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is studied.

� A new continuum-based vdW force
model is developed accounting for
mislocation.

� Nonlocal shear deformable beams
are employed and their equations
are obtained.
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� The roles of crucial factors on first
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A general configuration of a system of doubly parallel SWCNTs. Frequency analysis of doubly parallel
SWCNTs embedded in an elastic matrix is of highly interest. To this end, a powerful meshfree method is
implemented to solve the integral-partial differential governing equations resulted from the nonlocal
Timoshenko and higher-order beam theories.
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a b s t r a c t

This study deals with transverse vibrations of two adjacent-parallel-mislocated single-walled carbon nanotubes
(SWCNTs) under various end conditions. These tubes interact with each other and their surrounding medium
through the intertube van der Waals (vdW) forces, and existing bonds between their atoms and those of the
elastic medium. The elastic energy of such forces due to the deflections of nanotubes is appropriately modeled
by defining a vdW force density function. In the previous works, vdW forces between two identical tubes were
idealized by a uniform form of this function. The newly introduced function enables us to investigate the
influences of both intertube free distance and longitudinal mislocation on the natural transverse frequencies of
the nanosystem which consists of two dissimilar tubes. Such crucial issues have not been addressed yet, even
for simply supported tubes. Using nonlocal Timoshenko and higher-order beam theories as well as Hamilton's
principle, the strong form of the equations of motion is established. Seeking for an explicit solution to these
integro-partial differential equations is a very problematic task. Thereby, an energy-based method in con-
junction with an efficient meshfree method is proposed and the nonlocal frequencies of the elastically em-
bedded nanosystem are determined. For simply supported nanosystems, the predicted first five frequencies of
the proposed model are checked with those of assumed mode method, and a reasonably good agreement is
achieved. Through various studies, the roles of the tube's length ratio, intertube free space, mislocation, small-
scale effect, slenderness ratio, radius of SWCNTs, and elastic constants of the elastic matrix on the natural
frequencies of the nanosystem with various end conditions are explained. The limitations of the nonlocal
Timoshenko beam theory are also addressed. This work can be considered as a vital step towards better
realizing of a more complex system that consists of vertically aligned SWCNTs of various lengths.
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1. Introduction

The extraordinary physical, chemical, and mechanical proper-
ties of carbon nanotubes (CNTs) have attracted researchers from
diverse range of fields to methodically explore their potential ap-
plication in advanced technologies. To date, experimentally un-
dertaken works have ensured the scientific communities that
these newly synthesized materials can be efficiently used in drug
and particle delivery systems [1–3], energy harvesting [4,5], na-
noresonators [6–9], nanosensors (both physical and chemical)
[10–12], and nano-/micro-electromechanical systems (NEMS/
MEMS) [13–15]. In most of these applications, vibrations of CNTs
play an important role and their dynamic mechanisms should be
rationally understood. An individual single-walled carbon nano-
tube (SWCNT) is hard to believe to be employed for the above-
mentioned purposes; however, ensembles of SWCNTs are com-
monly experimented to explore their efficiency for the considered
jobs. This matter has been a driving force to investigate transverse
vibrations of doubly parallel SWCNTs (DPSWCNTs) with an arbi-
trary configuration. Such a nanosystem can be imagined as the
constitutive building block of vertically aligned ensembles of
SWCNTs or as a simple constituent of even more complex systems
such as haphazardly placed SWCNTs which are sometimes called
jungles or forests of SWCNTs. As a result, a more rational modeling
of such a nanosystem does not only increase our knowledge re-
garding their mechanical response, but also can be considered as a
pivotal step towards better realizing of vibrations of more complex
systems made of SWCNTs.

Due to the widely probable exploitations of CNTs and their
composites, mechanical analysis and vibrations of individual
SWCNTs have been extensively studied. For instance, free vibra-
tions [16–18], vibrations due to moving nanoparticles [19–22],
dynamic interactions with nanofluidics flow [23–25], mechanical
sensing nano-objects [26–28] and unidirectional nanofluids [29],
vibrations in the presence of magnetic fields [30–32], and their
nonlinear vibrations [33–35] have been focus of attention for
mechanical and structural engineers in recent years. Currently,
free and forced vibrations of ensembles of SWCNTs have been
examined via various nonlocal beam models [36–38]. Transverse
vibrations of double-tube systems have been also examined
[39,40], however, in the suggested models, the van der Waals
(vdW) interactional forces between the atoms of two adjacent
tubes were simply modeled by an elastic layer with one transverse
constant. It implies that the role of the mislocation on dynamic
response cannot be taken into account. These deficiencies and
disabilities of the previously proposed models encouraged the
author to revisit the problem in its most general vision, namely
doubly mislocated-parallel SWCNTs with arbitrary end conditions.
For this purpose, a novel model for evaluating the existing vdW
force between two adjacent parallel tubes is suggested. In contrast
to the past models in which the intertube vdW forces were con-
sidered by a constant, the present work suggests a more sophis-
ticated model to capture such crucially interactional forces in
which they play an important role in vibrations of such nanosys-
tems. By this strategy, studying the role of mislocation on free
vibration of the nanosystem is possible as it will be addressed
comprehensively in the present work.

In most of the above-mentioned works, the vibrations of the
nanosystems have been analyzed in the context of advanced the-
ories of elasticity. It is chiefly related to this fact that at the atomic
scale, vibration of each atom is influenced by the vibrations of its
neighboring ones. Such a fact becomes crucial when the wave-
length of the propagated waves is comparable with the atom bond
length. Additionally, for bar-like or beam-like nanostructures
when the ratio of the small-scale parameter to the nanostructure's
length is not negligible, the classical theory of elasticity cannot
capture the real or even near to exact vibration patterns of the
nanostructure. These evidences are the most convincing reasons
for exploiting advanced continuum mechanics to explore vibra-
tions at the nanoscale. One of the most popular advanced theories
is that developed by Eringen [41–43], called nonlocal continuum
field theory. This theory explains that the state of stress or strain at
each point of the continuum does not only depend on the stress or
strain of that point, but also on the stresses or strains of its
neighboring points. Such an issue is incorporated into the con-
stitutive equations of the matter by a so-called small-scale factor.
Generally, its magnitude is determined by comparing the obtained
dispersion curves from the nonlocal model and those of a reliable
atomic model. The magnitude of this parameter differs from one
problem or matter to another one. Recent investigations [19,22]
show that this parameter has a substantial effect on the me-
chanical behavior of stocky beam-like nanostructures. However,
for slender nanosystems, its influence on their transverse dynamic
response vanishes. In such a case, the discrepancies between the
predicted results by the nonlocal model and those of the classical
one would reduce.

