/O (see §11.3.2) would be an option, but here we decided to output
the output words as hexadecimal numbers:
Click here to view code image

5b8fb57c   806fbcce   2db72335   23989d1d   991206bc   0363a308
8f8111ac   38f3f2f3   9110a4bb   c5e1389f   64d7efe8   ba133559
4cc00fa0   6f77e537   bde7925f   f87045f0   472bad6e   dd228bc3
a5686903   51cc9a61   fc19144e   d3bcde62   4fdb7dc8   43d565e5
f1d3f026   b2887412   97580690   d2ea4f8b   2d8fb3b7   936cfa6d
6a13ef90   fd036721   b80035e1   7467d8d8   d32bb67e   29923fde
197d4cd6   76874951   418e8a43   e9644c2a   eb10e848   ba67dcd8
7115211f   dbe32069   e4e92f87   8bf3e33e   b18f942c   c965b87a
44489114   18d4f2bc   256da1bf   c57b1788   9113c372   12662c23
eeb63c45   82499657   a8265f44   7c866aae   7c80a631   e91475e1
5991ab8b   6aedbb73   71b642c4   8d78f68b   d602bfe4   d1eadde7
55f20835   1a6d3a4b   202c36b8   66a1e0f2   771993f3   11d1d0ab
74a8cfd4   4ce54f5a   e5fda09d   acbdf110   259a1a19   b964a3a9
456fd8a3   1e78591b   07c8f5a2   101641ec   d0c9d7e1   60dbeb11
b9ad8e72   ad30b839   201fc553   a34a79c4   217ca84d   30f666c6
d018e61c   d1c94ea6   6ca73314   cd60def1   6e16870e   45b94dc0
d7b44fcd   96e0425a   72839f71   d5b6427c   214340f9   8745882f
0602c1a2   b437c759   ca0e3903   bd4d8460   edd0551e   31d34dd3
c3f943ed   d2cae477   4d9d0b61   f647c377   0d9d303a   ce1de974
f9449784   df460350   5d42b06c   d4dedb54   17811b5f   4f723692
14d67edb   11da5447   67bc059a   4600f047   63e439e3   2e9d15f7
4f21bbbe   3d7c5e9b   433564f5   c3ff2597   3a1ea1df   305e2713



9421d209   2b52384f   f78fbae7   d03c1f58   6832680a   207609f3
9f2c5a59   ee31f147   2ebc3651   e017d9d6   d6d60ce2   2be1f2f9
eb9de5a8   95657e30   cad37fda   7bce06f4   457daf44   eb257206
418c24a5   de687477   5c1b3155   f744fbff   26800820   92224e9d
43c03a51   d168f2d1   624c54fe   73c99473   1bce8fbb   62452495
5de382c1   1a789445   aa00178a   3e583446   dcbd64c5   ddda1e73
fa168da2   60bc109e   7102ce40   9fed3a0b   44245e5d   f612ed4c
b5c161f8   97ff2fc0   1dbf5674   45965600   b04c0afa   b537a770
9ab9bee7   1624516c   0d3e556b   6de6eda7   d159b10e   71d5c1a6
b8bb87de   316a0fc9   62c01a3d   0a24a51f   86365842   52dabf4d
372ac18b   9a5df281   35c9f8d7   07c8f9b4   36b6d9a5   a08ae934
239efba5   5fe3fa6f   659df805   faf4c378   4c2048d6   e8bf4939
31167a93   43d17818   998ba244   55dba8ee   799e07e7   43d26aef
d5682864   05e641dc   b5948ec8   03457e3f   80c934fe   cc5ad4f9
0dc16bb2   a50aa1ef   d62ef1cd   f8fbbf67   30c17f12   718f4d9a
43295fed   561de2a0

 Try This

The key was bs; what was the text?

Any security expert will tell you that it is a dumb idea to store clear text and enciphered files together and also express an
opinion about padding, about using a two-letter key, etc., but this is a programming book, rather than a book on computer
security.

We tested the programs by reading the enciphered text and getting the original back. When writing a program, it is always
nice to be able to conduct a simple test of correctness.

Here is the central part of the deciphering program:
Click here to view code image

unsigned long inptr[2];

char outbuf[nchar+1];

outbuf[nchar]=0;   // terminator
unsigned long* outptr = reinterpret_cast<unsigned long*>(outbuf);

inf.setf(ios_base::hex ,ios_base::basefield);      // use hexadecimal input

while (inf>>inptr[0]>>inptr[1]) {

          decipher(inptr,outptr,k);

          outf<<outbuf;

}

Note the use of
Click here to view code image

inf.setf(ios_base::hex ,ios_base::basefield);

to read the hexadecimal numbers. For decryption, it’s the output buffer, outbuf, that we treat as bits using a cast.

Is TEA an example of embedded systems programming? Not specifically, but you can imagine it being used wherever
privacy is needed or financial transactions are conducted — that could include many “gadgets.” Anyway, TEA demonstrates
many of the characteristics of good embedded systems code: it is based on a well-understood (mathematical) model that makes
us confident about its correctness, it’s small, it’s fast, and it relies directly on hardware properties. The interface style of



encipher() and decipher() is not quite to our taste. However, encipher() and decipher() were designed to be C as well
as C++ functions, so no C++ facilities that are not also supported by C could be used. In addition, the many “magic constants”
came from direct hand translation from the math.

25.6 Coding standards

There are many sources of errors. The most serious and hardest to remedy relate to high-level design decisions, such as overall
error-handling strategies, conformance to certain standards (or lack thereof), algorithms, the representation of data, etc. These
problems are not the ones we address here. Instead, we focus on errors that arise from code that is poorly written, that is, code
that uses programming language facilities in unnecessarily error-prone ways or expresses ideas in ways that obscure their
meaning.

Coding standards try to address the latter kinds of problems by defining a “house style” that guides programmers to a subset
of the C++ language that is deemed appropriate for a given application. For example, a coding standard for an embedded
system involving hard real-time constraints or for a system needing to run “forever” may prohibit the use of new. Typically a
coding standard also tries to ensure that code written by two programmers is more similar than if they had chosen freely from
all possible styles. For example, a coding standard may require that for-statements be used for loops (thereby banning while-
statements). This can make code more uniform, and in large projects that can be important for maintenance. Please note that a
coding standard is aimed at improving code for a specific kind of programming given a specific kind of programmer. There is
no one coding standard suitable for all C++ applications and all C++ programmers.

So, the problems that a coding standard tries to address are problems that arise from the way we express our solutions rather
than the problems that arise from inherent complexities of the problem we are trying to solve with our application. We could
say that coding standards are trying to address incidental complexities rather that inherent complexities.

The major sources of such incidental complexities are

• Overly clever programmers, who use features they don’t understand or delight in complicated solutions
• Undereducated programmers, who don’t use the most appropriate language and library features
• Unnecessary variations in programming style, causing code performing similar tasks to look different and confuse
maintainers

• Inappropriate programming language, leading to use of language features that are poorly adapted to a particular
application area or to a particular group of programmers

• Insufficient library use, leading to lots of ad hoc manipulation of low-level resources
• Inappropriate coding standards, causing extra work or prohibiting the best solution to some classes of problems, thus
becoming a source of the kind of problems that the standards were introduced to solve

25.6.1 What should a coding standard be?

A good coding standard should help a programmer write good code; that is, it should help the programmer by giving answers
to lots of little questions that each programmer would otherwise have to spend time deciding on a case-by-case basis. There is
an old engineer’s proverb that says, “Form is liberating.” Ideally, a coding standard should be prescriptive, stating what should
be done. That seems obvious, but many coding standards are simply a list of prohibitions, with no guidance about what to do
after having obeyed a long list of don’ts. Just being told what not to do is rarely helpful and often annoying.

The rules of a good coding standard should be verifiable, preferably by a program; that is, once we have written the code,
we should be able to look at it and easily answer the question, “Have I broken any rule of my coding standard?”

A good coding standard should present a rationale for the rules. Programmers should not just be told, “Because that’s the
way we do it!” When they are, they resent it. Worse, programmers invariably try to subvert parts of a coding standard that they
see as pointless and as preventing them from doing a good job. Don’t expect to like everything about a coding standard. Even
the best coding standard is a compromise, and most prohibit certain practices assumed to cause problems — even if they never



caused you a problem. For example, inconsistent naming rules are a source of confusion, but different people have strong
attachments to some naming conventions and strong dislikes of others. For example, I consider the CamelCodingStyle of
identifiers “pug ugly” and strongly prefer underscore_style as cleaner and inherently more readable, and many people agree.
On the other hand, many reasonable people disagree. Obviously, no naming standard can please everyone, but in this case, as
in many others, a consistent style is definitely better than the lack of a standard.

To summarize:
• A good coding standard is designed for a specific application domain and a specific group of programmers.
• A good coding standard is prescriptive as well as restrictive.

• Recommending some “foundation” library facilities is often the most effective use of prescriptive rules.
• A coding standard is a set of rules for what code should look like,

• Typically specifying naming and indentation rules; e.g., “Use ‘Stroustrup layout.’”
• Typically specifying a subset of a language; e.g., “Don’t use new or throw.”
• Typically specifying rules for commenting; e.g., “Every function must have a comment explaining what it does.”
• Often requiring the use of certain libraries; e.g., “Use <iostream> rather than <stdio.h>” or “Use vector and
string rather than built-in arrays and C-style strings.”

• Common aims of most coding standards are to improve
• Reliability
• Portability
• Maintainability
• Testability
• Reusability
• Extensibility
• Readability

• A good coding standard is better than no standard. We wouldn’t start a major (multi-person, multi-year) industrial
project without one.

• A poor coding standard can be worse than no standard. For example, C++ coding standards that restrict programming to
something like the C subset do harm. Unfortunately, poor coding standards are not uncommon.

• All coding standards are disliked by programmers, even the good ones. Most programmers want to write their code
exactly the way they like it.

25.6.2 Sample rules
Here, we would like to give you a flavor of a coding standard by listing some rules. Naturally, we pick rules that we hope will
be useful to you. However, we have never seen a real-world coding standard that could be described in fewer than 35 pages,
and most are much longer. So, we don’t try to give you a complete set of rules here. Furthermore, every good coding standard
is designed for a particular application area and for a particular set of programmers. So, we don’t make any pretenses of
universality.

The rules are numbered and contain a (brief) rationale. Many rules contain examples for easier comprehension. We
distinguish between recommendations, which a programmer may occasionally decide to ignore, and firm rules, which must be
followed. In a real set of rules, a firm rule can usually be broken (only) with written permission from a supervisor. Each
violation of a recommendation or a firm rule requires a comment in the code. Any exceptions to a rule can be listed in the rule.
A firm rule is identified by a capital R in its number. A recommendation is identified by a lowercase r in its number.

The rules are classified as
• General
• Preprocessor
• Naming and layout
• Class rules



• Function and expression rules
• Hard real time
• Critical systems

The “hard real-time” and “critical systems” rules apply only to projects classified as such.
Compared to a good real-world coding standard, our terminology is underspecified (e.g., what does “critical” really mean?)

and the rules overly terse. Similarities between these rules and the JSF++ rules (see §25.6.3) are not accidental; I helped
formulate the JSF++ rules. However, the code examples in this book do not conform to the rules below — after all, the book
code is not critical embedded systems code.

General rules

R100: Any one function or class shall contain no more than 200 logical source lines of code (non-comments).
Reason: Long functions and long classes tend to be complex and therefore difficult to comprehend and test.

r101: Any one function or class should fit on a screen and serve a single logical purpose.
Reason: A programmer looking at only part of a function or class is more likely to overlook a problem. A function that
tries to perform several logical functions is likely to be longer and more complex than one that doesn’t.

R102: All code shall conform to ISO/IEC 14882:2011(E) standard C++.
Reason: Language extensions or variations from ISO/IEC 14882 are likely to be less stable, to be less well specified, and
to limit portability.

Preprocessor rules

R200: No macros shall be used except for source control using #ifdef and #ifndef.
Reason: Macros don’t obey scope and type rules. Macro use is not obvious when visually examining source text.

R201: #include shall be used only to include header (*.h) files.
Reason: #include is used to access interface declarations — not implementation details.

R202: All #include directives shall precede all non-preprocessor declarations.
Reason: An #include in the middle of a file is more likely to be overlooked by a reader and to cause inconsistencies from
a name resolved differently in different places.

R203: Header files (*.h) shall not contain non-const variable definitions or non-inline, non-template function definitions.
Reason: Header files should contain interface declarations — not implementation details. However, constants are often
seen as part of the interface, some very simple functions need to be inline (and therefore in headers) for performance, and
current template implementations require complete template definitions in headers.

Naming and layout

R300: Indentations shall be used and be consistent within the same source file.
Reason: Readability and style.

R301: Each new statement starts on a new line.
Reason: Readability.
Example:

Click here to view code image

int a = 7; x = a+7; f(x,9);  // violation
int a = 7;      // OK
x = a+7;       // OK
f(x,9);          // OK

Example:
Click here to view code image

if (p<q) cout << *p;       // violation



Example:

if (p<q)

     cout << *p;   // OK

R302: Identifiers should be given descriptive names.
Identifiers may contain common abbreviations and acronyms.
When used conventionally, x, y, i, j, etc. are descriptive.
Use the number_of_elements style rather than the numberOfElements style.
Hungarian notation shall not be used.
Type, template, and namespace names (only) start with a capital letter.
Avoid excessively long names.

Example: Device_driver and Buffer_pool.
Reason: Readability.
Note: Identifiers starting with an underscore are reserved to the language implementation by the C++ standard and thus
banned.
Exception: When calling an approved library, the names from that library may be used.

R303: Identifiers shall not differ only by
• A mixture of case
• The presence/absence of the underscore character
• The interchange of the letter O with the number 0 or the letter D
• The interchange of the letter I with the number 1 or the letter l
• The interchange of the letter S with the number 5
• The interchange of the letter Z with the number 2
• The interchange of the letter n with the letter h

Example: Head and head     // violation
Reason: Readability.

R304: No identifier shall be in all capital letters and underscores.
Example: BLUE and BLUE_CHEESE     // violation

Reason: All capital letters are widely used for macros that may be used in #include files for approved libraries.
Exception: Macro names used for #include guards.

Function and expression rules

r400: Identifiers in an inner scope should not be identical to identifiers in an outer scope.
Example:

Click here to view code image

int var = 9; { int var = 7; ++var; }    // violation: var hides var

Reason: Readability.
R401: Declarations shall be declared in the smallest possible scope.
Reason: Keeping initialization and use close minimizes chances of confusion; letting a variable go out of scope releases its
resources.
R402: Variables shall be initialized.
Example:

Click here to view code image

int var;                            // violation: var is not initialized



Reason: Uninitialized variables are a common source of errors.
Exception: A variable that is immediately filled from input need not be initialized.
Note: Many types, such as vector and string, have a default constructor to guarantee initialization.
R403: Casts shall not be used.
Reason: Casts are a common source of errors.
Exception: dynamic_cast may be used.
Exception: Named casts may be used to convert hardware addresses into pointers and void* received from sources
external to a program (e.g., a GUI library) into pointers of a proper type.
R404: Built-in arrays shall not be used in interfaces; that is, a pointer as function argument shall be assumed to point to a
single element. Use Array_ref to pass arrays.
Reason: An array is passed as a pointer and its number of elements is not carried along to the called function. Also, the
combination of implicit array-to-pointer conversion and implicit derived-to-base conversion can lead to memory
corruption.

Class rules
R500: Use class for classes with no public data members. Use struct for classes with no private data members. Don’t use
classes with both public and private data members.
Reason: Clarity.
r501: If a class has a destructor or a member of pointer or reference type, it must have a copy constructor and a copy
assignment defined or prohibited.
Reason: A destructor usually releases a resource. The default copy semantics rarely does “the right thing” for pointer and
reference members or for a class with a destructor.
R502: If a class has a virtual function it must have a virtual destructor.
Reason: A class has a virtual function so that it can be used through a base class interface. A function that knows an object
only through that base class may delete it and derived classes need a chance to clean up (in their destructors).
r503: A constructor that accepts a single argument must be declared explicit.
Reason: To avoid surprising implicit conversions.

Hard real-time rules
R800: Exceptions shall not be used.
Reason: Not predictable.
R801: new shall be used only during startup.
Reason: Not predictable.
Exception: Placement-new (with the standard meaning) may be used for memory allocated from stacks.
R802: delete shall not be used.
Reason: Not predictable; can cause fragmentation.
R803: dynamic_cast shall not be used.
Reason: Not predictable (assuming common implementation technique).
R804: The standard library containers, except std::array, shall not be used.
Reason: Not predictable (assuming common implementation technique).

Critical systems rules
R900: Increment and decrement operations shall not be used as sub-expressions.
Example:

int x = v[++i];     // violation

Example:

++i;

int x = v[i];        // OK



Reason: Such an increment might be overlooked.
R901: Code should not depend on precedence rules below the level of arithmetic expressions.
Example:

x = a*b+c;     // OK

Example:
Click here to view code image

if ( a<b || c<=d)    // violation: parenthesize(a<b) and (c<=d)

Reason: Confusion about precedence has been repeatedly found in code written by programmers with a weak C/C++
background.

We left gaps in the numbering so that we could add new rules without changing the numbering of existing ones and still have
the general classification recognized through the numbering. It is very common for rules to become known by their number, so
that renumbering would be resisted by the users.

25.6.3 Real coding standards
There are lots of C++ coding standards. Most are corporate and not widely available. In many cases, that’s probably a good
thing except possibly for the programmers of those corporations. Here is a list of standards that — when used appropriately in
areas to which they apply — can do some good:
Google C++ Style Guide: http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml. A rather old-style and restrictive

but evolving style guide.
Lockheed Martin Corporation. Joint Strike Fighter Air Vehicle Coding Standards for the System Development and

Demonstration Program. Document Number 2RDU00001 Rev C. December 2005. Colloquially known as “JSF++”; a set of
rules written at Lockheed-Martin Aero for air vehicle (read “airplane”) software. These rules really were written by and for
programmers who produce software upon which human lives depend. www.stroustrup.com/JSF-AV-rules.pdf.

Programming Research. High-integrity C++ Coding Standard Manual Version 2.4. www.programmingresearch.com.
Sutter, Herb, and Andrei Alexandrescu. C++ Coding Standards: 101 Rules, Guidelines, and Best Practices. Addison-

Wesley, 2004. ISBN 0321113586. This is more of a “meta coding standard”; that is, instead of specific rules it has guidance
on which rules are good and why.

Note that there is no substitute for knowing your application area, your programming language, and the relevant programming
technique. For most applications — and certainly for most embedded systems programming — you also need to know your
operating system and/or hardware architecture. If you need to use C++ for low-level coding, have a look at the ISO C++
committee’s report on performance (ISO/IEC TR 18015, www.stroustrup.com/performanceTR.pdf); by “performance”
they/we primarily mean “embedded systems programming.”

Language dialects and proprietary languages abound in the embedded systems world, but whenever you can, use
standardized language (such as ISO C++), tools, and libraries. That will minimize your learning curve and increase the
likelihood that your work will last.

 Drill

1. Run this:
Click here to view code image

int v = 1; for (int i = 0; i<sizeof(v)*8; ++i) { cout << v << ' '; v <<=1; }

2. Run that again with v declared to be an unsigned int.
3. Using hexadecimal literals, define short unsigned ints with:

a. Every bit set
b. The lowest (least significant bit) set

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://www.stroustrup.com/JSF-AV-rules.pdf
http://www.programmingresearch.com
http://www.stroustrup.com/performanceTR.pdf


c. The highest (most significant bit) set
d. The lowest byte set
e. The highest byte set
f. Every second bit set (and the lowest bit 1)
g. Every second bit set (and the lowest bit 0)

4. Print each as a decimal and as a hexidecimal.
5. Do 3 and 4 using bit manipulation operations (|, &, <<) and (only) the literals 1 and 0.

Review
1. What is an embedded system? Give ten examples, out of which at least three should not be among those mentioned in this

chapter.
2. What is special about embedded systems? Give five concerns that are common.
3. Define predictability in the context of embedded systems.
4. Why can it be hard to maintain and repair an embedded system?
5. Why can it be a poor idea to optimize a system for performance?
6. Why do we prefer higher levels of abstraction to low-level code?
7. What are transient errors? Why do we particularly fear them?
8. How can we design a system to survive failure?
9. Why can’t we prevent every failure?

10. What is domain knowledge? Give examples of application domains.
11. Why do we need domain knowledge to program embedded systems?
12. What is a subsystem? Give examples.
13. From a C++ language point of view, what are the three kinds of storage?
14. When would you like to use the free store?
15. Why is it often infeasible to use the free store in an embedded system?
16. When can you safely use new in an embedded system?
17. What is the potential problem with std::vector in the context of embedded systems?
18. What is the potential problem with exceptions in the context of embedded systems?
19. What is a recursive function call? Why do some embedded systems programmers avoid them? What do they use instead?
20. What is memory fragmentation?
21. What is a garbage collector (in the context of programming)?
22. What is a memory leak? Why can it be a problem?
23. What is a resource? Give examples.
24. What is a resource leak and how can we systematically prevent it?
25. Why can’t we easily move objects from one place in memory to another?
26. What is a stack?
27. What is a pool?
28. Why doesn’t the use of stacks and pools lead to memory fragmentation?
29. Why is reinterpret_cast necessary? Why is it nasty?
30. Why are pointers dangerous as function arguments? Give examples.
31. What problems can arise from using pointers and arrays? Give examples.
32. What are alternatives to using pointers (to arrays) in interfaces?
33. What is “the first law of computer science”?
34. What is a bit?
35. What is a byte?



36. What is the usual number of bits in a byte?
37. What operations do we have on sets of bits?
38. What is an “exclusive or” and why is it useful?
39. How can we represent a set (sequence, whatever) of bits?
40. How do we conventionally number bits in a word?
41. How do we conventionally number bytes in a word?
42. What is a word?
43. What is the usual number of bits in a word?
44. What is the decimal value of 0xf7?
45. What sequence of bits is 0xab?
46. What is a bitset and when would you need one?
47. How does an unsigned int differ from a signed int?
48. When would you prefer an unsigned int to a signed int?
49. How would you write a loop if the number of elements to be looped over was very high?
50. What is the value of an unsigned int after you assign –3 to it?
51. Why would we want to manipulate bits and bytes (rather than higher-level types)?
52. What is a bitfield?
53. For what are bitfields used?
54. What is encryption (enciphering)? Why do we use it?
55. Can you encrypt a photo?
56. What does TEA stand for?
57. How do you write a number to output in hexadecimal notation?
58. What is the purpose of coding standards? List reasons for having them.
59. Why can’t we have a universal coding standard?
60. List some properties of a good coding standard.
61. How can a coding standard do harm?
62. Make a list of at least ten coding rules that you like (have found useful). Why are they useful?
63. Why do we avoid ALL_CAPITAL identifiers?

Terms
address
bit
bitfield
bitset

coding standard
embedded system
encryption
exclusive or
gadget
garbage collector
hard real time
leak
pool
predictability
real time



resource
soft real time
unsigned

Exercises
1. If you haven’t already, do the Try this exercises in this chapter.
2. Make a list of words that can be spelled with hexadecimal notation. Read 0 as o, read 1 as l, read 2 as to, etc.; for

example, Foo1 and Beef. Kindly eliminate vulgarities from the list before submitting it for grading.
3. Initialize a 32-bit signed integer with the bit patterns and print the result: all zeros, all ones, alternating ones and zeros

(starting with a leftmost one), alternating zeros and ones (starting with a leftmost zero), the 110011001100 . . . pattern,
the 001100110011 . . . pattern, the pattern of all-one bytes and all-zero bytes starting with an all-one byte, the pattern of
all-one bytes and all-zero bytes starting with an all-zero byte. Repeat that exercise with a 32-bit unsigned integer.

4. Add the bitwise logical operators &, |, ^, and ~ to the calculator from Chapter 7.
5. Write an infinite loop. Execute it.
6. Write an infinite loop that is hard to recognize as an infinite loop. A loop that isn’t really infinite because it terminates

after completely consuming some resource is acceptable.
7. Write out the hexadecimal values from 0 to 400; write out the hexadecimal values from –200 to 200.
8. Write out the numerical values of each character on your keyboard.
9. Without using any standard headers (such as <limits>) or documentation, compute the number of bits in an int and

determine whether char is signed or unsigned on your implementation.
10. Look at the bitfield example from §25.5.5. Write an example that initializes a PPN, then reads and prints each field

value, then changes each field value (by assigning to the field) and prints the result. Repeat this exercise, but store the
PPN information in a 32-bit unsigned integer and use bit manipulation operators (§25.5.4) to access the bits in the word.

11. Repeat the previous exercise, but keep the bits in a bitset<32>.
12. Write out the clear text of the example from §25.5.6.
13. Use TEA (§25.5.6) to communicate “securely” between two computers. Email is minimally acceptable.
14. Implement a simple vector that can hold at most N elements allocated from a pool. Test it for N==1000 and integer

elements.
15. Measure the time (§26.6.1) it takes to allocate 10,000 objects of random sizes in the [1000:0)-byte range using new;

then measure the time it takes to deallocate them using delete. Do this twice, once deallocating in the reverse order of
allocation and once deallocating in random order. Then, do the equivalent for allocating 10,000 objects of size 500 bytes
from a pool and freeing them. Then, do the equivalent of allocating 10,000 objects of random sizes in the [1000:0)-byte
range on a stack and then free them (in reverse order). Compare the measurements. Do each measurement at least three
times to make sure the results are consistent.

16. Formulate 20 coding style rules (don’t just copy those in §25.6). Apply them to a program of more than 300 lines that
you recently wrote. Write a short (a page or two) comment on the experience of applying those rules. Did you find errors
in the code? Did the code get clearer? Did some code get less clear? Now modify the set of rules based on this
experience.

17. In §25.4.3–4 we provided a class Array_ref claimed to make access to elements of an array simpler and safer. In
particular, we claimed to handle inheritance correctly. Try a variety of ways to get a Rectangle* into a
vector<Circle*> using an Array_ref<Shape*> but no casts or other operations involving undefined behavior. This
ought to be impossible.

Postscript

So, is embedded systems programming basically “bit fiddling”? Not at all, especially if you deliberately try to minimize bit
fiddling as a potential problem with correctness. However, somewhere in a system bits and bytes have “to be fiddled”; the
question is just where and how. In most systems, the low-level code can and should be localized. Many of the most interesting
systems we deal with are embedded, and some of the most interesting and challenging programming tasks are in this field.



26. Testing

“I have only proven the code correct, not tested it.”
—Donald Knuth

This chapter covers testing and design for correctness. These are huge topics, so we can only scratch their surfaces. The
emphasis is on giving some practical ideas and techniques for testing units, such as functions and classes, of a program. We
discuss the use of interfaces and the selection of tests to run against them. We emphasize the importance of designing systems to
simplify testing and the use of testing from the earliest stages of development. Proving programs correct and dealing with
performance problems are also briefly considered.

26.1 What we want
26.1.1 Caveat

26.2 Proofs
26.3 Testing

26.3.1 Regression tests
26.3.2 Unit tests
26.3.3 Algorithms and non-algorithms
26.3.4 System tests
26.3.5 Finding assumptions that do not hold

26.4 Design for testing
26.5 Debugging
26.6 Performance

26.6.1 Timing
26.7 References

26.1 What we want
Let’s try a simple experiment. Write a binary search. Do it now. Don’t wait until the end of the chapter. Don’t wait until after
the next section. It’s important that you try. Now! A binary search is a search in a sorted sequence that starts at the middle:

• If the middle element is equal to what we are searching for, we are finished.
• If the middle element is less than what we are searching for, we look at the right-hand half, doing a binary search on that.
• If the middle element is greater than what we are searching for, we look at the left-hand half, doing a binary search on
that.

• The result is an indicator of whether the search was successful and something that allows us to modify the element, if
found, such as an index, a pointer, or an iterator.

Use less than (<) as the comparison (sorting) criterion. Feel free to use any data structure you like, any calling conventions you
like, and any way of returning the result that you like, but do write the search code yourself. In this rare case, using someone
else’s function is counterproductive, even with proper acknowledgment. In particular, don’t use the standard library algorithm
(binary_search or equal_range) that would have been your first choice in most situations. Take as much time as you like.

So now you have written your binary search function. If not, go back to the previous paragraph. How do you know that your
search function is correct? If you haven’t already, write down why you are convinced that this code is correct. How confident
are you about your reasoning? Are there parts of your argument that might be weak?

That was a trivially simple piece of code. It implemented a very regular and well-known algorithm. Your compiler is on the
order of 200K lines of code, your operating system is 10M to 50M lines of code, and the safety-critical code in the airplane
you’ll fly on for your next vacation or conference is 500K to 2M lines of code. Does that make you feel comfortable? How do
the techniques you used for your binary search function scale to real-world software sizes?

Curiously, given all that complex code, most software works correctly most of the time. We do not count anything running on



a game-infested consumer PC as “critical.” Even more importantly, safety-critical software works correctly just about all of
the time. We cannot recall an example of a plane or a car crashing because of a software failure over the last decade. Stories
about bank software getting seriously confused by a check for $0.00 are now very old; such things essentially don’t happen
anymore. Yet software is written by people like you. You know that you make mistakes; we all do, so how do “they” get it
right?

The most fundamental answer is that “we” have figured out how to build reliable systems out of unreliable parts. We try
hard to make every program, every class, and every function correct, but we typically fail our first attempt at that. Then we
debug, test, and redesign to find and remove as many errors as possible. However, in any nontrivial system, some bugs will
still be hiding. We know that, but we can’t find them — or rather, we can’t find them all with the time and effort we are able
and willing to expend. Then, we redesign the system yet again to recover from unexpected and “impossible” events. The result
can be systems that are spectacularly reliable. Note that such reliable systems may still harbor errors — they usually do — and
still occasionally work less well than we would like. However, they don’t crash and always deliver minimally acceptable
service. For example, a phone system may not manage to connect every call when demand is exceptionally high, but it never
fails to connect many calls.

Now, we could be philosophical and discuss whether an unexpected error that we have conjectured and catered for is really
an error, but let’s not. It is more profitable and productive for systems builders “just” to figure how to make our systems more
reliable.

26.1.1 Caveat
Testing is a huge topic. There are several schools of thought about how testing should be done, and different industries and
application areas have different traditions and standards for testing. That’s natural — you really don’t need the same reliability
standard for video games and avionics software — but it leads to confusing differences in terminology and tools. Treat this
chapter as a source of ideas for your personal projects and as a source of ideals if you encounter testing of major systems. The
testing of major systems involves a variety of combinations of tools and organizational structures that it would make little sense
to try to describe here.

26.2 Proofs

Wait a minute! Why don’t we just prove that our programs are correct, rather than fussing around with tests? As Edsger
Dijkstra succinctly pointed out, “Testing can reveal the presence of errors, not their absence.” This leads to an obvious desire
to prove programs correct “much as mathematicians prove theorems.”

Unfortunately, proving nontrivial programs correct is beyond the state of the art (outside very constrained applications
domains), the proofs themselves can contain errors (as can the ones mathematicians produce), and the whole field of program
proving is an advanced topic. So, we try as hard as we can to structure our programs so that we can reason about them and
convince ourselves that they are correct. However, we also test (§26.3) and try to organize our code to be resilient against
remaining errors (§26.4).

26.3 Testing
In §5.11, we described testing as “a systematic way to search for errors.” Let’s look at techniques for doing that.

People distinguish between unit testing and system testing. A “unit” is something like a function or a class that is a part of a
complete program. If we test such units in isolation, we know where to look for the cause of problems when we find an error;
any error will be in the unit that we are testing (or in the code we use to conduct the tests). This contrasts with system testing,
where we test a complete system and all we know is that an error is “somewhere in the system.” Typically, errors found in
system testing — once we have done a good job at unit testing — relate to undesirable interactions between units. They are
harder to find than errors within individual units and often more expensive to fix.

Obviously, a unit (say, a class) can be composed of other units (say, functions and other classes), and systems (say, an
electronic commerce system) can be composed of other systems (say, a database, a GUI, a networking system, and an order
validation system), so the distinction between unit testing and systems testing isn’t as clear as you might have thought, but the



general idea is that by testing our units well, we save ourselves work — and our end users pain.
One way of looking at testing is that any nontrivial system is built out of units, and these units are themselves built out of

smaller units. So, we start testing the smallest units, then we test the units composed from those, and we work our way up until
we have tested the whole system; that is, “the system” is just the largest unit (until we use that as a unit for some yet larger
system).

So, let’s first consider how to test a unit (such as a function, a class, a class hierarchy, or a template). Testers distinguish
between white-box testing (where you can look at the detailed implementation of what you are testing) and black-box testing
(where you can look only at the interface of what you are testing). We will not make a big deal of this distinction; by all means
read the implementation of what you test. But remember that someone might later come and rewrite that implementation, so try
not to depend on anything that is not guaranteed in the interface. In fact, when testing anything, the basic idea is to throw
anything we can at its interface to see if it responds reasonably.

Mentioning that someone (maybe yourself) might change the code after you tested it brings us to regression testing. Basically,
whenever you make a change, you have to retest to make sure that you have not broken anything. So when you have improved a
unit, you rerun its unit tests, and before you give the complete system to someone else (or use it for something real yourself),
you run the complete system test.

Running such complete tests of a system is often called regression testing because it usually includes running tests that have
previously found errors to see if these errors are still fixed. If not, the program has “regressed” and needs to be fixed again.

26.3.1 Regression tests

Building up a large collection of tests that have been useful for finding errors in the past is a major part of building an effective
test suite for a system. Assume that you have users; they will send you bugs. Never throw away a bug report! Professionals use
bug-tracking systems to ensure that. Anyway, a bug report demonstrates either an error in the system or an error in a user’s
understanding of the system. Either way it is useful.

Usually, a bug report contains far too much extraneous information, and the first task of dealing with it is to produce the
smallest program that exhibits the reported problem. This often involves cutting away most of the code submitted: in particular,
we try to eliminate the use of libraries and application code that does not affect the error. Finding that minimal test program
often helps us localize the bug in the system’s code, and that minimal program is what is added to the regression test suite. The
way we find that minimal program is to keep removing code until the error disappears — and then reinsert the last bit of code
we removed. This we do until we run out of candidates for removal.

Just running hundreds (or tens of thousands) of tests produced from old bug reports may not seem very systematic, but what
we are really doing here is to systematically use the experience of users and developers. The regression test suite is a major
part of a developer group’s institutional memory. For a large system, we simply can’t rely on having the original developers
available to explain details of the design and implementation. The regression suite is what keeps a system from mutating away
from what the developers and users have agreed to be its proper behavior.

26.3.2 Unit tests
OK. Enough words for now! Let’s try a concrete example: let’s test a binary search. Here is the specification from the ISO
standard (§25.3.3.4):

template<class ForwardIterator, class T>
bool binary_search(ForwardIterator first, ForwardIterator last,
                        const T& value);
template<class ForwardIterator, class T, class Compare>
bool binary_search(ForwardIterator first, ForwardIterator last,
                        const T& value, Compare comp);
Requires: The elements e of [first,last) are partitioned with respect to the expressions e<value and !(value<e) or
comp(e,value) and !comp(value,e). Also, for all elements e of [first,last), e<value implies !(value<e) or
comp(e,value) implies !comp(value,e).
Returns: true if there is an iterator i in the range [first,last) that satisfies the corresponding conditions: !(*i<value) &&



!(value<*i) or comp(*i,value)==false && comp(value,*i)==false.
Complexity: At most log(last–first )+2 comparisons.

Nobody said that a formal specification (well, semiformal) was easy to read for the uninitiated. However, if you actually did
the exercise of designing and implementing a binary search that we strongly suggested at the beginning of the chapter, you have
a pretty good idea of what a binary search does and how to test it. This (standard) version takes a pair of forward iterators
(§20.10.1) and a value as arguments and returns true if the value is in the range defined by the iterators. The iterators must
define a sorted sequence. The comparison (sorting) criterion is <. We’ll leave the second version of binary_search that takes
a comparison criterion as an extra argument as an exercise.

Here, we will deal only with errors that are not caught by the compiler, so examples like these are somebody else’s
problem:
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binary_search(1,4,5);                                // error: an int is not a forward iterator
vector<int> v(10);

binary_search(v.begin(),v.end(),"7");   // error: can’t search for a string
                                                                            // in a vector of ints
binary_search(v.begin(),v.end());          // error: forgot the value

How can we systematically test binary_search()? Obviously we can’t just try every possible argument for it, because every
possible argument would be every possible sequence of every possible type of value — that would be an infinite number of
tests! So, we must choose tests and to choose, we need some principles for making a choice:

• Test for likely mistakes (find the most errors).
• Test for bad mistakes (find the errors with the worst potential consequences).

By “bad,” we mean errors that would have the direst consequences. In general, that’s a fuzzy notion, but it can be made precise
for a specific program. For example, for a binary search considered in isolation, all errors are about equally bad, but if we
used that binary_search() in a program where all answers were carefully double-checked, getting a wrong answer from
binary_search() might be far more acceptable than having it not return because it went into an infinite loop. In that case, we
would spend greater effort tricking binary_search() into an infinite (or very long) loop than we would trying to trick it into
giving a wrong answer. Note our use of “tricking” here. Testing is — among other things — an exercise in applying creative
thinking to the problem of “How can we get this code to misbehave?” The best testers are not just systematic, but also quite
devious (in a good cause, of course).

26.3.2.1 Testing strategy
How do we go about breaking binary_search()? We start by looking at binary_search()’s requirements, that is, what it
assumes about its inputs. Unfortunately, from our perspective as testers, it is clearly stated that [first,last) must be a sorted
sequence; that is, it is the caller’s job to ensure that, so we can’t fairly try to break binary_search() by giving it unsorted
input or a [first,last) where last<first. Note that the requirements for binary_search() do not say what it will do if we give
it input that doesn’t meet its requirements. Elsewhere in the standard, it says that it may throw an exception in that case, but it is
not required to. These facts are good to remember for when we test uses of binary_search(), though, because a caller failing
to establish the requirements of a function, such as binary_search(), is a likely source of errors.

We can imagine the following kinds of errors for binary_search():
• Never returned (e.g., infinite loop)
• Crash (e.g., bad dereference, infinite recursion)
• Value not found even though it was in the sequence
• Value found even though it wasn’t in the sequence

In addition, we remember the following “opportunities” for user errors:
• The sequence is not sorted (e.g., {2,1,5,–7,2,10}).
• The sequence is not a valid sequence (e.g., binary_search(&a[100], &a[50],77)).

How might an implementer have made a mistake (for testers to find) for a simple call binary_search(p1,p2,v)? Errors often
occur for “special cases.” In particular, when considering sequences (of any sort), we always look for the beginning and the
end. In particular, the empty sequence should always be tested. So, let’s consider a few arrays of integers that are properly



ordered as required:
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{ 1,2,3,5,8,13,21 }                          // an “ordinary sequence”
{ }                                                    // the empty sequence
{ 1 }                                                 // just one element
{ 1,2,3,4 }                                       // even number of elements
{ 1,2,3,4,5 }                                    // odd number of elements
{ 1, 1, 1, 1, 1, 1, 1 }                       // all elements equal
{ 0,1,1,1,1,1,1,1,1,1,1,1,1 }         // different element at beginning
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,1 }      // different element at end

Some test sequences are best generated by a program:
• vector<int> v1;

 for (int i=0; i<100000000; ++i) v.push_back(i);   // a very large sequence
• Some sequences with a random number of elements
• Some sequences with random elements (but still ordered)

This is not as systematic as we’d have liked. After all, we “just picked” some sequences. However, we used some fairly
general rules of thumb that often are useful when dealing with sets of values; consider:

• The empty set
• Small sets
• Large sets
• Sets with extreme distributions
• Sets where “what is of interest” happens near the end
• Sets with duplicate elements
• Sets with even and with odd numbers of elements
• Sets generated using random numbers

We use the random sequences just to see if we can get lucky (i.e., find an error) with something we didn’t think about. It’s a
brute-force technique, but relatively cheap in terms of our time.

Why “odd and even”? Well, lots of algorithms partition their input sequences, e.g., into the first half and the last half, and
maybe the programmer considered only the odd or the even case. More generally, when we partition a sequence, the point
where we split it becomes the end of a subsequence, and we know that errors are likely near ends of sequences.

In general, we look for

• Extreme cases (large, small, strange distributions of input, etc.)
• Boundary conditions (anything near a limit)

What that really means, depends on the particular program we are testing.

26.3.2.2 A simple test harness
We have two categories of tests: tests that should succeed (e.g., searching for a value that’s in a sequence) and tests that should
fail (e.g., searching for a value in an empty sequence). For each of our sequences, let’s construct some succeeding and some
failing tests. We will start from the simplest and most obvious and proceed to improve until we have something that’s good
enough for our binary_search example:
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vector<int> v { 1,2,3,5,8,13,21 };

if (binary_search(v.begin(),v.end(),1) == false) cout << "failed";

if (binary_search(v.begin(),v.end(),5) == false) cout << "failed";

if (binary_search(v.begin(),v.end(),8) == false) cout << "failed";

if (binary_search(v.begin(),v.end(),21) == false) cout << "failed";

if (binary_search(v.begin(),v.end(),–7) == true) cout << "failed";

if (binary_search(v.begin(),v.end(),4) == true) cout << "failed";

if (binary_search(v.begin(),v.end(),22) == true) cout << "failed";

This is repetitive and tedious, but it will do for a start. In fact, many simple tests are nothing but a long list of calls like this.



This naive approach has the virtue of being extremely simple. Even the newest member of the test team can add a new test to
the set. However, we can usually do much better. For example, when something failed here, we are not told which test failed.
That’s unacceptable. Also, writing tests is no excuse for regressing to “cut and paste” programming. We need to consider the
design of our testing code, just like any other code. So:
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vector<int> v { 1,2,3,5,8,13,21 };

for (int x : {1,5,8,21,-7,2,44})

          if (binary_search(v.begin(),v.end(),x) == false) cout << x << " failed";

Assuming that we will eventually have dozens of tests, this will make a huge difference. For testing real-world systems, we
often have many thousands of tests, so being precise about what test failed is essential.

Before going further, note another example of (semi-systematic) testing technique: we tested with correct values, choosing
some from the ends of the sequence and some from “the middle.” For this sequence we could have tried all values, but
typically that’s not a realistic option. For the failing values, we chose one from each end and one in the middle. Again, this is
not perfectly systematic, but we begin to see a pattern that is useful whenever we deal with sequences of values or ranges of
values — and that’s very common.

What’s wrong with these tests?
• We (initially) wrote the same things repeatedly.
• We (initially) numbered the tests manually.
• The output is very minimal (not very helpful).

After looking at this for a while, we decided to keep our tests as data in a file. Each test would contain an identifying label, a
value to be looked up, a sequence, and an expected result. For example:

{ 27 7 { 1 2 3 5 8 13 21} 0 }

This is test number 27. It looks for 7 in the sequence { 1,2,3,5,8,13,21 } expecting the result 0 (meaning false). Why do we
put the test inputs in a file rather than placing them right into the text of the test program? Well, in this case we could have typed
the tests straight into the program text, but having a lot of data in a source code file can be messy, and often, we use programs
to generate test cases. Machine-generated test cases are typically in data files. Also, we can now write a test program that we
can run with a variety of files of test cases:
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struct Test {

          string label;

          int val;

          vector<int> seq;

          bool res;

};

istream& operator>>(istream& is, Test& t);     // use the described format

int test_all(istream& is)

{

          int error_count = 0;

          for (Test t; is>>t; ) {

                    bool r = binary_search(t.seq.begin(), t.seq.end(), t.val);

                    if (r !=t.res) {

                              cout << "failure: test " << t.label

                                        << " binary_search: "

                                        << t.seq.size() << " elements, val==" << t.val

                                        << " –> " << t.res << '\n';

                              ++error_count;

                    }
          }
          return error_count;

}

int main()

{

          int errors = test_all(ifstream("my_tests.txt"));

          cout << "number of errors: " << errors << "\n";

}



Here is some test input using the sequences we listed above:

{ 1.1 1 { 1 2 3 5 8 13 21 } 1 }

{ 1.2 5 { 1 2 3 5 8 13 21 } 1 }

{ 1.3 8 { 1 2 3 5 8 13 21 } 1 }

{ 1.4 21 { 1 2 3 5 8 13 21 } 1 }

{ 1.5 –7 { 1 2 3 5 8 13 21 } 0 }

{ 1.6 4 { 1 2 3 5 8 13 21 } 0 }

{ 1.7 22 { 1 2 3 5 8 13 21 } 0 }

{ 2 1 { } 0 }

{ 3.1 1 { 1 } 1 }

{ 3.2 0 { 1 } 0 }

{ 3.3 2 { 1 } 0 }

Here we see why we used a string label rather than a number: that way we can “number” our tests using a more flexible system
— here using a decimal system to indicate separate tests for the same sequence. A more sophisticated format would eliminate
the need to repeat a sequence in our test data file.

26.3.2.3 Random sequences

When we choose values to be used in testing, we try to outwit the implementers (who are often ourselves) and to use values
that focus on areas where we know bugs can hide (e.g., complicated sequences of conditions, the ends of sequences, loops,
etc.). However, that’s also what we did when we tried to write and debug the code. So, we might repeat a logical mistake from
the design when we design the tests and completely miss a problem. This is one reason it is a good idea to have someone
different from the developer(s) involved with designing the tests. We have one technique that occasionally helps with that
problem: just generate (a lot of) random values. For example, here is a function that writes a test description to cout using
randint() from §24.7 and std_lib_facilities.h:
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void make_test(const string& lab, int n, int base, int spread)

          // write a test description with the label lab to cout
          // generate a sequence of n elements starting at base
          // the average distance between elements is uniformly distributed
          // in [0:spread)
{

          cout << "{ " << lab << " " << n << " { ";

          vector<int> v;

          int elem = base;

          for (int i = 0; i<n; ++i) {    // make elements
                    elem+= randint(spread);

                    v.push_back(elem);

          }

          int val = base+ randint(elem–base);        // make search value
          bool found = false;

              for (int i = 0; i<n; ++i) {      // print elements and see if val is found
                        if (v[i]==val) found = true;

                        cout << v[i] << " ";

          }
          cout << "} " << found << " }\n";

}

Note that we did not use binary_search to see if the random val was in the random sequence. We can’t use what we are
testing to determine the correct value of a test.

Actually, binary_search isn’t a particularly suitable example of the brute-force random number approach to testing. We
doubt that this will find any bugs that are not picked up by our “hand-crafted” tests, but often this technique is useful. Anyway,
let’s make a few random tests:
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int no_of_tests = randint(100);                         // make about 50 tests
for (int i = 0; i<no_of_tests; ++i) {

          string lab = "rand_test_";



          make_test(lab+to_string(i),                     // to_string from §23.2
                              randint(500),                         // number of elements
                              0,                                            // base
                              randint(50));                        // spread
}

Generated tests based on random numbers are particularly useful when we need to test the cumulative effects of many
operations where the result of an operation depends on how earlier operations were handled, that is, when a system has state;
see §5.2.

The reason that random numbers are not all that useful for binary_search is that each search of a sequence is independent
of all other searches of that sequence. That of course assumes that the implementation of binary_search hasn’t done
something terminally stupid, such as modifying its sequence. We have a better test for that (exercise 5).

26.3.3 Algorithms and non-algorithms
We have used binary_search() as an example. It’s a proper algorithm with

• Well-specified requirements on its inputs
• A well-specified effect on its inputs (in this case, no effects)
• No dependencies on objects that are not its explicit inputs
• Without serious constraints imposed by the environment (e.g., no specified time, space, or resource-sharing

requirements)
It has obvious and explicitly stated pre- and post-conditions (§5.10). In other words, it’s a tester’s dream. Often, we are not so
lucky: we have to test messy code that (at best) is defined by a somewhat sloppy English text and a couple of diagrams.

Wait a minute! Are we indulging in sloppy logic here? How can we talk about correctness and testing when we don’t have a
precise specification of what the code is supposed to do? The problem is that much of what needs to be done in software is not
easy to specify in perfectly clear mathematical terms. Also, in many cases where it in theory could be specified like that, the
math is beyond the abilities of the programmers who write and test the code. So we are left with the ideal of perfectly precise
specifications and a reality of what someone (such as us) can manage under real-world conditions and time pressures.

So, assume that you have a messy function that you have to test. By “messy” we mean:
• Inputs: Its requirements on its (explicit or implicit) inputs are not specified quite as well as we would like.
• Outputs: Its (explicit or implicit) outputs are not specified quite as well as we would like.
• Resources: Its use of resources (time, memory, files, etc.) is not specified quite as well as we would like.

By “explicit or implicit” we mean that we have to look not just at the formal parameters and the return value, but also at any
effects on global variables, iostreams, files, free-store memory allocation, etc. So, what can we do? First of all, such a
function is almost certainly too long — or we could have stated its requirements and effects more clearly. Maybe we are
talking about a function that is five pages long or uses “helper functions” in complicated and non-obvious ways. You may think
that five pages is a lot for a function. It is, but we have seen much, much longer functions than that. Unfortunately, they are not
uncommon.

If it is our code and if we had time, we would first of all try to break such a “messy function” up into smaller functions that
come closer to our ideals of a well-specified function and first test those. However, here we will assume that our aim is to test
the software — that is, to systematically find as many errors as possible — rather than (just) fixing bugs as we find them.

So, what do we look for? Our job as testers is to find errors. Where are bugs likely to hide? What characterizes code that is
likely to contain bugs?

• Subtle dependencies on “other code”: look for use of global variables, non-const-reference arguments, pointers, etc.
• Resource management: look for memory management (new and delete), file use, locks, etc.
• Look for loops: check end conditions (as for binary_search()).
• if-statements and switches (often referred to as “branching”): look for errors in their logic.

Let’s look at examples of each.



26.3.3.1 Dependencies
Consider this nonsense function:
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int do_dependent(int a, int& b)            // messy function
          // undisciplined dependencies
{

          int val ;

          cin>>val;

          vec[val] += 10;

          cout << a;

          b++;

          return b;

}

To test do_ dependent(), we can’t just synthesize sets of arguments and see what it does with them. We have to take into
account that it uses the global variables cin, cout, and vec. That’s pretty obvious in this little nonsense function, but in real
code this may be hidden in a larger amount of code. Fortunately, there is software that can help us find such dependencies.
Unfortunately, it is not always easily available or widely used. Assuming that we don’t have analysis software to help us, we
go through the function line by line, listing all its dependencies.

