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Data analysis in modern science using extensive experimental and observational facilities, such as
a gravitational wave detector, is essential in the search for novel scientific discoveries. Accordingly,
various techniques and mathematical principles have been designed and developed to date. A recently
proposed approximate correlation method based on the information theory is widely adopted in sci-
ence and engineering. Although the maximal information coefficient (MIC) method remains in the
phase of improving its algorithm, it is particularly beneficial in identifying the correlations of multi-
ple noise sources in gravitational-wave detectors including non-linear effects. This study investigates
various prospects for determining MIC parameters to improve the reliability of handling multi-channel
time-series data, reduce high computing costs, and propose a novel method of determining optimized
parameter sets for identifying noise correlations in gravitational wave data.

I. INTRODUCTION

Data analysis techniques in modern science are becom-
ing increasingly important in achieving significant dis-
coveries and breakthroughs in the data of scientific ob-
servations and experiments. As these observations and
experiments gradually became larger, the amount of ac-
cumulated data became vast; accordingly the data pro-
cessing and analysis involved in extracting meaningful
information have become significant in various fields of
science. Hence, this has created a novel area of data sci-
ence, and its foundation includes advanced data analysis
algorithms and mathematical principles, as well as the
progressive development of computational resources.

Modern experimental equipment and observation fa-
cilities are becoming more complex and precise, in which
there are considerable noises to be identified and mit-
igated to mitigate harm to the physical interpretation
from data analysis. Gravitational wave (GW) detectors,
such as the Advanced Laser Interferometer Gravitational-
wave Observatory (aLIGO) [1], Virgo [2], and KAGRA
[3] are complex facilities with high-precision measure-
ments. These facilities comprises highly complicated and
interconnected systems affected by various electronics
and devices surrounding instruments and environments.
Hence, to improve the quality of data for scientific pur-
poses, it is crucial to elucidate subsystems of the de-
tector and its overall status, as well as categorize and
mitigate the noises from the systems and the environ-
ments. In particular, owing to the interference and mu-
tual impacts between multi-channels in the complex de-
vices, a few non-linear couplings also limit the detector
of gravitational wave (GW)s. To date, several efforts
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in identifying the correlations of transient noises have
been made to characterize aLIGO GW detectors. In par-
ticular, a long-duration coincidence between detector’s
range fluctuations and disturbances from auxiliary chan-
nels has been investigated via the least absolute shrink-
age and selection operator (LASSO) regression [4]. From
this perspective, measuring the correlation between two
random variable helps to identify the noise source ele-
ments associated with a particular device, and analyze
significant relevance.

Several measures have been introduced and utilized
in identifying linear relevance, such as Pearson’s corre-
lation coefficient [5], Spearman rank correlation coef-
ficient [6], and Kendall’s τ coefficient [7], as well as
non-linear relationships such as mutual information (MI)
[8–10], distance correlation (dCorr) [11], correlation
distributed along curve [12], and Heller-Heller-Gorfine
(HHG) distance test [13] between two variables. An-
other method for measuring non-linear correlation, max-
imal information coefficient (MIC), has been proposed in
Ref. [14] with (non-)functional relationships [15, 16].
MIC designs an approach to detect non-linear associa-
tion, considering the maximal MI values defined on the
a × b grid in a two-variable data plane. Hence, MIC ex-
plores every possible a × b grid up to maximal bin reso-
lutions, and selects the maximal value among the com-
puted MIC values on grids. The association between two
datasets can be visualized when the scattered plot is de-
picted on the X − Y plane. Reshef et al. [17] also pro-
posed an empirical estimator of MIC (MICe) that avoids
any heuristic approach to maximize the value for all pos-
sible resolutions. Let D be a set of N ordered pairs, and
the total grid size is restricted byB(N) = Nα and c. Note
that α is a dimensionless parameter that controls the size
of grids with 0 < α < 1, and c is a controlling parame-
ter for the coarseness of the discrete grid-maximization
search. Then, MICe is defined as:

MICe(X,Y, α, c) = max
ab<B(N)

{max I [∗](D, a, b)

log2 min{a, b}

}
, (1)
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FIG. 1: Plot of MICe values in Eq. (1) for varying α and c
between two random variables.

where I [∗](D, a, b) indicates that MI is maximized in the
set of a × b grids whose y-axis partition is the equiparti-
tion of size b, if a ≤ b. (Please refer to A for more details
on MI and MIC.)

