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We present an approximate dynamic programming approach for making ambulance redeployment deci-
sions in an emergency medical service system. The primary decision is where we should redeploy idle
ambulances so as to maximize the number of calls reached within a delay threshold. We begin by formulating
this problem as a dynamic program. To deal with the high-dimensional and uncountable state space in the
dynamic program, we construct approximations to the value function that are parameterized by a small number
of parameters. We tune the parameters using simulated cost trajectories of the system. Computational experi-
ments demonstrate the performance of the approach on emergency medical service systems in two metropolitan
areas. We report practically significant improvements in performance relative to benchmark static policies.
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1. Introduction
Rising costs of medical equipment, increasing call vol-
umes, and worsening traffic conditions are putting
emergency medical service (EMS) managers under
pressure to meet performance goals set by regulators
or contracts. Ambulance redeployment is one strategy
that can potentially help. Ambulance redeployment,
also known as relocation, move up, system sta-
tus management, or dynamic repositioning, refers to
any strategy by which a dispatcher repositions idle
ambulances to compensate for others that are busy
and, hence, unavailable. The increasing availability of
geographic information systems and the increasing
affordability of computing power have finally created
ideal conditions for bringing real-time ambulance
redeployment approaches to fruitful implementation.
In this paper, which is an outgrowth of Restrepo
(2008), we present an approximate dynamic pro-
gramming (ADP) approach for making real-time
ambulance redeployment decisions. We begin by for-
mulating the ambulance redeployment problem as a
dynamic program. This dynamic program involves
a high-dimensional and uncountable state space and
we address this difficulty by constructing approxima-
tions to the value function that are parameterized by a

small number of parameters. We tune the parameters
through an iterative and simulation-based method.
Each iteration of this method consists of two steps.
In the first step, we simulate the trajectory of the
greedy policy induced by the current value function
approximation and collect cost trajectories of the sys-
tem. In the second step, we tune the parameters of the
value function approximation by solving a regression
problem that fits the value function approximation to
the collected cost trajectories. This yields a new set
of parameters that characterize a new value function
approximation, and thus, we can go back and repeat
the same two steps above. In this respect, the idea
we use closely resembles the classical policy iteration
algorithm in the Markov decision process literature.
In particular, the first and second steps are, respec-
tively, analogous to the policy evaluation and policy
improvement step of the policy iteration algorithm.
There are two streams of literature that are related
to our work. The first one is the literature on ADP. A
generic approach for ADP involves using value func-
tion approximations of the form 25=1 r,¢,(-), where
{r,,p=1,..., P}are tunable parameters and {¢,(-): p =
1,..., P} are fixed basis functions; see Bertsekas and
Tsitsiklis (1996) and Powell (2007). There are a number
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of methods to tune the parameters {r,: p=1,..., P}
so that 25:1 r,é,(-) yields a good approximation to
the value function. For example, temporal difference
learning and Q-learning use stochastic approximation
ideas in conjunction with simulated trajectories of the
system to iteratively tune the parameters; see Sutton
(1988), Watkins and Dayan (1992), Tsitsiklis (1994),
Bertsekas and Tsitsiklis (1996), Tsitsiklis and Van Roy
(1997), and Si et al. (2004). The linear programming
approach for ADP finds a good set of values for the
parameters by solving a large linear program whose
decision variables are {rp: p=1,..., P}; see Schweitzer
and Seidmann (1985), de Farias and Van Roy (2003),
and Adelman and Mersereau (2008). Both classes of
approaches are aimed at tuning the parameters {r,: p =
1,..., P} so that Z£=1 r,¢,(-) yields a good approxi-
mation to the value function. The choice of the basis
functions {¢,(-): p =1, ..., P}, on the other hand, is
regarded as more of an art form, requiring substan-
tial knowledge of the problem structure. Applications
of ADP include inventory control (Van Roy et al.
1997), inventory routing (Adelman 2004), option pric-
ing (Tsitsiklis and Van Roy 2001), game playing (Yan
et al. 2005, Farias and Van Roy 2006), dynamic fleet
management (Topaloglu and Powell 2006), and net-
work revenue management (Adelman 2007, Farias and
Van Roy 2007).