To test do_ dependent(), we have to consider
• Its inputs:

• The value of a
• The value of b and the value of the int referenced by b
• The input from cin (into val) and the state of cin

• The state of cout

• The value of vec, in particular, the value of vec[val]

• Its outputs:
• The return value
• The value of the int referenced by b (we incremented it)
• The state of cin (beware of stream state and format state)
• The state of cout (beware of stream state and format state)
• The state of vec (we assigned to vec[val])
• Any exceptions that vec might have thrown (vec[val] might be out of range)

This is a long list. In fact, that list is longer than the function itself. This goes a long way toward explaining our dislike of
global variables and our concerns about non-const references (and pointers). There really is something very nice about a
function that just reads its arguments and produces a result as a return value: we can easily understand and test it.

Once the inputs and outputs are identified, we are basically back to the binary_search() case. We simply generate tests
with input values (for explicit and implicit inputs) to see if they give the desired outputs (considering both implicit and explicit
outputs). With do_ dependent(), we would probably start with a very large val and a negative val, to see what happens. It
looks as if vec had better be a range-checked vector (or we can very simply generate really bad errors). We would of course
check what the documentation said about all those inputs and outputs, but with a messy function like that we have little hope of
the specification being complete and precise, so we will just break the functions (i.e., find errors) and start asking questions
about what is correct. Often, such testing and questions should lead to a redesign.

26.3.3.2 Resource management
Consider this nonsense function:
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void do_resources1(int a, int b, const char* s) // messy function
          // undisciplined resource use
{



          FILE* f = fopen(s,"r");                // open file (C style)
          int* p = new int[a];                     // allocate some memory
          if (b<=0) throw Bad_arg();         // maybe throw an exception
          int* q = new int[b];                    // allocate some more memory
          delete[] p;                                   // deallocate the memory pointed to by p
}

To test do_resources1(), we have to consider whether every resource acquired has been properly disposed of, that is,
whether every resource has been either released or passed to some other function.

Here, it is obvious that
• The file named s is not closed
• The memory allocated for p is leaked if b<=0 or if the second new throws
• The memory for q is leaked if 0<b

In addition, we should always consider the possibility that an attempt at opening a file might fail. To get this miserable result,
we deliberately used a very old-fashioned programming style (fopen() is the standard C way of opening files). We could have
made the job for testers more straightforward by writing
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void do_resources2(int a, int b, const char* s)      // less messy function
{

          ifstream is(s);                          // open file
          vector<int>v1(a);                   // create vector (owning memory)
          if (b<=0) throw Bad_arg();    // maybe throw an exception
          vector<int> v2(b);                  // create another vector (owning memory)
}

Now every resource is owned by an object with a destructor that will release it. Considering how we could write a function
more simply (more cleanly) is sometimes a good way to get ideas for testing. The “Resource Acquisition Is Initialization”
(RAII) technique from §19.5.2 provides a general strategy for this kind of resource management problem.

Please note that resource management is not just checking that every piece of memory allocated is deleted. Sometimes we
receive resources from elsewhere (e.g., as an argument), and sometimes we pass resources out of a function (e.g., as a return
value). It can be quite hard to determine what is right about such cases. Consider:
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FILE* do_resources3(int a, int* p, const char* s)            // messy function
          // undisciplined resource passing
{

          FILE* f = fopen(s,"r");

          delete p;

          delete var;

          var = new int[27];

          return f;

}

Is it right for do_resources3() to pass the (supposedly) opened file back as the return value? Is it right for do_resources3()

to delete the memory passed to it as the argument p? We also added a really sneaky use of the global variable var (obviously a
pointer). Basically, passing resources in and out of functions is common and useful, but to know if it is correct requires
knowledge of a resource management strategy. Who owns the resource? Who is supposed to delete/release it? The
documentation should clearly and simply answer those questions. (Dream on.) In either case, passing of resources is a fertile
area for bugs and a tempting target for testing.

Note how we (deliberately) complicated the resource management example by using a global variable. Things can get really
messy when we start to mix the sources of likely bugs. As programmers, we try to avoid that. As testers, we look for such
examples as easy pickings.

26.3.3.3 Loops



26.3.3.3 Loops
We have looked at loops when we discussed binary_search(). Basically most errors occur at the ends:

• Is everything properly initialized when we start the loop?
• Do we correctly end with the last case (often the last element)?

Here is an example where we get it wrong:
Click here to view code image

int do_loop(const vector<int>& v)           // messy function
          // undisciplined loop
{

          int i;

          int sum;

          while(i<=vec.size()) sum+=v[i];

          return sum;

}

There are three obvious errors. (What are they?) In addition, a good tester will immediately spot the opportunity for an
overflow where we are adding to sum:

• Many loops involve data and might cause some sort of overflow when they are given large inputs.
A famous and particularly nasty loop error, the buffer overflow, falls into the category that can be caught by systematically

asking the two key questions about loops:
Click here to view code image

char buf[MAX];            // fixed-size buffer

char* read_line()         // dangerously sloppy
{

          int i = 0;

          char ch;

          while(cin.get(ch) && ch!='\n') buf[i++] = ch;

          buf[i+1] = 0;

          return buf;

}

Of course, you wouldn’t write something like that! (Why not? What’s so wrong with read_line()?) However, it is sadly
common and comes in many variations, such as
Click here to view code image

// dangerously sloppy:
gets(buf);                    // read a line into buf
scanf("%s",buf);        // read a line into buf

Look up gets() and scanf() in your documentation and avoid them like the plague. By “dangerous,” we mean that such buffer
overflows are a staple of “cracking” — that is, break-ins — on computers. Many implementations now warn against gets()

and its cousins for exactly this reason.

26.3.3.4 Branching
Obviously, when we have to make a choice, we may make the wrong choice. This makes if-statements and switch-statements
good targets for testers. There are two major problems to look for:

• Are all possibilities covered?
• Are the right actions associated with the right possibilities?

Consider this nonsense function:



Click here to view code image

void do_branch1(int x, int y)            // messy function
          // undisciplined use of if
{

          if (x<0) {

                    if (y<0)

                              cout << "very negative\n";

                    else

                              cout << "somewhat negative\n";

          }
          else if (x>0) {

                    if (y<0)

                              cout << "very positive\n";

                    else

                              cout << "somewhat positive\n";

          }
}

The most obvious error here is that we “forgot” the case where x is 0. When testing against zero (or for positive and negative
values), zero is often forgotten or lumped with the wrong case (e.g., considered negative). Also, there is a more subtle (but not
uncommon) error lurking here: the actions for (x>0 && y<0) and (x>0 && y>=0) have “somehow” been reversed. This
happens a lot with cut-and-paste editing.

The more complicated the use of if-statements is, the more likely such errors become. From a tester’s point of view, we look
at such code and try to make sure that every branch is tested. For do_branch1() the obvious test set is

do_branch1(–1,–1);

do_branch1(–1, 1);

do_branch1(1,–1);

do_branch1(1,1);

do_branch1(–1,0);

do_branch1(0,–1);

do_branch1(1,0);

do_branch1(0,1);

do_branch1(0,0);

Basically, that’s the brute-force “try all the alternatives” approach after we noticed that do_branch1() tested against 0 using
< and >. To catch the wrong actions for positive values of x, we have to combine the calls with their desired output.

Dealing with switch-statements is fundamentally similar to dealing with if-statements.
Click here to view code image

void do_branch1(int x, int y)   // messy function
          // undisciplined use of switch
{

          if (y<0 && y<=3)

                    switch (x) {

                    case 1:

                              cout << "one\n";

                              break;

                    case 2:

                              cout << "two\n";

                    case 3:

                              cout << "three\n";

          }
}

Here we have made four classic mistakes:
• We range checked the wrong variable (y instead of x).
• We forgot a break statement leading to a wrong action for x==2.
• We forgot a default case (thinking we had taken care of that with the if-statement).
• We wrote y<0 when we meant to say 0<y.



As testers, we always look for unhandled cases. Please note that “just fixing the problem” is not enough. It may reappear when
we are not looking. As testers, we want to write tests that systematically catch errors. If we just fixed this simple code, we may
very well get our fix wrong so that it either doesn’t solve the problem or introduces new and different errors. The purpose of
looking at the code is not really to spot errors (though that’s always useful), but to design a suitable set of tests that will catch
all errors (or, more realistically, will catch many errors).

Note that loops have an implicit “if”: they test whether we have reached the end. Thus loops are also branching statements.
When we look at programs containing branching, the first question is always, “Have we covered (tested) every branch?”
Surprisingly that is not always possible in real code (because in real code, a function is called as needed by other functions
and not necessarily in all possible ways). Consequently, a common question for testers is, “What is your code coverage?” and
the answer had better be, “We tested most branches,” followed by an explanation of why the remaining branches are hard to
reach. 100% coverage is the ideal.

26.3.4 System tests
Testing any significant system is a skilled job. For example, the testing of the computers that control telephone systems takes
place in specially constructed rooms with racks full of computers simulating the traffic of tens of thousands of people. Such
systems cost millions and are the work of teams of very skilled engineers. After it is deployed, a main telephone switch is
supposed to work continuously for 20 years with at most 20 minutes of downtime (for any reason, including power failures,
flooding, and earthquakes). We will not go into detail here — it would be easier to teach a physics freshman to calculate
course corrections for a Mars probe — but we’ll try to give you some ideas that could be useful for a smaller project or for
understanding the testing of a larger system.

First of all, please remember that the purpose of testing is to find errors, especially potentially frequent and potentially
serious errors. It is not simply to write and run the largest number of tests. This implies that some understanding of the system
being tested is highly desirable. Even more than for unit testing, effective system testing relies on knowledge of the application
(domain knowledge). Developing a system takes more than just knowledge of programming language issues and computer
science; it requires an understanding of the application areas and of the people who use the applications. This is something we
find important for motivating us to work with code: we get to see so many interesting applications and meet interesting people.

For a complete system to be tested, it has to be built out of all of its parts (units). This can take significant time, so many
system tests are run just once a day (often at night while the developers are supposed to be asleep) after all unit tests have been
done. Regression tests are a key component here. The areas of a program in which we are most likely to find errors are new
code and areas of code where errors were found earlier. So running the collection of old tests (the regression tests) is
essential; without those a large system will never become stable. We would introduce new bugs as fast as we removed old
ones.

Note that we take it for granted that when we fix a few errors, we accidentally introduce a few new ones. We hope the
number of new bugs is lower than the number of old ones that we removed, and that the consequences of the new ones are less
severe. However, at least until we have rerun our regression tests and added new tests for our new code, we must assume that
our system is broken (by our bug fixes).

26.3.5 Finding assumptions that do not hold
The specification of binary_search clearly stated that the sequence in which we search must be sorted. That deprived us of
many opportunities for sneaky unit tests. But obviously there are opportunities for writing bad code that we have not devised
tests to detect (except for the system tests). Can we use our understanding of a system’s “units” (functions, classes, etc.) to
devise better tests?

Unfortunately, the simplest answer is no. As pure testers, we cannot change the code, but to detect violations of an
interface’s requirements (pre-conditions), someone must either check before each call or as part of the implementation of each
call (see §5.5). However, if we are testing our own code, we can insert such tests. If we are testers and the people who write



the code will listen to us (that’s not always the case), we can tell them about the unchecked requirements and have them ensure
that they are checked.

Consider again binary_search: we couldn’t test that the input sequence [first:last) really was a sequence and that it was
sorted (§26.3.2.2). However, we could write a function that does check:
Click here to view code image

template<class Iter, class T>

bool b2(Iter first, Iter last, const T& value)

{

          // check if [first:last) is a sequence:
          if (last<first) throw Bad_sequence();

          // check if the sequence is ordered:
          if (2<=last–first)

                    for (Iter p = first+1; p<last; ++p)

                              if (*p<*(p–1)) throw Not_ordered();

          // all’s OK, call binary_search:
          return binary_search(first,last,value);

}

Now, there are reasons why binary_search isn’t written with such tests, including these:
• The test for last<first can’t be done for a forward iterator; for example, the iterator for std::list does not have a <
(§B.3.2). In general, there is no really good way of testing that a pair of iterators defines a sequence (starting to iterate
from first hoping to meet last is not a good idea).

• Scanning the sequence to check that the values are ordered is far more expensive than executing binary_search itself
(the real purpose of binary_search is not to have to blindly walk through the sequence looking for a value the way
std::find does).

So what could we do? We could replace binary_search with b2 when we are testing (only for calls to binary_search with
random-access iterators, though). Alternatively, we could have the implementer of binary_search insert code that a tester
could enable:
Click here to view code image

template<class Iter, class T>           // warning: contains pseudo code
bool binary_search (Iter first, Iter last, const T& value)

{

          if (test enabled) {

                    if (Iter is a random access iterator) {

                              // check if [first:last) is a sequence:
                              if (last<first) throw Bad_sequence();

                    }

                    // check if the sequence is ordered:
                    if (first!=last) {

                              Iter prev = first;

                              for (Iter p = ++first; p!=last; ++p, ++ prev)

                                        if (*p<*prev) throw Not_ordered();

                    }
          }

          // now do binary_search
}

Since the meaning of test enabled depends on how testing of code is arranged (for a specific system in a specific
organization), we have left it as pseudo code: when testing your own code, you could simply have a test_enabled variable.
We also left the Iter is a random access iterator test as pseudo code because we haven’t explained “iterator traits.” Should
you really need such a test, look up iterator traits in a more advanced C++ textbook.

26.4 Design for testing



When we start writing a program, we know that we would like it to eventually be complete and correct. We also know that to
achieve that, we must test it. Consequently, we try to design for correctness and testing from day one. In fact, many good
programmers have as their slogan “Test early and often” and don’t write any code before they have some idea about how they
would go about testing it. Thinking about testing early helps to avoid errors in the first place (as well as helping to find them
later). We subscribe to that philosophy. Some programmers even write unit tests before they implement a unit.

The example in §26.3.2.1 and the examples in §26.3.3 illustrate these key notions:
• Use well-defined interfaces so that you can write tests for the use of these interfaces.
• Have a way of representing operations as text so that they can be stored, analyzed, and replayed. This also applies to
output operations.

• Embed tests of otherwise unchecked assumptions (assertions) in the calling code to catch bad arguments before system
testing.

• Minimize dependencies and keep dependencies explicit.
• Have a clear resource management strategy.

Philosophically, this could be seen as enabling unit-testing techniques for subsystems and complete systems.

If performance didn’t matter, we could leave the test of the (otherwise) unchecked assumptions (requirements, pre-
conditions) enabled all the time. However, there are usually reasons why they are not systematically checked. For example, we
saw how checking whether a sequence is sorted is both complicated and far more expensive than using binary_sort.
Consequently, it is a good idea to design a system that allows us to selectively enable and disable such checks. For many
systems, it is a good idea to leave a fair number of the cheaper checks enabled even in the final (shipping) version: sometimes
“impossible” things happen and we would prefer to know about them from a specific error message rather than from a simple
crash.

26.5 Debugging

Debugging is an issue of technique and attitude. Of these, attitude is the more important. Please revisit Chapter 5. Note how
debugging and testing differ. Both catch bugs, but debugging is much more ad hoc and typically concerned with removing
known bugs and implementing features. Whatever we can do to make debugging more like testing should be done. It is a slight
exaggeration to say that we love testing, but we definitely hate debugging. Good early unit testing and design for testing help
minimize debugging.

26.6 Performance

Having a program correct is not enough for it to be useful. Even assuming that it has sufficient facilities to make it useful, it
must also provide appropriate performance. A good program is “efficient enough”; that is, it will run in an acceptable time
given the resources available. Note that absolute efficiency is uninteresting, and an obsession with getting a program to run fast
can seriously damage development by complicating code (leading to more bugs and more debugging) and making maintenance
(including porting and performance tuning) more difficult and costly.

So, how can we know that a program (or a unit of a program) is “efficient enough”? In the abstract we cannot know, and for
many programs the hardware is so fast that the question doesn’t arise. We have seen products shipped that were compiled in
debug mode (i.e., running about 25 times slower than necessary) to enable better diagnostics for errors occurring after
deployment (this can happen to even the best code when it has to coexist with code developed “elsewhere”).

Consequently, the answer to the “Is it efficient enough?” question is: “Measure how long interesting test cases take.” To do
that, you obviously have to know your end users well enough to have an idea of what they would consider “interesting” and
how much time such interesting uses can acceptably take. Logically, we simply clock our tests with a stopwatch and check that
none consumes an unreasonable amount of time. This becomes practical when we use facilities such as system_clock

(§26.6.1) to do the timing for us, and we can automatically compare the time taken by tests with estimates of what is
reasonable. Alternatively (or additionally) we can record how long tests take and compare them to earlier test runs. This way
we get a form of regression test for performance.



Some of the worst performance bugs are caused by poor algorithms and can be found by testing. One reason for testing with
large sets of data is to expose inefficient algorithms. As an example, assume that an application has to make sums of the
elements in rows of a matrix (using the Matrix library from Chapter 24). Someone supplied an appropriate function:
Click here to view code image

double row_sum(Matrix<double,2> m, int n);     // sum of elements in m[n]

Now someone uses that to generate a vector of sums where v[n] is the sum of the elements of the first n rows:
Click here to view code image

double row_accum(Matrix<double,2> m, int n)    // sum of elements in m[0:n)
{

          double s = 0;

          for (int i=0; i<n; ++i) s+=row_sum(m,i);

          return s;

}

// compute accumulated sums of rows of m:
vector<double> v;

for (int i = 0; i<m.dim1(); ++i) v.push_back(row_accum(m,i+1));

You can imagine this to be part of a unit test or executed as part of the application exercised by a system test. In either case,
you will notice something strange if the matrix ever gets really large: basically, the time needed goes up with the square of the
size of m. Why? What we did was to add all the elements of the first row, then we added all the elements in the second row
(revisiting all the elements of the first row), then we added all the elements in the third row (revisiting all the elements of the
first and second rows), etc.

If you think this example was bad, consider what would have happened if the row_sum() had had to access a database to
get its data. Reading from disk is many thousands of times slower than reading from main memory.

Now, you may complain: “Nobody would write something that stupid!” Sorry, but we have seen much worse, and usually a
poor algorithm (from the performance point of view) is not that easy to spot when buried in application code. Did you spot the
performance problem when you first glanced at the code? A problem can be quite hard to spot unless you are specifically
looking for that particular kind of problem. Here is a simple real-world example found in a server:
Click here to view code image

for (int i=0; i<strlen(s); ++i) {

          // . . . do something with s[i] . . .
}

Often, s was a string with about 20K characters.
Not all performance problems have to do with poor algorithms. In fact (as we pointed out in §26.3.3), much of the code we

write cannot be classified as proper algorithms. Such “non-algorithmic” performance problems typically fall under the broad
classification of “poor design.” They include

• Repeated recalculation of information (e.g., the row-summing problem above)
• Repeated checking of the same fact (e.g., checking that an index is in range each time it is used in a loop or checking an
argument repeatedly as it is passed unchanged from function to function)

• Repeated visits to the disk (or to the web)
Note the (repeated) repeated. Obviously, we mean “unnecessarily repeated,” but the point is that unless you do something
many times, it will not have an impact on performance. We are all for thorough checking of function arguments and loop
variables, but if we do the same check a million times for the same values, those redundant checks just might hurt performance.
If we — by measurement — find that performance is hurt, we will try to see if we can remove a repeated action. Don’t do that
unless you are sure that performance is really a problem. Premature optimization is the source of many bugs and much wasted
time.

26.6.1 Timing
How do you know if a piece of code is fast enough? How do you know how long an operation takes? Well, in many cases



where it matters, you can simply look at a clock (stopwatch, wall clock, or wristwatch). That’s not scientific or accurate, but if
that’s not feasible, you can often conclude that the program was fast enough. It is not good to be obsessed with performance.

If you need to measure smaller increments of time or if you can’t sit around with a stopwatch, you need to get your computer
to help you; it knows the time and can give it to you. For example, on a Unix system, simply prefixing a command with time

will make the system print out the time taken. You might use time to figure out how long it takes to compile a C++ source file
x.cpp. Normally, you compile it like this:

g++ x.cpp

To get that compilation timed, you just add time:

time g++ x.cpp

This will compile x.cpp and also print the time taken on the screen. This is a simple and effective way of timing small
programs. Remember to always do several timing runs because “other activities” on your machine might interfere. If you get
roughly the same answer three times, you can usually trust the result.

But what if you want to measure something that takes just milliseconds? What if you want to do your own, more detailed,
measurements of a part of a program? You use standard library facilities from <chrono>. For example, to measure the time
used by a function do_something() you can write code like this:
Click here to view code image

#include <chrono>

#include <iostream>

using namespace std;

int main()

{

          int n = 10000000;            // repeat do_something() n times

          auto t1 = system_clock::now();                   // begin time

          for (int i = 0; i<n; i++) do_something();      // timing loop

          auto t2 = system_clock::now();                    // end time

          cout << "do_something() " << n << " times took "

                    << duration_cast<milliseconds>(t2-t1).count() << "milliseconds\n";

}

The system_clock is one of the standard timers, and system_clock::now() returns the point of time (a time_point) at
which it is called. Subtract two time_points (here, t2–t1) and you get a length of time (a duration). We can use auto to
save us from the details of the duration and time_point types, which are surprisingly complicated if your view of time is
simply what you see on a wristwatch. In fact, the standard library’s timing facilities were originally designed for advanced
physics applications and are far more flexible and general than most users need.

To get a duration in terms of a particular unit of time, such as seconds, milliseconds, or nanoseconds, we convert
(“cast”) it to that unit using the conversion function duration_cast. You need something like duration_cast because
different systems and different clocks measure time in different units. Don’t forget the .count(). That is what extracts the
number of units (“clock ticks”) from the duration that contains both the clock ticks and their unit.

The system_clock is meant to measure intervals from a fraction of a second to a few seconds. Don’t try to use it to
measure hours.

Again, don’t believe any time measurement that you cannot repeat with roughly the same result three times. What does
“roughly the same” mean? “Within 10%” is a reasonable answer. Remember that modern computers are fast: 1,000,000,000
instructions per second is ordinary. This implies that you won’t be able to measure anything unless you can repeat it tens of
thousands of times or it does something really slow, such as writing to disk or accessing the web. In the latter case, you just



have to get it to repeat a few hundred times, but you have to worry that so much is going on that you might not understand the
results.
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 Drill

Get the test of binary_search to run:
1. Implement the input operator for Test from §26.3.2.2.
2. Complete a file of tests for the sequences from §26.3:

a. { 1 2 3 5 8 13 21 }                            // an “ordinary sequence”

b. { }

c. { 1 }

d. { 1 2 3 4 }                                         // even number of elements

e. { 1 2 3 4 5 }                                       // odd number of elements

f. { 1 1 1 1 1 1 1 }                                 // all elements equal

g. { 0 1 1 1 1 1 1 1 1 1 1 1 1 }              // different element at beginning

h. { 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }           // different element at end
3. Based on §26.3.1.3, complete a program that generates

a. A very large sequence (what would you consider very large, and why?)
b. Ten sequences with a random number of elements
c. Ten sequences with 0, 1, 2 . . . 9 random elements (but still ordered)

4. Repeat these tests for sequences of strings, such as { Bohr Darwin Einstein Lavoisier Newton Turing }.

Review
1. Make a list of applications, each with a brief explanation of the worst thing that can happen if there is a bug; e.g.,

airplane control — crash: 231 people dead; $500M equipment loss.
2. Why don’t we just prove our programs correct?
3. What’s the difference between unit testing and system testing?
4. What is regression testing and why is it important?
5. What is the purpose of testing?
6. Why doesn’t binary_search just check its requirements?
7. If we can’t check for all possible errors, what kinds of errors do we primarily look for?
8. Where are bugs most likely to occur in code manipulating a sequence of elements?
9. Why is it a good idea to test for large values?

10. Why do we often represent tests as data rather than as code?
11. Why and when would we use lots of tests based on random values?
12. Why is it hard to test a program using a GUI?
13. What is needed to test a “unit” in isolation?
14. What is the connection between testability and portability?
15. What makes testing a class harder than testing a function?
16. Why is it important that tests be repeatable?
17. What can a tester do when finding that a “unit” relies on unchecked assumptions (pre-conditions)?
18. What can a designer/implementer do to improve testing?



19. How does testing differ from debugging?
20. When does performance matter?
21. Give two (or more) examples of how to (easily) create bad performance problems.

Terms
assumptions
black-box testing
branching
design for testing
inputs
outputs
post-condition
pre-condition
proof
regression
resource usage
state
system_clock

system test
test coverage
test harness
testing
timing
unit test
white-box testing

Exercises
1. Run your binary search algorithm from §26.1 with the tests presented in §26.3.2.1.
2. Modify the testing of binary_search to deal with arbitrary element types. Then, test it with string sequences and

floating-point sequences.
3. Repeat exercise 1 with the version of binary_search that takes a comparison criterion. Make a list of new

opportunities for errors introduced by that extra argument.
4. Devise a format for test data so that you can define a sequence once and run several tests against it.
5. Add a test to the set of binary_search tests to try to catch the (unlikely) error of a binary_search modifying the

sequence.
6. Modify the calculator from Chapter 7 minimally to let it take input from a file and produce output to a file (or use your

operating system’s facilities for redirecting I/O). Then devise a reasonably comprehensive test for it.
7. Test the “simple text editor” from §20.6.
8. Add a text-based interface to the graphics interface library from Chapters 12–15. For example, the string

Circle(Point(0,1),15) should generate a call Circle(Point(0,1),15). Use this text interface to make a “kid’s drawing”
of a two-dimensional house with a roof, two windows, and a door.

9. Add a text-based output format for the graphics interface library. For example, when a call Circle(Point(0,1),15) is
executed, a string like Circle(Point(0,1),15) should be produced on an output stream.

10. Use the text-based interface from exercise 9 to write a better test for the graphical interface library.
11. Time the sum example from §26.6 with m being square matrices with dimensions 100, 10,000, 1,000,000, and

10,000,000. Use random element values in the range [–10:10). Rewrite the calculation of v to use a more efficient (not
O(N2)) algorithm and compare the timings.



12. Write a program that generates random floating-point numbers and sort them using std::sort(). Measure the time used
to sort 500,000 doubles and 5,000,000 doubles.

13. Repeat the experiment in the previous exercise, but with random strings of lengths in the [0:100) range.
14. Repeat the previous exercise, except using a map rather than a vector so that we don’t need to sort.

Postscript
As programmers, we dream about writing beautiful programs that just work — preferably the first time we try them. The reality
is different: it is hard to get programs right, and it is hard to get them to stay right as we (and our colleagues) work to improve
them. Testing — including design for testing — is a major way of ensuring that the systems we ship actually work. Whenever
we reach the end of a day in our highly technological world, we really ought to give a kind thought to the (often forgotten)
testers.



27. The C Programming Language

“C is a strongly typed,
weakly checked,

programming language.”
—Dennis Ritchie

This chapter is a brief overview of the C programming language and its standard library from the point of view of someone
who knows C++. It lists the C++ features missing from C and gives examples of how a C programmer can cope without those.
C/C++ incompatibilities are presented, and C/C++ interoperability is discussed. Examples of I/O, list manipulation, memory
management, and string manipulation are included as illustration.

27.1 C and C++: siblings
27.1.1 C/C++ compatibility
27.1.2 C++ features missing from C
27.1.3 The C standard library

27.2 Functions
27.2.1 No function name overloading
27.2.2 Function argument type checking
27.2.3 Function definitions
27.2.4 Calling C from C++ and C++ from C
27.2.5 Pointers to functions

27.3 Minor language differences
27.3.1 struct tag namespace
27.3.2 Keywords
27.3.3 Definitions
27.3.4 C-style casts
27.3.5 Conversion of void*

27.3.6 enum

27.3.7 Namespaces
27.4 Free store
27.5 C-style strings

27.5.1 C-style strings and const

27.5.2 Byte operations
27.5.3 An example: strcpy()

27.5.4 A style issue
27.6 Input/output: stdio

27.6.1 Output
27.6.2 Input
27.6.3 Files

27.7 Constants and macros
27.8 Macros

27.8.1 Function-like macros
27.8.2 Syntax macros
27.8.3 Conditional compilation

27.9 An example: intrusive containers



27.1 C and C++: siblings

The C programming language was designed and implemented by Dennis Ritchie at Bell Labs and popularized by the book The
C Programming Language by Brian Kernighan and Dennis Ritchie (colloquially known as “K&R”), which is arguably still the
best introduction to C and one of the great books on programming (§22.2.5). The text of the original definition of C++ was an
edit of the text of the 1980 definition of C, supplied by Dennis Ritchie. After this initial branch, both languages evolved further.
Like C++, C is now defined by an ISO standard.

We see C primarily as a subset of C++. Thus, from a C++ point of view, the problem of describing C boils down to two
issues:

• Describe where C isn’t a subset of C++.
• Describe which C++ features are missing in C and which facilities and techniques can be used to compensate.

Historically, modern C and modern C++ are siblings. Both are direct descendants of “Classic C,” the dialect of C popularized
by the first edition of Kernighan and Ritchie’s The C Programming Language plus structure assignment and enumerations:

The version of C that is used today is still mostly C89 (as described in the second edition of K&R), and that’s what we are
describing here. There is still some Classic C in use and some C99, but that should not cause you any problems when you know
C++ and C89.

Both C and C++ were “born” in the Computer Science Research Center of Bell Labs in Murray Hill, New Jersey (for a
while, my office was a couple of doors down and across the corridor from those of Dennis Ritchie and Brian Kernighan):



Both languages are now defined/controlled by ISO standards committees. For each, many supported implementations are in
use. Often, an implementation supports both languages with the desired language chosen by a compiler switch or a source file
suffix. Both are available on more platforms than any other language. Both were primarily designed for and are now heavily
used for hard system programming tasks, such as

• Operating system kernels
• Device drivers
• Embedded systems
• Compilers
• Communications systems

There are no performance differences between equivalent C and C++ programs.
Like C++, C is very widely used. Taken together, the C/C++ community is the largest software development community on

earth.

27.1.1 C/C++ compatibility

It is not uncommon to hear references to “C/C++.” However, there is no such language, and the use of “C/C++” is typically a
sign of ignorance. We use “C/C++” only in the context of C/C++ compatibility issues and when talking about the large shared
C/C++ technical community.

C++ is largely, but not completely, a superset of C. With a few very rare exceptions, constructs that are both C and C++
have the same meaning (semantics) in both languages. C++ was designed to be “as close as possible to C, but no closer”:

• For ease of transition
• For coexistence

Most incompatibilities relate to C++’s stricter type checking.
An example of a program that is legal C but not C++ is one that uses a C++ keyword that is not a C keyword as an identifier

(see §27.3.2):
Click here to view code image

int class(int new, int bool);        /* C, but not C++ */

Examples where the semantics differ for a construct that is legal in both languages are harder to find, but here is one:
Click here to view code image

int s = sizeof('a');                       /* sizeof(int), often 4 in C and 1 in C++ */

The type of a character literal, such as 'a', is int in C and char in C++. However, for a char variable ch we have
sizeof(ch)==1 in both languages.



Information related to compatibility and language differences is not exactly exciting. There are no new neat programming
techniques to learn. You might like printf() (§27.6), but with that possible exception (and some feeble attempts at geek
humor), this chapter is bone dry. Its purpose is simple: to allow you to read and write C if you need to. This includes pointing
out the hazards that are obvious to experienced C programmers, but typically unexpected by C++ programmers. We hope you
can learn to avoid those hazards with minimal grief.

Most C++ programmers will have to deal with C code at some point or another, just as most C programmers will have to
deal with C++ code. Much of what we describe in this chapter will be familiar to most C programmers, but some will be
considered “expert level.” The reason for that is simple: not everyone agrees about what is “expert level” and we just describe
what is common in real-world code. Maybe understanding compatibility issues can be a cheap way of gaining an unfair
reputation as a “C expert.” But do remember: real expertise is in the use of a language (in this case C), rather than in
understanding esoteric language rules (as are exposed by considering compatibility issues).
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27.1.2 C++ features missing from C
From a C++ perspective, C (i.e., C89) lacks a lot of features, such as

• Classes and member functions
• Use struct and global functions.

• Derived classes and virtual functions
• Use structs, global functions, and pointers to functions (§27.2.3).

• Templates and inline functions
• Use macros (§27.8).

• Exceptions
• Use error codes, error return values, etc.

• Function overloading
• Give each function a distinct name.

• new/delete

• Use malloc()/free() and separate initialization/cleanup code.
• References

• Use pointers.
• const, constexpr, or functions in constant expressions

• Use macros.
• bool

• Use int.
• static_cast, reinterpret_cast, and const_cast

• Use C-style casts, e.g., (int)a rather than static<int>(a).

Lots of useful code is written in C, so this list should remind us that no one language feature is absolutely necessary. Most
language features — even most C language features — are there for the convenience (only) of the programmer. After all, given



sufficient time, cleverness, and patience, every program can be written in assembler. Note that because C and C++ share a
machine model that is very close to the real machine, they are well suited to emulate varieties of programming styles.

The rest of this chapter explains how to write useful programs without those features. Our basic advice for using C is:
• Emulate the programming techniques that the C++ features were designed to support with the facilities provided by C.
• When writing C, write in the C subset of C++.
• Use compiler warning levels that ensure function argument checking.
• Use lint for large programs (see §27.2.2).

Many of the details of C/C++ incompatibilities are rather obscure and technical. However, to read and write C, you don’t
actually have to remember most of those:

• The compiler will remind you when you are using a C++ feature that is not in C.
• If you follow the rules above, you are unlikely to encounter anything that means something different in C from what it
means in C++.

With the absence of all those C++ facilities, some facilities gain importance in C:
• Arrays and pointers
• Macros
• typedef (the C and C++98 equivalent to simple using declarations; see §20.5, §A.16)
• sizeof

• Casts
We give examples of a few such uses in this chapter.

I introduced the // comments into C++ from C’s ancestor BCPL when I got really fed up with typing /* . . . */ comments. The
// comments are accepted by most C dialects including C99 and C11, so it is probably safe just to use them. Here, we will use
/* . . . */ exclusively in examples meant to be C. C99 and C11 introduced a few more C++ features (as well as a few features
that are incompatible with C++), but here we will stick to C89, because that’s far more widely used.

27.1.3 The C standard library

Naturally, a C++ library facility that depends on classes and templates is not available in C. This includes
• vector

• map

• set

• string

• The STL algorithms: e.g., sort(), find(), and copy()

• iostreams
• regex

For these, there are often C libraries based on arrays, pointers, and functions to help compensate. The main parts of the C
standard library are

• <stdlib.h>: general utilities (e.g., malloc() and free(); see §27.4)
• <stdio.h>: standard I/O; see §27.6
• <string.h>: C-style string manipulation and memory manipulation; see §27.5
• <math.h>: standard floating-point mathematical functions; see §24.8
• <errno.h>: error codes for <math.h>; see §24.8
• <limits.h>: sizes of integer types; see §24.2
• <time.h>: date and time; see §26.6.1
• <assert.h>: debug assertions; see §27.9



• <ctype.h>: character classification; see §11.6
• <stdbool.h>: Boolean macros

For a complete description, see a good C textbook, such as K&R. All of these libraries (and header files) are also available in
C++.

27.2 Functions
In C:

• There can be only one function of a given name.
• Function argument type checking is optional.
• There are no references (and therefore no pass-by-reference).
• There are no member functions.
• There are no inline functions (except in C99).
• There is an alternative function definition syntax.

Apart from that, things are much as you are used to in C++. Let us explore what that means.

27.2.1 No function name overloading
Consider:
Click here to view code image

void print(int);                             /* print an int */

void print(const char*);            /* print a string */   /* error! */

The second declaration is an error because there cannot be two functions with the same name. So you’ll have to invent a
suitable pair of names:
Click here to view code image

void print_int(int);                          /* print an int */

void print_string(const char*);    /* print a string */

This is occasionally claimed to be a virtue: now you can’t accidentally use the wrong function to print an int! Clearly we don’t
buy that argument, and the lack of overloaded functions does make generic programming ideas awkward to implement because
generic programming depends on semantically similar functions having the same name.

27.2.2 Function argument type checking
Consider:

int main()

{

          f(2);

}

A C compiler will accept this: you don’t have to declare a function before you call it (though you can and should). There may
be a definition of f() somewhere. That f() could be in another translation unit, but if it isn’t, the linker will complain.

Unfortunately, that definition in another source file might look like this:

/* other_file.c: */

int f(char* p)

{

          int r = 0;

          while (*p++) r++;

          return r;

}

The linker will not report that error. You will get a run-time error or some random result.



How do we manage problems like that? Consistent use of header files is a practical answer. If every function you call or
define is declared in a header that is consistently #included whenever needed, we get checking. However, in large programs
that can be hard to achieve. Consequently, most C compilers have options that give warnings for calls of undeclared functions:
use them. Also, from the earliest days of C, there have been programs that can be used to check for all kinds of consistency
problems. They are usually called lint. Use a lint for every nontrivial C program. You will find that lint pushes you toward a
style of C usage that is rather similar to using a subset of C++. One of the observations that led to the design of C++ was that
the compiler could easily check much (but not all) of what lint checked.

You can ask to have function arguments checked in C. You do that simply by declaring a function with its argument types
specified (just as in C++). Such a declaration is called a function prototype. However, beware of function declarations that do
not specify arguments; those are not function prototypes and do not imply function argument checking:
Click here to view code image

int g(double);         /* prototype — like C++ function declaration */

int h();                      /* not a prototype — the argument types are unspecified */

void my_fct()

{

          g();                   /* error: missing argument */

          g("asdf");       /* error: bad argument type */

          g(2);                /* OK: 2 is converted to 2.0 */

          g(2,3);             /* error: one argument too many */

          h();                   /* OK by the compiler! May give unexpected results */

          h("asdf");       /* OK by the compiler! May give unexpected results */

          h(2);                /* OK by the compiler! May give unexpected results */

          h(2,3);             /* OK by the compiler! May give unexpected results */

}

The declaration of h() specifies no argument type. This does not mean that h() doesn’t accept arguments; it means “Accept any
set of arguments and hope they are correct for the called function.” Again, a good compiler warns and lint will catch the
problem.

There is a special set of rules for converting arguments where no function prototype is in scope. For example, chars and
shorts are converted to ints, and floats are converted to doubles. If you need to know, say, what happens to a long, look it
up in a good C textbook. Our recommendation is simple: don’t call functions without prototypes.

Note that even though the compiler will allow an argument of the wrong type to be passed, such as a char* to a parameter of
type int, the use of such an argument of a wrong type is an error. As Dennis Ritchie said, “C is a strongly typed, weakly
checked, programming language.”

27.2.3 Function definitions
You can define functions exactly as in C++ and such definitions are function prototypes:
Click here to view code image

double square(double d)

{

          return d*d;

}

void ff()

{

          double x = square(2);                 /* OK: convert 2 to 2.0 and call */

          double y = square();                   /* argument missing */

          double y = square("Hello");     /* error: wrong argument type */



          double y = square(2,3);             /* error: too many arguments */

}

A definition of a function with no arguments is not a function prototype:
Click here to view code image

void f() { /* do something */ }

void g()

{

          f(2);      /* OK in C; error in C++ */

}

Having
Click here to view code image

void f();         /* no argument type specified */

mean “f() can take any number of arguments of any type” seemed really strange. In response, I invented a new notation where
“nothing” was explicitly stated using the keyword void (void is a four-letter word meaning “nothing”):
Click here to view code image

void f(void);      /* no arguments accepted */

I soon regretted that, though, since that looks odd and is completely redundant when argument type checking is uniformly
applied. Worse, Dennis Ritchie (the father of C) and Doug McIlroy (the ultimate arbiter of taste in the Bell Labs Computer
Science Research Center; see §22.2.5) both called it “an abomination.” Unfortunately, that abomination became very popular in
the C community. Don’t use it in C++, though, where it is not only ugly, but also logically redundant.

C also provides a second, Algol60-style function definition, where the parameter types are (optionally) specified separately
from their names:
Click here to view code image

int old_style(p,b,x) char* p; char b;

{

          /* . . . */

}

This “old-style definition” predates C++ and is not a prototype. By default, an argument without a declared type is an int. So,
x is an int parameter of old_style(). We can call old_style() like this:
Click here to view code image

old_style();                              /* OK: all arguments missing */

old_style("hello", 'a', 17);    /* OK: all arguments are of the right type */

old_style(12, 13, 14);             /* OK: 12 is the wrong type, */

                                                  /* but maybe old_style() won’t use p */

The compiler should accept these calls (but would warn, we hope, for the first and third).
Our recommendation about function argument checking:

• Use function prototypes consistently (use header files).
• Set compiler warning levels so that argument type errors are caught.
• Use (some) lint.

The result will be code that’s also C++.

27.2.4 Calling C from C++ and C++ from C
You can link files compiled with a C compiler together with files compiled with a C++ compiler provided the two compilers
were designed for that. For example, you can link object files generated from C and C++ using your GNU C and C++ compiler
(GCC) together. You can also link object files generated from C and C++ using your Microsoft C and C++ compiler (MSC++)



together. This is common and useful because it allows you to use a larger set of libraries than would be available in just one of
those two languages.

C++ provides stricter type checking than C. In particular, a C++ compiler and linker check that two functions f(int) and
f(double) are consistently defined and used — even in different source files. A linker for C doesn’t do that kind of checking.
To call a function defined in C from C++ and to have a function defined in C++ called from C, we need to tell the compiler
what we are doing:
Click here to view code image

// calling C function from C++:

extern "C" double sqrt(double);      // link as a C function

void my_c_plus_plus_fct()

{

          double sr = sqrt(2);

}

Basically extern "C" tells the compiler to use C linker conventions. Apart from that, all is normal from a C++ point of view.
In fact, the C++ standard sqrt(double) usually is the C standard library sqrt(double). Nothing is required from the C
program to make a function callable from C++ in this way. C++ simply adapts to the C linkage convention.

We can also use extern "C" to make a C++ function callable from C:

// C++ function callable from C:

extern "C" int call_f(S* p, int i)

{

          return p–>f(i);

}

In a C program, we can now call the member function f() indirectly, like this:
Click here to view code image

/* call C++ function from C: */

int call_f(S* p, int i);

struct S* make_S(int,const char*);

void my_c_fct(int i)

{

          /* . . . */

          struct S* p = make_S(x, "foo");

          int x = call_f(p,i);

          /* . . . */

}

No mention of C++ is needed (or possible) in C for this to work.
The benefit of this interoperability is obvious: code can be written in a mix of C and C++. In particular, a C++ program can

use libraries written in C, and C programs can use libraries written in C++. Furthermore, most languages (notably Fortran)
have an interface for calling to/from C.

In the examples above, we assumed that C and C++ could share the class object pointed to by p. That is true for most class
objects. In particular, if you have a class like this,
Click here to view code image

// in C++:
class complex {

          double re, im;

public:

          // all the usual operations
};

you can get away with passing a pointer to an object to and from C. You can even access re and im in a C program using a
declaration:



/* in C: */

struct complex {

          double re, im;

          /* no operations */

};

The rules for layout in any language can be complex, and the rules for layout among languages can even be hard to specify.
However, you can pass built-in types between C and C++ and also classes (structs) without virtual functions. If a class has
virtual functions, you should just pass pointers to its objects and leave the actual manipulation to C++ code. The call_f() was
an example of this: f() might be virtual and then that example would illustrate how to call a virtual function from C.

Apart from sticking to the built-in types, the simplest and safest sharing of types is a struct defined in a common C/C++
header file. However, that strategy seriously limits how C++ can be used, so we don’t restrict ourselves to it.

27.2.5 Pointers to functions
What can we do in C if we want to use object-oriented techniques (§14.2–4)? Basically, we need an alternative to virtual
functions. For most people, the first idea that springs to mind is to use a struct with a “type field” that describes what kind of
shape a given object represents. For example:
Click here to view code image

struct Shape1 {

          enum Kind { circle, rectangle } kind;

          /* . . . */

};

void draw(struct Shape1* p)

{

          switch (p–>kind) {

          case circle:

                    /* draw as circle */

                    break;

          case rectangle:

                    /* draw as rectangle */

                    break;

          }
}

int f(struct Shape1* pp)

{

          draw(pp);

          /* . . . */

}

This works. There are two snags, though:
• For each “pseudo-virtual” function (such as draw()), we have to write a new switch-statement.
• Each time we add a new shape, we have to modify every “pseudo-virtual” function (such as draw()) by adding a case to
the switch-statement.

The second problem is quite nasty because it means that we can’t provide our “pseudo-virtual” functions as part of a library,
because our users will have to modify those functions quite often. The most effective alternative involves pointers to functions:
Click here to view code image

typedef void (*Pfct0)(struct Shape2*);

typedef void (*Pfct1int)(struct Shape2*,int);

struct Shape2 {

          Pfct0 draw;

          Pfct1int rotate;

          /* . . . */

};

void draw(struct Shape2* p)

{

          (p–>draw)(p);



}

void rotate(struct Shape2* p, int d)

{

          (p–>rotate)(p,d);

}

This Shape2 can be used just like Shape1.

int f(struct Shape2* pp)

{

          draw(pp);

          /* . . . */

}

With a little extra work, an object need not hold one pointer to a function for each pseudo-virtual function. Instead, it can hold a
pointer to an array of pointers to functions (much as virtual functions are implemented in C++). The main problem with using
such schemes in real-world programs is to get the initialization of all those pointers to functions right.

27.3 Minor language differences
This section gives examples of minor C/C++ differences that could trip you up if you have never heard of them. Few seriously
impact programming in that the differences have obvious work-arounds.

27.3.1 struct tag namespace
In C, the names of structs (there is no class keyword) are in a separate namespace from other identifiers. Therefore, every
name of a struct (called a structure tag) must be prefixed with the keyword struct. For example:
Click here to view code image

struct pair { int x,y; };

pair p1;                      /* error: no identifier pair in scope */

struct pair p2;           /* OK */

int pair = 7;               /* OK: the struct tag pair is not in scope */

struct pair p3;          /* OK: the struct tag pair is not hidden by the int */

pair = 8;                    /* OK: pair refers to the int */

Amazingly enough, thanks to a devious compatibility hack, this also works in C++. Having a variable (or a function) with the
same name as a struct is a fairly common C idiom, though not one we recommend.

If you don’t want to write struct in front of every structure name, use a typedef (§20.5). The following idiom is common:

typedef struct { int x,y; } pair;

pair p1 = { 1, 2 };

In general, you’ll find typedefs more common and more useful in C, where you don’t have the option of defining new types
with associated operations.

In C, names of nested structs are placed in the same scope as the struct in which they are nested. For example:
Click here to view code image

struct S {

          struct T { /* . . . */ };

          / * . . . */

};

struct T x;     /* OK in C (not in C++) */

In C++, you would write
Click here to view code image

S::T x;             // OK in C++ (not in C)

Whenever possible, don’t nest structs in C: their scope rules differ from what most people naively (and reasonably) expect.



27.3.2 Keywords
Many keywords in C++ are not keywords in C (because C doesn’t provide the functionality) and can be used as identifiers in
C:

Don’t use these names as identifiers in C, or your code will not be portable to C++. If you use one of these names in a header
file, that header won’t be useful from C++.

Some C++ keywords are macros in C:

In C, they are defined in <iso646.h> and <stdbool.h> (bool, true, false). Don’t take advantage of the fact that they are
macros in C.

27.3.3 Definitions
C++ allows definitions in more places than C89. For example:
Click here to view code image

for (int i = 0; i<max; ++i) x[i] = y[i];        // definition of i not allowed in C

while (struct S* p = next(q)) {                  // definition of p not allowed in C
           /* . . . */

}

void f(int i)

{

          if (i< 0 || max<=i) error("range error");

          int a[max];           // error: declaration after statement not allowed in C
          /* . . . */

}

C (C89) doesn’t allow declarations as initializers in for-statements, as conditions, or after a statement in a block. We have to
write something like
Click here to view code image

int i;

for (i = 0; i<max; ++i) x[i] = y[i];



struct S* p;

while (p = next(q)) {

          /* . . . */

}

void f(int i)

{

          if (i< 0 || max<=i) error("range error");

          {
                    int a[max];

                    /* . . . */

          }
}

In C++, an uninitialized declaration is a definition; in C, it is just a declaration so that there can be two of them:
Click here to view code image

int x;

int x;           /* defines or declares a single integer called x in C; error in C++ */

In C++, an entity must be defined exactly once. This gets a bit more interesting if the two ints are in different translation units:

/* in file x.c: */

int x;

/* in file y.c: */

int x;

No C or C++ compiler will find any fault with either x.c or y.c. However, if x.c and y.c are compiled as C++, the linker will
give a “double definition” error. If x.c and y.c are compiled as C, the linker accepts the program and (correctly according to C
rules) considers there to be just one x that is shared between code in x.c and y.c. If you want a program where a global
variable x is shared, say so explicitly:
Click here to view code image

/* in file x.c: */

int x = 0;                    /* the definition */

/* in file y.c: */

extern int x;              /* a declaration, not a definition */

Better still, use a header file:
Click here to view code image

/* in file x.h: */

extern int x;                 /* a declaration, not a definition */

/* in file x.c: */

#include "x.h"

int x = 0;                      /* the definition */

/* in file y.c: */

#include "x.h"

/* the declaration of x is in the header */

Better still, avoid the global variable.

27.3.4 C-style casts
In C (and C++), you can explicitly convert a value v to a type T by this minimal notation:

(T)v

This “C-style cast” or “old-style cast” is beloved by poor typists and sloppy thinkers because it’s minimal and you don’t have
to know what it takes to make a T from v. On the other hand, this style of cast is rightfully feared by maintenance programmers
because it is just about invisible and leaves no clue about the writer’s intent. The C++ casts (named casts or template-style



casts; see §A.5.7) were introduced to make explicit type conversion easy to spot (ugly) and specific. In C, you have no choice:
Click here to view code image

int* p = (int*)7;           /* reinterpret bit pattern: reinterpret_cast<int*>(7) */

int x = (int)7.5;            /* truncate double: static_cast<int>(7.5) */

typedef struct S1 { /* . . . */ } S1;

typedef struct S2 { /* . . . */ } S2;

S2 a;

const S2 b;                 /* uninitialized consts are allowed in C */

S1* p = (S1*)&a;       /* reinterpret bit pattern: reinterpret_cast<S1*>(&a) */

S2* q = (S2*)&b;      /* cast away const: const_cast<S2*>(&b) */

S1* r = (S1*)&b;       /* remove const and change type; probably a bug */

We hesitate to recommend a macro (§27.8) even in C, but it may be an idea to express intent like this:
Click here to view code image

#define REINTERPRET_CAST(T,v) ((T)(v))

#define CONST_CAST(T,v) ((T)(v))

S1* p = REINTERPRET_CAST (S1*,&a);

S2* q = CONST_CAST(S2*,&b);

This does not give the type checking done by reinterpret_cast and const_cast, but it does make these inherently ugly
operations visible and the programmer’s intent explicit.