In the present work, transverse vibration of DPSWCNTs in the
context of the nonlocal continuum theory of Eringen is of interest.
The most well-known shear deformable beam theories, namely
Timoshenko [44,45] and higher-order of Reddy–Bickford [46,47],
are adopted. Using Hamilton's principle, the equations of motion
of the nanosystem at hand on the basis of these beam models are
derived. An efficient numerical solution is suggested, and the
natural frequencies of the nanosystem are obtained. The effects of
nonlocality, various geometrical parameters associated with the
nanosystem, and the interactions of the nanosystem with its sur-
rounding elastic medium on the natural frequencies are compre-
hensively addressed.
2. Definition of the nanomechanical problem

Consider two parallel SWCNTs at the vicinity of each other. For
mechanical modeling of such a system, each tube is replaced by an
equivalent continuum structure (ECS). The ECS is a nano-scaled
structure whose length and mean radius are identical to the length
and radius of the parent tube, and its wall's thickness is 0.34 nm
[48,49]. The intertube distance is denoted by d, the tubes lengths
are lbi

, their mean radii are r i; 1, 2mi
= , their cross-section areas

and moments inertia are denoted by Abi
and Ibi

, respectively, and
the mislocation of one tube with respect to the another one is
represented by Δ (see Fig. 1). The mechanical properties of the
ECSs are identified by the parameters bi

ρ , Ebi
, Gbi

, and bi
ν in which in

order represent the density, Young's modulus, shear elastic mod-
uli, and Poisson's ratio such that G E /2(1 )b b bi i i

ν= + . Each tube in-
teracts transversely and rotationally with its surrounding elastic
medium. Such effects have been taken into account in modeling of
the problem by a two-parameter elastic layer whose transverse
and rotational stiffness are equal to Kt and Kr, respectively. Ad-
ditionally, the nanotubes interact with each other due to the ex-
isting vdW forces between their constitutive atoms. Using non-
local shear deformable beam theories, free transverse vibrations of
such a nanosystem with various end conditions are of our interest.

For this purpose, a novel model for considering the intertube
vdW forces is proposed in the next part. Subsequently, using Ha-
milton's principle, the strong form of the equations of motion of
the elastically embedded nanosystem is obtained by establishing
the models based on the nonlocal Timoshenko beam theory
(NTBT) and the nonlocal higher-order beam theory (NHOBT).



Fig. 1. A general configuration of the mislocated DPSWCNTs embedded in an elastic matrix and the considered coordinate systems.
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3. A newly developed model for vdW forces

The interaction between two atoms of free of charge is com-
monly displayed by the L-J potential function [50], namely

( ) 4 [( / ) ( / ) ]12 6Φ λ σ λ σ λ= ϵ − where λ, ϵ, and s in order are the dis-
tance between two atoms, the potential well's depth, and the
distance at which the potential function vanishes such that

r / [ 6]2aσ = in which ra is the inter-atom distance at the equili-
brium state. The vdW force between ith and jth atoms (fij) is cal-
culated by
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is the position vector of the jth atom with respect to the
ith atom and its corresponding unit base vector is eλ. Since only
transverse vibration of the nanosystem is of concern, the only
displacement fields are as w x t( , )i i where xi is the longitudinal
coordinate pertinent to the ith tube and t is the time parameter.
Hence, the cylindrical coordinates of the walls of the transversely
deformed nanotubes are stated by x y r z r( , cos , sinm m1 1 1 1 11 1

φ φ= = +
w x t( , ))1 1 and x y r z r w x t( , cos , sin ( , ))m m2 2 2 2 2 2 22 2

φ φ= = + where
x l0 i bi

≤ ≤ and i0 2 ; 1, 2iφ π≤ ≤ = . Additionally, d is the intertube
distance such that d r r t dm m b 01 2

= + + + where d0 is the intertube
free space (see Fig. 1). Therefore, the position vector would be
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where ex1
, ey1

, and ez1
are the corresponding unit base vectors of

the Cartesian coordinate system of the tube 1, w w w2 1Δ = − . By
introducing Eq. (2) to Eq. (1), the transverse component of the
vdW force per unit square length of the ECSs due to their relative
transverse motions along the z1-axis is obtained as
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where a4 3 /9CNT
2σ = is the surface density of the carbon atoms,

and a denotes the carbon–carbon bond's length. Now Eq. (3) is
approximated by expressing its Taylor expansion up to the first-
order about the equilibrium state and the effect of higher-order
terms is ignored. Thereby, the transverse vdW force per square
lengths of the tubes due to their transverse motions is provided by
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where CvdW is called the vdW force density function. Additionally,
the elastic energy resulted from the extra vdW interactional force
is evaluated by
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4. Vibration analysis of elastically embedded DPSWCNTs using
NTBT

4.1. Nonlocal equations of motion based on the NTBT

Based on the NTBT, the kinetic energy (TT) and the strain energy
of a nanosystem of elastically embedded DPSWCNTs (UT) are given
by
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where [ ]· ̇ and [ ] x, i
· denote the first partial derivatives of [ ]· with

respect to the time (t) and the spatial coordinate of the ith tube,

respectively, w w x t( , )i
T

i
T
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= , and
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nl T

ii i
= in order represent the transverse displace-

ment, deformation angle, nonlocal shear force, and nonlocal
bending moment of the ith tube, Kt and Kr are the transverse and
rotational stiffness of the surrounding elastic matrix, respectively.
According to the nonlocal continuum theory of Eringen [41,42],
the nonlocal shear forces and the nonlocal bending moments of
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the constitutive tubes of the nanosystem are expressed as [17,19]
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where e a( )i0 and ksi
denote the small-scale parameter and shear

correction factor of the ith nanotube. By employing Hamilton's

principle at any time interval t t[ , ]1 2 , ( )T U td 0
t

t T T

1

2∫ δ δ− = where δ

is the variation symbol, the equations of motion of the nanosystem
at hand in terms of the nonlocal forces within the tubes modeled
based on the NTBT are derived as follows:
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where ijδ is the Kronecker delta tensor, and l li i b i b2 11 2
Λ δ δ= + . By

introducing Eqs. (8a) and (8b) to Eqs. (9a) and (9b), the equations
of motion of the elastically embedded DPSWCNTs in terms of
deformation fields of the nanotubes are obtained as
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To assess the problem in a more general context, the following
dimensionless parameters are taken into account:
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by introducing Eq. (11) to Eqs. (10a) and (10b), the dimensionless-
nonlocal governing equations of an elastically embedded nano-
system with mislocated-parallel SWCNTs are derived as
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Eqs. (12a) and (12b) display four coupled integro-partial differ-
ential equations (IPDEs). Finding an explicit solution to these
relations to analyze free transverse vibration of the nanosystem
would not be an easy task anymore. In the upcoming part, a
numerically based methodology is proposed and the natural
frequencies are appropriately evaluated.
4.2. Application of RKPM to the governing equations

Let us premultiply Eqs. (12a) and (12b) by i
Tδθ and wi

Tδ , and
then integrate the sum of the resulting relations over the di-
mensionless spatial domains of the nanotubes. By applying the
required integration by parts, it is obtainable:

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬
⎭( ) ( )

( ) ( )

