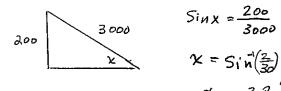
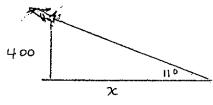

Trig Word Problems Worksheet(2)

1. A boy flying a kite lets out 300 feet of string which makes an angle of 38° with the ground. Assuming that the string is straight, how high above the ground is the kite?



- x = 300 (Si'n 38)
- $\chi = 184.69$
- 2. A ladder leaning against the wall makes an angle of 74° with the ground. If the foot of the ladder is 6.5 feet from the wall, how high on the wall is the ladder?

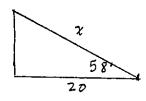


$$+ an 74^{\circ} = \frac{x}{6.5}$$

 $x = 6.5 (+ an 74^{\circ})$
 $x = 22.66$

3. A straight road to the top of a hill 200 feet high is 3000 feet long. Find the angle the road makes with the horizontal.

4. An airplane climbs at an angle of 11° with the ground. Find the ground distance it has traveled when it has attained an altitude of 400 feet.

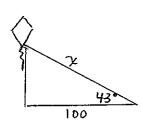


$$\tan 11 = \frac{400}{x}$$

$$x = \frac{400}{100}$$

$$\tan 10^{\circ}$$

5. A wire attached to the top of a pole reaches a stake in the ground 20 feet from the foot of the pole and makes an angle of 58° with the ground. Find the length of the wire.

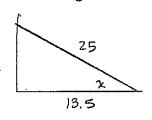


$$\cos 58^\circ = \frac{20}{x}$$

$$x = \frac{20}{\cos 58^\circ}$$

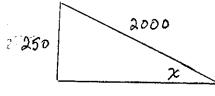
$$\chi = 37.74$$

- \supset
- 6. Henry is flying a kite. The kite string makes an angle of 43° with the ground. If Henry is standing 100 feet from a point on the ground directly below the kite, find the length of the kite string.



$$\cos 43 = \frac{100}{x}$$

$$X = \frac{100}{\cos 43}$$

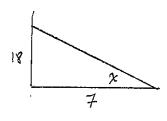

$$x = 136.73$$

7. A 25 foot ladder leans against a building. The ladder's base is 13.5 feet from the building. Find the angle which the ladder makes with the ground.

$$\cos x = \frac{13.5}{25}$$

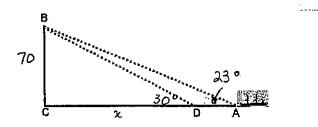
 $x = \cos^{-1}(\frac{13.5}{25})$
 $x = 57.3^{\circ}$

8. In order to reach the top of a hill which is 250 feet high, one must travel 2000 feet straight up a road which leads to the top. Find the number of degrees contained in the angle which the road makes with the horizontal.



$$Sin x = \frac{250}{2000}$$

$$\chi = Sin^{-1} \left(\frac{250}{2000} \right)$$


$$\chi = 7.18^{\circ}$$

9. A ladder leans against a building. The top of the ladder reaches a point on the building which is 18 feet above the ground. The foot of the ladder is 7 feet from the building. Find the measure of the angle which the ladder makes with the level ground.

$$+ an \times = \frac{18}{7}$$

 $\chi = + an^{-1}(\frac{18}{7})$
 $\chi = 68.7^{\circ}$

10. As shown in the diagram, a ship is headed directly toward a coastline formed by a vertical cliff \overline{BC} , 70 meters high. At point A, the angle of elevation from the ship to B, the top of the cliff, is 23°. A few minutes later at point D, the angle of elevation increases to 30°.

- (a) To the nearest meter, find:
 - (1) DC
 - (2) AC
 - (3) AB
- (b) To the nearest meter, what is the distance between the ship's position to the two sightings?

(a) (i)
$$\frac{DC(x)}{x}$$
 (2) $\frac{AC(4)}{x}$ (3) $\frac{AB(2)}{x}$ + an $23 = \frac{70}{4}$ Sin $23 = \frac{70}{2}$

$$X = \frac{70}{+an30}$$
 $y = \frac{70}{+an23}$ $z = \frac{70}{5in23}$

$$x = 121.24$$
 $x = 164.90$

(2)
$$AC$$
 (4) AC 14) AC 14)

$$x = 11.4.90$$

$$Sin 23 = \frac{70}{2}$$