Computing MI using the grid method is simple and
straightforward; however several issues need to be ad-
dressed to apply this method directly to the correlation
analysis. First, there is a problem with the reliability
of the estimator in choosing parameters. The value of
grid-based estimators relies on choosing their parameters
to establish the appropriate resolution of bins. For in-
stance, a parameter choice can result in a non-zero value
of the estimator when two variables X and Y are Gaus-
sian noise sets that do not have any associations. Figure
1 presents an illustrative example of how the associa-
tion strength of estimators varies by selecting a set of
parameters, (α, c). Second, we have to decide the lower
bound of the data size for securing the residence of back-
ground noises, which is related to the challenge posed
by the absolute value of MIC and its interpretation. For
example, no significant correlation for any two random
samples is expected such that its correlation coefficient
should vanish. However, the estimator (MIC) is not the
case for the arbitrary sample size data. This issue has
been addressed, and a novel method for computing MIC
combined with χ2-statistics, called ChiMIC, has been pro-
posed [18]. However, it remains insufficient to interpret
the MIC results for some reliable data size and parameter
sets. Furthermore, these two issues are directly related
to the problem of computational costs. With a steady in-
crease in data size or the value of parameters, the com-
puting costs required increase. In addition, to estimate
the non-linear associations between time-series datasets,
additional factors, such as data sampling rates and the
type of background noises, also exert significant effects
on the results. As pointed out in Ref. [16], MI is limited

in interpreting the results; however MIC has been intro-
duced to address its limitation by suggesting the criterion
of equitability. Nevertheless, optimizing parameters to
produce reliable results and interpretation remains cru-
cial in extracting convincing information from the given
data. We summarize the aforementioned practical issues
in computing and interpreting MIC values, as expressed
in the following questions:

• How is the MIC value differently varied under the
different types of background noises in data?

• What is the reliable sampling rate and data size? In
addition, how do they influence the computational
cost?

• When we handle the data from multi-channel de-
vices with different sampling rates, does the resam-
pling process affect MIC results? If so, what is the
best way of resampling to obtain a reliable MIC
score?

To answer these questions, we conduct MIC (MICe)
tests with a wide range of MIC parameters and obtain
a few guidelines for setting parameters when using and
interpreting MIC results.

This study investigates various cases of optimizing pa-
rameters in computing MIC, and presents a methodology
for parameter optimization. This research is motivated
by contributions from previous studies on the formula-
tion of MIC [18–20]. In Section II, we discuss the pro-
cess of setting up datasets for alternative/null hypotheses
and the statistical power, thereby providing optimized
parameters based on analytical results from the relation-
ship between the strength and parameters presented in
Section III. Finally, we discuss our results in Section IV.

II. DATA AND METHODS

We prepare datasets with some particular associations
between two random variables. If noiseless random
time-series X(t) and Y (t) can be described by Y (X) =
X, two variables exhibit a perfect linear correlation. Sim-
ilarly, we can construct a paired dataset with linear,
quadratic, cubic, sinusoidal, fourth-root, circular, and
stepwise associations defined by various functional re-
lationships as presented in Table I. To generate a simu-
lated dataset, we mix Gaussian, gamma, and Brownian
noises with given datasetsX(t) and Y (t), as well as a real
instrumental noise from the GW detector (GWD). The
GWD noise is taken from the GW public open data cen-
ter for aLIGO. aLIGO is a 4-km long gravitational-wave
detector using laser interferometry at Hanford (Washing-
ton) and Livingston (Louisiana), USA [21]. It is known
that the typical behavior of GWD noise is non-stationary
and non-Gaussian owing to complex interconnected cou-
plings between hundreds of thousands of instrumental
and environmental noise sources.
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Association type Function
Linear Y (X) = X
Quadratic Y (X) = 4(X − 1

4
)2

Cubic Y (X) = 128(X − 1
3
)3

−48(X − 1
3
)2 − 12(X − 1

3
)

Sinusoidal: period 1/2 Y (X) = sin (4πX)
Sinusoidal: period 1/4 Y (X) = sin (16πX)

Fourth-root Y (X) = X1/4

Circular Y (X) = ±
√

1− (2X − 1)2

Stepwise Y (X) = 0 if X ≤ 1/2 or
1 if X > 1/2

TABLE I: Datasets and functional types of random variables X
and Y with special associations.