( )( )

w

w w w w w w

C w w w w

K K w w w

d

d 0.
(13)

i

i i
i
T

i
T

i i i

T
i i

T i
i
T

i i
T

i
T

i
i
T

i
T

i i i
T

i i
T i

i i
T

i i
T

i
T

i
vdW
T

i
T T T

i i i i i i
T

i
i

i i

T
i i

T

r
T

i
T

i i i

T
i
T

t
T

i
T

i i i i
T

i
T

i

1

2

0
1

2
2
2 2

,
2

, , 4
2 2

,

1
2 2

,
2

, , 4
2 2

, ,

0
1 2 1 2

2
, 3 3

2 2
, ,

2
,

2
,

∫

∫

∑ λ δθ θ μ δθ θ δθ θ

δ μ δ δ θ

δ δ δ μ ξ η δθ θ

δθ μ δθ θ δ μ δ ξ

ϱ + − ϱ −

+ ϱ + + ϱ −

+ − − − + ϱ

+ − + − =

Γ
ττ ξ ττξ ξ

ττ ξ ξ ττ ξ ξ

Λ
ξ ξ ξ ξ

ξ ξ ξ ξ

=

− − −

− −

−
−

By adopting RKPM, the deformation fields of the nanotubes are
spatially discretized as follows:
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where I
wiϕ and I

iϕ θ in order are the shape functions associated with
the Ith RKPM's particle pertinent to the transverse displacement
and rotation angle fields of the ith nanotube, wi

T
I
and i

T
I

θ are their
corresponding nodal parameter values, and NPi is the number of
RKPM's particles associated with the deformation fields of the ith
nanotube. By substituting Eq. (14) into Eq. (13), one can arrive to
the following set of 2 (NP NP )1 2× + second-order ordinary differ-
ential equations (ODEs):
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where the nonzero vectors and matrices in Eq. (15) are given in
Appendix A.1.

4.3. Enforcing the boundary conditions and evaluating the natural
frequencies

Without loss of generality, we restrict our analysis to nano-
systems with simply supported ends (SS), fully clamped ends (CC),
and cantilevered tubes (CF). The boundary conditions of these
nanosystems are expressed by
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In order to impose the essential boundary conditions of Eq. (16),
the corrected collocation method [51] is implemented. After
adopting this approach, one can arrive to a new set of second-
order ODEs. By considering a harmonic form for the time-depen-
dent vector of such a set of equations, then by solving the resulting
set of eigenvalue equations, the natural frequencies of the elasti-
cally embedded DPSWCNTs based on the NTBT would be readily
evaluated.
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5. Vibration analysis of elastically embedded DPSWCNTs using
NHOBT

5.1. Nonlocal equations of motion based on the NHOBT

In the framework of the NHOBT, the kinetic energy (TH) and the
energy of elastically embedded DPSWCNTs embedded in an elastic
matrix (UH) are expressed by
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= denote the transverse displacement, angle of

deflection, nonlocal bending moment, and nonlocal shear force of
the ith tube in which modeled based on the NHOBT, respectively.
In the context of the nonlocal theory of elasticity of Eringen
[41,42], these nonlocal forces are related to their local counterparts
as follows [19,21,52]:
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By employing Hamilton's principle in view of Eqs. (17a) and (17b),
the equations of motion of DOSWCNTs embedded in an elastic
matrix in terms of the nonlocal internal forces are constructed as
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by introducing Eqs. (18a) and (18b) to Eqs. (20a) and (20b), the
nonlocal equations of motion of the considered nanosystem in
terms of deformation fields are obtained as
( )( )
( )( ) ( )

( ) ( )

I I I e a

I I w e a w J J

w J J J K e a

2 ( )

( )

2 ( )

0, (21a)

i i
H

i i x x
H

i i i x
H

i i x x x
H

i i

i x x x
H

i i i x x
H

r i
H

i i x x
H

2 4 2
2

6 0
2

,

2
6 4 , 0

2
,

2
6 4

, 2 4
2

6 , 0
2

,

i i i i i

i i i i i i i i

i i i i i i i i i i

α α ψ ψ

α α α α

α α ψ ψ ψ

− + ¨ − ¨

+ − ¨ − ¨ − −

− − + + −

=

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )( )

I w e a w I I e a

I w e a w w J J

C w w e a w

J w K w e a w i

( ) ( )

( )

( ) d

( ) 0; 1, 2.
(21b)

i i
H

i i xixi
H

i i i i i xi
H

i i xixixi
H

i i i xixi
H

i i xixixixi
H

i i xi
H

i xixi
H

i i i i i xixixi
H

i
vdW

H H
i i i i xixi

H
i

i i i xixixixi
H

t i
H

i i xixi
H

0 0
2

,
2

6 4 , 0
2

,

2
6 , 0

2
, , ,

2
6 4 ,

0
1 2 1 2 0

2
, 3

2
6 , 0

2
,

∫

α α ψ ψ

α κ ψ α α ψ

δ δ ξ

α

¨ − ¨ − − ¨ − ¨

− ¨ − ¨ − + + −

+ − − −

+ + − = =

Λ

−

For a more rational investigation of the problem at hand, the fol-
lowing dimensionless parameters are considered:
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By introducing Eq. (22) to Eqs. (21a) and (21b), the dimensionless-
nonlocal governing equations of free transverse vibration of
DPSWCNTs embedded in an elastic matrix on the basis of the
NHOBT are obtained as

( )

( )

w w

w w

K

( )

( )

0, (23a)

i
i
H

i i i i

H i
i
H

i i i i i
H

i
i
H

i i
H i

i i i

H
i i i i
H

r
H

i
H

i i i i

H

7
2 2

,
2

, 2
2 2

6
2

,
2

,

4
2 2

7
2

, 8
2 2

8
2

, 5
2

9
2

,

2
,

ψ μ ψ γ μ

γ ψ γ ψ γ

ψ μ ψ

ϑ − − ϑ −

+ ϑ + − ϑ + ϑ

+ − =

ττ ξ ξ ττ ττξ ττξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ ξ

− −

− −

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )( )

w w

w w w w

C w w w

K w w i

( )

( ) ( )

d

0; 1, 2.
(23b)

i
i
H

i i i i
H i

i i

H
i i i i i

H i
i i i i

H

i
i i i i i
H i

i i i
H

i i i i i i
H i

i
H

i i i
H

i
vdW
H H H

i i i i i i
H

i

t
H

i
H

i i i i
H

1
2 2

,
2

, 2
2 2

1
2

,
2

, 5
2 2

4
2

,

6
2 2

, 3
2 2

2
2

,
2

, 4
2 2

3
2

, ,

0
1 2 1 2

2
,

2
,

∫

μ γ ψ μ ψ γ ψ

γ μ γ ψ

δ δ μ ξ

μ

ϑ − + ϑ − ϑ

+ ϑ − ϑ − − ϑ +

− − − −

+ − = =

ττ ττξ ξ ττξ ττξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ττξ ξ ττξ ξ ξ ξ ξ ξ ξ