The second stream of literature that is related to our
work is the literature on ambulance redeployment.
One class of redeployment models involves solving
integer programs in real time whenever an ambu-
lance redeployment decision needs to be made; see
Kolesar and Walker (1974), Gendreau et al. (2001),
Brotcorne et al. (2003), Gendreau et al. (2006), and
Nair and Miller-Hooks (2006). The objective func-
tion in these integer programs involves a combination
of backup coverage for future calls and relocation
cost of ambulances. They are usually computation-
ally intensive, since they require solving an optimiza-
tion problem every time a decision is made. As a
result, a parallel computing environment is some-
times used to implement a working real-time system.
A second class of models is based on solving inte-
ger programs in a preparatory phase. This approach
provides a lookup table describing, for each num-
ber of available ambulances, where those ambulances
should be deployed. Dispatchers attempt to dispatch
so as to keep the ambulance configuration close to
the one suggested by the lookup table; see Ingolfsson
(2006) and Goldberg (2007). A third class of mod-
els attempts to capture the randomness in the system
explicitly, either through a dynamic programming for-
mulation or through heuristic approaches. Berman
(1981a, b, c) represents the first papers that provide
a dynamic programming approach for the ambulance

redeployment problem, and this approach was revis-
ited recently by Zhang et al. (2008) to attempt to
gain insight. However, these papers follow an exact
dynamic programming formulation, and as is often
the case, this formulation is tractable only in over-
simplified versions of the problem with few vehicles
and small transportation networks. Andersson (2005)
and Andersson and Vaerband (2007) make the ambu-
lance redeployment decision by using a “prepared-
ness function” that essentially measures the capability
of a certain ambulance configuration to cover future
calls. The preparedness function is similar in spirit to
the value function in a dynamic program, measuring
the impact of current decisions on the future evolu-
tion of the system. However, the way the prepared-
ness function is constructed is heuristic in nature.
When compared with the three classes of models
described above, our approach provides a number of
advantages. In contrast to the models that are based
on integer programs, our approach captures the ran-
dom evolution of the system over time because it is
based on a dynamic programming formulation of the
ambulance redeployment problem. Furthermore, the
decisions made by our approach in real time can be
computed very quickly as this requires solving a sim-
ple optimization problem that minimizes the sum of
the immediate cost and the value function approxima-
tion. In lookup table approaches, there may be more
than one way to redeploy the ambulances so that
the ambulance configuration over the transportation
network matches the configuration suggested by the
lookup table. Therefore, table lookup approaches still
leave some aspects of dispatch decisions to subjective
interpretation by dispatchers. Our approach, on the
other hand, can fully automate the decision-making
process while allowing dispatchers to override rec-
ommendations if they wish. In traditional dynamic
programming approaches, one is usually limited to
very small problem instances, whereas ADP can be
used on problem instances with realistic dimensions.
Our approach allows working with a variety of objec-
tive functions, such as the number of calls that are
not served within a threshold time standard or the
total response time for the calls. Furthermore, our
approach allows the possibility of constraining the
frequency and destinations of ambulance relocations.
This is important since a relocation scheme should
balance improvements in service with the additional
redeployment burden imposed on ambulance crews.
In summary, we make the following research
contributions. First, we develop a tractable ADP
approach for the ambulance redeployment problem.
Our approach employs value function approxima-
tions of the form 2521 r,¢,(-) and uses sampled
cost trajectories of the system to tune the param-
eters {r,; p=1,...,P}. Because it is based on the
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dynamic programming formulation of the problem,
our approach is able to capture the random evolu-
tion of the system over time. Second, we develop
a set of basis functions {¢,(-): p=1,..., P} that
yield good value function approximations for the
ambulance redeployment problem. This opens up the
possibility of using other ADP approaches, such as
temporal difference learning and the linear program-
ming approach. Third, we provide computational
experiments on EMS systems in two metropolitan
areas. Our results indicate that ADP has the potential
to obtain good redeployment policies in real systems.
They also show that our approach compares favor-
ably with benchmark policies that are similar to those
used in practice.

The remainder of this paper is organized as fol-
lows. In §2, we present a dynamic programing for-
mulation for the ambulance redeployment problem.
In §3, we describe our ADP approach. In §4, we dis-
cuss the basis functions that we use in our value func-
tion approximations. In §5, we report computational
results for two metropolitan areas. We conclude in §6.

2. Markov Decision Process

Formulation

This section presents a dynamic programming for-
mulation of the ambulance redeployment problem.
As will shortly be clear, our model involves an
uncountable state space. For basic terminology, nota-
tion, and fundamental results regarding dynamic pro-
gramming in uncountable state spaces, we refer the
reader to Bertsekas and Shreve (1978).

2.1. State Space

There are N ambulances in the EMS system. To sim-
plify the presentation, we assume that we do not
keep more than M waiting calls, possibly by divert-
ing excess calls to another EMS organization. This is
not a restriction from a practical perspective since M
can be quite large. The two main components in the
state of the system are the vectors A = (a,...,ay)
and C = (¢, ..., ¢y), Where a; contains information
about the state of the ith ambulance and ¢; contains
information about the jth waiting call. Naturally, the
state of the ambulances and the calls in the waiting
queue evolve over time, but we omit this dependence
for brevity. The state of ambulance i is given by a
tuple a; = (0;, ¢;, d;, t;), where o; is the status of the
ambulance, ¢; and d; are, respectively, the origin and
destination locations of the ambulance, and ¢, is the
starting time of any ambulance movement. To serve
a call, an ambulance first moves to the call scene and
provides service at the scene for a certain amount
of time. Following this, the ambulance transports the
patient to a hospital, and after spending some time

