
Department of Informatics
Technical University of Munich

Master’s Thesis in Informatics

Development and Evaluation of a Generic
Framework for Sensor Data Aquisition, Aggregation
and Propagation in HPC Systems

Micha Müller

Department of Informatics
Technical University of Munich

Master’s Thesis in Informatics

Development and Evaluation of a Generic
Framework for Sensor Data Aquisition, Aggregation
and Propagation in HPC Systems

Entwicklung und Evaluierung eines generischen
Frameworks zur Erfassung, Aggregation und
Weiterleitung von Sensordaten in HPC-Systemen

Author: Micha Müller
Supervisor: Prof. Dr. Martin Schulz
Advisor: Dr. Michael Ott
Submission Date: 15.11.2019

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, 15.11.2019

MICHA MÜLLER

Acknowledgements

The author would like to express his gratitude towards a number of people that signifi-
cantly contributed to this thesis by their involvement.
First, the author would like to thank his thesis supervisor Prof. Dr. Martin Schulz for his
feedback throughout the thesis work that was always appreciated.
Second, special thanks to the thesis advisor Dr. Michael Ott, who not only provided valu-
able feedback, but also supplied technical assistance and clever ideas whenever problems
arose.
Third, the author wants to say a big thank you to the whole DCDB team, namely Alessio
Netti, Carla Guillen, Daniele Tafani, and Michael Ott. Apart from providing an always
uncomplicated and constructive work environment, they also offered immediate support
regarding all issues.
Fourth, the author would like to thank all proofreaders that contributed to make this
thesis as perfect as possible: Karsten Emrich, Hanna Müller, Iris Müller, and Thomas
Schilling.
Fifth, the author would like to acknowledge the financial funding of his parents for his
fancy living.
Lastly, the author is grateful for the always pleasant atmosphere before and throughout
the thesis that emanated from all the people involved.

iv

Abstract

Current HPC systems get ever more powerful and complex. To efficiently detect com-
ponent failure and allow for energy and performance optimization despite these trends,
an adequate monitoring solution is required. To provide such a tool that provides holis-
tic monitoring from facility to application level is the goal of the DCDB project. DCDB
employs a modular architecture with a Pusher component that is responsible of acquiring
monitoring data in the first place.
This thesis describes a newly developed Pusher component for DCDB. The Pusher imple-
mentation is designed as framework that provides the infrastructure for data acquiring
plugins. Pusher’s design goals, functionality and implementation are presented in detail.
Further on, the internal architecture of Pusher plugins will be presented as well as the fol-
lowing concrete plugin implementations: BACnet, IPMI, OPA, Perf Events, REST, SNMP,
and SysFS.
Additionally, this thesis introduces the Caliper plugin. It allows to gain introspection into
a user’s application by employing the Caliper toolbox provided by the Lawrence Liver-
more National Laboratory (LLNL).
Both, the Pusher component in general and the Caliper plugin in particular are evaluated.
It is shown, that Pusher’s runtime overhead collecting general in-band data does usually
not exceed 5%. Overhead of Pusher collecting Caliper data, however, can significantly sur-
pass 5% in certain cases. The runtime results for Caliper have to be interpreted carefully,
though, as they appear not to be fully stable in all cases. Additional memory usage of
an application induced by Caliper’s integration is determined to be ca. 500 MiB. Pusher’s
resource usage is shown to be sufficiently low when gathering Caliper data. In an usual
configuration, Pusher does not exceed 1% CPU and 160 MiB of memory usage.

v

Contents

Acknowledgements iv

Abstract v

List of Figures viii

List of Tables ix

List of Listings x

Nomenclature xi

1 Introduction 1
1.1 Problem Statement . 1
1.2 Contribution . 2

2 Background: DCDB 3
2.1 Design Principles . 3
2.2 Components . 4
2.3 Shortcomings . 6

3 Related Work 7

4 DCDB Pusher 9
4.1 Design Goals . 9
4.2 Functionality . 10
4.3 Implementation . 11

5 Pusher Plugins 16
5.1 Functionality . 16
5.2 Implementation . 16
5.3 Plugin Details . 24

5.3.1 IPMI, SNMP, SysFS . 24
5.3.2 BACnet . 24
5.3.3 OPA . 25
5.3.4 REST . 25
5.3.5 PerfEvent . 25

6 Caliper: A Hybrid Plugin 26
6.1 The Caliper Framework . 26
6.2 Use Cases . 27
6.3 Caliper-Pusher Communication . 29
6.4 Caliper Service . 29
6.5 Pusher Plugin . 31

vi

Contents

7 Evaluation 33
7.1 Setup . 33
7.2 Pusher Framework Overhead . 35
7.3 Caliper Overhead . 36

7.3.1 Benchmarking Problems . 36
7.3.2 Sampler . 36
7.3.3 Sampler Frequency . 41
7.3.4 Sampler with Events . 41
7.3.5 Conclusion . 45

8 Summary and Outlook 46

A Software Dependencies 47

B Additional Evaluation Information 48

Bibliography 50

vii

List of Figures

2.1 A deployment example of DCDB visualizing its different components and
their hierarchical structure. 5

4.1 UML class diagram depicting the components of the Pusher framework and
their relations. Classes with blue background are global to the DCDB project.
For the sake of simplicity, implementation details are left out. 11

5.1 UML class diagram depicting all involved plugin components and their rela-
tions. Classes with blue background are global to the DCDB project. Classes
with dark gray background are optional. For the sake of simplicity, implemen-
tation details are left out. 19

5.2 Overview of all components of the Pusher framework and its plugins high-
lighting the data flow. This figure also includes an introspection into Collect
Agent and Storage Backend. 23

6.1 A histogram of the most meaningful function samples sorted by binaries, as
acquired with the Caliper plugin for a single-node HPL run on an AVX-512
Skylake system. 28

6.2 Visualization of a fictional use case where CPU monitoring data is enriched
with Event annotations. 28

7.1 Pusher’s overhead on different benchmarks and system sizes on the SNG system. 35
7.2 Runtime overhead induced by Pusher and Caliper using the Sampler configura-

tion on the SNG system. 37
7.3 Runtime overhead induced by Pusher and Caliper using the Sampler configura-

tion on the CM2 system. 38
7.4 Additional memory usage of benchmarks induced by the Caliper integration

using the Sampler configuration on the SNG system. 39
7.5 Pusher’s average CPU usage using the Sampler configuration on the SNG system. 40
7.6 Pusher’s average memory usage using the Sampler configuration on the SNG

system. 40
7.7 Runtime overhead induced by Pusher and Caliper, as well as additional mem-

ory usage of benchmarks caused by Caliper’s integration. Both measured with
different Sampler frequencies on the SNG system. 42

7.8 Pusher’s average CPU and memory usage with different Sampler frequencies
on the SNG system. 42

7.9 Runtime overhead induced by Pusher and Caliper using the Sampler with Events
configuration on the SNG system. 43

7.10 Pusher’s average CPU usage using the Sampler with Events configuration on
the SNG system. 44

7.11 Pusher’s average memory usage using the Sampler with Events configuration
on the SNG system. 44

viii

List of Tables

2.1 Overview of required data sources that should be realized in plugins. 6

4.1 Overview of all RestAPI endpoints supported by Pusher. 14

5.1 Overview of all plugins and their features. 18

7.1 Overview of the system hardware used for the evaluation. 34
7.2 Overview of the system hardware used for the Collect Agents. 34

A.1 External software dependencies Pusher and its plugins rely on. 47

B.1 Compiler versions used for the evaluation. 48

ix

List of Listings

4.1 Excerpt from a configuration file for Pusher. 10
4.2 Pseudocode of MQTTPusher’s primary push method. 13
4.3 Pseudocode of RESTHttpsServer’s functionality that will be invoked when-

ever a request is received. 14

5.1 Excerpt from a configuration file for a generic plugin that uses the optional
Entity component. 17

5.2 Pseudocode of a SensorGroup’s data reading functionality that is executed dur-
ing runtime. Code in comments shows an alternative use case with an Entity
involved. 22

B.1 Configuration for Pusher’s Caliper plugin as used in Section 7.3. 48
B.2 Pusher’s configuration file. 49
B.3 Runtime configuration of the Caliper toolbox as used in Section 7.3. 49
B.4 Runtime configuration of the Caliper toolbox as used for the HPL run without

Pusher in Section 7.3.2. 49

x

Nomenclature

Abbreviation Description

ASLR Address space layout randomization
BACnet Building Automation and Control Networks
BMC Baseboard Management Controller
CM2 CoolMUC-2
DCDB Data Center DataBase
GPFS General Parallel File-System
HPC High Performance Computing
HPL High-Performance Linpack
IPC Inter-Process Communication
IPMI Intelligent Platform Management Interface
LLNL Lawrence Livermore National Laboratory
MKL Math Kernel Library
MQTT Message Queuing Telemetry Transport
MSR Model-specific register
NTP Network Time Protocol
OPA Intel Omni-Path
PC Program counter
PID Process Identifier
ProcFS /proc file system
Regex Regular expression
REST RESTful API plugin
RestAPI RESTful API
RSS Residual Set Size
SNG SuperMUC-NG
SNMP Simple Network Management Protocol
SysFS /sysfs file system

xi

1 Introduction

The current trends of machine learning and artificial intelligence as well as the general
interest of researchers in running ever larger and/or more detailed simulations result in
an insatiable demand for compute power. High Performance Computing (HPC) service
providers counteract the demand by installing more powerful computing systems, lead-
ing to a soon break through of the exascale barrier [1]. For decades, Moore’s law [2],
which describes the observation that the number of transistors per fixed area doubles
approximately every two years, allowed hardware manufacturers to provide ever more
powerful systems. While Moore’s law is reportedly predicted to decelerate in the near
future [3, 4] single CPU performance improvements already hit their limits years ago [5].
To evade the single CPU performance barrier a trend towards heavy parallelization has
emerged. Manufactures employ increasing numbers of CPU cores per processor while
HPC systems use ever rising numbers of nodes. Apart from the natural increase of CPU
cores this trend requires upscaling of devices all along the infrastructure such as server
racks, network switches, storage disks, power supply, and cooling systems. The deploy-
ment of more system components, together with the adoption of new technologies like
liquid cooling, link increasing compute power inseparably with overall higher system
complexity.
At the same time, higher system complexity also significantly increases the risk of compo-
nent failure and misconfiguration. To achieve reliable, continuous, and efficient service
HPC systems must therefore be permanently monitored. System components commonly
offer access to certain monitoring data of integrated sensors. With the ongoing trend of
digitalization the amount of available sensor data is ever increasing and allows to sat-
isfy the needs of all stakeholders. HPC stakeholders, i.e. operators, administrators, and
users of HPC centers all share an interest in certain monitoring data. Operators require
data of component utilization to optimize them for their most efficient operating point
or to reduce overall operating costs. Administrators require notification of component
failure or metric anomalies which may indicate malfunctioning devices. Users require
exhaustive performance data of their applications for future optimizations. To effectively
make use of the available sensor data, also despite the ever more complex systems, and
provide stakeholders with required monitoring data one generally deploys a monitoring
solution. A monitoring solution collects and stores the available sensor data from one
or multiple different systems and allows for easy data access through unified high-level
interfaces.

1.1 Problem Statement

The increasing system complexity results in a high diversity of devices. As HPC systems
constantly get upgraded, extended, and replaced by new systems there coexist different
generations of devices as well as components from a diverse set of vendors. Unfortu-
nately, many of them allow access to their monitoring sensor data only via protocols that
are proprietary or incompatible to each other. Further on, most existing monitoring tools

1

1 Introduction

are fixed on certain sensor data sources or are tailored towards a specific stakeholder.
Therefore one is required to deploy multiple monitoring solutions to serve all stakehold-
ers and gather data from all devices. Deployment of multiple monitoring tools results in
a set of disadvantages such as accumulating overhead and competition for the same data
source which can result in mutual inferences. Also, every tool usually uses a different
format for its data complicating the correlation of multiple data sources to the point of
impossibility.
To overcome the fragmentation into multiple differing monitoring solutions there is a
need for a holistic monitoring tool. Deployment of one single solution allows to elimi-
nate possible inference, reduce overhead, and unify all data in one common format and
therefore allow for simple and efficient correlation. To keep up with ever more complex
future systems, the monitoring tool should be highly scalable and adaptable for new de-
vices aka data sources.

1.2 Contribution

The Data Center DataBase (DCDB, cf. Chapter 2) [6, 7] project takes on all of the stated
challenges. DCDB is a modular monitoring framework that aims to allow holistic mon-
itoring from facility to application level. To achieve this goal, an adaptable and extend-
able data acquisition component is required that supports data collection from all kinds
of data sources. Components of DCDB that acquire data for the framework are called
Pusher.
Before this thesis, the author developed a new Pusher component that unifies and en-
hances previous Pusher implementations. The following parts were implemented:

• a new Pusher that provides a framework infrastructure for actual data acquisition
through plugins and forwards the data to other DCDB components,

• four framework plugins, each supporting a new distinct data source,

• porting of the previous Pusher components to framework plugins, and

• a general HTTPs Server infrastructure for RESTful APIs (RestAPI) [8] and based
upon it a RestAPI was integrated into the new Pusher framework for runtime con-
trol.

The purpose of this document is twofold: It serves as documentation of the author’s
previous work on DCDB and exhaustively describes the actual thesis work. Namely, an
additional hybrid plugin based on the Caliper [9] toolbox for application introspection.
This thesis presents Pusher’s functionality, design principles, and implementation in de-
tail. The functionality and implementation of Pusher’s various plugins in general and
the Caliper application introspection plugin in particular will be outlined. Further on,
Pusher’s general overhead and the impact of the Caliper plugin on a production system
are depicted in this thesis.
The remainder is as follows. Chapter 2 gives an general overview of the DCDB project
and its parts relevant for Pusher. In Chapter 3 other existing monitoring tools are pre-
sented. Pusher’s design goals, functionality and implementation details are introduced
in Chapter 4. The functionality and implementation of Pusher’s accompanying plugins
in general and the Caliper plugin in particular are detailed in Chapters 5 and 6. Chap-
ter 7 presents an evaluation of overhead measurements for Pusher and the Caliper plugin.
Finally, Chapter 8 sums up the thesis and states future work.

2

2 Background: DCDB

The Pusher component presented in this thesis is developed for the DCDB project. DCDB
aims to offer a software architecture for holistic monitoring from facility to application
level data. It is primarily targeted at HPC facilities. DCDB is presented in detail in [6, 7].
Following, relevant parts are summed up.

2.1 Design Principles

The DCDB project employs a few design principles that also apply to Pusher. Further
on, technical decisions that affect the whole project, like the selected inter-component
communication protocol, impact Pusher’s implementation. Therefore, relevant design
principles and decisions are described in the following.

Holism

DCDB is intended to avoid the fragmentation into multiple custom monitoring systems
for each use case. Therefore it aims to be holistic. DCDB is kept as generic as possible
to be applicable for all relevant use cases. It is not tailored towards a specific use case
other than general applicability for HPC facilities. It rather provides only a monitoring
infrastructure which may be adapted and deployed as required.

Scalability

HPC facilities usually host one or more large HPC systems. Current systems comprise
thousands of CPU cores accompanied by adequate infrastructure hardware. Most of
those devices have built in sensors that are accessible to the outside and therefore allow
to monitor their operational state. The large quantity of devices results in an exceptional
amount of available raw monitoring data that can be expected to further grow in the fu-
ture as HPC systems get ever larger. To keep up with this enormous data stream, the
DCDB framework tries to achieve high scalability by employing a distributed modular
architecture and consistent use of a hierarchical push principle.