Λ
ξ ξ

ξ ξ

− − −

− − −

From mathematical point of view, Eqs. (23a) and (23b) describe
four coupled IPDEs in which seeking an analytical solution to them
is a very problematic task. As an alternative approach, an efficient
meshless method is proposed in the following part.
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5.2. Application of RKPM to the governing equations

Application of the RKPM for discretization of the unknown
fields in Eqs. (23a) and (23b) is of concern. To this end, these
equations in order are multiplied by i

Hδψ and wi
Hδ . By taking the

integral of the sum of the resulting expressions over the di-
mensionless spatial domains of the nanotubes, and then applying
the required integration by parts, one can arrive at the following
relation:
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By adopting RKPM, the transverse and angle of rotation fields of
the nanotubes are expressed by
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by substituting Eq. (25) into Eq. (24), the following set of ordinary
differential equations is derived:
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where the nonzero vectors and matrices in Eq. (26) are provided in
Appendix A.2.
5.3. Enforcing the boundary conditions and evaluating the natural
frequencies

For SS, CC, and CF boundary conditions, the following relations
should be satisfied:
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To apply the boundary conditions in Eq. (27) and to evaluate the
natural frequencies of the nanosystem, the similar methodologies
mentioned in Section 4.3 are followed.
6. Results and discussion

Consider elastically embedded DPSWCNTs with the following
data: E E 1 TPab b1 2

= = , ν1¼ν2¼0.2, 2300 kg/mb b
3

1 2
ρ ρ= = ,

r r 1.5 nmm m1 2
= = . In the performed investigations, the intertube

distance is evaluated by d r r t1.5m m b1 2
= + + , the mislocation is

provoked (i.e., 0Δ = ) and the interactions of the nanosystem with
the surrounding elastic matrix have been ignored (i.e., Kt¼Kr¼0),
except their values have been explicitly specified. In all RKPM
calculations pertinent to each unknown field, 21 uniform particles
within the spatial domain of each tube have been taken into ac-
count (i.e., NP1¼NP2¼21). For evaluating the RKPM's shape
function, linear base function, cubic spline window function, and
6 Gaussian points in each direction of the computational cell have
been used. The dilation parameter is set equal to 3.2 times of the
inter-particle distance.

In the following parts, a comparison study is performed in a
special case to ensure regarding the accuracy of calculations of the
RKPM. Thereafter, a comprehensive parametric study is presented
to examine the roles of the influential factors on the free dynamic
response of the elastically embedded nanosystem.

6.1. Some verification studies

In order to ensure about the exactness of the carried out cal-
culations by the proposed models, the predicted free transverse
vibration of the nanosystem up to the fifth vibration mode is
checked with those of another numerical method for a particular
case. To this end, for the nanosystem with simply supported ends,
assumed mode method (AMM) is employed as an alternative
methodology for discretizing the known fields pertinent to the
NTBT and NHOBT (see Appendix B). In Table 1, the predicted first
five natural frequencies of the nanosystem by the RKPM and AMM
based on the NTBT and NHOBT for various levels of the small-scale
parameter and slenderness ratio have been provided. The results
are given for a nanosystem which is not in contact with the elastic
matrix (i.e., Kt¼Kr¼0) and the double identical tubes are exactly
placed in front of each other (i.e., 0Δ = ). For all considered values
of the small-scale parameter and slenderness ratio, Table 1 shows
that there is a reasonably good agreement between the predicted
results by the RKPM and those of the AMM for both of the NTBT
and NHOBT. In most of the cases, the RKPM could capture the
predicted results by the AMM with relative error lower than
0.1 percent.

In another comparison study, the predicted frequencies of a
system of doubly parallel nanotubes based on the suggested
models are verified with those of existing data in the literature. In
Ref. [39], free transverse vibration of double-nanobeam systems
with simple ends was examined by using nonlocal Euler–Bernoulli
beam theory (NEBT). In-phase and out-of-phase modes were
identified and their corresponding natural frequencies were eval-
uated analytically. According to Ref. [39], the constitutive simply
supported tubes do not have any mislocation and their properties
are as follows: E E 0.971 TPab b1 2

= = , r r 0.34 nmm m1 2
= = ,
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tb¼0.34 nm, 2300 kg/mb b
3

1 2
ρ ρ= = , and lb¼20 nm. The vdW for-

ces between these identical tubes were considered by a uniform
vdW density function of magnitude C C E I l/vdW vdW b b b

5
1 1 1

= where

C 10vdW = . The predicted dimensionless fundamental frequency of
the nanosystem (i.e., l A E I/b b b b b1 1

2
1 1 1 1 1

ϖ ω ρ= where ω1 is the fun-

damental frequency) by the suggested models and that of Ref. [39]
as a function of the dimensionless small-scale parameter have
been demonstrated in Fig. 2. According to the plotted results, there
is a fairly good agreement between the obtained results by the
proposed models and those of Ref. [39]. Additionally, the predicted
frequencies by the proposed models are somewhat lower than
those of Ref. [39]. It is mainly related to the incorporation of both
rotary inertia and shear deformation effects into the deformation
fields of the nanosystem modeled based on the NTBT or the
NHOBT.

6.2. Numerical studies

In this part, the roles of the aspect ratio, intertube free space,
mislocation, small-scale parameter, slenderness ratio, radius of the
nanotubes, transverse and rotational stiffness of the surrounding
elastic medium on free vibration behavior of the nanosystem are
aimed to be examined. In all demonstrated results, the dotted-
dashed and the solid lines in order are associated with the NTBT
and the NHOBT.

6.2.1. Influence of the aspect ratio
The effect of the length of one tube to that of another, called

aspect ratio of the nanosystem, on free vibration of DPSWCNTs is
of particular interest. In Fig. 3(a)–(c), the predicted first five nat-
ural frequencies of the nanosystem in terms of the aspect ratio are
provided for SS, CC, and CF boundary conditions. The length of the
first nanotube has been kept fixed, λ1¼30, e a( ) 2 nm0 1 = , 0Δ = ,
and the interactions of the nanotubes with their surrounding
medium have been ignored. For all given end conditions, both
NTBT and NHOBT predict that the first two natural frequencies
would commonly reduce by an increase of the aspect ratio. These
Table 1
The predicted first five natural frequencies of doubly parallel SWCNTs based on the NTBT
slenderness ratio (Kt¼Kr¼0, 0Δ = ).