First, we investigate the diversity of MIC values un-
der the different types of background noises. Owing
to the level of noises in various noise types (for exam-
ple, Gaussian versus gamma noises), we need to de-
fine a consistent approach to interpreting compared to
MIC values under the different noise backgrounds. To
achieve this let us consider two time-series datasets,
X(t) = x(t)+ξ(t) and Y (t) = y(t)+ξ′(t), where x(t) and
y(t) are signals while ξ(t) and ξ′(t) represent noises from
two independent channels. Because our focus is on the
statistical power of MICe as the noise power increases,
we defined the noise-to-signal ratio (NSR), for conve-
nience, as an inverse of the typical signal-to-noise ratio
(SNR), which is the ratio between the expected mean
squares of the signal and noise, NSRX = E(ξ2)/E(x2).
Now, we consider the ratio of NSR between two variables
as:

NSRY/X ≡
NSRY

NSRX
=
E(ξ′2)E(x2)

E(ξ2)E(y2)
=
N 2

σ2
, (2)

where the noise power ratio (NPR), N 2 ≡ E(ξ′2)/E(ξ2)
is a measure of noise level based on the Ref. [22], which
is expected to be N 2 ≈ O(1). Similarly, the signal power
ratio (SPR) can be defined by σ2 ≡ E(y2)/E(x2) ≈ O(1).
However, it is difficult to expect that the noises from dif-
ferent input sources should have the same level when
investigating the various noise level in computing MIC in
general. Therefore, we have Y (t) = σx(t)+N ξ(t), where
N and σ are control parameters to adjust the noise level
in NSR. Practically, we adopt NSRY/X = E(Y 2)/E(X2)
instead of Eq. (2) because we cannot distinguish the sig-
nal from the noise in real data.

To assess an association effect of MICe for varying pa-
rameters in the different noise backgrounds, we intro-
duce a statistical power rejecting the probability of the
null hypothesis H0 when the alternative hypothesis H1

is true. We consider the datasets for the alternative hy-
pothesis H1, while datasets for the null hypothesis H0

are randomly permuted x to create the lower association
data. The datasets for H0 are described as:

X0(t) = x(s) + ξ(t), (3)
Y0(t) = σx(s) +N ξ(t), (4)

FIG. 2: Plot depicting the statistical power of MICe in NSRY/X

and the distribution densities of each hypothesis.

where t ∈ R and ∀s ∈ R are selected arbitrarily.
Given the parameters of ε = (α, c) in MICe(X,Y, ε),

when we measured 500 independent observations for
both hypotheses, the MICe established, satisfying the al-
ternative hypothesis with five percents of the statistical
significance, is defined as:

S5%
1 (ε) ≡

{
MICe (X(t), Y (t), ε) > D95%

0 (ε)
}

(5)

where

D95%
0 (ε) ∈ S95%

0 (ε) ≡
{
MICe (X0(t), Y0(t), ε)

}
>95%

.

(6)
The set S5%

1 (ε) containing MICe value, which are greater
than an element of the set for the null hypothesis, ex-
hibits true positive (TP). Hence, we can define a statisti-
cal power of MICe, PMICe, by the ratio between the num-
ber of TP samples and the number of alternative samples
N1 for a given parameter set of ε as:

PMICe(ε) ≡ N [D5%
1 (ε)]/N1, (7)

where D5%
1 (ε) ∈ S5%

1 .
The statistical power in Eq. (7) indicates the possible

separability between two hypotheses. An example of the
statistical power is presented in Fig. 2, in which the sta-
tistical power of MICe for both hypotheses is plotted for
diverse values of NSR levels. For low NSR levels, it can
be inferred that the statistical power of MICe seems effi-
cient owing to the significant separation of both hypothe-
ses. In contrast, the statistical power decreases when the
NSR level increases. We deduce that the statistical power
is sufficiently efficient above 0.95 at NSR ∼ 2 in this ex-
ample.

III. EXPERIMENTAL TESTS

Based on aforementioned criterion, we estimate the
statistical power of MICe for every functionally associ-
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FIG. 3: Plot of computing runtimes for varying α with a fixed
c = 3: as expected, the plot relies on the data sample size as α
increases.

ated dataset under different background noises. To de-
termine the effect of parameters on the power of MICe,
we investigate two factors for optimizing the parameters
of MICe - an area under the power curve (AUPC) and com-
putational cost. The AUPC is defined as an area under
the statistical power curve for a given parameter value
presented in Fig. 2. However, we estimate by com-
puting a sample of MICe to vary the data sample size
N1 because the computing cost increases in proportion
to O(c2B(N)5/2) = O(c2N5α/2) as N increases [17].
As discussed in Section II, the number of data samples
improves the statistical power against the higher NSR.
However, the computational cost increases owing to the
size of the data sample growth, as illustrated in Fig.
3. Therefore, determining an optimal parameter set be-
tween the statistical power and the computational cost is
crucial.