27.3.5 Conversion of void*

In C, a void* may be used as the right-hand operand of an assignment to or initialization of a variable of any pointer type; in
C++ it may not. For example:
Click here to view code image

void* alloc(size_t x);                            /* allocate x bytes */

void f (int n)

{

          int* p = alloc(n*sizeof(int));     /* OK in C; error in C++ */

          /* . . . */

}

Here, the void* result of alloc() is implicitly converted to an int*. In C++, we would have to rewrite that line to
Click here to view code image

int* p = (int*)alloc(n*sizeof(int));     /* OK in C and C++ */

We used the C-style cast (§27.3.4) so that it would be legal in both C and C++.

Why is the void*-to-T* implicit conversion illegal in C++? Because such conversions can be unsafe:
Click here to view code image

void f()

{

          char i = 0;

          char j = 0;

          char* p = &i;

          void* q = p;

          int* pp = q;             /* unsafe; legal in C, error in C++ */

          *pp = –1;                 /* overwrite memory starting at &i */

}

Here we can’t even be sure what memory is overwritten. Maybe j and part of p? Maybe some memory used to manage the call
of f() (f’s stack frame)? Whatever data is being overwritten here, a call of f() is bad news.

Note that (the opposite) conversion of a T* to a void* is perfectly safe — you can’t construct nasty examples like the one



above for that — and those are allowed in both C and C++.
Unfortunately, implicit void*-to-T* conversions are common in C and possibly the major C/C++ compatibility problem in

real code (see §27.4).

27.3.6 enum

In C, you can assign an int to an enum without a cast. For example:
Click here to view code image

enum color { red, blue, green };

int x = green;                /* OK in C and C++ */

enum color col = 7;     /* OK in C; error in C++ */

One implication of this is that we can use increment (++) and decrement (––) on variables of enumeration type in C. That can
be convenient but does imply a hazard:
Click here to view code image

enum color x = blue;

++x;            /* x becomes green; error in C++ */

++x;            /* x becomes 3; error in C++ */

“Falling off the end” of the enumerators may or may not have been what we wanted.
Note that like structure tags, the names of enumerations are in their own namespace, so you have to prefix them with the

keyword enum each time you use them:
Click here to view code image

color c2 = blue;                      /* error in C: color not in scope; OK in C++ */

enum color c3 = red;            /* OK */

27.3.7 Namespaces
There are no namespaces (in the C++ sense of the word) in C. So what do you do when you want to avoid name clashes in
large C programs? Typically, people use prefixes or suffixes. For example:
Click here to view code image

/* in bs.h: */

typedef struct bs_string { /* . . . */ } bs_string;         /* Bjarne’s string */

typedef int bs_bool ;                                                    /* Bjarne’s Boolean type */

/* in pete.h: */

typedef char* pete_string;              /* Pete’s string */

typedef char pete_bool ;                /* Pete’s Boolean type */

This technique is so popular that it is usually a bad idea to use one- or two-letter prefixes.

27.4 Free store
C does not provide the new and delete operators dealing with objects. To use the free store, you use functions dealing with
memory. The most important functions are defined in the “general utilities” standard header <stdlib.h>:
Click here to view code image

void* malloc(size_t sz);                    /* allocate sz bytes */

void free(void* p);                            /* deallocate the memory pointed to by p */

void* calloc(size_t n, size_t sz);     /* allocate n*sz bytes initialized to 0 */

void* realloc(void* p, size_t sz);    /* reallocate the memory pointed to by p
                                                                  to a space of size sz */

The typedef size_t is an unsigned type also defined in <stdlib.h>.

Why does malloc() return a void*? Because malloc() has no idea which type of object you want to put in that memory.
Initialization is your problem. For example:
Click here to view code image



struct Pair {

          const char* p;

          int val;

};

struct Pair p2 = {"apple",78};

struct Pair* pp = (struct Pair*) malloc(sizeof(Pair));      /* allocate */

pp–>p = "pear";                /* initialize */

pp–>val = 42;

Note that we cannot write
Click here to view code image

*pp = {"pear", 42};        /* error: not C or C++98 */

in either C or C++. However, in C++, we would define a constructor for Pair and write

Pair* pp = new Pair("pear", 42);

In C (but not C++; see §27.3.4), you can leave out the cast before malloc(), but we don’t recommend that:
Click here to view code image

int* p = malloc(sizeof(int)*n);     /* avoid this */

Leaving out the cast is quite popular because it saves some typing and because it catches the rare error of (illegally) forgetting
to include <stdlib.h> before using malloc(). However, it can also remove a visual clue that a size was wrongly calculated:
Click here to view code image

p = malloc(sizeof(char)*m);        /* probably a bug — not room for m ints */

Don’t use malloc()/free() in C++ programs; new/delete require no casts, deal with initialization (constructors) and cleanup
(destructors), report memory allocation errors (through an exception), and are just as fast. Don’t delete an object allocated by
malloc() or free() an object allocated by new. For example:
Click here to view code image

int* p = new int[200];

// . . .
free(p);            // error

X* q = (X*)malloc(n*sizeof(X));

// . . .
delete q;          // error

This might work, but it is not portable code. Furthermore, for objects with constructors or destructors, mixing C-style and C++-
style free-store management is a recipe for disaster.

The realloc() function is typically used for expanding buffers:
Click here to view code image

int max = 1000;

int count = 0;

int c;

char* p = (char*)malloc(max);

while ((c=getchar())!=EOF) {            /* read: ignore chars on eof line */

          if (count==max–1) {                 /* need to expand buffer */

                    max += max;                   /* double the buffer size */

                    p = (char*)realloc(p,max);

                    if (p==0) quit();

          }
          p[count++] = c;

}

For an explanation of the C input operations, see §27.6.2 and §B.11.2.



The realloc() function may or may not move the old allocation into newly allocated memory. Don’t even think of using
realloc() on memory allocated by new.

Using the C++ standard library, the (roughly) equivalent code is
Click here to view code image

vector<char> buf;

char c;

while (cin.get(c)) buf.push_back(c);

Refer to the paper “Learning Standard C++ as a New Language” (see the reference list in §27.1) for a more thorough
discussion of input and allocation strategies.

27.5 C-style strings
In C, a string (often called a C string or a C-style string in C++ literature) is a zero-terminated array of characters. For
example:

char* p = "asdf";

char s[] = "asdf";

In C, we cannot have member functions, we cannot overload functions, and we cannot define an operator (such as ==) for a
struct. It follows that we need a set of (nonmember) functions to manipulate C-style strings. The C and C++ standard libraries
provide such functions in <string.h>:
Click here to view code image

size_t strlen(const char* s);                                    /* count the characters */

char* strcat(char* s1, const char* s2);                  /* copy s2 onto the end of s1 */

int strcmp(const char* s1, const char* s2);         /* compare lexicographically */

char* strcpy(char* s1,const char* s2);                 /* copy s2 into s1 */

char* strchr(const char *s, int c);                          /* find c in s */

char* strstr(const char *s1, const char *s2);       /* find s2 in s1 */

char* strncpy(char*, const char*, size_t n);               /* strcpy, max n chars */

char* strncat(char*, const char, size_t n);                  /* strcat with max n chars */

int strncmp(const char*, const char*, size_t n);       /* strcmp with max n chars */

This is not the full set, but these are the most useful and most used functions. We will briefly illustrate their use.

We can compare strings. The equality operator (==) compares pointer values; the standard library function strcmp()

compares C-style string values:
Click here to view code image

const char* s1 = "asdf";

const char* s2 = "asdf";

if (s1==s2) {       /* do s1 and s2 point to the same array? */

                            /* (typically not what you want) */

}

if (strcmp(s1,s2)==0) {          /* do s1 and s2 hold the same characters? */

}

The strcmp() function does a three-way comparison of its two arguments. Given the values of s1 and s2 above,
strcmp(s1,s2) will return 0, meaning a perfect match. If s1 was lexicographically before s2, it would return a negative
number, and if s1 was lexicographically after s2, it would return a positive number. The term lexicographical means roughly
“as in a dictionary.” For example:
Click here to view code image



strcmp("dog","dog")==0

strcmp("ape","dodo")<0     /* "ape" comes before "dodo" in a dictionary */

strcmp("pig","cow")>0        /* "pig" comes after "cow" in a dictionary */

The value of the pointer comparison s1==s2 is not guaranteed to be 0 (false). An implementation may decide to use the same
memory to hold all copies of a character literal, so we would get the answer 1 (true). Usually, strcmp() is the right choice
for comparing C-style strings.

We can find the length of a C-style string using strlen():

int lgt = strlen(s1);

Note that strlen() counts characters excluding the terminating 0. In this case, strlen(s1)==4 and it takes 5 bytes to store
"asdf". This little difference is the source of many off-by-one errors.

We can copy one C-style string (including the terminating 0) into another:
Click here to view code image

strcpy(s1,s2);              /* copy characters from s2 into s1 */

It is your job to be sure that the target string (array) has enough space to hold the characters from the source.
The strncpy(), strncat(), and strncmp() functions are versions of strcpy(), strcat(), and strcmp() that will consider a

maximum of n characters, where n is their third argument. Note that if there are more than n characters in the source string,
strncpy() will not copy a terminating 0, so that the result will not be a valid C-style string.

The strchr() and strstr() functions find their second argument in the string that is their first argument and return a pointer to
the first character of the match. Like find(), they search from left to right in the string.

It is amazing both how much can be done with these simple functions and how easy it is to make minor mistakes. Consider a
simple problem of concatenating a user name with an address, placing the @ character in between. Using std::string this can
be done like this:

string s = id + '@' + addr;

Using the standard C-style string function we can write that as
Click here to view code image

char* cat(const char* id, const char* addr)

{

          int sz = strlen(id)+strlen(addr)+2;

          char* res = (char*) malloc(sz);

          strcpy(res,id);

          res[strlen(id)+1] = '@';

          strcpy(res+strlen(id)+2,addr);

          res[sz–1]=0;

          return res;

}

Did we get that right? Who will free() the string returned from cat()?

 Try This

Test cat(). Why 2? We left a beginner’s performance error in cat(); find it and remove it. We “forgot” to comment
our code. Add comments suitable for someone who can be assumed to know the standard C-string functions.

27.5.1 C-style strings and const

Consider:

char* p = "asdf";

p[2] = 'x';



This is legal in C but not in C++. In C++, a string literal is a constant, an immutable value, so p[2]='x' (to make the value
pointed to "asxf") is illegal. Unfortunately, few compilers will catch the assignment to p that leads to the problem. If you are
lucky, a run-time error will occur, but don’t rely on that. Instead, write
Click here to view code image

const char* p = "asdf";        // now you can’t write to "asdf" through p

This recommendation applies to both C and C++.
The C strchr() has a similar but even harder-to-spot problem. Consider:

Click here to view code image

char* strchr(const char* s, int c);      /* find c in constant s (not C++) */

const char aa[] = "asdf";                     /* aa is an array of constants */

char* q = strchr(aa, 'd');                     /* finds 'd' */

*q = 'x';                                                  /* change 'd' in aa to 'x' */

Again, this is illegal in C and C++, but C compilers can’t catch it. Sometimes this is referred to as transmutation: it turns
consts into non-consts, violating reasonable assumptions about code.

In C++, the problem is solved by the standard library declaring strchr() differently:
Click here to view code image

char const* strchr(const char* s, int c);     // find c in constant s
char* strchr(char* s, int c);                           // find c in s

Similarly for strstr().

27.5.2 Byte operations
In the distant dark ages (the early 1980s), before the invention of void*, C (and C++) programmers used the string operations
to manipulate bytes. Now the basic memory manipulation standard library functions have void* parameters and return types to
warn users about their direct manipulation of essentially untyped memory:
Click here to view code image

/* copy n bytes from s2 to s1 (like strcpy): */

void* memcpy(void* s1, const void* s2, size_t n);

/* copy n bytes from s2 to s1 ( [s1:s1+n) may overlap with [s2:s2+n) ): */

void* memmove(void* s1, const void* s2, size_t n);

/* compare n bytes from s2 to s1 (like strcmp): */

int memcmp(const void* s1, const void* s2, size_t n);

/* find c (converted to an unsigned char) in the first n bytes of s: */

void* memchr(const void* s, int c, size_t n);

/* copy c (converted to an unsigned char)
          into each of the first n bytes that s points to: */

void* memset(void* s, int c, size_t n);

Don’t use these functions in C++. In particular, memset() typically interferes with the guarantees offered by constructors.

27.5.3 An example: strcpy()

The definition of strcpy() is both famous and infamous as an example of the terse style that C (and C++) is capable of:
Click here to view code image

char* strcpy(char* p, const char* q)

{

          while (*p++ = *q++);

          return p;

}



We leave to you the explanation of why this actually copies the C-style string q into p. Post-increment is described in §A.5:
The value of p++ is the value of p before increment.

 Try This

Is this implementation of strcpy() correct? Explain why.

If you can’t explain why, we won’t consider you a C programmer (however competent you are at programming in other
languages). Every language has its own idioms, and this is one of C’s.

27.5.4 A style issue
We have quietly taken sides in a long-standing, often furiously debated, and largely irrelevant style issue. We declare a pointer
like this:
Click here to view code image

char* p;              // p is a pointer to a char

and not like this:
Click here to view code image

char *p;              /* p is something that you can dereference to get a char */

The placement of the whitespace is completely irrelevant to the compiler, but programmers care. Our style (common in C++)
emphasizes the type of the variable being declared, whereas the other style (more common in C) emphasizes the use of the
variable. Note that we don’t recommend declaring many variables in a single declaration:
Click here to view code image

char c, *p, a[177], *f();      /* legal, but confusing */

Such declarations are not uncommon in older code. Instead, use multiple lines and take advantage of the extra horizontal space
for comments and initializers:
Click here to view code image

char c = 'a';       /* termination character for input using f() */

char* p = 0;       /* last char read by f() */

char a[177];       /* input buffer */

char* f();           /* read into buffer a; return pointer to first char read */

Also, choose meaningful names.

27.6 Input/output: stdio
There are no iostreams in C, so we use the C standard I/O defined in <stdio.h> and commonly referred to as stdio. The
stdio equivalents to cin and cout are stdin and stdout. Stdio and iostream use can be mixed in a single program (for the
same I/O streams), but we don’t recommend that. If you feel the need to mix, read up on stdio and iostreams (especially
ios_base::sync_with_stdio()) in an expert-level textbook. See also §B.11.

27.6.1 Output
The most popular and useful function of stdio is printf(). The most basic use of printf() just prints a (C-style) string:
Click here to view code image

#include<stdio.h>

void f(const char* p)

{

          printf("Hello, World!\n");

          printf(p);

}



That’s not particularly interesting. The interesting bit is that printf() can take an arbitrary number of arguments, and the initial
string controls if and how those extra arguments are printed. The declaration of printf() in C looks like this:
Click here to view code image

int printf(const char* format, . . . );

The . . . means “and optionally more arguments.” We can call printf() like this:
Click here to view code image

void f1(double d, char* s, int i, char ch)

{

          printf("double %g string %s int %d char %c\n", d, s, i, ch);

}

Here, %g means “Print a floating-point number using the general format,” %s means “Print a C-style string,” %d means “Print
an integer using decimal digits,” and %c means “Print a character.” Each such format specifier picks the next so-far-unused
argument, so %g prints d, %s prints s, %d prints i, and %c prints ch. You can find the full list of printf() formats in §B.11.2.

Unfortunately, printf() is not type safe. For example:

Click here to view code image

char a[] = { 'a', 'b' };            /* no terminating 0 */

void f2(char* s, int i)

{

          printf("goof %s\n", i);             /* uncaught error */

          printf("goof %d: %s\n", i);    /* uncaught error */

          printf("goof %s\n", a);            /* uncaught error */

}

The effect of the last printf() is interesting: it prints every byte in memory following a[1] until it encounters a 0. That could be
a lot of characters.

This lack of type safety is one reason we prefer iostreams over stdio even though stdio works identically in C and C++.
The other reason is that the stdio functions are not extensible: you cannot extend printf() to print values of your own types, the
way you can using iostreams. For example, there is no way you can define your own %Y to print some struct Y.

There is a useful version of printf() that takes a file descriptor as its first argument:
Click here to view code image

int fprintf(FILE* stream, const char* format, . . . );

For example:
Click here to view code image

fprintf(stdout,"Hello, World!\n");     // exactly like printf("Hello, World!\n");
FILE* ff = fopen("My_file","w");        // open My_file for writing
fprintf(ff,"Hello, World!\n");             // write "Hello, World!\n" to My_file

File handles are described in §27.6.3.

27.6.2 Input
The most popular stdio functions include
Click here to view code image

int scanf(const char* format, . . . );    /* read from stdin using a format */

int getchar(void);                                   /* get a char from stdin */

int getc(FILE* stream);                          /* get a char from stream */

char* gets(char* s);                               /* get characters from stdin */

The simplest way of reading a string of characters is using gets(). For example:
Click here to view code image



char a[12];

gets(a);           /* read into char array pointed to by a until a '\n' is input */

Never do that! Consider gets() poisoned. Together with its close cousin scanf("%s"), gets() used to be the root cause of
about a quarter of all successful hacking attempts. It is still a major security problem. In the trivial example above, how would
you know that at most 11 characters would be input before a newline? You can’t know that. Thus, gets() almost certainly leads
to memory corruption (of the bytes after the buffer), and memory corruption is a major tool of crackers. Don’t think that you can
guess a maximum buffer size that is “large enough for all uses.” Maybe the “person” at the other end of the input stream is a
program that does not meet your criteria for reasonableness.

The scanf() function reads using a format just as printf() writes using a format. Like printf() it can be very convenient:
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void f()

{

          int i;

          char c;

          double d;

          char* s = (char*)malloc(100);

          /* read into variables passed as pointers: */

          scanf("%i %c %g %s", &i, &c, &d, s);

          /* %s skips initial whitespace and is terminated by whitespace */

}

Like printf(), scanf() is not type safe. The format characters and the arguments (all pointers) must match exactly, or strange
things will happen at run time. Note also that the %s read into s may lead to an overflow. Don’t ever use gets() or
scanf("%s")!

So how do we read characters safely? We can use a form of %s that places a limit on the number of characters read. For
example:

char buf[20];

scanf("%19s",buf);

We need space for a terminating 0 (supplied by scanf()), so 19 is the maximum number of characters we can read into buf.
However, that leaves us with the problem of what to do if someone does type more than 19 characters. The “extra” characters
will be left in the input stream to be “found” by later input operations.

The problem with scanf() implies that it is often prudent and easier to use getchar(). The typical way of reading characters
with getchar() is

while((x=getchar())!=EOF) {

          /* . . . */

}

EOF is a stdio macro meaning “end of file”; see also §27.4.
The C++ standard library alternative to scanf("%s") and gets() doesn’t suffer from these problems:

Click here to view code image

string s;

cin >> s;              // read a word
getline(cin,s);    // read a line

27.6.3 Files
In C (or C++), files can be opened using fopen() and closed using fclose(). These functions, together with the representation
of a file handle, FILE, and the EOF (end-of-file) macro, are found in <stdio.h>:
Click here to view code image



FILE *fopen(const char* filename, const char* mode);

int fclose(FILE *stream);

Basically, you use files like this:
Click here to view code image

void f(const char* fn, const char* fn2)

{

          FILE* fi = fopen(fn, "r");                 /* open fn for reading */

          FILE* fo = fopen(fn2, "w");            /* open fn2 for writing */

          if (fi == 0) error("failed to open input file");

          if (fo == 0) error("failed to open output file");

          /* read from file using stdio input functions, e.g., getc() */

          /* write to file using stdio output functions, e.g., fprintf() */

          fclose(fo);

          fclose(fi);

}

Consider this: there are no exceptions in C, so how do we make sure that the files are closed whichever error happens?

27.7 Constants and macros
In C, a const is never a compile-time constant:
Click here to view code image

const int max = 30;

const int x;               /* const not initialized: OK in C (error in C++) */

void f(int v)

{

          int a1[max];     /* error: array bound not a constant (OK in C++) */

                                    /* (max is not allowed in a constant expression!) */

          int a2[x];          /* error: array bound not a constant */

          switch (v) {

          case 1:

                    /* . . . */

                    break;

          case max:     /* error: case label not a constant (OK in C++) */

                    /* . . . */

                    break;

          }
}

The technical reason in C (though not in C++) is that a const is implicitly accessible from other translation units:
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/* file x.c: */

const int x;             /* initialize elsewhere */

/* file xx.c: */

const int x = 7;           /* here is the real definition */

In C++, that would be two different objects, each called x in its own file. Instead of using const to represent symbolic
constants, C programmers tend to use macros. For example:

#define MAX 30

void f(int v)

{

          int a1[MAX];     /* OK */

          switch (v) {

          case 1:

                    /* . . . */

                    break;



          case MAX:            /* OK */

                    /* . . . */

                    break;

          }
}

The name of the macro MAX is replaced by the characters 30, which is the value of the macro; that is, the number of elements
of a1 is 30 and the value in the second case label is 30. We use all capital letters for the MAX macro, as is conventional. This
naming convention helps minimize errors caused by macros.

27.8 Macros

Beware of macros: in C there are no really effective ways of avoiding macros, but their use has serious side effects because
they don’t obey the usual C (or C++) scope and type rules. Macros are a form of text substitution. See also §A.17.2.

How do we try to protect ourselves from the potential problems of macros apart from (relying on C++ alternatives and)
minimizing their use?

• Give all macros we define ALL_CAPS names.
• Don’t give anything that isn’t a macro an ALL_CAPS name.
• Never give a macro a short or “cute” name, such as max or min.
• Hope that everybody else follows this simple and common convention.

The main uses of macros are
• Definition of “constants”
• Definition of function-like constructs
• “Improvements” to the syntax
• Control of conditional compilation

In addition, there is a wide variety of less common uses.
We consider macros seriously overused, but there are no reasonable and complete alternatives to the use of macros in C

programs. It can even be hard to avoid them in C++ programs (especially if you need to write programs that have to be
portable to very old compilers or to platforms with unusual constraints).

Apologies to people who consider the techniques described below “dirty tricks” and believe such are best not mentioned in
polite company. However, we believe that programming is to be done in the real world and that these (very mild) examples of
uses and misuses of macros can save hours of grief for the novice programmer. Ignorance about macros is not bliss.

27.8.1 Function-like macros
Here is a fairly typical function-like macro:
Click here to view code image

#define MAX(x, y) ((x)>=(y)?(x):(y))

We use the capital MAX to distinguish it from the many functions called max (in various programs). Obviously, this is very
different from a function: there are no argument types, no block, no return statement, etc., and what are all those parentheses
doing? Consider:

int aa = MAX(1,2);

double dd = MAX(aa++,2);

char cc = MAX(dd,aa)+2;

This expands to
Click here to view code image

int aa = ((1)>=( 2)?(1):(2));

double dd = ((aa++)>=(2)?( aa++):(2));



char cc = ((dd)>=(aa)?(dd):(aa))+2;

Had “all the parentheses” not been there, the last expansion would have ended up as

char cc = dd>=aa?dd:aa+2;

That is, cc could easily have gotten a different value from what you would reasonably expect looking at the definition of cc.
When you define a macro, remember to put every use of an argument as an expression in parentheses.

On the other hand, not all the parentheses in the world could save the second expansion. The macro parameter x was given
the value aa++, and since x is used twice in MAX, a can get incremented twice. Don’t pass an argument with a side effect to a
macro.

As it happens, some genius did define a macro like that and stuck it in a popular header file. Unfortunately, he also called it
max, rather than MAX, so when the C++ standard header defines
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template<class T> inline T max(T a,T b) { return a<b?b:a; }

the max gets expanded with the arguments T a and T b, and the compiler sees
Click here to view code image

template<class T> inline T ((T a)>=( T b)?( T a):( T b)) { return a<b?b:a; }

The compiler error messages are “interesting” and not very helpful. In an emergency, you can “undefine” a macro:

#undef max

Fortunately, that macro was not all that important. However, there are tens of thousands of macros in popular header files; you
can’t undefine them all without causing havoc.

Not all macro parameters are used as expressions. Consider:
Click here to view code image

#define ALLOC(T,n) ((T*)malloc(sizeof(T)*n))

This is a real example that can be very useful for avoiding errors stemming from a mismatch of the intended type of an
allocation and its use in a sizeof:
Click here to view code image

double* p = malloc(sizeof(int)*10);      /* likely error */

Unfortunately, it is nontrivial to write a macro that also catches memory exhaustion. This might do, provided that you define
error_var and error() appropriately somewhere:
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#define ALLOC(T,n) (error_var = (T*)malloc(sizeof(T)*n), \

                                        (error_var==0)\

                                        ?(error("memory allocation failure"),0)\

                                        :error_var)

The lines ending with \ are not a typesetting problem; it is the way you break a macro definition across lines. When writing
C++, we prefer to use new.

27.8.2 Syntax macros
You can define macros that make the source code look more to your taste. For example:

#define forever for(;;)

#define CASE break; case

#define begin {

#define end }



We strongly recommend against this. Many people have tried this idea. They (or the people who maintain their code) find that
• Many people don’t share their idea of what is a better syntax.
• The “improved” syntax is nonstandard and surprising; others get confused.
• There are uses of the “improved” syntax that cause obscure compile-time errors.
• What you see is not what the compiler sees, and the compiler reports errors in the vocabulary it knows (and sees in
source code), not in yours.

Don’t write syntactic macros to “improve” the look of code. You and your best friends might find it really nice, but experience
shows that you’ll be a tiny minority in the larger community, so that someone will have to rewrite your code (assuming it
survives).

27.8.3 Conditional compilation
Imagine you have two versions of a header file, say, one for Linux and one for Windows. How do you select in your code?
Here is a common way:
Click here to view code image

#ifdef WINDOWS

          #include "my_windows_header.h"

#else

          #include "my_linux_header.h"

#endif

Now, if someone had defined WINDOWS before the compiler sees this, the effect is
Click here to view code image

#include "my_windows_header.h"

Otherwise it is

#include "my_linux_header.h"

The #ifdef WINDOWS test doesn’t care what WINDOWS is defined to be; it just tests that it is defined.
Most major systems (including all operating system variants) have macros defined so that you can check. The check whether

you are compiling as C++ or compiling as C is

#ifdef __cplusplus

          // in C++
#else

          /* in C */

#endif

A similar construct, often called an include guard, is commonly used to prevent a header file from being #included twice:
Click here to view code image

/* my_windows_header.h: */

#ifndef MY_WINDOWS_HEADER

#define MY_WINDOWS_HEADER

          /* here is the header information */

#endif

The #ifndef test checks that something is not defined; i.e., #ifndef is the opposite of #ifdef. Logically, these macros used for
source file control are very different from the macros we use for modifying source code. They just happen to use the same
underlying mechanisms to do their job.

27.9 An example: intrusive containers
The C++ standard library containers, such as vector and map, are non-intrusive; that is, they require no data in the types used
as elements. That is how they generalize nicely to essentially all types (built-in or user-defined) as long as those types can be
copied. There is another kind of container, an intrusive container, that is popular in both C and C++. We will use a non-
intrusive list to illustrate C-style use of structs, pointers, and free store.

Let’s define a doubly-linked list with nine operations:



Click here to view code image

void init(struct List* lst);                  /* initialize lst to empty */

struct List* create();                         /* make a new empty list on free store */

void clear(struct List* lst);               /* free all elements of lst */

void destroy(struct List* lst);         /* free all elements of lst, then free lst */

void push_back(struct List* lst, struct Link* p);        /* add p at end of lst */

void push_front(struct List*, struct Link* p);            /* add p at front of lst */

/* insert q before p in lst: */

void insert(struct List* lst, struct Link* p, struct Link* q);

struct Link* erase(struct List* lst, struct Link* p);  /* remove p from lst */

/* return link n “hops” before or after p: */

struct Link* advance(struct Link* p, int n);

The idea is to define these operations so that their users need only use List*s and Link*s. This implies that the implementation
of these functions could be changed radically without affecting those users. Obviously, the naming is influenced by the STL.
List and Link can be defined in the obvious and trivial manner:
Click here to view code image

struct List {

          struct Link* first;

          struct Link* last;

};

struct Link {    /* link for doubly-linked list */

          struct Link* pre;

          struct Link* suc;

};

Here is a graphical representation of a List:

It is not our aim to demonstrate clever representation techniques or clever algorithms, so there are none of those here.
However, do note that there is no mention of any data held by the Links (the elements of a List). Looking back at the functions
provided, we note that we are doing something very similar to defining a pair of abstract classes Link and List. The data for
Links will be supplied later. Link* and List* are sometimes called handles to opaque types; that is, giving Link*s and List*s
to our functions allows us to manipulate elements of a List without knowing anything about the internal structure of a Link or a
List.

To implement our List functions, we first #include some standard library headers:

#include<stdio.h>

#include<stdlib.h>

#include<assert.h>

C doesn’t have namespaces, so we need not worry about using declarations or using directives. On the other hand, we should
probably worry that we have grabbed some very common short names (Link, insert, init, etc.), so this set of functions cannot
be used “as is” outside a toy program.

Initializing is trivial, but note the use of assert():
Click here to view code image

void init(struct List* lst)        /* initialize *lst to the empty list */

{



          assert(lst);

          lst–>first = lst–>last = 0;

}

We decided not to deal with error handling for bad pointers to lists at run time. By using assert(), we simply give a (run-time)
system error if a list pointer is null. The “system error” will give the file name and line number of the failed assert(); assert()

is a macro defined in <assert.h> and the checking is enabled only during debugging. In the absence of exceptions, it is not
easy to know what to do with bad pointers.

The create() function simply makes a List on the free store. It is a sort of combination of a constructor (init() initializes)
and new (malloc() allocates):
Click here to view code image

struct List* create()                 /* make a new empty list */

{

          struct List* lst = (struct List*)malloc(sizeof(struct List));

          init(lst);

          return lst;

}

The clear() function assumes that all Links are created on the free store and free()s them:
Click here to view code image

void clear(struct List* lst)           /* free all elements of lst */

{

          assert(lst);

          {
                    struct Link* curr = lst–>first;

                    while(curr) {

                              struct Link* next = curr–>suc;

                              free(curr);

                              curr = next;

                    }
                    lst–>first = lst–>last = 0;

          }
}

Note the way we traverse using the suc member of Link. We can’t safely access a member of a struct object after that object
has been free()d, so we introduce the variable next to hold our position in the List while we free() a Link.

If we didn’t allocate all of our Links on the free store, we had better not call clear(), or clear() will create havoc.
The destroy() function is essentially the opposite of create(), that is, a sort of combination of a destructor and a delete:

Click here to view code image

void destroy(struct List* lst)      /* free all elements of lst; then free lst */

{

          assert(lst);

          clear(lst);

          free(lst);

}

Note that we are making no provisions for calling a cleanup function (destructor) for the elements represented by Links. This
design is not a completely faithful imitation of C++ techniques or generality — it couldn’t and probably shouldn’t be.

The push_back() function — adding a Link as the new last Link — is pretty straightforward:
Click here to view code image

void push_back(struct List* lst, struct Link* p)    /* add p at end of lst */

{

          assert(lst);

          {
                    struct Link* last = lst–>last;

                    if (last) {

                              last–>suc = p;                              /* add p after last */

                              p–>pre = last;

                    }
                    else {



                              lst–>first = p;                               /* p is the first element */

                              p–>pre = 0;

                    }
                    lst–>last = p;                       /* p is the new last element */

                    p–>suc = 0;

          }
}

However, we would never have gotten it right without drawing a few boxes and arrows on our doodle pad. Note that we
“forgot” to consider the case where the argument p was null. Pass 0 instead of a pointer to a Link and this code will fail
miserably. This is not inherently bad code, but it is not industrial strength. Its purpose is to illustrate common and useful
techniques (and, in this case, also a common weakness/bug).

The erase() function can be written like this:
Click here to view code image

struct Link* erase(struct List* lst, struct Link* p)

/*

          remove p from lst;
         return a pointer to the link after p
*/

{

          assert(lst);

          if (p==0) return 0;                                        /* OK to erase(0) */

          if (p == lst–>first) {

                    if (p–>suc) {

                              lst–>first = p–>suc;                 /* the successor becomes first */

                              p–>suc–>pre = 0;

                              return p–>suc;

                    }
                    else {

                              lst–>first = lst–>last = 0;              /* the list becomes empty */

                              return 0;

                    }
          }
          else if (p == lst–>last) {

                    if (p–>pre) {

                              lst–>last = p–>pre;      /* the predecessor becomes last */

                              p–>pre–>suc = 0;

                    }
                    else {

                              lst–>first = lst–>last = 0;         /* the list becomes empty */

                              return 0;

                    }
          }
          else {

                    p–>suc–>pre = p–>pre;

                    p–>pre–>suc = p–>suc;

                    return p–>suc;

          }
}

We will leave the rest of the functions as an exercise, as we don’t need them for our (all too simple) test. However, now we
must face the central mystery of this design: Where is the data in the elements of the list? How do we implement a simple list of
names represented by a C-style string? Consider:
Click here to view code image

struct Name {

          struct Link lnk;           /* the Link required by List operations */

          char* p;                       /* the name string */

};

So far, so good, though how we get to use that Link member is a mystery; but since we know that a List likes its Links on the
free store, we write a function creating Names on the free store:
Click here to view code image



struct Name* make_name(char* n)

{

          struct Name* p = (struct Name*)malloc(sizeof(struct Name));

          p–>p = n;

          return p;

}

Or graphically:

Now let’s use that:
Click here to view code image

int main()

{

          int count = 0;

          struct List names;            /* make a list */

          struct List* curr;

          init(&names);

          /* make a few Names and add them to the list: */

          push_back(&names,(struct Link*)make_name("Norah"));

          push_back(&names,(struct Link*)make_name("Annemarie"));

          push_back(&names,(struct Link*)make_name("Kris"));

          /* remove the second name (with index 1): */

          erase(&names,advance(names.first,1));

          curr = names.first;         /* write out all names */

          for (; curr!=0; curr=curr–>suc) {

                    count++;

                    printf("element %d: %s\n", count, ((struct Name*)curr)–>p);

          }
}

So we “cheated.” We used a cast to treat a Name* as a Link*. In that way, the user knows about the “library-type” Link.
However, the “library” doesn’t know about the “application-type” Name. Is that allowed? Yes, it is: in C (and C++), you can
treat a pointer to a struct as a pointer to its first element and vice versa.

Obviously, this List example is also C++ exactly as written.

 Try This

A common refrain among C++ programmers talking with C programmers is, “Everything you can do, I can do
better!” So, rewrite the intrusive List example in C++, showing how to make it shorter and easier to use without
making the code slower or the objects bigger.

 Drill

1. Write a “Hello, World!” program in C, compile it, and run it.
2. Define two variables holding “Hello” and “World!” respectively; concatenate them with a space in between; and output

them as Hello World!.



3. Define a C function that takes a char* parameter p and an int parameter x and print out their values in this format: p is

"foo" and x is 7. Call it with a few argument pairs.

Review
In the following, assume that by C we mean ISO standard C89.

1. Is C++ a subset of C?
2. Who invented C?
3. Name a highly regarded C textbook.
4. In what organization were C and C++ invented?
5. Why is C++ (almost) compatible with C?
6. Why is C++ only almost compatible with C?
7. List a dozen C++ features not present in C.
8. What organization “owns” C and C++?
9. List six C++ standard library components that cannot be used in C.

10. Which C standard library components can be used in C++?
11. How do you achieve function argument type checking in C?
12. What C++ features related to functions are missing in C? List at least three. Give examples.
13. How do you call a C function from C++?
14. How do you call a C++ function from C?
15. Which types are layout compatible between C and C++? (Just) give examples.
16. What is a structure tag?
17. List 20 C++ keywords that are not keywords in C.
18. Is int x; a definition in C++? In C?
19. What is a C-style cast and why is it dangerous?
20. What is void* and how does it differ in C and C++?
21. How do enumerations differ in C and C++?
22. What do you do in C to avoid linkage problems from popular names?
23. What are the three most common C functions from free-store use?
24. What is the definition of a C-style string?
25. How do == and strcmp() differ for C-style strings?
26. How do you copy C-style strings?
27. How do you find the length of a C-style string?
28. How would you copy a large array of ints?
29. What’s nice about printf()? What are its problems/limitations?
30. Why should you never use gets()? What can you use instead?
31. How do you open a file for reading in C?
32. What is the difference between const in C and const in C++?
33. Why don’t we like macros?
34. What are common uses of macros?
35. What is an include guard?

Terms
#define

#ifdef

#ifndef

Bell Labs



Brian Kernighan
C/C++
compatibility
conditional compilation
C-style cast
C-style string
Dennis Ritchie
FILE

fopen()

format string
intrusive
K&R
lexicographical
linkage
macro
malloc()

non-intrusive
opaque type
overloading
printf()

strcpy()

structure tag
three-way comparison
void

void*

Exercises
For these exercises it may be a good idea to compile all programs with both a C and a C++ compiler. If you use only a C++
compiler, you may accidentally use non-C features. If you use only a C compiler, type errors may remain undetected.

1. Implement versions of strlen(), strcmp(), and strcpy().
2. Complete the intrusive List example in §27.9 and test it using every function.
3. “Pretty up” the intrusive List example in §27.9 as best you can to make it convenient to use. Do catch/handle as many

errors as you can. It is fair game to change the details of the struct definitions, to use macros, whatever.
4. If you didn’t already, write a C++ version of the intrusive List example in §27.9 and test it using every function.
5. Compare the results of exercises 3 and 4.
6. Change the representation of Link and List from §27.9 without changing the user interface provided by the functions.

Allocate Links in an array of links and have the members first, last, pre, and suc be ints (indices into the array).
7. What are the advantages and disadvantages of intrusive containers compared to C++ standard (non-intrusive)

containers? Make lists of pros and cons.
8. What is the lexicographical order on your machine? Write out every character on your keyboard together with its integer

value; then, write the characters out in the order determined by their integer value.
9. Using only C facilities, including the C standard library, read a sequence of words from stdin and write them to stdout

in lexicographical order. Hint: The C sort function is called qsort(); look it up somewhere. Alternatively, insert the
words into an ordered list as you read them. There is no C standard library list.

10. Make a list of C language features adopted from C++ or C with Classes (§27.1).
11. Make a list of C language features not adopted by C++.
12. Implement a (C-style string, int) lookup table with operations such as find(struct table*, const char*),



insert(struct table*, const char*, int), and remove(struct table*, const char*). The representation of the table
could be an array of a struct pair or a pair of arrays (const char*[] and int*); you choose. Also choose return types for
your functions. Document your design decisions.

13. Write a program that does the equivalent of string s; cin>>s; in C; that is, define an input operation that reads an
arbitrarily long sequence of whitespace-terminated characters into a zero-terminated array of chars.

14. Write a function that takes an array of ints as its input and finds the smallest and the largest elements. It should also
compute the median and mean. Use a struct holding the results as the return value.

15. Simulate single inheritance in C. Let each “base class” contain a pointer to an array of pointers to functions (to simulate
virtual functions as freestanding functions taking a pointer to a “base class” object as their first argument); see §27.2.3.
Implement “derivation” by making the “base class” the type of the first member of the derived class. For each class,
initialize the array of “virtual functions” appropriately. To test the ideas, implement a version of “the old Shape

example” with the base and derived draw() just printing out the name of their class. Use only language features and
library facilities available in standard C.

16. Use macros to obscure (simplify the notation for) the implementation in the previous exercise.

Postscript
We did mention that compatibility issues are not all that exciting. However, there is a lot of C code “out there” (billions of
lines of code), and if you have to read or write it, this chapter prepares you to do so. Personally, we prefer C++, and the
information in this chapter gives part of the reason for that. And please don’t underestimate that “intrusive List” example —
both “intrusive Lists” and opaque types are important and powerful techniques (in both C and C++).



Part V: Appendices



A. Language Summary

“Be careful what you wish for; you might get it.”
—Traditional

This appendix summarizes key language elements of C++. The summary is very selective and specifically geared to novices
who want to explore a bit beyond the sequence of topics in the book. The aim is conciseness, not completeness.

A.1 General
A.1.1 Terminology
A.1.2 Program start and termination
A.1.3 Comments

A.2 Literals
A.2.1 Integer literals
A.2.2 Floating-point-literals
A.2.3 Boolean literals
A.2.4 Character literals
A.2.5 String literals
A.2.6 The pointer literal

A.3 Identifiers
A.3.1 Keywords

A.4 Scope, storage class, and lifetime
A.4.1 Scope
A.4.2 Storage class
A.4.3 Lifetime

A.5 Expressions
A.5.1 User-defined operators
A.5.2 Implicit type conversion
A.5.3 Constant expressions
A.5.4 sizeof

A.5.5 Logical expressions
A.5.6 new and delete

A.5.7 Casts
A.6 Statements
A.7 Declarations

A.7.1 Definitions
A.8 Built-in types

A.8.1 Pointers
A.8.2 Arrays
A.8.3 References

A.9 Functions
A.9.1 Overload resolution
A.9.2 Default arguments
A.9.3 Unspecified arguments
A.9.4 Linkage specifications



A.10 User-defined types
A.10.1 Operator overloading

A.11 Enumerations
A.12 Classes

A.12.1 Member access
A.12.2 Class member definitions
A.12.3 Construction, destruction, and copy
A.12.4 Derived classes
A.12.5 Bitfields
A.12.6 Unions

A.13 Templates
A.13.1 Template arguments
A.13.2 Template instantiation
A.13.3 Template member types

A.14 Exceptions
A.15 Namespaces
A.16 Aliases
A.17 Preprocessor directives

A.17.1 #include

A.17.2 #define

A.1 General
This appendix is a reference. It is not intended to be read from beginning to end like a chapter. It (more or less) systematically
describes key elements of the C++ language. It is not a complete reference, though; it is just a summary. Its focus and emphasis
were determined by student questions. Often, you will need to look at the chapters for a more complete explanation. This
summary does not attempt to equal the precision and terminology of the standard. Instead, it attempts to be accessible. For more
information, see Stroustrup, The C++ Programming Language. The definition of C++ is the ISO C++ standard, but that
document is neither intended for nor suitable for novices. Don’t forget to use your online documentation. If you look at this
appendix while working on the early chapters, expect much to be “mysterious,” that is, explained in later chapters.

For standard library facilities, see Appendix B.
The standard for C++ is defined by a committee working under the auspices of the ISO (the international organization for

standards) in collaboration with national standards bodies, such as INCITS (United States), BSI (United Kingdom), and
AFNOR (France). The current definition is ISO/IEC 14882:2011 Standard for Programming Language C++.

A.1.1 Terminology
The C++ standard defines what a C++ program is and what the various constructs mean:

• Conforming: A program that is C++ according to the standard is called conforming (or colloquially, legal or valid).
• Implementation defined: A program can (and usually does) depend on features (such as the size of an int and the

numeric value of 'a') that are only well defined on a given compiler, operating system, machine architecture, etc. The
implementation-defined features are listed in the standard and must be documented in implementation documentation, and
many are reflected in standard headers, such as <limits> (see §B.1.1). So, being conforming is not the same as being
portable to all C++ implementations.

• Unspecified: The meaning of some constructs is unspecified, undefined, or not conforming but not requiring a
diagnostic. Obviously, such features are best avoided. This book avoids them. The unspecified features to avoid include
• Inconsistent definitions in separate source files (use header files consistently; see §8.3)
• Reading and writing the same variable repeatedly in an expression (the main example is a[i]=++i;)
• Many uses of explicit type conversion (casts), especially of reinterpret_cast

A.1.2 Program start and termination



A.1.2 Program start and termination
A C++ program must have a single global function called main(). The program starts by executing main(). The return type of
main() is int (void is not a conforming alternative). The value returned by main() is the program’s return value to “the
system.” Some systems ignore that value, but successful termination is indicated by returning zero and failure by returning a
nonzero value or by an uncaught exception (but an uncaught exception is considered poor style).

The arguments to main() can be implementation defined, but every implementation must accept two versions (though only
one per program):
Click here to view code image

int main();                                        // no arguments
int main(int argc, char* argv[]);   // argv[] holds argc C-style strings

The definition of main() need not explicitly return a value. If it doesn’t, “dropping through the bottom,” it returns a zero. This
is the minimal C++ program:

int main() { }

If you define a global (namespace) scope object with a constructor and a destructor, the constructor will logically be executed
“before main()” and the destructor logically executed “after main()” (technically, executing those constructors is part of
invoking main() and executing the destructors part of returning from main()). Whenever you can, avoid global objects,
especially global objects requiring nontrivial construction and destruction.

A.1.3 Comments
What can be said in code, should be. However, C++ offers two comment styles to allow the programmer to say things that are
not well expressed as code:

// this is a line comment
/*

     this is a
     block comment
*/

Obviously, block comments are mostly used for multi-line comments, though some people prefer single-line comments even for
multiple lines:
Click here to view code image

// this is a
// multi-line comment
// expressed using three line comments

/* and this is a single line of comment expressed using a block comment */

Comments are essential for documenting the intent of code; see also §7.6.4.

A.2 Literals
Literals represent values of various types. For example, the literal 12 represents the integer value “twelve,” "Morning"

represents the character string value Morning, and true represents the Boolean value true.

A.2.1 Integer literals
Integer literals come in three varieties:

• Decimal: a series of decimal digits
Decimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9

• Octal: a series of octal digits starting with 0
Octal digits: 0, 1, 2, 3, 4, 5, 6, and 7

• Hexadecimal: a series of hexadecimal digits starting with 0x or 0X

Hexadecimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, A, B, C, D, E, and F
• Binary: a series of binary digits starting with 0b or 0B (C++14)
Binary digits: 0, 1



A suffix u or U makes an integer literal unsigned (§25.5.3), and a suffix l or L makes it long, for example, 10u and
123456UL.

C++14 also allows the use of the single quote as a digit separator in numeric literals. For example,
0b0000'0001'0010'0011 means 0b0000000100100011 and 1'000'000 means 1000000.

A.2.1.1 Number systems
We usually write out numbers in decimal notation. 123 means 1 hundred plus 2 tens plus 3 ones, or 1*100+2*10+3*1, or
(using ^ to mean “to the power of”) 1*10^2+2*10^1+3*10^0. Another word for decimal is base-10. There is nothing really
special about 10 here. What we have is 1*base^2+2*base^1+3*base^0 where base==10. There are lots of theories about
why we use base-10. One theory has been “built into” some natural languages: we have ten fingers and each symbol, such as 0,
1, and 2, that directly stands for a value in a positional number system is called a digit. Digit is Latin for “finger.”

Occasionally, other bases are used. Typically, positive integer values in computer memory are represented in base-2 (it is
relatively easy to reliably represent 0 and 1 as physical states in materials), and humans dealing with low-level hardware
issues sometimes use base-8 and more often base-16 to refer to the content of memory.

Consider hexadecimal. We need to name the 16 values from 0 to 15. Usually, we use 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E,
F, where A has the decimal value 10, B the decimal value 11, and so on:
Click here to view code image

A==10, B==11, C==12, D==13, E==14, F==15

We can now write the decimal value 123 as 7B using the hexadecimal notation. To see that, note that in the hexadecimal system
7B means 7*16+11, which is (decimal) 123. Conversely, hexadecimal 123 means 1*16^2+2*16+3, which is 1*256+2*16+3,
which is (decimal) 291. If you have never dealt with non-decimal integer representations, we strongly recommend you try
converting a few numbers to and from decimal and hexadecimal. Note that a hexadecimal digit has a very simple
correspondence to a binary value:

This goes a long way toward explaining the popularity of hexadecimal notation. In particular, the value of a byte is simply
expressed as two hexadecimal digits.

In C++, (fortunately) numbers are decimal unless we specify otherwise. To say that a number is hexadecimal, we prefix 0X

(“X for hex”), so 123==0X7B and 0X123==291. We can equivalently use a lowercase x, so we also have 123==0x7B and
0x123==291. Similarly, we can use lowercase a, b, c, d, e, and f for the hexadecimal digits. For example, 123==0x7b.

Octal is base-8. We need only eight octal digits: 0, 1, 2, 3, 4, 5, 6, 7. In C++, base-8 numbers are represented starting with a
0, so 0123 is not the decimal number 123, but 1*8^2+2*8+3, that is, 1*64+2*8+3, or (decimal) 83. Conversely, octal 83, that
is, 083, is 8*8+3, which is (decimal) 67. Using C++ notation, we get 0123==83 and 083==67.

Binary is base-2. We need only two digits, 0 and 1. We cannot directly represent base-2 numbers as literals in C++. Only
base-8 (octal), base-10 (decimal), and base-16 (hexadecimal) are directly supported as literals and as input and output formats
for integers. However, binary numbers are useful to know even if we cannot directly represent them in C++ text. For example,
(decimal) 123 is
Click here to view code image

1*2^6+1*2^5+1*2^4+1*2^3+0*2^2+1*2+1

which is 1*64+1*32+1*16+1*8+0*4+1*2+1, which is (binary) 1111011.

A.2.2 Floating-point-literals
A floating-point-literal contains a decimal point (.), an exponent (e.g., e3), or a floating-point suffix (d or f). For example:



Click here to view code image

123            // int (no decimal point, suffix, or exponent)
123.           // double:         123.0
123.0         // double
123            // double:          0.123
0.123         // double
1.23e3       // double:         1230.0
1.23e–3     // double:         0.00123
1.23e+3     // double:        1230.0

Floating-point-literals have type double unless a suffix indicates otherwise. For example:

1.23            // double
1.23f           // float
1.23L          // long double

A.2.3 Boolean literals
The literals of type bool are true and false. The integer value of true is 1 and the integer value of false is 0.

A.2.4 Character literals
A character literal is a character enclosed in single quotes, for example, 'a' and '@'. In addition, there are some “special
characters”:

A special character is represented as its “C++ name” enclosed in single quotes, for example, '\n' (newline) and '\t' (tab).
The character set includes the following visible characters:

Click here to view code image

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789

!@#$%^&*()_+|~`{}[]:";'<>?,./

In portable code, you cannot rely on more visible characters. The value of a character, such as 'a' for a, is implementation
dependent (but easily discovered, for example, cout << int('a')).

A.2.5 String literals
A string literal is a series of characters enclosed in double quotes, for example, "Knuth" and "King Canute". A newline
cannot be part of a string; instead use the special character \n to represent newline in a string:
Click here to view code image



"King

Canute "                    // error: newline in string literal
"King\nCanute"      // OK: correct way to get a newline into a string literal

Two string literals separated only by whitespace are taken as a single string literal. For example:
Click here to view code image

"King" "Canute"      // equivalent to "KingCanute" (no space)

Note that special characters, such as \n, can appear in string literals.