Modularity

Components of DCDB run independently of each other and are related to each other only
through well-defined APIs or protocols. Access to DCDB monitoring data is abstracted
through an library called libdcdb. Underlying components can therefore be exchanged or
supplemented through custom implementations as required. Likewise, monitoring data
is pushed into DCDB via MQTT, allowing for employing any data collection tool that
speaks MQTT. This allows for adaption for a diverse set of use cases. Also, thanks to
the independent modularity, multiple instances of one component can be run in parallel.
This way, components of DCDB can be scaled independently of each other as required to
overcome bottlenecks.

3

2 Background: DCDB

Push Principle

Acquired data gets pushed by the data collector (source) to the data sinks. As a result,
required computations to gather data are distributed among data sources, avoiding possi-
ble bottlenecks of a central data collection service and keeping overhead of an individual
instance to a minimum.

Sensor

In the DCDB context, a single data point is referenced as Sensor. A Sensor is the smallest
possible data unit in the framework. Multiple readings or measurements of the same Sen-
sor result in a timeline of this data point. The Sensor unit is part of all DCDB components.
Two or more Sensors can be arithmetically combined to retrieve derived metrics, which is
called a virtual Sensor. Virtual Sensors will not be considered further, however.

MQTT

For communication among DCDB components the Message Queuing Telemetry Transport
(MQTT) [10] protocol is designated. MQTT bases on the publish/subscribe communica-
tion pattern and therefore fulfills the need for push-based data forwarding. It satisfies
the need for modularity as components can join and leave the MQTT communication
domain anytime at own will. The only interconnecting point is the MQTT broker. The
protocol is very lightweight and intended to be able to run on embedded devices. As it
is widely used, many implementations are available and libraries for all important pro-
gramming languages exist. Therefore almost no hard- or software limits are imposed on
components for DCDB’s infrastructure.
Within the MQTT protocol, all published messages are associated with a topic. Data con-
sumers receive data from all topics they are subscribed to. To make the potential huge
amount of Sensors distinguishable, each Sensor has to be assigned its own unique topic.
The topic is used as unique identifier among the whole monitoring framework. Addi-
tionally, topics allow for file system-like hierarchical ordering. Although not strictly nec-
essary it is strongly recommended to make use of this feature to organize Sensors. This
way, they can be retrieved by selections with wildcard patterns later on. For example,
Sensors can be sorted for their location within a system ("Cluster/Rack/Node/Socket").

2.2 Components

The DCDB project consists of three integral abstract parts: Pusher, Collect Agent, and Stor-
age Backend. The realization of the components is not fixed and the current implemen-
tation may be replaced with other variants at ones own discretion. Specifically for the
current implementation of the three core components, Figure 2.1 shows an exemplary
deployment of DCDB.
In addition to the three core components, an operational data analytic framework called
Wintermute [11] is integrated into DCDB. Collect Agent and Storage Backend are already
implemented in the DCDB project and are taken for granted. The Wintermute component
was independently developed by collaborators in parallel to the presented Pusher.

4

2 Background: DCDB

Infra-
structureHPC Services

Cloud
Services

Cluster N...

Legend: Storage Backend Collect Agent Pusher Plugins Compute Node Management Node

Cluster 1

CN MNCN

CN

SB SB

CA CA

P P

CN

P P

SB

CA

CASB P MN

...

P

CA

...

P

...

CA

...

CA

SB

Figure 2.1: A deployment example of DCDB visualizing its different components and
their hierarchical structure.

Pusher

Acquisition of Sensor data in the DCDB infrastructure is task of Pusher. Pusher acts as
MQTT publisher and therefore publishes the acquired data from Sensors under their re-
spective MQTT topic. To achieve holistic monitoring, Pusher should be deployed on all
relevant data sources, e.g. compute and management nodes as well as on dedicated
servers to gather data remotely from infrastructure devices such as chillers.

Collect Agent

The Collect Agent is a custom MQTT broker and therefore acts as data intermediary. It
receives published data from one or more Pusher. The Collect Agent in turn stores the
received data in the Storage Backend via libdcdb. As of now, there are no subscribers for
Sensor data except the Storage Backend. Therefore the subscriber related functionality is
not implemented in the Collect Agent to reduce unnecessary overhead. The missing logic,
however, can be added in the future if required.

Storage Backend

Storage Backend is the DCDB part responsible for storing all acquired data and serving
requests for historic (non-live) data. One or more Collect Agents can write data to a single
Storage Backend and there can be multiple Storage Backends. All read or write accesses to
a Storage Backend are abstracted by the libdcdb library, making it independent of a specific
storage solution. As of now, a Cassandra [12] database is employed as Storage Backend
solution.

Wintermute

While the three aforementioned components make up the core of the DCDB infrastruc-
ture, the Wintermute framework as additional data analytic component is also part of
the DCDB project. Wintermute is integrated in the Pusher and Collect Agent components
and extends their functionality for operational data analyses. It offers in-band or out-of-
band and online or on-demand data analyses. Wintermute’s internal structure is similar
to Pusher’s; the framework forms the basis for Operator plugins which implement actual
data analyses. Plugin data analyses operate on Sensors as smallest possible item. Al-
though tightly integrated, the core components of DCDB run independent of Wintermute
and it can be switched off if required.

5

2 Background: DCDB

Data source P1 cf.

Building Automation and Control Networks [13] 5.3.2
Lawrence Livermore National Laboratory’s (LLNL) Caliper [9] tool 6
General Parallel File-System [14] monitoring data 5
Intelligent Platform Management Interface [15] X 5.3.1
Intel model-specific register [16] 5
Intel Omni-Path [17] 5.3.3
RESTful APIs [8] 5.3.4
Linux Perf Events [18] 5.3.5
Linux /proc file system [19] 5
Simple Network Management Protocol [20] X 5.3.1
Linux /sysfs file system [21] X 5.3.1

1Already realized in an existing Pusher instance

Table 2.1: Overview of required data sources that should be realized in plugins.

2.3 Shortcomings

Before the work described in this thesis started, there existed no generic Pusher frame-
work yet. Instead, following the modularity principle, for each of the three data sources
supported at the time a custom Pusher component was implemented. The intention was
to create multiple differing Pusher implementations, each adapted and optimized for
its respective protocol. In the long term, however, this approach resulted in significant
drawbacks. At the core, all of the separate Pusher implementations had the same func-
tionality (gathering data from sensor instances and pushing them to the Collect Agent),
resulting in huge parts of duplicated code. Changes to the common code base would
require adaption of all other Pusher instances, significantly impacting development costs
for future plans to expand Pusher’s functionality. Also, running multiple similar instances
induces extra (management-)overhead that could be avoided by running the core func-
tionality only once.
Therefore it was decided to unify the core functionality of all Pusher instances into one
generic framework. Data source specific code should be outsourced into framework plu-
gins. The already existing Pusher implementations should be ported to plugins for the
new framework. In general, more data sources should be supported by the development
of further framework plugins. A summary of all required data sources is presented in
Table 2.1.
This thesis describes the new generic Pusher framework and associated plugins for the
required data sources. Design, functionality, and implementation of the framework in
general are presented in Chapter 4. Details on the plugins and their realization are given
in Chapter 5. The Caliper plugin is particularly highlighted in Chapter 6.

6

3 Related Work

The Pusher as introduced in this thesis is developed for the DCDB monitoring frame-
work [6, 7]. An operational data analytics framework [11] is closely integrated into the
DCDB infrastructure. Besides DCDB, there is a number of other monitoring tools avail-
able. Most of them are specialized for a certain domain or focus on one HPC stakeholder.
Still, there are also approaches to a continuous and scalable monitoring solution.
Ganglia [23] is a widespread system monitoring tool. A daemon is run locally on each
node to retrieve monitoring data. Among each other, the daemons exchange data via
a multicast-based listen/announce protocol. Data of node federations can be retrieved
from independent aggregating daemons which retrieve data from nodes in a poll-manner.
Although it states scalability of up to 2,000 nodes, this is not sufficient anymore for HPC
systems as of today. Also, it does not allow for subsecond sampling frequencies which is
possibly not fine-grained enough.
The Lightweight Distributed Metric Service (LDMS) [24], which is part of the OVIS [25]
project, is a more recent HPC system monitoring tool. Its design is very similar to DCDB.
LDMS runs separate sampler, aggregation and storage instances. All instances are based
on the same ldsmd daemon, which is adapted by configurable plugins for each use case.
However, LDMS’ design does not account for customization. Development of new sam-
pling plugins or extension of storage options requires significant effort. Also, the em-
ployed custom communication protocol complicates integration of other components
into the LDMS infrastructure.
Another rather job-centered system-wide monitoring tool is TACC Stats [26, 27]. Similar
to the other approaches, a data collection instance called monitor is run on each node.
The monitor allows for exhaustive monitoring of the node’s hardware metrics. Col-
lected data can either be harvested and permanently stored once a day or pushed via a
RabbitMQ [28] server to data consumers in real-time. Further on, data analysis and vi-
sualization tools are offered. Although monitoring with TACC Stats is system-wide, it is
not holistic. Collectable metrics are limited to compute node hardware.
Performance Co-Pilot (PCP) [29] uses an almost identical design approach to DCDB. Its
plugin-based architecture allows for customization and system-wide holistic monitor-
ing. Instead of the push-principle as employed by DCDB, PCP forwards data in a poll-
manner. Reliable key-figures regarding PCP’s overhead could not be found.
There is a number of commercial monitoring solutions available, e.g. Nagios [30] or
Splunk [31]. Most cloud service providers are known to offer monitoring options as well.
Details about their internals are usually sparse, however. All of them have in common,
that they are proprietary, closed-source, and rather alert-oriented.
Some of the system monitoring tools, like TACC Stats and LDMS, allow to collect hard-
ware data from compute nodes that is closely related to a user’s application. None of the
tools, however, allows for the integration of actual software introspection data. On appli-
cation side, there is a vast amount of performance analysis tools available that allow for
exhaustive software introspection. Namely Score-P [32], TAU [33], perf [18], Intel VTune
Amplifier [34], and the Caliper toolbox [9] among others. Most of them support instru-
mentation and/or sampling of applications. All have in common, though, that they are

7

3 Related Work

primarily tailored towards HPC application users. The tools usually store the gathered
data in a proprietary data file for retrospective analyses. They do not support forwarding
of their data or integration of other facility data. The main work of this thesis, the hybrid
Caliper plugin, allows to integrate application introspection data into the holistic DCDB
monitoring framework. To the author’s knowledge, no other solutions to unify system
hardware monitoring and user software performance analysis data into one monitoring
tool exist, yet.

8

4 DCDB Pusher

The parts responsible of originally acquiring monitoring data for the DCDB infrastructure
are called Pusher. They are the most critical part of DCDB as their number of deployed
instances can be expected to be the most of all DCDB components. To achieve holistic
data center monitoring one has to deploy Pusher instances on all compute and manage-
ment servers as well as additional instances to monitor facility infrastructure data.
Before this thesis, the author developed a new Pusher component that employs a frame-
work infrastructure and supports considerably more data sources through plugins than
previous Pushers. The framework structure of the new Pusher is presented in the fol-
lowing. Its functionality and implementation as well as its underlying design goals are
described.

4.1 Design Goals

The very first design goal for the new Pusher component (only called Pusher in the follow-
ing) is to be as easy to use as possible for all involved stakeholders. They are as following,
ordered for their priority:

1. User,

2. Developer, and

3. Maintainer.

For users, the complexity to setup and configure Pusher, also during runtime, should be
as low as possible. Possibilities for the user to misconfigure Pusher should be strictly
avoided. Note that the term user usually refers to HPC system operators in the DCDB
context and not to the actual HPC system users. Most commonly, HPC system users
lack the permission to install facility wide monitoring solutions, although they might be
given limited access through exposure of DCDB’s outside interfaces. The term developer
refers to the "using" developers, which want to utilize the Pusher framework for their
needs, e.g. by creation of a custom plugin. Maintainers are the "maintaining" develop-
ers behind the DCDB project. For developers, all interfaces should be powerful enough
to satisfy their needs and at the same time simple to use. They should be able to build
upon the framework with only minimal effort but without them having to cut back their
requirements. Maintainers require the whole DCDB project including the Pusher part
to be comprehensible at all times. Interfaces should be expandable for future require-
ments and framework-internal revisions should only require minimal expenses. All of
the stakeholders unites the need for complete and comprehensible documentation.
Furthermore, the same design principles as stated in Section 2.1 for the DCDB project
apply for Pusher. The design should be modular and holistic, while the functionality
must obey the push-principle. Pusher’s implementation shall realize Sensors as smallest
possible unit and must use MQTT to publish its acquired sensor data.

9

4 DCDB Pusher

1 global { ;general settings
2 mqttBroker 127.0.0.1:1883 ;address of CollectAgent
3 mqttprefix /test ;global MQTT prefix (can be overwritten)
4 verbosity 3 ;verbosity level of log messages
5 }
6

7 restAPI { ;settings for the integrated RestAPI
8 address 127.0.0.1:8000 ;address to listen on
9 certificate ca-cert.pem ;settings for HTTPS encryption

10 privateKey ca-key.pem
11 dhFile dh2048.pem
12

13 user admin { ;user which is allowed to make requests
14 password admin
15 PUT ;is allowed to do PUT requests
16 GET ;is allowed to do GET requests
17 }
18 }
19

20 plugins { ;plugins that are loaded on startup
21 plugin caliper {
22 path ./path/to/binary
23 config ./path/to/config
24 }
25 }

Listing 4.1: Excerpt from a configuration file for Pusher.

4.2 Functionality

From a user’s point of view, Pusher allows for configuration of framework settings through
a configuration file. It uses Boost’s custom INFO file format [35]. An exemplary config-
uration file for the Pusher framework can be seen in Listing 4.1. Selected Pusher options
can also be set via command line parameters passed on start-up. Usage of the framework
as well as all configurable options for Pusher are documented in a README file within the
code repository [22].
Pusher ships with plugins for eleven different data sources. More details on them can be
found in Chapter 5.
Further on, Pusher runs a RESTful API (RestAPI) [8] that allows for runtime configuration
of the plugins. The RESTful API can be leveraged by developers to control Pusher from
external applications. For example, one could automatically halt certain plugins to avoid
inference with other software.
For developers, the framework provides all infrastructure to develop custom plugins.
Plugins are realized as shared libraries. Users only need to provide appropriate configu-
ration files for the plugin. The framework will then take care of loading and running the
plugin, as well as making it accessible through the RestAPI. Plugins will get periodically
invoked according to their configuration to poll their data. Pusher will take care of the
acquired data to be forwarded to the Collect Agent. To ease the process of developing plu-
gins, enforce a uniform plugin structure, and eliminate the need to repeatedly write the
same code skeleton, plugin generator scripts are included. On invocation they generate
all source files required for a new plugin and fill them with the necessary code structures.

10

4 DCDB Pusher

Developers only need to take care of the constituting plugin code parts pointed to by the
TODO comments.
For maintainers, code is documented as complete and comprehensible as possible. Doxy-
gen [36] is used to create an interconnected HTML documentation.

4.3 Implementation

The DCDB project including Pusher is written in C++11 and publicly available as open
source [22] under the GNU GPL license. To not re-invent the wheel for all functional-
ity, Pusher’s implementation employs a set of external libraries. They are listed in Ap-
pendix A. Further on, the usage of external libraries for certain functionality greatly in-
creases the maintainability of Pusher’s actual code base.
The Pusher framework itself consists of five rather loosely coupled components (compare
Figure 4.1):

• Configuration,

• MQTTPusher,

• PluginManager

• RestAPI, and

• dcdbpusher ("main"-method).

