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Une méthode éléments finis pour la décomposition de
domaines avec maillages incompatibles

Résumé : Dans cet article nous présentons une nouvelle méthode pour le traite-
ment d’interfaces entre deux maillages incompatibles. Cette méthode est basée sur
une approche proposée par Nitsche [12] dans le cadre de 'approximation des condi-
tions aux limites de type Dirichlet. Ici, nous nous restreignons aux cas d’équations
elliptiques symeétriques, en prenant ’équation de Poisson comme équation model.
Nous établissons des estimations a priori et a posteriori. En suite, nous discutons le
lien avec la “méthode des mortiers”. Finalement, nous présontons quelques résultats
numeériques.

Mots-clés : adaptativité, décomposition de domaines, éléments finis
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1. INTRODUCTION

In any domain decomposition method, one has to define how the continuity between
the subdomains is to be enforced. Different approaches have been proposed:

e Iterative procedures, enforcing that the approximate solution or its normal
derivative or combinations thereof should be continuous across interfaces. This
forms the basis for the standard Schwarz alternating method as defined, e.g.,
by Lions [11].

e Direct procedures, using Lagrange multiplier techniques to achieve continuity.
Different variants have been proposed, e.g., by Le Tallec and Sassi [10], and
Bernadi, Maday, and Patera [7].

The multiplier method has the advantage of directly yielding a soluble global system.
However, in the latter method, new unknowns (the multipliers) must be introduced
and solved for, and must either satisfy the inf-sup condition, which necessitates
special choices of multiplier spaces (such as mortar elements, cf. [7]), or use special
stabilization techniques (cf. Baiocchi, Brezzi, and Marini [2]).

In this note, we propose a third possibility inspired by Nitsche’s method [12], which
was originally introduced for the purpose of solving Dirichlet problems without en-
forcing the boundary conditions in the definition of the finite element spaces. A
modern setting for this method, and its relation to multiplier methods, is given by
Stenberg [13] and by Brezzi, Franca, Marini, and Russo [8]. This method allows
for independent approximations on the different subdomains. The continuity of the
solution across interfaces is enforced weakly, but in such a way that the resulting
discrete scheme is consistent with the original partial differential equation.

Though we discuss the new method in the context of domain decomposition, it is
also suited for other applications, e.g.,

to handle diffusion terms in the discontinuous Galerkin method [5];

to simplify mesh generation (different parts can be meshed independently from
each other);

finite element methods with different polynomial degree on adjacent elements;
new finite element methods such as linear approximations on quadrilaterals.

RR n° 3613



4 Becker & Hansbo

2. A NITSCHE TYPE METHOD

2.1. Model problem. For simplicity, we consider only the Poisson problem of solv-
ing the partial differential equation

Ay = f inQ,

(1)
u = 0 on 99,

which can be written in weak form as: find u € H3 () such that

(2) a(u,v) = (f,v), Yvée H&(Q),

where
a(u,v) /Vu VudQ, (f,v) /fde

and H&(Q) is the space of square-integrable functions, with square-integrable first
derivatives, that are zero on the boundary 0S2 of 2.

2.2. Definition of the method. For ease of presentation, we consider only the case
where (2 is divided into two non-overlapping subdomains €2; and €22. We consider
the interface I between €2 and €29 to be a straight line.

For the consistency of our numerical method we need some additional regularity of
the solution to (2). More precisely, for the solution u € Hg(Q2) and v € {H () x
HY(Q): v=0 on 09} there must hold:

(3) /Vu Vo dQ) = /fvd(2+/g (Wlo, — o, ) ds,

which says that the normal derivative of the solution is continuous in a weak sense.
This is true for example if Au € L?(f2), see [1]. For simplicity, we also assume that
u is continuous at the interface I'.

Our discrete method for the approximate solution of (1) is a nonconforming finite
element method which is continuous within each €2; and discontinuous across I'.

To formulate our method, we introduce the following spaces
Vi = {v; 1 vilo, € H' (%), viloanon, =0}, i=1,2,
and approximating spaces
V;h = {v; € V; : v; is a piecewise polynomial of degree p on Q;}.

For simplicity, we assume that the polynomial degree p is the same for all subdomains.
We seek our approximative solution U = (Uy, Uy) in the product space V" = Vlh X V2h

INRIA



Finite elements for non-matching grids 5

and for comparison we introduce the vector u corresponding to the solution of (2)
via

u = (u . X(Ql),’u . X(QQ)) eV=VxW.

where x(£;) is the characteristic function on €;. Furthermore, we introduce the
following notations:

U= [Uvds, == {u) = 1+ )2

and denote by h the size of the smallest element on Q; and €y neighboring to I
The outward pointing normal to £2; is denoted n;, and we let n := n; = —nas.