A.2.6 The pointer literal
There is only one pointer literal: the null pointer, nullptr. For compatibility, any constant expression that evaluates to 0 can
also be used as the null pointer. For example:
Click here to view code image

t* p1 = 0;                     // OK: null pointer
int* p2 = 2–2;             // OK: null pointer
int* p3 = 1;                 // error: 1 is an int, not a pointer
int z = 0;

int* p4 = z;                 // error: z is not a constant

The value 0 is implicitly converted to the null pointer.
In C++ (but not in C, so beware of C headers), NULL is defined to mean 0 so that you can write

Click here to view code image

int* p4 = NULL;        // (given the right definition of NULL) the null pointer

A.3 Identifiers
An identifier is a sequence of characters starting with a letter or an underscore followed by zero or more (uppercase or
lowercase) letters, digits, or underscores:
Click here to view code image

int foo_bar;           // OK
int FooBar;            // OK
int foo bar;           // error: space can’t be used in an identifier
int foo$bar;          // error: $ can’t be used in an identifier

Identifiers starting with an underscore or containing a double underscore are reserved for use by the implementation; don’t use
them. For example:

int _foo;                     // don’t
int foo_bar;               // OK
int foo__bar;            // don’t
int foo_;                    // OK

A.3.1 Keywords
Keywords are identifiers used by the language itself to express language constructs.



A.4 Scope, storage class, and lifetime
Every name in C++ (with the lamentable exception of preprocessor names; see §A.17) exists in a scope; that is, the name
belongs to a region of text in which it can be used. Data (objects) are stored in memory somewhere; the kind of memory used to
store an object is called its storage class. The lifetime of an object is from the time it is first initialized until it is finally
destroyed.

A.4.1 Scope
There are five kinds of scopes (§8.4):

• Global scope: A name is in global scope unless it is declared inside some language construct (e.g., a class or a
function).

• Namespace scope: A name is in a namespace scope if it is defined within a namespace and not inside some language
construct (e.g., a class or a function). Technically, the global scope is a namespace scope with “the empty name.”

• Local scope: A name is in a local scope if it is declared inside a function (this includes function parameters).
• Class scope: A name is in a class scope if it is the name of a member of a class.
• Statement scope: A name is in a statement scope if it is declared in the (. . .) part of a for-, while-, switch-, or if-
statement.

The scope of a variable extends (only) to the end of the statement in which it is defined. For example:
Click here to view code image

for (int i = 0; i<v.size(); ++i) {

          // i can be used here
}

if (i < 27)                     // the i from the for-statement is not in scope here

Class and namespace scopes have names, so that we can refer to a member from “elsewhere.” For example:
Click here to view code image

void f();                     // in global scope

namespace N {

          void f()            // in namespace scope N
          {
                    int v;     // in local scope
                    ::f();     // call the global f()



          }
}

void f()

{

          N::f();            // call N’s f()
}

What would happen if you called N::f() or ::f()? See also §A.15.

A.4.2 Storage class
There are three storage classes (§17.4):

• Automatic storage: Variables defined in functions (including function parameters) are placed in automatic storage (i.e.,
“on the stack”) unless explicitly declared to be static. Automatic storage is allocated when a function is called and
deallocated when a call returns; thus, if a function is (directly or indirectly) called by itself, multiple copies of automatic
data can exist: one for each call (§8.5.8).

• Static storage: Variables declared in global and namespace scope are stored in static storage, as are variables explicitly
declared static in functions and classes. The linker allocates static storage “before the program starts running.”

• Free store (heap): Objects created by new are allocated in the free store.
For example:
Click here to view code image

vector<int> vg(10);           // constructed once at program start (“before main()”)

vector<int>* f(int x)

{

         static vector<int> vs(x);    // constructed in first call of f() only
         vector<int> vf(x+x);          // constructed in each call of f()

         for (int i=1; i<10; ++i) {

                    vector<int> vl(i);    // constructed in each iteration
                   // . . .
        }                                             // v1 destroyed here (in each iteration)

        return new vector<int>(vf);      // constructed on free store as a copy of vf
}                                                               // vf destroyed here

void ff()

{

         vector<int>* p = f(10);        // get vector from f()
          // . . .
          delete p;                               // delete the vector from f
}

The statically allocated variables vg and vs are destroyed at program termination (“after main()”), provided they have been
constructed.

Class members are not allocated as such. When you allocate an object somewhere, the non-static members are placed there
also (with the same storage class as the class object to which they belong).

Code is stored separately from data. For example, a member function is not stored in each object of its class; one copy is
stored with the rest of the code for the program.

See also §14.3 and §17.4.

A.4.3 Lifetime
Before an object can be (legally) used, it must be initialized. This initialization can be explicit using an initializer or implicit
using a constructor or a rule for default initialization of built-in types. The lifetime of an object ends at a point determined by
its scope and storage class (e.g., see §17.4 and §B.4.2):

• Local (automatic) objects are constructed if/when the thread of execution gets to them and are destroyed at end of scope.
• Temporary objects are created by a specific sub-expression and destroyed at the end of their full expression. A full

expression is an expression that is not a sub-expression of some other expression.
• Namespace objects and static class members are constructed at the start of the program (“before main()”) and



destroyed at the end of the program (“after main()”).
• Local static objects are constructed if/when the thread of execution gets to them and (if constructed) are destroyed at the
end of the program.

• Free-store objects are constructed by new and optionally destroyed using delete.
A temporary variable bound to a local or namespace reference “lives” as long as the reference. For example:
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const char* string_tbl[] = { "Mozart", "Grieg", "Haydn", "Chopin" };

const char* f(int i) { return string_tbl[i]; }

void g(string s){}

void h()

{

          const string& r = f(0);         // bind temporary string to r
          g(f(1));                                   // make a temporary string and pass it
          string s = f(2);                       // initialize s from temporary string
          cout << "f(3): " << f(3)       // make a temporary string and pass it
                    <<" s: " << s

                    << " r: " << r << '\n';

}

The result is

f(3): Chopin s: Haydn r: Mozart

The string temporaries generated for the calls f(1), f(2), and f(3) are destroyed at the end of the expression in which they
were created. However, the temporary generated for f(0) is bound to r and “lives” until the end of h().

A.5 Expressions
This section summarizes C++’s operators. We use abbreviations that we find mnemonic, such as m for a member name, T for a
type name, p for an expression yielding a pointer, x for an expression, v for an lvalue expression, and lst for an argument list.
The result type of the arithmetic operations is determined by “the usual arithmetic conversions” (§A.5.2.2). The descriptions in
this section are of the built-in operators, not of any operator you might define on your own, though when you define your own
operators, you are encouraged to follow the semantic rules described for built-in operations (§9.6).

Note that members can themselves nest, so that you can get N::C::m; see also §8.7.



The typeid operator and its uses are not covered in this book; see an expert-level reference. Note that casts do not modify
their argument. Instead, they produce a result of their type, which somehow corresponds to the argument value; see §A.5.7.

Note that the object(s) pointed to by p in delete p and delete[] p must be allocated using new; see §A.5.6. Note that (T)x is
far less specific — and therefore more error-prone — than the more specific cast operators; see §A.5.7.

Not covered in this book; see an expert-level reference.



The effect of x/y and x%y is undefined if y==0. The effect of x%y is implementation defined if x or y is negative.

For the (built-in) use of >> and << for shifting bits, see §25.5.4. When their leftmost operators are iostreams, these operators
are used for I/O; see Chapters 10 and 11.

The result of a relational operator is a bool.

Note that x!=y is !(x==y). The result of an equality operator is a bool.

Note that & (like ^, |, ~, >>, and <<) delivers a set of bits. For example, if a and b are unsigned chars, a&b is an
unsigned char with each bit being the result of applying & to the corresponding bits in a and b; see §A.5.5.



See §A.5.5.

For example:

template<class T> T& max(T& a, T& b) { return (a>b)?a:b; }

The “question mark colon operator” is explained in §8.4.

By “roughly v=v*(x)” we mean that v*=x has that value except that v is evaluated only once. For example, v[++i]*=7+3

means (++i, v[i]=v[i]*(7+3)) rather than (v[++i]=v[++i]*(7+3)) (which would be undefined; see §8.6.1).

The type of a throw expression is void.

Each box holds operators with the same precedence. Operators in higher boxes have higher precedence than operators in lower
boxes. For example, a+b*c means a+(b*c) rather than (a+b)*c because * has higher precedence than +. Similarly, *p++

means *(p++), not (*p)++. Unary operators and assignment operators are right-associative; all others are left-associative. For
example, a=b=c means a=(b=c) and a+b+c means (a+b)+c.

An lvalue is an expression that identifies an object that could in principle be modified (but obviously an lvalue that has a
const type is protected against modification by the type system) and have its address taken. The complement to lvalue is
rvalue, that is, an expression that identifies something that may not be modified or have its address taken, such as a value
returned from a function (&f(x) is an error because f(x) is an rvalue).

A.5.1 User-defined operators
The rules defined here are for built-in types. If a user-defined operator is used, an expression is simply transformed into a call
of the appropriate user-defined operator function, and the rules for function call determine what happens. For example:
Click here to view code image



class Mine { /* . . . */ };

bool operator==(Mine, Mine);

void f(Mine a, Mine b)

{

          if (a==b) {            // a==b means operator==(a,b)
                    // . . .
          }
}

A user-defined type is a class (§A.12, Chapter 9) or an enumeration (§A.11, §9.5).

A.5.2 Implicit type conversion
Integral and floating-point types (§A.8) can be mixed freely in assignments and expressions. Wherever possible, values are
converted so as not to lose information. Unfortunately, value-destroying conversions are also performed implicitly.

A.5.2.1 Promotions
The implicit conversions that preserve values are commonly referred to as promotions. Before an arithmetic operation is
performed, integral promotion is used to create ints out of shorter integer types. This reflects the original purpose of these
promotions: to bring operands to the “natural” size for arithmetic operations. In addition, float to double is considered a
promotion.

Promotions are used as part of the usual arithmetic conversions (see §A.5.2.2).

A.5.2.2 Conversions
The fundamental types can be converted into each other in a bewildering number of ways. When writing code, you should
always aim to avoid undefined behavior and conversions that quietly throw away information (see §3.9 and §25.5.3). A
compiler can warn about many questionable conversions.

• Integral conversions: An integer can be converted to another integer type. An enumeration value can be converted to an
integer type. If the destination type is unsigned, the resulting value is simply as many bits from the source as will fit in
the destination (high-order bits are thrown away if necessary). If the destination type is signed, the value is unchanged if
it can be represented in the destination type; otherwise, the value is implementation defined. Note that bool and char are
integer types.

• Floating-point conversions: A floating-point value can be converted to another floating-point type. If the source value
can be exactly represented in the destination type, the result is the original numeric value. If the source value is between
two adjacent destination values, the result is one of those values. Otherwise, the behavior is undefined. Note that float to
double is considered a promotion.

• Pointer and reference conversions: Any pointer to an object type can be implicitly converted to a void* (§17.8,
§27.3.5). A pointer (reference) to a derived class can be implicitly converted to a pointer (reference) to an accessible
and unambiguous base (§14.3). A constant expression (§A.5, §4.3.1) that evaluates to 0 can be implicitly converted to
any pointer type. A T* can be implicitly converted to a const T*. Similarly, a T& can be implicitly converted to a const

T&.
• Boolean conversions: Pointers, integrals, and floating-point values can be implicitly converted to bool. A nonzero
value converts to true; a zero value converts to false.

• Floating-to-integer conversions: When a floating-point value is converted to an integer value, the fractional part is
discarded. In other words, conversion from a floating-point type to an integer type truncates. The behavior is undefined if
the truncated value cannot be represented in the destination type. Conversions from integer to floating types are as
mathematically correct as the hardware allows. Loss of precision occurs if an integral value cannot be represented
exactly as a value of the floating type.

• Usual arithmetic conversions: These conversions are performed on the operands of a binary operator to bring them to a
common type, which is then used as the type of the result:

1. If either operand is of type long double, the other is converted to long double. Otherwise, if either operand is
double, the other is converted to double. Otherwise, if either operand is float, the other is converted to float.
Otherwise, integral promotions are performed on both operands.

2. Then, if either operand is unsigned long, the other is converted to unsigned long. Otherwise, if one operand is
a long int and the other is an unsigned int, then if a long int can represent all the values of an unsigned int,



the unsigned int is converted to a long int; otherwise, both operands are converted to unsigned long int.
Otherwise, if either operand is long, the other is converted to long. Otherwise, if either operand is unsigned, the
other is converted to unsigned. Otherwise, both operands are int.

Obviously, it is best not to rely too much on complicated mixtures of types, so as to minimize the need for implicit conversions.

A.5.2.3 User-defined conversions
In addition to the standard promotions and conversions, a programmer can define conversions for user-defined types. A
constructor that takes a single argument defines a conversion from its argument type to its type. If the constructor is explicit

(see §18.4.1), the conversion happens only when the programmer explicitly requires the conversion. Otherwise, the conversion
can be implicit.

A.5.3 Constant expressions
A constant expression is an expression that can be evaluated at compile time. For example:

const int a = 2.7*3;

const int b = a+3;

constexpr int a = 2.7*3;

constexpr int b = a+3;

A const can be initialized with an expression involving variables. A constexpr must be initialized by a constant expression.
Constant expressions are required in a few places, such as array bounds, case labels, enumerator initializers, and int template
arguments. For example:
Click here to view code image

int var = 7;

switch (x) {

case 77:            // OK
case a+2:         // OK
case var:         // error (var is not a constant expression)
          // . . .
};

A function declared constexpr can be used in a constant expression.

A.5.4 sizeof

In sizeof(x), x can be a type or an expression. If x is an expression, the value of sizeof(x) is the size of the resulting object. If
x is a type, sizeof(x) is the size of an object of type x. Sizes are measured in bytes. By definition, sizeof(char)==1.

A.5.5 Logical expressions
C++ provides logical operators for integer types:

The bitwise operators do their operation on each bit of their operands, whereas the logical operators (&& and ||) treat a 0 as
the value false and anything else as the value true. The definitions of the operations are:



A.5.6 new and delete

Memory on the free store (dynamic store, heap) is allocated using new and deallocated (“freed”) using delete (for individual
objects) or delete[] (for an array). If memory is exhausted, new throws a bad_alloc exception. A successful new operation
allocates at least 1 byte and returns a pointer to the allocated object. The type of object allocated is specified after new. For
example:
Click here to view code image

int* p1 = new int;                // allocate an (uninitialized) int
int* p2 = new int(7);           // allocate an int initialized to 7
int* p3 = new int[100];       // allocate 100 (uninitialized) ints
// . . .
delete p1;                            // deallocate individual object
delete p2;

delete[] p3;                         // deallocate array

If you allocate objects of a built-in type using new, they will not be initialized unless you specify an initializer. If you allocate
objects of a class with a constructor using new, a constructor is called; the default constructor is called unless you specify an
initializer (§17.4.4).

A delete invokes the destructor, if any, for its operand. Note that a destructor may be virtual (§A.12.3.1).

A.5.7 Casts
There are four type-conversion operators:

The dynamic cast is typically used for class hierarchy navigation where p is a pointer to a base class and D is derived from
that base. It returns 0 if v is not a D*. If you want dynamic_cast to throw an exception (bad_cast) instead of returning 0, cast
to a reference instead of to a pointer. The dynamic cast is the only cast that relies on run-time checking.

Static cast is used for “reasonably well-behaved conversions,” that is, where v could have been the result of an implicit
conversion from a T; see §17.8.

Reinterpret cast is used for reinterpreting a bit pattern. It is not guaranteed to be portable. In fact, it is best to assume that
every use of reinterpret_cast is non-portable. A typical example is an int-to-pointer conversion to get a machine address
into a program; see §17.8 and §25.4.1.

The C-style and functional casts can perform any conversion that can be achieved by a static_cast or a reinterpret_cast,
combined with a const_cast.

Casts are best avoided. In most cases, consider their use a sign of poor programming. Exceptions to this rule are presented
in §17.8 and §25.4.1. The C-style cast and function-style casts have the nasty property that you don’t have to understand exactly
what the cast is doing (§27.3.4). Prefer the named casts when you cannot avoid an explicit type conversion.

A.6 Statements



A.6 Statements
Here is a grammar for C++’s statements (opt means “optional”):

statement:
            declaration
            { statement-listopt }
            try { statement-listopt } handler-list
            expressionopt ;
            selection-statement
            iteration-statement
            labeled-statement
            control-statement

selection-statement:
            if ( condition ) statement
            if ( condition ) statement else statement
            switch ( condition ) statement

iteration-statement:
            while ( condition ) statement
            do statement while ( expression ) ;
            for ( for-init-statement conditionopt ; expressionopt ) statement
            for ( declaration : expression ) statement

labeled-statement:
            case constant-expression : statement
            default : statement
            identifier : statement

control-statement:
            break ;

            continue ;

            return expressionopt ;
            goto identifier ;

statement-list:
            statement statement-listopt

condition:
            expression
            type-specifier declarator = expression

for-init-statement:
            expressionopt ;
            type-specifier declarator = expression ;

handler-list:
            catch ( exception-declaration ) { statement-listopt }
            handler-list handler-listopt

Note that a declaration is a statement and that there is no assignment statement or procedure call statement; assignments and
function calls are expressions. More information:

• Iteration (for and while); see §4.4.2.
• Selection (if, switch, case, and break); see §4.4.1. A break “breaks out of” the nearest enclosing switch-statement,
while-statement, do-statement, or for-statement; that is, the next statement executed will be the statement following that
enclosing statement.

• Expressions; see §A.5, §4.3.
• Declarations; see §A.6, §8.2.
• Exceptions (try and catch); see §5.6, §19.4.

Here is an example concocted simply to demonstrate a variety of statements (what does it do?):
Click here to view code image

int* f(int p[], int n)

{



          if (p==0) throw Bad_p(n);

          vector<int> v;

          int x;

          while (cin>>x) {

                    if (x==terminator) break;       // exit while loop
                    v.push_back(x);

          }
          for (int i = 0; i<v.size() && i<n; ++i) {

                    if (v[i]==*p)

                              return p;

                    else

                              ++p;

          }
          return 0;

}

A.7 Declarations
A declaration consists of three parts:

• The name of the entity being declared
• The type of the entity being declared
• The initial value of the entity being declared (optional in most cases)

We can declare
• Objects of built-in types and user-defined types (§A.8)
• User-defined types (classes and enumerations) (§A.10–11, Chapter 9)
• Templates (class templates and function templates) (§A.13)
• Aliases (§A.16)
• Namespaces (§A.15, §8.7)
• Functions (including member functions and operators) (§A.9, Chapter 8)
• Enumerators (values for enumerations) (§A.11, §9.5)
• Macros (§A.17.2, §27.8)

The initializer can be a { }-delimited list of expressions with zero or more elements (§3.9.2, §9.4.2, §18.2). For example:

vector<int> v {a,b,c,d};

int x {y*z};

If the type of the object in a definition is auto, the object must be initialized and the type is the type of the initializer (§13.3,
§21.2). For example:
Click here to view code image

auto x = 7;                           // x is an int
const auto pi = 3.14;         // pi is a double
for (const auto& x : v)      // x is a reference to an element of v

A.7.1 Definitions
A declaration that initializes, sets aside memory, or in other ways provides all the information necessary for using a name in a
program is called a definition. Each type, object, and function in a program must have exactly one definition. Examples:
Click here to view code image

double f();                            // a declaration
double f() { /* . . . */ };         // (also) a definition
extern const int x;               // a declaration
int y;                     // (also) a definition
int z = 10;            // a definition with an explicit initializer

A const must be initialized. This is achieved by requiring an initializer for a const unless it has an explicit extern in its
declaration (so that the initializer must be on its definition elsewhere) or it is of a type with a default constructor (§A.12.3).
Class members that are consts must be initialized in every constructor using a member initializer (§A.12.3).

A.8 Built-in types



C++ has a host of fundamental types and types constructed from fundamental types using modifiers:

Here, T indicates “some type,” so you can have a long unsigned int, a long double, an unsigned char, and a const char

* (pointer to constant char). However, this system is not perfectly general; for example, there is no short double (that would
have been a float), no signed bool (that would have been meaningless), no short long int (that would have been
redundant), and no long long long long int. A long long is guaranteed to hold at least 64 bits.

The floating-point types are float, double, and long double. They are C++’s approximation of real numbers.
The integer types (sometimes called integral types) are bool, char, short, int, long, and long long and their unsigned

variants. Note that an enumeration type or value can often be used where an integer type or value is needed.
The sizes of built-in types are discussed in §3.8, §17.3.1, and §25.5.1. Pointers and arrays are discussed in Chapters 17 and

18. References are discussed in §8.5.4–6.

A.8.1 Pointers
A pointer is an address of an object or a function. Pointers are stored in variables of pointer types. A valid object pointer
holds the address of an object:
Click here to view code image

int x = 7;

int* pi = &x;                 // pi points to x
int xx = *pi;                  // *pi is the value of the object pointed to by pi, that is, 7

An invalid pointer is a pointer that does not hold the value of an object:
Click here to view code image

int* pi2;                        // uninitialized
*pi2 = 7;                       // undefined behavior
pi2 = nullptr;               // the null pointer (pi2 is still invalid)
*pi2 = 7;                       // undefined behavior

pi2 = new int(7);         // now pi2 is valid
int xxx = *pi2;             // fine: xxx becomes 7

We try to have invalid pointers hold the null pointer (nullptr) so that we can test it:
Click here to view code image



if (p2 == nullptr) {    // “if invalid”
          // don’t use *p2
}

Or simply

if (p2) {              // “if valid”
            // use *p2
}

See §17.4 and §18.6.4.
The operations on a (non-void) object pointer are:

Note that any form of pointer arithmetic (e.g., ++p and p+=7) is allowed only for pointers into an array and that the effect of
dereferencing a pointer pointing outside the array is undefined (and most likely not checked by the compiler or the language
run-time system). The comparisons <, <=, >, and >= can also be used for pointers of the same type into the same object or
array.

The only operations on a void* pointer are copying (assignment or initialization), casting (type conversion), and
comparison (==, !=, <, <=, >, and >=).

A pointer to function (§27.2.5) can only be copied and called. For example:
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using Handle_type = void (*)(int);

void my_handler(int);

Handle_type handle = my_handler;

handle(10);          // equivalent to my_handler(10)

A.8.2 Arrays
An array is a fixed-length contiguous sequence of objects (elements) of a given type:

int a[10];               // 10 ints

If an array is global, its elements will be initialized to the appropriate default value for the type. For example, the value of a[7]

will be 0. If the array is local (a variable declared in a function) or allocated using new, elements of built-in types will be
uninitialized and elements of class types will be initialized as required by the class’s constructors.

The name of an array is implicitly converted to a pointer to its first element. For example:

int* p = a;          // p points to a[0]



An array or a pointer to an element of an array can be subscripted using the [ ] operator. For example:

a[7] = 9;

int xx = p[6];

Array elements are numbered starting with 0; see §18.6.
Arrays are not range checked, and since they are often passed as pointers, the information to range check them is not reliably

available to users. Prefer vector.
The size of an array is the sum of the sizes of its elements. For example:

Click here to view code image

int a[max];          // sizeof(a); that is, sizeof(int)*max

You can define and use an array of an array (a two-dimensional array), an array of an array of an array, etc. (multidimensional
arrays). For example:
Click here to view code image

double da[100][200][300];      // 300 elements of type
                                                    // 200 elements of type
                                                    // 100 type double
da[7][9][11] = 0;

Nontrivial uses of multidimensional arrays are subtle and error-prone; see §24.4. If you have a choice, prefer a Matrix library
(such as the one in Chapter 24).

A.8.3 References
A reference is an alias (alternative name) for an object:

int a = 7;

int& r = a;

r = 8;    // a becomes 8

References are most common as function parameters, where they are used to avoid copying:
Click here to view code image

void f(const string& s);

// . . .
f("this string could be somewhat costly to copy, so we use a reference");

See §8.5.4–6.

A.9 Functions
A function is a named piece of code taking a (possibly empty) set of arguments and optionally returning a value. A function is
declared by giving the return type followed by its name followed by the parameter list:

char f(string, int);

So, f is a function taking a string and an int returning a char. If the function is just being declared, the declaration is
terminated by a semicolon. If the function is being defined, the argument declaration is followed by the function body:
Click here to view code image

char f(string s, int i) { return s[i]; }

The function body must be a block (§8.2) or a try-block (§5.6.3).
A function declared to return a value must return a value (using the return-statement):

Click here to view code image

char f(string s, int i) { char c = s[i]; }     // error: no value returned

The main() function is the odd exception to that rule (§A.1.2). Except for main(), if you don’t want to return a value, declare
the function void; that is, use void as the “return type”:
Click here to view code image



void increment(int& x) { ++x; }            // OK: no return value required

A function is called using the call operator (application operator), ( ), with an acceptable list of arguments:
Click here to view code image

char x1 = f(1,2);                              // error: f()’s first argument must be a string
string s = "Battle of Hastings";

char x2 = f(s);                                 // error: f() requires two arguments
char x3 = f(s,2);                             // OK

For more information about functions, see Chapter 8.
A function definition can be prefixed with constexpr. In that case, it must be simple enough for the compiler to evaluate

when called with constant expression arguments. A constexpr function can be used in a constant expression (§8.5.9).

A.9.1 Overload resolution
Overload resolution is the process of choosing a function to call based on a set of arguments. For example:
Click here to view code image

void print(int);

void print(double);

void print(const std::string&);

print(123);          // use print(int)
print(1.23);         // use print(double)
print("123");      // use print(const string&)

It is the compiler’s job to pick the right function according to the language rules. Unfortunately, in order to cope with
complicated examples, the language rules are quite complicated. Here we present a simplified version.

Finding the right version to call from a set of overloaded functions is done by looking for a best match between the type of
the argument expressions and the parameters (formal arguments) of the functions. To approximate our notions of what is
reasonable, a series of criteria is tried in order:

1. Exact match, that is, match using no or only trivial conversions (for example, array name to pointer, function name to
pointer to function, and T to const T)

2. Match using promotions, that is, integral promotions (bool to int, char to int, short to int, and their unsigned
counterparts; see §A.8) and float to double

3. Match using standard conversions, for example, int to double, double to int, double to long double, Derived* to
Base* (§14.3), T* to void* (§17.8), int to unsigned int (§25.5.3)

4. Match using user-defined conversions (§A.5.2.3)
5. Match using the ellipsis . . . in a function declaration (§A.9.3)

If two matches are found at the highest level where a match is found, the call is rejected as ambiguous. The resolution rules are
this elaborate primarily to take into account the elaborate rules for built-in numeric types (§A.5.3).

For overload resolution based on multiple arguments, we first find the best match for each argument. If one function is at
least as good a match as all other functions for every argument and is a better match than all other functions for one argument,
that function is chosen; otherwise the call is ambiguous. For example:
Click here to view code image

void f(int, const string&, double);

void f(int, const char*, int);

f(1,"hello",1);                        // OK: call f(int, const char*, int)
f(1,string("hello"),1.0);        // OK: call f(int, const string&, double)
f(1, "hello",1.0);                   // error: ambiguous

In the last call, the "hello" matches const char* without a conversion and const string& only with a conversion. On the
other hand, 1.0 matches double without a conversion, but int only with a conversion, so neither f() is a better match than the
other.

If these simplified rules don’t agree with what your compiler says and what you thought reasonable, please first consider if
your code is more complicated than necessary. If so, simplify your code; if not, consult an expert-level reference.



A.9.2 Default arguments
A general function sometimes needs more arguments than are needed for the most common cases. To handle that, a programmer
may provide default arguments to be used if a caller of a function doesn’t specify an argument. For example:

void f(int, int=0, int=0);

f(1,2,3);

f(1,2);        // calls f(1,2,0)
f(1);           // calls f(1,0,0)

Only trailing arguments can be defaulted and left out in a call. For example:
Click here to view code image

void g(int, int =7, int);        // error: default for non-trailing argument
f(1,,1);                                   // error: second argument missing

Overloading can be an alternative to using default arguments (and vice versa).

A.9.3 Unspecified arguments
It is possible to specify a function without specifying the number or types of its arguments. This is indicated by an ellipsis (. .
.), meaning “and possibly more arguments.” For example, here is the declaration of and some calls to what is arguably the most
famous C function, printf() (§27.6.1, §B.11.2):
Click here to view code image

void printf(const char* format ...);     // takes a format string and maybe more

int x = 'x';

printf("hello, world!");

printf("print a char '%c'\n",x);            // print the int x as a char
printf("print a string \"%s\"",x);         // shoot yourself in the foot

The “format specifiers” in the format string, such as %c and %s, determine if and how further arguments are used. As
demonstrated, this can lead to nasty type errors. In C++, unspecified arguments are best avoided.

A.9.4 Linkage specifications
C++ code is often used in the same program as C code; that is, parts of a program are written in C++ (and compiled by a C++
compiler) and other parts in C (and compiled by a C compiler). To ease that, C++ offers linkage specifications for the
programmer to say that a function obeys C linkage conventions. A C linkage specification can be placed in front of a function
declaration:
Click here to view code image

extern "C" void callable_from_C(int);

Alternatively it can apply to all declarations in a block:
Click here to view code image

extern "C" {

          void callable_from_C(int);

          int and_this_one_also(double, int*);

          /* . . . */

}

For details of use, see §27.2.3.
C doesn’t offer function overloading, so you can put a C linkage specification on at most one version of a C++ overloaded

function.

A.10 User-defined types
There are two ways for a programmer to define a new (user-defined) type: as a class (class, struct, or union; see §A.12) and
as an enumeration (enum; see §A.11).

A.10.1 Operator overloading
A programmer can define the meaning of most operators to take operands of one or more user-defined types. It is not possible



to change the standard meaning of an operator for built-in types or to introduce a new operator. The name of a user-defined
operator (“overloaded operator”) is the operator prefixed by the keyword operator; for example, the name of a function
defining + is operator +:
Click here to view code image

Matrix operator+(const Matrix&, const Matrix&);

For examples, see std::ostream (Chapters 10–11), std::vector (Chapters 17–19, §B.4), std::complex (§B.9.3), and
Matrix (Chapter 24).

All but the following operators can be user-defined:
Click here to view code image

?:          .          .*          ::          sizeof          typeid          alignas           noexcept

Functions defining the following operators must be members of a class:

=          [ ]          ( )          –>

All other operators can be defined as member functions or as freestanding functions.
Note that every user-defined type has = (assignment and initialization), & (address of), and , (comma) defined by default.
Be restrained and conventional with operator overloading.

A.11 Enumerations
An enumeration defines a type with a set of named values (enumerators):
Click here to view code image

enum Color { green, yellow, red };                         // “plain” enumeration
enum class Traffic_light { yellow, red, green };     // scoped enumeration

The enumerators of an enum class are in the scope of the enumeration, whereas the enumerators of a “plain” enum are
exported to the scope of the enum. For example:
Click here to view code image

Color col = red;              // OK
Traffic_light tl = red;      // error: cannot convert integer value
                                           // (i.e., Color::red) to Traffic_light

By default the value of the first enumerator is 0, so that Color::green==0, and the values increase by one, so that Color’s
yellow==1 and red==2. It is also possible to explicitly define the value of an enumerator:
Click here to view code image

enum Day { Monday=1, Tuesday, Wednesday };

Here, we get Monday==1, Tuesday==2, and Wednesday==3.
Enumerators and enumeration values of a “plain” enum implicitly convert to integers, but integers do not implicitly convert

to enumeration types:
Click here to view code image

int x = green;               // OK: implicit Color-to-int conversion
Color c = green;         // OK
c = 2;                             // error: no implicit int-to-Color conversion
c = Color(2);                // OK: (unchecked) explicit conversion
int y = c;                       // OK: implicit Color-to-int conversion

Enumerators and enumeration values of an enum class do not convert to integers, and integers do not implicitly convert to
enumeration types:
Click here to view code image

int x = Traffic_light::green;    // error: no implicit Traffic_light-to-int conversion
Traffic_light c = green;            // error: no implicit int-to-Traffic_light conversion

For a discussion of the uses of enumerations, see §9.5.



A.12 Classes
A class is a type for which the user defines the representation of its objects and the operations allowed on those objects:

class X {

public:

          // user interface
private:

          // implementation
};

A variable, function, or type defined within a class declaration is called a member of the class. See Chapter 9 for class
technicalities.

A.12.1 Member access
A public member can be accessed by users; a private member can be accessed only by the class’s own members:
Click here to view code image

class Date {

public:

          // . . .
          int next_day();

private:

          int y, m, d;

};

void Date::next_day() { return d+1; }             // OK

void f(Date d)

{

          int nd = d.d+1;               // error: Date::d is private
          // . . .
}

A struct is a class where members are by default public:
Click here to view code image

struct S {

          // members (public unless explicitly declared private)
};

For more details of member access, including a discussion of protected, see §14.3.4.
Members of an object can be accessed through a variable or referenced using the . (dot) operator or through a pointer using

the –> (arrow) operator:
Click here to view code image

struct Date {

           int d, m, y;

           int day() const { return d; }          // defined in-class
           int month() const;                         // just declared; defined elsewhere
           int year() const;                             // just declared; defined elsewhere
};

Date x;

x.d = 15;                                                    // access through variable
int y = x.day();                                         // call through variable
Date* p = &x;

p–>m = 7;                                                // access through pointer
int z = p–>month();                              // call through pointer

Members of a class can be referred to using the :: (scope resolution) operator:
Click here to view code image

int Date::year() const { return y; }       // out-of-class definition

Within a member function, we can refer to other members by their unqualified name:



Click here to view code image

struct Date {

          int d, m, y;

          int day() const { return d; }

          // . . .
};

Such unqualified names refer to the member of the object for which the member function was called:
Click here to view code image

void f(Date d1, Date d2)

{

          d1.day();          // will access d1.d
          d2.day();          // will access d2.d
          // . . .
}

A.12.1.1 The this pointer
If we want to be explicit when referring to the object for which the member function is called, we can use the predefined
pointer this:
Click here to view code image

struct Date {

          int d, m, y;

          int month() const { return this–>m; }

          // . . .
};

A member function declared const (a const member function) cannot modify the value of a member of the object for which it
is called:
Click here to view code image

struct Date {

          int d, m, y;

          int month() const { ++m; }     // error: month() is const
          // . . .
};

For more information about const member functions, see §9.7.4.

A.12.1.2 Friends
A function that is not a member of a class can be granted access to all members through a friend declaration. For example:
Click here to view code image

// needs access to Matrix and Vector members:
Vector operator*(const Matrix&, const Vector&);

class Vector {

          friend

          Vector operator*(const Matrix&, const Vector&);     // grant access
          // . . .
};

class Matrix {

          friend

          Vector operator*(const Matrix&, const Vector&);     // grant access
          // . . .
};

As shown, this is usually done for functions that need to access two classes. Another use of friend is to provide an access
function that should not be called using the member access syntax. For example:
Click here to view code image

class Iter {

public:



          int distance_to(const iter& a) const;

          friend int difference(const Iter& a, const Iter& b);

          // . . .
};

void f(Iter& p, Iter& q)

{

          int x = p.distance_to(q);           // invoke using member syntax
          int y = difference(p,q);              // invoke using “mathematical syntax”
          // . . .
}

Note that a function declared friend cannot also be declared virtual.

A.12.2 Class member definitions
Class members that are integer constants, functions, or types can be defined/initialized either in-class (§9.7.3) or out-of-class
(§9.4.4):

struct S {

          int c = 1;

          int c2;

          void f() { }

          void f2();

          struct SS { int a; };

          struct SS2;

};

The members that were not defined in-class must be defined “elsewhere”:

int S::c2 = 7;

void S::f2() { }

struct S::SS2 { int m; };

If you want to initialize a data member with a value specified by the creator of an object, do it in a constructor.
Function members do not occupy space in an object:

struct S {

          int m;

          void f();

};

Here, sizeof(S)==sizeof(int). That’s not actually guaranteed by the standard, but it is true for all implementations we know
of. But note that a class with a virtual function has one “hidden” member to allow virtual calls (§14.3.1).

A.12.3 Construction, destruction, and copy
You can define the meaning of initialization for an object of a class by defining one or more constructors. A constructor is a
member function with the same name as its class and no return type:
Click here to view code image

class Date {

public:

          Date(int yy, int mm, int dd) :y{yy}, m{mm}, d{dd} { }

          // . . .
private:

          int y,m,d;

};

Date d1 {2006,11,15};       // OK: initialization done by the constructor
Date d2;                             // error: no initializers
Date d3 {11,15};               // error: bad initializers (three initializers required)

Note that data members can be initialized by using an initializer list in the constructor (a base and member initializer list).
Members will be initialized in the order in which they are declared in the class.



Constructors are typically used to establish a class’s invariant and to acquire resources (§9.4.2–3).
Class objects are constructed “from the bottom up,” starting with base class objects (§14.3.1) in declaration order, followed

by members in declaration order, followed by the code in the constructor itself. Unless the programmer does something really
strange, this ensures that every object is constructed before use.

Unless declared explicit, a single-argument constructor defines an implicit conversion from its argument type to its class:
Click here to view code image

class Date {

public:

          Date(const char*);

          explicit Date(long);                  // use an integer encoding of Date
          // . . .
};

void f(Date);

Date d1 = "June 5, 1848";                 // OK
f("June 5, 1848");                               // OK

Date d2 = 2007*12*31+6*31+5;       // error: Date(long) is explicit
f(2007*12*31+6*31+5);                     // error: Date(long) is explicit

Date d3(2007*12*31+6*31+5);        // OK
Date d4 = Date{2007*12*31+6*31+5};          // OK
f(Date{2007*12*31+6*31+5});                         // OK

Unless a class has bases or members that require explicit arguments, and unless the class has other constructors, a default
constructor is automatically generated. This default constructor initializes each base or member that has a default constructor
(leaving members without default constructors uninitialized). For example:

struct S {

          string name, address;

          int x;

};

This S has an implicit constructor S{} that initializes name and address, but not x. In addition, a class without a constructor
can be initialized using an initializer list:
Click here to view code image

S s1 {"Hello!"};                    // s1 becomes { "Hello! ",0}
S s2 {"Howdy!", 3};

S* p = new S{"G'day!"};    // *p becomes {"G'day",0};

As shown, trailing unspecified values become the default value (here, 0 for the int).

A.12.3.1 Destructors
You can define the meaning of an object being destroyed (e.g., going out of scope) by defining a destructor. The name of a
destructor is ~ (the complement operator) followed by the class name:
Click here to view code image

class Vector { // vector of doubles
public:

          explicit Vector(int s) : sz{s}, p{new double[s]} { }     // constructor
           ~Vector() { delete[] p; }                                                 // destructor
           // . . .
private:

          int sz;

          double* p;

};

void f(int ss)

{

          Vector v(s);

          // . . .
}  // v will be destroyed upon exit from f(); Vector’s destructor will be called for v



Destructors that invoke the destructors of members of a class can be generated by the compiler, and if a class is to be used as a
base class, it usually needs a virtual destructor; see §17.5.2.

A destructor is typically used to “clean up” and release resources.
Class objects are destructed “from the top down” starting with the code in the destructor itself, followed by members in

declaration order, followed by the base class objects in declaration order, that is, in reverse order of construction.

A.12.3.2 Copying
You can define the meaning of copying an object of a class:
Click here to view code image

class Vector { // vector of doubles
public:

          explicit Vector(int s) : sz{s}, p{new double[s]} { }  // constructor
          ~Vector() { delete[] p; }                                               // destructor
          Vector(const Vector&);                                                 // copy constructor
          Vector& operator=(const Vector&);                       // copy assignment
          // . . .
private:

          int sz;

          double* p;

};

void f(int ss)

{

          Vector v(ss);

          Vector v2 = v;         // use copy constructor
          // . . .
          v = v2;                      // use copy assignment
          // . . .
}

By default (that is, unless you define a copy constructor and a copy assignment), the compiler will generate copy operations for
you. The default meaning of copy is memberwise copy; see also §14.2.4 and §18.3.

A.12.3.3 Moving
You can define the meaning of moving an object of a class:
Click here to view code image

class Vector { // vector of doubles
public:

          explicit Vector(int s) : sz{s}, p{new double[s]} { }    // constructor
          ~Vector() { delete[] p; }                                                 // destructor
           Vector(Vector&&);                                      // move constructor
          Vector& operator=(Vector&&);                // move assignment
          // . . .
private:

          int sz;

          double* p;

};

Vector f(int ss)

{

          Vector v(ss);

          // . . .
          return v;                  // use move constructor
}

By default (that is, unless you define a copy constructor and a copy assignment), the compiler will generate move operations
for you. The default meaning of move is memberwise move; see also §18.3.4.

A.12.4 Derived classes
A class can be defined as derived from other classes, in which case it inherits the members of the classes from which it is
derived (its base classes):

struct B {



           int mb;

           void fb() { };

};

class D : B {

          int md;

          void fd();

};

Here B has two members, mb and fb(), whereas D has four members, mb, fb(), md, and fd().
Like members, bases can be public or private:

Click here to view code image

Class DD : public B1, private B2 {

          // . . .
};

So, the public members of B1 become public members of DD, whereas the public members of B2 become private

members of DD. A derived class has no special access to members of its bases, so DD does not have access to the private

members of B1 or B2.
A class with more than one direct base class (such as DD) is said to use multiple inheritance.
A pointer to a derived class, D, can be implicitly converted to a pointer to its base class, B, provided B is accessible and is

unambiguous in D. For example:
Click here to view code image

struct B { };

struct B1: B { };   // B is a public base of B1
struct B2: B { };   // B is a public base of B2
struct C { };

struct DD : B1, B2, private C { };

DD* p = new DD;

B1* pb1 = p;       // OK
B* pb = p;           // error: ambiguous: B1::B or B2::B
C* pc = p;           // error: DD::C is private

Similarly, a reference to a derived class can be implicitly converted to an unambiguous and accessible base class.
For more information about derived classes, see §14.3. For more information about protected, see an expert-level

textbook or reference.

A.12.4.1 Virtual functions
A virtual function is a member function that defines a calling interface to functions of the same name taking the same argument
types in derived classes. When calling a virtual function, the function invoked by the call will be the one defined for the most
derived class. The derived class is said to override the virtual function in the base class.
Click here to view code image

class Shape {

public:

          virtual void draw();        // virtual means “can be overridden”
          virtual ~Shape() { }         // virtual destructor
          // . . .
};

class Circle : public Shape {

public:

          void draw();                    // override Shape::draw
          ~Circle();                         // override Shape::~Shape()
          // . . .
};

Basically, the virtual functions of a base class (here, Shape) define a calling interface for the derived class (here, Circle):
Click here to view code image

void f(Shape& s)



{

          // . . .
          s.draw();

}

void g()

{

          Circle c{Point{0,0}, 4};

          f(c);           // will call Circle’s draw
}

Note that f() doesn’t know about Circles, only about Shapes. An object of a class with a virtual function contains one extra
pointer to allow it to find the set of overriding functions; see §14.3.

Note that a class with virtual functions usually needs a virtual destructor (as Shape has); see §17.5.2.
The wish to override a base class’s virtual function can be made explicit using the override suffix. For example:

Click here to view code image

class Square : public Shape {

public:

          void draw() override;     // override Shape::draw
          ~Circle() override;          // override Shape::~Shape()
          void silly() override;       // error: Shape does not have a virtual Shape::silly()
          // . . .
};

A.12.4.2 Abstract classes
An abstract class is a class that can be used only as a base class. You cannot make an object of an abstract class:
Click here to view code image

Shape s;                    // error: Shape is abstract

class Circle : public Shape {

public:

          void draw();        // override Shape::draw
          // . . .
};

Circle c{p,20};             // OK: Circle is not abstract

The most common way of making a class abstract is to define at least one pure virtual function. A pure virtual function is a
virtual function that requires overriding:
Click here to view code image

class Shape {

public:

          virtual void draw() = 0;       // =0 means “pure”
          // . . .
};

See §14.3.5.
The rarer, but equally effective, way of making a class abstract is to declare all its constructors protected (§14.2.1).

A.12.4.3 Generated operations
When you define a class, it will by default have several operations defined for its objects:

• Default constructor
• Copy operations (copy assignment and copy initialization)
• Move operations (move assignment and move initialization)
• Destructor

Each is (again by default) defined to apply recursively to each of its base classes and members. Construction is done “bottom-
up,” that is, bases before members. Destruction is done “top-down,” that is, members before bases. Members and bases are
constructed in order of appearance and destroyed in the opposite order. That way, constructor and destructor code always
relies on well-defined base and member objects. For example:



struct D : B1, B2 {

          M1 m1;

          M2 m2;

};

Assuming that B1, B2, M1, and M2 are defined, we can now write
Click here to view code image

D f()

{

          D d;                  // default initialization
          D d2 = d;         // copy initialization
          d = D{};           // default initialization followed by copy assignment
          return d;         // d is moved out of f()
}   // d and d2 are destroyed here

For example, the default initialization of d invokes four default constructors (in order): B1::B1(), B2::B2(), M1::M1(), and
M2::M2(). If one of those doesn’t exist or can’t be called, the construction of d fails. At the return, four move constructors
are invoked (in order): B1::B1(), B2::B2(), M1::M1(), and M2::M2(). If one of those doesn’t exist or can’t be called, the
return fails. The destruction of d invokes four destructors (in order): M2::~M2(), M1::~M1(), B2::~B2(), and
B1::~B1(). If one of those doesn’t exist or can’t be called, the destruction of d fails. Each of these constructors and destructors
can be either user-defined or generated.

The implicit (compiler-generated) default constructor is not defined (generated) if a class has a user-defined constructor.

A.12.5 Bitfields
A bitfield is a mechanism for packing many small values into a word or to match an externally imposed bit-layout format (such
as a device register). For example:
Click here to view code image

struct PPN { // R6000 Physical Page Number
     unsigned int PFN : 22 ;           // Page Frame Number
          int : 3 ;                                   // unused
          unsigned int CCA : 3 ;       // Cache Coherency Algorithm
          bool nonreachable : 1 ;

          bool dirty : 1 ;

          bool valid : 1 ;

          bool global : 1 ;

};

Packing the bitfields into a word left to right leads to a layout of bits in a word like this (see §25.5.5):

A bitfield need not have a name, but if it doesn’t, you can’t access it.
Surprisingly, packing many small values into a single word does not necessarily save space. In fact, using one of those

values often wastes space compared to using a char or an int to represent even a single bit. The reason is that it takes several
instructions (which have to be stored in memory somewhere) to extract a bit from a word and to write a single bit of a word
without modifying other bits of a word. Don’t try to use bitfields to save space unless you need lots of objects with tiny data
fields.

A.12.6 Unions
A union is a class where all members are allocated starting at the same address. A union can hold only one element at a time,
and when a member is read it must be the same as was last written. For example:

union U {

          int x;

          double d;

}

U a;



a.x = 7;

int x1 = a.x;        // OK
a.d = 7.7;

int x2 = a.x;       // oops

The rule requiring consistent reads and writes is not checked by the compiler. You have been warned.

A.13 Templates
A template is a class or a function parameterized by a set of types and/or integers:

template<typename T>

class vector {

public:

          // . . .
          int size() const;

private:

          int sz;

          T* p;

};

template<class T>

int vector<T>::size() const

{

          return sz;

}

In a template argument list, class means type; typename is an equivalent alternative. A member function of a template class is
implicitly a template function with the same template arguments as its class.

Integer template arguments must be constant expressions:
Click here to view code image

template<typename T, int sz>

class Fixed_array {

public:

          T a[sz];

          // . . .
          int size() const { return sz; };

};

Fixed_array<char,256> x1;     // OK
int var = 226;

Fixed_array<char,var> x2;     // error: non-const template argument

A.13.1 Template arguments
Arguments for a template class are specified whenever its name is used:
Click here to view code image

vector<int> v1;                      // OK
vector v2;                               // error: template argument missing
vector<int,2> v3;                  // error: too many template arguments
vector<2> v4;                        // error: type template argument expected

Arguments for template functions are typically deduced from the function arguments:
Click here to view code image

template<class T>

T find(vector<T>& v, int i)

{

          return v[i];

}

vector<int> v1;

vector<double> v2;

// . . .
int x1 = find(v1,2);              // find()’s T is int
int x2 = find(v2,2);              // find()’s T is double

It is possible to define a template function for which it is not possible to deduce its template arguments from its function



arguments. In that case we must specify the missing template arguments explicitly (exactly as for class templates). For example:
Click here to view code image

template<class T, class U> T* make(const U& u) { return new T{u}; }

int* pi = make<int>(2);

Node* pn = make<Node>(make_pair("hello",17));

This works if a Node can be initialized by a pair<const char *,int> (§B.6.3). Only trailing template arguments can be left
out of an explicit argument specialization (to be deduced).

A.13.2 Template instantiation
A version of a template for a specific set of template arguments is called a specialization. The process of generating
specializations from a template and a set of arguments is called template instantiation. Usually, the compiler generates a
specialization from a template and a set of template arguments, but the programmer can also define a specific specialization.
This is usually done when a general template is unsuitable for a particular set of arguments. For example:
Click here to view code image

template<class T> struct Compare {                       // general compare
          bool operator()(const T& a, const T& b) const

          {
                    return a<b;

          }
};

template<> struct Compare<const char*> {         // compare C-style strings
          bool operator()(const char* a, const char* b) const

          {
                    return strcmp(a,b)==0;

          }
};

Compare<int> c2;                                                       // general compare
Compare<const char*> c;                                        // C-style string compare

bool b1 = c2(1,2);                               // use general compare
bool b2 = c("asd","dfg");                // use C-style string compare

For functions, the rough equivalent is achieved through overloading:
Click here to view code image

template<class T> bool compare(const T& a, const T& b)

{

          return a<b;

}

bool compare (const char* a, const char* b)  // compare C-style strings
{

          return strcmp(a,b)==0;

}

bool b3 = compare(2,3);                                      // use general compare
bool b4 = compare("asd","dfg");                      // use C-style string compare

Separate compilation of templates (i.e., keeping declarations only in header files and unique definitions in .cpp files) does not
work portably, so if a template needs to be used in several .cpp files, put its complete definition in a header file.

A.13.3 Template member types
A template can have members that are types and members that are not types (such as data members and member functions).
This means that in general, it can be hard to tell whether a member name refers to a type or to a non-type. For language-
technical reasons, the compiler has to know, so occasionally we must tell it. For that, we use the keyword typename. For
example:
Click here to view code image

template<class T> struct Vec {

          typedef T value_type;        // a member type



          static int count;                   // a data member
          // . . .
};

template<class T> void my_fct(Vec<T>& v)

{

          int x = Vec<T>::count;     // by default member names
                                                            // are assumed to refer to non-types
          v.count = 7;                         // a simpler way to refer to a non-type member
          typename Vec<T>::value_type xx = x;          // typename is needed here
          // . . .
}

For more information about templates, see Chapter 19.

