1/24: Warm Up

Use the information in the diagram to name the special quadrilateral.

6.5: **Trapezoids**

Date: <u>1/24</u>

Goal: To use properties of trapezoids

- ☐ A trapezoid is a **<u>quadrilateral (4 sides).</u>**
- ☐ A trapezoid has exactly one pair of **parallel** sides.
- \square The parallel sides are the <u>bases</u>.
- \square The nonparallel sides are the <u>legs</u>.
- ☐ A trapezoid has two pairs of <u>base</u> <u>angles</u>.
- If the legs of the trapezoid are **congruent** then the trapezoid is an **isosceles** trapezoid.

THEOREM 6.12

"If a trapezoid is isosceles, then each pair of base angles are congruent."

THEOREM 6.13

Example 1: FGHJ is an isosceles trapezoid. Find the missing angle

measures.

- The <u>midsegment of a trapezoid</u> is the segment that connects the <u>midpoints</u> of its legs.
- The midsegment of a trapezoid is **parallel** to the bases.
- ☐ The length of the midsegment of a trapezoid is half the sum of the lengths of the bases.

Midsegment =
$$\frac{1}{2}$$
 (base+base) midsegment

Example 2: Find the length of the midsegment *PRSU*.

 \overline{QT} of trapezoid

$$QT = \frac{1}{2}(20)$$

$$QT = 10$$

Example 3: Find the length of the midsegment

 $\overline{M\!N}$ of the trapezoid.

Midsey =
$$\frac{1}{2}$$
 (base+base)
 $21 = \frac{1}{2}(24 + x)$ $\frac{1}{2}$
 $21 = 12 + \frac{1}{2}x$
 $\frac{-12}{2} - \frac{12}{2}$

Example 4: Find the length of the midsegment

 $\overline{M\!N}$ of the trapezoid.

$$2.8 = \frac{3.1}{6}(6+x)$$
 $16 = 6 + x$
 $-6 - 6$
 $10 = x$

Homework:

pg. 334 #1 - 13, 14 - 24 (e)

Chapter 6: Quiz #2 (6.4 - 6.6) - Friday 1/27