A. Data samples and Parameter Selection

Here, we first investigate the statistical power in Eq.
(7) versus NSR for different numbers of data samples
and different background noises. As presented in Fig. 4,
each plot for N = 512, 2048, and 8192 describes the sta-
tistical power as NSR increases for different background
noises of the given parameters ε = (α, c) = (0.5, 1). In
addition, the averaged curve of the statistical power for
MICe is plotted with a bold marker in each figure.2

1 We conducted tests in a single node of clusters with Intel(R)

Xeon(R) CPU E5645@2.40GHz and the minepy package [23].
2 Please refer to Ref. [24] for the whole results for N =
512, 1024, 2048, 4096, 8192.

For low NSR levels, the power seems sufficiently ef-
fective regardless of background noises; however, the
power decreases with the different levels of the efficiency
as the NSR level increases. When the sample size be-
comes large, the statistical power also remains efficient
as the NSR level increases, as illustrated in the plots for
N = 8192 in each plot. Except for the cases of the
fourth-root and circular relationships, every association
has a constantly efficient power for larger N cases. In
particular, it is observed that the circular association be-
tween two variables seems to be significantly sensitive
to noises. Consequently sufficient data samples are re-
quired to maintain a reliable statistical power of MICe. If
we consider the averaged curve of the statistical power
for MICe, we may select NSR ∼ 2 for the most efficient
power of MICe. However, we cannot apply this in a real
case because we would be unable to elucidate the ac-
curate association and functional relationships with the
noisy datasets.

Now, we can estimate the most optimal set of ε pro-
ducing the highest power of MICe for different back-
ground noises. In Fig. 5, the heatmaps of the average
AUPC are illustrated relative to N = 512, 4096, and 8192
in the parameter space of varying α and c. Each block
in this heatmap indicates the strength of the averaged
AUPC with the efficient values of parameters α and c for
a given data sample and background noise. Note that
each block in the heat map depicts the lower left-hand
side value of (α, c). Therefore, by computing the aver-
aged AUPC for varying parameters, we can select more
efficient parameter sets to produce the highest statistical
power of MICe. We select the parameter set of (α, c) and
its relative computing cost for each data sample size that
provides the highest averaged AUPC presented in Table
II. The relative computing cost is computed as a relative
value based on the computational time of the Gaussian
noise case for N = 512.

We can plot the average AUPC versus the computa-
tion cost for each noise type, and the data sample size in
Fig. 6. Each point represents the average AUPC. The pa-
rameter values (α, c) represent the computational cost.
These figures exhibit a consistent pattern of computa-
tional cost versus average AUPC that can be calculated
for each number of data samples. Moreover, the red as-
terisk mark corresponds to the parameter point that cal-
culates the averaged AUPC value with the highest effi-
ciency presented in Table II.

B. Resampling for Multi-channel Datasets

If a dataset comprises data obtained from multi-
channel devices with various sampling frequencies, it is
necessary to equally match the different sampling fre-
quencies of the two channels. Here, there are three ways
to do this: 1) match both equally by down-sampling the
channel of the high sampling frequency (HD) 2) match
both equally by up-sampling the channel of the low
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FIG. 4: Plots of the statistical power of MICe for eight functional associations and the averaged curve under each noise
background and given parameters (α, c) = (0.5, 1). The results are comprehensively presented in [24].
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FIG. 5: Heat maps of the averaged AUPC under each noise background for varying α and c when N = 512, 2048, and 8192. The
results are comprehensively presented in [24].
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FIG. 6: Plots of the averaged AUPC of MICe versus the relative computational cost for varying parameters of ε = (α, c). The red
asterisk mark points represent the optimal values of parameters with the highest averaged AUPC for relatively low computational
cost of a given sample size N . The analysis results are comprehensively presented in [24].
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sampling frequency (LU) 3) match both equally by up-
sampling (down-sampling) the channel of the low (high)
sampling frequency into the intermediate sampling fre-
quency (BR). Therefore, we need to investigate the ef-
fect of the resampling process on the statistical power of
MICe.