1λ e a 0 nm0 = e a 1 nm0 =

NTBT NHOBT NTBT

RKPM AMM RKPM AMM RKPM AMM

10 1.55760 1.55743 1.64620 1.64485 1.49426 1.49408
1.83017 1.83003 1.90325 1.90208 1.77663 1.77642
4.44797 4.44769 5.00508 5.00076 3.83335 3.83304
4.54894 4.54867 5.09152 5.08727 3.95015 3.94977
7.48645 7.48599 8.77138 8.76256 5.61236 5.61187

15 0.76894 0.76878 0.79270 0.79199 0.75457 0.75440
1.23758 1.23748 1.25105 1.25060 1.22874 1.22859
2.47076 2.47054 2.67399 2.67178 2.30007 2.29984
2.64919 2.64898 2.83611 2.83402 2.49082 2.49053
4.44804 4.44770 5.00522 5.00077 3.83341 3.83305

30 0.20816 0.20801 0.21012 0.20983 0.20717 0.20702
0.76895 0.76878 0.79272 0.79199 0.75458 0.75440
1.00592 1.00589 1.00617 1.00611 1.00573 1.00568
1.24080 1.24069 1.25422 1.25376 1.23198 1.23183
1.55766 1.55743 1.64628 1.64486 1.49432 1.49408

60 0.05331 0.05322 0.05347 0.05335 0.05325 0.05316
0.20805 0.20795 0.21001 0.20977 0.20706 0.20696
0.45199 0.45187 0.46064 0.46020 0.44718 0.44706
0.76888 0.76872 0.79266 0.79193 0.75450 0.75434
1.11445 1.11445 1.11446 1.11445 1.10939 1.10915
results are explained by this fact that the transverse stiffness of the
nanosystem would commonly reduce as the aspect ratio increases.
However, the third frequency of the nanosystem increases with
the aspect ratio up to a certain level. For aspect ratios greater than
this level, the third frequency decreases by an increase of the as-
pect ratio. No regular pattern is observed for the fourth and fifth
frequencies in terms of the aspect ratio; however, the general
trend of the demonstrated results is descending. As it is seen in
Fig. 3(a)–(c), such a reduction is more obvious for lower levels of
aspect ratio. For all considered end conditions, variation of the
aspect ratio is more influential on the change of the fundamental
frequency with respect to other ones. A detailed survey of the
plotted results reveals that the discrepancies between the results
of the NTBT and those of the NHOBT generally increase with the
mode number. Irrespective of the considered boundary condition,
the discrepancies between the predicted fundamental frequencies
by the NTBT and those of the NHOBT would commonly decrease as
the aspect ratio increases.

6.2.2. Influence of the intertube free space
An important study has been performed to investigate the role

of the intertube free space on the vibration behavior of the na-
nosystem under different end conditions. In Fig. 4(a)–(c), the plots
of the fundamental frequency of the nanosystem as a function of
free space ratio, defined by d t d r r t t/ ( )/b m m b b0 1 2

= − + + , are pro-
vided for three levels of the small-scale parameter (i.e., e a 00 = , 1,
and 2 nm) and three boundary conditions. The SWCNTs are pro-
hibited from any interaction with the surrounding medium (i.e.,
Kt¼Kr¼0), and λ1¼20. Generally, by an increase of the free space,
the fundamental frequency of the nanosystem decreases. Such a
fact is more (less) obvious for nanosystems with CF (CC) boundary
condition. This fact is mainly related to the flexural stiffness of the
nanostructure. As the nanosystem becomes stiffer, the effect of the
vdW interaction force on its deflection becomes lesser. In other
words, the ratio of the vdW elastic energy to the elastic strain
energy of the nanosystem would reduce by increasing of the free
space. As the intertube free space goes beyond a particular level,
each tube would vibrate independently from its neighboring tube
and NHOBT via RKPM and AMM for several values of the small-scale parameter and

e a 2 nm0 =

NHOBT NTBT NHOBT

RKPM AMM RKPM AMM RKPM AMM

1.57924 1.57795 1.34242 1.34223 1.41875 1.41757
1.84570 1.84452 1.65111 1.65072 1.71052 1.70932
4.31329 4.30967 2.88004 2.87966 3.24040 3.23769
4.41337 4.40974 3.03389 3.03325 3.37254 3.36971
6.57488 6.56878 3.69001 3.68935 4.32229 4.31832

0.77788 0.77718 0.71585 0.71567 0.73796 0.73728
1.24175 1.24127 1.20546 1.20519 1.21725 1.21667
2.48921 2.48717 1.94383 1.94356 2.10361 2.10187
2.66267 2.66068 2.16631 2.16582 2.30636 2.30454
4.31340 4.30968 2.88009 2.87967 3.24048 3.23770

0.20912 0.20883 0.20428 0.20413 0.20620 0.20591
0.77790 0.77718 0.71586 0.71567 0.73797 0.73728
1.00598 1.00590 1.00517 1.00509 1.00541 1.00530
1.24495 1.24446 1.20875 1.20848 1.22050 1.21993
1.57932 1.57795 1.34248 1.34223 1.41882 1.41757

0.05340 0.05328 0.05306 0.05297 0.05321 0.05309
0.20901 0.20877 0.20416 0.20407 0.20609 0.20585
0.45574 0.45530 0.43362 0.43350 0.44192 0.44148
0.77784 0.77711 0.71577 0.71560 0.73791 0.73721
1.11445 1.11445 1.02557 1.02533 1.07047 1.06945



Fig. 2. Comparison of the predicted fundamental frequency of a double-nanobeam system by the proposed models and that based on the model of Murmu and Adhikari
[39]: ((– –) NTBT, (—) NHOBT, (□) Ref. [39]; C 10vdW = , K K 0r t= = , 0Δ = ).

a b c

Fig. 3. Effect of the aspect ratio of the constitutive SWCNTs of the nanosystem on its first five frequencies for various boundary conditions: (a) SS, (b) CC, and (c) CF ((○) ω1,
(□) ω2, (▵) ω3, (∇) ω4, (⋄) ω5; λ1¼30, e a 2 nm0 = ).
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Fig. 4. Effect of the intertube free space on the fundamental frequency of the nanosystem for various boundary conditions: (a) SS, (b) CC, and (c) CF ((○) e a 00 = , (□) e a 10 = ,
(▵) e a 2 nm0 = ; λ1¼20).
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since the influence of the intertube vdW forces becomes negli-
gible. A more detailed survey of the obtained results shows that
the NTBT could reproduce the results of the NHOBT for SS, CC, and
CF conditions with relative error lower than 1.9, 6.8, and 7 percent,
respectively. In the case of the nanosystem with SS boundary
condition, by an increase of the free space, the discrepancies be-
tween the predicted fundamental frequencies by the NTBT and
those of the NHOBT would slightly increase. However, in the cases
of the CC and CF boundary conditions, such discrepancies would
trivially decrease by increasing of the free space.