GlobalConfiguration
readConfig()
readRestAPIUsers(RESTHttpsServer*)

Configuration
readAdditionalValues()
readPlugins(PluginManager&)

dcdbpusher
threads: thread_pool

main()

PluginManager
plugins: vector<Plugin>

loadPlugin()
unloadPlugin()
initPlugin()
startPlugin()
stopPlugin()
reloadPluginConfig()
getPlugins()

MQTTPusher
plugins: vector<Plugin>&

push()
start()
stop()
halt()
cont()

RESTHttpsServer
start()
stop()
addUser()
addEndpoint()

RestAPI
pluginManager: PluginManager*
mqttPusher: MQTTPusher*

GET_help()
GET_plugins()
GET_sensors()
GET_average()
PUT_load()
PUT_unload()
PUT_start()
PUT_stop()
PUT_reload()

Figure 4.1: UML class diagram depicting the components of the Pusher framework and
their relations. Classes with blue background are global to the DCDB project.
For the sake of simplicity, implementation details are left out.

11

4 DCDB Pusher

PluginManager

Central to the framework is the PluginManager component. It is responsible of adminis-
tering the framework plugins. The corresponding PluginManager class offers various
functionality to operate on single plugins. A new plugin can be loaded, i.e. its shared
library is opened, making it accessible for further operations. Opposite, plugins can also
be unloaded, i.e. its dynamic library is closed and completely unlinked from the frame-
work. After a new plugin was loaded, it has to be initialized. Initialization leaves the
plugin in a stopped state, meaning it is fully operational but currently does not collect
data. After initialization a plugin can be started, i.e. its sensors start collecting data, and
stopped again any number of times. To allow for adaption of a plugin during runtime
without the need to fully unload and load it again one can alter the plugin’s configura-
tion file at will and then reload it during runtime. The new configuration file is read in
and the plugin is set up accordingly, inducing a short interruption of the plugin’s data
collection. During a typical plugin lifecycle, operations are called in the following order:

1. loadPlugin()

2. initPlugin()

3. startPlugin()

4. (optional: reloadPluginConfig())

5. stopPlugin()

6. (optional: go back to 3.)

7. unloadPlugin().

One can also retrieve direct access to all currently loaded plugins via PluginManager’s
getPlugins() method and operate on a plugin’s components directly.

MQTTPusher

MQTTPusher is the actual "pushing" component sending all data as MQTT messages to
the Collect Agent. The main functionality of MQTTPusher is implemented in the push()
method of the MQTTPusher class which is portrayed in Listing 4.2. It is run by its
own thread which continually cycles over all loaded plugins in an endless loop. Ini-
tial start and final termination is controlled via start and stop methods which set the
_keepRunning flag accordingly. Within one cycle all sensors of a plugin are accessed.
Sensor data which was buffered since the last cycle is retrieved and used to construct a
MQTT message with the sensor’s MQTT topic. The message is then sent to Collect Agent.
For MQTT communication the open source Mosquitto [37] library is used. To reduce
overhead, MQTTPusher keeps a reference to PluginManager’s plugins instead of re-
trieving them each cycle via getPlugins(). In doing so, MQTTPusher’s plugin list is
also up to date at all times. However, modifications made to the plugin list from else-
where, namely (un-)loading plugins, or plugin-internal changes to its groups or sensors
require the MQTTPusher to be paused beforehand to avoid race conditions. For this rea-
son, functionality to temporarily halt and later on continue the execution of the primary
push cycle is offered.

12

4 DCDB Pusher

1 push() {
2 while (keepRunning)
3 foreach (p : plugins)
4 foreach (g : p->getSensorGroups())
5 foreach (s : g->getSensors())
6 msgBuf = s->getReadings();
7 topic = s->getMqttTopic();
8 mosquitto_publish(msgBuf, topic);
9 end

10 end
11 end
12 end
13 }

Listing 4.2: Pseudocode of MQTTPusher’s primary push method.

RestAPI

The primary user interface during runtime is the RestAPI offered by Pusher. As other
components of the DCDB project offer a RestAPI, too, common functionality is merged
in the project global RESTHttpsServer class. The class is not instantiable on its own
but only forms a base class with common functionality. The common base class lever-
ages the Boost.Beast library [38] to provide a HTTPS server for RestAPIs. Derived classes
only have to implement their endpoint functionality and register the endpoints as well
as the associated endpoint handler function with the RESTHttpsServer. In this con-
text, an endpoint specifies an unique functionality offered by the RestAPI. An endpoint
is identified by its unique URI. If a client makes a HTTPS request to an endpoint, the
RESTHttpsServer takes care of the server-client communication like accepting the con-
nection, sanity checks, error handling, authenticating users, checking user access per-
missions and determining the correct API endpoint. On success, the registered han-
dler function is called and provided with all request parameters. The handler has to
process the query and return a HTTPS response which will be dispatched from the
RESTHttpsServer. Pseudocode of the whole procedure can be seen in Listing 4.3. In-
ternally, functionality to start/stop the server threads, i.e. controlling availability of the
RestAPI, add authorized users and add new RestAPI endpoints is provided to external
and derived classes.
Pusher’s RestAPI class derives from the common RESTHttpsServer class. It cur-
rently provides nine endpoints, each realized by its own handler. They are listed in Ta-
ble 4.1. The RestAPI component provides five PUT endpoints wrapping functionality of
the PluginManager. In doing so, PluginManager’s functionality gets accessible from the
outside during runtime. To realize the PUT endpoints, RestAPI keeps a pointer to the
PluginManager and MQTTPusher. Access to the latter one is required whenever the
plugins are modified and MQTTPusher has to be paused to avoid race conditions. The
other four endpoints are associated with GET methods and are of informational charac-
ter. They respond with a small endpoint cheatsheet, currently loaded plugins, all sensors
of a plugin and the average of one sensor’s last readings respectively. The GET endpoints
allow for user-space access to Sensor data through a single interface at runtime. This in-
creases security, as no access to the actual underlying data sources has to be granted.
Instead, a user only has to be supplied with appropriate credentials for the RestAPI. Fur-
ther on, data access is simplified in general for external parties, as all data can be retrieved
through the same RestAPI.

13

4 DCDB Pusher

1 connectionHandler(socket) {
2 connection = socket.accept();
3 request = connection.receive();
4

5 //check provided user credentials
6 if(!userValid(request.credentials)) {
7 //fail: unauthorized request
8 }
9

10 //look up requested endpoint within
11 //all registered endpoint handlers
12 reqHandler = endpointHandlerMap[request.endpoint];
13

14 if(reqHandler == NULL) {
15 //fail: no handler registered for requested endpoint
16 }
17

18 if(reqHandler.method != request.method) {
19 //fail: REST methods (e.g. GET or PUT) of request
20 // and endpoint handler do not match
21 }
22

23 //delegate further processing to endpoint handler
24 response = reqHandler.fun(request);
25

26 connection.send(response);
27 socket.close(connection);
28 }

Listing 4.3: Pseudocode of RESTHttpsServer’s functionality that will be invoked
whenever a request is received.

RM1 URI Path Description

GET /help Return a cheatsheet of possible REST API endpoints.
GET /plugins List all loaded Pusher plugins.
GET /sensors List all sensors of a specific plugin.
GET /average Get the average of the last readings of a sensor. Also allows

access to Wintermute’s analytic sensors.
PUT /load Load and initialize a new plugin but do not start it. Use the

/start request to kick off the plugin’s data collection.
PUT /unload Unload a plugin, removing it completely from Pusher. To use

the plugin again one has to /load it first.
PUT /start Start a plugin, i.e. its sensors start polling.
PUT /stop Stop a plugin, i.e. its sensors stop polling.
PUT /reload Reload a plugin’s configuration (includes fresh creation of a

plugin’s sensors and a plugin restart).

1RestAPI Method

Table 4.1: Overview of all RestAPI endpoints supported by Pusher.

14

4 DCDB Pusher

Configuration

The component responsible for reading in configuration files is the Configuration. Its
implementation class is similar to the RestAPI as it is based on a project global par-
ent class called GlobalConfiguration. Many settings, like log verbosity, temporary
file directory, and MQTT prefix are common to multiple components of DCDB. This
includes the RestAPIs’ server settings, as all of them are based on the common
RESTHttpsServer base class. The logic to read in the common settings is bundled in
GlobalConfiguration. The derived Configuration class only has to provide a
method to read in additional values. This method parses Pusher specific configuration
settings, e.g. the address of the MQTT broker aka Collect Agent, and will be called from
the parent class after common settings have been parsed. Separated from the general set-
ting parsing is the code to read in the users and their corresponding permissions of the
RestAPI and Pusher’s plugin configuration. Both parts rely on other components, namely
RESTHttpsServer and PluginManager, to be instantiated first as the parsed values will
be directly set within the components. Therefore, those settings cannot be parsed at the
very beginning together with the general settings but only at a later point of time.

Dcdbpusher

The last component, containing the main() method, is dcdbpusher. It initiates all other
components, starting with Configuration. After the global configuration is read in, Plug-
inManager is invoked and all initial plugins loaded and configured. Dcdbpusher sets up a
pool of threads which will execute the data reading tasks issued by the plugins (see Sec-
tion 5.2 for details). The thread pool allows for asynchronous execution of data readings.
Hence, read intervals of Sensors can freely be adapted to the underlying data source. The
number of associated threads in the pool can be configured depending on the number of
data sources and their read cycle as well as the hardware Pusher is run on and therefore
allows for scalability. Also, dcdbpusher kicks off RestAPI and MQTTPusher and takes care
of a graceful shutdown on termination.

An overview of all Pusher components, including those of the plugins, can be seen in
Figure 5.2.

Logging

During the development of Pusher a logging infrastructure was integrated and adapted
to other components of the DCDB project. The logging infrastructure is based on the
Boost.Log [39] library, which allows for thread-safe efficient logging with different levels
of severity. A component requires only a local instance of a boost logger to participate.
Convenient macros for recording messages are provided. The infrastructure logs all mes-
sages to a file and the terminal. One can specify the verbosity of the log messages, i.e. set
the severity level a message must exceed to be logged.

15

5 Pusher Plugins

The new Pusher framework only provides the general infrastructure to push Sensor data
towards other DCDB components. It does not implement any logic to acquire data itself.
Instead, it relies on plugins for this task. The plugin-based approach allows to achieve
modularity and extensibility. Depending on the machine Pusher is deployed on, differ-
ent data sources can be tapped into by loading the appropriate plugin. Also, future data
sources can easily be integrated as only a plugin that implements the data reading func-
tionality has to be developed.

5.1 Functionality

Currently, eleven Pusher plugins for different data sources are provided. Out of the eleven
plugins, four were developed by the author before this thesis. Additionally, the preced-
ing Pusher implementations for the first three data sources have been ported to plugins
for the new framework. During the thesis work itself, the complex Caliper plugin to gain
user application introspection data was developed. The remaining three plugins were
developed in parallel by DCDB collaborators. An overview of all plugins can be seen in
Table 5.1. Plugins that were developed by the author are described in detail below.
Plugins either acquire data locally from the same host they are run on (in-band) or from
remote machines (out-of-band). Just like the framework, plugins are configured through
individual configuration files in Boost’s INFO file format [35]. One can specify Sen-
sors as smallest possible unit, SensorGroups that bundle multiple Sensors, and option-
ally Entities. More details on those components can be found in Section 5.2. The con-
figuration files also allow to specify template blocks. These are equal to normal Sen-
sors/SensorGroups/Entities but will not be actually instantiated. Instead, they can be used
to set default values and allow one to skip the repeated specification of unvarying con-
figuration parameters. Usage of plugins as well as their individual configurable options
are documented in the code repository’s [22] README file. An exemplary excerpt from a
plugin configuration file can be seen in Listing 5.1.

5.2 Implementation

Plugins are realized as shared dynamic libraries. Just like the Pusher framework they are
written in C++11 and are available as open source [22]. A number of plugins relies on
third-party software. See Appendix A for more information. Each plugin is based on the
same general component architecture that is presented in the following.
A plugin includes the components as follows (compare Figure 5.1):

• SensorBase,

• SensorGroup,

• Entity (optional), and

• Configurator.

16

5 Pusher Plugins

1 global { ;Plugin global settings
2 mqttprefix /plugin ;MQTT prefix
3 ;(overwrites Pusher global prefix)
4 }
5

6 template_entity temp1 { ;Template entity which is not used
7 ;in live operation.
8 ... ;Here go entity attributes
9

10 group g1 {
11 interval 1000 ;Group wide attributes
12 minValues 3
13 mqttPart /aa ;Will be appended to global prefix
14

15 sensor s11 {
16 mqttsuffix /s11 ;Appended to prefix and group part,
17 ;must result in an unique MQTT topic.
18 ... ;Usually the sensor would require
19 } ;additional attributes.
20

21 sensor s12 {
22 mqttsuffix /s12
23 ...
24 }
25 }
26 }
27

28 entity ent1 {
29 default temp1 ;Use temp1 as template Entity
30

31 group g2 { ;ent1 has now two groups (g1 and g2)
32 ;with a total of 3 sensors
33 sensor s21 { ;(s11, s12, s21).
34 mqttsuffix /s21
35 ...
36 }
37 }
38 }
39

40 entity ent2 { ;Enity with only one sensor
41 mqttPart /ent2 ;Entities can also add an part
42 ;to the MQTT topic.
43 single_sensor s1 { ;Specify a single sensor that
44 interval 2000 ;does not belong to a group.
45 mqttsuffix /s3
46 }
47 }

Listing 5.1: Excerpt from a configuration file for a generic plugin that uses the optional
Entity component.

17

5
Pusher

Plugins

Plugin Data source In-band Out-of-band Entity DBA1 Ported

BACnet Building Automation and Control Networks [13] X X X
Caliper Lawrence Livermore National Laboratory’s (LLNL) Caliper [9] tool X X
GPFSmon General Parallel File-System [14] monitoring data X
IPMI Intelligent Platform Management Interface [15] X X X
MSR Intel model-specific register [16] X
OPA Intel Omni-Path [17] X X
REST RESTful APIs [8] X X X
PerfEvent Linux Perf Events [18] X X
ProcFS Linux /proc file system [19] X
SNMP Simple Network Management Protocol [20] X X X
SysFS Linux /sysfs file system [21] X X

1Developed by the author

Table 5.1: Overview of all plugins and their features.

18

5
Pusher

Plugins

SensorBase
name: string
mqtt: string
cache: vector<reading_t>
readingQueue: lockfree_queue<reading_t>

+initSensor()
+storeReading()

ConfiguratorInterface
+readConfig()
#global()

ConfiguratorTemplate
sensorGroups: vector<SGroup*>
sensorEntitys: vector<SEntity*>

readConfig()
readSensorBase()
readSensorGroup()
readSensorEntity()
sensorBase()
sensorGroup()
sensorEntity()

SBase:class
SGroup:class
SEntity:class

<Plugin>Configurator
global()
sensorEntity()
sensorGroup()
sensorBase()

<Plugin>SensorBase
pluginSensorAttributes

pluginSensorOperations()

EntityInterface
name: string
mqttPart: string

+init()
#execOnInit()

<Plugin>Entity
pluginEntityAttributes

execOnInit()
pluginEntityOperations()

SensorGroupInterface
groupName: string
mqttPart: string
interval: int

+init()
+start()
+stop()
#read()
#execOnInit()
#execOnStart()
#execOnStop()

SensorGroupTemplate
sensors: vector<SBase*>
entity: SEntity*

init()
start()
stop()

SBase:class
SEntity:class

<Plugin>SensorGroup
pluginGroupAttributes

read()
execOnInit()
execOnStart()
execOnStop()

reading_t
reading: uint64_t
timestamp: uint64_t

Interfaces

Templates

Plugin

Legend:
abstract Operation

virtual Operation

normal Operation

Figure 5.1: UML class diagram depicting all involved plugin components and their relations. Classes with blue background are global to the
DCDB project. Classes with dark gray background are optional. For the sake of simplicity, implementation details are left out.