Our method can now be defined as follows: find U € V" such that
(4) an(U,v) = ((f,v)) VveV"

where

an(U,v) = (VUl,Vvl)Ql+(VU2,V112)92—<[U]’{8_U}>F

on
~({Ge )01 + 3w

((f,0)) := (f,v1 + v2).

Here, v > 0 is a fixed number that must be chosen sufficiently large to ensure stability
of the method (see Section 3) Note that the form ap(-,-) is symmetric, which may be
important in order to find fast solution methods for the resulting matrix problem.

and

3. A PRIORI ANALYSIS OF THE METHOD

For the purpose of analysis, we will use the following norm on V:

Q lll? = 3 19l + [ 1l

Ly(T)

We will need the following Lemmas:

Lemma 3.1. The method (4) is consistent with (1) under the assumption (3).

RR n° 3613



6 Becker & Hansbo

Proof. Insert the solution to (1) into ax(-,-) and use Green’s formula to obtain

(o) = an(a) = Y700 = S T+ (Gl )

(2 (2

= Z(f‘FAU,”U@) :0’

%

which shows consistency with (1). O

We note in particular that Lemma 3.1 implies the Galerkin orthogonality relation
(6) ap(U —u,v) =0 YoeV"

Lemma 3.2. The method (4) is stable if v is chosen large enough.

Proof. We will show that a,(U,U) > C||U]|||? for some constant C, which implies
stability. For this purpose, we shall use the following well known inverse property in
Vi

2

ov;
1/2 Y% < n2 . h
(M h M || Ly ~ CollVillLy) Vvi €V,
(see, e.g., Thomeée [14]). We then have that
Uy oU. 2
— 112 AT § A -1/2(, —
(U,0) =3IVl + < L+ 52U, U1>r tr[pmre -,
Now, since
<%,U2—U1> > - hl/z% Hh_l/Q(U2—U1)‘
87’7/1‘ r 87’7/1 LQ(F) LQ(F)
2
> 1 hl/Q% —EHh_l/Q(UQ—Ul)‘2 ,
- & 8”1 LQ(F) 4 L2(F)

where we used Young’s inequality, we have, using (7) and the triangle inequality,
that

20 2 €N \1n-1/2 2
a@.0) 2 (1-22) SV 0+ (1 - 5) 12 0] By
> Clul?
as long as v > ¢/2 > Cj. O

INRIA
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Lemma 3.3. The following interpolation estimate holds for the subspace V" with
2<k<p+1:

®) nf = vll SOW Y ullgiay, w € HQ), uilon = 0.

Proof. Since the norm |||u — ||| consists of contributions from the two domains €
and €29, the Lemma reduces to the question whether

, - 1/2 _
nf, (17 = Voulldy ) + 172 (@ =0) [B,0)) < OB Jull g

7

for u € H*(£;), u|lpqo = 0. This assertion follows from Lemma 2.3 in [14]. O

By use of the preceding Lemmas, we are now able to show the following a priori error
estimate.

Theorem 3.1. With U the solution of (4), u the solution of (1), and w the extension
of w into V', we have that

T —ull < CHF flul gy, 2<k<p+1.

Proof. For any v € V" we have that
1T =l < |U = 2|l + [[lv = ull
and, by Lemma 3.2,
U —]|I?

IN

Cap(U—-v,U —v)=C ap(u—v,U —v)

el = ol -l + |22 {52224 ).
on on LQ(F)

ou v
w2 { ool ) T—(
Ly(I')

which is the statement of the theorem. O

IA

Thus, Lemma 3.3 yields

U -l < C (mu ol + ‘

< OR*Hlull e

Remark 3.1. Note that it follows that || [U] ||,y = O(RF=1/2).

RR n° 3613



8 Becker & Hansbo

Remark 3.2. Instead of using the norm ||| - ||| for the a priori analysis, one can
follow the analysis by Thomée [14] for Nitsche’s method, and instead use the norm

0

Remark 3.3. The presented method resembles a mesh-dependent penalty method,
but with added consistency terms involving normal derivatives across the interface.
Note that the formulation allows us to deduce optimal order error estimates with pre-
served condition number of O(h™2) for the resulting discrete scheme. Pure penalty
methods, in contrast, are not consistent, and optimal error estimates require degrad-
ing the condition number for higher polynomial approzimation (cf. [4]).

