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Chapter 5
De la Vallee Poussin’s Theorem

This chapter is about estimate the rate at which the relative error of π(x) ∼
Li(x) appraches zero as x approaches infinity. De la Vallee Poussin proved that
there exist a constant c > 0 such that the relative error approaches zero at least
as fast as exp[−(clogx)1/2] does, i.e∣∣∣∣π(x)− Li(x)

Li(x)
< e−

√
clogx

∣∣∣∣
for all sufficiently large x.
Therefore this chapter proves this theorem and some application of it.

1. An improvement of Re ρ < 1

Theorem: There exist constant c > 0,K > 1, such that

β < 1− c

logγ

for all roots ρ = β + iγ, in the range γ > K. This inequality is stronger
than β < 1, however this doesn’t not preclude the possibility that there
are roots ρ arbitrarily near to the line Re s = 1.

De la Vallee Poussin’s proof of this is based on the elementary inequality

4 ≥ 2(1− cosθ)

4(1 + cosθ) ≥ 2(1− cos2θ) = 1− cos2θ
3 + 4cosθ + cos2θ ≥ 0

This is true for all θ. Combine this with the formula −ζ ′(s)/ζ(s) =∫∞
0
x−sdψ(x) gives

Re

{
−3

ζ ′(s)
ζ(s)

− 4
ζ ′(σ + it)
ζ(σ + it)

− ζ ′(σ + 2it)
ζ(σ + 2it)

}
=
∫ ∞

0

x−σ[3 + 4cos(tlogx) + cos(2tlogx)]dψ(x) ≥ 0

Hence

Re

{
3
ζ ′(s)
ζ(s)

+ 4
ζ ′(σ + it)
ζ(σ + it)

+
ζ ′(σ + 2it)
ζ(σ + 2it)

}
≤ 0

for all σ > 1 andforall real t.
This can be used to prove β < 1.
Then De la Vallee Poussin used this inequality to prove β < 1− c

logγ .1

1In the proof,he uses a formula Π′(x)/Π(x) ∼ logx, This formula will be in the next chapter
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2. De la Vallee Poussin’s estimate of the error

The main step in the proof of the prime number theorem is to use the
estimate β < 1 to prove

∑
xρ−1/ρ(ρ + 1) approaches 0 as x approaches

infinity. Since we have found a better estimate β < 1− c(logγ)−1, now it
is natural to use it.

De la Vallee Poussin accomplished it by first considering∣∣∣∣∣∑
ρ

xρ−1

ρ(ρ+ 1)

∣∣∣∣∣ ≤∑
ρ

xβ

γ2
=
∑
|ρ|<K

xβ

γ2
+ 2

∑
ρ≥K

xβ

γ1−δ ·
1

γ1+δ

The first term on the right is the sum of finite number of terms, each of
them is a constant times a negative power of x (xβ−1), hence there are
constant C, ε such that this termis less than c−ε for all x > 1. Now if δ
is any postive constant, then 2

∑
γ−1−δ converges, so the second term on

the right is less than a constant times the maximum of xβ−1/γ1−δ.2

By setting δ = 3
4 and let C1 denote 2

∑
γ−1−δ, Then the above estimates

gives ∣∣∣∣∑ xρ−1

ρ(ρ+ 1)

∣∣∣∣ < Cx−ε + C1exp[−(c logx)1/2]

for all sufficiently large x. Finally, since xε converges to zero much faster
than exp[−(c logx)1/2], since the constant C, C1 can be absorbed by de-
creasing c slightly, and since 2

∑
xρ−1/ρ(ρ+ 1) is the relatve error in the

approximation
∫ x
0
ψ(t)dt ∼ x2/2, this proves that there is a constant c > 0

such that the relative error is lessthan exp[−(c logx)1/2] for all sufficiently
large x.

Last step is using the same technique as in last chapter, where π(x) ∼
Li(x) from

∫ x
0
ψ(t)dt ∼ x2/2 was deduced.3 This will leads to

π(y) ≥ const+ Li(y)− y

logy

[
ε(y) +

const logy

y1/2
+

4ε(y1/2)
logy

]
Where epsilon(x) = exp[−(c logx)1/2], and c is as above.
Since the quantity in square brackets is less than ε(y1/2)for all sufficinetly
large y, it will suffice to prove that y/logy divided by Li(y) is bounded as
y goes to infinity.