A.14 Exceptions
An exception is used (with a throw statement) to tell a caller about an error that cannot be handled locally. For example,
move Bad_size out of Vector:
Click here to view code image

struct Bad_size {

          int sz;

          Bad_size(int s) : ss{s} { }

};

class Vector {

          Vector(int s) { if (s<0 || maxsize<s) throw Bad_size{s}; }

          // . . .
};

Usually, we throw a type that is defined specifically to represent a particular error. A caller can catch an exception:
Click here to view code image

void f(int x)

{

          try {

                    Vector v(x);      // may throw
                    // . . .
          }
          catch (Bad_size bs) {

                     cerr << "Vector with bad size (" << bs.sz << ")\n";

                     // . . .
          }
}

A “catch all” clause can be used to catch every exception:
Click here to view code image

try {

          // . . .
} catch (. . .) {     // catch all exceptions
          // . . .
}

Usually, the RAII (“Resource Acquisition Is Initialization”) technique is better (simpler, easier, more reliable) than using lots
of explicit trys and catches; see §19.5.

A throw without an argument (i.e., throw;) re-throws the current exception. For example:
Click here to view code image

try {

          // . . .
} catch (Some_exception& e) {

          // do local cleanup
          throw;          // let my caller do the rest
}



You can define your own types for use as exceptions. The standard library defines a few exception types that you can also use;
see §B.2.1. Never use a built-in type as an exception (someone else might have done that and your exceptions might be
confused with those).

When an exception is thrown, the run-time support system for C++ searches “up the call stack” for a catch-clause with a
type that matches the type of the object thrown; that is, it looks through try-statements in the function that threw, then through the
function that called the function that threw, then through the function that called the function that called, etc., until it finds a
match. If it doesn’t find a match, the program terminates. In each function encountered in this search of a matching catch-clause
and in each scope on the way, destructors are called to clean up. This process is called stack unwinding.

An object is considered constructed once its constructor has completed and will then be destroyed during unwinding or any
other exit from its scope. This implies that partially constructed objects (with some members or bases constructed and some
not), arrays, and variables in a scope are correctly handled. Sub-objects are destroyed if and only if they have been
constructed.

Do not throw an exception so that it leaves a destructor. This implies that a destructor should not fail. For example:
Click here to view code image

X::~X() { if (in_a_real_mess()) throw Mess{}; }             // never do this!

The primary reason for this Draconian advice is that if a destructor throws (and doesn’t itself catch the exception) during
unwinding, we wouldn’t know which exception to handle. It is worthwhile to go to great lengths to avoid a destructor exiting
by a throw because we know of no systematic way of writing correct code where that can happen. In particular, no standard
library facility is guaranteed to work if that happens.

A.15 Namespaces
A namespace groups related declarations together and is used to prevent name clashes:
Click here to view code image

int a;

namespace Foo {

          int a;

          void f(int i)

          {
                    a+= i;         // that’s Foo’s a (Foo::a)
          }
}

void f(int);

int main()

{

          a = 7;                    // that’s the global a (::a)
          f(2);                      // that’s the global f (::f)
          Foo::f(3);           // that’s Foo’s f
          ::f(4);                  // that’s the global f (::f)
}

Names can be explicitly qualified by their namespace name (e.g., Foo::f(3)) or by :: (e.g., ::f(2)), indicating the global
scope.

All names from a namespace (here, the standard library namespace, std) can be made accessible by a single namespace
directive:

using namespace std;

Be restrained in the use of using directives. The notational convenience offered by a using directive is achieved at the cost of
potential name clashes. In particular, avoid using directives in header files. A single name from a namespace can be made
available by a namespace declaration:
Click here to view code image

using Foo::g;

g(2);                        // that’s Foo’s g (Foo::g)

For more information about namespaces, see §8.7.



A.16 Aliases
We can define an alias for a name; that is, we can define a symbolic name that means exactly the same as what it refers to (for
most uses of the name):
Click here to view code image

using Pint = int*;                                         // Pint means pointer to int

namespace Long_library_name { /* . . . */ }

namespace Lib = Long_library_name;   // Lib means Long_library_name

int x = 7;

int& r = x;                                                     // r means x

A reference (§8.5.5, §A.8.3) is a run-time mechanism, referring to objects. The using (§20.5) and namespace aliases are
compile-time mechanisms, referring to names. In particular, a using does not introduce a new type, just a new name for a type.
For example:
Click here to view code image

using Pchar = char*;                 // Pchar is a name for char*
Pchar p = "Idefix";                    // OK: p is a char*
char* q = p;                                // OK: p and q are both char*s
int x = strlen(p);                        // OK: p is a char*

Older code uses the keyword typedef (§27.3.1) rather than the (C++) using notation to define a type alias. For example:
Click here to view code image

typedef char* Pchar;           // Pchar is a name for char*

A.17 Preprocessor directives
Every C++ implementation includes a preprocessor. In principle, the preprocessor runs before the compiler proper and
transforms the source code we wrote into what the compiler sees. In reality, this action is integrated into the compiler and
uninteresting except when it causes problems. Every line starting with # is a preprocessor directive.

A.17.1 #include

We have used the preprocessor extensively to include headers. For example:

#include "file.h"

This is a directive that tells the preprocessor to include the contents of file.h at the point of the source text where the directive
occurs. For standard headers, we can also use < . . . > instead of " . . . ". For example:

#include<vector>

That is the recommended notation for standard header inclusion.

A.17.2 #define

The preprocessor implements a form of character manipulation called macro substitution. For example, we can define a name
for a character string:

#define FOO bar

Now, whenever FOO is seen, bar will be substituted:

int FOO = 7;

int FOOL = 9;

Given that, the compiler will see

int bar = 7;

int FOOL = 9;

Note that the preprocessor knows enough about C++ names not to replace the FOO that’s part of FOOL.
You can also define macros that take parameters:



Click here to view code image

#define MAX(x,y) (((x)>(y))?(x) : (y))

And we can use it like this:

int xx = MAX(FOO+1,7);

int yy = MAX(++xx,9);

This will expand to
Click here to view code image

int xx = (((bar+1)>( 7))?(bar+1) : (7));

int yy = (((++xx)>( 9))?(++xx) : (9));

Note how the parentheses were necessary to get the right result for FOO+1. Also note that xx was incremented twice in a very
non-obvious way. Macros are immensely popular — primarily because C programmers have few alternatives to using them.
Common header files define thousands of macros. You have been warned!

If you must use macros, the convention is to name them using ALL_CAPITAL_LETTERS. No ordinary name should be in all
capital letters. Don’t depend on others to follow this sound advice. For example, we have found a macro called max in an
otherwise reputable header file.

See also §27.8.



B. Standard Library Summary

“All complexities should, if possible, be buried out of sight.”
—David J. Wheeler

This appendix summarizes key C++ standard library facilities. The summary is selective and geared to novices who want to
get an overview of the standard library facilities and explore a bit beyond the sequence of topics in the book.

B.1 Overview
B.1.1 Header files
B.1.2 Namespace std

B.1.3 Description style
B.2 Error handling

B.2.1 Exceptions
B.3 Iterators

B.3.1 Iterator model
B.3.2 Iterator categories

B.4 Containers
B.4.1 Overview
B.4.2 Member types
B.4.3 Constructors, destructors, and assignments
B.4.4 Iterators
B.4.5 Element access
B.4.6 Stack and queue operations
B.4.7 List operations
B.4.8 Size and capacity
B.4.9 Other operations
B.4.10 Associative container operations

B.5 Algorithms
B.5.1 Nonmodifying sequence algorithms
B.5.2 Modifying sequence algorithms
B.5.3 Utility algorithms
B.5.4 Sorting and searching
B.5.5 Set algorithms
B.5.6 Heaps
B.5.7 Permutations
B.5.8 min and max

B.6 STL utilities
B.6.1 Inserters
B.6.2 Function objects
B.6.3 pair and tuple

B.6.4 initializer_list

B.6.5 Resource management pointers
B.7 I/O streams

B.7.1 I/O streams hierarchy



B.7.2 Error handling
B.7.3 Input operations
B.7.4 Output operations
B.7.5 Formatting
B.7.6 Standard manipulators

B.8 String manipulation
B.8.1 Character classification
B.8.2 String
B.8.3 Regular expression matching

B.9 Numerics
B.9.1 Numerical limits
B.9.2 Standard mathematical functions
B.9.3 Complex
B.9.4 valarray

B.9.5 Generalized numerical algorithms
B.9.6 Random numbers

B.10 Time
B.11 C standard library functions

B.11.1 Files
B.11.2 The printf() family
B.11.3 C-style strings
B.11.4 Memory
B.11.5 Date and time
B.11.6 Etc.

B.12 Other libraries

B.1 Overview
This appendix is a reference. It is not intended to be read from beginning to end like a chapter. It (more or less) systematically
describes key elements of the C++ standard library. It is not a complete reference, though; it is just a summary with a few key
examples. Often, you will need to look at the chapters for a more complete explanation. Note also that this summary does not
attempt to equal the precision and terminology of the standard. For more information, see Stroustrup, The C++ Programming
Language. The complete definition is the ISO C++ standard, but that document is not intended for or suitable for novices.
Don’t forget to use your online documentation.

What use is a selective (and therefore incomplete) summary? You can quickly look for a known operation or quickly scan a
section to see what common operations are available. You may very well have to look elsewhere for a detailed explanation,
but that’s fine: now you have a clue as to what to look for. Also, this summary contains cross-references to tutorial material in
the chapters. This appendix provides a compact overview of standard library facilities. Please do not try to memorize the
information here; that’s not what it is for. On the contrary, this appendix is a tool that can save you from spurious memorization.

This is a place to look for useful facilities — instead of trying to invent them yourself. Everything in the standard library
(and especially everything featured in this appendix) has been useful to large groups of people. A standard library facility is
almost certainly better designed, better implemented, better documented, and more portable than anything you could design and
implement in a hurry. So when you can, prefer a standard library facility over “home brew.” Doing so will also make your
code easier for others to understand.

If you are a sensible person, you’ll find the sheer mass of facilities intimidating. Don’t worry; ignore what you don’t need. If
you are a “details person,” you’ll find much missing. However, completeness is what the expert-level guides and your online
documentation offer. In either case, you’ll find much that will seem mysterious, and possibly interesting. Explore some of it!

B.1.1 Header files



The interfaces to standard library facilities are defined in headers. Use this section to gain an overview of what is available
and to help guess where a facility might be defined and described:



For each of the C standard library headers, there is also a version without the initial c in its name and with a trailing .h, such
as <time.h> for <ctime>. The .h versions define global names rather than names in namespace std.

Some — but not all — of the facilities defined in these headers are described in the sections below and in the chapters. If



you need more information, look at your online documentation or an expert-level C++ book.

B.1.2 Namespace std

The standard library facilities are defined in namespace std, so to use them, you need an explicit qualification, a using

declaration, or a using directive:
Click here to view code image

std::string s;                            // explicit qualification

using std::vector;                  // using declaration
vector<int>v(7);

using namespace std;           // using directive
map<string,double> m;

In this book, we have used the using directive for std. Be very frugal with using directives; see §A.15.

B.1.3 Description style
A full description of even a simple standard library operation, such as a constructor or an algorithm, can take pages.
Consequently, we use an extremely abbreviated style of presentation. For example:

We try to be mnemonic in our choice of identifiers, so b,e will be iterators specifying a range, p a pointer or an iterator, and x
some value, all depending on context. In this notation, only the commentary distinguishes no result from a Boolean result, so
you can confuse those if you try hard enough. For an operation returning bool, the explanation usually ends with a question
mark.

Where an algorithm follows the usual pattern of returning the end of an input sequence to indicate “failure,” “not found,” etc.
(§B.3.1), we do not mention that explicitly.

B.2 Error handling
The standard library consists of components developed over a period of over 40 years. Thus, their style and approaches to
error handling are not consistent.

• C-style libraries consist of functions, many of which set errno to indicate that an error happened; see §24.8.
• Many algorithms operating on a sequence of elements return an iterator to the one-past-the-last element to indicate “not
found” or “failure.”

• The I/O streams library relies on a state in each stream to reflect errors and may (if the user requests it) throw exceptions
to indicate errors; see §10.6, §B.7.2.

• Some standard library components, such as vector, string, and bitset, throw exceptions to indicate errors.
The standard library is designed so that all facilities obey “the basic guarantee” (see §19.5.3); that is, even if an exception is
thrown, no resource (such as memory) is leaked and no invariant for a standard library class is broken.

B.2.1 Exceptions
Some standard library facilities report errors by throwing exceptions:



These exceptions may be encountered in any code that directly or indirectly uses these facilities. Unless you know that no
facility is used in a way that could throw an exception, it is a good idea to always catch one of the root classes of the standard
library exception hierarchy (such as exception) somewhere (e.g., in main()).

We strongly recommend that you do not throw built-in types, such as ints and C-style strings. Instead, throw objects of types
specifically defined to be used as exceptions. A class derived from the standard library class exception can be used for that:
Click here to view code image

class exception {

public:

          exception();

          exception(const exception&);

          exception& operator=(const exception&);

          virtual ~exception();

          virtual const char* what() const;

};

The what() function can be used to obtain a string that is supposed to indicate something about the error that caused the
exception.

This hierarchy of standard exception classes may help by providing a classification of exceptions:

You can define an exception by deriving from a standard library exception like this:
Click here to view code image

struct My_error : runtime_error {

          My_error(int x) : interesting_value{x} { }

          int interesting_value;

          const char* what() const override { return "My_error"; }

};

B.3 Iterators



Iterators are the glue that ties standard library algorithms to their data. Conversely, you can say that iterators are the mechanism
used to minimize an algorithm’s dependence on the data structures on which it operates (§20.3):

B.3.1 Iterator model
An iterator is akin to a pointer in that it provides operations for indirect access (e.g., * for dereferencing) and for moving to a
new element (e.g., ++ for moving to the next element). A sequence of elements is defined by a pair of iterators defining a half-
open range [begin:end):

That is, begin points to the first element of the sequence and end points to one beyond the last element of the sequence. Never
read from or write to *end. Note that the empty sequence has begin==end; that is, [p:p) is the empty sequence for any
iterator p.

To read a sequence, an algorithm usually takes a pair of iterators (b,e) and iterates using ++ until the end is reached:
Click here to view code image

while (b!=e) {      // use != rather than <
          // do something
          ++b;           // go to next element
}

Algorithms that search for something in a sequence usually return the end of the sequence to indicate “not found”; for example:
Click here to view code image

p = find(v.begin(),v.end(),x);        // look for x in v
if (p!=v.end()) {

          // x found at p
}

else {

          // x not found in [v.begin():v.end())
}

See §20.3.
Algorithms that write to a sequence often are given only an iterator to its first element. In that case, it is the programmer’s

responsibility not to write beyond the end of that sequence. For example:
Click here to view code image

template<class Iter> void f(Iter p, int n)

{

          while (n>0) *p++ = ––n;

}

vector<int> v(10);

f(v.begin(),v.size());               // OK
f(v.begin(),1000);                   // big trouble

Some standard library implementations range check — that is, throw an exception — for that last call of f(), but you can’t rely
on that for portable code; many implementations don’t check.

The operations on iterators are:



Note that not every kind of iterator (§B.3.2) supports every iterator operation.

B.3.2 Iterator categories
The standard library provides five kinds of iterators (five “iterator categories”):



Logically, these iterators are organized in a hierarchy (§20.8):

Note that since the iterator categories are not classes, this hierarchy is not a class hierarchy implemented using derivation. If
you need to do something advanced with iterator categories, look for iterator_traits in an advanced reference.

Each container supplies iterators of a specified category:
• vector — random access
• list — bidirectional
• forward_list — forward
• deque — random access
• bitset — none
• set — bidirectional
• multiset — bidirectional
• map — bidirectional
• multimap — bidirectional
• unordered_set — forward
• unordered_multiset — forward
• unordered_map — forward



• unordered_multimap — forward

B.4 Containers
A container holds a sequence of objects. The elements of the sequence are of the member type called value_type. The most
commonly useful containers are:

The ordered associative containers (map, set, etc.) have an optional additional template argument specifying the type used
for the comparator; for example, set<K,C> uses a C to compare K values.

These containers are defined in <vector>, <list>, etc. (see §B.1.1). The sequence containers are contiguously allocated or
linked lists of elements of their value_type (T in the notation used above). The associative containers are linked structures
(trees) with nodes of their value_type (pair(K,V) in the notation used above). The sequence of a set, map, or multimap is
ordered by its key values (K). The sequence of an unordered_* does not have a guaranteed order. A multimap differs from
a map in that a key value may occur many times. Container adaptors are containers with specialized operations constructed
from other containers.

If in doubt, use vector. Unless you have a solid reason not to, use vector.
A container uses an “allocator” to allocate and deallocate memory (§19.3.7). We do not cover allocators here; if necessary,

see an expert-level reference. By default, an allocator uses new and delete when it needs to acquire or release memory for
its elements.

Where meaningful, an access operation exists in two versions: one for const and one for non-const objects (§18.5).
This section lists the common and almost common members of the standard containers. For more details, see Chapter 20.

Members that are peculiar to a specific container, such as list’s splice(), are not listed; see an expert-level reference.
Some data types provide much of what is required from a standard container, but not all. We sometimes refer to those as

“almost containers.” The most interesting of those are:



B.4.1 Overview
The operations provided by the standard containers can be summarized like this:

We left out array and forward_list because they are imperfect fits to the standard library ideal of interchangeability:
• array is not a handle, cannot have its number of elements changed after initialization, and must be initialized by an
initializer list, rather than by a constructor.

• forward_list doesn’t support back operations. In particular, it has no size(). It is best seen as a container optimized for
empty and near-empty sequences.

B.4.2 Member types
A container defines a set of member types:



B.4.3 Constructors, destructors, and assignments
Containers provide a variety of constructors and assignment operations. For a container called C (e.g., vector<double> or
map<string,int>) we have:

Note that for some containers and some element types, a constructor or an element copy may throw an exception.

B.4.4 Iterators
A container can be viewed as a sequence either in the order defined by the container’s iterator or in reverse order. For an
associative container, the order is based on the container’s comparison criterion (by default <):



B.4.5 Element access
Some elements can be accessed directly:

Some implementations — especially debug versions — always do range checking, but you cannot portably rely on that for
correctness or on the absence of checking for performance. Where such issues are important, examine your implementations.

B.4.6 Stack and queue operations
The standard vector and deque provide efficient operations at the end (back) of their sequence of elements. In addition, list

and deque provide the equivalent operations on the start (front) of their sequences:

Note that push_front() and push_back() copy an element into a container. This implies that the size of the container
increases (by one). If the copy constructor of the element type can throw an exception, a push can fail.

The push_front() and push_back() operations copy their argument object into the container. For example:
Click here to view code image

vector<pair<string,int>> v;

v.push_back(make_pair("Cambridge",1209));

If first creating the object and then copying it seems awkward or potentially inefficient, we can construct the object directly in
a newly allocated element slot of the sequence:
Click here to view code image

v.emplace_back("Cambridge",1209);

Emplace means “put in place” or “put in position.”
Note that pop operations do not return a value. Had they done so, a copy constructor throwing an exception could have

seriously complicated the implementation. Use front() and back() (§B.4.5) to access stack and queue elements. We have not
recorded the complete set of requirements here; feel free to guess (your compiler will usually tell you if you guessed wrong)
and to consult more detailed documentation.

B.4.7 List operations



Containers provide list operations:

For insert() functions, the result, q, points to the last element inserted. For erase() functions, q points to the element that
followed the last element erased.

B.4.8 Size and capacity
The size is the number of elements in the container; the capacity is the number of elements that a container can hold before
allocating more memory:

When changing the size or the capacity, the elements may be moved to new storage locations. That implies that iterators (and
pointers and references) to elements may become invalid (e.g., point to the old element locations).

B.4.9 Other operations
Containers can be copied (see §B.4.3), compared, and swapped:

When comparing containers with an operator (e.g., <), their elements are compared using the equivalent element operator (i.e.,
<).

B.4.10 Associative container operations
Associative containers provide lookup based on keys:



The first iterator of the pair returned by equal_range is lower_bound and the second is upper_bound. You can print the
value of all elements with the key "Marian" in a multimap<string,int> like this:
Click here to view code image

string k = "Marian";

auto pp = m.equal_range(k);

if (pp.first!=pp.second)

          cout << "elements with value '" << k << "':\n";

else

          cout << "no element with value '" << k << "'\n";

for (auto p = pp.first; p!=pp.second; ++p)

          cout << p–>second << '\n';

We could equivalently have used
Click here to view code image

auto pp = make_pair(m.lower_bound(k),m.upper_bound(k));

However, that would take about twice as long to execute. The equal_range, lower_bound, and upper_bound algorithms
are also provided for sorted sequences (§B.5.4). The definition of pair is in §B.6.3.

B.5 Algorithms
There are about 60 standard algorithms defined in <algorithm>. They all operate on sequences defined by a pair of iterators
(for inputs) or a single iterator (for outputs).

When copying, comparing, etc. two sequences, the first is represented by a pair of iterators [b:e) but the second by just a
single iterator, b2, which is considered the start of a sequence holding sufficient elements for the algorithm, for example, as
many elements as the first sequence: [b2:b2+(e–b)).

Some algorithms, such as sort, require random-access iterators, whereas many, such as find, only read their elements in
order so that they can make do with a forward iterator.

Many algorithms follow the usual convention of returning the end of a sequence to represent “not found.” We don’t mention
that for each algorithm.

B.5.1 Nonmodifying sequence algorithms
A nonmodifying algorithm just reads the elements of a sequence; it does not rearrange the sequence and does not change the
value of the elements:



Note that nothing stops the operation passed to for_each from modifying elements; that’s considered acceptable. Passing an
operation that changes the elements it examines to some other algorithm (e.g., count or ==) is not acceptable.

An example (of proper use):
Click here to view code image

bool odd(int x) { return x&1; }

int n_even(const vector<int>& v)           //  count the number of even values in v
{

          return v.size()–count_if(v.begin(),v.end(),odd);

}



B.5.2 Modifying sequence algorithms
The modifying algorithms (also called mutating sequence algorithms) can (and often do) modify the elements of their
argument sequences.



A shuffle algorithm shuffles its sequence much in the way we would shuffle a pack of cards; that is, after a shuffle, the elements
are in a random order, where “random” is defined by the distribution produced by the random number generator.

Please note that these algorithms do not know if their argument sequence is a container, so they do not have the ability to add
or remove elements. Thus, an algorithm such as remove cannot shorten its input sequence by deleting (erasing) elements;
instead, it (re)moves the elements it keeps to the front of the sequence:
Click here to view code image

template<typename Iter>

void print_digits(const string& s, Iter b, Iter e)

{

          cout << s;

          while (b!=e) { cout << *b; ++b; }

          cout << '\n';

}

void ff()

{

          vector<int> v {1,1,1, 2,2, 3, 4,4,4, 3,3,3, 5,5,5,5, 1,1,1};

          print_digits("all: ",v.begin(), v.end());

          auto  pp = unique(v.begin(),v.end());

          print_digits("head: ",v.begin(),pp);

          print_digits("tail: ",pp,v.end());

          pp=remove(v.begin(),pp,4);

          print_digits("head: ",v.begin(),pp);

          print_digits("tail: ",pp,v.end());

}

The resulting output is

all: 1112234443335555111

head: 1234351

tail: 443335555111

head: 123351

tail: 1443335555111

B.5.3 Utility algorithms
Technically, these utility algorithms are also modifying sequence algorithms, but we thought it a good idea to list them
separately, lest they get overlooked.



Note that uninitialized sequences should occur only at the lowest level of programming, usually inside the implementation of
containers. Elements that are targets of uninitialized_fill or uninitialized_copy must be of built-in type or uninitialized.

B.5.4 Sorting and searching
Sorting and searching are fundamental and the needs of programmers are quite varied. Comparison is by default done using the
< operator, and equivalence of a pair of values a and b is determined by !(a<b)&&!(b<a) rather than requiring operator ==.



For example:
Click here to view code image

vector<int> v {3,1,4,2};

list<double> lst {0.5,1.5,3,2.5};           // lst is in order
sort(v.begin(),v.end());                        // put v in order
vector<double> v2;

merge(v.begin(),v.end(),lst.begin(),lst.end(),back_inserter(v2));

for (auto x : v2) cout << x << ", ";

For inserters, see §B.6.1. The output is

0.5, 1, 1.5, 2, 2, 2.5, 3, 4,

The equal_range, lower_bound, and upper_bound algorithms are used just like their equivalents for associative
containers; see §B.4.10.

B.5.5 Set algorithms
These algorithms treat a sequence as a set of elements and provide the basic set operations. The input sequences are supposed
to be sorted and the output sequences are also sorted:



B.5.6 Heaps
A heap is a data structure that keeps the element with highest value first. The heap algorithms allow a programmer to treat a
random-access sequence as a heap:

The point of a heap is to provide fast addition of elements and fast access to the element with the highest value. The main use
of heaps is to implement priority queues.

B.5.7 Permutations
Permutations are used to generate combinations of elements of a sequence. For example, the permutations of abc are abc, acb,



bac, bca, cab, and cba.

The return value (x) for next_permutation is false if [b:e) already contains the last permutation (cba in the example); in
that case, it returns the first permutation (abc in the example). The return value for prev_permutation is false if [b:e)
already contains the first permutation (abc in the example); in that case, it returns the last permutation (cba in the example).

B.5.8 min and max

Value comparisons are useful in many contexts:

B.6 STL utilities
The standard library provides a few facilities for making it easier to use standard library algorithms.



B.6.1 Inserters
Producing output through an iterator into a container implies that elements pointed to by the iterator and following it can be
overwritten. This also implies the possibility of overflow and consequent memory corruption. For example:
Click here to view code image

void f(vector<int>& vi)

{

          fill_n(vi.begin(), 200,7 );           // assign 7 to vi[0]..[199]
}

If vi has fewer than 200 elements, we are in trouble.
In <iterator>, the standard library provides three iterators to deal with this problem by adding (inserting) elements to a

container rather than overwriting old elements. Three functions are provided for generating those inserting iterators:

For inserter(c,p), p must be a valid iterator for the container c. Naturally, a container grows by one element each time a
value is written to it through an insert iterator. When written to, an inserter inserts a new element into a sequence using
push_back(x), c.push_front(), or insert() rather than overwriting an existing element. For example:
Click here to view code image

void g(vector<int>& vi)

{

          fill_n(back_inserter(vi), 200,7 );         // add 200 7s to the end of vi
}

B.6.2 Function objects
Many of the standard algorithms take function objects (or functions) as arguments to control the way they work. Common uses
are comparison criteria, predicates (functions returning bool), and arithmetic operations. In <functional>, the standard
library supplies a few common function objects.

For example:
Click here to view code image

vector<int> v;

// . . .
sort(v.begin(),v.end(),greater<int>{});       // sort v in decreasing order

Note that logical_and and logical_or always evaluate both their arguments (whereas && and || do not).
Also, a lambda expression (§15.3.3) is often an alternative to a simple function object:



Click here to view code image

sort(v.begin(),v.end(),[](int x, int y) { return x>y;});  // sort v in decreasing order

Note that function is a template, so that you can define variables of type function<T> and assign callable objects to such
variables. For example:
Click here to view code image

int f1(double);

function<int(double)> fct {f1};           // initialize to f1
int x = fct(2.3);                                        // call f1(2.3)
function<int(double)> fun;                // fun can hold any int(double)
fun = f1;

B.6.3 pair and tuple

In <utility>, the standard library provides a few “utility components,” including pair:
Click here to view code image

template <class T1, class T2>

          struct pair {

                    typedef T1 first_type;

                    typedef T2 second_type;

                    T1 first;

                    T2 second;

                    // . . . copy and move operations . . .
          };

template <class T1, class T2>

constexpr pair<T1,T2> make_pair(T1 x, T2 y) { return pair<T1,T2>{x,y}; }

The make_pair() function makes the use of pairs simple. For example, here is the outline of a function that returns a value and
an error indicator:
Click here to view code image

pair<double,error_indicator> my_fct(double d)

{

          errno = 0;     // clear C-style global error indicator
          // . . . do a lot of computation involving d computing x . . .



          error_indicator ee = errno;

          errno = 0;      // clear C-style global error indicator
          return make_pair(x,ee);

}

This example of a useful idiom can be used like this:
Click here to view code image

pair<int,error_indicator> res = my_fct(123.456);

if (res.second==0) {

          // . . . use res.first . . .
}

else {

          // oops: error
}

We use pair when we need exactly two elements and don’t care to define a specific type. If we need zero or more elements,
we can use a tuple from <tuple>:
Click here to view code image

template <typename... Types>

struct tuple {

          explicit constexpr tuple(const Types& ...);       // construct from N values
          template<typename...  Atypes>

          explicit constexpr tuple(const Atypes&& ...);  // construct from N values

          // . . . copy and move operations . . .
};

template <class... Types>

constexpr tuple<Types...> make_tuple(Types&&...);        // construct tuple
                                                                                                             // from N values

The tuple implementation uses a feature beyond the scope of this book, variadic templates. This is what those ellipses (. . .)
refer to. However, we can use tuples much as we do pairs. For example:
Click here to view code image

auto t0 = make_tuple();                      // no elements
auto t1 = make_tuple(123.456);         // one element of type double
auto t2 = make_tuple(123.456, 'a');   // two elements of types double and char
auto t3 = make_tuple(12,'a',string{"How?"});    // three elements of types int,
                                                                                          // char, and string

A tuple can have many elements, so we can’t just use first and second to access them. Instead, a function get is used:
Click here to view code image

auto d = get<0>(t1);           // the double
auto n = get<0>(t3);           // the int
auto c = get<1>(t3);           // the char
auto s = get<2>(t3);           // the string

The subscript for get is provided as a template argument. As can be seen from the example, tuple subscripting is zero-based.
Tuples are mostly used in generic programming.

B.6.4 initializer_list

In <initializer_list>, we find the definition of initializer_list:
Click here to view code image

template<typename T>

class initializer_list {

public:

          initializer_list() noexcept;

          size_t size() const noexcept;              // number of elements
          const T* begin() const noexcept;      // first element
          const T* end() const noexcept;         // one-past-last element



          // . . .
};

When the compiler sees a { } initializer list with elements of type X, that list is used to construct an initializer_list<X>

(§14.2.1, §18.2). Unfortunately, initializer_list does not support the subscript operator ([ ]).

B.6.5 Resource management pointers
A built-in pointer does not indicate whether it represents ownership of the object it points to. That can seriously complicate
programming (§19.5). The resource management pointers unique_ptr and shared_ptr are defined in <memory> to deal
with that problem:

• unique_ptr (§19.5.4) represents exclusive ownership; there can be only one unique_ptr to an object and the object is
deleted when its unique_ptr is destroyed.

• shared_ptr represents shared ownership; there can be many shared_ptrs to an object, and the object is deleted when
its last shared_ptr is destroyed.

The usual pointer operations, such as *, ->, ==, and <, can be used for unique_ptrs. Additionally, a unique_ptr can be
defined to use a delete action different from plain delete.



The usual pointer operations, such as *, ->, ==, and <, can be used for shared_ptrs. Additionally, a shared_ptr can be
defined to use a delete action different from plain delete.

There is also a weak_ptr for breaking loops of shared_ptrs.

B.7 I/O streams
The I/O stream library provides formatted and unformatted buffered I/O of text and numeric values. The definitions for I/O
stream facilities are found in <istream>, <ostream>, etc.; see §B.1.1.

An ostream converts typed objects to a stream of characters (bytes):

An istream converts a stream of characters (bytes) to typed objects:



An iostream is a stream that can act as both an istream and an ostream. The buffers in the diagrams are “stream buffers”
(streambufs). Look them up in an expert-level textbook if you ever need to define a mapping from an iostream to a new kind
of device, file, or memory.

There are three standard streams:

B.7.1 I/O streams hierarchy
An istream can be connected to an input device (e.g., a keyboard), a file, or a string. Similarly, an ostream can be
connected to an output device (e.g., a text window), a file, or a string. The I/O stream facilities are organized in a class
hierarchy:

A stream can be opened either by a constructor or by an open() call:

For file streams, the file name is a C-style string.
You can open a file in one of several modes:



In each case, the exact effect of opening a file may depend on the operating system, and if an operating system cannot honor a
request to open a file in a certain way, the result will be a stream that is not in the good() state.

An example:
Click here to view code image

void my_code(ostream& os);            // my code can use any ostream

ostringstream os;                                 // o for “output”
ofstream of("my_file");

if (!of) error("couldn't open 'my_file' for writing");

my_code(os);                                        // use a string
my_code(of);                                         // use a file

See §11.3.

B.7.2 Error handling
An iostream can be in one of four states:

By using s.exceptions(), a programmer can request an iostream to throw an exception if it turns from good() into another
state (see §10.6).

Any operation attempted on a stream that is not in the good() state has no effect; it is a “no op.”
An iostream can be used as a condition. In that case, the condition is true (succeeds) if the state of the iostream is

good(). That is the basis for the common idiom for reading a stream of values:
Click here to view code image

for (X buf; cin>>buf; ) {  // buf is an “input buffer” for holding one value of type X
          // . . . do something with buf . . .
}

// we get here when >> couldn’t read another X from cin

B.7.3 Input operations
Input operations are found in <istream> except for the ones reading into a string; those are found in <string>:

Unless otherwise stated, an istream operation returns a reference to its istream, so that we can “chain” operations, for



example, cin>>x>>y;.

The get() and getline() functions place a 0 at the end of the characters (if any) written to p[0] . . . ; getline() removes the
terminator (t) from the input, if found, whereas get() does not. A read(p,n) does not write a 0 to the array after the characters
read. Obviously, the formatted input operators are simpler to use and less error-prone than the unformatted ones.

B.7.4 Output operations
Output operations are found in <ostream> except for the ones writing out a string; those are found in <string>:

Unless otherwise stated, an ostream operation returns a reference to its ostream, so that we can “chain” operations, for
example, cout << x<<y;.

B.7.5 Formatting
The format of stream I/O is controlled by a combination of object type, stream state, locale information (see <locale>), and
explicit operations. Chapters 10 and 11 explain much of this. Here, we just list the standard manipulators (operations
modifying the state of a stream) because they provide the most straightforward way of modifying formatting.

Locales are beyond the scope of this book.

B.7.6 Standard manipulators
The standard library provides manipulators corresponding to the various format states and state changes. The standard
manipulators are defined in <ios>, <istream>, <ostream>, <iostream>, and <iomanip> (for manipulators that take
arguments):



Each of these operations returns a reference to its first (stream) operand, s. For example:
Click here to view code image

cout << 1234 << ',' << hex << 1234 << ',' << oct << 1234 << endl;

produces

1234,4d2,2322

and
Click here to view code image



cout << '(' << setw(4) << setfill('#') << 12 << ") (" << 12 << ")\n";

produces

(##12) (12)

To explicitly set the general output format for floating-point numbers use
Click here to view code image

b.setf(ios_base::fmtflags(0), ios_base::floatfield)

See Chapter 11.

B.8 String manipulation
The standard library offers character classification operations in <cctype>, strings with associated operations in <string>,
regular expression matching in <regex>, and support for C-style strings in <cstring>.

B.8.1 Character classification
The characters from the basic execution character set can be classified like this:

In addition, the standard library provides two useful functions for getting rid of case differences:

Extended character sets, such as Unicode, are supported but are beyond the scope of this book.

B.8.2 String
The standard library string class, string, is a specialization of a general string template basic_string for the character type
char; that is, string is a sequence of chars:



B.8.3 Regular expression matching
The regular expression facilities are found in <regex>. The main functions are

• Searching for a string that matches a regular expression in an (arbitrarily long) stream of data — supported by
regex_search()

• Matching a regular expression against a string (of known size) — supported by regex_match()

• Replacement of matches — supported by regex_replace(); not described in this book; see an expert-level text or
manual



The result of a regex_search() or a regex_match() is a collection of matches, typically represented as an smatch:
Click here to view code image

regex row("^[\\w ]+(           \\d+)(  \\d+)( \\d+)$");   // data line

while (getline(in,line)) {                                             // check data line
          smatch matches;

          if (!regex_match(line, matches, row))

                    error("bad line", lineno);

                    // check row:
          int field1 = from_string<int>(matches[1]);

          int field2 = from_string<int>(matches[2]);

          int field3 = from_string<int>(matches[3]);

          // . . .
}

The syntax of regular expressions is based on characters with special meaning (Chapter 23):



Several character classes are supported by shorthand notation:

B.9 Numerics
The C++ standard library provides the most basic building blocks for mathematical (scientific, engineering, etc.) calculations.

B.9.1 Numerical limits
Each C++ implementation specifies properties of the built-in types, so that programmers can use those properties to check
against limits, set sentinels, etc.

From <limits>, we get numeric_limits<T> for each built-in or library type T. In addition, a programmer can define
numeric_limits<X> for a user-defined numeric type X. For example:
Click here to view code image

class numeric_limits<float> {

public:

          static const bool is_specialized = true;

          static constexpr int radix = 2;          // base of exponent (in this case, binary)
          static constexpr int digits = 24;       // number of radix digits in mantissa



          static constexpr int digits10 = 6;     // number of base-10 digits in mantissa

          static constexpr bool is_signed = true;

          static constexpr bool is_integer = false;

          static constexpr bool is_exact = false;

          static constexpr float min() { return 1.17549435E–38F; }         // example value
          static constexpr float max() { return 3.40282347E+38F; }        // example value
          static constexpr float lowest() { return -3.40282347E+38F; }  // example value

          static constexpr float epsilon() { return 1.19209290E–07F; }  // example value
          static constexpr float round_error() { return 0.5F; }               // example value

          static constexpr float infinity() { return /* some value */; }

          static constexpr float quiet_NaN() { return /* some value */; }

          static constexpr float signaling_NaN() { return /* some value */; }

          static constexpr float denorm_min() { return min(); }

          static constexpr int min_exponent = –125;               // example value
          static constexpr int min_exponent10 = –37;             // example value
          static constexpr int max_exponent = +128;             // example value
          static constexpr int max_exponent10 = +38;           // example value

          static constexpr bool has_infinity = true;

          static constexpr bool has_quiet_NaN = true;

          static constexpr bool has_signaling_NaN = true;

          static constexpr float_denorm_style has_denorm = denorm_absent;

          static constexpr bool has_denorm_loss = false;

          static constexpr bool is_iec559 = true;                   // conforms to IEC-559
          static constexpr bool is_bounded = true;

          static constexpr bool is_modulo = false;

          static constexpr bool traps = true;

          static constexpr bool tinyness_before = true;

          static constexpr float_round_style round_style = round_to_nearest;

};

From <limits.h> and <float.h>, we get macros specifying key properties of integers and floating-point numbers, including:

B.9.2 Standard mathematical functions
The standard library provides the most common mathematical functions (defined in <cmath> and <complex>):



There are versions taking float, double, long double, and complex arguments. For each function, the return type is the
same as the argument type.

If a standard mathematical function cannot produce a mathematically valid result, it sets the variable errno.

B.9.3 Complex
The standard library provides complex number types complex<float>, complex<double>, and complex<long

double>. A complex<Scalar> where Scalar is some other type supporting the usual arithmetic operations usually works
but is not guaranteed to be portable.
Click here to view code image

template<class Scalar> class complex {

          // a complex is a pair of scalar values, basically a coordinate pair
          Scalar re, im;

public:

          constexpr complex(const Scalar & r, const Scalar & i) :re{r}, im{i} { }

          constexpr complex(const Scalar & r) :re{r}, im(Scalar{}} { }

          constexpr complex() :re{Scalar{}}, im{Scalar{}} { }

          Scalar real() { return re; }           // real part
          Scalar imag() { return im; }        // imaginary part

          // operators: =  +=  –=  *=  /=
};

In addition to the members of complex, <complex> offers a host of useful operations:



The standard mathematical functions (see §B.9.2) are also available for complex numbers. Note: complex does not provide <
or %; see also §24.9.

B.9.4 valarray

The standard valarray is a single-dimensional numerical array; that is, it provides arithmetic operations for an array type
(much like Matrix in Chapter 24) plus support for slices and strides.

B.9.5 Generalized numerical algorithms
These algorithms from <numeric> provide general versions of common operations on sequences of numerical values:

For example:
Click here to view code image



vector<int> v(100);

iota(v.begin(),v.end(),0);          // v=={1, 2,3,4,5 . . . 100}

B.9.6 Random numbers
In <random>, the standard library provides random number engines and distributions (§24.7). By default use the
default_random_engine, which is chosen for wide applicability and low cost.

Distributions include:

A distribution can be called with an engine as its argument. For example:
Click here to view code image

uniform_real_distribution<> dist;

default_random_engine engn;

for (int i = 0; i<10; ++i)

          cout << dist(engn) << ' ';

B.10 Time
In <chrono>, the standard library provides facilities for timing. A clock counts time in number of clock ticks and reports the
current point in time as the result of a call of now(). Three clocks are defined:

• system_clock: the default system clock
• steady_clock: a clock, c, for which c.now()<=c.now() for consecutive calls of now() and the time between clock
ticks is constant

• high_resolution_clock: the highest-resolution clock available on a system
A number of clock ticks for a given clock is converted into a conventional unit of time, such as seconds, milliseconds, and
nanoseconds, by the function duration_cast<>(). For example:
Click here to view code image

auto t = steady_clock::now();

// . . . do something . . .
auto d = steady_clock::now()-t;         // something took d time units

cout << "something took "

          << duration_cast<milliseconds>(d).count() << "ms";

This will print the time that “something” took in milliseconds. See also §26.6.1.

B.11 C standard library functions
The standard library for the C language is with very minor modifications incorporated into the C++ standard library. The C
standard library provides quite a few functions that have proved useful over the years in a wide variety of contexts —
especially for relatively low-level programming. Here, we have organized them into a few conventional categories:

• C-style I/O
• C-style strings
• Memory
• Date and time
• Etc.

There are more C standard library functions than we present here; see a good C textbook, such as Kernighan and Ritchie, The C
Programming Language (K&R), if you need to know more.



B.11.1 Files
The <stdio> I/O system is based on “files.” A file (a FILE*) can refer to a file or to one of the standard input and output
streams, stdin, stdout, and stderr. The standard streams are available by default; other files need to be opened:

A “mode” is a string containing one or more directives specifying how a file is to be opened:

There may be (and usually are) more options on a specific system. Some options can be combined; for example,
fopen("foo","rb") tries to open a file called foo for binary reading. The I/O modes should be the same for stdio and
iostreams (§B.7.1).

B.11.2 The printf() family
The most popular C standard library functions are the I/O functions. However, we recommend iostreams because that library
is type-safe and extensible. The formatted output function, printf(), is widely used (also in C++ programs) and widely
imitated in other programming languages:

For each version, n is the number of characters written or a negative number if the output failed. The return value from
printf() is essentially always ignored.

The declaration of printf() is
Click here to view code image

int printf(const char* format . . .);

In other words, it takes a C-style string (typically a string literal) followed by an arbitrary number of arguments of arbitrary
type. The meaning of those “extra arguments” is controlled by conversion specifications, such as %c (print as character) and
%d (print as decimal integer), in the format string. For example:
Click here to view code image

int x = 5;

const char* p = "asdf";

printf("the value of x is '%d' and the value of p is '%s'\n",x,p);

A character following a % controls the handling of an argument. The first % applies to the first “extra argument” (here, %d

applies to x), the second % to the second “extra argument” (here, %s applies to p), and so on. In particular, the output of that



call to printf() is
Click here to view code image

the value of x is '5' and the value of p is 'asdf'

followed by a newline.
In general, the correspondence between a % conversion directive and the type to which it is applied cannot be checked, and

when it can, it usually is not. For example:
Click here to view code image

printf("the value of x is '%s' and the value of p is '%d'\n",x,p);  // oops

The set of conversion specifications is quite large and provides a great degree of flexibility (and possibilities for confusion).
Following the %, there may be:

–  an optional minus sign that specifies left adjustment of the converted value in the field.
+  an optional plus sign that specifies that a value of a signed type will always begin with a + or — sign.
0  an optional zero that specifies that leading zeros are used for padding of a numeric value. If — or a precision is

specified, this 0 is ignored.
#  an optional # that specifies that floating-point values will be printed with a decimal point even if no nonzero digits

follow, that trailing zeros will be printed, that octal values will be printed with an initial 0, and that hexadecimal values
will be printed with an initial 0x or 0X.

d  an optional digit string specifying a field width; if the converted value has fewer characters than the field width, it will
be blank-padded on the left (or right, if the left-adjustment indicator has been given) to make up the field width; if the
field width begins with a zero, zero padding will be done instead of blank padding.

.  an optional period that serves to separate the field width from the next digit string.
dd  an optional digit string specifying a precision that specifies the number of digits to appear after the decimal point, for

e- and f-conversion, or the maximum number of characters to be printed from a string.
*  a field width or precision may be * instead of a digit string. In this case, an integer argument supplies the field width or

precision.
h  an optional character h, specifying that a following d, o, x, or u corresponds to a short integer argument.
l  an optional character l (the letter l), specifying that a following d, o, x, or u corresponds to a long integer argument.
L  an optional character L, specifying that a following e, E, g, G, or f corresponds to a long double argument.
%  indicating that the character % is to be printed; no argument is used.
c  a character that indicates the type of conversion to be applied. The conversion characters and their meanings are:

d The integer argument is converted to decimal notation.
i The integer argument is converted to decimal notation.
o The integer argument is converted to octal notation.
x The integer argument is converted to hexadecimal notation.
X The integer argument is converted to hexadecimal notation.
f The float or double argument is converted to decimal notation in the style [–]ddd.ddd. The number of ds after the

decimal point is equal to the precision for the argument. If necessary, the number is rounded. If the precision is
missing, six digits are given; if the precision is explicitly 0 and # isn’t specified, no decimal point is printed.

e The float or double argument is converted to decimal notation in the scientific style [–]d.ddde+dd or
[–]d.ddde–dd, where there is one digit before the decimal point and the number of digits after the decimal point is
equal to the precision specification for the argument. If necessary, the number is rounded. If the precision is missing,
six digits are given; if the precision is explicitly 0 and # isn’t specified, no digits and no decimal point are printed.

E Like e, but with an uppercase E used to identify the exponent.
g The float or double argument is printed in style d, in style f, or in style e, whichever gives the greatest precision

in minimum space.
G Like g, but with an uppercase E used to identify the exponent.



c The character argument is printed. Null characters are ignored.
s The argument is taken to be a string (character pointer), and characters from the string are printed until a null

character or until the number of characters indicated by the precision specification is reached; however, if the
precision is 0 or missing, all characters up to a null are printed.

p The argument is taken to be a pointer. The representation printed is implementation dependent.
u The unsigned integer argument is converted to decimal notation.
n The number of characters written so far by the call of printf(), fprintf(), or sprintf() is written to the int pointed

to by the pointer-to-int argument.
In no case does a nonexistent or small field width cause truncation of a field; padding takes place only if the specified
field width exceeds the actual width.

Because C does not have user-defined types in the sense that C++ has, there are no provisions for defining output formats for
user-defined types, such as complex, vector, or string.

The C standard output, stdout, corresponds to cout. The C standard input, stdin, corresponds to cin. The C standard error
output, stderr, corresponds to cerr. This correspondence between C standard I/O and C++ I/O streams is so close that C-style
I/O and I/O streams can share a buffer. For example, a mix of cout and stdout operations can be used to produce a single
output stream (that’s not uncommon in mixed C and C++ code). This flexibility carries a cost. For better performance, don’t
mix stdio and iostream operations for a single stream and call ios_base::sync_with_stdio(false) before the first I/O
operation.

The stdio library provides a function, scanf(), that is an input operation with a style that mimics printf(). For example:
Click here to view code image

int x;

char s[buf_size];

int i = scanf("the value of x is '%d' and the value of s is '%s'\n",&x,s);

Here, scanf() tries to read an integer into x and a sequence of non-whitespace characters into s. Non-format characters specify
that the input should contain that character. For example,
Click here to view code image

the value of x is '123' and the value of s is 'string '\n"

will read 123 into x and string followed by a 0 into s. If the call of scanf() succeeds, the result value (i in the call above)
will be the number of argument pointers assigned to (hopefully 2 in the example); otherwise, EOF. This way of specifying
input is error-prone (e.g., what would happen if you forgot the space after string on that input line?). All arguments to scanf()

must be pointers. We strongly recommend against the use of scanf().
So what can we do for input if we are obliged to use stdio? One popular answer is, “Use the standard library function

gets()”:
Click here to view code image

// very dangerous code:
char s[buf_size];

char* p = gets(s);            // read a line into s

The call p=gets(s) reads characters into s until a newline or an end of file is encountered and a 0 character is placed after the
last character written to s. If an end of file is encountered or if an error occurred, p is set to NULL (that is, 0); otherwise it is
set to s. Never use gets(s) or its rough equivalent (scanf("%s",s))! For years, they were the favorites of virus writers: by
providing an input that overflows the input buffer (s in the example), a program can be corrupted and a computer potentially
taken over by an attacker. The sprintf() function suffers similar buffer-overflow problems.

The stdio library also provides simple and useful character read and write functions:



Note that the result of these functions is an int (not a char, or EOF couldn’t be returned). For example, this is a typical C-style
input loop:
Click here to view code image

int ch; /* not char ch; */

while ((ch=getchar())!=EOF) { /* do something */ }

Don’t do two consecutive ungetc()s on a stream. The result of that is undefined and (therefore) non-portable.
There are more stdio functions; see a good C textbook, such as K&R, if you need to know more.

B.11.3 C-style strings
A C-style string is a zero-terminated array of chars. This notion of a string is supported by a set of functions defined in
<cstring> (or <string.h>; note: not <string>) and <cstdlib>. These functions operate on C-style strings through char*

pointers (const char* pointers for memory that’s only read):



Note that in C++, strchr() and strstr() are duplicated to make them type-safe (they can’t turn a const char* into a char* the
way the C equivalents can); see also §27.5.

An extraction function looks into its C-style string argument for a conventionally formatted representation of a number, such
as "124" and " 1.4". If no such representation is found, the extraction function returns 0. For example:
Click here to view code image

int x = atoi("fortytwo");            /* x becomes 0 */

B.11.4 Memory
The memory manipulation functions operate on “raw memory” (no type known) through void* pointers (const void* pointers
for memory that’s only read):



Note that malloc(), etc. do not invoke constructors and free() doesn’t invoke destructors. Do not use these functions for types
with constructors or destructors. Also, memset() should never be used for any type with a constructor.