La2(1) L3(T)

to obtain |||U — ul||y < Ch*—1 [ull g 02)-

4. A POSTERIORI ERROR ESTIMATES

4.1. An a posteriori error estimate in the natural norm. We first consider
control of the error e = w — U in the natural norm ||| - |||. To be able to control
the normal derivatives across the interface, we introduce the following (“saturation”)
assumption: For the error, there holds

de

9 pL/2 ) ==

(9) o
for some constant C. To support this assumption, we refer to Remark 3.2. (A similar

assumption was used by Wohlmuth [15] in the context of a posteriori error estimates
for the mortar element method.)

We have that

< Cllell
La(T)

el = antee)+2((e {5 1) + 252 (e e

Oe 1—7
= ey -m@e+2(id {5 }) + 52 (Ll
We thus have to estimate two different terms,

Ry = ((fa e)) - ah(Uve)a

R=2(1d {5e}) — 1 (Ll

and

INRIA
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We first note that, for v > 1 (which is needed for stability, see Section 6),

< 2fuf%)
s (nf2)),

c|prw|, el
2(T")
under the assumption (9). Next, using the orthogonality relation (6),
an(U—u,v)=0 YoveVh

with v = mpe € V" a suitable interpolant of e, we find that

Ry =((f,e — mhe)) —an(U, e — mhe),

Setting ¢ = e — mpe, the integrals on the right-hand side may be written as

ZZ(/ f¢z‘dK—/ VU¢~V¢1~dK>+

YRR AR () [

3 /a  Jiwas

Using Green’s formula we obtain
[ s6ax— [ vui-voar = [ (+av) gax - [ 2
K K K

; ds
oK Nk

where i denotes the outward unit normal to the boundary 0K of the element K. If
we now sum up all element contributions, and use the fact that each interior element
side S is shared by two elements, we obtain

ZZ/ (f + Al ¢sz+22/[%5] ¢i ds+

i SgT

(5] @) +(m{5}) +3 o

We thus arrive at

RR n° 3613



10 Becker & Hansbo

Theorem 4.1. Under the assumption (9), the error in the norm ||| - ||| can be esti-
mated by
(10) lell < 3 i+ 3 ps
KCQ scr
where
; ; ou
= Cihg ||f + AU + C3hyl? [—]
px = Cihk || f Loy + Cobg o | acome

and
—1/2
ps = Chg"” | 1U] Il s

where Ct and C} are interpolation constants resulting from interpolation between
1L,y and |l - ], and between |-, orc, and || - I, respectively.

4.2. A general a posteriori estimate. Following [9, 6] we introduce the dual
problem of finding z € H}(f2) such that

(11) (Vv,Vz) =j(v) VYo € H}(RQ).

where j is a given functional (tailored for the desired error control), and where
we assume that z fulfills the continuity requirement (3). Note that for control of
quantities not involving derivatives of the solution, we do not need assumption (9).

We have that

je) = (Ve,V2)— <{g—2} , [e]>P
¢t (431 ),

= ap(e,z —mpz)
= ap(u,z —mpz) —ap(U,z — mp2)

= ((f,z—mh2)) —an(U,z — mp2),

so that
(12) i) < ) prwi + Y psws
KCQ scr
where
1 12| OU
pic = hic |f + AU, s + 2h [_ ,
BT | TR Y PP

INRIA
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WK = max (h}l |z — 7Th2’||L2(K) hg /2 |z — 7Thz||L2(8K)> ]
—-1/2
ps = (y+1)hg"/ U Lycs) »
and
0z — mhz)
on

wg = h;lﬂ Iz = 7z, sy + hqu/z .
Ly(S)

Remark 4.1. From the general a posteriori error estimate, it is easy to prove that we
have an optimal convergence rate in the Lo—norm, since, with the choice j(e) := e,
we have by elliptic reqularity that ||z|g2q) < Cllellp,)- In consequence, since
Iz = maz||| < Chl|z|[g2(q), using the same arguments as in the proof of Theorem I
shows that

lell @y < OB lull gy -

5. COMPARISON WITH THE MORTAR ELEMENT METHOD

Let us give a different interpretation of our method. We start with a classical for-
mulation for imposing weak continuity on the interface by the use of a Lagrange
multiplier: Find (u,A\) € V x A, such that:

/ Vu-VUdQl-I—/ VU‘V’I]dQQ+/[U])\dS = F(v),
1971 Qo r

/F[U]uds = 0,

for all (v, A\) € V x A with appropriate spaces V' and A.

(13)

A finite element discretization of (13) by choosing subsapce V), C V and A, C A
must be designed carefully in order to be stable. In domain decomposition, it is
merely the multiplier space which is of interest, since we would like to use given
methods on the subdomains.