19

5 Pusher Plugins

Components are implemented according to the Template Method design pattern [40]. The
design pattern is useful to keep common functionality in a general interface class while
allowing or even forcing derived concrete classes to customize parts of the functionality.
Therefore it perfectly suits the realization of plugins. Each plugin part is made up of an
abstract interface class and a concrete, plugin-specific implementation class. The inter-
face defines a component’s functionality that is accessible to the framework. Also, com-
mon code is implemented in the interface. Plugin specialization is achieved by abstract
and/or virtual protected methods which are implemented in concrete plugin classes and
are called from the public interface functions. If an operation has to be overwritten by
a plugin it will be pure virtual, aka abstract. Methods that can be optionally specialized
from a plugin are virtual and the interface provides an usually empty default implemen-
tation. The concrete implementation classes contain all plugin specific code, namely all
code that is required and/or specific to access the plugin’s target data source.
During implementation of the first plugins for Pusher it became obvious, that the Sensor-
Groups and Configurators of all plugins share common code. Unfortunately, some code
details rely on plugin specifics, e.g. the presence of an entity, which prevents unification
in the interfaces. Therefore an additional class layer of templates is introduced. The tem-
plates allow to join the common code while keeping it plugin specific at the same time
by using plugin implementation classes as template parameters. To account for the op-
tional entity component, partial template specializations are implemented. They come
into effect if no class was specified for the entity template parameter. The templates can-
not fully replace the abstract interfaces, however, as C++ does not allow to reference a
template class in general without plugin specialization. Therefore, the use of templates
as interfaces to the framework is prohibited. The templates rather extend the interface
level of the Template Method design for an additional layer.

Configurator

The SensorBase, SensorGroup and Entity components are responsible for the plugin’s data
collection. Each of them has a name attribute for human readable identification. The
Configurator component is the primary access point to a plugin. Other components of a
plugin can only be accessed through the plugin’s Configurator (operations not shown in
Figure 5.1). When a plugin is loaded the first and only component created by the Pusher
framework is the plugin Configurator. The Configurator is subsequently responsible of
reading in a plugin’s configuration file and creating the other components accordingly.
If a plugin is requested to reload its configuration during runtime, the Configurator is the
only component to persist. All other plugin parts are recreated according to the new con-
figuration file. The ConfiguratorInterface only implements logic to parse common
plugin attributes, like the plugin-global default MQTT prefix. More specialized logic
to read in the Entity, SensorGroup and SensorBase structure is realized in the template.
The concrete plugin Configurator implementation has to parse all plugin-specific at-
tributes.

SensorBase

SensorBase realizes the Sensor concept, i.e. a SensorBase represents the smallest possible
data source unit within the DCDB project. It may represent the number of cache accesses,
branch mispredictions, CPU temperature, or the energy consumption of a single power

20

5 Pusher Plugins

outlet. As this unit is also used by other components the general base class has a project
global scope. The most important attributes of the SensorBase are its assigned MQTT
topic and the storage for data readings. The MQTT topic is usually made up of mul-
tiple parts. Each hierarchy level (plugin, Entity, SensorGroup) may add an identifying
MQTT part. Those parts make up the prefix which is completed from a custom MQTT
suffix assigned to each SensorBase. A SensorBase has two storages for data readings, the
cache and the reading queue. A data reading in turn consists of two components, the
actual read value and the corresponding timestamp. A single data reading is produced
every read cycle (see also the SensorGroup paragraph below). The cache is a ring buffer
which stores all data readings for a configurable amount of time. It is used to speed up
internal operations like serving RestAPI requests or to enable the Wintermute analytics
framework for fast online analysis without making a detour to the Storage Backend. The
reading queue contains all readings which should be dispatched by the MQTTPusher.
The reading queue may be only a subset of the cache. As only one data producer (the
SensorBase itself) puts data into the queue while the MQTTPusher is the only data con-
sumer, it is implemented as efficient lock free single-producer single-consumer queue.
Plugin implementations of the SensorBase usually do not have to provide any special logic
except plugin specific attributes and their associated get and set methods. Therefore
no additional template layer is required for this component.
The SensorBase base class offers additional logic through its storeReading()method
for more fine grained processing of a new data reading:

• Storage of only delta values, i.e. instead of the absolute reading just the difference
to the preceding value will be stored. Selected plugins, e.g. for Perf Events, that are
known to only provide monotonically increasing data have this feature activated
by default.

• Skipping of constant values. Values that did not change since the last read cycle
will be skipped completely from storing. If sensors, e.g. error counters, are known
to change only occasionally this can save storage space.

• Subsampling only stores every n-th value. Can be used to reduce pressure on the
network and/or storage space as only every n-th read value will be pushed. Natu-
rally, this will also reduce granularity of data in the Storage Backend.

In all cases all readings will still be stored in the cache. The previously listed features
only affect the reading queue. The additional logic can be individually dis- and enabled
through settings in the configuration file.

SensorGroup

Within Pusher a SensorBase object never exists on its own. It is always part of a Sen-
sorGroup. SensorGroups aggregate one or more related SensorBases whose data sources
will always be read together. This allows to correlate data readings of different Sensor-
Bases, like cache misses to overall cache accesses, and reduces overhead. The logic to
read values from a plugin’s data source is implemented within the SensorGroup. The read
functionality will be periodically executed with a frequency depending on a configurable
read interval. Each read cycle an asynchronous task to execute the SensorGroup’s read()
method is issued to be picked up by one of the threads in the Pusher framework’s pool.
An exemplary implementation of the relevant read() method is depicted in Listing 5.2.
The SensorGroup will iterate over all of its SensorBases and trigger a read of the corre-

21

5 Pusher Plugins

1 read() {
2 while (keepRunning)
3 reading_t reading;
4 reading.timestamp = now();
5

6 //entity.openConnection();
7 foreach (s : sensors)
8 reading.value = acquireData(s.attributes);
9 //reading.value = entity.acquireData(s.attributes);

10 s.storeReading(reading);
11 end
12 //entity.closeConnection();
13 sleep(interval);
14 end
15 }

Listing 5.2: Pseudocode of a SensorGroup’s data reading functionality that is executed
during runtime. Code in comments shows an alternative use case with an
Entity involved.

sponding data source value. The value is then stored within the SensorBase.
A SensorGroup allows for some additional settings which will affect all of its associated
SensorBases. To reduce network overhead caused by the MQTTPusher one can set a min-
imum number of readings a SensorBase should contain before they are processed into a
MQTT message. This avoids network congestion by MQTT messages that only contain
one data reading at a time. Naturally, this increases the latency until data gets available in
the Storage Backend and can be accessed through libdcdb. Hence, this setting is a trade-off
between latency and network overhead.
One can also instruct a SensorGroup to synchronize its read interval with other groups.
In this case, the absolute timestamp of the next reading time will be rounded down to
the next multiple of a SensorGroup’s read interval. Hence, all groups with the same in-
terval will start their next read cycle at the same absolute timestamp. Synchronized data
readings result in improved post-analysis, as data points do not have to be interpolated to
correlate them. As the clocks of all nodes, and therefore the time of all Pushers running on
them, are synchronized via the Network Time Protocol (NTP) [41], the data reading over-
head of synchronized SensorGroups will occur on all instances (nodes) at the same point
of time. Synchronized readings between nodes, however, only work for sufficiently large
read intervals, as the nodes’ clocks are subject to drift and the NTP synchronization may
not be precise enough for fine-grained read intervals.
To accommodate the need for single independent Sensors, a special SingleSensor option
can be used in the configuration files. A SingleSensor block allows to specify the attributes
for a SensorBase and SensorGroup at once. Internal, the Configurator takes care of creating
a SensorGroup accordingly which contains only one SensorBase.

Entity

A plugin can contain a second, optional aggregation level above SensorGroups, namely
Entities. Entities are intended for plugins that gather their data from remote locations,
e.g. power delivery units that are accessible via network or the Baseboard Management
Controller (BMC) of a remote server. If multiple SensorGroups need to communicate with

22

5 Pusher Plugins

the same server an Entity can be introduced. As Entities are an optional component, they
do not control associated SensorGroups, but instead a SensorGroup will get a pointer to its
associated Entity set from the plugin’s Configurator. The Entity can then provide logic to
communicate with the remote server which has to be used from the SensorGroups to read
their data. This way, the Entity is the solely controller of the connection to "its" server
and can eliminate race conditions if multiple SensorGroups want to read data at the same
time.

A complete overview of all framework and plugin components can be seen in Figure 5.2.

REST

REST

Sensor
Cache

C
ol

le
ct

 A
ge

nt
P

us
he

r

HTTPs
Server

Configurator

Sensor
Cache

Group 1

Plugins

MQTT
Server

Sensor
Cache

Storage Backend
Third-party Features

HTTPs
Server

MQTT
Client

Sensor
Cache

Group N

...

Configuration

Configuration

Data Visualization

D
yn

am
ic

 L
ib

ra
ry

Command Line Tools

...

Entity

Figure 5.2: Overview of all components of the Pusher framework and its plugins high-
lighting the data flow. This figure also includes an introspection into Collect
Agent and Storage Backend.

23

5 Pusher Plugins

5.3 Plugin Details

All plugins which are developed by the author are implemented according to the struc-
ture presented above. Still, a handful of plugins also require implementation of special
features that are unique to them and are therefore not accounted for in the framework
but are kept in the plugins. Those special features are presented in the following sections.
The Caliper plugin, that allows to gather application introspection data, is highlighted in
particular in Chapter 6 as it does not fit the common value-timestamp data point format
and uses a hybrid approach for data acquisition.
The fact that this highly diverse set of adaptions is possible within the plugins demon-
strates the flexibility and permissiveness of the Pusher framework.

5.3.1 IPMI, SNMP, SysFS

The three plugins IPMI, SNMP, and SysFS are historically the very first data sources
for DCDB. Before the start of the Pusher framework and its plugin based architecture
they existed as separate binaries. Functionality that is unified by Pusher as of now was
implemented by each of them separately, resulting in major code duplication. During the
development process of Pusher they were ported and rewritten to be the first compatible
plugins.

The IPMI plugin allows to query data from a server mainboard’s Baseboard Manage-
ment Controller (BMC) via the Intelligent Platform Management Interface (IPMI) [15]
protocol. The SNMP plugin offers access to data from devices that are accessible via the
Simple Network Management Protocol (SNMP) [20], e.g. routers, switches, and printers.
IPMI and SNMP both make use of the Entity feature to access their remote data sources.
The Entity abstracts one host machine and is employed by one or multiple SensorGroups
to read remote data. It allows to reuse the same established connection to the remote ma-
chine for multiple queries. This significantly reduces overhead and delay, as initialization
of an IPMI or SNMP connection is comparatively slow and expensive.

The SysFS plugin acquires data by parsing the content of files in the local /sysfs file
system [21]. During its porting, it was enriched with support to parse files with regular
expressions (regex) [42]. In fact, the SysFS plugin could be (ab-)used to parse arbitrary files
to acquire data and make use of its regex feature.

5.3.2 BACnet

The BACnet plugin implements functionality to acquire data from devices that support
the Building Automation and Control Network (BACnet) [13] protocol. It is deployed in
data centers to control and monitor infrastructure like water pumps, cooling towers, or
air handlers. The BACnet plugin uses the Entity feature to query its remote data sources.
Like most of the plugins that are implemented to acquire data via a specific protocol,
BACnet uses an external open source library that provides a protocol communication
stack (see also Appendix A). The library used for BACnet, however, is not reentrant, i.e.
it does not support more than one connection at once. Therefore the number of BACnet
Entities is also limited to one. This property is ensured by the plugin’s Configurator. All
BACnet connections have to pass through the single Entity instance. In turn, the Entity
supports connections to multiple differing remote devices.

24

5 Pusher Plugins

5.3.3 OPA

To gather data from Intel Omni-Path (OPA) [17] network interfaces the OPA plugin is im-
plemented. It allows to read data from the various status counters of the local machine’s
OPA network interfaces. Such status data comprise for example the number of network
transmit or receive errors, if the network link is up or down, and the overall transmitted
data packets in general.

5.3.4 REST

The REST plugin allows to query RestAPIs [8], parse their response, and match the
parsed data with Sensors. RestAPI queries are dispatched through Entities. Each Entity is
usually associated with an unique host and one SensorGroup matches a specific request.
The response may contain data for multiple Sensors. The corresponding SensorBases are
part of the requesting SensorGroup. Each read cycle, the SensorGroup dispatches its re-
quest through its associated Entity to the target host, parses the response, and serves the
data readings of all associated SensorBases with the parsed data.

5.3.5 PerfEvent

The Perf Events plugin supports data acquisition from CPU internal performance coun-
ters [18]. Perf Events allow for high frequency, low level sampling of a CPU core’s key
figures. As a single processor can consist of dozens of CPU cores, one node can have
multiple processors, and a HPC system has thousand of nodes, the amount of data pro-
duced by Perf Events is huge. Although the DCDB infrastructure can handle the tremen-
dous data flow per se, requests to reduce the pressure on the required storage space were
brought forward. To meet the requests, an option is implemented that allows to accumu-
late the data of CPU cores by specifying an aggregation value. All CPU core numbers
that are a multiple of this value will be aggregated, i.e. only one Sensor exists for all ag-
gregated CPU cores that stores the sum of all of their readings. This is especially useful to
aggregate values of logical cores as they occur in processors that implement simultaneous
multithreading (SMT) [43]. Further on, Perf Events allows to limit the data acquisition to
certain CPU cores. Cores that are permanently pinned to management tasks may there-
fore be excluded from the data sampling.

25

6 Caliper: A Hybrid Plugin

For a fully holistic monitoring of HPC system facilities one also requires introspection
capabilities into user applications. This allows to automatically provide users with moni-
toring data correlated to their application code without them taking further actions. Also,
the HPC system operators have a fair interest in the application performance data. Most
HPC software makes use of precompiled libraries provided by the operators. Access to
application performance data would allow the providers to tune critical functions within
those libraries. This way, all of the users profit as own optimizations to those libraries are
out of their area of influence. Also, access to user application performance data allows
for a better requirements analysis when purchasing new hardware.
The intention was to develop a plugin for Pusher that provides user application intro-
spection data. While doing so, the solution should obey two primary design goals:

1. minimal user application overhead, and

2. no requirement for application developer involvement.

Acquisition of application introspection data always incurs overhead. It should be kept to
a minimum to avoid negative impacts on an software’s runtime and increase acceptance
among users. To automatically gather data from all running applications without relying
on the good will of the software developer, no action should be required from their side
to gather application data.
A Pusher plugin itself has no access to an application’s introspection data by default. In
fact, it would be possible for the plugin to "hijack" user binaries. However, this would
require significant development effort and increased process privileges which induces a
security flaw. Instead, to acquire introspection data, a hybrid solution is developed. On
user application side the Caliper [9] performance analysis toolbox developed at LLNL is
employed to gather introspection data in the first place. A custom service developed for
the Caliper framework allows to access the data and forward it to Pusher via inter-process
communication (IPC). On Pusher’s side, a special plugin is implemented that will receive
the application data and therefore make it available to the DCDB infrastructure.