The mem* functions are found in <cstring> and the allocation functions in <cstdlib>.
See also §27.5.2.

B.11.5 Date and time
In <ctime>, you can find several types and functions related to date and time:

struct tm is defined like this:
Click here to view code image

struct tm {

          int tm_sec;  // second of minute [0:61]; 60 and 61 represent leap seconds
          int tm_min;  // minute of hour [0,59]
          int tm_hour;     // hour of day [0,23]
          int tm_mday;    // day of month [1,31]
          int tm_mon;     // month of year [0,11]; 0 means January (note: not [1:12])
          int tm_year;     // year since 1900; 0 means year 1900, and 102 means 2002
          int tm_wday; // days since Sunday [0,6]; 0 means Sunday
          int tm_yday;   // days since January 1 [0,365]; 0 means January 1
          int tm_isdst;    // hours of Daylight Savings Time
};

Date and time functions:



Click here to view code image

clock_t clock();      // number of clock ticks since the start of the program

time_t time(time_t* pt);                             // current calendar time
double difftime(time_t t2, time_t t1);     // t2–t1 in seconds

tm* localtime(const time_t* pt);   // local time for the *pt
tm* gmtime(const time_t* pt);     // Greenwich Mean Time (GMT) tm for *pt, or 0

time_t mktime(tm* ptm);               // time_t for *ptm, or time_t(–1)

char* asctime(const tm* ptm);     // C-style string representation for *ptm
char* ctime(const time_t* t) { return asctime(localtime(t)); }

An example of the result of a call of asctime() is "Sun Sep 16 01:03:52 1973\n".
An amazing zoo of formatting options for tm is provided by a function called strftime(). Look it up if you need it.

B.11.6 Etc.
In <cstdlib> we find:

The comparison function (cmp) used by qsort() and bsearch() must have the type
Click here to view code image

int (*cmp)(const void* p, const void* q);

That is, no type information is known to the sort function that simply “sees” its array as a sequence of bytes. The integer
returned is

• Negative if *p is considered less than *q

• Zero if *p is considered equal to *q

• Positive if *p is considered greater than *q

Note that exit() and abort() do not invoke destructors. If you want destructors called for constructed automatic and static
objects (§A.4.2), throw an exception.

For more standard library functions see K&R or some other reputable C language reference.

B.12 Other libraries
Looking through the standard library facilities, you’ll undoubtedly have failed to find something you could use. Compared to
the challenges faced by programmers and the number of libraries available in the world, the C++ standard library is minute.
There are many libraries for

• Graphical user interfaces
• Advanced math
• Database access
• Networking
• XML
• Date and time



• File system manipulation
• 3D graphics
• Animation
• Etc.

However, such libraries are not part of the standard. You can find them by searching the web or by asking friends and
colleagues. Please don’t get the idea that the only useful libraries are those that are part of the standard library.



C. Getting Started with Visual Studio

“The universe is not only queerer
than we imagine,

it’s queerer than we can imagine.”
—J. B. S. Haldane

This appendix explains the steps you have to go through to enter a program, compile it, and have it run using Microsoft Visual
Studio.

C.1 Getting a program to run
C.2 Installing Visual Studio
C.3 Creating and running a program

C.3.1 Create a new project
C.3.2 Use the std_lib_facilities.h header file
C.3.3 Add a C++ source file to the project
C.3.4 Enter your source code
C.3.5 Build an executable program
C.3.6 Execute the program
C.3.7 Save the program

C.4 Later

C.1 Getting a program to run
To get a program to run, you need to somehow place the files together (so that when a file refers to another — e.g., your source
file refers to a header file — it finds it). You then need to invoke the compiler and the linker (if nothing else, then to link to the
C++ standard library), and finally you need to run (execute) the program. There are several ways of doing that, and different
systems (e.g., Windows and Linux) have different conventions and tool sets. However, you can run all of the examples from
this book on all major systems using any of the major tool sets. This appendix explains how to do it for one popular system,
Microsoft’s Visual Studio.

Personally, we find few exercises as frustrating as getting a first program to work on a new and strange system. This is a
task for which it makes sense to ask for help. However, if you do get help, be sure that the helper teaches you how to do it,
rather than just doing it for you.

C.2 Installing Visual Studio
Visual Studio is an interactive development environment (IDE) for Windows. If Visual Studio is not installed on your
computer, you may purchase a copy and follow the instructions that come with it, or download and install the free Visual C++
Express from www.microsoft.com/express/download. The description here is based on Visual Studio 2005. Other versions
may differ slightly.

C.3 Creating and running a program
The steps are:

1. Create a new project.
2. Add a C++ source file to the project.
3. Enter your source code.
4. Build an executable file.
5. Execute the program.
6. Save the program.

C.3.1 Create a new project

http://www.microsoft.com/express/download


In Visual Studio, a “project” is a collection of files that together provide what it takes to create and run a program (also called
an application) under Windows.

1. Open the Visual C++ IDE by clicking the Microsoft Visual Studio 2005 icon, or select it from Start > Programs >
Microsoft Visual Studio 2005 > Microsoft Visual Studio 2005.

2. Open the File menu, point to New, and click Project.
3. Under Project Types, select Visual C++.
4. In the Templates section, select Win32 Console Application.
5. In the Name text box type the name of your project, for example, Hello,World!.
6. Choose a directory for your project. The default, C:\Documents and Settings\Your Name\My Documents\Visual

Studio 2005\Projects, is usually a good choice.
7. Click OK.
8. The WIN32 Application Wizard should appear.
9. Select Application Settings on the left side of the dialog box.

10. Under Additional Options select Empty Project.
11. Click Finish. All compiler settings should now be initialized for your console project.

C.3.2 Use the std_lib_facilities.h header file
For your first programs, we strongly suggest that you use the custom header file std_lib_facilities.h from
www.stroustrup.com/Programming/std_lib_facilities.h. Place a copy of it in the directory you chose in §C.3.1, step 6. (Note:
Save as text, not HTML.) To use it, you need the line
Click here to view code image

#include "../../std_lib_facilities.h"

in your program. The “../../” tells the compiler that you placed the header in C:\Documents and Settings\Your Name\My
Documents\Visual Studio 2005\Projects where it can be used by all of your projects, rather than right next to your source file
in a project where you would have to copy it for each project.

C.3.3 Add a C++ source file to the project
You need at least one source file in your program (and often many):

1. Click the Add New Item icon on the menu bar (usually the second icon from the left). That will open the Add New Item
dialog box. Select Code under the Visual C++ category.

2. Select the C++ File (.cpp) icon in the template window. Type the name of your program file (Hello,World!) in the
Name text box and click Add.

You have created an empty source code file. You are now ready to type your source code program.

C.3.4 Enter your source code
At this point you can either enter the source code by typing it directly into the IDE, or you can copy and paste it from another
source.

C.3.5 Build an executable program
When you believe you have properly entered the source code for your program, go to the Build menu and select Build Solution
or hit the triangular icon pointing to the right on the list of icons near the top of the IDE window. The IDE will try to compile
and link your program. If it is successful, the message
Click here to view code image

Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped

should appear in the Output window. Otherwise a number of error messages will appear. Debug the program to correct the
errors and Build Solution again.

If you used the triangular icon, the program will automatically start running (executing) if there were no errors. If you used
the Build Solution menu item, you have to explicitly start the program, as described in §C.3.6.

C.3.6 Execute the program

http://www.stroustrup.com/Programming/std_lib_facilities.h


Once all errors have been eliminated, execute the program by going to the Debug menu and selecting Start Without
Debugging.

C.3.7 Save the program
Under the File menu, click Save All. If you forget and try to close the IDE, the IDE will remind you.

C.4 Later
The IDE has an apparent infinity of features and options. Don’t worry about those early on — or you’ll get completely lost. If
you manage to mess up a project so that it “behaves oddly,” ask an experienced friend for help or build a new project from
scratch. Over time, slowly experiment with new features and options.



D. Installing FLTK

“If the code and the comments disagree,
then both are probably wrong.”

—Norm Schryer

This appendix describes how to download, install, and link to the FLTK graphics and GUI toolkit.

D.1 Introduction
D.2 Downloading FLTK
D.3 Installing FLTK
D.4 Using FLTK in Visual Studio
D.5 Testing if it all worked

D.1 Introduction
We chose FLTK, the Fast Light Tool Kit (pronounced “full tick”), as the base for our presentation of graphics and GUI issues
because it is portable, relatively simple, relatively conventional, and relatively easy to install. We explain how to install
FLTK under Microsoft Visual Studio because that’s what most of our students use and because it is the hardest. If you use some
other system (as some of our students also do), just look in the main folder (directory) of the downloaded files (§D.3) for
directions for your favorite system.

Whenever you use a library that is not part of the ISO C++ standard, you (or someone else) have to download it, install it,
and correctly use it from your own code. That’s rarely completely trivial, and installing FLTK is probably a good exercise —
because downloading and installing even the best library can be quite frustrating when you haven’t tried before. Don’t be too
reluctant to ask advice from people who have tried before, but don’t just let them do it for you: learn from them.

Note that there might be slight differences in files and procedures from what we describe here. For example, there may be a
new version of FLTK or you may be using a different version of Visual Studio from what we describe in §D.4 or a completely
different C++ implementation.

D.2 Downloading FLTK
Before doing anything, first see if FLTK is already installed on your machine; see §D.5. If it is not there, the first thing to do is
to get the files onto your computer:

1. Go to http://fltk.org. (In an emergency, instead download a copy from our book support website:
www.stroustrup.com/Programming/FLTK.)

2. Click Download in the navigation menu.
3. Choose FLTK 1.1.x in the drop-down and click Show Download Locations.
4. Choose a download location and download the .zip file.

The file you get will be in .zip format. That is a compressed format suitable for transmitting lots of files across the net. You’ll
need a program on your machine to “unzip” it into normal files; on Windows, WinZip and 7-Zip are examples of such
programs.

D.3 Installing FLTK
Your main problem in following our instructions is likely to be one of two: something has changed since we wrote and tested
them (it happens), or the terminology is alien to you (we can’t help with that; sorry). In the latter case, find a friend to translate.

1. Unzip the downloaded file and open the main folder, fltk-1.1.?. In a Visual C++ folder (e.g., vc2005 or vcnet), open
fltk.dsw. If asked about updating old project files, choose Yes to All.

2. From the Build menu, choose Build Solution. This may take a few minutes. The source code is being compiled into static
link libraries so that you do not have to recompile the FLTK source code any time you make a new project. When the
process has finished, close Visual Studio.

3. From the main FLTK directory open the lib folder. Copy (not just move/drag) all the .lib files except README.lib
(there should be seven) into C:\Program Files\Microsoft Visual Studio\Vc\lib.

http://fltk.org
http://www.stroustrup.com/Programming/FLTK


4. Go back to the FLTK main directory and copy the FL folder into C:\Program Files\Microsoft Visual
Studio\Vc\include.

Experts will tell you that there are better ways to install than copying into C:\Program Files\Microsoft Visual Studio\Vc\lib
and C:\Program Files\Microsoft Visual Studio\Vc\include. They are right, but we are not trying to make you VS experts. If
the experts insist, let them be responsible for showing you the better alternative.

D.4 Using FLTK in Visual Studio
1. Create a new project in Visual Studio with one change to the usual procedure: create a “Win32 project” instead of a

“console application” when choosing your project type. Be sure to create an “empty project”; otherwise, some “software
wizard” will add a lot of stuff to your project that you are unlikely to need or understand.

2. In Visual Studio, choose Project from the main (top) menu, and from the drop-down menu choose Properties.
3. In the Properties dialog box, in the left menu, click the Linker folder. This expands a sub-menu. In this sub-menu, click

Input. In the Additional Dependencies text field on the right, enter the following text:

fltkd.lib wsock32.lib comctl32.lib fltkjpegd.lib fltkimagesd.lib

[The following step may be unnecessary because it is now the default.] In the Ignore Specific Library text field, enter
the following text:

libcd.lib

4. [This step may be unnecessary because /MDd is now the default.] In the left menu of the same Properties window, click
C/C++ to expand a different sub-menu. Click the Code Generation sub-menu item. In the right menu, change the
Runtime Library drop-down to Multi-threaded Debug DLL (/MDd). Click OK to close the Properties window.

D.5 Testing if it all worked
Create a single new .cpp file in your newly created project and enter the following code. It should compile without problems.
Click here to view code image

#include <FL/Fl.h>

#include <FL/Fl_Box.h>

#include <FL/Fl_Window.h>

int main()

{

            Fl_Window window(200, 200, "Window title");

            Fl_Box box(0,0,200,200, "Hey, I mean, Hello, World!");

            window.show();

            return Fl::run();

}

If it did not work:
• “Compiler error stating a .lib file could not be found”: Your problem is most likely in the installation section. Pay

attention to step 3, which involves putting the link libraries (.lib) files where your compiler can easily find them.
• “Compiler error stating a .h file could not be opened”: Your problem is most likely in the installation section. Pay

attention to step 4, which involves putting the header (.h) files where your compiler can easily find them.
• “Linker error involving unresolved external symbols”: Your problem is most likely in the project section.

If that didn’t help, find a friend to ask.



E. GUI Implementation

“When you finally understand
what you are doing,
things will go right.”

—Bill Fairbank

This appendix presents implementation details of callbacks, Window, Widget, and Vector_ref. In Chapter 16, we

couldn’t assume the knowledge of pointers and casts needed for a more complete explanation, so we banished that explanation
to this appendix.

E.1 Callback implementation
E.2 Widget implementation
E.3 Window implementation
E.4 Vector_ref

E.5 An example: manipulating Widgets

E.1 Callback implementation
We implemented callbacks like this:
Click here to view code image

void Simple_window::cb_next(Address, Address addr)

           // call Simple_window::next() for the window located at addr
{

           reference_to<Simple_window>(addr).next();

}

Once you have understood Chapter 17, it is pretty obvious that an Address must be a void*. And, of course,
reference_to<Simple_window>(addr) must somehow create a reference to a Simple_window from the void* called
addr. However, unless you had previous programming experience, there was nothing “pretty obvious” or “of course” about
that before you read Chapter 17, so let’s look at the use of addresses in detail.

As described in §A.17, C++ offers a way of giving a name to a type. For example:
Click here to view code image

typedef void* Address;           // Address is a synonym for void*

This means that the name Address can now be used instead of void*. Here, we used Address to emphasize that an address
was passed, and also to hide the fact that void* is the name of the type of pointer to an object for which we don’t know the
type.

So cb_next() receives a void* called addr as an argument and — somehow — promptly converts it to a
Simple_window&:
Click here to view code image

reference_to<Simple_window>(addr)

The reference_to is a template function (§A.13):
Click here to view code image

template<class W> W& reference_to(Address pw)

           // treat an address as a reference to a W
{

             return *static_cast<W*>(pw);

}

Here, we used a template function to write ourselves an operation that acts as a cast from a void* to a Simple_window&.
The type conversion, static_cast, is described in §17.8.



The compiler has no way of verifying our assertion that addr points to a Simple_window, but the language rule requires
the compiler to trust the programmer here. Fortunately, we are right. The way we know that we are right is that FLTK is
handing us back a pointer that we gave to it. Since we knew the type of the pointer when we gave it to FLTK, we can use
reference_to to “get it back.” This is messy, unchecked, and not all that uncommon at the lower levels of a system.

Once we have a reference to a Simple_window, we can use it to call a member function of Simple_window. For
example (§16.3):
Click here to view code image

void Simple_window::cb_next(Address, Address pw)

           // call Simple_window::next() for the window located at pw
{

           reference_to<Simple_window>(pw).next();

}

We use the messy callback function cb_next() simply to adjust the types as needed to call a perfectly ordinary member
function next().

E.2 Widget implementation
Our Widget interface class looks like this:
Click here to view code image

class Widget {

          // Widget is a handle to a Fl_widget — it is *not* a Fl_widget
          // we try to keep our interface classes at arm’s length from FLTK
public:

           Widget(Point xy, int w, int h, const string& s, Callback cb)

                        :loc(xy), width(w), height(h), label(s), do_it(cb)

{ }

           virtual ~Widget() { }                // destructor

           virtual void move(int dx,int dy)

                     { hide(); pw–>position(loc.x+=dx, loc.y+=dy); show(); }

           virtual void hide() { pw–>hide(); }

           virtual void show() { pw–>show(); }

           virtual void attach(Window&) = 0;   // each Widget defines at least
                                                                                // one action for a window

           Point loc;

           int width;

           int height;

           string label;

           Callback do_it;

protected:

  Window* own;           // every Widget belongs to a Window
  Fl_Widget* pw;          // a Widget “knows” its Fl_Widget
};

Note that our Widget keeps track of its FLTK widget and the Window with which it is associated. Note that we need
pointers for that because a Widget can be associated with different Windows during its life. A reference or a named object
wouldn’t suffice. (Why not?)

It has a location (loc), a rectangular shape (width and height), and a label. Where it gets interesting is that it also has a
callback function (do_it) — it connects a Widget’s image on the screen to a piece of our code. The meaning of the operations
(move(), show(), hide(), and attach()) should be obvious.

Widget has a “half-finished” look to it. It was designed as an implementation class that users should not have to see very
often. It is a good candidate for a redesign. We are suspicious about all of those public data members, and “obvious”
operations typically need to be reexamined for unplanned subtleties.

Widget has virtual functions and can be used as a base class, so it has a virtual destructor (§17.5.2).



E.3 Window implementation
When do we use pointers and when do we use references instead? We examine that general question in §8.5.6. Here, we’ll just
observe that some programmers like pointers and that we need pointers when we want to point to different objects at different
times in a program.

So far, we have not shown one of the central classes in our graphics and GUI library, Window. The most significant
reasons are that it uses a pointer and that its implementation using FLTK requires free store. As found in Window.h, here it
is:
Click here to view code image

class Window : public Fl_Window {

public:

           // let the system pick the location:
           Window(int w, int h, const string& title);

           // top left corner in xy:
           Window(Point xy, int w, int h, const string& title);

           virtual ~Window() { }

           int x_max() const { return w; }

           int y_max() const { return h; }

           void resize(int ww, int hh) { w=ww, h=hh; size(ww,hh); }

           void set_label(const string& s) { label(s.c_str()); }

           void attach(Shape& s) { shapes.push_back(&s); }

           void attach(Widget&);

           void detach(Shape& s);             // remove w from shapes
           void detach(Widget& w);          // remove w from window
                                                                       // (deactivates callbacks)

           void put_on_top(Shape& p);  // put p on top of other shapes
protected:

           void draw();

private:

           vector<Shape*> shapes;          // shapes attached to window
           int w,h;                                         // window size

           void init();

};

So, when we attach() a Shape we store a pointer in shapes so that the Window can draw it. Since we can later detach()

that shape, we need a pointer. Basically, an attach()ed shape is still owned by our code; we just give the Window a
reference to it. Window::attach() converts its argument to a pointer so that it can store it. As shown above, attach() is
trivial; detach() is slightly less simple. Looking in Window.cpp, we find:
Click here to view code image

void Window::detach(Shape& s)

           // guess that the last attached will be first released
{

           for (vector<Shape*>::size_type i = shapes.size(); 0<i; ––i)

                     if (shapes[i–1]==&s)

                                shapes.erase(shapes.begin()+(i–1));

}

The erase() member function removes (“erases”) a value from a vector, decreasing the vector’s size by one (§20.7.1).
Window is meant to be used as a base class, so it has a virtual destructor (§17.5.2).

E.4 Vector_ref

Basically, Vector_ref simulates a vector of references. You can initialize it with references or with pointers:
• If an object is passed to Vector_ref as a reference, it is assumed to be owned by the caller who is responsible for its



lifetime (e.g., the object is a scoped variable).
• If an object is passed to Vector_ref as a pointer, it is assumed to be allocated by new and it is Vector_ref’s
responsibility to delete it.

An element is stored as a pointer — not as a copy of the object — into the Vector_ref and has reference semantics. For
example, you can put a Circle into a Vector_ref<Shape> without suffering slicing.
Click here to view code image

template<class T> class Vector_ref {

           vector<T*> v;

           vector<T*> owned;

public:

           Vector_ref() {}
           Vector_ref(T* a, T* b = 0, T* c = 0, T* d = 0);

           ~Vector_ref() { for (int i=0; i<owned.size(); ++i) delete owned[i]; }

           void push_back(T& s) { v.push_back(&s); }

           void push_back(T* p) { v.push_back(p); owned.push_back(p); }

           T& operator[](int i) { return *v[i]; }

           const T& operator[](int i) const { return *v[i]; }

           int size() const { return v.size(); }

};

Vector_ref’s destructor deletes every object passed to the Vector_ref as a pointer.

E.5 An example: manipulating Widgets
Here is a complete program. It exercises many of the Widget/Window features. It is only minimally commented.
Unfortunately, such insufficient commenting is not uncommon. It is an exercise to get this program to run and to explain it.

Basically, when you run it, it appears to define four buttons:
Click here to view code image

#include "../GUI.h"

using namespace Graph_lib;

class W7 : public Window {

           // four ways to make it appear that a button moves around:
           // show/hide, change location, create new one, and attach/detach
public:

           W7(int w, int h, const string& t);

           Button* p1;              // show/hide
           Button* p2;

           bool sh_left;

           Button* mvp;          // move
           bool mv_left;

           Button* cdp;          // create/destroy
           bool cd_left;

           Button* adp1;        // activate/deactivate
           Button* adp2;

           bool ad_left;

           void sh();                // actions
           void mv();

           void cd();

           void ad();

           static void cb_sh(Address, Address addr)            // callbacks
                        { reference_to<W7>(addr).sh(); }

           static void cb_mv(Address, Address addr)

                        { reference_to<W7>(addr).mv(); }



           static void cb_cd(Address, Address addr)

                        { reference_to<W7>(addr).cd(); }

           static void cb_ad(Address, Address addr)

                        { reference_to<W7>(addr).ad(); }

};

However, a W7 (Window experiment number 7) really has six buttons; it just keeps two hidden:
Click here to view code image

W7::W7(int w, int h, const string& t)

          :Window{w,h,t},

          sh_left{true}, mv_left{true}, cd_left{true}, ad_left{true}

{

         p1 = new Button{Point{100,100},50,20,"show",cb_sh};

         p2 = new Button{Point{200,100},50,20, "hide",cb_sh};

         mvp = new Button{Point{100,200},50,20,"move",cb_mv};

         cdp = new Button{Point{100,300},50,20,"create",cb_cd};

         adp1 = new Button{Point{100,400},50,20,"activate",cb_ad};

         adp2 = new Button{Point{200,400},80,20,"deactivate",cb_ad};

         attach(*p1);

         attach(*p2);

         attach(*mvp);

         attach(*cdp);

         p2–>hide();

         attach(*adp1);

}

There are four callbacks. Each makes it appear that the button you press disappears and a new one appears. However, this is
achieved in four different ways:
Click here to view code image

void W7::sh()                              // hide a button, show another
{

          if (sh_left) {

                     p1–>hide();

                     p2–>show();

          }

          else {

                     p1–>show();

                     p2–>hide();

          }
          sh_left = !sh_left;

}

void W7::mv() // move the button
{

          if (mv_left) {

                     mvp–>move(100,0);

          }
          else {

                    mvp–>move(–100,0);

          }
          mv_left = !mv_left;

}

void W7::cd()      // delete the button and create a new one
{

          cdp–>hide();

          delete cdp;

          string lab = "create";

          int x = 100;

          if (cd_left) {

                    lab = "delete";



                    x = 200;

          }
          cdp = new Button{Point{x,300}, 50, 20, lab, cb_cd};

          attach(*cdp);

          cd_left = !cd_left;

}

void W7::ad()  // detach the button from the window and attach its replacement
{

          if (ad_left) {

                    detach(*adp1);

                    attach(*adp2);

          }
          else {

                   detach(*adp2);

                   attach(*adp1);

          }
          ad_left = !ad_left;

}

int main()

{

          W7 w{400,500,"move"};

          return gui_main();

}

This program demonstrates the fundamental ways of adding and subtracting widgets to/from a window — or just appearing to.



Glossary

“Often, a few well-chosen words are worth a thousand pictures.”
—Anonymous

A glossary is a brief explanation of words used in a text. This is a rather short glossary of the terms we thought most essential,
especially in the earlier stages of learning programming. The index and the “Terms” sections of the chapters might also help. A
more extensive glossary, relating specifically to C++, can be found at www.stroustrup.com/glossary.html, and there is an
incredible variety of specialized glossaries (of greatly varying quality) available on the web. Please note that a term can have
several related meanings (so we occasionally list some) and that most terms we list have (often weakly) related meanings in
other contexts; for example, we don’t define abstract as it relates to modern painting, legal practice, or philosophy.

abstract class a class that cannot be directly used to create objects; often used to define an interface to derived classes. A
class is made abstract by having a pure virtual function or a protected constructor.

abstraction a description of something that selectively and deliberately ignores (hides) details (e.g., implementation details);
selective ignorance.

address a value that allows us to find an object in a computer’s memory.
algorithm a procedure or formula for solving a problem; a finite series of computational steps to produce a result.
alias an alternative way of referring to an object; often a name, pointer, or reference.
application a program or a collection of programs that is considered an entity by its users.
approximation something (e.g., a value or a design) that is close to the perfect or ideal (value or design). Often an

approximation is a result of trade-offs among ideals.
argument a value passed to a function or a template, in which it is accessed through a parameter.
array a homogeneous sequence of elements, usually numbered, e.g., [0:max).
assertion a statement inserted into a program to state (assert) that something must always be true at this point in the program.
base class a class used as the base of a class hierarchy. Typically a base class has one or more virtual functions.
bit the basic unit of information in a computer. A bit can have the value 0 or the value 1.
bug an error in a program.
byte the basic unit of addressing in most computers. Typically, a byte holds 8 bits.
class a user-defined type that may contain data members, function members, and member types.
code a program or a part of a program; ambiguously used for both source code and object code.
compiler a program that turns source code into object code.
complexity a hard-to-precisely-define notion or measure of the difficulty of constructing a solution to a problem or of the

solution itself. Sometimes complexity is used to (simply) mean an estimate of the number of operations needed to execute an
algorithm.

computation the execution of some code, usually taking some input and producing some output.
concept (1) a notion, an idea; (2) a set of requirements, usually for a template argument.
concrete class a class for which objects can be created.
constant a value that cannot be changed (in a given scope); not mutable.
constructor an operation that initializes (“constructs”) an object. Typically a constructor establishes an invariant and often

acquires resources needed for an object to be used (which are then typically released by a destructor).
container an object that holds elements (other objects).
copy an operation that makes two objects have values that compare equal. See also move.
correctness a program or a piece of a program is correct if it meets its specification. Unfortunately, a specification can be

incomplete or inconsistent, or can fail to meet users’ reasonable expectations. Thus, to produce acceptable code, we
sometimes have to do more than just follow the formal specification.

cost the expense (e.g., in programmer time, run time, or space) of producing a program or of executing it. Ideally, cost should
be a function of complexity.

data values used in a computation.

http://www.stroustrup.com/glossary.html


debugging the act of searching for and removing errors from a program; usually far less systematic than testing.
declaration the specification of a name with its type in a program.
definition a declaration of an entity that supplies all information necessary to complete a program using the entity. Simplified

definition: a declaration that allocates memory.
derived class a class derived from one or more base classes.
design an overall description of how a piece of software should operate to meet its specification.
destructor an operation that is implicitly invoked (called) when an object is destroyed (e.g., at the end of a scope). Often, it

releases resources.
encapsulation protecting something meant to be private (e.g., implementation details) from unauthorized access.
error a mismatch between reasonable expectations of program behavior (often expressed as a requirement or a users’ guide)

and what a program actually does.
executable a program ready to be run (executed) on a computer.
feature creep a tendency to add excess functionality to a program “just in case.”
file a container of permanent information in a computer.
floating-point number a computer’s approximation of a real number, such as 7.93 and 10.78e–3.
function a named unit of code that can be invoked (called) from different parts of a program; a logical unit of computation.
generic programming a style of programming focused on the design and efficient implementation of algorithms. A generic

algorithm will work for all argument types that meet its requirements. In C++, generic programming typically uses
templates.

handle a class that allows access to another through a member pointer or reference. See also copy, move, resource.
header a file containing declarations used to share interfaces between parts of a program.
hiding the act of preventing a piece of information from being directly seen or accessed. For example, a name from a nested

(inner) scope can prevent that same name from an outer (enclosing) scope from being directly used.
ideal the perfect version of something we are striving for. Usually we have to make trade-offs and settle for an

approximation.
implementation (1) the act of writing and testing code; (2) the code that implements a program.
infinite loop a loop where the termination condition never becomes true. See iteration.
infinite recursion a recursion that doesn’t end until the machine runs out of memory to hold the calls. In reality, such

recursion is never infinite but is terminated by some hardware error.
information hiding the act of separating interface and implementation, thus hiding implementation details not meant for the

user’s attention and providing an abstraction.
initialize giving an object its first (initial) value.
input values used by a computation (e.g., function arguments and characters typed on a keyboard).
integer a whole number, such as 42 and –99.
interface a declaration or a set of declarations specifying how a piece of code (such as a function or a class) can be called.
invariant something that must be always true at a given point (or points) of a program; typically used to describe the state (set

of values) of an object or the state of a loop before entry into the repeated statement.
iteration the act of repeatedly executing a piece of code; see recursion.
iterator an object that identifies an element of a sequence.
library a collection of types, functions, classes, etc. implementing a set of facilities (abstractions) meant to be potentially

used as part of more than one program.
lifetime the time from the initialization of an object until it becomes unusable (goes out of scope, is deleted, or the program

terminates).
linker a program that combines object code files and libraries into an executable program.
literal a notation that directly specifies a value, such as 12 specifying the integer value “twelve.”
loop a piece of code executed repeatedly; in C++, typically a for-statement or a while-statement.
move an operation that transfers a value from one object to another, leaving behind a value representing “empty.” See also



copy.
mutable changeable; the opposite of immutable, constant, and variable.
object (1) an initialized region of memory of a known type which holds a value of that type; (2) a region of memory.
object code output from a compiler intended as input for a linker (for the linker to produce executable code).
object file a file containing object code.
object-oriented programming a style of programming focused on the design and use of classes and class hierarchies.
operation something that can perform some action, such as a function and an operator.
output values produced by a computation (e.g., a function result or lines of characters written on a screen).
overflow producing a value that cannot be stored in its intended target.
overload defining two functions or operators with the same name but different argument (operand) types.
override defining a function in a derived class with the same name and argument types as a virtual function in the base class,

thus making the function callable through the interface defined by the base class.
owner an object responsible for releasing a resource.
paradigm a somewhat pretentious term for design or programming style; often used with the (erroneous) implication that

there exists a paradigm that is superior to all others.
parameter a declaration of an explicit input to a function or a template. When called, a function can access the arguments

passed through the names of its parameters.
pointer (1) a value used to identify a typed object in memory; (2) a variable holding such a value.
post-condition a condition that must hold upon exit from a piece of code, such as a function or a loop.
pre-condition a condition that must hold upon entry into a piece of code, such as a function or a loop.
program code (possibly with associated data) that is sufficiently complete to be executed by a computer.
programming the art of expressing solutions to problems as code.
programming language a language for expressing programs.
pseudo code a description of a computation written in an informal notation rather than a programming language.
pure virtual function a virtual function that must be overridden in a derived class.
RAII (“Resource Acquisition Is Initialization”) a basic technique for resource management based on scopes.
range a sequence of values that can be described by a start point and an end point. For example, [0:5) means the values 0, 1,

2, 3, and 4.
recursion the act of a function calling itself; see also iteration.
reference (1) a value describing the location of a typed value in memory; (2) a variable holding such a value.
regular expression a notation for patterns in character strings.
requirement (1) a description of the desired behavior of a program or part of a program; (2) a description of the assumptions

a function or template makes of its arguments.
resource something that is acquired and must later be released, such as a file handle, a lock, or memory. See also handle,

owner.
rounding conversion of a value to the mathematically nearest value of a less precise type.
scope the region of program text (source code) in which a name can be referred to.
sequence elements that can be visited in a linear order.
software a collection of pieces of code and associated data; often used interchangeably with program.
source code code as produced by a programmer and (in principle) readable by other programmers.
source file a file containing source code.
specification a description of what a piece of code should do.
standard an officially agreed-upon definition of something, such as a programming language.
state a set of values.
string a sequence of characters.
style a set of techniques for programming leading to a consistent use of language features; sometimes used in a very restricted



sense to refer just to low-level rules for naming and appearance of code.
subtype derived type; a type that has all the properties of a type and possibly more.
supertype base type; a type that has a subset of the properties of a type.
system (1) a program or a set of programs for performing a task on a computer; (2) a shorthand for “operating system,” that

is, the fundamental execution environment and tools for a computer.
template a class or a function parameterized by one or more types or (compile-time) values; the basic C++ language

construct supporting generic programming.
testing a systematic search for errors in a program.
trade-off the result of balancing several design and implementation criteria.
truncation loss of information in a conversion from a type into another that cannot exactly represent the value to be

converted.
type something that defines a set of possible values and a set of operations for an object.
uninitialized the (undefined) state of an object before it is initialized.
unit (1) a standard measure that gives meaning to a value (e.g., km for a distance); (2) a distinguished (e.g., named) part of a

larger whole.
use case a specific (typically simple) use of a program meant to test its functionality and demonstrate its purpose.
value a set of bits in memory interpreted according to a type.
variable a named object of a given type; contains a value unless uninitialized.
virtual function a member function that can be overridden in a derived class.
word a basic unit of memory in a computer, usually the unit used to hold an integer.
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Index

!. See Not, 1087
!=. See Not equal (inequality), 67, 1088, 1101
"...". See String literal, 62
#. See Preprocessor directives, 1129
$. See End of line, 873, 1178
%. See Output format specifier, 1187

Remainder (modulo), 68
%=. See Remainder and assign, 1090
&. See Address of, 588, 1087

Bitwise logical operations (and), 956, 1089, 1094
Reference to (in declarations), 276–279, 1099

&&. See Logical and, 1089, 1094
&=. See Bitwise logical operations (and and assign), 1090
.'. .'. See Character literals, 161, 1079–1080
(). See Expression (grouping), 95, 867, 873, 876

Function call, 285, 766
Function of (in declarations), 113–115, 1099
Regular expression (grouping), 1178

*. See Contents of (dereference), 594
Multiply, 1088
Pointer to (in declarations), 587, 1099
Repetition (in regex), 868, 873–874, 1178

*/ end of block comment, 238
*=. See Multiply and assign (scale), 67
+. See Add, 66, 1088

Concatenation (of strings), 68–69, 851, 1176
Repetition in regex, 873–875, 1178

++. See Increment, 66, 721
+=. See Add and assign, 1089

Move forward, 1101
string (add at end), 851, 1176

, (comma). See Comma operator, 1090
List separator, 1103, 1122–1123

–. See Minus (substraction), 66, 1088
Regular expression (range), 877

––. See Decrement, 66, 1087, 1141
–> (arrow). See Member access, 608, 1087, 1109, 1141
–= See Move backward, 1101, 1142

Subtract and assign, 67, 1090
. (dot). See Member access, 306, 607–608, 1086–1087

Regular expression, 872, 1178
... (ellipsis). See Arguments (unchecked), 1105–1106

Catch all exceptions, 152
/. See Divide, 66, 1088
//. See Line comment, 45
/*. . .*/. See Block comment, 238
/=. See Divide and assign, 67, 1090
: (colon). See Base and member initializers, 315, 477, 555

Conditional expression, 268



Label, 106–108, 306, 511, 1096
::. See Scope (resolution), 295, 314, 1083, 1086
; (semicolon). See Statement (terminator), 50, 100
<. See Less than, 67, 1088
<<. See Bitwise logical operations (left shift), 956, 1088

Output, 363–365, 1173
<=. See Less than or equal, 67, 1088
<<=. See Bitwise logical operations (shift left and assign), 1090
<. . .>. See Template (arguments and parameters), 153, 678–679
=. See Assignment, 66, 1090

Initialization, 69–73, 1219
==. See Equal, 67, 1088
>. See Greater than, 67, 1088

Input prompt, 223
Template (argument-list terminator), 679

>=. See Greater than or equal, 67, 1088
>>. See Bitwise logical operations (right shift), 956, 1088

Input, 61, 365
>>=. See Bitwise logical operations (shift right and assign), 1090
?. See Conditional expression, 268, 1089

Regular expression, 867–868, 873, 874–875, 1178
[]. See Array of (in declaration), 649, 1099

Regular expression (character class), 872, 1178
Subscripting, 594, 649, 1101

\ (backslash). See Character literal, 1079–1080
Escape character, 1178
Regular expression (escape character), 866–867, 873, 877

.̂ See Bitwise logical operations (exclusive or), 956, 1089, 1094
Regular expression (not), 873, 1178

^=. See Bitwise logical operations (xor and assign), 1090
_. See Underscore, 75, 76, 1081
{}. See Block delimiter, 47, 111

Initialization, 83
List, 83
Regular expression (range), 867, 873–875, 1178

|. See Bitwise logical operations (bitwise or), 956, 1089, 1094
Regular expression (or), 867–868, 873, 876, 1178

|=. See Bitwise logical operations (or and assign), 1090
||. See Logical or, 1089, 1094
~. See Bitwise logical operations (complement), 956, 1087

Destructors, 601–603
0 (zero). See Null pointer, 598

Prefix, 382, 384
printf() format specifier, 1188–1189

0x. See Prefix, 382, 384

A
a, append file mode, 1186
\a alert, character literal, 1079
abort(), 1194–1195
abs(), absolute value, 917, 1181

complex, 920, 1183



Abstract classes, 495, 1217
class hierarchies, 512
creating, 495, 512, 1118–1119
Shape example, 495–496

Abstract-first approach to programming, 10
Abstraction, 92–93, 1217

level, ideals, 812–813
Access control, 306, 505, 511

base classes, 511
encapsulation, 505
members, 492–493
private, 505, 511
private by default, 306–307
private: label, 306
private vs. public, 306–308
protected, 505, 511
protected: label, 511
public, 306, 505, 511
public by default, 307–308. See also struct
public: label, 306
Shape example, 496–499

accumulate(), 759, 770–772, 1183
accumulator, 770
generalizing, 772–774

acos(), arccosine, 917, 1182
Action, 47
Activation record, 287. See also Stacks
Ada language, 832–833
Adaptors

bind(), 1164
container, 1144
function objects, 1164
mem_fn(), 1164
not1(), 1164
not2(), 1164
priority_queue, 1144
queue, 1144
stack, 1144

add(), 449–450, 491–492, 615–617
Add (plus) +, 66, 1088
Add and assign +=, 66, 73, 1090
Additive operators, 1088
Address, 588, 1217

unchecked conversions, 943–944
Address of (unary) &, 588, 1087
Ad hoc polymorphism, 682–683
adjacent_difference(), 770, 1184
adjacent_find(), 1153
advance(), 615–617, 739, 1142
Affordability, software, 34
Age distribution example, 538–539
Alert markers, 3



Algol60 language, 827–829
Algol family of languages, 826–829
<algorithm>, 759, 1133
Algorithms, 1217

and containers, 722
header files, 1133–1134
numerical, 1183–1184
passing arguments to. See Function objects

Algorithms, numerical, 770, 1183–1184
accumulate(), 759, 770–774, 1183
adjacent_difference(), 770, 1184
inner_product(), 759, 770, 774–776, 1184
partial_sum(), 770, 1184

Algorithms, STL, 1152–1153
<algorithm>, 759
binary_search(), 796
comparing elements, 759
copy(), 758, 789–790
copy_if(), 789
copying elements, 758
count(), 758
count_if(), 758
equal(), 759
equal_range(), 758, 796
find(), 758, 759–763
find_if(), 758, 763–764
heap, 1160
lower_bound(), 796
max(), 1161
merge(), 758
merging sorted sequences, 758
min(), 1161
modifying sequence, 1154–1156
mutating sequence, 1154–1156
nonmodifying sequence, 1153–1154
numerical. See Algorithms, numerical
permutations, 1160–1161
search(), 795–796
searching, 1157–1159. See also find_if(); find()
set, 1159–1160
shuffle(), 1155–1156
sort(), 758, 794–796
sorting, 758, 794–796, 1157–1159
summing elements, 759
testing, 1001–1008
unique_copy(), 758, 789, 792–793
upper_bound(), 796
utility, 1157
value comparisons, 1161–1162

Aliases, 1128, 1217. See also References
Allocating memory. See also Deallocating memory; Memory

allocator_type, 1147



bad_alloc exception, 1094
C++ and C, 1043–1044
calloc(), 1193
embedded systems, 935–936, 940–942
free store, 593–594
malloc(), 1043–1044, 1193
new, 1094–1095
pools, 940–941
realloc(), 1045
stacks, 942–943

allocator_type, 1147
Almost containers, 751, 1145
alnum, regex character class, 878, 1179
alpha, regex character class, 878, 1179
Alternation

patterns, 194
regular expressions, 876

Ambiguous function call, 1104
Analysis, 35, 176, 179
and, synonym for &, 1037, 1038
and_eq, synonym for &=, 1037, 1038
app mode, 389, 1170
append(), 851, 1177
Append

files, 389, 1186
string +=, 851

Application
collection of programs, 1218
operator (), 766

Approximation, 532–537, 1218
Arccosine, acos(), 917
Arcsine, asin(), 918
Arctangent, atan(), 918
arg(), of complex number, theta, 920, 1183
Argument deduction, 689–690
Argument errors

callee responsibility, 143–145
caller responsibility, 142–143
reasons for, 144–145

Arguments, 272, 1218
formal. See Parameters
functions, 1105–1106
passing. See Passing arguments
program input, 91
source of exceptions, 147–148
templates, 1122–1123
types, class interfaces, 324–326
unchecked, 1029–1030, 1105–1106
unexpected, 136

Arithmetic if ?:, 268. See also Conditional expression ?:
Arithmetic operations. See Numerics
<array>, 1133



Arrays, 648–650, 1218. See also Containers; vector
[] declaration, 649
[] dereferencing, 649
accessing elements, 649, 899–901
assignment, 653–654
associative. See Associative containers
built-in, 747–749
copying, 653–654
C-style strings, 654–655
dereferencing, 649
element numbering, 649
initializing, 596–598, 654–656
multidimensional, 895–897, 1102
palindrome example, 660–661
passing pointers to arrays, 944–951
pointers to elements, 650–652
range checking, 649
subscripting [], 649
terminating zero, 654–655
vector alternative, 947–951

Arrays and pointers, 651–658
debugging, 656–659

array standard library class, 747–749, 1144
asin(), arcsine, 918, 1182
asm(), assembler insert, 1037
Assemblers, 820
Assertions

assert(), 1061
<cassert>, 1135
debugging, 163
definition, 1218

assign(), 1148
Assignment =, 69–73

arrays, 653–654
assignment and initialization, 69–73
composite assignment operators, 73–74
containers, 1148
Date example, 309–310
enumerators, 318–319
expressions, 1089–1090
string, 851
vector, resizing, 675–677

Assignment operators (composite), 66
%=, 73, 1090
&=, 1090
*=, 73, 1089
+=, 73, 1090, 1141
–=, 73, 1090, 1142
/=, 73, 1090
<<=, 1090
>>=, 1090
^=, 1090



|=, 1090
Associative arrays. See Associative containers
Associative containers, 776, 1144

email example, 856–860
header files, 776
map, 776
multimap, 776, 860–861
multiset, 776
operations, 1151–1152
set, 776
unordered_map, 776
unordered_multimap, 776
unordered_multiset, 776
unordered_set, 776

Assumptions, testing, 1009–1011
at(), range-checked subscripting, 693–694, 1149
atan(), arctangent, 918, 1182
ate mode, 389, 1170
atof(), string to double, 1192
atoi(), string to int, 1192
atol(), string to long, 1192
AT&T Bell Labs, 838
AT&T Labs, 838
attach() vs. add() example, 491–492
auto, 732–734, 760
Automatic storage, 591–592, 1083. See also Stack storage
Axis example, 424–426, 443, 529–532, 543–546

B
b, binary file mode, 1186
Babbage, Charles, 832
back(), last element, 737, 1149
back_inserter(), 1162
Backus, John, 823
Backus-Naur (BNF) Form, 823, 828
bad_alloc exception, 1094
bad() stream state, 355, 1171
Base-2 number system (binary), 1078–1079
Base-8 number system (octal), 1077–1078
Base-10

logarithms, 918
number system (decimal), 1077–1078

Base-16 number system (hexadecimal), 1077–1078
Balanced trees, 780–782
Base and member initializers, 315, 477, 555
Base classes, 493–496, 504–507, 1218

abstract classes, 495, 512–513, 1118–1119
access control, 511
derived classes, 1116–1117
description, 504–506
initialization of, 477, 555, 1113, 1117
interface, 513–514



object layout, 506–507
overriding, 508–511
Shape example, 495–496
virtual function calls, 501, 506–507
vptr, 506
vtbl, 506

Base-e exponentials, 918
basic_string, 852
Basic guarantee, 702
BCPL language, 838
begin()

iterator, 1148
string, 851, 1177
vector, 721

Bell Telephone Laboratories (Bell Labs), 836, 838–842, 1022–1023
Bentley, John, 933, 966
Bidirectional iterator, 1142
bidirectional iterators, 752
Big-O notation, complexity, 785
Binary I/O, 390–393
binary mode, 389, 1170
Binary number system, 1078–1079
Binary search, 758, 779, 795–796
binary_search(), 796, 1158
bind() adaptor, 1164
bitand, synonym for &, 1037, 1038
Bitfields, 956–957, 967–969, 1120–1121
bitor, synonym for |, 1038
Bits, 78, 954, 1218

bitfields, 956–957
bool, 955
char, 955
enumerations, 956
integer types, 955
manipulating, 965–967
signed, 961–965
size, 955–956
unsigned, 961–965

<bitset>, 1133
bitset, 959–961

bitwise logical operations, 960
construction, 959
exceptions, 1138
I/O, 960

Bitwise logical operations, 956–959, 1094
and &, 956–957, 1089, 1094
or |, 956, 1089, 1094
or and assign, |=, 966
and and assign &=, 1090
complement ~, 956
exclusive or ,̂ 956, 1089, 1094
exclusive or and assign ^=, 1089



left shift <<, 956
left shift and assign <<=, 1089
right shift >>, 956
right shift and assign >>=, 1089

Blackboard, 36
Black-box testing, 992–993
blank, character class, regex, 878, 1179
Block, 111

debugging, 161
delimiter, 47, 111
nesting within functions, 271
try block, 146–147

Block comment /*. . .*/, 238
Blue marginal alerts, 3
BNF (Backus-Naur) Form, 823, 828
Body, functions, 114
bool, 63, 66–67, 1099

bits in memory, 78
bit space, 955
C++ and C, 1026, 1038
size, 78

boolalpha, manipulator, 1173
Boolean conversions, 1092
Borland, 831
Bottom-up approach, 9, 811
Bounds error, 149
Branching, testing, 1006–1008. See also Conditional statements
break, case label termination, 106–108
Broadcast functions, 903
bsearch(), 1194–1195
Buffer, 348

flushing, 240–241
iostream, 406
overflow, 661, 792, 1006. See also gets(), scanf()

Bugs, 158, 1218. See also Debugging; Testing
finding the last, 166–167
first documented, 824–825
regression tests, 993

Built-in types, 304, 1099
arrays, 747–749, 1101–1102
bool, 77, 1100
characters, 77, 891, 1100
default constructors, 328
exceptions, 1126
floating-point, 77, 891–895, 1100
integers, 77, 891–895, 961–965, 1100
pointers, 588–590, 1100–1101
references, 279–280, 1102–1103

Button example, 443, 561–563
attaching to menus, 571
detecting a click, 557

Byte, 78, 1218



operations, C-style strings, 1048–1049

C
.c suffix, 1029
.cpp, suffix, 48, 1200
C# language, 831
C++ language, 839–842. See also Programming; Programs; Software

coding standards, list of, 983
portability, 11
use for teaching, xxiv, 6–9

C++ and C, 1022–1024
C functions, 1028–1032
C linkage convention, 1033
C missing features, 1025–1027
calling one from the other, 1032–1034
casts, 1040–1041
compatibility, 1024–1025
const, 1054–1055
constants, 1054–1055
container example, 1059–1065
definitions, 1038–1040
enum, 1042
family tree, 1023
free-store, 1043–1045
input/output, 1050–1054
keywords, 1037–1038
layout rules, 1034
macros, 1054–1059
malloc(), 1043–1044
namespaces, 1042–1043
nesting structs, 1037
old-style casts, 1040
opaque types, 1060
performance, 1024
realloc(), 1045
structure tags, 1036–1037
type checking, 1032–1033
void, 1030
void*, 1041–1042

“C first” approach to programming, 9
C language, 836–839. See also C standard library

C++ compatibility, 1022–1024. See also C++ and C
K&R, 838, 1022–1023
linkage convention, 1033
missing features, 1025–1027

C standard library
C-style strings, 1191
header files, 1135
input/output. See C-style I/O (stdio)
memory, 1192–1193

C-style casts, 1040–1041, 1087, 1095
C-style I/O (stdio)



%, conversion specification, 1187
conversion specifications, 1188–1189
file modes, 1186
files, opening and closing, 1186
fprintf(), 1051–1052, 1187
getc(), 1052, 1191
getchar(), 1045, 1052–1053, 1191
gets(), 1052, 1190–1191
output formats, user-defined types, 1189–1190
padding, 1188
printf(), 1050–1051, 1187
scanf(), 1052–1053, 1190
stderr, 1189
stdin, 1189
stdout, 1189
truncation, 1189

C-style strings, 654–655, 1045–1047, 1191
byte operations, 1048–1049
const, 1047–1048
copying, 1046–1047, 1049
executing as a command, system(), 1194
lexicographical comparison, 1046
operations, 1191–1192
pointer declaration, 1049–1050
strcat(), concatenate, 1047
strchr(), find character, 1048
strcmp(), compare, 1046
strcpy(), copy, 1047, 1049
from string, c_str(), 350, 851
strlen(), length of, 1046
strncat(), 1047
strncmp(), 1047
strncpy(), 1047
three-way comparison, 1046

CAD/CAM, 27, 34
Calculator example, 174, 186–188

analysis and design, 176–179
expression(), 197–200
get_token(), 196
grammars and programming, 188–195
parsing, 190–193
primary(), 196, 208
symbol table, 247
term(), 196, 197–202, 206–207
Token, 185–186
Token_stream, 206–214, 240–241