There are two possible strategies to obtain a stable discretization: either choose
spaces which satisfy the inf-sup condition or change the discrete bilinear form to
increase stability.

The first possibility is followed by the mortar element method, see [7]. Here one
basically takes the traces of the finite element functions on one specified side of the
interface. At the interface boundaries, special conditions have to be satisfied.

RR n° 3613



12 Becker & Hansbo

The second possibility is to add least squares terms in order to achieve more freedom
on the choice of Ay,. This was first proposed for the inhomogenuous Dirichlet problem
by Barbosa and Hughes [3] (see also [13]), and was extended to domain decomposition
problems by Baiocchi, Brezzi, and Marini [2]. A straightforward generalization leads

to adding the terms:
oup, ov
s On { Ge p e ),

For a properly choosen parameter 6 = h, stability of this method follows from an
inverse estimate. For instance, we can choose the space of piecewise constants on
an arbitrary mesh on the interface. Using the augmented equations, the Lagrange
multiplier can be eliminated,

3uh 1
)\ = P —  — —
h h( {8n}+5[uh]>’
denoting by P}, the Ly—projection on the discrete multiplier space.

We now formally let A, tend to A and insert the resulting equation in (13). This
gives us our method as presented above, since

(], Mr —6<)\+ {g_Z},{g_Z}>P -
=~ (1 {5e}) +5@ene- ({5 }) -

The new method can therefore be interpreted as a stabilized multiplier method with
a continuous Lagrange multiplier space (cf. [13, 2]).

Remark 5.1. We can immediately derive two variants of the method. First, we can

choose one side of the interface T'", and set A = —65—:. This leads to:
~ ot
ah(U,'v) = (VUl,Vvl)Ql + (VUQ, VUQ)QZ - [U] R %

r

_ <%, [u]>F + (U], T

Second, the simpler stabilization 6 (A + {g—z})u ds could be used to obtain the (un-
symmetric) bilinear form:

ap(U,v) = (VU,Vui)a, + (VU Vug)a,
({5 }-0) + oy

INRIA
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The analysis of these variants closely follows the one given before.

Remark 5.2. Let us compare the new method with the mortar method from a prac-
tical point of view. The advantage is that we get rid of the global coupling on the
interface which comes from the fact that the mortar element method uses a multiplier
space of continuous functions. The price to pay for this are the additional terms in
the bilinear form; in particular, the evaluation of the integrals involving the normal
derivative leads to a coupling over one layer of elements.

6. COMPUTATION OF Cjy AND v

For any element type, it is important to have a sharp estimate of Cy in order to be
able to safely choose . We propose to compute Cj in the following way (we consider
the case of triangular elements in two dimensions, but the concept is completely
general).

An arbitrary triangular element K is put in a local coordinate system so that one
side lies along the y—axis, 0 < y < h, and the third node at an arbitrary position
(z1,y1) in the first quadrant. Then

o __ou
on  Ox
and we look for solutions to the eigenvalue problem of seeking u and Cj so that
h
ou 0
B89 gy — 00/ V- Vodzdy =0
0 B.T (93: K

for all v on the element. This problem can be solved analytically to yield Cy > 2h/z1,
so we have that in the general case

h
>2—
f)/ hL 9
where h; is the perpendicular distance from the boundary segment to the third
(interior) node. (Assuming equal-sized triangles, we simply put v > v/3.) Now, we
choose the largest such Cy computed along the interior edge I' so that

1900 |7
Co S IVl > 'h 12 0%
K

on;

r
Since HVWHQLz(Qi) = ||Vv,~||i2(92) + ||Vvi||i2(9i\92) where Q) denotes the subset of Q;
covered by triangles neighboring to the boundary so that

Y IVuillZym) = 1V0ill 7,0
K

RR n° 3613
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we see that
2

_1/20v;
Cy ||Vvi||iz(gi) > Co ||VU¢||2LQ(Q;) > VR

b

8ni T

as required for stability.

7. NUMERICAL EXAMPLES

7.1. Effect of v upon stability. This example shows the effect of the choice of the
parameter -y on the stability of the solution. The domain (0, 3) x (0.3) has an interior
part (1,2) x (1/2,3/2) which is meshed independently of the outer part. We seek
the solution to —Awu = 1 on this domain, with zero Dirichlet boundary conditions.
In Figure 1, we show an elevation of the numerical solution using v = 0 and for
v = V/3. The instability for 7 = 0 is not very pronounced. While one might expect
the system matrix to be singular in this case (and it is likely that this will happen
in some situations), our experience is that geometrical restrictions may alleviate this
problem in many cases. At any rate, the use of v = 0 is not to be recommended.