The influence of the intertube free space on higher frequencies
of the nanosystem is also of interest. To this end, the plots of the
first five frequencies of the nanosystem as a function of free space
ratio are demonstrated in Fig. 5(a)–(c). Such results are given for
different boundary conditions in the case of e a 2 nm0 = . As it is
seen in these figures, both NTBT and NHOBT predict that the
second and fourth frequencies of the nanosystem gradually reduce
as the intertube free space magnifies. Irrespective of the boundary
conditions of the nanosystem, such a reduction is more obvious for
lower levels of the intertube free space. However, the third and
fifth frequencies sharply decrease as the free space increases up to
a certain value. For free spaces greater than such a certain value,
variation of the free space has a trivial influence on the variation of
third and fifth frequencies. A more detailed study of the plotted
results reveals that there does not exist a direct relationship be-
tween the discrepancies of the results of the proposed models and
the mode number. For instance, in the case of SS(CC) boundary
condition, the NTBT could reproduce the predicted first five fre-
quencies by the NHOBT sequentially with relative errors lower
than 2(6.5), 5.5(6.5), 5.5(3), 5.5(7), and 8.5(5.5) percent for the
considered range of the free space ratio. For all considered
boundary conditions, the discrepancies between the predicted
fundamental frequency by the NTBT and that of the NHOBT are
trivially affected by the variation of the intertube free space.
However, for higher frequencies, such discrepancies would grow
as the free space ratio increases.

6.2.3. Influence of the mislocation
The doubly parallel SWCNTs of equal lengths may be placed not

exactly in front of each other. In such a situation, the coordinates
of the end points of the constitutive tubes are dissimilar, which is
called mislocation effect. This part is devoted to recognize and
understand the role of mislocation on vibrations of elastically
embedded DPSWCNTs. For this purpose, the plotted results of the
first five natural frequencies of the nanosystem in terms of mis-
location ratio (i.e., l/ b1

Δ ) have been provided in Fig. 6(a)–(c) for
various end conditions. These plots have been demonstrated for a
nanosystem that consists of two identical SWCNTs whose
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Fig. 5. Effect of the intertube free space on the first five frequencies of the nanosystem for various boundary conditions: (a) SS, (b) CC, and (c) CF ((○) ω1, (□) ω2, (▵) ω3, (∇)
ω4, (⋄) ω5; λ1¼20, e a 2 nm0 = ).
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slenderness ratio and small-scale parameter are equal to 20 and
2 nm, respectively. According to the demonstrated results, irre-
spective of the considered end conditions, the plots of the fun-
damental frequency as a function of mislocation ratio consist of
two branches: an ascending branch and a descending one. Such
plots take their absolute maximum points at special points. For
example, in the cases of SS, CC, and CF boundary conditions, the
maximum fundamental frequency of the nanosystem in order
takes place at the mislocations about l0.43 b1

, l0.4 b1
, and l0.36 b1

.
Among understudy nanosystems, mislocation has the most(less)
influence on the fundamental frequency of DPSWCNTs with SS(CF)
ends. Regarding the capability of the NTBT in capturing the results
of the NHOBT, a close survey indicates that the NTBT could re-
produce the predicted fundamental frequency by the NHOBT for
SS, CC, and CF boundary conditions with relative error lower than
2, 8.5, and 7.3 percent, respectively. Additionally, the maximum
discrepancies between the predicted fundamental frequency by
the NTBT and that of the NHOBT generally occur at the points near
to the above-mentioned special mislocations. Concerning the
second vibration mode of the mislocated DPSWCNTs, its frequency
commonly decreases with the mislocation until its value ap-
proaches to the fundamental frequency at a mislocation approxi-
mately equal to the length of the nanotube. For nanosystems with
SS and CC end conditions, the discrepancies between the predicted
second frequency by the NTBT and that by the NHOBT commonly
magnify as the mislocation increases. In the case of the CF
boundary condition, no regular pattern for the variation of such a
discrepancy as a function of the mislocation is observed. In the
case study at hand, for the considered range of the mislocation
ratio, the NTBT could capture the second frequency of the NHOBT
for SS, CC, and SC conditions with relative error lower than 2, 6.5,
and 5.7 percent, respectively. Concerning the role of mislocation
on the third, fourth, and fifth natural frequencies of the nanosys-
tem, no regular patterns for the plots of these frequencies in terms
of mislocation are detected. Generally, for higher modes of vibra-
tions, greater discrepancies between the results of the NTBT and
those of the NHOBT are observed.

6.2.4. Influence of the small-scale parameter
The nonlocality plays an important role in vibrations of na-

nostructures. In this part, the effect of the small-scale parameter
on the free vibration of elastically embedded DPSWCNTs is aimed
to be understood. To this end, the predicted fundamental fre-
quency of the nanosystem based on the NTBT and NHOBT as a
function of the small-scale parameter for various end conditions is
plotted in Fig. 7(a)–(c). The provided results are related to
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Fig. 6. Effect of the mislocation of the constitutive SWCNTs of the nanosystem on its first five frequencies for various boundary conditions: (a) SS, (b) CC, and (c) CF ((○) ω1,
(□) ω2, (▵) ω3, (∇) ω4, (⋄) ω5; λ1¼20, e a 2 nm0 = ).
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nanosystems with similar nanotubes whose slenderness ratios are
10, 15, and 30. The proposed models based on the NTBT and
NHOBT predict that the fundamental frequency of the nanosystem
generally reduces as the small-scale parameter increases. For a
given small-scale parameter, by an increase of the slenderness
ratio of the constitutive tubes of the nanosystem, its fundamental
frequency would lessen. Additionally, variation of the small-scale
parameter has more influence on the fundamental frequencies of
stockier nanosystems, irrespective of its boundary conditions.
Among the considered boundary conditions, variation of the
small-scale parameter has the most(less) effect on the variation of
the fundamental frequency of nanosystems with CC(CF) end con-
ditions. Regarding the capability of the NTBT in capturing the
fundamental frequency of the nanosystem based on the NHOBT,
the NTBT can produce the results of the NHOBT for SS, CC, and CF
end conditions and λ1¼(10,15,30) with relative error lower than
(5.5,3,0.1), (6.1,7.4,4.9), and (16.5,10.5,3.8), respectively. In the case
of the nanosystem with SS end conditions, variation of the small-
scale parameter has a trivial effect on the discrepancies between
the obtained results by the NTBT and those of the NHOBT. How-
ever, in the cases of the CC and CF end conditions, such dis-
crepancies decrease to some extent as the small-scale parameter
grows.
We are also interested in the role of the small-scale parameter
on the natural frequencies pertinent to higher vibration modes. In
Fig. 8(a)–(c), the plots of the first five natural frequencies of the
nanosystem with λ1¼30 in terms of the small-scale parameter
have been demonstrated for various end conditions. These figures
display that all natural frequencies reduce as the small-scale
parameter increases. Generally, the rate of reduction for fre-
quencies associated with higher modes is more apparent. The
discrepancies between the results of the NTBT and those of the
NHOBT are fairly more obvious for higher vibration modes. In the
case of SS condition, for all considered modes of vibration, such
discrepancies do slightly alter as a function of the small-scale
parameter. Further, the NTBT could capture the first, second, third,
fourth, and fifth frequencies of the nanosystem analyzed by the
NHOBT with relative error lower than 0.9, 3, 0.1, 1.1, and 5.5 per-
cent, respectively. In the case of CC boundary condition, for the
first four natural frequencies, these discrepancies would reduce as
the small-scale parameter magnifies. However, concerning the
fifth mode of vibration, such discrepancies would slightly grow as
the small-scale parameter increases. In addition, the NTBT can
produce the first to fifth frequencies by the NHOBT with a relative
error lower that 4.9, 1.2, 0.75, 0.7, and 2.6 percent, sequentially.
Concerning the nanosystem with CF end condition, the above-
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Fig. 7. Effect of the small-scale parameter on the fundamental frequency of the nanosystem for various boundary conditions: (a) SS, (b) CC, and (c) CF ((○) λ1¼10, (□) λ1¼15,
(▵) λ1¼30).
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mentioned discrepancies of the first, second, and fifth frequencies
would reduce as the small-scale parameter increases. However,
these discrepancies for the frequencies associated with the third
and fourth vibration modes would magnify with the small-scale
parameter. Additionally, the NTBT could capture the first, second,
third, fourth, and fifth frequencies of the nanosystem on the basis
of the NHOBT with relative error lower than 3.8, 1.8, 0.1, 1.1, and
1 percent, respectively.