Call stack, 290
Callback functions, 556–559
Callback implementation, 1208–1209
Calling functions. See Function calls
calloc(), 1193
Cambridge University, 839



capacity(), 673–674, 1151
Capital letters. See Case (of characters)
Case (of characters)

formatting, 397–398
identifying, 397
islower(), 397, 1175
map container, 782
in names, 74–77
sensitivity, 397–398
tolower(), changing case, 398, 1176
toupper(), changing case, 398, 1176

case labels, 106–108
<cassert>, 1135
Casting away const, 609–610
Casts. See also Type conversion

C++ and C, 1026, 1038
casting away const, 609
const_cast, 1095
C-style casts, 1040–1041
dynamic_cast, 932, 1095
lexical_cast example, 855
narrow_cast example, 153
reinterpret_cast, 609
static_cast, 609, 944, 1095
unrelated types, 609

CAT scans, 30
catch, 147, 1038
Catch all exceptions ., 152
Catching exceptions, 146–153, 239–241, 1126
cb_next() example, 556–559
<cctype>, 1135, 1175
ceil(), 917, 1181
cerr, 151, 1169, 1189
<cerrno>, 1135
<cfloat>, 1135
Chaining operations, 180–181
Character classes

list of, 1179
in regular expressions, 873–874, 878

Character classification, 397–398, 1175–1176
Character literals, 161, 1079–1080
CHAR_BIT limit macro, 1181
CHAR_MAX limit macro, 1181
CHAR_MIN limit macro, 1181
char type, 63, 66–67, 78

bits, 955
built-in, 1099
properties, 741–742
signed vs. unsigned, 894, 964

cin, 61
C equivalent. See stdin
standard character input, 61, 347, 1169



Circle example, 469–472, 497
vs. Ellipse, 474

Circular reference. See Reference (circular)
class, 183, 1036–1037
Class

abstract, 495, 512–513, 1118–1119. See also Abstract classes
base, 504–506
coding standards, 981
concrete, 495–496, 1218
const member functions, 1110
constructors, 1112–1114, 1119–1120
copying, 1115, 1119
creating objects. See Concrete classes
default constructors, 327–330
defining, 212, 305, 1108, 1218
derived, 504
destructors, 1114–1115, 1119
encapsulation, 505
friend declaration, 1111
generated operations, 1119–1120
grouping related, 512
hierarchies, 512
history of, 834
implementation, 306–308
inheritance, 504–505, 513–514
interface, 513–514
member access. See Access control
naming. See Namespaces
nesting, 270
object layout, 506–507
organizing. See Namespaces
parameterized, 682–683. See also Template
private, 306–308, 505, 511, 1108–1109
protected, 495, 505, 511
public, 306–308, 505, 511, 1108–1109
run-time polymorphism, 504–505
subclasses, 504. See also Derived classes
superclasses, 504. See also Base classes
templates, 681–683
this pointer, 1110
types as parameters. See Template
union, 1121
unqualified name, 1110
uses for, 305

Class interfaces, 323, 1108
argument types, 324–326
const member functions, 330–332
constants, 330–332. See also const
copying, 326–327
helper functions, 332–334
immutable values, 330–332
initializing objects, 327–330



members, 332–334
mutable values, 332–334
public vs. private, 306–308
symbolic constants, defining, 326
uninitialized variables, 327–330

Class members, 305, 1108
. (dot), 306, 1109
:: (scope resolution), 1109
accessing, 306. See also Access control
allocated at same address, 1121
bitfields, 1120–1121
in-class definition, 1112
class interfaces, 332–334
data, 305
definitions, 1112
function, 314–316
out-of-class definition, 1112
Token_stream example, 212
Token example, 183–184

Class scope, 267, 1083
Class template

parameterized class, 682–683
parameterized type, 682–683
specialization, 681
type generators, 681

classic_elimination() example, 910–911
Cleaning up code

comments, 237–238
functions, 234–235
layout, 235–236
logical separations, 234–235
revision history, 237–238
scaffolding, 234–235
symbolic constants, 232–234

clear(), 355–358, 1150
<climits>, 1135
<clocale>, 1135
clock(), 1015–1016, 1193
clock_t, 1193
clone() example, 504
Closed_polyline example, 456–458

vs. Polygon, 458
close() file, 352
<cmath>, 918, 1135, 1182
cntrl, 878, 1179
COBOL language, 823–825
Code

definition, 1218
layout, cleaning up, 235–236
libraries, uses for, 177
storage, 591–592
structure, ideals, 810–811



test coverage, 1008
Coding standards, 974–975

C++, list of, 983
complexity, sources of, 975
ideals, 976–977
sample rules, 977–983

Color example, 425–426, 450–452
color chat example, 465–467
fill, 431–432, 462–464, 500
transparency, 451

Columns, matrices, 900–901, 906
Command-line, 47
Comments, 45–46

block /*. . .*/, 238, 1076
C++ and C, 1026
cleaning up, 237–238
vs. code, 238
line //, 45–46, 1076
role in debugging, 159–160

Common Lisp language, 825
Communication skills, programmers, 22
Compacting garbage collection, 938–939
Comparison, 67. See also <; ==

C-style strings, 1045–1047
characters, 740
containers, 1151
key_compare, 1147
lexicographical, C-style strings, 1046
lexicographical_compare(), 1162
min/max algorithms, 1161–1162
string, 851
three-way, 1046

Compatibility. See C++ and C
Compile-time errors. See Errors, compile-time
Compiled languages, 47–48
Compilers, 48, 1218

compile-time errors, 51
conditional compilation, 1058–1059
syntax checking, 48–50

compl, synonym for ~, 1037, 1082
complex

*, multiply, 919, 1183
+, add (plus), 919, 1183
<<, output, 1183
!=, not equal (inequality), 919, 1183
==, equal, 919, 1183
>>, input, 920, 1183
/, divide, 919, 1183
<<, output, 920
abs(), absolute value, 920, 1183
conj(), conjugate, 920
Fortran language, 920



imag(), imaginary part, 920
norm(), square of abs(), 919
number types, 1182–1183
polar(), polar coordinate, 920
real(), real part, 920
rho, 920
square of abs(), 919
theta, 920

<complex>, 1134
complex operators, 919–920, 1183
standard math functions, 1181

Complex numbers, 919–920
Complexity, 1218

sources of, 975
Composite assignment operators, 73–74
Compound statements, 111
Computation, 91. See also Programs; Software

correctness, 92–94
data structures, 90–91
efficiency, 92–94
input/output, 91
objectives, 92–94
organizing programs, 92–94
programmer ideals, 92–94
simplicity, 92–94
state, definition, 90–91

Computation vs. data, 717–720
Computer-assisted surgery, 30
Computers

CAT scans, 30
computer-assisted surgery, 30
in daily life, 19–21
information processing, 32
Mars Rover, 33
medicine, 30
pervasiveness of, 19–21
server farms, 31–32
shipping, 26–28
space exploration, 33
telecommunications, 28–29
timekeeping, 26
world total, 19

Computer science, 12, 24–25
Concatenation of strings, 66

+, 68–69, 851, 1176
+=, 68–69, 851, 1176

Concept-based approach to programming, 6
Concrete classes, 495–496, 1218
Concrete-first approach to programming, 6
Concurrency, 932
Conditional compilation, 1058–1059
Conditional expression ?:, 268, 1089



Conditional statements. See also Branching, testing
for, 111–113
if, 102–104
switch, 105–109
while, 109–111

Conforming programs, 1075
Confusing variable names, 77
conj(), complex conjugate, 920, 1183
Conjugate, 920
Consistency, ideals, 814–815
Console, as user interface, 552
Console input/output, 552
Console window, displaying, 162
const, 95–97. See also Constant; Static storage, static const

C++ and C, 1026, 1054–1055
class interfaces, 330–332
C-style strings, 1047–1048
declarations, 262–263
initializing, 262
member functions, 330–332, 1110
overloading on, 647–648
passing arguments by, 276–278, 281–284
type, 1099

*const, immutable pointer, 1099
Constant. See also const, expressions, 1093
const_cast, casting away const, 609, 1095
const_iterator, 1147
constexpr, 96-97, 290-291, 1093, 1104
Constraints, vector range checking, 695
Constructors, 310–312, 1112–1114. See also Destructors; Initialization

containers, 1148
copy, 633–634, 640–646
Date example, 311
Date example 307, 324–326
debugging, 643–646
default, 327–330, 1119
error handling, 313, 700–702
essential operations, 640–646
exceptions, 700–702
explicit, 642–643
implicit conversions, 642–643
initialization of bases and members, 315, 477, 555
invariant, 313–314, 701–702
move, 637–640
need for default, 641
Token example, 184

Container adaptors, 1144
Containers, 148, 749–751, 1218. See also Arrays; list; map, associative array; vector

and algorithms, 722
almost containers, 751, 1145
assignments, 1148
associative, 1144, 1151–1152



capacity(), 1150–1151
of characters. See string
comparing, 1151
constructors, 1148
contiguous storage, 741
copying, 1151
destructors, 1148
element access, 1149
embedded systems, 951–954
header files, 1133–1134
information sources about, 750
iterator categories, 752
iterators, 1148
list operations, 1150
member types, 1147
operations overview, 1146–1147
queue operations, 1149
sequence, 1144
size(), 1150
stack operations, 1149
standard library, 1144–1152
swapping, 1151
templates, 686–687

Contents of * (dereference, indirection), 594
Contiguous storage, 741
Control characters, iscntrl(), 397
Control inversion, GUIs, 569–570
Control variables, 110
Controls. See Widget example
Conversion specifications, printf(), 1188–1189
Conversion. See also Type conversion

character case, 398
representation, 374–376
unchecked, 943–944

Coordinates. See also Point example
computer screens, 419–420
graphs, 426–427

copy(), 789–790, 1154
Copy assignments, 634–636, 640–646
Copy constructors, 633–634, 640–646
copy_backward(), 1154
copy_if(), 789
Copying, 631–637

arrays, 653–654
class interfaces, 326–327
containers, 1151
C-style strings, 1046–1047, 1049
I/O streams, 790–793
objects, 503–504
sequences, 758, 789–794
vector, 631–636, 1148

Correctness



definition, 1218
ideals, 92–94, 810
importance of, 929–930
software, 34

cos(), cosine, 527–528, 917, 1181
cosh(), hyperbolic cosine, 1182
Cost, definition, 1219
count(), 758, 1154
count_if(), 758, 1154
cout, 45

C equivalent. See stdout
printing error messages, 151. See also cerr
standard output, 347, 1169

Critical systems, coding standards, 982–983
<cstddef>, 1136
<cstdio>, 1135
<cstdlib>, 1135, 1193, 1194
c_str(), 1177
<cstring>, 1135, 1175, 1193
<ctime>, 1135, 1193
Ctrl D, 124
Ctrl Z, 124
Current object, 317. See also this pointer
Cursor, definition, 45
<cwchar>, 1136
<cwctype>, 1136

D
d, any decimal digit, regex, 878, 1179
\d, decimal digit, regex, 873, 1179
\D, not a decimal digit, regex, 873, 1179
d suffix, 1079
Dahl, Ole-Johan, 833–835
Data. See also Containers; Sequences; list; map, associative array; vector

abstraction, 816
collections. See Containers
vs. computation, 717–720
generalizing code, 714–716
in memory. See Free store (heap sotrage)
processing, overview, 712–716
separating from algorithms, 722
storing. See Containers
structure. See Containers; class; struct
traversing. See Iteration; Iterators
uniform access and manipulation, 714–716. See also STL (Standard Template Library)

Data member, 305, 492–493
Data structure. See Data; struct
Data type. See Type
Date and time, 1193–1194
Date example, See Chapters 6–7
Deallocating memory, 598–600, 1094–1095. See also delete[]; delete
Debugging, 52, 158, 1219. See also Errors; Testing



arrays and pointers, 656–659
assertions, 163
block termination, 161
bugs, 158
character literal termination, 161
commenting code, 159–160
compile-time errors, 161
consistent code layout, 160
constructors, 643–646
declaring names, 161
displaying the console window, 162
expression termination, 161
finding the last bug, 166–167
function size, 160
GUIs, 575–577
input data, 166
invariants, 162–163
keeping it simple, 160
logic errors, 154–156
matching parentheses, 161
naming conventions, 160
post-conditions, 165–166
pre-conditions, 163–165
process description, 158–159
reporting errors, 159
stepping through code, 162
string literal termination, 161
systematic approach, 166–167
test cases, 166, 227
testing, 1012
tracing code execution, 162–163
transient bugs, 595
using library facilities, 160
widgets, 576–577

dec manipulator, 382–383, 1174
Decimal digits, isdigit(), 397
Decimal integer literals, 1077
Decimal number system, 381–383, 1077–1078
Deciphering (decryption), example, 969–974
Declaration operators, 1099

& reference to, 276–279, 1099
* pointer to, 587, 1099
[] array of, 649, 1099
() function of, 113–115, 1099

Declarations, 51, 1098–1099
C++ and C, 1026
classes, 306
collections of. See Header files
constants, 262–263
definition, 51, 77, 257, 1098–1099, 1219
vs. definitions, 259–260
entities used for, 261



extern keyword, 259
forward, 261
function, 257–258, 1103
function arguments, 272–273
function return type, 272–273
grouping. See Namespaces
managing. See Header files
need for, 261
order of, 215
parts of, 1098
subdividing programs, 260–261
uses for, 1098
variables, 260, 262–263

Decrementing ––, 97
iterator, 1141–1142
pointer, 652

Deep copy, 636
Default constructors, 328–329

alternatives for, 329–330
for built-in types, 328
initializing objects, 327
need for, identifying, 641
uses for, 328–329

#define, 1129
Definitions, 77, 258–259, 1219. See also Declarations

C++ and C, 1038–1040
vs. declarations, 259–260
function, 113–115, 272–273

delete
C++ and C, 1026, 1037
deallocating free store, 1094–1095
destructors, 601–605
embedded systems, 932, 936–940
free-store deallocation, 598–600
in unary expressions, 1087

delete[], 599, 1087, 1094–1095
Delphi language, 831
Dependencies, testing, 1002–1003
Depth-first approach to programming, 6
deque, double ended queue, 1144
<deque>, 1133
Dereference/indirection

*, 594. See also Contents of
[], 118. See also Subscripting

Derivation, classes, 505
Derived classes, 505, 1219

access control, 511
base classes, 1116–1117
inheritance, 1116–1117
multiple inheritance, 1117
object layout, 506–507
overview, 504–506, 1116–1117



private bases and members, 511
protected bases and members, 511
public bases and members, 511
specifying, 507–508
virtual functions, 1117–1118

Design, 35, 176, 179, 1219
Design for testing, 1011–1012
Destructors, 601–603, 1114–1115, 1219. See also Constructors

containers, 1148
debugging, 643–646
default, 1119
essential operations, 640–646
exceptions, 700–702
freeing resources, 323, 700–702
and free store, 604–605
generated, 603
RAII, 700–702
virtual, 604–605
where needed, 641–642

Device drivers, 346
Dictionary examples, 123–125, 788
difference_type, 1147
digit, character class, 878, 1179
Digit, word origin, 1077
Dijkstra, Edsger, 827–828, 992
Dimensions, matrices, 898–901
Direct expression of ideas, ideals, 811–812
Dispatch, 504–505
Display model, 413–414
distance(), 1142
Divide /, 66, 1088
Divide and assign /=, 67, 1090
Divide and conquer, 93
Divide-by-zero error, 201–202
divides(), 1164
Domain knowledge, 934
Dot product. See inner_product()
double floating-point type, 63, 66–67, 78, 1099
Doubly-linked lists, 613, 725. See also list
draw() example

fill color, 500
line visibility, 500
Shape, 500–502

draw_lines() example. See also draw() example
Closed_polyline, 458
Marked_polyline, 475–476
Open_polyline, 456
Polygon, 459
Rectangle, 465
Shape, 500–502

duration..., 1016, 1185
duration_cast, 1016, 1185



Dynamic dispatch, 504–505. See also Virtual functions
Dynamic memory, 935-936, 1094. See also Free store (heap storage)
dynamic_cast, type conversion, 1095

exceptions, 1138
predictability, 932

E
Efficiency

ideals, 92–94, 810
vector range checking, 695

Einstein, Albert, 815
Elements. See also vector

numbering, 649
pointers to, 650–652
variable number of, 649

Ellipse example, 472–474
vs. Circle, 474

Ellipsis ...
arguments (unchecked), 1105–1106
catch all exceptions, 152

else, in if-statements, 102–104
Email example, 855–865
Embedded systems

coding standards, 975–977, 983
concurrency, 932
containers, 951–954
correctness, 929–930
delete operator, 932
domain knowledge, 934
dynamic_cast, 932
error handling, 933–935
examples of, 926–928
exceptions, 932
fault tolerance, 930
fragmentation, 936, 937
free-store, 936–940
hard real time, 931
ideals, 932–933
maintenance, 929
memory management, 940–942
new operator, 932
predictability, 931, 932
real-time constraints, 931
real-time response, 928
reliability, 928
resource leaks, 931
resource limitations, 928
soft real time, 931
special concerns, 928–929

Empty
empty(), is container empty? 1150
lists, 729



sequences, 729
statements, 101

Empty statement, 1035–1036
Encapsulation, 505
Enciphering (Encryption), example, 969–974
end()

iterator, 1148
string, 851, 1177
vector, 722

End of file
eof(), 355, 1171
file streams, 366
I/O error, 355
stringstream, 395

End of input, 124
End of line $ (in regular expressions), 873, 1178
Ending programs. See Termination
endl manipulator, 1174
ends manipulator, 1174
English grammar vs. programming grammar, 193–194
enum, 318–321, 1042. See also Enumerations
Enumerations, 318–321, 1107–1108

enum, 318–321, 1042
enumerators, 318–321, 1107–1108

EOF macro, 1053–1054
eof() stream state, 355, 1171
equal(), 759, 1153
Equal ==, 67, 1088
Equality operators, expressions, 1088
equal_range(), 758, 796
equal_to(), 1163
erase()

list, 742–745, 1150
list operations, 615–617
string, 851, 1177
vector, 745–747

errno, error indicator, 918–919, 1182
error() example, 142–143

passing multiple strings, 152
Error diagnostics, templates, 683
Error handling. See also Errors; Exceptions

% for floating-point numbers, 230–231
catching exceptions, 239–241
files fail to open, 389
GUIs, 576
hardware replication, 934
I/O errors. See I/O errors
I/O streams, 1171
mathematical errors, 918–919
modular systems, 934–935
monitoring subsystems, 935
negative numbers, 229–230



positioning in files, 393–394
predictable errors, 933
recovering from errors, 239–241
regular expressions, 878–880
resource leaks, 934
self-checking, 934
STL (Standard Template Library), 1137–1138
testing for errors, 225–229
transient errors, 934
vector resource exceptions, 702

Error messages. See also Reporting errors; error() example; runtime_error
exceptions, printing, 150–151
templates, 683
writing your own, 142

Errors, 1219. See also Debugging; Testing
classifying, 134
compile-time, 48–50, 134, 136–137
detection ideal, 135
error(), 142–143
estimating results, 157–158
incomplete programs, 136
input format, 64–65
link-time, 134, 139–140
logic, 134, 154–156
poor specifications, 136
recovering from, 239–241. See also Exceptions
sources of, 136
syntax, 137–138
translation units, 139–140
type mismatch, 138–139
undeclared identifier, 258
unexpected arguments, 136
unexpected input, 136
unexpected state, 136

Errors, run-time, 134, 140–142. See also Exceptions
callee responsibility, 143–145
caller responsibility, 142–143
hardware violations, 141
reasons for, 144–145
reporting, 145–146

Essential operations, 640–646
Estimating development resources, 177
Estimating results, 157–158
Examples

age distribution, 538–539
calculator. See Calculator example
Date. See Date example
deciphering, 969–974
deleting repeated words, 71–73
dictionary, 123–125, 788
Dow Jones tracking, 782–785
email analysis, 855–865



embedded systems, 926–928
enciphering (encryption), 969–974
exponential function, 527–528
finding largest element, 713–716, 723–724
fruits, 779–782
Gaussian elimination, 910–911
graphics, 414–418, 436
graphing data, 537–539
graphing functions, 527–528
GUI (graphical user interface), 565–569, 573–574, 576–577
Hello, World! 45–46
intrusive containers, 1059–1065
Lines_window, 565–569, 573–574, 576–577
Link, 613–622
list (doubly linked), 613–622
map container, 779–785
Matrix, 908–914
palindromes, 659–662
Pool allocator, 940–941
Punct_stream, 401–405
reading a single value, 359–363
reading a structured file, 367–376
regular expressions, 880–885
school table, 880–885
searching, 864–872
sequences, 723–724
Stack allocator, 942–943
TEA (Tiny Encryption Algorithm), 969–974
text editor, 734–741
vector. See vector example
Widget manipulation, 565–569, 1213–1216
windows, 565–569
word frequency, 777–779
writing a program. See Calculator example
writing files, 352–354
ZIP code detection, 864–872

<exception>, 1135
Exceptions, 146–150, 1125–1126. See also Error handling; Errors

bounds error, 149
C++ and C, 1026
catch, 147, 239–241, 1125–1126
cerr, 151–152
cout, 151–152
destructors, 1126
embedded systems, 932
error messages, printing, 150–151
exception, 152, 1138–1139
failure to catch, 153
GUIs, 576
input, 150–153
narrow_cast example, 153
off-by-one error, 149



out_of_range, 149–150, 152
overview, 146–147
RAII (Resource Acquisition Is Initialization), 1125
range errors, 148–150
re-throwing, 702, 1126
runtime_error, 142, 151, 153
stack unwinding, 1126
standard library exceptions, 1138–1139
terminating a program, 142
throw, 147, 1125
truncation, 153
type conversion, 153
uncaught exception, 153
user-defined types, 1126
vector range checking, 693–694
vector resources. See vector

Executable code, 48, 1219
Executing a program, 11, 1200–1201
exit(), terminating a program, 1194–1195
explicit constructor, 642–643, 1038
Expression, 94–95, 1086–1090

coding standards, 980–981
constant expressions, 1093
conversions, 1091–1093
debugging, 161
grouping (), 95, 867, 873, 876
lvalue, 94–95, 1090
magic constants, 96, 143, 232–234, 723
memory management, 1094–1095
mixing types, 99
non-obvious literals, 96
operator precedence, 95
operators, 97–99, 1086–1095
order of operations, 181
precedence, 1090
preserving values, 1091
promotions, 99, 1091
rvalue, 94–95, 1090
scope resolution, 1086
type conversion, 99–100, 1095
usual arithmetic conversions, 1092

Expression statement, 100
extern, 259, 1033
Extracting text from files, 856–861, 864–865

F
f/F suffix, 1079
fail() stream state, 355, 1171
Falling through end of functions, 274
false, 1038
Fault tolerance, 930
fclose(), 1053–1054, 1186



Feature creep, 188, 201, 1219
Feedback, programming, 36
Fields, formatting, 387–388
FILE, 1053–1054
File I/O, 349–350

binary I/O, 391
close(), 352
closing files, 352, 1186
converting representations, 374–376
modes, 1186
open(), 352
opening files. See Opening files
positioning in files, 393–394
reading. See Reading files
writing. See Writing files

Files, 1219. See also File I/O
C++ and C, 1053–1054
opening and closing, C-style I/O, 1186

fill(), 1157
fill_n(), 1157
Fill color example, 462–465, 500
find(), 758–761

associative container operations, 1151
finding links, 615–617
generic use, 761–763
nonmodifying sequence algorithms, 1153
string operations, 851, 1177

find_end(), 1153
find_first_of(), 1153
find_if(), 758, 763–764
Finding. See also Matching; Searching

associative container operations, 1151
elements, 758
links, 615–617
patterns, 864–865, 869–872
strings, 851, 1177

fixed format, 387
fixed manipulator, 385, 1174
<float.h>, 894, 1181
Floating-point, 63, 891, 1219

% remainder (modulo), 201
assigning integers to, 892–893
assigning to integers, 893
conversions, 1092
fixed format, 387
general format, 387
input, 182, 201–202
integral conversions, 1091–1092
literals, 182, 1079
mantissa, 893
output, formatting, 384–385
precision, 386–387



and real numbers, 891
rounding, 386
scientific format, 387
truncation, 893
vector example, 120–123

float type, 1099
floor(), 917, 1181
FLTK (Fast Light Toolkit), 418, 1204

code portability, 418
color, 451, 465–467
current style, obtaining, 500
downloading, 1204
fill, 465
in graphics code, 436
installing, 1205
lines, drawing, 454, 458
outlines, 465
rectangles, drawing, 465
testing, 1206
in Visual Studio, 1205–1206
waiting for user action, 559–560, 569–570

flush manipulator, 1174
Flushing a buffer, 240–241
Fonts for Graphics example, 468–470
fopen(), 1053–1054, 1186
for-statement, 111–113

vs. while, 122
for_each(), 119, 1153
Ford, Henry, 806
Formal arguments. See Parameters
Formatting. See also C-style I/O; I/O streams; Manipulators

See also C-style I/O, 1050–1054
See also I/O streams, 1172–1173
case, 397–398
See also Manipulators, 1173–1175
fields, 387–388
precision, 386–387
whitespace, 397

Fortran language, 821–823
array indexing, 899
complex, 920
subscripting, 899

Forward declarations, 261
Forward iterators, 752, 1142
fprintf(), 1051–1052, 1187
Fragmentation, embedded systems, 936, 937
free(), deallocate, 1043–1044, 1193
Free store (heap storage)

allocation, 593–594
C++ and C, 1043–1045
deallocation, 598–600
delete, 598–600, 601–605



and destructors. See Destructors
embedded systems, 936–940
garbage collection, 600
leaks, 598–600, 601–605
new, 593–594
object lifetime, 1085

Freeing memory. See Deallocating memory
friend, 1038, 1111
from_string() example, 853–854
front(), first element, 1149
front_inserter(), 1162
fstream(), 1170
<fstream>, 1134
fstream type, 350–352
Fully qualified names, 295–297
Function example, 443, 525–528
Function, 47, 113–117. See also Member functions

accessing class members, 1111
arguments. See Function arguments
in base classes, 504
body, 47, 114
C++ and C, 1028–1032
callback, GUIs, 556–559
calling, 1103
cleaning up, 234–235
coding standards, 980–981
common style, 490–491
debugging, 160
declarations, 117, 1103
definition, 113–115, 272, 1219
in derived classes, 501, 505
falling through, 274
formal arguments. See Function parameter (formal argument)
friend declaration, 1111
generic code, 491
global variables, modifying, 269
graphing. See Function example
inline, 316, 1026
linkage specifications, 1106
naming. See Namespaces
nesting, 270
organizing. See Namespaces
overloading, 321–323, 526, 1026
overload resolution, 1104–1105
parameter, 115. See also Function parameter (formal argument)
pointer to, 1034–1036
post-conditions, 165–166
pre-conditions, 163–165
pure virtual, 1221
requirements, 153. See also Pre-conditions
return, 113–115, 272–273, 1103
return type, 47, 272–273



standard mathematical, 528, 1181–1182
types as parameters. See Template
uses for, 115–116
virtual, 1034–1036. See also Virtual functions

Function activation record, 287
Function argument. See also Function parameter (formal argument); Parameters

checking, 284–285
conversion, 284–285
declaring, 272–273
formal. See Parameters
naming, 273
omitting, 273
passing. See Function call

Function call, 285
call stack, 290
expression() call example, 287–290
function activation record, 287
history of, 820
memory for, 591–592
() operator, 766
pass by const reference, 276–278, 281–284
pass by non-const reference, 281–284
pass by reference, 279–284
pass by value, 276, 281–284
recursive, 289
stack growth, 287–290. See also Function activation record
temporary objects, 282

Function-like macros, 1056–1058
Function member

definition, 305–306
same name as class. See Constructors

Function objects, 765–767
() function call operator, 766
abstract view, 766–767
adaptors, 1164
arithmetic operations, 1164
parameterization, 767
predicates, 767–768, 1163

Function parameter (formal argument)
... ellipsis, unchecked arguments, 1105–1106
pass by const reference, 276–278, 281–284
pass by non-const reference, 281–284
pass by reference, 279–284
pass by value, 276, 281–284
temporary objects, 282
unused, 272

Function template
algorithms, 682–683
argument deduction, 689–690
parameterized functions, 682–683

<functional>, 1133, 1163
Functional cast, 1095



Functional programming, 823
Fused multiply-add, 904

G
Gadgets. See Embedded systems
Garbage collection, 600, 938–939
Gaussian elimination, 910–911
gcount(), 1172
general format, 387
general manipulator, 385
generate(), 1157
generate_n(), 1157
Generic code, 491
Generic programming, 682–683, 816, 1219
Geometric shapes, 427
get(), 1172
getc(), 1052, 1191
getchar(), 1053, 1191
getline(), 395–396, 851, 855, 1172
gets(), 1052

C++ alternative >>, 1053
dangerous, 1052
scanf(), 1190

get_token() example, 196
GIF images, 480–482
Global scope, 267, 270, 1082
Global variables

functions modifying, 269
memory for, 591–592
order of initialization, 292–294

Going out of scope, 268–269, 291
good() stream state, 355, 1171
GP. See Generic programming
Grammar example

alternation, patterns, 194
English grammar, 193–194
Expression example, 197–200, 202–203
parsing, 190–193
repetition, patterns, 194
rules vs. tokens, 194
sequencing rules, 195
terminals. See Tokens
writing, 189, 194–195

Graph example. See also Grids, drawing
Axis, 424–426
coordinates, 426–427
drawing, 426–427
points, labeling, 474–476

Graph.h, 421–422
Graphical user interfaces. See GUIs (graphical user interfaces)
Graphics, 412. See also Graphics example; Color example; Shape example

displaying, 479–482



display model, 413–414
drawing on screen, 423–424
encoding, 480
filling shapes, 431
formats, 480
geometric shapes, 427
GIF, 480–482
graphics libraries, 481–482
graphs, 426–427
images from files, 433–434
importance of, 412–413
JPEG, 480–482
line style, 431
loading from files, 433–434
screen coordinates, 419–420
selecting a sub-picture from, 480
user interface. See GUIs (graphical user interfaces)

Graphics example
Graph.h, 421–422
GUI system, giving control to, 423
header files, 421–422
main(), 421–422
Point.h, 444
points, 426–427
Simple_window.h, 444
wait_for_button(), 423
Window.h, 444

Graphics example, design principles
access control. See Access control
attach() vs. add(), 491–492
class diagram, 505
class size, 489–490
common style, 490–491
data modification access, 492–493
generic code, 491
inheritance, interface, 513–514
inheritances, implementation, 513–514
mutability, 492–493
naming, 491–492
object-oriented programming, benefits of, 513–514
operations, 490–491
private data members, 492–493
protected data, 492–493
public data, 492–493
types, 488–490
width/height, specifying, 490

Graphics example, GUI classes, 442–444. See also Graphics example, interfaces
Button, 443
In_box, 443
Menu, 443
Out_box, 443
Simple_window, 422–424, 443



Widget, 561–563, 1209–1210
Window, 443, 1210–1212

Graphics example, interfaces, 442–443. See also Graphics example, GUI classes
Axis, 424–426, 443, 529–532
Circle, 469–472, 497
Closed_polyline, 456–458
Color, 450
Ellipse, 472–474
Function, 443, 524–528
Image, 443, 479–482
Line, 445–448
Line_style, 452–455
Lines, 448–450, 497
Mark, 478–479
Marked_polyline, 474–476
Marks, 476–477, 497
Open_polyline, 455–456, 497
Point, 426–427, 445
Polygon, 427–428, 458–460, 497
Rectangle, 428–431, 460–465, 497
Shape, 444–445, 449, 493–494, 513–514
Text, 431–433, 467–470

Graphing data example, 538–546
Graphing functions example, 520–524, 532–537
Graph_lib namespace, 421–422
greater(), 1163
Greater than >, 67, 1088
Greater than or equal >=, 1088
greater_equal(), 1163
Green marginal alerts, 3
Grids, drawing, 448–449, 452–455
Grouping regular expressions, 867, 873, 876
Guarantees, 701–702
Guidelines. See Ideals
GUIs (graphical user interfaces), 552–553. See also Graphics example, GUI classes

callback functions, 556–559
callback implementation, 1208–1209
cb_next() example, 556–559
common problems, 575–577
control inversion, 569–570
controls. See Widget example
coordinates, computer screens, 419–420
debugging, 575–577
error handling, 576
examples, 565–569, 573–574, 576–577
exceptions, 576
FLTK (Fast Light Toolkit), 418
layers of code, 557
next() example, 558–559
pixels, 419–420
portability, 418
standard library, 418–419



toolkit, 418
vector_ref example, 1212–1213
vector of references, simulating, 1212–1213
wait loops, 559–560
wait_for_button() example, 559–560
waiting for user action, 559–560, 569–570
Widget example, 561–569, 1209–1210, 1213–1216
Window example, 565–569, 1210–1212

GUI system, giving control to, 423

H
.h file suffix, 46
Half open sequences, 119, 721
Hard real-time, 931, 981–982
Hardware replication, error handling, 934
Hardware violations, 141
Hashed container. See unordered_map
Hash function, 785–786
Hashing, 785
Hash tables, 785
Hash values, 785
Header files, 46, 1219

C standard library, 1135–1136
declarations, managing, 264
definitions, managing, 264
graphics example, 421–422
including in source files, 264–266, 1129
multiple inclusion, 1059
standard library, 1133–1134

Headers. See Header files
Heap algorithm, 1160
Heap memory, 592, 935–936, 1084, 1160. See also Free store (heap storage)
Hejlsberg, Anders, 831
“Hello, World!” program, 45–47
Helper functions

== equality, 333
!= inequality, 333
class interfaces, 332–334
Date example, 309–310, 332–333
namespaces, 333
validity checking date values, 310

hex manipulator, 382–383, 1174
Hexadecimal digits, 397
Hexadecimal number system, 381–383, 1077–1078
Hiding information, 1220
Hopper, Grace Murray, 824–825
Hyperbolic cosine, cosh(), 918
Hyperbolic sine, sinh(), 918, 1182
Hyperbolic tangent, tanh(), 917

I
I/O errors



bad() stream state, 355
clear(), 355–358
end of file, 355
eof() stream state, 355
error handling, 1171
fail() stream state, 355
good() stream state, 355
ios_base, 357
recovering from, 355–358
stream states, 355
unexpected errors, 355
unget(), 355–358

I/O streams, 1168–1169
>> input operator, 855
<< output operator, 855
cerr, standard error output stream, 151–152, 1169, 1189
cin standard input, 347
class hierarchy, 855, 1170–1171
cout standard output, 347
error handling, 1171
formatting, 1172–1173
fstream, 388–390, 393, 1170
get(), 855
getline(), 855
header files, 1134
ifstream, 388–390, 1170
input operations, 1172
input streams, 347–349
iostream library, 347–349, 1168–1169
istream, 347–349, 1169–1170
istringstream, 1170
ofstream, 388–390, 1170
ostream, 347–349, 1168–1169
ostringstream, 388–390, 1170
output operations, 1173
output streams, 347–349
standard manipulators, 382, 1173–1174
standard streams, 1169
states, 1171
stream behavior, changing, 382
stream buffers, streambufs, 1169
stream modes, 1170
string, 855
stringstream, 395, 1170
throwing exceptions, 1171
unformatted input, 1172

IBM, 823
Ichbiah, Jean, 832
IDE (interactive development environment), 52
Ideals

abstraction level, 812–813
bottom-up approach, 811



class interfaces, 323
code structure, 810–811
coding standards, 976–977
consistency, 814–815
correct approaches, 811
correctness, 810
definition, 1219
direct expression of ideas, 811–812
efficiency, 810
embedded systems, 932–933
importance of, 8
KISS, 815
maintainability, 810
minimalism, 814–815
modularity, 813–814
overview, 808–809
performance, 810
software, 34–37
on-time delivery, 810
top-down approach, 811

Identifiers, 1081. See also Names
reserved, 75–76. See also Keywords

if-statements, 102–104
#ifdef, 1058–1059
#ifndef, 1058–1059
ifstream type, 350–352
imag(), imaginary part, 920, 1183
Image example, 443, 479–482
Images. See Graphics
Imaginary part, 920
Immutable values, class interfaces, 330–332
Implementation, 1219

class, 306–308
inheritance, 513–514
programs, 36

Implementation-defined feature, 1075
Implicit conversions, 642–643
in mode, 389, 1170
In_box example, 443, 563–564
In-class member definition, 1112
#include, 46, 264–266, 1128–1129
Include guard, 1059
includes(), 1159
Including headers, 1129. See also #include
Incrementing ++, 66, 721

iterators, 721, 750, 1140–1141
pointers, 651–652
variables, 73–74, 97–98

Indenting nested code, 271
Inequality != (not equal), 67, 1088, 1101

complex, 919, 1183
containers, 1151



helper function, 333
iterators, 721, 1141
string, 67, 851, 1176

Infinite loop, 1219
Infinite recursion, 198, 1220
Information hiding, 1220
Information processing, 32
Inheritance

class diagram, 505
definition, 504
derived classes, 1116–1117
embedded systems, 951–954
history of, 834
implementation, 513–514
interface, 513–514
multiple, 1117
pointers vs. references, 612–613
templates, 686–687

Initialization, 69–73, 1220
{} initialization notation, 83
arrays, 596–598, 654–656
constants, 262, 329–330, 1099
constructors, 310–312
Date example, 309–312
default, 263, 327, 1085
invariants, 313–314, 701–702
menus, 571
pointers, 596–598, 657
pointer targets, 596–598
Token example, 184

initializer_list, 630
inline, 1037
Inline

functions, 1026
member functions, 316

inner_product(), 759. See also Dot product
description, 774–775
generalizing, 775–776
matrices, 904
multiplying sequences, 1184
standard library, 759, 770

inplace_merge(), 1158
Input, 60–62. See also Input >>; I/O streams

binary I/O, 390–393
C++ and C, 1052–1053
calculator example, 179, 182, 185, 201–202, 206–208
case sensitivity, 64
cin, standard input stream, 61
dividing functions logically, 359–362
files. See File I/O
format errors, 64–65
individual characters, 396–398



integers, 383–384
istringstream, 394
line-oriented input, 395–396
newline character \n, 61–62, 64
potential problems, 358–363
prompting for, 61, 179
separating dialog from function, 362–363
a series of values, 356–358
a single value, 358–363
source of exceptions, 150–153
stringstream, 395
tab character \t, 64
terminating, 61–62
type sensitivity, 64–65
whitespace, 64

Input >>, 61
case sensitivity, 64
complex, 920, 1183
formatted input, 1172
multiple values per statement, 65
strings, 851, 1177
text input, 851, 855
user-defined, 365
whitespace, ignoring, 64

Input devices, 346–347
Input iterators, 752, 1142
Input loops, 365–367
Input/output, 347–349. See also Input; Output

buffering, 348, 406
C++ and C. See stdio
computation overview, 91
device drivers, 346
errors. See I/O errors
files. See File I/O
formatting. See Manipulators; printf()
irregularity, 380
istream, 347–354
natural language differences, 406
ostream, 347–354
regularity, 380
streams. See I/O streams
strings, 855
text in GUIs, 563–564
whitespace, 397, 398–405

Input prompt >, 223
Inputs, testing, 1001
Input streams, 347–349. See also I/O streams
insert()

list, 615–617, 742–745
map container, 782
string, 851, 1150, 1177
vector, 745–747



inserter(), 1162
Inserters, 1162–1163
Inserting

list elements, 742–745
into strings, 851, 1150, 1177
vector elements, 745–747

Installing
FLTK (Fast Light Toolkit), 1205
Visual Studio, 1198

Instantiation, templates, 681, 1123–1124
int, integer type, 66–67, 78, 1099

bits in memory, 78, 955
Integers, 77–78, 890–891, 1220

assigning floating-point numbers to, 893
assigning to floating-point numbers, 892–893
decimal, 381–383
input, formatting, 383–384
largest, finding, 917
literals, 1077
number bases, 381–383
octal, 381–383
output, formatting, 381–383
reading, 383–384
smallest, finding, 917

Integral conversions, 1091–1092
Integral promotion, 1091
Interactive development environment (IDE), 52
Interface classes. See Graphics example, interfaces
Interfaces, 1220

classes. See Class interfaces
inheritance, 513–514
user. See User interfaces

internal manipulator, 1174
Intrusive containers, example, 1059–1065
Invariants, 313–314, 1220. See also Post-conditions; Pre-conditions

assertions, 163
Date example, 313–314
debugging, 162–163
default constructors, 641
documenting, 815
invention of, 828
Polygon example, 460

Invisible. See Transparency
<iomanip>, 1134, 1173
<ios>, 1134, 1173
<iosfwd>, 1134
iostream

buffers, 406
C++ and C, 1050
exceptions, 1138
library, 347–349

<iostream>, 1134, 1173



Irregularity, 380
is_open(), 1170
isalnum() classify character, 397, 1175
isalpha() classify character, 247, 397, 1175
iscntrl() classify character, 397, 1175
isdigit() classify character, 397, 1175
isgraph() classify character, 397, 1175
islower() classify character, 397, 1175
isprint() classify character, 397, 1175
ispunct() classify character, 397, 1175
isspace() classify character, 397, 1175
istream, 347–349, 1169–1170

>>, text input, 851, 1172
>>, user-defined, 365
binary I/O, 390–393
connecting to input device, 1170
file I/O, fstream, 349–354, 1170
get(), get a single character, 397
getline(), 395–396, 1172
stringstreams, 395
unformatted input, 395–396, 1172
using together with stdio, 1050

<istream>, 1134, 1168–1169, 1173
istream_iterator type, 790–793
istringstream, 394
isupper() classify character, 397, 1175
isxdigit() classify character, 397, 1175
Iteration. See also Iterators

control variables, 110
definition, 1220
example, 737–741
linked lists, 727–729, 737–741
loop variables, 110–111
for-statements, 111–113
strings, 851
through values. See vector
while-statements, 109–111

iterator, 1147
<iterator>, 1133, 1162
Iterators, 721–722, 1139–1140, 1220. See also STL iterators

bidirectional iterator, 752
category, 752, 1142–1143
containers, 1143–1145, 1148
empty list, 729
example, 737–741
forward iterator, 752
header files, 1133–1134
input iterator, 752
operations, 721, 1141–1142
output iterator, 752
vs. pointers, 1140
random-access iterator, 752



sequence of elements, 1140–1141
iter_swap(), 1157

J
Japanese age distribution example, 538–539
JPEG images, 480–482

K
Kernighan, Brian, 838–839, 1022–1023
key_comp(), 1152
key_compare, 1147
key_type, 1147
Key, value pairs, containers for, 776
Keywords, 1037–1038, 1081–1082
KISS, 815
Knuth, Don, 808
K&R, 838, 1022

L
l/L suffix, 1077
\l, “lowercase character,” regex, 873, 1179
\L, “not lowercase character,” regex, 874, 1179
Label

access control, 306, 511
case, 106–108
graph example, 529–532
of statement, 1096

Lambda expression, 560–561
Largest integer, finding, 917
Laws of optimization, 931
Layers of code, GUIs, 557
Layout rules, 979, 1034
Leaks, memory, 598–600, 601–605, 937
Leap year, 309
left manipulator, 1174
Legal programs, 1075
length(), 851, 1176
Length of strings, finding, 851, 1046, 1176
less(), 1163
Less than <, 1088
Less than or equal <=, 67, 1088
less_equal(), 1163
Letters, identifying, 247, 397
lexical_cast, 855
Lexicographical comparison

<= comparison, 1176
< comparison, 1176
>= comparison, 1176
> comparison, 1176
< comparison, 851
C-style strings, 1046
lexicographical_compare(), 1162



Libraries, 51, 1220. See also Standard library
role in debugging, 160
uses for, 177

Lifetime, objects, 1085–1086, 1220
Limit macros, 1181
<limits>, 894, 1135, 1180
Limits, 894–895
<limits.h>, 894, 1181
Linear equations example, 908–914

back_substitution(), 910–911
classic_elimination(), 910–911
Gaussian elimination, 910–911
pivoting, 911–912
testing, 912–914

Line comment //, 45
Line example, 445–447

vs. Lines, 448
Line-oriented input, 395–396
Lines example, 448–450, 497

vs. Line, 448
Lines (graphic), drawing. See also Graphics; draw_lines()

on graphs, 529–532
line styles, 452–455
multiple lines, 448–450
single lines, 445–447
styles, 431, 454
visibility, 500

Lines (of text), identifying, 736–737
Line_style example, 452–455
Lines_window example, 565–569, 573–574, 576–577
Link example, 613–622
Link-time errors. See Errors, link-time
Linkage convention, C, 1033
Linkage specifications, 1106
Linked lists, 725. See also Lists
Linkers, 51, 1220
Linking programs, 51
Links, 613–615, 620–622, 725
Lint, consistency checking program, 836
Lisp language, 825–826
list, 727, 1146–1151

{} initialization notation, 83
add(), 615–617
advance(), 615–617
back(), 737
erase(), 615–617, 742–745
find(), 615–617
insert(), 615–617, 742–745
operations, 615–617
properties, 741–742
referencing last element, 737
sequence containers, 1144



subscripting, 727
<list>, 1133
Lists

containers, 1150
doubly linked, 613, 725
empty, 729
erasing elements, 742–745
examples, 613–615, 734–741
finding links, 615–617
getting the nth element, 615–617
inserting elements, 615–617, 742–745
iteration, 727–729, 737–741
link manipulation, 615–617
links, examples, 613–615, 620–622, 726
operations, 726–727
removing elements, 615–617
singly linked, 612–613, 725
this pointer, 618–620

Literals, 62, 1077, 1220
character, 161, 1079–1080
decimal integer, 1077
in expressions, 96
f/F suffix, 1079
floating-point, 1079
hexadecimal integer, 1077
integer, 1077
l/L suffix, 1077
magic constants, 96, 143, 232–234, 723
non-obvious, 96
null pointer, 0, 1081
number systems, 1077–1079
octal integer, 1077
special characters, 1079–1080
string, 161, 1080
termination, debugging, 161
for types, 63
u/U suffix, 1077
unsigned, 1077

Local (automatic) objects, lifetime, 1085
Local classes, nesting, 270
Local functions, nesting, 270
Local scope, 267, 1083
Local variables, array pointers, 658
Locale, 406
<locale>, 1135
log(), 918, 1182
log10(), 918, 1182
Logic errors. See Errors, logic
Logical and &&, 1089, 1094
Logical operations, 1094
Logical or ||, 1089, 1094
logical_and(), 1163



logical_not(), 1163
logical_or(), 1163
Logs, graphing, 528
long integer, 955, 1099
Look-ahead problem, 204–209
Loop, 110–111, 112, 1220

examples, parser, 200
infinite, 198, 1219
testing, 1005–1006
variable, 110–111, 112

Lovelace, Augusta Ada, 832
lower, 878, 1179
lower_bound(), 796, 1152, 1158
Lower case. See Case (of characters)
Lucent Bell Labs, 838
Lvalue, 94–95, 1090



M
Machine code. See Executable code
Macros, 1055–1056

conditional compilation, 1058–1059
#define, 1056–1058, 1129
function-like, 1056–1058
#ifdef, 1058–1059
#ifndef, 1059
#include, 1058, 1128–1129
include guard, 1059
naming conventions, 1055
syntax, 1058
uses for, 1056

Macro substitution, 1129
Maddock, John, 865
Magic constants, 96, 143, 232–234, 723
Magical approach to programming, 10
main(), 46–47

arguments to, 1076
global objects, 1076
return values, 47, 1075–1076
starting a program, 1075–1076

Maintainability, software, 35, 810
Maintenance, 929
make_heap(), 1160
make_pair(), 782, 1165–1166
make_unique(), 1167
make_vec(), 702
malloc(), 1043–1044, 1193
Manipulators, 382, 1173–1174

complete list of, 1173–1174
dec, 1174
endl, 1174
fixed, 1174
hex, 1174
noskipws, 1174
oct, 1174
resetiosflags(), 1174
scientific, 1174
setiosflags(), 1174
setprecision(), 1174
skipws, 1174

Mantissa, 893
map, associative array, 776–782. See also set; unordered_map

[], subscripting, 777, 1151
balanced trees, 780–782
binary search trees, 779
case sensitivity, No_case example, 795
counting words example, 777–779
Dow Jones example, 782–785
email example, 855–872



erase(), 781, 1150
finding elements in, 776–777, 781, 1151–1152
fruits example, 779–782
insert(), 782, 1150
iterators, 1144
key storage, 776
make_pair(), 782
No_case example, 782, 795
Node example, 779–782
red-black trees, 779
vs. set, 788
standard library, 1146–1152
tree structure, 779–782
without values. See set

<map>, 776, 1133
mapped_type, 1147
Marginal alerts, 3
Mark example, 478–479
Marked_polyline example, 474–476
Marks example, 476–477, 497
Mars Rover, 33
Matching. See also Finding; Searching

regular expressions, regex, 1177–1179
text patterns. See Regular expressions

Math functions, 528, 1181–1182
Mathematics. See Numerics
Mathematical functions, standard

abs(), absolute value, 917
acos(), arccosine, 917
asin(), arcsine, 918
atan(), arctangent, 918
ceil(), 917
<cmath>, 918, 1135
<complex>, 919–920
cos(), cosine, 917
cosh(), hyperbolic cosine, 918
errno, error indicator, 918–919
error handling, 918–919
exp(), natural exponent, 918
floor(), 917
log(), natural logarithm, 918
log10(), base-10 logarithm, 918
sin(), sine, 917
sinh(), hyperbolic sine, 918
sqrt(), square root, 917
tan(), tangent, 917
tanh(), hyperbolic tangent, 917

Matrices, 899–901, 905–906
Matrix library example, 899–901, 905

[], subscripting (C style), 897, 899
(), subscripting (Fortran style), 899
accessing array elements, 899–901



apply(), 903
broadcast functions, 903
clear_row, 906
columns, 900–901, 906
dimensions, 898–901
dot product, 904
fused multiply-add, 904
initializing, 906
inner_product, 904
input/output, 907
linear equations example, 910–914
multidimensional matrices, 898–908
rows, 900–901, 906
scale_and_add(), 904
slice(), 901–902, 905
start_row, 906
subscripting, 899–901, 905
swap_columns(), 906
swap_rows(), 906

max(), 1161
max_element(), 1162
max_size(), 1151
McCarthy, John, 825–826
McIlroy, Doug, 837, 1032
Medicine, computer use, 30
Member, 305–307. See also Class

allocated at same address, 1121
class, nesting, 270
in-class definition, 1112
definition, 1108
definitions, 1112
out-of-class definition, 1112