6.1 The Caliper Framework

Caliper per se is a framework for program instrumentation and performance measure-
ments and is intended to be used by application programmers for performance analysis
and optimizations.
The most basic data processing unit within Caliper is a snapshot. It contains all infor-
mation provided by the application developer and the Caliper framework about the user
program at a certain point of time. Main features of the framework stem from its ser-
vices which digest snapshots. Depending on their functionality a service will be invoked
during different stages of a snapshot’s lifecycle. Services can trigger the creation of a
snapshot, add additional information, process snapshots at runtime or store them for
later analysis. The framework as well as all required services are compiled into a shared

26

6 Caliper: A Hybrid Plugin

library which has to be linked with binaries that want to use Caliper’s functionality. Run-
time configuration is achieved by setting environment variables or by configuration files.
Caliper’s original target user group are application developers. Its strength is perfor-
mance analysis of applications via instrumentation. Annotations have to be incorpo-
rated by developers into an application’s source code and trigger snapshot creation syn-
chronously whenever they are encountered if the Event service is activated. Although
supported in DCDB, the Event data does not suffice as sole data source. It relies on the
user to fully annotate its code for holistic application introspection, which may require
excessive effort and cannot be enforced after all. Therefore, the Sampler service is used
for primary snapshot creation to acquire application introspection data. Caliper’s Sampler
service allows for asynchronous snapshot creation with a configurable frequency, i.e. it
provides low overhead analysis via a sampling approach. Even more important, apart
from initialization of Caliper no further software adaption is required on application side
to start the Sampler service. This way, Caliper’s application introspection capabilities can
be integrated into the software almost invisible to users and require as little involvement
from them as possible. The sampling approach may produce less accurate profiling re-
sults than precise instrumentation. This drawback is considered of little weight as HPC
software usually correlates with hour-long runtimes that allow for enough samples to
form a precise statistical profile of the application. Also, by adjustment of the sampling
frequency, fast and fine grained control of the induced overhead is possible.

6.2 Use Cases

For the implementation of the Caliper plugin two use cases are considered.

Sampler

In the first case, the goal is to gather information on how much time an application spends
in which function. This information can point the user directly to the most critical meth-
ods that offer the most optimization potential. Also, the data can help system operators
to identify frequently used libraries. Special focus can then be put on the most used li-
braries for further support.
For this use case, the Sampler service is used to gather sampling introspection data from
every thread. The data can be sorted into a histogram to directly present the most en-
countered function. An exemplary histogram for a single node High-Performance Lin-
pack (HPL) [44, 45] run can be seen in Figure 6.1. One can see there, that primarily the
Caliper-enriched HPL binary xhpl_cali itself and the Intel Math Kernel Library (MKL) [46]
are encountered during runtime. In particular, the AVX-512 [47] version of the MKL li-
brary is used as the HPL run is conducted on a Skylake system with AVX-512 support.
The fact, that by far the most samples are taken from MKL’s "dgemm_kernel" method
meets the expectations, as it makes up the main computation of HPL and therefore should
also require the most execution time.
This use case is the default, as it allows almost invisible monitoring of application inter-
nals with minimal expenses for the user. One only has to initialize Caliper once in the
application. Sampling on all threads is then automatically set up by the Caliper frame-
work. In the future, it is intended to integrate the Caliper initialization invisibly to the
user in every application. The long-term goal is to gather sampling data from all user
software without requiring further involvement from the developers.

27

6 Caliper: A Hybrid Plugin

malloc_consolidate

HPL_dlocswpN

HPL_setran

HPL_pdmatgen

HPL_ladd

HPL_rand

HPL_dlaswp00N

HPL_lmul

dgemm_n_n2

mkl_blas_avx512_d_generic_fullacopybcopy

mkl_blas_avx512_dgemm_initialize_strategy

mkl_blas_avx512_xdaxpy

mkl_blas_avx512_damax

mkl_blas_avx512_xdscal

mkl_blas_avx512_dgemv_n_intrinsics

mkl_blas_avx512_dgemm_dcopy_down24_ea

mkl_blas_avx512_dtrsm_kernel_ll_0

mkl_blas_avx512_dgemm_kernel_nocopy_NN_b1

mkl_blas_avx512_dgemm_dcopy_right8_ea

mkl_blas_avx512_dgemm_kernel_0

libc-2.22.so

xhpl_cali

xhpl_cali

xhpl_cali

xhpl_cali

xhpl_cali

xhpl_cali

xhpl_cali

libmkl_avx512.so

libmkl_avx512.so

libmkl_avx512.so

libmkl_avx512.so

libmkl_avx512.so

libmkl_avx512.so

libmkl_avx512.so

libmkl_avx512.so

libmkl_avx512.so

libmkl_avx512.so

libmkl_avx512.so

libmkl_avx512.so

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of samples

B
in

ar
y

an
d

fu
nc

tio
n

na
m

e

Figure 6.1: A histogram of the most meaningful function samples sorted by binaries, as
acquired with the Caliper plugin for a single-node HPL run on an AVX-512
Skylake system.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Time

C
P

U
 U

sa
ge

Begin
function

End
function

Begin loop
Iteration 1 End loopBegin loop

Iteration 2
Begin loop
Iteration 3

Begin loop
Iteration 4

Figure 6.2: Visualization of a fictional use case where CPU monitoring data is enriched
with Event annotations.

28

6 Caliper: A Hybrid Plugin

Sampler with Events

The second use case is an extension of the first. It is intended to additionally allow the
user to enrich their application with Caliper annotations that can later be correlated with
other monitoring data. This way, the user can easily comprehend the flow of their soft-
ware and can correlate each section with detailed resource usage statistics. Also, the
annotation data can be used to gain more fine-grained information than the first use case
may provide as annotations allow to distinguish different sections within the same func-
tion. For this case, the Event service is used in addition to the Sampler as it triggers a
snapshot upon encountering a Caliper annotation.
An exemplary depiction of such a use case can be seen in Figure 6.2. It presents the fic-
tional correlation of function and loop annotations with CPU usage data. In this example,
one can easily deduce that the loop iterations are by far the most CPU intensive parts of
the functions. Or vice versa, the function parts outside the loop do not fully use the CPU.
Such a deep introspection down to the loop iteration level can not be achieved with the
Sampler use case alone.

6.3 Caliper-Pusher Communication

IPC between the custom Caliper service and the Pusher plugin (only called service and
plugin respectively in the following) is realized via POSIX [48] shared memory and POSIX
Unix domain sockets for initial setup. It is assumed that per compute node not more
than one Pusher is run, but that multiple applications with Caliper integrated can be run
in parallel, e.g. by shared node usage or execution of multiple MPI [49] processes per
node. Therefore, several instances of the service may want to connect to the same plugin.
To avoid inferences, each service instance uses a distinct shared memory file for commu-
nication with the plugin. File names are based on a common schema which involves the
unique process identifier (PID) to avoid name collisions. The plugin continuously listens
on a local Unix socket whose name is predefined and known to the service. On appli-
cation start, the service sends its PID to the plugin. By receiving the PID on its listening
socket, the plugin is informed about the new process and is capable to deduce the shared
memory file name for the IPC. As both sides now can determine the file name all follow-
ing communication is done via shared memory. The shared memory file contains a ring
buffer to send data from the service to the plugin. An entry in the queue consists of a
string that contains snapshot data from the application and an associated timestamp. In
case of a Sampler triggered snapshot the data string comprises the name of the sampled
function and its containing library. For Event snapshots the string contains the triggering
annotation name and its optionally associated value. Shared semaphores are realized in
the memory file to synchronize read/write accesses to the queue.

6.4 Caliper Service

The service attaches to the snapshot processing level of Caliper. It will be invoked every
time a new snapshot is created and retrieves information of interest from the snapshot to
forward it to the plugin. The service relies on four other services shipped with Caliper to
function correctly:

29

6 Caliper: A Hybrid Plugin

• Sampler,

• Event,

• Timestamp, and

• Pthread.

The Event and Sampler services are required to trigger the snapshot creation in the first
place. They can be either used concurrently or only one of them on its own.
The Sampler service provides the application’s PC value right before the software is inter-
rupted for snapshot creation. The PC allows to determine the program function name for
the sample with the binary’s symbol data. A symbol is the string name of an attribute,
function, or other labels in the binary. Depending on debug options used during compi-
lation, each binary comprises more or less exhaustive symbol data that allows to resolve
a string name to a memory address or vice versa.
The Event service enriches a snapshot with an ID of the triggering annotation. The ID can
then be resolved to the unique annotation name and its optional value.
The Timestamp service enriches every snapshot with the current timestamp of its cre-
ation, which is required to attain a complete value-timestamp data point for DCDB. The
service is therefore required in any case. The Timestamp service, however, did previously
not offer sub-second precision which is required for DCDB. Therefore, a patch for the
Timestamp service to provide nanosecond timestamps was submitted to Caliper’s GitHub
repository [50]. The patch was accepted and therefore sufficiently precise timestamps are
provided as of now.
The Pthread service takes care of starting the Sampler service for every new thread that
was created via POSIX threads (pthreads) [51], the core API for multithreading in UNIX.
The service achieves this by using GOTCHA [52] to wrap pthread_create to create a Caliper
thread scope for every new thread. Pthread must be enabled whenever the Sampler ser-
vice is used to achieve fully holistic application sampling.
On invocation, the snapshot processing routine of the custom Caliper service retrieves
the relevant data from a snapshot and processes it to a data string for the IPC queue. In
case of Event triggered snapshots, the ID of the triggering annotation is retrieved. The ID
will be resolved to the annotation’s name and its optionally associated value. Resolution
can be done through Caliper’s framework API. In case of Sampler snapshots, the custom
Caliper service retrieves the provided PC value. The PC value will be resolved to the as-
sociated function name and its containing library (see below for details). The gathered
function information will then be processed into a data string. In both cases, the custom
Caliper service also retrieves the timestamp of the snapshot and the CPU number it is
currently executed on. Assuming that thread pinning is enabled, one can safely expect
that the current CPU equals the one the snapshot was created on. Otherwise, one has to
trust that the thread was not rescheduled to another CPU in the meantime of snapshot
creation and its actual processing in this service. The CPU value is added to the data
string. Together with the timestamp a queue entry is then formed which is eventually
written to the shared memory queue.
Due to address space layout randomization (ASLR) [53], an application is mapped to
different memory addresses each execution. PC values of the Sampler service can there-
fore only be resolved to concrete function symbol names as long as the current memory
mapping of the application is known. Consequently, PC values have to be resolved to
function symbols at runtime. Therefore, the service reads all function symbol names and
their corresponding addresses from its application binary and associated loaded libraries
on startup. The data is parsed and stored in a local data structure (the "symbol index")

30

6 Caliper: A Hybrid Plugin

that is searchable for address values. PC values can then be easily looked up in the sym-
bol index and resolved to actual function names during runtime.
Although it is not very common for HPC software, it may occur that new libraries are
loaded during runtime. The new libraries include symbol data that is not yet present in
the index. To account for this case, the service will rebuild the symbol index at runtime if
a PC value could not be resolved to a symbol name. To limit the significant overhead of
this operation in case a PC value persistently cannot be resolved, a temporal cooldown
for the symbol index rebuild can be configured.

6.5 Pusher Plugin

The plugin consists of only one single SensorGroup. The single SensorGroup processes the
data of all Caliper applications. Every read cycle it iterates over all known Caliper pro-
cesses and their corresponding shared memory files. It will read all buffered data from
the ring buffer and further process it before pushing it to the DCDB infrastructure. If con-
sistently no new values are available in the buffer, the associated application is assumed
to have terminated and will be removed from the plugin’s internal list. This timeout
based approach allows for guaranteed release of resources allocated by the plugin for the
application, even if the corresponding process crashed.
The value-timestamp data point scheme of DCDB does not allow for sending data strings.
Therefore the data strings have to be encoded in MQTT topics. Sampler and Event data is
treated differently in this context.

Sampler

Data from the Sampler service is stored with all other Sensor data in the Storage Backend.
For every unique function name encountered, a new SensorBase is constructed and added
to the single SensorGroup. The function name is used to customize the SensorBase’s MQTT
topic following the form "globalPrefix / cpu / caliper / library name / function name". For
example, if a Pusher instance uses the hostname "mpp2r08c01s05" as global prefix, and
the function "libstdc::start" was sampled on CPU 2, the corresponding Sensor topic will
be "mpp2r08c01s05/cpu2/caliper/libstdc/start". On future encounters of the same function,
a simple value of one will be stored as data reading with its corresponding SensorBase
object. To avoid excessive network overhead by having to send many readings of one for
each function encounter, an aggregation optimization is implemented. All encounters
of the same function within the same read cycle are summed up. At the end, only the
total value of function encounters in this read cycle is stored with the SensorBase. As a
drawback, the exact timestamps for aggregated samples are lost. The time granularity
is therefore reduced to the SensorGroup’s read interval. Hence, the choice of the read
interval is a trade-off between network overhead and sample time precision. One has
to keep in mind, though, that the read interval can also affect CPU usage. However, in
Chapter 7 it is shown that Pusher’s CPU usage is sufficiently low. Hence, the neglect of
CPU usage for the read interval consideration is justifiable in this case.
In retrospect, the overall number of function calls in a certain time frame can be calculated
by retrieving and summing up all corresponding Sensor readings in this time frame. The
function name to MQTT topic correlation also allows to aggregate statistics for shared
library functions that are used among multiple applications.

31

6 Caliper: A Hybrid Plugin

Event

Data from Event snapshots is stored in a separate table within the Storage Backend. The
key value in the table will be of the form "hostname / cpu / caliper". As data entries the
annotation name and value from the Event data strings are used. The table can then be
queried for a stream of annotations that were encountered on a node’s CPU in a certain
time frame, e.g. during the time a specific application was run. The annotation data
is sent from Pusher to Collect Agent by encoding it in a MQTT topic which requires the
creation of a SensorBase object per topic. The MQTT topic consists of a fixed prefix, the
key for the Event data table, and the actual event data, for instance "CALI_EVT_DATA /
mpp2r08c01s05 / cpu2 / caliper / begin_function / main". The topic prefix will then be rec-
ognized in the Collect Agent and the message handled differently from usual Sensor data
messages. Collect Agent will split up the topic in its key and data part and store the data
within the Event data table in the Storage Backend.

To limit the memory usage by possibly infinite creation of new SensorBase objects, two
mechanisms exist. First, if no applications are currently connected to the plugin any-
more, e.g. in the meantime between two user jobs, all existing SensorBase objects will be
cleared. Second, one can specify a maximum number of SensorBase objects that can exist
simultaneously. If this threshold is reached, all current SensorBase objects are destroyed
and have to be reconstructed on future encounters.

32

7 Evaluation

A key challenge of monitoring is to gather meaningful data while keeping the overhead
introduced by the monitoring system to a minimum. In the HPC domain mostly scien-
tific software is run. Resource budget and time of the researchers is usually limited. User
applications should complete as soon as possible, hence excessive overhead introduced
by a monitoring system may be unacceptable. In this context the question arises how
much additional overhead is introduced by the DCDB system. In particular, the impact
of the previously presented Pusher component collecting in-band data on compute nodes
is of interest. The impact of Pushers that collect out-of-band data, Collect Agents, and Stor-
age Backends is of subordinate significance as they can be run on dedicated hardware that
does not affect user applications.
This chapter is devoted to the performance evaluation of Pusher and seeks to answer the
question how much additional overhead is introduced by the Pusher framework in gen-
eral and the Caliper hybrid plugin in particular. The measurements for Section 7.2 were
conducted as part of a previous publication [7]. Following up, the results for Section 7.3
were collected as part of this thesis work.