To achieve this, we first prepare two datasets with dif-
ferent sampling frequencies, f = 8192 and f = 1024. We
investigate the above three scenarios for all functional
associations under different noise background levels of
NSR = 2. The first option is to equally down-sample the
data with f = 8192 to that with f = 1024 (HD) while we
up-sample the data with f = 1024 to that with f = 8192
equally in the second option (LU). Finally, we resample
both datasets to an intermediate sampling frequency of
f = 2048 or 4096 (BR). Some analysis results for only
linear and circular correlations are presented in Fig. 7.
The plots illustrate the statistical power aspect for dis-
tinguishing null and alternative distributions when we
resample datasets. Except for a specific case of circular
association for Gaussian and gamma noises, the resam-
pling effect does not affect the statistical power of MICe.
This phenomenon emerges because the down-sampled
data size of the circular association in the Gaussian noise
case is insufficient to possess the statistical power re-
quired to distinguish null/alternative distributions. This
criterion is validated for comparisons by performing an-
other experiment with the datasets of f = 8192 and
f = 1024, 2048, and 4096 in Gaussian/gamma noise
backgrounds in Fig. 8, in which it is inferred that the
statistical power increases as down-sampled datasets size
increases, thus implying that it is important to obtain the
data sample size after down-sampling, regardless of the
resampling procedure. Therefore, we infer that if the
sufficient size of data samples is guaranteed, the data
resampling does not affect the statistical power of com-
puting MICe.

IV. DISCUSSIONS

This study investigated various aspects of computing
MICe to address the questions posed in the introduction
section. These questions are frequently asked while us-
ing MICe in the GW data analysis with multi-channel
datasets. Moreover, similar questions could emerge in
other fields of science and engineering. According to
the analysis results provided in this study, we can es-
tablish a strategy for setting the parameters required to
compute MICe between datasets from multi-channel de-
vices. First, we can check the noise level between two
datasets by computing NSRY/X expected to be O(1). If
the discord of the noise level is severe, we can perform
a relatively denoising procedure to obtain a comparable
noise level. Subsequently, we perform the resampling
process to maintain a sufficient data sample size. Finally,
we compute the averaged AUPC and select a set of MICe
parameters, (α, c), with a reasonable computational cost.

As summarized, it is observed that the statistical power
of MICe depends on the choice of parameter sets, noise
level of data, and data sample size. Furthermore, the
values of the parameters rely on the type of background
noise and data sample size adopted. To compute some
gauges of NSRY/X and PMICe, we can select the set of
parameters (α, c), yielding the most optimal result be-
tween the statistical power and the computational cost.
To handle the data of different sampling frequencies, it
is crucial to have a sufficient data sample size, regardless
of the resampling scenarios selected. Even if we can im-
prove the MICe algorithm by suggesting other methods,
it is appropriate to identify the non-linear couplings be-
tween two variables from different channels. To make a
more reliable decision, it is important to have a consis-
tent standard for interpretations.
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Appendix A: Mutual Information and Maximal Information
Coefficient

MI can be measured by their dependencies on two
datasets, defined by the Kullback-Leibler divergence as:

I(X;Y ) = DKL(P (X,Y )||P (X)P (Y )) (A1)

between the product of two marginal probability
P (X)/P (Y ) and the joint probability P (X,Y ). The
quantity can be rewritten for the discrete data as:

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
, (A2)

where p(x, y) is the joint probability function of two
datasets X and Y , and p(x)/p(y) is the marginal prob-
ability function of X/Y . The mutual information mea-
sures the amount of information shared between two
datasets. Therefore, when the two datasets have no
shared information p(x, y) = p(x)p(y), then I(X;Y )
clearly disappears. MI can be defined on the a × b grid
as:

I(X,Y )|a,b =
a∑
i=1

b∑
j=1

pXY (i, j) log2
pXY (i, j)

pX(i)pY (j)
, (A3)
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Noise Type N α c Averaged AUPC Relative Computing Cost Runtime (sec)