Member access. See also Access control
. (dot), 1109
:: scope resolution, 315, 1109
notation, 184
operators, 608
this pointer, 1110
by unqualified name, 1110

Member function. See also Class members; Constructors; Destructors; Date example
calls, 120
nesting, 270
Token example, 184

Member initializer list, 184
Member selection, expressions, 1087
Member types

containers, 1147
templates, 1124

memchr(), 1193
memcmp(), 1192
memcpy(), 1192
mem_fn() adaptor, 1164



memmove(), 1192
Memory, 588–590

addresses, 588
allocating. See Allocating memory
automatic storage, 591–592
bad_alloc exception, 1094
for code, 591–592
C standard library functions, 1192–1193
deallocating, 598–600
embedded systems, 940–942
exhausting, 1094
freeing. See Deallocating memory
free store, 592–594
for function calls, 591–592
for global variables, 591–592
heap. See Free store (heap sotrage)
layout, 591–592
object layout, 506–507
object size, getting, 590–591
pointers to, 588–590
sizeof, 590–591
stack storage, 591–592
static storage, 591–592
text storage, 591–592

<memory>, 1134
memset(), 1193
Menu example, 443, 564–565, 570–575
merge(), 758, 1158
Messages to the user, 564
min(), 1161
min_element(), 1162
Minimalism, ideals, 814–815
minus(), 1164
Missing copies, 645
MIT, 825–826, 838
Modifying sequence algorithms, 1154–1156
Modularity, ideals, 813–814
Modular systems, error handling, 934–935
Modulo (remainder) %, 66. See also Remainder
modulus(), 1164
Monitoring subsystems, error handling, 935
move(), 502, 562
Move assignments, 637–640
Move backward –=, 1101
Move forward +=, 1101
Move constructors, 637–640
Moving, 637–640
Multi-paradigm programming languages, 818
Multidimensional matrices, 898–908
multimap, 776, 860–861, 1144
<multimap>, 776
Multiplicative operators, expressions, 1088



multiplies(), 1164
Multiply *, 66, 1088
Multiply and assign *=, 67
multiset, 776, 1144
<multiset>, 776
Mutability, 492–493, 1220

class interfaces, 332–334
and copying, 503–504

mutable, 1037
Mutating sequence algorithms, 1154–1156

N
\n newline, character literal, 61–62, 64, 1079
Named character classes, in regular expressions, 877–878
Names, 74–77

_ (underscore), 75, 76
capital letters, 76–77
case sensitivity, 75
confusing, 77
conventions, 74–75
declarations, 257–258
descriptive, 76
function, 47
length, 76
overloaded, 140, 508–509, 1104–1105
reserved, 75–76. See also Keywords

namespace, 271, 1037
Namespaces, 294, 1127. See also Scope

:: scope resolution, 295–296
C++ and C, 1042–1043
fully qualified names, 295–297
helper functions, 333
objects, lifetime, 1085
scope, 267, 1082
std, 296–297
for the STL, 1136
using declarations, 296–297
using directives, 296–297, 1127
variables, order of initialization, 292–294

Naming conventions, 74–77
coding standards, 979–980
functions, 491–492
macros, 1055
role in debugging, 160
scope, 269

narrow_cast example, 153
Narrowing conversions, 80–83
Narrowing errors, 153
Natural language differences, 406
Natural logarithms, 918
Naur, Peter, 827–828
negate(), 1164



Negative numbers, 229–230
Nested blocks, 271
Nested classes, 270
Nested functions, 270
Nesting

blocks within functions, 271
classes within classes, 270
classes within functions, 270
functions within classes, 270
functions within functions, 271
indenting nested code, 271
local classes, 270
local functions, 271
member classes, 270
member functions, 270
structs, 1037

new, 592, 596–598
C++ and C, 1026, 1037
and delete, 1094–1095
embedded systems, 932, 936–940
example, 593–594
exceptions, 1138
types, constructing, 1087

<new>, 1135
New-style casts, 1040
next_permutation(), 1161
No-throw guarantee, 702
noboolalpha, 1173
No_case example, 782
Node example, 779–782
Non-algorithms, testing, 1001–1008
Non-errors, 139
Non-intrusive containers, 1059
Nonmodifying sequence algorithm, 1153–1154
Non-narrowing initialization, 83
Nonstandard separators, 398–405
norm(), 919, 1183
Norwegian Computing Center, 833–835
noshowbase, 383, 1173
noshowpoint, 1173
noshowpos, 1173
noskipws, 1174
not, synonym for ! 1037, 1038
Not ! 1087
not1() adaptor, 1164
not2() adaptor, 1164
Notches, graphing data example, 529–532, 543–546
Not-conforming constructs, 1075
Not equal != (inequality), 67, 1088, 1101
not_eq, synonym for !=, 1038
not_equal_to(), 1163
nouppercase manipulator, 1174



now(), 1016, 1185
nth_element(), 1158
Null pointer, 598, 656–657, 1081
nullptr, 598
Number example, 189
Number systems

base-2, binary, 1078–1079
base-8, octal, 381–384, 1077–1078
base-10, decimal, 381–384, 1077–1078
base-16, hexadecimal, 381–384, 1077–1078

<numeric>, 1135, 1183
Numerical algorithms. See Algorithms, numerical
Numerics, 890–891

absolute values, 917
arithmetic function objects, 1164
arrays. See Matrix library example
<cmath>, 918
columns, 895–896
complex, 919–920, 1182–1183
<complex>, 919–920
floating-point rounding errors, 892–893
header files, 1134
integer and floating-point, 892–893
integer overflow, 891–893
largest integer, finding, 917
limit macros, 1181
limits, 894
mantissa, 893
mathematical functions, 917–918
Matrix library example, 897–908
multi-dimensional array, 895–897
numeric_limits, 1180
numerical algorithms, 1183–1184
overflow, 891–895
precision, 891–895
random numbers, 914–917
real numbers, 891. See also Floating-point
results, plausibility checking, 891
rounding errors, 891
rows, 895–896
size, 891–895
sizeof(), 892
smallest integer, finding, 917
standard mathematical functions, 917–918, 1181–1182
truncation, 893
valarray, 1183
whole numbers. See Integers

Nygaard, Kristen, 833–835

O
.obj file suffix, 48
Object, 60, 1220



aliases. See References
behaving like a function. See Function object
constructing, 184
copying, 1115, 1119
current (this), 317
Date example, 334–338
initializing, 327–330. See also Constructors
layout in memory, 308–309, 506–507
lifetime, 1085–1086
named. See Variables
Shape example, 495
sizeof(), 590–591
state, 2, 305
type, 77–78
value. See Values

Object code, 48, 1220. See also Executable code
Object-oriented programming, 1220

“from day one,” 10
vs. generic programming, 682
for graphics, benefits of, 513–514
history of, 816, 834

oct manipulator, 382–383, 1174
Octal number system, 381–383, 1077–1078
Off-by-one error, 149
ofstream, 351–352
Old-style casts, 1040
One-dimensional (1D) matrices, 901–904
On-time delivery, ideals, 810
\ooo octal, character literal, 1080
OOP. See Object-oriented programming
Opaque types, 1060
open(), 352, 1170
Open modes, 389–390
Open shapes, 455–456
Opening files, 350–352. See also File I/O

binary files, 390–393
binary mode, 389
C-style I/O, 1186
failure to open, 389
file streams, 350–352
nonexistent files, 389
open modes, 389–390
testing after opening, 352

Open_polyline example, 455–456, 497
Operations, 66–69, 305, 1220

chaining, 180–181
graphics classes, 490–491

operator, 1038
Operator overloading, 321

C++ standard operators, 322–323
restrictions, 322
user-defined operators, 322



uses for, 321–323
Operator, 97–99

! not, 1087
!= not-equal (inequality), 1088
& (unary) address of, 588, 1087
& (binary) bitwise and, 956, 1089, 1094
&& logical and, 1089, 1094
&= and and assign, 1090
% remainder (modulo), 1088
%= remainder (modulo) and assign, 1090
* (binary) multiply, 1088
* (unary) object contents, pointing to, 1087
*= multiply and assign, 1089
+ add (plus), 1088
++ increment, 1087
+= add and assign, 1090
– substract (minus), 65, 1088
–– decrement, 66, 1087, 1141
–> (arrow) member access, 608, 1087, 1109, 1141
. (dot) member access, 1086–1087
/ divide, 1088
/= divide and assign, 1090
:: scope resolution, 1086
< less than, 1088
<< shift left, 1088. See also ostream
<<= shift left and assign, 1090
<= less than or equal, 1088
= assign, 1089
== equal, 1088
> greater than, 1088
>= greater than or equal, 1088
>> shift right, 1088. See also istream
>>= shift right and assign, 1090
?: conditional expression (arithmetic if), 1089
[] subscript, 1086
 ̂bitwise exclusive or, 1089, 1094

^= xor and assign, 1090
| bitwise or, 1089, 1094
|= or and assign, 1090
|| logical or, 1089, 1094
~ complement, 1087
additive operators, 1088
const_cast, 1086, 1095
delete, 1087, 1094–1095
delete[], 1087, 1094–1095
dereference. See Contents of
dynamic_cast, 1086, 1095
expressions, 1086–1095
new, 1087, 1094–1095
reinterpret_cast, 1086, 1095
sizeof, 1087, 1094
static_cast, 1086, 1095



throw, 1090
typeid, 1086

Optimization, laws of, 931
or, synonym for |, 1038
Order of evaluation, 291–292
or_eq, synonym for |=, 1038
ostream, 347–349, 1168–1169

<<, text output, 851, 855
<<, user-defined, 363–365
binary I/O, 390–393
connecting to output device, 1170
file I/O, fstream, 349–354, 1170
stringstreams, 395
using together with stdio, 1050

<ostream>, 1134, 1168–1169, 1173
ostream_iterator type, 790–793
ostringstream, 394–395
out mode, 389, 1170
Out-of-class member definition, 1112
Out-of-range conditions, 595–596
Out_box example, 443, 563–564
out_of_range, 149–150, 152
Output, 1220. See also Input/output; I/O streams

devices, 346–347
to file. See File I/O, writing files
floating-point values, 384–385
format specifier %, 1187
formatting. See Input/output, formatting
integers, 381–383
iterator, 752, 1142
operations, 1173
streams. See I/O streams
to string. See stringstream
testing, 1001

Output <<, 47, 67, 1173
complex, 920, 1183
string, 851
text output, 851, 855
user-defined, 363–365

Overflow, 891–895, 1220
Overloading, 1104–1105, 1221

alternative to, 526
C++ and C, 1026
on const, 647–648
linkage, 140
operators. See Operator overloading
and overriding, 508–511
resolution, 1104–1105

Override, 508–511, 1221

P
Padding, C-style I/O, 1188



pair, 1165–1166
reading sequence elements, 1152–1153
searching, 1158
sorting, 1158

Palindromes, example, 659–660
Paradigm, 815–818, 1221
Parameterization, function objects, 767
Parameterized type, 682–683
Parameters, 1221

functions, 47, 115
list, 115
naming, 273
omitting, 273
templates, 679–681, 687–689

Parametric polymorphism, 682–683
Parsers, 190, 195

Expression example, 190, 197–200, 202–203
functions required, 196
grammar rules, 194–195
rules vs. tokens, 194

Parsing
expressions, 190–193
grammar, English, 193–194
grammar, programming, 190–193
tokens, 190–193

partial_sort(), 1157
partial_sort_copy(), 1158
partial_sum(), 770, 1184
partition(), 1158
Pascal language, 829–831
Passing arguments

by const reference, 276–278, 281–284
copies of, 276
modified arguments, 278
by non-const reference, 281–284
by reference, 279–284
temporary objects, 282
unmodified arguments, 277
by value, 276, 281–284

Patterns. See Regular expressions
Performance

C++ and C, 1024
ideals, 810
testing, 1012–1014
timing, 1015–1016

Permutations, 1160–1161
Petersen, Lawrence, 15
Pictures. See Graphics
Pivoting, 911–912
Pixels, 419–420
plus(), 1164
Point example, 445–447



pointer, 1147
Pointers, 594. See also Arrays; Iterators; Memory

* contents of, 594
* pointer to (in declarations), 587, 1099
[] subscripting, 594
arithmetic, 651–652
array. See Pointers and arrays
casting. See Type conversion
to class objects, 606–608
conversion. See Type conversion
to current object, this, 618–620
debugging, 656–659
declaration, C-style strings, 1049–1050
decrementing, 651–652
definition, 587–588, 1221
deleted, 657–658
explicit type conversion. See Type conversion
to functions, 1034–1036
incrementing, 651–652
initializing, 596–598, 657
vs. iterators, 1140
literal (0), 1081
to local variables, 658
moving around, 651
to nonexistent elements, 657–658
null, 0, 598, 656–657, 1081
NULL macro, 1190
vs. objects pointed to, 593–594
out-of-range conditions, 595–596
palindromes, example, 661–662
ranges, 595–596
reading and writing through, 594–596
semantics, 637
size, getting, 590–591
subscripting [], 594
this, 676–677
unknown, 608–610
void*, 608–610

Pointers and arrays
converting array names to, 653–654
pointers to array elements, 650–652

Pointers and inheritance
polymorphism, 951–954
a problem, 944–948
a solution, 947–951
user-defined interface class, 947–951
vector alternative, 947–951

Pointers and references
differences, 610–611
inheritance, 612–613
list example, 613–622
parameters, 611–612



this pointer, 618–620
polar(), 920, 1183
Polar coordinates, 920, 1183
Polygon example, 427–428, 458–460, 497

vs. Closed_polyline, 458
invariants, 460

Polyline example
closed, 456–458
marked, 474–476
open, 455–456
vs. rectangles, 429–431

Polymorphism
ad hoc, 682–683
embedded systems, 951–954
parametric, 682–683
run-time, 504–505
templates, 682–683

Pools, embedded systems, 940–941
Pop-up menus, 572
pop_back(), 1149
pop_front(), 1149
pop_heap(), 1160
Portability, 11

C++, 1075
FLTK, 418, 1204

Positioning in files, 393–394
Post-conditions, 165–166, 1001–1002, 1221. See also Invariants
Post-decrement ––, 1086, 1101
Post-increment ++, 1086, 1101
Postfix expressions, 1086
Pre-conditions, 163–165, 1001–1002, 1221. See also Invariants
Pre-decrement ––, 1087, 1101
Pre-increment ++, 1087, 1101
Precedence, in expressions, 1090
Precision, numeric, 386–387, 891–895
Predicates, 763

on class members, 767–768
function objects, 1163
passing. See Function objects
searching, 763–764

Predictability, 931
error handling, 933–934
features to avoid, 932
memory allocation, 936, 940

Preprocessing, 265
Preprocessor directives

#define, macro substitution, 1129
#ifdef, 1058–1059
#ifndef, 1059
#include, including headers, 1129

Preprocessor, 1128
coding standards, 978–979



prev_permutation(), 1161
Princeton University, 838
print, character class, 878, 1179
Printable characters, identifying, 397
printf() family

%, conversion specification, 1187
conversion specifications, 1188–1189
gets(), 1052, 1190–1191
output formats, user-defined types, 1189–1190
padding, 1188
printf(), 1050–1051, 1187
scanf(), 1052–1053, 1190
stderr, 1189
stdin, 1189
stdio, 1190–1191
stdout, 1189
synchronizing with I/O streams, 1050–1051
truncation, 1189

Printing
error messages, 150–151
variable values, 246

priority_queue container adaptor, 1144
Private, 312

base classes, 511
implementation details, 210, 306–308, 312–313
members, 492–493, 505, 511
private: label, 306, 1037

Problem analysis, 175
development stages, 176
estimating resources, 177
problem statement, 176–177
prototyping, 178
strategy, 176–178

Problem statement, 176–177
Procedural programming languages, 815–816
Programmers. See also Programming

communication skills, 22
computation ideals, 92–94
skills requirements, 22–23
stereotypes of, 21–22
worldwide numbers of, 843

Programming, xxiii, 1221. See also Computation; Software
abstract-first approach, 10
analysis stage, 35
bottom-up approach, 9
C first approach, 9
concept-based approach, 6
concrete-first approach, 6
depth-first approach, 6
design stage, 35
environments, 52
feedback, 36



generic, 1219
implementation, 36
magical approach, 10
object-oriented, 10, 1220
programming stage, 36
software engineering principles first approach, 10
stages of, 35–36
testing stage, 36
top-down approach, 9–10
writing a program. See Calculator example

Programming languages, 818–819, 821, 843
Ada, 832–833
Algol60, 827–829
Algol family, 826–829
assemblers, 820
auto codes, 820
BCPL, 838–839
C, 836–839
C#, 831
C++, 839–842
COBOL, 823–825
Common Lisp, 825
Delphi, 831
Fortran, 821–823
Lisp, 825–826
Pascal, 829–831
Scheme, 825
Simula, 833–835
Turbo Pascal, 831

Programming philosophy, 807, 1221. See also C++ and C; Programming ideals; Programming languages
Programming ideals

abstraction level, 812–813
aims, 807–809
bottom-up approach, 811
code structure, 810–811
consistency, 814–815
correct approaches, 811
correctness, 810
data abstraction, 816
desirable properties, 807–808
direct expression of ideas, 811–812
efficiency, 810
generic programming, 816
KISS, 815
maintainability, 810
minimalism, 814–815
modularity, 813–814
multi-paradigm, 818
object-oriented programming, 815–818
overview, 808–809
paradigms, 815–818
performance, 810



philosophies, 807–809
procedural, 815–816
styles, 815–818
on-time delivery, 810
top-down approach, 811

Programming, history, 818–819. See also Programming languages
BNF (Backus-Naur) Form, 823, 828
classes, 834
CODASYL committee, 824
early languages, 819–821
first documented bug, 824–825
first modern stored program, 819–821
first programming book, 820
functional programming, 823
function calls, 820
inheritance, 834
K&R, 838
lint, 836
object-oriented design, 834
STL (Standard Template Library), 841
virtual functions, 834

Programs, 44, 1221. See also Computation; Software
audiences for, 46
compiling. See Compilers
computing values. See Expression
conforming, 1075
experimental. See Prototyping
flow, tracing, 72
implementation defined, 1075
legal, 1075
linking, 51
not-conforming constructs, 1075
run. See Command line; Visual Studio, 52
starting execution, 46–47, 1075–1076
stored on a computer, 109
subdividing, 177–178
terminating, 208–209, 1075–1076
text of. See Source code
translation units, 51
troubleshooting. See Debugging
unspecified constructs, 1075
valid, 1075
writing, example. See Calculator example
writing your first, 45–47

Program organization. See also Programming ideals
abstraction, 92–93
divide and conquer, 93

Projects, Visual Studio, 1199–1200
Promotions, 99, 1091
Prompting for input, 61

>, input prompt, 223
calculator example, 179



sample code, 223–224
Proofs, testing, 992
protected, 492–493, 505, 511, 1037
Prototyping, 178
Pseudo code, 179, 1221
Public, 306, 1037

base class, 508
interface, 210, 496–499
member, 306
public by default, struct, 307–308
public: label, 306

punct, punctuation character class, 878, 1179
Punct_stream example, 401–405
Pure virtual functions, 495, 1221
push_back()

growing a vector, 119–120
queue operations, 1149
resizing vector, 674–675
stack operations, 1149
string operations, 1177

push_front(), 1149
push_heap(), 1160
put(), 1173
putback()

naming convention, 211
putting tokens back, 206–207
return value, disabling, 211–212

putc(), 1191
putchar(), 1191
Putting back input, 206–208

Q
qsort(), 1194–1195
<queue>, 1134
queue container adaptor, 1144
Queue operations, 1149

R
\r carriage return, character literal, 1079
r, reading file mode, 1186
r+, reading and writing file mode, 1186
RAII (Resource Acquisition Is Initialization)

definition, 1221
exceptions, 700–701, 1125
testing, 1004–1005
for vector, 705–707

<random>, 1134
Random numbers, 914–917
Random-access iterators, 752, 1142
Range

definition, 1221
errors, 148–150



pointers, 595–596
regular expressions, 877–878

Range checking
at(), 693–694
[], 650–652, 693–696
arrays, 650–652
compatibility, 695
constraints, 695
design considerations, 694–696
efficiency, 695
exceptions, 693–694
macros, 696–697
optional checking, 695–696
overview, 693–694
pointer, 650–652
vector, 693–696

range-for, 119
rbegin(), 1148
Re-throwing exceptions, 702, 1126
read(), unformatted input, 1172
Readability

expressions, 95
indenting nested code, 271
nested code, 271

Reading
dividing functions logically, 359–362
files. See Reading files
with iterators, 1140–1141
numbers, 214–215
potential problems, 358–363
separating dialog from function, 362–363
a series of values, 356–358
a single value, 358–363
into strings, 851
tokens, 185

Reading files
binary I/O, 391
converting representations, 374–376
to end of file, 366
example, 352–354
fstream type, 350–352
ifstream type, 350–352
input loops, 365–367
istream type, 349–354, 391
in-memory representation, 368–370
ostream type, 391
process steps, 350
structured files, 367–376
structured values, 370–374
symbolic representations, 374–376
terminator character, specifying, 366

real(), 920, 1183



Real numbers, 891
Real part, 920
Real-time constraints, 931
Real-time response, 928
realloc(), 1045, 1193
Recovering from errors, 239–241, 355–358. See also Error handling; Exceptions
Rectangle example, 428–431, 460–465, 497
Recursion

definition, 1221
infinite, 198, 1220
looping, 200

Recursive function calls, 289
Red-black trees, 779. See also Associative containers; map, associative array
Red margin alerts, 3
Reference semantics, 637
References, 1221. See also Aliases

& in declarations, 276–279
to arguments, 277–278
circular. See Circular reference
to last vector element, back(), 737
vs. pointers. See Pointers and references

<regex>, 1134, 1175
regex. See Regular expressions
regex_error exception, 1138
regex_match(), 1177

vs. regex_search(), 883
regex_search(), 1177

vs. regex_match(), 883
regex pattern matching, 866–868

$ end of line, 873, 1178
() grouping, 867, 873, 876
* zero or more occurrences, 868, 873–874
[] character class, 873
\ escape character, 866–867, 873
\ as literal, 877
 ̂negation, 873
 ̂start of line, 873

{} count, 867, 873–875
| alternative (or), 867–868, 873, 876
+ one or more occurrences, 873, 874–875
. wildcard, 873
? optional occurrence, 867–868, 873, 874–875
alternation, 876
character classes. See regex character classes
character sets, 877–878
definition, 870
grouping, 876
matches, 870
pattern matching, 872–873
ranges, 877–878
regex operators, 873, 1177–1179
regex_match(), 1177



regex_search(), 1177
repeating patterns, 874–876
searching with, 869–872, 880
smatch, 870
sub-patterns, 867, 870

regex character classes, 877–878
alnum, 878
alpha, 878
blank, 878
cntrl, 878
d, 878
\d, 873
\D, 873
digit, 878
graph, 878
\l, 873
\L, 874
lower, 878
print, 878
punct, 878
regex_match() vs. regex_search(), 883
s, 878
\s, 873
\S, 874
space, 878
\u, 873
\U, 874
upper, 878
w, 878
\w, 873
\W, 873
xdigit, 878

Regression tests, 993
Regular expressions, 866–868, 872, 1221. See also regex pattern matching

character classes, 873–874
error handling, 878–880
grouping, 867, 873, 876
uses for, 865
ZIP code example, 880–885

Regularity, 380
reinterpret_cast, 609–610, 1095

casting unrelated types, 609
hardware access, 944

Relational operators, 1088
Reliability, software, 34, 928
Remainder and assign %=, 1090
Remainder % (modulo), 66, 1088

correspondence to * and /, 68
floating-point, 201, 230–231
integer and floating-point, 66

remove(), 1155
remove_copy(), 1155



remove_copy_if(), 1155
rend(), 1148
Repeated words examples, 71–74
Repeating patterns, 194
Repetition, 1178. See also Iteration; regex
replace(), 1155
replace_copy(), 1155
Reporting errors

Date example, 317–318
debugging, 159
error(), 142–143
run-time, 145–146
syntax errors, 137–138

Representation, 305, 671–673
Requirements, 1221. See also Invariants; Post-conditions; Pre-conditions

for functions, 153
reserve(), 673–674, 691, 747, 1151
Reserved names, 75–76. See also Keywords
resetiosflags() manipulator, 1174
resize(), 674, 1151
Resource, 1221

leaks, 931, 934
limitations, 928
management. See Resource management
testing, 1001–1002
vector example, 697–698

Resource Acquisition Is Initialization (RAII), 1221
exceptions, 700–701, 1125
testing, 1004–1005
for vector, 705–707

Resource management, 697–702. See also vector example
basic guarantee, 702
error handling, 702
guarantees, 701–702
make_vec(), 702
no-throw guarantee, 702
problems, 698–700
RAII, 700–701, 705–707
resources, examples, 697–698
strong guarantee, 702
testing, 1004–1005

Results, 91. See also Return values
return and move, 704–705
return statement, 272–273
Return types, functions, 47, 272–273
Return values, 113–115

functions, 1103
no return value, void, 212
omitting, 115
returning, 272–273

reverse(), 1155
reverse_copy(), 1155



reverse_iterator, 1147
Revision history, 237–238
Rho, 920
Richards, Martin, 838
right manipulator, 1174
Ritchie, Dennis, 836, 837, 842, 1022–1023, 1032
Robot-assisted surgery, 30
rotate(), 1155
rotate_copy(), 1155
Rounding, 386, 1221. See also Truncation

errors, 891
floating-point values, 386

Rows, matrices, 900–901, 906
Rules, for programming. See Ideals
Rules, grammatical, 194–195
Run-time dispatch, 504–505. See also Virtual functions
Run-time errors. See Errors, run-time
Run-time polymorphism, 504–505
runtime_error, 142, 151, 153
rvalue reference, 639
Rvalues, 94–95, 1090

S
s, character class, 878, 1179
\S, “not space,” regex, 874
\s, “space,” regex, 873
Safe conversions, 79–80
Safety, type. See Type, safety
Scaffolding, cleaning up, 234–235
scale_and_add() example, 904
scale_and_multiply() example, 912
Scaling data, 542–543
scanf(), 1052, 1190
Scenarios. See Use cases
Scheme language, 825
scientific format, 387
scientific manipulator, 385, 1174
Scope, 266–267, 1082–1083, 1221

class, 267, 1082
enumerators, 320–321
global, 267, 270, 1082
going out of, 268–269
kinds of, 267
local, 267, 1083
namespace, 267, 271, 1082
resolution ::, 295–296, 1086
statement, 267, 1083

Scope and nesting
blocks within functions, 271
classes within classes, 270
classes within functions, 270
functions within classes, 270



functions within functions, 271
indenting nested code, 271
local classes, 270
local functions, 270
member classes, 270
member functions, 270
nested blocks, 271
nested classes, 270
nested functions, 270

Scope and object lifetime, 1085–1086
free-store objects, 1085
local (automatic) objects, 1085
namespace objects, 1085
static class members, 1085
temporary objects, 1085

Scope and storage class, 1083–1084
automatic storage, 1083–1084
free store (heap), 1084
static storage, 1084

Screens. See also GUIs (graphical user interfaces)
data graph layout, 541–542
drawing on, 423–424
labeling, 425

search(), 795–796, 1153
Searching. See also Finding; Matching; find_if(); find()

algorithms for, 1157–1159
binary searches, 779, 795–796
in C, 1194–1195
for characters, 740
(key,value) pairs, by key. See Associative containers
for links, 615–617
map elements. See unordered_map
predicates, 763
with regular expressions, 869–872, 880–885, 1177–1179

search_n(), 1153
Self reference. See this pointer
Self assignment, 676–677
Self-checking, error handling, 934
Separators, nonstandard, 398–405
Sequence containers, 1144
Sequences, 720, 1221

algorithms. See Algorithms, STL
differences between adjacent elements, 770
empty, 729
example, 723–724
half open, 721

Sequencing rules, 195
Server farms, 31–32
set, 776, 787–789

iterators, 1144
vs. map, 788
subscripting, 788



set(), 605–606
<set>, 776, 1134
Set algorithms, 1159–1160
set_difference(), 1160
set_intersection(), 1159
set_symmetric_difference(), 1160
set_union(), 1159
setbase() manipulator, 1174
setfill() manipulator, 1174
setiosflags() manipulator, 1174
setprecision() manipulator, 386–387, 1174
setw() manipulator, 1174
Shallow copies, 636
Shape example, 493–494

abstract classes, 495–496
access control, 496–499
attaching to Window, 545–546
as base class, 445, 495–496
clone(), 504
copying objects, 503–504
draw(), 500–502
draw_lines(), 500–502
fill color, 500
implementation inheritance, 513–514
interface inheritance, 513–514
line visibility, 500
move(), 502
mutability, 503–504
number_of_points(), 449
object layout, 506–507
object-oriented programming, 513–514
point(), 449
slicing shapes, 504
virtual function calls, 501, 506–507

Shift operators, 1088
Shipping, computer use, 26–28
short, 955, 1099
Shorthand notation, regular expressions, 1179
showbase, manipulator, 383, 1173
showpoint, manipulator, 1173
showpos, manipulator, 1173
Shuffle algorithm, 1155–1156
Signed and unsigned integers, 961–965
signed type, 1099
Simple_window, 422–424, 443
Simplicity ideal, 92–94
Simula language, 833–835
sin(), sine, 917, 1182
Singly-linked lists, 613, 725
sinh(), hyperbolic sine, 918, 1182
Size

bit strings, 955–956



containers, 1150–1151
getting, sizeof(), 590–591
of numbers, 891–895
vectors, getting, 119–120

size()
container capacity, 1150
number of elements, 120, 851
string length, 851, 1176
vectors, 120, 122–123

sizeof(), 590–591, 1094
object size, 1087
value size, 892

size_type, 730, 1147
skipws, 1174
slice(), 901–902, 905
Slicing

matrices, 901–902, 905
objects, 504

Smallest integer, finding, 917
smatch, 870
Soft real-time, 931
Software, 19, 1222. See also Programming; Programs

affordability, 34
correctness, 34
ideals, 34–37
maintainability, 35
reliability, 34
troubleshooting. See Debugging
useful design, 34
uses for, 19–33

Software layers, GUIs, 557
sort(), 758, 794–796, 1157
sort_heap(), 1160
Sorting

algorithms for, 1157–1159
in C, qsort(), 1194
sort(), 758, 794–796, 1157

Source code
definition, 48, 1222
entering, 1200

Source files, 48, 1222
adding to projects, 1200

space, 878, 1179
Space exploration, computer use, 33
Special characters, 1079–1080

regular expressions, 1178
Specialization, 681, 1123
Specifications

definition, 1221
source of errors, 136

Speed of light, 96
sprintf(), 1187



sqrt(), square root, 917, 1181
Square of abs(), norm, 919
<sstream>, 1134
stable_partition(), 1158
stable_sort(), 1157
<stack>, 1134
stack container adaptor, 1144
Stack of activation records, 287
Stack storage, 591–592
Stacks

container operations, 1149
embedded systems, 935–936, 940, 942–943
growth, 287–290
unwinding, 1126

Stages of programming, 35–36
Standard

conformance, 836, 974, 1075
ISO, 1075, 1222
manipulators. See Manipulators
mathematical functions, 917–918

Standard library. See also C standard library; STL (Standard Template Library)
algorithms. See Algorithms
complex. See complex
containers. See Containers
C-style I/O. See printf() family
C-style strings. See C-style strings
date and time, 1193–1194
function objects. See Function objects
I/O streams. See Input; Input/output; Output
iterators. See Iterators
mathematical functions. See Mathematical functions (standard)
numerical algorithms. See Algorithms, numerical; Numerics
string. See string
time, 1015–1016, 1193
valarray. See valarray

Standard library header files, 1133–1136
algorithms, 1133–1134
containers, 1133–1134
C standard libraries, 1135–1136
I/O streams, 1134
iterators, 1133–1134
numerics, 1134–1135
string manipulation, 1134
utility and language support, 1135

Standard library I/O streams, 1168–1169. See also I/O streams
Standard library string manipulation

character classification, 1175–1176
containers. See map, associative array; set; unordered_map; vector
input/output. See I/O streams
regular expressions. See regex
string manipulation. See string

Stanford University, 826



Starting programs, 1075–1076. See also main()
State, 90–91, 1222

I/O stream, 1171
of objects, 305
source of errors, 136
testing, 1001
validity checking, 313
valid state, 313

Statement scope, 267, 1083
Statements, 47

grammar, 1096–1097
named sequence of. See Function
terminator ; (semicolon), 50, 100

Static storage, 591–592, 1084
class members, lifetime, 1085
embedded systems, 935–936, 944
static, 1084
static const, 326. See also const
static local variables, order of initialization, 294

std namespace, 296–297, 1136
stderr, 1189
<stdexcept>, 1135
stdin, 1050, 1189. See also stdio
stdio, standard C I/O, 1050, 1190–1191

EOF macro, 1053–1054
errno, error indicator, 918–919
fclose(), 1053–1054
FILE, 1053–1054
fopen(), 1053–1054
getchar(), 1052–1053, 1191
gets(), 1052, 1190–1191
input, 1052–1053
output, 1050–1051
printf(), 1050–1051, 1188–1191
scanf(), 1052, 1190
stderr, cerr equivalent, 1189
stdin, cin equivalent, 1050, 1189
stdout, 1050, 1189. See also stdio
stdout, cout equivalent, 1050, 1189

std_lib_facilities.h header file, 1199–1200
stdout, 1050, 1189. See also stdio
Stepanov, Alexander, 720, 722, 841
Stepping through code, 162
Stereotypes of programmers, 21–22
STL (Standard Template Library), 717, 1149–1168 (large range, not sure this is correct). See also C standard library;
Standard library

algorithms. See STL algorithms
containers. See STL containers
function objects. See STL function objects
history of, 841
ideals, 717–720
iterators. See STL iterators



namespace, std, 1136
STL algorithms, 1152–1162

See Algorithms, STL.
alternatives to, 1195
built-in arrays, 747–749
computation vs. data, 717–720
heap, 1160
max(), 1161
min(), 1161
modifying sequence, 1154–1156
mutating sequence, 1154–1156
nonmodifying sequence, 1153–1154
permutations, 1160–1161
searching, 1157–1159
set, 1159–1160
shuffle, 1155–1156
sorting, 1157–1159
utility, 1157
value comparisons, 1161–1162

STL containers, 749–751, 1144–1152
almost, 751, 1145
assignments, 1148
associative, 1144, 1151–1152
capacity, 1150–1151
comparing, 1151
constructors, 1148
container adaptors, 1144
copying, 1151
destructors, 1148
element access, 1149
information sources about, 750
iterator categories for, 752, 1143–1145, 1148
list operations, 1150
member types, 1147
operations overview, 1146–1147
queue operations, 1149
sequence, 1144
size, 1150–1151
stack operations, 1149
swapping, 1151

STL function objects, 1163
adaptors, 1164
arithmetic operations, 1164
inserters, 1162–1163
predicates, 767–768, 1163

STL iterators, 1139–1140
basic operations, 721
categories, 1142–1143
definition, 721, 1139
description, 721–722
empty lists, 729
example, 737–741



operations, 1141–1142
vs. pointers, 1140
sequence of elements, 1140–1141

Storage class, 1083–1084
automatic storage, 1083–1084
free store (heap), 1084
static storage, 1084

Storing data. See Containers
str(), string extractor, 395
strcat(), 1047, 1191
strchr(), 1048, 1192
strcmp(), 1047, 1192
strcpy(), 1047, 1049, 1192
Stream

buffers, 1169
iterators, 790–793
modes, 1170
states, 355
types, 1170

streambuf, 406, 1169
<streambuf>, 1134
<string>, 1134, 1172
string, 66, 851, 1222. See also Text

[] subscripting, 851
+ concatenation, 68–69, 851, 1176
+= append, 851
< lexicographical comparison, 851
== equal, 851
= assign, 851
>> input, 851
<< output, 851
almost container, 1145
append(), 851
basic_string, 852
C++ to C-style conversion, 851
c_str(), C++ to C-style conversion, 851
erase(), removing characters, 851
exceptions, 1138
find(), 851
from_string(), 853–854
getline(), 851
input terminator (whitespace), 65
Insert(), adding characters, 851
length(), number of characters, 851
lexical_cast example, 855
literals, debugging, 161
operations, 851, 1176–1177
operators, 66–67, 68
palindromes, example, 659–660
pattern matching. See Regular expressions
properties, 741–742
size, 78



size(), number of characters, 851
standard library, 852
stringstream, 852–854
string to value conversion, 853–854
subscripting [], 851
to_string() example, 852–854
values to string conversion, 852
vs. vector, 745
whitespace, 854

String literal, 62, 1080
stringstream, 395, 852–854, 1170
strlen(), 1046, 1191
strncat(), 1047, 1192
strncmp(), 1047, 1192
strncpy(), 1047, 1192
Strong guarantee, 702
Stroustrup, Bjarne

advisor, 820
Bell Labs colleagues, 836–839, 1023
biography, 13–14
education on invariants, 828
inventor of C++, 839–842
Kristen Nygaard, 834

strpbrk(), 1192
strrchr(), 1192
strstr(), 1192
strtod(), 1192
strtol(), 1192
strtoul(), 1192
struct, 307–308. See also Data
struct tag namespace, 1036–1037
Structure

of data. See Data
of programs, 215–216

Structured files, 367–376
Style, definition, 1222
Sub-patterns, 867, 870
Subclasses, 504. See also Derived classes
Subdividing programs, 177–178
Subscripting, 118

() Fortran style, 899
[] C Style, 694, 899
arrays, 649, 899
at(), checked subscripting, 694, 1149
Matrix example, 899–901, 905
pointers, 1101
string, 851, 1176
vector, 594, 607–608, 646–647

Substrings, 863
Subtraction – (minus)

complex, 919, 1183
definition, 1088



integers, 1101
iterators, 1141–1142
pointers, 1101

Subtype, definition, 1222
Summing values. See accumulate()
Superclasses, 504, 1222. See also Base classes
swap(), 281, 1151, 1157
Swapping

columns, 906
containers, 1151
ranges, 1157
rows, 906, 912

swap_ranges(), 1157
switch-statements

break, case termination, 106–108
case labels, 106–108
most common error, 108
vs. string-based selection, 106

Symbol tables, 247
Symbolic constants. See also Enumerations

cleaning up, 232–234
defining, with static const, 326

Symbolic names, tokens, 233
Symbolic representations, reading, 374–376
Syntax analyzers, 190
Syntax checking, 48–50
Syntax errors

examples, 48–50
overview, 137–138
reporting, 137–138

Syntax macros, 1058
system(), 1194
system_clock, 1016, 1185
System, definition, 1222
System tests, 1009–1011

T
\t tab character, 109, 1079
tan(), tangent, 917, 1182
tanh(), hyperbolic tangent, 917, 1182
TEA (Tiny Encryption Algorithm), 820, 969–974
Technical University of Copenhagen, 828
Telecommunications, 28–29
Temperature data, example, 120–123
template, 1038
Template, 678–679, 1121–1122, 1222

arguments, 1122–1123
class, 681–683. See also Class template
compiling, 684
containers, 686–687
error diagnostics, 683
function, 682–690. See also Function template



generic programming, 682–683
inheritance, 686–687
instantiation, 681, 1123–1124
integer parameters, 687–689
member types, 1124
parameters, 679–681, 687–689
parametric polymorphism, 682–683
specialization, 1123
typename, 1124
type parameters, 679–681
weaknesses, 683

Template-style casts, 1040
Temporary objects, 282, 1085
Terminals, in grammars. See Tokens
Termination

abort() a program, 1194
on exceptions, 142
exit() a program, 1194
input, 61–62, 179
normal program termination, 1075–1076
for string input, 65
zero, for C-style strings, 654–655

Terminator character, specifying, 366
Testing, 992–993, 1222. See also Debugging

algorithms, 1001–1008
for bad input, 103
black box, 992–993
branching, 1006–1008
bug reports, retention period, 993
calculator example, 225
code coverage, 1008
debugging, 1012
dependencies, 1002–1003
designing for, 1011–1012
faulty assumptions, 1009–1011
files, after opening, 352
FLTK, 1206
inputs, 1001
loops, 1005–1006
non-algorithms, 1001–1008
outputs, 1001
performance, 1012–1014
pre- and post-conditions, 1001–1002
proofs, 992
RAII, 1004–1005
regression tests, 993
resource management, 1004–1005
resources, 1001–1002
stage of programming, 36
state, 1001
system tests, 1009–1011
test cases, definition, 166



test harness, 997–999
timing, 1015–1016
white box, 992–993

Testing units
formal specification, 994–995
random sequences, 999–1001
strategy for, 995–997
systematic testing, 994–995
test harness, 997–999

Text
character strings. See C-style strings; string
email example, 856–861, 864–865
extracting text from files, 855–861, 864–865
finding patterns, 864–865, 869–872
in graphics. See Text
implementation details, 861–864
input/output, GUIs, 563–564
maps. See map
storage, 591–592
substrings, 863
vector example, 123–125
words frequency example, 777–779

Text example, 431–433, 467–470
Text editor example, 737–741
Theta, 920
this pointer, 618–620, 676–677
Thompson, Ken, 836–838
Three-way comparison, 1046
Throwing exceptions, 147, 1125

I/O stream, 1171
re-throwing, 702
standard library, 1138–1139
throw, 147, 1090, 1125–1126
vector, 697–698

Time
date and time, 1193–1194
measuring, 1015–1016

Timekeeping, computer use, 26
time_point, 1016
time_t, 1193
Tiny Encryption Algorithm (TEA), 820, 969–974
tm, 1193
Token example, 183–184
Token_stream example, 206–214
tolower(), 398, 1176
Top-down approach, 9–10, 811
to_string() example, 852–854
toupper(), 398, 1176
Tracing code execution, 162–163
Trade-off, definition, 1222
transform(), 1154
Transient errors, handling, 934



Translation units, 51, 139–140
Transparency, 451, 463
Tree structure, map container, 779–782
true, 1037, 1038
trunc mode, 389, 1170
Truncation, 82, 1222

C-style I/O, 1189
exceptions, 153
floating-point numbers, 893

try-catch, 146–153, 693–694, 1037
Turbo Pascal language, 831
Two-dimensional matrices, 904–906
Two’s complement, 961
Type, 60, 77, 1222

aliases, 730
built-in. See Built-in types
checking, C++ and C, 1032–1033
generators, 681
graphics classes, 488–490
mismatch errors, 138–139
mixing in expressions, 99
naming. See Namespaces
objects, 77–78
operations, 305
organizing. See Namespaces
parameterized, 682–683. See also Template
as parameters. See Template
pointers. See Pointer
promotion, 99
representation of object, 308–309, 506–507
safety, 78–79, 82
subtype, 1222
supertype, 1222
truncation, 82
user-defined. See UDTs (user-defined types)
uses for, 304
values, 77
variables. See Variables

Type conversion
casting, 609–610
const_cast, casting away const, 609–610
exceptions, 153
explicit, 609
in expressions, 99–100
function arguments, 284–285
implicit, 642–643
int to pointer, 590
operators, 1095
pointers, 590, 609–610
reinterpret_cast, 609
safety, 79–83
static_cast, 609



string to value, 853–854
truncation, 82
value to string, 852

Type conversion, implicit, 642–643
bool, 1092
compiler warnings, 1091
floating-point and integral, 1091–1092
integral promotion, 1091
pointer and reference, 1092
preserving values, 1091
promotions, 1091
user-defined, 1091
usual arithmetic, 1092

Type safety, 78–79
implicit conversions, 80–83
narrowing conversions, 80–83
pointers, 596–598, 656–659
range error, 148–150, 595–596
safe conversions, 79–80
unsafe conversions, 80–83

typedef, 730
typeid, 1037, 1087, 1138
<typeinfo>, 1135
typename, 1037, 1124

U
u/U suffix, 1077
\U, “not uppercase,” regex, 874
\u, “uppercase character,” regex, 873, 1179
UDTs (user-defined types). See Class; Enumerations
Unary expressions, 1087
“Uncaught exception” error, 153
Unchecked conversions, 943–944
“Undeclared identifier” error, 258
Undefined order of evaluation, 263
unget(), 355–358
ungetc(), 1191
Uninitialized variables, 327–330, 1222
uninitialized_copy(), 1157
uninitialized_fill(), 1157
union, 1121
unique(), 1155
unique_copy(), 758, 789, 792–793, 1155
unique_ptr, 703–704
Unit tests

formal specification, 994–995
random sequences, 999–1001
strategy for, 995–997
systematic testing, 994–995
test harness, 997–999

Universal and uniform initialization, 83
Unnamed objects, 465–467



<unordered_map>, 776, 1134
unordered_map, 776. See also map, associative array

finding elements, 785–787
hashing, 785
hash tables, 785
hash values, 785
iterators, 1144

unordered_multimap, 776, 1144
unordered_multiset, 776, 1144
<unordered_set>, 776, 1134
unordered_set, 776, 1144
Unsafe conversions, 80–83
unsetf(), 384
Unsigned and signed, 961–965
unsigned type, 1099
Unspecified constructs, 1075
upper, character class, 878, 1179
upper_bound(), 796, 1152, 1158
Uppercase. See Case (of characters)
uppercase, 1174
U.S. Department of Defense, 832
U.S. Navy, 824
Use cases, 179, 1222
User-defined conversions, 1091
User-defined operators, 1091
User-defined types (UDTs), 304. See also Class; Enumerations

exceptions, 1126
operator overloading, 1107
operators, 1107
standard library types, 304

User interfaces
console input/output, 552
graphical. See GUIs (graphical user interfaces)
web browser, 552–553

using declarations, 296–297
using directives, 296–297, 1127
Usual arithmetic conversions, 1092
Utilities, STL

function objects, 1163–1164
inserters, 1162–1163
make_pair(), 1165–1166
pair, 1165–1166

<utility>, 1134, 1165–1166
Utility algorithms, 1157
Utility and language support, header files, 1135

V
\v vertical tab, character literal, 1079
valarray, 1145, 1183
<valarray>, 1135
Valid pointer, 598
Valid programs, 1075



Valid state, 313
Validity checking, 313

constructors, 313
enumerations, 320
invariants, 313
rules for, 313

Value semantics, 637
value_comp(), 1152
Values, 77–78, 1222

symbolic constants for. See Enumerations
and variables, 62, 73–74, 243

value_type, 1147
Variables, 62–63, 1083

++ increment, 73–74
= assignment, 69–73
changing values, 73–74
composite assignment operators, 73–74
constructing, 291–292
declarations, 260, 262–263
going out of scope, 291
incrementing ++, 73–74
initialization, 69–73
input, 60
naming, 74–77
type of, 66–67
uninitialized, class interfaces, 327–330
value of, 73–74

<vector>, 1134
vector example, 584–587, 629–636, 668–679

[] subscripting, 646, 693–697
= assignment, 675–677
. (dot) access, 607–608
allocators, 691
changing size, 668–679
at(), checked subscripting, 694
copying, 631–636
destructor, 601–605
element type as parameter, 679–681
erase() (removing elements), 745–747
exceptions, 693–694, 705–707
explicit constructors, 642–643
inheritance, 686–687
insert() (adding elements), 745–747
overloading on const, 647–648
push_back(), 674–675, 692
representation, 671–673
reserve(), 673, 691, 704–705
resize(), 674, 692
subscripting, 594, 607–608, 646–647

vector, standard library, 1146–1151
[] subscripting, 1149
= assignment, 1148



== equality, 1151
< less than, 1151
assign(), 1148
back(), reference to last element, 1149
begin(), iterator to first element, 1148
capacity(), 1151
at(), checked subscripting, 1149
const_iterator, 1147
constructors, 1148
destructor, 1148
difference_type, 1147
end(), one beyond last element, 1148
erase(), removing elements, 1150
front(), reference to first element, 1149
insert(), adding elements, 1150
iterator, 1147
member functions, lists of, 1147–1151
member types, list of, 1147
push_back(), add element at end, 1149
size(), number of elements, 1151
size_type, 1147
value_type, 1147

vector of references, simulating, 1212–1213
Vector_ref example, 444, 1212–1213
vector_size(), 119
virtual, 1037
Virtual destructors, 604–605. See also Destructors
Virtual functions, 501, 506–507

declaring, 508
definition, 501, 1222
history of, 834
object layout, 506–507
overriding, 508–511
pure, 512–513
Shape example, 501, 506–507
vptr, 506–507
vtbl, 506

Visibility. See also Scope; Transparency
menus, 573–574
of names, 266–272, 294–297
widgets, 562

Visual Studio
FLTK (Fast Light Toolkit), 1205–1206
installing, 1198
running programs, 1199–1200

void, 115
function results, 115, 273, 275
pointer to, 608–610
putback(), 212

void*, 608–610, 1041–1042, 1099
vptr, virtual function pointer, 506–507
vtbl, virtual function table, 506



W
w, writing file mode, 878, 1179, 1186
w+, writing and reading file mode, 1186
\W, “not word character,” regex, 874, 1179
\w, “word character,” regex, 873, 1179
wait(), 559–560, 569–570
Wait loops, 559–560
wait_for_button() example, 559–560
Waiting for user action, 559–560, 569–570
wchar_t, 1038
Web browser, as user interface, 552–553
Wheeler, David, 109, 820, 954, 969
while-statements, 109–111

vs. for, 122
White-box testing, 992–993
Whitespace

formatting, 397, 398–405
identifying, 397

Whitespace
in input, 64
string, 854

Widget example, 561–563
Button, 422–424, 553–561
control inversion, 569–570
debugging, 576–577
hide(), 562
implementation, 1209–1210
In_box(), 563–564
line drawing example, 565–569
Menu, 564–565, 570–575
move(), 562
Out_box(), 563–564
put_on_top(), 1211
show(), 562
technical example, 1213–1216
text input/output, 563–564
visibility, 562

Wild cards, regular expressions, 1178
Wilkes, Maurice, 820
Window example, 420, 443

canvas, 420
creating, 422–424, 554–556
disappearing, 576
drawing area, 420
implementation, 1210–1212
line drawing example, 565–569
put_on_top(), 1211

Window.h example, 421–422
Wirth, Niklaus, 830–831
Word frequency, example, 777
Words (of memory), 1222



write(), unformatted output, 1173
Writing files, 350. See also File I/O

appending to, 389
binary I/O, 391
example, 352–354
fstream type, 350–352
ofstream type, 351–352
ostream type, 349–354, 391

ws manipulator, 1174

X
xdigit, 878, 1179
\xhhh, hexadecimal character literal, 1080
xor, synonym for ,̂ 1038
xor_eq, synonym for ^=, 1038

Z
zero-terminated array, 1045. See also C-style strings
ZIP code example, 880–885
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