6.2.5. Influence of the slenderness ratio
The slenderness ratio is one of the most important geometry

characteristics of nanotube structures that significantly affects
their flexural and shear dynamic displacements. Therefore, its in-
fluence on the dynamics of elastically embedded DPSWCNTs is
also of great importance and should be investigated. In Fig. 9(a)–
(c), the first five frequencies of the nanosystem with e a 2 nm0 = in
terms of the slenderness ratio have been demonstrated for various
boundary conditions. Concerning the first two natural frequencies
of the nanosystem, such frequencies decrease as the slenderness
ratio increases. Additionally, the discrepancies between the results
of the NTBT and those of the NHOBT would decrease with the
slenderness ratio. In the cases of the SS, CC, and CF end conditions,
the NTBT in order could capture the fundamental(second) fre-
quency of the nanosystem with relative error lower than 2(4), 6.5
(2.7), and 6.9(1.8) for the considered range of the slenderness
ratio. Regarding the third, fourth, and fifth frequencies of the na-
nosystem, these frequencies commonly reduce as the slenderness
ratio increases. However, in some intervals of the slenderness ra-
tio, such frequencies would magnify in terms of the slenderness
ratio. In the case of nanosystems with SS, CC, and CF boundary
conditions, the NTBT could generate the (third, fourth, fifth) fre-
quency of the NHOBT with relative error lower than (3.5, 5.5, 8.6),
(0.7, 2, 5.5), and (1, 2.2, 2.9) percent, respectively. However, no
regular patterns for the discrepancies between the results of the
NTBT and those of the NHOBT as a function of the slenderness ratio
are observed.

6.2.6. Influence of the radius of the SWCNTs
Another crucial study is performed to investigate the role of the

radius of the SWCNTs on the vibration behavior of the elastically
embedded nanosystem. Fig. 10(a)–(c) shows the plots of the first
five frequencies of the nanosystem as a function of radius ratio
(i.e., r r/m m1 0

) for different boundary conditions and three levels of
the small-scale parameter (i.e., e a 00 = , 1, and 2 nm). The nano-
system has identical tubes of length 20 nm in which their inter-
actions with the surrounding elastic medium have been provoked
and there exists no mislocation (i.e., 0Δ = ). Both NTBT and NHOBT
predict that the fundamental frequency of the nanosystem mag-
nifies as the mean radius of the constitutive SWCNTs of the na-
nosystem increases. This is chiefly related to this fact that not only
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Fig. 8. Effect of the small-scale parameter on the first five frequencies of the nanosystem for various boundary conditions: (a) SS, (b) CC, and (c) CF ((○) ω1, (□) ω2, (▵) ω3, (∇)
ω4, (⋄) ω5; λ1¼30).
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the flexural stiffness of the nanosystem, but also the intertube
vdW interactional force magnifies as the radius of the tubes in-
creases. The rising of these factors lead to an increase of the
transverse stiffness of the nanosystem. In the cases of the SS and
CF end conditions, the discrepancies between the predicted fun-
damental frequencies by the NTBT and those of the NHOBT would
generally increase as the mean radius of the tubes grows. How-
ever, in the case of the CC end condition, such discrepancies would
reduce with the mean radius up to a special level, thereafter, these
discrepancies would again increase as the mean radius of the
nanotubes magnifies. For the given range of the mean radius, the
NTBT can produce the fundamental frequency of the NHOBT with
relative error lower than 17.6, 9, and 31 percent for SS, CC, and CF
boundary conditions, respectively. Generally, the above-men-
tioned discrepancies in the case of the CF end conditions are more
obvious with respect to other cases. Concerning the second fre-
quency, the proposed models predict that such a frequency com-
monly increases as the mean radius of the nanotubes increases.
Further studies also explain that the discrepancies between the
predicted second frequencies by the NTBT and those of the NHOBT
are generally lower than those obtained for the first mode of vi-
bration of the nanosystem. For instance, the NTBT could produce
the second frequencies of the nanosystem based on the NHOBT
with relative error lower than 16, 8, and 18.5 percent in the cases
of the SS, CC, and CF boundary conditions, respectively. Regarding
the third, fourth and fifth frequencies of the nanosystem, no reg-
ular variations of these frequencies in terms of the mean radius of
the nanotubes are detectable. However, the discrepancies between
these frequencies based on the NTBT and those of the NHOBT
would generally increase as the radius of the constitutive tubes
magnifies.

6.2.7. Influence of the transverse stiffness of the surrounding
medium

In the previous parts, the effect of the surrounding elastic
medium on free vibration behavior of the nanosystem had been
ignored since the influence of the considered parameter on the
free dynamic response of the nanostructure was particularly of
concern. In the present and upcoming parts, the confinement ef-
fect of the elastic matrix on the fundamental frequency is going to
be examined. In Fig. 11(a)–(c), the plots of the fundamental fre-
quency of the elastically embedded nanosystem as a function of
the dimensionless transverse stiffness of the surrounding medium
(i.e., K K l E I/t t b b b

4
1 1 1

= ) are provided. The results have been presented
for three boundary conditions as well as three levels of the slen-
derness ratio (i.e., λ1¼15, 20, and 25). According to the plotted
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Fig. 9. Effect of the slenderness ratio of the constitutive SWCNTs of the nanosystem on its fundamental frequency for various boundary conditions: (a) SS, (b) CC, and (c) CF
((○) ω1, (□) ω2, (▵) ω3, (∇) ω4, (⋄) ω5; e a 2 nm0 = ).
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results, the fundamental frequency magnifies as the transverse
stiffness of the surrounding medium increases. Such a fact holds
true for all considered boundary conditions. Additionally, variation
of the transverse stiffness has the most(less) influence on the
variation of the fundamental frequency of the nanosystem with CF
(CC) ends. As the slenderness ratio increases, the effect of the
transverse stiffness of the surrounding medium on the funda-
mental frequency would lessen. For the considered boundary
conditions, the discrepancies between the results of the NTBT and
those of the NHOBT would reduce as the transverse stiffness
magnifies. This is chiefly related to this fact that the share of the
shear strain energy in the total elastic energy of the nanosystem
decreases. It implies that the contribution of the shear displace-
ment in the total displacement would reduce as the transverse
stiffness of the elastic matrix increases. In the cases of SS, CC, and
CF end conditions, the NTBT could capture the predicted results by
the NHOBT for the slenderness ratio (15, 20, 25) with relative error
lower than (3, 1.9, 0.13), (7.4, 6.8, 5.8), and (10, 7, 5) percent, re-
spectively. Further studies have been performed to determine the
role of the transverse stiffness on the frequencies of higher modes
of vibration in which their figures have not been presented for the
sake of conciseness. Such explorations show that the variation of
the stiffness has the most influence on the variation of the
fundamental frequency with respect to other ones.