2up to this point, consider the continuous variable clogx
(logγ)2

1
γ
− 1−δ

γ
which can be negative,

zero or positive. Thus for sufficient large x that clogx > (1− δ)(logK)2, this will lead to the
inequality

xβ−1

γ1−δ ≤
x−c/(logγ)

γ1−δ ≤
exp{−[c(1− δ)logx]1/2}
exp{[c(1− δ)logx]1/2}

= exp[−(clogx)1/2]

3by consider the least and most value
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3. Other formulas for π(x)

Ledendre came up with a different approximation formula for π(x)

π(x) ∼ x

logx−A

where A is a constant, its value were given by Legendre as 1.08366 (on
empirical grounds).
The prime number theorem shows if this approximation is true if and only
if Li(x) ∼ x/(logx − A) for some and hence all values of A. However by
integraion by parts

Li(x) = Li(2) +
∫ x

2

dt

logt

= Li(2) +
x

logx
− 2
log2

+
∫ x

2

dt

(logt)2

Li(x)− x

logx
= const+

∫ x

2

dt

(logt)2

Now it is suffice to show tha thte integral on the right divided by x/logx
approaches zero as x goes to infinity in order to conclude that the approx-
imation is true with A = 0.

Chebyshev was able to show that if any value of A is any better than any
other then its value must be A = 1. This is needed for the fact that the
approximation

Li(x) ∼ x

logx−A

is best when A = 1. 4

Another application of De la Vallee Poussin estimate is that, First consider
integrating Li(x) by parts shows that it can be generalised to the form

Li(x) ∼ x

logx
+

x

(logx)2
+ 2

x

(logx)3
+ 6

x

(logx)4
+ · · ·+ (n− 1)!

x

(logx)n

where the error grows much less rapidly than the last term x(logx)−n as
x goes to infinity. De la Vallee Poussin estimate shows that hte error in
π(x) ∼ Li(x) also grows less rapidly than x(logx)−n and hence proves
that the approximation

π(x) ∼ x

logx
+

x

(logx)2
+ · · ·+ (n− 1)!

x

(logx)n

is valid.

4The prove of this uses the de la Vallee Poussin estimate fo the error
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4. Error estimates and the Riemman Hypothesis

So far we can see that there is a strong relationship between de la Vallee
Poussin’s estimate of the error in the PNT and his estimate β < 1 −
c(logγ)−1 of β = Re ρ. It is not surprising that the Riemman Hypothesis
Re ρ = 1/2 should imply much stronger estimates of the error. The best
error estimate so far is proved by von Koch, which says if the Riemman
Hypothesis is true then the relative errors for al lsufficiently large x. This
estimate implies that the relative error are eventually less than a constant
times (logx)2x−1/2 for all sufficiently large x.

On the other hand, if the Riemman hypothesis is false, then there is a root
ρ with Re ρ > 1

2 and hence a ”‘periodic”’ termin Riemann’s formula for
π(x) which grows more rapidly in magnitude than x1/2, so it is reasonable
to assume the error in PNT would not in the case grow less rapidly less
than x(1/2)+ε. 5

5. A postscript of De la Vallee Poussins Proof

In this section it talked about Sum of Mobius function, and it begins with
Euler’s product formula

1
ζ(s)

=
∏
p

(
1− 1

ps

)
= 1− 1

2s
− 1

3s
− 1

5s
+

1
s
− · · ·

=
∞∑
n=0

µ(n)
ns

Where µ(n) is Mobius function. Since zeta(s) has a pole at s=1, [ζ(s)]−1

has a zero at s = 1; so if Euler’s product formula for ζ(s) is valid for s = 1,
it would say

0 = 1− 1
2
− 1

3
− 1

5
+

1
6
− 1

7
+

1
10

+ · · ·

de la Vallee Poussin proved that∣∣∣∣∣∑
n<x

µ(n)
n

∣∣∣∣∣ < K

logx

for all sufficient large x. As x goes to infinity, this will imply the Euler’s
product formula with s = 1.

5Last part in this section gives a theorem which states that, The Riemann Hypothesis
is equivalent to the statement that for every ε > 0 the relative error in the prime number
theorem π(x) ∼ Li(x) is less than x−(1/2)+ε for all sufficiently large x.
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