Gaussian Noise

512 0.35 7.0 5.434 1.000 7.2779×10−4 ± 5.1360×10−6

1024 0.35 2.0 6.899 1.286 9.4907×10−4 ±5.3110×10−5

2048 0.30 5.0 9.166 1.625 1.1988×10−3 ± 3.5905×10−5

4096 0.25 7.0 11.465 3.069 2.2643×10−3 ± 5.1274×10−5

8192 0.25 7.0 13.742 5.694 4.2009×10−3 ± 1.5290×10−5

GW Detector Noise

512 0.55 7.0 8.535 1.000 1.4158×10−2 ± 5.4217×10−5

1024 0.50 7.0 11.092 1.040 1.4721×10−2 ± 6.6200×10−5

2048 0.55 6.0 14.164 4.561 6.4571×10−2 ± 5.8023×10−4

4096 0.55 6.0 16.566 10.781 1.5264×10−1 ± 4.1442×10−3

8192 0.50 7.0 18.199 13.330 1.8872×10−1 ± 3.7194×10−4

Gamma Noise

512 0.6 7.0 16.752 1.000 2.9842×10−2 ± 8.6986×10−5

1024 0.50 7.0 18.234 0.493 1.4721×10−2 ± 6.6200×10−5

2048 0.45 7.0 18.955 0.531 1.5858×10−2 ± 9.5062×10−5

4096 0.40 7.0 19.346 0.466 1.3906×10−2 ± 4.6712×10−5

8192 0.40 7.0 19.614 1.069 3.1898×10−2 ± 4.4971×10−5

Brownian Noise

512 0.60 6.0 13.320 1.000 2.2202×10−2 ± 5.4714×10−5

1024 0.55 7.0 15.736 1.613 3.5811×10−2 ± 2.3834×10−3

2048 0.50 6.0 17.495 1.252 2.7804×10−2 ± 1.0220×10−4

4096 0.50 5.0 18.652 2.014 4.4709×10−2 ± 8.6971×10−5

8192 0.50 5.0 19.367 4.886 1.0848×10−1 ± 2.1029×10−3

TABLE II: Table of proposed optimal parameters of ε = (α, c) for data samples (N) under various background noises. The selected
parameters provide the best averaged AUPC. The relative computational cost is the relative value calculated based on the
computational time of each noise with N = 512. The runtime solely depends on the selected α, N , and c, regardless of the choice
of the noise type.

where pXY (i, j) is the joint probability distribution ob-
tained by the occupancy of the elements of the (i, j)-th
bin, as well as the pX(i) and pY (j) marginal distributions
on i-th columns and j-th rows, respectively. In addition,
a and b denote the total number of each grid size. Hence,
MIC can be defined as:

MIC(X,Y, α, c) = max
xy<B(N)

Ma,b, (A4)

where Ma,b indicates the characteristic matrix that con-
sists of the highest normalized MI in Eq. (A3) given by
an a× b grid expressed as:

Ma,b =
{
max

{ I∗(X,Y, c)

log2 min{a, b}

}
: ab ≤ B(N)

}
. (A5)

MIC explores every possible a × b grid up to maximal
bin resolutions and selects the maximal value on them.
The association between two datasets can be visualized
when the scattered plot is drawn on the X − Y plane.

To control the matrix range in Eq. (A5), the param-
eter α is restricted up to the upper bound of bin sizes
by B(N) = Nα, 0 ≤ α ≤ 1. For instance, if the B(N)
obtained is negligible, then the grid patterns become too

simple to lose generality; however if it is significantly
large, then a non-trivially high score of MIC is obtained
for the randomly selected paired samples. For a larger
sample size N , the computational cost is expected to be
expensive owing to the search for an optimal value for
all possible grids. In addition, the parameter c restricts
a maximum number of partitions to reduce the redun-
dant computing power in the maximizing process of MI,
called ApproxiMaxMI,

I∗(X,Y, c)|a,b = max
{
I(X,Y )|l,k

: l ∈ [2, ca], 2 ≤ k ≤ l < b
}
.

(A6)

Given an a × b grid resolution, ApproxiMaxMI provides
maximum values by finding an optimal grid on every pos-
sible partition size, l and k, within the bound limitations.
Subsequently, the parameter c determines the complexity
of the grid partitioning process.

Reshef et al. [17] also proposed an empirical estimator
of MIC (MICe), as expressed in Eq. (1). The value of
MICe varies from zero to one depending on the strength
of association between the two variables. It is unity when
sharing information is maximal for sufficiently large data
sizes; however, it becomes zero for the null association.
For more details, refer to [14, 17, 25, 26].
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FIG. 7: Comparison of the statistical powers and the distribution of MICe values for resampling datasets with different scenarios
under each nose background. Please refer to [24] for the entire analysis results.

FIG. 8: Comparison between the statistical powers of three
cases for down-samplings. The HD1024, HD2048, and
HD4096 cases represent the down-sampling to f = 1024,
2048, and 4096 from f = 8192, respectively.
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