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1 Introduction.

The Riemann zeta function is one of the most interesting objects in mathematics.
Much of complex analysis was developed to study it. This section continues the
discussion of complex analysis and the things you can learn about the zeta
function.

2 Complex analysis facts

2.1 The Liouville theorem

A complex function f(z) is entire if it is defined for all z ∈ C and has no poles.
Actually, being defined sort of means having no poles. The basic Liouville
theorem is that if f is bounded than f is constant. We suppose there is an M
with |f(z)| ≤M for all z and we conclude that f ′(z) = 0 for all z. The proof is
an application of the Cauchy formula for the derivative

f ′(z) =
1

2πi

∮
|w−z|=r

f(w)

(w − z)2
dw . (1)

We saw that you can apply absolute values in complex integrals as you can
for real integrals. Or you can parametrize the contour integral, as in w(t) =
z + re2πit for 0 ≤ t ≤ 1, and dw = 2πire2πitdt. Either way, you get

|f ′(z)| ≤ 1

2π

∫
|w−z|=r

|f(w)|
r2

|dw|

≤ 1

2π

M

r2
2πr =

M

r
.

We see that f ′ = 0 by taking r → ∞. It’s good that we have to take r → ∞,
because bounded functions don’t have to be constant unless they’re defined in
the whole complex plane. The conclusion is that bounded entire functions are
all trivial – there are no interesting examples.

There is a generalization that applies to entire functions with “polynomial
growth” at infinity. Polynomial growth means that there is an M and a p with

|f(z)| ≤M(1 + |z|)p . (2)
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The Liouville theorem is that the only functions like that are actual polynomials.
The Cauchy formula for that conclusion is (differentiate (1) with respect to z)∣∣∣f (n−1)(z)∣∣∣ =

(n− 1)!

2πi

∮
|w−z|=r

f(w)

(w − z)n
dw .

The original Liouville theorem was based on (1), which has n = 2. Suppose, for
example, f has a polynomial bound with p = 1. Then we take n = 3 and learn
that

|f ′′(z)| ≤ 2

2π

M(1 + |z|+ r)

r3
2πr =

2M(1 + |z|+ r)

r2
.

For any z, the right side goes to zero in the limit r → ∞. If f ′′(z) = 0 for all
z, then f(z) = az + b. The conclusion is that if f “looks like” a polynomial of
degree p in that it satisfies (2), then f is actually a polynomial of degree p.

Here’s a curious corollary that we will need. If we want to show that f(z)
is a linear function of z, we don’t have to prove (2) with p = 1. Any p < 2
will do. Suppose we have “polynomial” growth with power p = 1.5 (say). Then
we also have polynomial growth with power p = 2 (because (2) with p = 1.5
implies (2) with p = 2), and therefore the fact that f(z) is (at most) a quadratic
polynomial in z. But if |f(z)| ≤ M(1 + |z|)1.5, then the quadratic term must
vanish. This means that f(z) is actually a linear “polynomial”. It also implies
that |f(z)| ≤M ′(1 + |z|). That is, there exists an M ′, but we don’t know much
about how M ′ is constrained by M , if at all.

There are “real” versions of Liouville theorems that apply to harmonic func-
tions. A real function u(x, y) is harmonic if

4u =
∂2u

∂x2
+
∂2u

∂y2
= 0 .

If f(z) is analytic and u(x, y) = Re(f(x+ iy)), then the Cauchy Riemann equa-
tions imply that u is harmonic (as we saw – look it up if you don’t remember).
The Liouville theorem for harmonic functions is the same as for analytic func-
tions. If u is bounded then u is constant. If u has polynomial growth of degree
p (i.e., |u(x, y)| ≤ M(1 + x2 + y2)p/2) then u is a polynomial of degree p. The
proofs are similar to the ones we just saw. They are based on the Poisson kernel
representation of harmonic functions. The following formula is copied from a
complex analysis textbook (the one by Levinson and Redheffer, where it’s for-
mula (4.11) of chapter 6). It represents u(x, y) on a circle of radius r in terms
of the values of u on a circle of radius R > r:

u(r cos(θ), r sin(θ)) =
1

2π

∫ 2π

0

R2 − r2

R2 − 2Rr cos(θ − φ) + r2
u(R cos(φ), R sin(φ)) dφ .

It’s in a complex analysis book because it’s derived from the Cauchy integral
representation. The Poisson kernel is the part of the integrand that doesn’t
depend on u:

K(r, θ,R, φ) =
1

2π

R2 − r2

R2 − 2Rr cos(θ − φ) + r2
.
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You can differentiate this with respect to x and y to get formulas for the deriva-
tives of u, and imitate the steps above to prove Liouville for harmonic functions.
It should take you less than an hour to do this.