0.7 0.7
06 06
Ay, VAWA
05 A ] 4)‘1‘ VA‘\\ 0.5 4
,,r,««»» yy‘ \ A vy \ N
Y il N r,ar‘r ,,,,4) N
Y AN 4 &ﬁw"‘gﬂ‘""&’ \
4 %,"mc" N “\V‘
0.3 0.3 WY Wl /X
A /wwmmwwm
02 Y VA 70 2050558 b R 02 /A,’;l’ ;;/,,,' 707 5»;,‘@0"‘ Y
' Y s ) l,’;,,, "U/f 5/'* R Y
0.1 /‘}7‘!//‘!//‘71/‘457%4’«%%%7&@%15?27 ﬁ«w W "ﬁ%“ SAN 01 /‘r//‘y, /‘W/f 4/"” "'ﬂ"'wé;s??u :55' W Mw N
" i ///«mm’quua*m!{mm um«m\\ \‘ /! ' ’ v/uuuﬁ‘aﬁml‘m w«»\\\\ Y
0-L# ; ) /l/////////,/W,*,q;v,».y,nuww, NMH NNNNN 0L y/ [/ 1l ///, KR MN NNANNRR
ol ,;:,;1’1’147/;’,,,///11 W;,g‘:ng,‘:é%mﬂw& wqrr,‘,‘ll’b/a%mé i ,,,,, é;;?;;y{:4;«»«»«»«»«@&&%;m,
W %7éi%»"eiiz%wﬁw«v«v«vsmmssn /'/qr el w«»«»«»l JUONNEERE
W //5/, / 7 ;;«,»:A ‘n/gi%mw ;‘(}‘{;\»\WW\V“" \ 2 ,//9/, , ,WN}M i {N\ﬂ gﬁﬁ&"&"&'&\'& s
L, Qs X XN NN
1 g ;;zjﬁjymwM S 1 ', KO0 ww S s
1 : 1 :
0 o 05 0 o 05

FIGURE 1. Results for v = 0 (left) and v = /3 (right).

7.2. Numerical verification of the a priori estimates. To verify the a priori
estimates, we choose the model problem of a unit square with exact solution

u=zy(l-z)(1-y)

corresponding to a right-hand side of f = z — 2% +y — y?. The domain is divided by
a vertical slit at x = 0.7. Two different triangulations were used: one matching and
one non-matching, see Figure 2.

INRIA



Finite elements for non-matching grids 15

FIGURE 2. Matching and non-matching grids.

In Figure 3 (left-hand side) we give the convergence in the broken energy norm.
The dashed line is the non-matching grid computation. Both meshes show the same
convergence with slope 0.95. which is close to the theoretical value of 1. On the
right-hand side we show the convergence of the Ly—norm of the jump term (dashed
line for the non-matching grid). Here we obtain a better convergence (slope 2.15)
for the matching grids than for the non-matching grids (slope 1.57, close to the
theoretical value of 3/2).

-36

-3.8

©
o

-4.2

log(energy error)
log(interface jump)
o

©
3

44t

KN
15

4.6

L L L -105 & n n n
-1.8 -1.6 -1.4 -3.5 -3 -2.5

1 . . 1 . . .
-2.8 -2.6 -2.4 -2.2 -1.5 -1 -0.5

2 2
log(h) log(h)

FiGuRrE 3. Convergence in energy and convergence of the jump term.
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16 Becker & Hansbo

7.3. Adaptive computations. We present results of adaptive computations on the
L-shaped domain
0=1(0,1) x (0,1)\ (1/2,1) x (0,1/2).

The problem is boundary driven (f = 0), with boundary data corresponding to the
exact solution u = r2/3sin(26/3) in polar coordinates (with origin at (1/2,1/2)).
We let Q1 = (0,1/2) x (0,1) and Q9 = (1/2,1) x (1/2,1), and use a non-matching
triangulation. The purpose of this example is not to obtain exact error control, but
rather to show how the adaptive algorithm behaves with respect to the elements
adjacent to the interface. In consequence, while we consider adaptive control of the
maximum error, we have not approximately solved the dual problem (11). Instead we
have simply tuned the interpolation constants to approximately match the maximum
exact error.

In Figure 4 and 5 we show a sequence of adaptive meshes resulting from equilibrating
the error distribution over the set of elements (for details, see [9, 6]). Note that the
interface enforces a slight increased refinement as compared with a single-domain
solution.

FIGURE 4. First mesh and first adapted mesh.
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