7.1 Setup

The exact hard- and software setup for the evaluation as well as the evaluated metrics
are presented in the following.

Hardware

Evaluation tests are conducted on the SuperMUC-NG (SNG) [54] system and the
CoolMUC-2 (CM2) [55] Linux cluster at LRZ. A short summary of their respective hard-
ware is given in Table 7.1. If not stated otherwise, measurements are conducted on SNG,
as it is the primary test system. For the measurements, no hyper-threading is used and
in case of SNG only thin nodes are employed. Threads are pinned, although no specific
thread to core assignment is specified.
Collect Agents are run on dedicated hardware as listed in Table 7.2.

Software

For the evaluation, a varying set of benchmarks from the CORAL-2 [56] suite is used
to represent user applications. Overall Kripke [57], AMG [58], LAMMPS [59], Quicksil-
ver [60], and Pennant [61] are used. All benchmarks except LAMMPS are configured
to instantiate one MPI [49] process per node and use as many OpenMP [62] threads
as there are physical cores. As representation of multiple processes on the same node,
LAMMPS is configured to start one MPI process per every physical core and not use
any OpenMP threads. Tests are conducted on various system sizes with a weak-scaling
approach. Additionally, on SNG single node High-Performance Linpack (HPL) [44, 45]

33

7 Evaluation

SNG CM2

Processor Intel Platinum 8174 Intel E5-2697 v3
Architecture Skylake Haswell
Cores per Node 2 x 24 2 x 14
Memory per Node 96 GB 64 GB
Number of Nodes 6,480 384
Interconnect Intel Omni-Path FDR14 Infiniband

Table 7.1: Overview of the system hardware used for the evaluation.

Collect Agent SNG CM2

Processor Intel Gold 6148 Intel E5-2690 v3
Architecture Skylake Haswell
Cores 2 x 20 2 x 12
Memory 768 GB 128 GB

Table 7.2: Overview of the system hardware used for the Collect Agents.

runs are conducted. The HPL version used for this runs uses Intel’s MKL [46] library
with AVX-512 [47]. Just like with LAMMPS, HPL uses one MPI process per every physi-
cal core but does not use any OpenMP threads.
A separate Pusher instance is launched on every node, each using two sampling threads.
For each system, SNG and CM2, a single Collect Agent is run in a special benchmark
mode. In the benchmark mode, the Collect Agent does not store any messages in a Storage
Backend but instead discards all messages after receiving them. As the Collect Agent is
run on separate hardware anyway, and still receives all messages, the evaluation should
not be affected by its benchmark mode. During the measurements, it is recorded that the
Collect Agent never receives more than 80,000 messages per second which is well below
the maximum message rate tested in [7]. Hence, the Collect Agent can be ruled out as
bottleneck for this evaluation. A Storage Backend is not run for this tests.
A list of used compilers is shown in Table B.1. All measurements are repeated ten times
and from the results median values are taken to account for possible outliers.

Metrics

To assess Pusher’s impact on an application’s performance, runtime overhead and addi-
tional memory usage are consulted as evaluation metrics.
For runtime overhead the wall clock execution time of the benchmarks is consulted.
Overhead is defined as O = (Tp − Tr)/Tr. In this context, Tr refers to the reference value
as measured during an unmodified benchmark run. Tp denotes the measured time of a
benchmark run with Pusher and Caliper, if applicable.
Additional memory usage is determined by M = Mp − Mr. Mr refers to the memory
required by an unmodified benchmark while Mp denotes the memory used by a bench-
mark with Caliper integrated. Memory usage is determined by the average Residual Set
Size (RSS) as reported by the Linux ps tool throughout a run.
Further on, CPU and memory usage of the Pusher process as measured by ps are reported.

34

7 Evaluation

7.2 Pusher Framework Overhead

Pusher’s runtime overhead is already evaluated for another DCDB related publication [7].
For the sake of completeness, the runtime overhead results are briefly repeated here.
Two Pusher configurations are tested. The first uses a special Tester plugin that allows to
create Sensors which generate dummy data with negligible overhead. This configuration
is therefore used to isolate the overhead of the Pusher framework itself from its plugins.
The second configuration uses the four plugins Perf Events, ProcFS, SysFS, and OPA to
gather in-band data. In both cases almost 2500 Sensors with a sampling rate of 1 Hz are
created. The results are depicted in Figure 7.1. If no bar is visible, no overhead could be
measured at all.

128 256 512 1024
0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

Runtime overhead

Pusher

Kripke – test

Kripke – full

AMG – test

AMG – full

LAMMPS – test

LAMMPS – full

Quicksilver – test

Quicksilver – full

Nodes

O
ve

rh
ea

d

Figure 7.1: Pusher’s overhead on different benchmarks and system sizes on the SNG sys-
tem.

Regarding Kripke, LAMMPS, and Quicksilver one can see that the overhead introduced
by Pusher is below 5%. The overhead of the Pusher test configuration is well below the
full setup. Hence, most of the overhead seems to be induced by the actual data collection
of the plugins while the overhead of the Pusher framework itself is negligible.
Regarding the AMG benchmark, however, overhead goes up to over 9% which exceeds
the other benchmark quite well. Also, the difference between test and full setup is not
as distinct as with the other benchmarks. The root cause for the additional overhead lies
therefore within the Pusher framework itself. In [7] it is already deduced that the unusual
high overhead for AMG can be attributed to network inferences. Both configurations,
test and full, produce the same amount of messages which have to be sent to the Collect
Agent. As AMG is a network sensitive benchmark, both configurations infer with it in
equal parts resulting in overly high overhead in both cases. One may consider the usage
of a separate network interface to forward Pusher’s data messages to reduce the network
overhead.

35

7 Evaluation

7.3 Caliper Overhead

Part of the work for this thesis is the exhaustive evaluation of the Caliper plugin. As it is
a hybrid plugin that has to be integrated into a user’s application, its overhead may be
much more critical than Pusher one’s. Two configurations, each representing a distinct
use case as described in Section 6.2, are evaluated. The Pushers are instantiated with only
the Caliper plugin enabled. The exact Pusher and Caliper configuration used for the tests
is also shown in Appendix B.

7.3.1 Benchmarking Problems

The process of conducting the Caliper evaluation was hindered by quite a number of
problems. At first, it was intended to run all measurements on CM2. The cluster, how-
ever, is usually crowded and jobs include up to several days of prior waiting time. After
the required infrastructure was set up on CM2, and first results were already gathered,
the cluster underwent a three day maintenance. Unfortunately, the updates rolled out
during the maintenance resulted in an unstable cluster operation that rendered further
measurements impossible. After these instabilities persisted for more than two weeks,
it was decided to switch to the SNG system for the measurements. The setup on SNG
in turn was hindered by inferences between Caliper and Intel libraries. Although an is-
sue was submitted to Caliper’s GitHub repository [63], only a provisional solution for the
problem could be found. Namely Caliper’s initialization is only done after the MPI ini-
tialization. Eventually, the results on SNG and CM2, whose operation stabilized in the
meantime, showed to be not fully rational, as detailed below. Although further investi-
gations were undertaken, the root cause was not found.
Overall, the aforementioned obstacles resulted in a remarkable slow down of the whole
evaluation process. The initial time budget was by far exceeded. Therefore, the follow-
ing results are not as polished as they could be. Also, not all unreasonable results can be
appropriately explained as no time was left for further investigations.

7.3.2 Sampler

For the evaluation of the Sampler use case all benchmarks were modified to initialize
Caliper at program start. By default, a sampling rate of 10 Hz is used.

Runtime

One can see in Figure 7.2 that in the case of Kripke and AMG the runtime overhead
lies well below 10%. In case of Pennant, the runtime overhead almost vanishes in the
measurement fluctuations. For LAMMPS and Quicksilver the measurements yield quite
strange results. Contrary to all expectations, LAMMPS runtime notably improves by the
Caliper integration. Quicksilver in turn reveals some great overhead fluctuations, ranging
from almost -45% to over +25%. Both benchmarks strongly suggest that the setup and/or
conduction of the experiments is erroneous. Despite triple checking the experimental
setup and various further tests to exclude any other possible environmental inference a
root cause or other explanation for the LAMMPS and Quicksilver results could not be
found and would require an exhaustive performance analysis that is out of the scope of

36

7 Evaluation

2 4 8 16 32 64 128 256 512 1024

-50.00%

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

Runtime overhead

Sampler

Kripke

AMG

LAMMPS

Quicksilver

Pennant

Nodes

O
ve

rh
ea

d

Figure 7.2: Runtime overhead induced by Pusher and Caliper using the Sampler configu-
ration on the SNG system.

this thesis. Although the results for LAMMPS at least could be considered to cast a very
favorable light on the Caliper set up, the author does not assess them as correct.

To further investigate on the unreasonable runtime overhead results, the experiment is
repeated at smaller scale on the CM2 system. The resulting runtime overheads are de-
picted in Figure 7.3. One can see that on one side Kripke’s overhead improved on CM2
and is almost negligible. On the other side, AMG’s overhead got worse and even in-
creases with larger node configurations. Pennant’s overhead in turn remains unchanged
except a significant outlier with the 32 node configuration. For the aforementioned re-
sults, a statement on generally better or worse performance on CM2 can not be given.
LAMMPS’ overhead appears to be more sound than on SNG, despite one extreme out-
lier at the 16 node configuration. Quicksilver repeatedly shows greatly varying results,
which may indicate a general high fluctuation of runtimes. Although the overhead never
exceeds 5%, the Quicksilver results should be interpreted carefully, as an overhead of less
than -20% in the two node configuration does not seem reasonable.
One should also recall into mind that all measurements are repeated ten times and only
median values are reported. Outliers and fluctuations are therefore persistent.

For better classification of the results, the overhead caused by Pusher and Caliper is com-
pared to the overhead of Caliper integration alone. For this test, the runtime overhead on
single node HPL is measured on SNG with two configurations. The first uses Pusher and
Caliper in the same setup as for the CORAL-2 benchmarks above. The second configu-
ration leaves out Pusher and sets up Caliper to use the Trace, Symbollookup, and Recorder
services instead of the dcdbpusher service. This way, Caliper achieves similar sample data
results but without being integrated into the DCDB infrastructure. The exact Caliper con-
figuration is given in Listing B.4.
The HPL runtimes with the different configurations reveal that Caliper together with
Pusher induces an overhead of 3.4% while Caliper alone only adds 0.3%. Therefore, only

37

7 Evaluation

2 4 8 16 32

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

Runtime overhead CM2

Sampler

Kripke

AMG

LAMMPS

Quicksilver

Pennant

Nodes

O
ve

rh
ea

d

Figure 7.3: Runtime overhead induced by Pusher and Caliper using the Sampler configu-
ration on the CM2 system.

a minor part of the runtime overhead seems to be caused by the Caliper integration on its
own. Instead, the majority has to be accredited to the dcdbpusher Caliper service and the
presence of Pusher.

Overall, the runtime overhead caused by Pusher and the Caliper integration has to be
interpreted carefully. Only regarding meaningful benchmark results, the overhead lies
mostly below 5%. Nevertheless, 5% are also significantly exceeded especially in the case
of AMG, but also other benchmarks revealed extreme outliers. Taking the unusual and
currently unexplainable results from LAMMPS on SNG and particularly Quicksilver into
account, doubts about the validity of the measurements remain.

Memory

The induced additional memory consumption of the CORAL-2 benchmarks due to the
Caliper integration as measured on SNG is depicted in Figure 7.4. Note that Pusher’s
memory usage is not included in Figure 7.4 but is disclosed separately below. One can
see that Caliper usually requires an additional 500 MiB of memory. In the case of AMG
some significant negative outliers can be observed. This may be accredited to AMG’s
general high memory fluctuations. The benchmark’s memory usage varies within a few
GiB that can easily make up for the extra memory usage of Caliper. The same reasoning
can be applied to Kripke’s significant fluctuations, although they are not quite as high as
with AMG.
Results from the measurements on the CM2 system are left out, as they do not expose any
new insights. Caliper’s memory usage stays unchanged with around 500 MiB on CM2.
The 500 MiB of additional memory required by Caliper seem to be acceptable for most
cases, as current HPC system’s main memory is comparatively large, rendering Caliper’s
requirements negligible. Here for example, even the most memory intensive benchmark,

38

7 Evaluation

2 4 8 16 32 64 128 256 512 1024

-2000

-1500

-1000

-500

0

500

1000

Additional memory usage

Sampler

Kripke

AMG

LAMMPS

Quicksilver

Pennant

Nodes

M
em

o
ry

 in
 M

iB

Figure 7.4: Additional memory usage of benchmarks induced by the Caliper integration
using the Sampler configuration on the SNG system.

Kripke, still did not use half of the memory that is offered on SNG. Still, extreme memory
affine applications, that can completely use a system’s memory on their own may be
impacted by the Caliper integration. In such cases, it may be necessary to account for
Caliper’s additional memory usage and reduce the problem size accordingly.

Pusher

Pusher’s resource usage, namely its CPU and memory usage are depicted in Figures 7.5
and 7.6 respectively. One can see, that Pusher’s CPU usage is below 1% in every case and
is therefore on the verge of being negligible (100% CPU usage correspond to one fully
loaded CPU core). Pusher’s memory usage lies between 90 and 160 MiB. This matches
the memory measurements with other plugins as reported in [7]. Unequal memory us-
ages with different benchmarks can be explained by the amount of differing functions
that are sampled. The more different functions are sampled, the more Sensor objects are
created by the Caliper plugin, hence memory usage rises. Even in the worst case, namely
Quicksilver, Pusher’s memory usage of at most 160 MiB should be acceptable as current
HPC server systems comprise dozens of GiB of main memory. Similar results for Pusher’s
resource usage could be observed on the CM2 system. CPU usage is below 1% at all times
while no more than 160 MiB of memory are required. Altering resource usage on differ-
ent system sizes can not be observed and is also not to be expected, as a separate Pusher
instance is run on every node. Hence, the number of Pusher instances scales with the
system size while individual resource usage of a single Pusher stays constant.

39

7 Evaluation

2 4 8 16 32 64 128 256 512 1024
0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

0.90%

1.00%

Average CPU usage of Pusher

Sampler

Kripke

AMG

LAMMPS

Quicksilver

Pennant

Nodes

C
P

U
 u

sa
g

e

Figure 7.5: Pusher’s average CPU usage using the Sampler configuration on the SNG sys-
tem.

2 4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

120

140

160

180

Average memory usage of Pusher

Sampler

Kripke

AMG

LAMMPS

Quicksilver

Pennant

Nodes

M
em

o
ry

 u
sa

ge
 in

 M
iB

Figure 7.6: Pusher’s average memory usage using the Sampler configuration on the SNG
system.

40

7 Evaluation

7.3.3 Sampler Frequency

The used Sampler frequency of 10 Hz is a rather arbitrary choice. To assess the impact
of the Sampler frequency on the evaluation and gather a small indication on how severe
the impact of higher frequencies is, a small experiment is conducted. The benchmarks
Kripke and AMG are run on two SNG nodes with the same configuration as before but
with increasingly higher Sampler frequencies.