The Liouville theorem we need for the application to the zeta function is a
combination of these theorems. Suppose we don’t at first know that f(z) has
polynomial growth, but only that the real part does. This would be

|Re(f(z))| ≤M(1 + x2 + y2)p/2 . (3)

If p < 2, this bound implies that u(x, y) = Re(f(x + iy)) is linear: u(x, y) =
ax + by + c. From this, the Cauchy Riemann equations allow us to show that
the imaginary part v(x, y) also is linear. To start,

∂v

∂y
=
∂u

∂x
= a ,

so
v(x, y) = ay + d(x) .

We don’t know much about d(x), except that it is differentiable because f is
differentiable. The other Cauchy Riemann equation leads to v(x, y) = −bx +
e(y). Comparing these gives v(x, y) = −bx+ay+h, which is linear. This implies
that f(x + iy) is linear in x and y. Liouville’s theorem then implies that f(z)
is a complex linear function of z. (Otherwise it might be that f is a real linear
function of x and y but not a complex linear function.)

We have to go further still, and replace the two sided bound (4) by the one
sided bound

Re(f(z)) ≤M(1 + x2 + y2)p/2 . (4)

This constrains how far in the positive direction u can go, but says nothing
about how far in the negative u can go. It turns out that even a one sided
bound with p < 2 implies that f is a linear function of z. The proof is that
if u is harmonic and satisfies a one sided bound, then it satisfies a two sided
bound. A harmonic function defined on all of R2 cannot go to infinity without
also going to minus infinity.

This can be proved using the Poisson Kernel representation. First, subtract
a constant u(0, 0) from u(x, y) so we get a harmonic function u(x, y) − u(0, 0)
that vanishes at the origin. Without loss of generality, we assume u(0, 0) = 0.
Now, note two properties of the Poisson Kernel. One is that K = 1

2π if r = 0.
The value u(0, 0) is the simple average of u(x, y) over the circle x2 + y2 = R2.
The other property is that K doesn’t very too much when r = 1

2R. There are
constants 0 < C1 < C2 <∞ so that for all θ and φ,

C1 ≤ K(
1

2
R, θ,R.φ) ≤ C2 .

From these facts, we show that there is a C3 so that

max
x2+y2=R2

u(x, y) = A =⇒ min
x2+y2=( 1

2R)2
u(x, y) ≥ −C3A .

3



This implies that

min
1
2R

u(x, y) ≥ −C3M
(
1 +R2

)p/2
.

It is an exercise to show that this implies that

|u(x, y)| ≤M ′
(
1 + x2 + y2

)p/2
.

This is the two-sided bound. The one sided bound implies the two sided bound.
We finally need to prove the lemma at the heart of the argument. For this,

define uR(θ) = u(R cos(θ), R sin(θ)). The lemma is that if

max
θ
uR(θ) = A

and ∫ 2π

0

uR(θ)dθ = 0

then, for all θ,
u 1

2R
(θ) ≥ −C3A .

To prove this, you can ask: what should uR be to have mean zero and bounded
from above by A to make the minimum over 1

2R as small as possible. The
integral in question is

u 1
2R

(θ) =

∫
K(θ, 12R,φ,R)uR(φ) dφ .

There is an upper bound on uR but no lower bound (not yet). After thinking
about this for about a day, you realize that the “worst” thing to do is to make
uR = A everywhere except at the φ value, φ∗, where K(θ, 12R,φ,R) = C2 = min.
You put a negative delta function mass there to achieve mean zero

uR(φ) = A−Aδ(φ− φ∗) .

Of course, the delta function isn’t a real function, but you can use approxima-
tions to it.

Now for the point of all this. Suppose that f(z) is an entire function with

|f(z)| ≤ C1e
C2|z|p . (5)

Suppose f(z) 6= 0 for all z. Then g(z) = log(f(z)) is well defined, and

Re(g(z)) ≤ log(C1) + C2 |z|p .

This is a one-sided bound for the harmonic function u(x, y) = g(x + iy). The
one-sided bound implies a two-sided bound with the same p but a possibly worse
constant M . The two sided bound on u implies that u is a polynomial. This
implies that g is a polynomial (look back for this). If p < 2, then g is a linear
polynomial. This proves the theorem that was the purpose of this section: An
entire function with exponential order p (this is the inequality (5) and p < 2
must be of the form

f(z) = eaz+b .