6.2.8. Influence of the rotational stiffness of the surrounding medium
Consider the case that the rotation of each cross-section of the

constitutive tubes of the nanosystem is not freely allowed due to
the existence of high bonding between the nanotubes and their
surrounding medium. Effect of such interactions on the free
transverse vibration of the nanosystem is of our particular interest.
To this end, the graphs of fundamental frequency of the elastically
embedded DPSWCNTs in terms of the dimensionless rotational
stiffness of the surrounding environment (i.e., K K l E I/r r b b b

2
1 1 1

= ) have
been depicted in Fig. 12(a)–(c). The constitutive nanotubes are
identical with e a 1 nm0 = and three levels of the slenderness ratio
(i.e., λ1¼15, 20, and 25). The transverse interactions of nanotubes
with their surrounding medium have been ignored to precisely
address the role of only the rotational stiffness. According to the
plotted results in Fig. 12(a)–(c), irrespective of the considered
boundary condition, the fundamental frequency magnifies as the
rotational stiffness of the surrounding medium increases. Such a
fact is more obvious in the case of CF boundary conditions. How-
ever, fundamental frequency of the nanosystem with CC end
conditions is less affected by the rotational stiffness. This fact is
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Fig. 10. Effect of the radius of the constitutive SWCNTs of the nanosystem on its five frequencies for various boundary conditions: (a) SS, (b) CC, and (c) CF ((○) ω1, (□) ω2, (▵)
ω3, (∇) ω4, (⋄) ω5; l l 20 nmb b1 2= = , r 2 nmm0 = , e a 2 nm0 = ).

K. Kiani / Physica E 70 (2015) 58–7672
related to the high ratio of the internal elastic energy of the na-
nosystem to that resulted from its rotational interaction with the
surrounding elastic matrix. As the slenderness ratio of the nano-
system becomes lesser, the role of the rotational stiffness of the
surrounding medium on the free vibration behavior of the nano-
system becomes more significant. It is mainly because of this fact
that the ratio of the elastic energy resulted from rotational inter-
action of the nanotubes with the elastic matrix to that of the
flexural and shear stiffness commonly grows as the slenderness
ratio of the constitutive tubes of the nanosystem increases. A close
scrutiny of the demonstrated results also reveals that the dis-
crepancies between the results of the NTBT and those of the
NHOBT would generally reduce as the rotational stiffness in-
creases. Such a fact holds true for all considered end conditions.
For a given rotational stiffness of the surrounding medium, the
above-mentioned discrepancies would commonly lessen as the
slenderness ratio magnifies. For the sake of brevity, the plots of
frequencies of higher vibration modes have not been demon-
strated. Further studies display that all natural frequencies of the
elastically embedded nanosystem grow as the rotational stiffness
increases. Additionally, for all vibration modes and all considered
boundary conditions, the discrepancies between the results of the
NTBT and those of the NHOBT would reduce as the rotational
stiffness increases.
7. Conclusions

The free transverse vibrations of elastically embedded
DPSWCNTs with arbitrary configuration are investigated in the
context of the nonlocal continuum theory of Eringen. Using a new
model for vdW interactional forces, Hamilton's principle is em-
ployed and the strong form of equations of motion is obtained
based on the NTBT and NHOBT. A meshless technique is adopted to
discretize the unknown fields of the proposed model and the
nonlocal frequencies of the nanosystem are evaluated. A compre-
hensive parametric study is performed to address the roles of the
influential factors, including radius and slenderness ratio of the
constitutive tubes, intertube free space, mislocation, nonlocality,
aspect ratio, and elastic properties of the surrounding medium, on
the free dynamic response of the nanosystem. The capabilities of the
NTBT in capturing the results of the NHOBT are noted through various
numerical studies, and the discrepancies between their results are also
determined and discussed. It is hoped that the obtained results have
led to expand our views to the mechanism of dynamic interactions of
doubly parallel tubes and its influential factors.
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Fig. 11. Effect of the transverse stiffness of the elastic matrix on the fundamental frequency of the nanosystem for various boundary conditions: (a) SS, (b) CC, and (c) CF ((○)
λ1¼15, (□) λ1¼20, (▵) λ1¼25; e a 1 nm0 = ).
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Appendix A. Description of the mass and stiffness matrices of
the proposed models using RKPM

A.1. The submatrices associated with the NTBT
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A.2. The submatrices associated with the NHOBT
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Fig. 12. Effect of the rotational stiffness of the elastic matrix on the fundamental frequency of the nanosystem for various boundary conditions: (a) SS, (b) CC, and (c) CF ((○)
λ1¼15, (□) λ1¼20, (▵) λ1¼25; e a 1 nm0 = ).
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Appendix B. Frequency analysis of the elastically embedded
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DPSWCNTs via AMM

In AMM analysis of structures, the unknown deformation fields
are expressed as a function of admissible mode shapes. These
modes are obtainable from free vibration equations of motion and
they should satisfy at least the essential boundary conditions of
the problem. Commonly, Galerkin method in conjunction with
these admissible modes is exploited to determine the unknown
fields of the problem. Herein, in order to magnify the accuracy of
the AMM analysis, we use the advantages of using the integration
by parts. To this end, we replace the shape functions given in the
mass and stiffness matrices of Appendices A.1 and A.2 by the ap-
propriate mode shapes.

B.1. Free transverse vibration of the nanosystem on the basis of the
NTBT using AMM

For a simply supported DPSWCNTs surrounded by an elastic
medium, the dimensionless transverse displacement and angle of
deformation can be stated by
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B.2. Free transverse vibration of the nanosystem on the basis of the
NHOBT using AMM

For a simply supported DPSWCNTs embedded in an elastic
matrix on the basis of the NHOBT, the dimensionless deformation
fields are expressed by

w w i( , ) ( ) ( ), ( , ) ( ) ( ); 1, 2
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where k( ) 2 sin( )k
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i i
iϕ ξ πξ= and k( ) 2 cos( )k i i

iϕ ξ πξ=ψ . By substitut-
ing these mode shapes into Eqs. (A.2c)–(A.2k), one can arrive at
the following relations:
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