Looking at the runtime overhead as reported in Figure 7.7, both benchmarks seem to
be only marginally affected by increased Sampler frequencies. Although the applications
themselves are rather unaffected by higher Sampler frequencies, Pusher’s CPU usage lin-
early correlates with the increasing snapshot rate as can be seen in Figure 7.8. This seems
logical, as the Pusher plugin is the place where the snapshots have to be processed and
assigned to Sensors. Therefore, more snapshots that have to be processed require more
processing power. In this test Pusher’s previously almost negligible CPU overhead of less
than 1% rises to significant 15% in the worst case.
The additional memory usage of the benchmarks is subject to high variations as can be
seen in Figure 7.7. Fluctuations within the results can realistically be credited to overall
measurement variations. Especially AMG is already described as having a highly vary-
ing memory usage. Still, the high memory fluctuations do not allow for a meaningful
interpretation of the results, although in general no rising memory usage with increas-
ing Sampler frequencies can be observed. Memory usage staying the same for increasing
frequencies is to be expected, as the generated snapshots do not get stored within the
application but get directly forwarded to the Pusher plugin. Higher frequencies result
in more snapshots per second to be forwarded to the plugin but they do not require a
significant part of additional memory.
Pusher’s memory usage does not correlate linearly with the Sampler frequency as can be
seen in Figure 7.8. Although there is a slight increase of memory usage until 100 Hz, it
seems to be capped for higher frequencies. This behavior meets the expectations. The
main factor of Pusher’s increasing memory is the creation of new Sensor objects for every
newly sampled function. At some point, however, under the assumption of finite user
software, all possible functions are sampled already. No new Sensors have to be created
as all samples can be accounted to an existing object. Therefore the rise of memory usage
comes to a halt.
Overall, it can be recorded, that an increase of the Sampler frequency does not directly
affect an user’s application. However, the software is still affected indirectly, as it has
to share a node’s resources with a Pusher whose CPU usage increases linearly with the
frequency. Especially compute bound applications are therefore prone to performance
impacts from rising Sampler frequencies. Still, a frequency of up to 100 Hz seems to be an
acceptable choice, as its induced increased resource usage lies within a small acceptable
range.

7.3.4 Sampler with Events

The second use case makes use of the Event service in addition to the Sampler. Once
again, the Sampler uses a sampling rate of 10 Hz. The benchmarks Kripke, AMG, and
Quicksilver are enriched with two annotations respectively that enclose the main com-
pute loop. Further on, a heavily annotated Quicksilver version from the Caliper example
repository [64] is evaluated ("Quicksilver Exam" in the following). The annotations make
up for 5% (Kripke), 30% (AMG), 15% (Quicksilver), and 90% (Quicksilver Exam) of all
processed snapshots respectively.

41

7 Evaluation

10 50 100 500 1000
0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

0

500

1000

1500

2000

2500

Runtime overhead and additional memory usage

Sampler

Kripke – Runtime

AMG – Runtime

Kripke – Memory

AMG – Memory

Sampler frequency in Hz

R
un

tim
e

 o
ve

rh
ea

d

M
em

o
ry

 in
 M

iB

Figure 7.7: Runtime overhead induced by Pusher and Caliper, as well as additional mem-
ory usage of benchmarks caused by Caliper’s integration. Both measured with
different Sampler frequencies on the SNG system.

10 50 100 500 1000
0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

0

20

40

60

80

100

120

140

160

180

Resource usage of Pusher

Sampler

Kripke – CPU

AMG – CPU

Kripke – Mem.

AMG – Mem.

Sampler frequency in Hz

C
P

U
 U

sa
g

e

M
em

o
ry

 u
sa

ge
 in

 M
iB

Figure 7.8: Pusher’s average CPU and memory usage with different Sampler frequencies
on the SNG system.

42

7 Evaluation

2 4 8 16 32 64 128 256 512 1024

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

Runtime overhead

Sampler + Event

Kripke

AMG

Quicksilver

Quicksilver Exam

Nodes

O
ve

rh
ea

d

Figure 7.9: Runtime overhead induced by Pusher and Caliper using the Sampler with
Events configuration on the SNG system.

The runtime overhead caused by Caliper with the Sampler and Event configuration is
depicted in Figure 7.9. Visible outliers are credited to the same unexplainable problem
as reported in Section 7.3.2. Kripke, AMG, and Quicksilver all seem to be rather unaf-
fected by the additional annotations. Their overhead does not significantly exceed the
numbers shown in Figure 7.2 and is in line with the overhead reported in [9]. This may
also be partly credited to the fact, that the annotations only make up for a minority of the
snapshots. Quicksilver Exam, however, shows a great performance impact caused by its
annotations of up to almost 50%. This is to be expected, as the annotation triggered events
make up 90% of its snapshots and result in an average event rate of 4,500 events/second.
One has to keep in mind, though, that the Quicksilver results are not as indicative as
they could be, because of Quicksilver’s known performance variations. For an accurate
statement, further measurements would be required.
In general, additionally introduced overhead greatly depends on the number of annota-
tions for the Sampler with Events configuration. Therefore, acceptable overhead has to be
determined by the users themselves and annotations have to be deployed accordingly.
Additional memory usage remains unchanged in this configuration, presumably for the
same reasoning as presented in Section 7.3.3. Therefore, the corresponding graphs are
left out.
The impact of the Sampler with Events configuration on Pusher’s resource usage appears

to be limited. Its CPU usage as shown in Figure 7.10 did not significantly increase in any
case in comparison to Figure 7.5 and is still well below 1%. Only in the case of Quicksil-
ver Exam a slightly increased CPU usage can be noted. It seems that the additional Event
snapshots are negligible even in the case of Quicksilver Exam, where they make up 90%
of all snapshots. This appears reasonable, as a significant increase of Pusher’s CPU us-
age in Figure 7.8 could only be observed with per-thread Sampler frequencies that induce
overall many more snapshots than the per-process annotations from Quicksilver Exam.
Regarding Pusher’s memory usage as presented in Figure 7.11, no significant rise in com-

43

7 Evaluation

2 4 8 16 32 64 128 256 512 1024
0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

0.90%

1.00%

Average CPU usage of Pusher

Sampler + Event

Kripke

AMG

Quicksilver

Quicksilver Exam

Nodes

C
P

U
 U

sa
g

e

Figure 7.10: Pusher’s average CPU usage using the Sampler with Events configuration on
the SNG system.

2 4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

120

140

160

Average memory usage of Pusher

Sampler + Event

Kripke

AMG

Quicksilver

Quicksilver Exam

Nodes

M
em

o
ry

 u
sa

ge
 in

 M
iB

Figure 7.11: Pusher’s average memory usage using the Sampler with Events configuration
on the SNG system.

44

7 Evaluation

parison to Figure 7.6 can be observed. It seems that the additional Sensor objects required
for the annotation data are negligible in comparison to the sampling induced Sensors.
Surprisingly, in the case of AMG, Pusher requires persistently less than half of the mem-
ory than with the Sampler only configuration. Results for the other benchmarks, however,
testify that the measurements in general are valid. Currently, no sound explanation for
this odd behavior can be given.

7.3.5 Conclusion

In general, approval of the results depends on what threshold one is willing to accept.
Runtime overhead of the Pusher framework collecting general in-band data is below 5%
in most cases except AMG. It is predicted that also AMG’s overhead can be further re-
duced by sending Pusher’s data over a dedicated network. Therefore, the overhead of
Pusher collecting in-band data is classified as acceptable for production use.
Results for Pusher collecting application introspection data with Caliper in the Sampler
configuration have to be interpreted carefully. The measured runtime overheads appear
to be likely inaccurate in the case of LAMMPS on SNG and Quicksilver in general. Re-
garding the reasonable results, the conclusion is mixed. Depending on the benchmark
the runtime overhead may exceed 5% and reach more than 20%. It is unlikely that the
overhead is caused by Pusher’s resource usage per se. It is shown that Pusher does not
exceed 1% CPU and 160 MiB memory usage. Runtime overhead also appears to be rather
indifferent towards the used sampling frequency, as no overhead changes could be ob-
served for frequencies of up to 1000 Hz. Still, Pusher’s CPU usage linearly increases with
the Sampler frequency and is therefore likely to cause runtime inference at some point.
Regarding measurements with Caliper in the Sampler with Events configuration, it is shown
that the runtime overhead significantly depends on the amount of Event triggering an-
notations. The overhead can increase greatly with Event snapshots. However, the users
themselves are in direct charge of the amount of Event annotations.
An applications additional memory usage induced by Caliper is determined to be around
500 MiB. The memory usage is largely independent of the configuration. Although cur-
rent HPC systems employ multiple dozens of GiB as main memory per node, the addi-
tional memory usage should be taken into consideration for memory affine applications.

45

8 Summary and Outlook

Holistic monitoring is key to efficient operation of current and future HPC systems. In
this thesis, a new, generic data acquisition module called Pusher for the DCDB monitoring
infrastructure is presented and evaluated. As a background, DCDB’s design principles
and main components, namely Pusher, Collect Agent, and Storage Backend, are introduced.
Further on, the need for a new generic Pusher implementation is stated.
A new Pusher component was developed. It is designed as general framework, that al-
lows for the attachment of plugins. Actual data acquisition from specific data sources
is outsourced into those plugins. The framework provides the infrastructure to forward
the data to other DCDB components. All design goals and the full functionality of the
framework like the integrated RestAPI are presented. Further on, an in-depth overview
of the actual implementations and the various involved components is given. Following,
the implementation structure of plugins is presented. All currently implemented plugins
and their functionality are showcased. The hybrid Caliper plugin is highlighted in partic-
ular, as it allows to gather application introspection data for the monitoring framework.
In conclusion, the Pusher framework in general and the Caliper plugin in particular are
evaluated. It is shown, that the resource footprint of Pusher collecting generic in-band
data is viable for production use. The runtime overhead of the Caliper plugin on different
benchmarks may exceed a 5% in certain configurations. Acceptance is therefore subject
to personal opinions. Additional memory usage induced by Caliper is determined to be
around 500 MiB. The resource usage of Pusher itself supports Caliper sampling frequen-
cies of up to 100 Hz without exceeding 2% CPU and 160 MiB memory usage.
For the future, some tasks still remain. The integration of Caliper into user software
should be done automatically and invisible to the user to gather sampling data from
applications at all times. Possibly, this can be done by providing a custom library that
overwrites a program’s start method and initializes Caliper before actual application start.
Feasibility of this approach still has to be explored, though. Especially the inferences
between Caliper and Intel libraries have to be resolved first, as they form a significant
hurdle for the automatic Caliper integration in general. Also, further investigations of the
LAMMPS and Quicksilver benchmark results may be necessary to dispel doubts about
the evaluation results. It may also be useful to do further experiments to fully explore the
impact of Sampler triggered snapshots in comparison to Event triggered ones.

46

A Software Dependencies

Pusher and its shipped plugins depend on a set of third-party software. Those dependen-
cies are listed in the following.

Name Version Source Required for

BACnet Stack 0.8.6 [65] BACnet plugin

Boost 1.70.0 [66] Among others:
Threadpool, Logging,
SensorBase reading queue,
RESTHttpsServer

Elfutils 0.177 [67] Caliper plugin

FreeIPMI 1.6.3 [68] IPMI plugin

Mosquitto 1.5.5 [69] MQTTPusher

Net-SNMP 5.8 [70] SNMP plugin

OPA Software 10.6.0.0.134 [71] OPA plugin

OpenSSL 1.1.1c [72] RESTHttpsServer, REST plugin

Table A.1: External software dependencies Pusher and its plugins rely on.

47

B Additional Evaluation Information

This chapter is a collection of all relevant information related to Chapter 7 that did not fit
the text flow very well.

Compilers

To compile the evaluation applications as well as Pusher and Caliper themselves, different
compilers and versions are used. They are listed in the following.

Name Version Used for

GCC 4.8.5 Pusher in Section 7.2

GCC 7.3.0 Pusher and Caliper in Section 7.3

Intel 18.0.5 All benchmarks in Section 7.2
(including Intel MPI)

Intel 19.0.4 All benchmarks in Section 7.3
(including Intel MPI)

Table B.1: Compiler versions used for the evaluation.

Configuration Files

The exact Pusher and Caliper configurations as used for the Caliper evaluation are shown
below.

1 global {
2 mqttPrefix /System/Rack/Chassis/Node
3 }
4

5 group cali {
6 interval 100
7 maxSensors 1000
8 timeout 250
9 }

Listing B.1: Configuration for Pusher’s Caliper plugin as used in Section 7.3.

48

B Additional Evaluation Information

1 global {
2 mqttBroker 172.16.224.164:1883
3 mqttprefix /test
4 threads 2
5 maxMsgNum 1000
6 verbosity 0
7 daemonize false
8 tempdir /tmp/
9 cacheInterval 120

10 qosLevel 0
11 }
12

13 plugins {
14 plugin caliper {
15 path
16 config
17 }
18 }
19

20 operatorPlugins {
21 }

Listing B.2: Pusher’s configuration file.

1 CALI_SERVICES_ENABLE=event:sampler:timestamp:pthread:dcdbpusher;
2 CALI_SAMPLER_FREQUENCY=10;
3 CALI_TIMER_TIMESTAMP=true;

Listing B.3: Runtime configuration of the Caliper toolbox as used in Section 7.3.

1 export CALI_SERVICES_ENABLE=sampler:timestamp:pthread:trace:
symbollookup:recorder

2 export CALI_SAMPLER_FREQUENCY=10
3 export CALI_TIMER_TIMESTAMP=true
4 export CALI_TRACE_BUFFER_POLICY=flush
5 export CALI_SYMBOLLOOKUP_LOOKUP_FUNCTIONS=true
6 export CALI_SYMBOLLOOKUP_LOOKUP_SOURCELOC=false
7 export CALI_SYMBOLLOOKUP_LOOKUP_FILE=true

Listing B.4: Runtime configuration of the Caliper toolbox as used for the HPL run without
Pusher in Section 7.3.2.

49

Bibliography

[1] “Aurora.” [Online]. Available: https://www.anl.gov/article/us-
department-of-energy-and-intel-to-deliver-first-exascale-
supercomputer, last accessed 16.09.2019.

[2] G. E. Moore, “Progress in Digital Integrated Electronics,” IEEE International Electron
Devices Meeting (IEDM), pp. 11–13, 1975.

[3] “The law that’s not a law,” IEEE Spectrum, vol. 52, no. 4, pp. 38–57, 2015.

[4] “Intel pushes 10nm chip-making process to 2017, slowing Moore’s Law.” [Online].
Available: https://www.infoworld.com/article/2949153/intel-
pushes-10nm-chipmaking-process-to-2017-slowing-moores-
law.html, last accessed 08.10.2019.

[5] H. Sutter, “The free lunch is over: A fundamental turn toward concurrency in soft-
ware,” Dr. Dobb’s Journal, vol. 30, no. 3, 2005.

[6] A. Auweter, The DCDB Framework. Dissertation, Technische Universität München,
München, January 2019.

[7] A. Netti, M. Müller, A. Auweter, C. Guillen, M. Ott, D. Tafani, and M. Schulz, “From
Facility to Application Sensor Data: Modular, Continuous and Holistic Monitoring
with DCDB,” Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage, and Analysis (SC), August 2019.

[8] R. T. Fielding, Architectural Styles and the Design of Network-based Software Architec-
tures. PhD thesis, 2000.

[9] D. Boehme, T. Gamblin, D. Beckingsale, P. Bremer, A. Gimenez, M. LeGendre,
O. Pearce, and M. Schulz, “Caliper: Performance Introspection for HPC Software
Stacks,” in SC ’16: Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pp. 550–560, Nov 2016.

[10] D. Locke, “Mq telemetry transport (mqtt) v3. 1 protocol specification,” IBM develop-
erWorks Technical Library, p. 15, 2010.