The only way for an entire function like ξ(s) to be complicated is to have lots
of zeros.
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2.2 The argument principle

3 Exercises

1. Consider the function

g(z, s) =
∏
p

1

1− zp−s
.

(a) Show that if Re(s) > 1, then g is a meromorphic function of z and
identify its poles.

(b) g has a Taylor series expansion of the form

g(z, s) = 1 +G1(s)z +G2(s)z2 + · · · .

Show that
G1(s) =

∑
p

p−s ,

and find expression for G2(s).

2. Consider the function

h(z, s) =
∏
p

[(
1− zp−s

)
ezp

−s
]

(a) Show that this is an entire function of z if Re(s) > 1
2

(b) Identify the coefficients in the Taylor series

h(z, s) =

∞∑
2

cn(s)zn .

3. Suppose f(θ) is defined and continuous for 0 ≤ θ ≤ 2π and f(θ) ≤ A for
all θ. Suppose that ∫ 2π

0

f(θ)dθ) = 0 .

Suppose that r = R/2 and define

g(θ) =

∫ 2π

0

K(r, θ,R, φ)f(φ)dφ .

(a) Show that g is independent of R (if r = R/2).

(b) Find a C > 0 independent of f and A so that g(θ) > −CA. Hint: It
suffices to take θ = 0 and A = 1, why? Find the optimal C and find
a sequence fn that satisfy the hypotheses so that gn(0) → −CA as
n→∞.
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(c) Finish the botched proof in the notes by showing that if u is harmonic
and if u(x, y) ≤ C(1+x2+y2)p/2 then there is a C ′ so that |u(x, y)| ≤
C ′(1 + x2 + y2)p/2.

4. Suppose ω1 and ω2 are non-zero complex numbers that are not co-linear
in the complex plane (i.e., ω2/ω1 is not real). The Weierstrass P function
is written P(z) and is defined by

P(z) =
1

z2
+

∑
(n1,n2)6=(0,0)

(
1

(z − n1ω1 − n2ω2)2
− 1

(n1ω1 + n2ω2)2

)
.

The sum (including the 1/z2 term) is a sum over lattice points in the
complex plane. The description of P(z) for z near zero involves the lattice
sums

Gr =
∑

(n1,n2) 6=(0,0)

1

(n1ω1 + n2ω2)r
.

In your answers, be sure to distinguish the Greek letter ω from the Latin
letter w.

(a) Show that the sum without counter-terms 1/(n1ω1−n2ω2)2 does not
converge abslutely, but converges absolutely if z is not a lattice point.
Hint, compare

1

(n1ω1 + n2ω2)2
to

∫ n1+1

x=n1

∫ n1+2

y=n2

1

(xω1 + yω2)2
dxdy

(b) Show that P(z + ω1) = P(z), and similarly for ω2. One way to do
this is to show that f(z) = P(z + ω1) − P(z) is bounded (has no
poles, does not go to infinity as z goes to infinity).

(c) Show that P(z) is an even function of z and show that

P(z) =
1

z2
+Az2 +Bz4 + Cz6 + · · · .

Calculate A and B in terms of lattice sums G4 and G6. There are
some big integers involved: 60 and 140.

(d) Suppose f is a meromorphic function with f(z + ω1) = f(z + ω2) =
f(z) for all z (except the poles). A fundamental cell for f is a paral-
lelogram with corners a, a + ω1, a + ω2, a + ω1 + ω2. Suppose that
f has no poles on the boundary of the fundamental parallelogram.
Show that that it is impossible for f to have a single simple pole
in the interior of the fundamental parallelogram. Hint: Compute∫
γ
f(z)dz around the boundary of a fundamental parallelogram and

see that the parts over opposite sides are related by periodicity of f .

(e) Show that P has one double pole in a fundamental parallelogram.
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(f) Find D, and E so that

P ′(z)2 = 4P(z)3 −DP(z)− E . (6)

Hint: With the right value ofD, the function P ′(z)2−
[
4P(z)3 −DP(z)

]
has no pole at z = 0 and therefore has no pole anywhere and there-
fore is a bounded entire function. You can figure out E by evaluating
the difference at z = 0. Of course, D and E are also given in terms
of lattice sums G4 and G6. The numbers can be big integers.

(g) Use the differential equation (6) to find a formula for C in terms of
A and B and D and E. This gives a formula for G8 (and all higher
lattice sums, but that’s not the assignment) in terms of G4 and G6.
It may seem surprising that there is a formula for G8 in terms of G4

and G6, but one explanation is that the lattice sums are determined
by the two parameters ω1 and ω2. It’s natural that two of the lattice
sums determine ω1 and ω2, and therefore the rest of the lattice sums.
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