[11] A. Netti, M. Müller, C. Guillen, M. Ott, D. Tafani, G. Ozer, and M. Schulz, “DCDB
Wintermute: Enabling Online and Holistic Operational Data Analytics on HPC Sys-
tems,” Submitted to 34th IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), October 2019.

[12] G. Wang and J. Tang, “The NoSQL Principles and Basic Application of Cassan-
dra Model,” in 2012 International Conference on Computer Science and Service System,
pp. 1332–1335, 2012.

[13] “BACnet-A Data Communication Protocol for Building Automation and Control
Networks,” Standard 135-2016, American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE), 2016.

[14] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for Large Computing

50

https://www.anl.gov/article/us-department-of-energy-and-intel-to-deliver-first-exascale-supercomputer
https://www.anl.gov/article/us-department-of-energy-and-intel-to-deliver-first-exascale-supercomputer
https://www.anl.gov/article/us-department-of-energy-and-intel-to-deliver-first-exascale-supercomputer
https://www.infoworld.com/article/2949153/intel-pushes-10nm-chipmaking-process-to-2017-slowing-moores-law.html
https://www.infoworld.com/article/2949153/intel-pushes-10nm-chipmaking-process-to-2017-slowing-moores-law.html
https://www.infoworld.com/article/2949153/intel-pushes-10nm-chipmaking-process-to-2017-slowing-moores-law.html

Bibliography

Clusters,” in Proceedings of the 1st USENIX Conference on File and Storage Technologies,
FAST ’02, (Berkeley, CA, USA), USENIX Association, 2002.

[15] “Intelligent Platform Management Interface Specification v2.0 rev. 1.1,” industry
specification, Intel Corporation, Hewlett-Packard Company, Dell Computer Corpo-
ration, NEC Corporation, 2013.

[16] Intel 64 and IA-32 Architectures Software Developer’s Manuals, vol. 4. May 2019.

[17] M. Feldman and A. Snell, “A New High Performance Fabric for HPC,” white paper,
Intersect360 Research, 2016.

[18] V. M. Weaver, “Linux perf_event features and overhead,” in Proc. of the FastPath
Workshop 2013, vol. 13, 2013.

[19] “proc Filesystem.” [Online]. Available: http://man7.org/linux/man-pages/
man5/proc.5.html, last accessed 02.10.2019.

[20] J. Case, M. Fedor, M. L. Schoffstall, and D. James, “A Simple Network Management
Protocol (SNMP),” RFC 1157, Internet Engineering Task Force (IETF), 1990.

[21] “sysfs Filesystem.” [Online]. Available: http://man7.org/linux/man-pages/
man5/sysfs.5.html, last accessed 02.10.2019.

[22] “Data Center DataBase (DCDB).” [Online]. Available: https://dcdb.it, last ac-
cessed 23.09.2019.

[23] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed monitoring
system: Design, implementation, and experience,” Parallel Computing, vol. 30, no. 7,
pp. 817–840, 2004.

[24] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gentile, S. Monk,
N. Naksinehaboon, J. Ogden, M. Rajan, M. Showerman, J. Stevenson, N. Taerat, and
T. Tucker, “The Lightweight Distributed Metric Service: A Scalable Infrastructure
for Continuous Monitoring of Large Scale Computing Systems and Applications,”
in International Conference for High Performance Computing, Networking, Storage and
Analysis, SC, vol. 2015-January, pp. 154–165, 2014.

[25] J. M. Brandt, B. J. Debusschere, A. C. Gentile, J. R. Mayo, P. P. Pébay, D. Thompson,
and M. H. Wong, “Ovis-2: A robust distributed architecture for scalable RAS,” in
IPDPS Miami 2008 - Proceedings of the 22nd IEEE International Parallel and Distributed
Processing Symposium, Program and CD-ROM, 2008.

[26] T. Evans, W. L. Barth, J. C. Browne, R. L. Deleon, T. R. Furlani, S. M. Gallo, M. D.
Jones, and A. K. Patra, “Comprehensive resource use monitoring for HPC systems
with TACC stats,” in Proceedings of HUST 2014: 1st International Workshop on HPC
User Support Tools - Held in Conjunction with SC 2014: The International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 13–21, 2014.

[27] R. T. Evans, J. C. Browne, and W. L. Barth, “Understanding application and system
performance through system-wide monitoring,” in Proceedings - 2016 IEEE 30th In-
ternational Parallel and Distributed Processing Symposium, IPDPS 2016, pp. 1702–1710,
2016.

[28] “RabbitMQ.” [Online]. Available: https://www.rabbitmq.com/, last accessed
18.09.2019.

[29] “Performance Co-Pilot.” [Online]. Available: https://pcp.io/, last accessed
19.09.2019.

51

http://man7.org/linux/man-pages/man5/proc.5.html
http://man7.org/linux/man-pages/man5/proc.5.html
http://man7.org/linux/man-pages/man5/sysfs.5.html
http://man7.org/linux/man-pages/man5/sysfs.5.html
https://dcdb.it
https://www.rabbitmq.com/
https://pcp.io/

Bibliography

[30] W. Barth, Nagios: System And Network Monitoring. Open Source Press GmbH, 2 ed.,
2008.

[31] D. Carasso, Exploring Splunk - Search processing Language (SPL) Primer and Cookbook.
CITO Research, 1 ed., 2012.

[32] A. Knüpfer, C. Rössel, D. a. Mey, S. Biersdorff, K. Diethelm, D. Eschweiler,
M. Geimer, M. Gerndt, D. Lorenz, A. Malony, W. E. Nagel, Y. Oleynik, P. Philip-
pen, P. Saviankou, D. Schmidl, S. Shende, R. Tschüter, M. Wagner, B. Wesarg, and
F. Wolf, “Score-P: A Joint Performance Measurement Run-Time Infrastructure for
Periscope,Scalasca, TAU, and Vampir,” in Tools for High Performance Computing 2011,
pp. 79–91, Springer Berlin Heidelberg, 2012.

[33] S. S. Shende and A. D. Malony, “The TAU parallel performance system,” Interna-
tional Journal of High Performance Computing Applications, vol. 20, no. 2, pp. 287–311,
2006.

[34] “Intel VTune Amplifier.” [Online]. Available: https://software.intel.com/
vtune, last accessed 14.10.2019.

[35] “Boost INFO File Format.” [Online]. Available: https://www.boost.org/
doc/libs/1_71_0/doc/html/property_tree/parsers.html#property_
tree.parsers.info_parser, last accessed 02.10.2019.

[36] “Doxygen.” [Online]. Available: http://www.doxygen.nl/index.html, last
accessed 02.10.2019.

[37] R. A. Light, “Mosquitto: server and client implementation of the MQTT protocol,”
The Journal of Open Source Software, vol. 2, no. 13, p. 265, 2017.

[38] “Boost.Beast.” [Online]. Available: https://github.com/boostorg/beast,
last accessed 25.09.2019.

[39] “Boost.Log.” [Online]. Available: https://github.com/boostorg/log, last ac-
cessed 28.09.2019.

[40] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable
Object-oriented Software. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1995.

[41] D. L. Mills, “Internet time synchronization: the network time protocol,” IEEE Trans-
actions on communications, vol. 39, no. 10, pp. 1482–1493, 1991.

[42] J. E. F. Friedl, Mastering Regular Expressions. O’Reilly Media, Inc., 3 ed., 2006.

[43] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous Multithreading: Maxi-
mizing On-chip Parallelism,” in Proceedings of the 22Nd Annual International Sympo-
sium on Computer Architecture, ISCA ’95, pp. 392–403, 1995.

[44] J. Dongarra, J. Bunch, C. Moler, and G. Stewart, LINPACK Users’ Guide. Other Titles
in Applied Mathematics, Society for Industrial and Applied Mathematics, 1979.

[45] “High-Performance Linpack.” [Online]. Available: http://www.netlib.org/
benchmark/hpl/, last accessed 05.11.2019.

[46] “Intel Math Kernel Library.” [Online]. Available: https://software.intel.
com/mkl, last accessed 07.11.2019.

[47] J. Reinders, “Intel AVX-512 Instructions,” 2013. [Online]. Available: https://
software.intel.com/articles/intel-avx-512-instructions, last ac-

52

https://software.intel.com/vtune
https://software.intel.com/vtune
https://www.boost.org/doc/libs/1_71_0/doc/html/property_tree/parsers.html#property_tree.parsers.info_parser
https://www.boost.org/doc/libs/1_71_0/doc/html/property_tree/parsers.html#property_tree.parsers.info_parser
https://www.boost.org/doc/libs/1_71_0/doc/html/property_tree/parsers.html#property_tree.parsers.info_parser
http://www.doxygen.nl/index.html
https://github.com/boostorg/beast
https://github.com/boostorg/log
http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/benchmark/hpl/
https://software.intel.com/mkl
https://software.intel.com/mkl
https://software.intel.com/articles/intel-avx-512-instructions
https://software.intel.com/articles/intel-avx-512-instructions

Bibliography

cessed 07.11.2019.

[48] “Portable Operating System Interface (POSIX) Base Specifications, Issue 7,” Stan-
dard 1003.1-2017, Institute of Electrical and Electronics Engineers (IEEE), 2017.

[49] “MPI: A Message-Passing Interface Standard,” Standard Version 3.1, Message Pass-
ing Interface Forum, 2015.

[50] “Caliper GitHub Pull Request.” [Online]. Available: https://github.com/
LLNL/Caliper/pull/222, last accessed 07.11.2019.

[51] “pthreads man-page.” [Online]. Available: http://man7.org/linux/man-
pages/man7/pthreads.7.html, last accessed 07.10.2019.

[52] “GOTCHA GitHub Repository.” [Online]. Available: https://github.com/
llnl/GOTCHA, last accessed 07.11.2019.

[53] “Address space layout randomization (ASLR).” [Online]. Available: https://
pax.grsecurity.net/docs/aslr.txt, last accessed 09.10.2019.

[54] “SuperMUC-NG.” [Online]. Available: https://doku.lrz.de/display/
PUBLIC/SuperMUC-NG, last accessed 24.10.2019.

[55] “CoolMUC-2 Linux cluster.” [Online]. Available: https://doku.lrz.de/
display/PUBLIC/CoolMUC-2, last accessed 01.11.2019.

[56] “CORAL-2 Benchmarks.” [Online]. Available: https://asc.llnl.gov/coral-
2-benchmarks/, last accessed 24.10.2019.

[57] A. J. Kunen, T. S. Bailey, and P. N. Brown, “KRIPKE-a massively parallel transport
mini-app,” tech. rep., Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States), 2015.

[58] U. M. Yang et al., “BoomerAMG: a parallel algebraic multigrid solver and precondi-
tioner,” Applied Numerical Mathematics, vol. 41, no. 1, pp. 155–177, 2002.

[59] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” Journal
of computational physics, vol. 117, no. 1, pp. 1–19, 1995.

[60] D. F. Richards, R. C. Bleile, P. S. Brantley, S. A. Dawson, M. S. McKinley, and M. J.
O’Brien, “Quicksilver: a proxy app for the Monte Carlo transport code mercury,” in
Proc. of CLUSTER 2017, pp. 866–873, IEEE, 2017.

[61] C. R. Ferenbaugh, “PENNANT: an unstructured mesh mini-app for advanced ar-
chitecture research,” Concurrency and Computation: Practice and Experience, vol. 27,
no. 17, pp. 4555–4572, 2015.

[62] “OpenMP Application Programming Interface,” Specification Version 5.0, OpenMP
Architecture Review Board, November 2018.

[63] “Caliper GitHub Issue.” [Online]. Available: https://github.com/LLNL/
Caliper/issues/223, last accessed 06.11.2019.

[64] “Quicksilver example repository.” [Online]. Available: https://github.com/
LLNL/caliper-examples/tree/master/apps/Quicksilver, last accessed
01.11.2019.

[65] “BACnet Stack.” [Online]. Available: http://bacnet.sourceforge.net/, last
accessed 10.10.2019.

[66] “Boost.” [Online]. Available: https://www.boost.org/, last accessed
10.10.2019.

53

https://github.com/LLNL/Caliper/pull/222
https://github.com/LLNL/Caliper/pull/222
http://man7.org/linux/man-pages/man7/pthreads.7.html
http://man7.org/linux/man-pages/man7/pthreads.7.html
https://github.com/llnl/GOTCHA
https://github.com/llnl/GOTCHA
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
https://doku.lrz.de/display/PUBLIC/CoolMUC-2
https://doku.lrz.de/display/PUBLIC/CoolMUC-2
https://asc.llnl.gov/coral-2-benchmarks/
https://asc.llnl.gov/coral-2-benchmarks/
https://github.com/LLNL/Caliper/issues/223
https://github.com/LLNL/Caliper/issues/223
https://github.com/LLNL/caliper-examples/tree/master/apps/Quicksilver
https://github.com/LLNL/caliper-examples/tree/master/apps/Quicksilver
http://bacnet.sourceforge.net/
https://www.boost.org/

Bibliography

[67] “Elfutils.” [Online]. Available: http://elfutils.org/, last accessed 06.11.2019.

[68] “GNU FreeIPMI.” [Online]. Available: https://www.gnu.org/software/
freeipmi/, last accessed 10.10.2019.

[69] “Mosquitto.” [Online]. Available: https://mosquitto.org/, last accessed
10.10.2019.

[70] “Net-SNMP.” [Online]. Available: http://www.net-snmp.org/, last accessed
10.10.2019.

[71] “Intel Omni-Path Software.” [Online]. Available: https://downloadcenter.
intel.com/download/27220/Intel-Omni-Path-Software-Including-
Intel-Omni-Path-Host-Fabric-Interface-Driver, last accessed
10.10.2019.

[72] “OpenSSL.” [Online]. Available: https://www.openssl.org/, last accessed
10.10.2019.

54

http://elfutils.org/
https://www.gnu.org/software/freeipmi/
https://www.gnu.org/software/freeipmi/
https://mosquitto.org/
http://www.net-snmp.org/
https://downloadcenter.intel.com/download/27220/Intel-Omni-Path-Software-Including-Intel-Omni-Path-Host-Fabric-Interface-Driver
https://downloadcenter.intel.com/download/27220/Intel-Omni-Path-Software-Including-Intel-Omni-Path-Host-Fabric-Interface-Driver
https://downloadcenter.intel.com/download/27220/Intel-Omni-Path-Software-Including-Intel-Omni-Path-Host-Fabric-Interface-Driver
https://www.openssl.org/

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of Listings
	Nomenclature
	1 Introduction
	1.1 Problem Statement
	1.2 Contribution

	2 Background: DCDB
	2.1 Design Principles
	2.2 Components
	2.3 Shortcomings

	3 Related Work
	4 DCDB Pusher
	4.1 Design Goals
	4.2 Functionality
	4.3 Implementation

	5 Pusher Plugins
	5.1 Functionality
	5.2 Implementation
	5.3 Plugin Details
	5.3.1 IPMI, SNMP, SysFS
	5.3.2 BACnet
	5.3.3 OPA
	5.3.4 REST
	5.3.5 PerfEvent

	6 Caliper: A Hybrid Plugin
	6.1 The Caliper Framework
	6.2 Use Cases
	6.3 Caliper-Pusher Communication
	6.4 Caliper Service
	6.5 Pusher Plugin

	7 Evaluation
	7.1 Setup
	7.2 Pusher Framework Overhead
	7.3 Caliper Overhead
	7.3.1 Benchmarking Problems
	7.3.2 Sampler
	7.3.3 Sampler Frequency
	7.3.4 Sampler with Events
	7.3.5 Conclusion

	8 Summary and Outlook
	A Software Dependencies
	B Additional Evaluation Information
	Bibliography