at the hospital, the ambulance becomes free to serve
another call. Therefore, the status of an ambulance o;
can take the values “idle at base,” “going to scene
of call,” “serving at scene of call,” “going to hospi-
tal,” “transferring patient to hospital,” and “returning
to base.” If ambulance i is stationary, then we have
£; =d,. If ambulance i is in motion, then f; corresponds
to the starting time of this movement. Otherwise, t;
corresponds to the starting time of the current phase
in the service cycle. For example, if the status of the
ambulance is “transferring patient at hospital,” then
t; corresponds to the time at which the ambulance
arrived at the hospital. This time is kept in the state
variable to give a Markov formulation for the non-
Markovian elements in the system, such as nonexpo-
nentially distributed service times and deterministic
travel times. Similarly, for the jth call in the waiting
queue, we have ;= (8]-, pjs §j, n]-), where 5]- is the sta-
tus of the call, p; is the location of the call, {i is the
time at which the call arrived into the system, and
m; is the priority level of the call. The status of a call
8; takes one of the values “assigned to ambulance i”
and “queued for service.” We take a call off the wait-
ing queue C as soon as an ambulance reaches this call
and starts serving it.

We model the dynamics of the system as an event-
driven process. Events are triggered by changes in the
status of the ambulances or by call arrivals. There-
fore, the possible event types in the system are “call
arrives and is placed in the jth position,” “ambu-
lance i departs for scene of call j,” “ambulance i
arrives at scene of call j,” “ambulance i leaves scene
of call for hospital,” “ambulance i arrives at hospital,”
“ambulance i finishes at hospital,” and “ambulance i
arrives at base.” We assume that we can make deci-
sions only at the times of these events. Events occur
at discrete points in time, so our modeling approach
precludes the possibility of making a decision at any
time point. This naturally comes at the cost of some
loss of optimality as it may be desirable to make deci-
sions between the times of the events. For example,
our modeling approach, as stated, does not allow the
possibility of rerouting an ambulance before it reaches
its destination. It may be possible to incorporate such
extensions by defining artificial events such as “con-
sider repositioning” and firing these events while an
ambulance is in transit. Nevertheless, we do not con-
sider these extensions here and rely on the fact that
the events that we work with occur frequently enough
to provide ample decision opportunities.

By restricting our attention to the times of events,
we visualize the system as jumping from one event
time to another. Therefore, we can use the tuple s =
(t,e, A, C) to represent the state of the system, where
T corresponds to the current time, e corresponds to
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the current event type, and A and C, respectively, cor-
respond to the state of the ambulances and the wait-
ing call queue. In this case, the state trajectory of the
system can be written as {s;: k=1, 2, ...}, where s, is
the state of the system just after the kth event occurs.
Time is rolled into our state variable. Throughout the
paper, we use 7(s) and e(s) to respectively denote the
time and the event type when the state of the system
is s. In other words, 7(s) and e(s) are the first two
components of the tuple s=(7,¢, A, C).

2.2. Controls

Calls are served in decreasing order of priority, and
within a given priority level, they are served in first-
in-first-out order. Furthermore, the closest available
ambulance is dispatched to a call. This is not an exact
representation of reality, but it is close enough for our
purposes.

We use %(s) to denote the set of ambulances that
are available for redeployment when the state of the
system is s. In our implementation, if the state of the
system is s and the event e(s) is of the form “ambu-
lance i finishes at hospital,” then we let %(s) = {i}.
Otherwise, we let %(s) = @. As a result, we consider
an ambulance as available for redeployment only
immediately after it finishes transferring a patient to
a hospital. Ambulances that are idle at the bases or
moving to different locations are not considered for
redeployment. The appealing aspect of this redeploy-
ment policy is that it minimizes disturbance to the
crews, but exploring the benefit of additional rede-
ployments is important, and we do so in our compu-
tational experiments. To capture the decisions, we let
x;(s) =1 if we redeploy ambulance i to base b when
the state of the system is s, and 0 otherwise. Letting
% be the set of ambulance bases and x(s) = {x;,(s): i €
%(s), b e 3B}, the set of feasible decisions can be writ-
ten as

%(s) = {x(s)e{O,l}m“M%': > x(s)=1 Vie?/i(s)}.

be%

The constraints in this definition simply state that
the ambulance considered for redeployment has to be
redeployed to one base. If the event e(s) is not of the
form “ambulance i finishes at hospital,” then we have
F(s) = @, which implies that % (s) = @ as well. In this
case, we simply allow the system to evolve naturally
without any interference.

An important implication of our definition of %(s)
is that the cardinality of %(s) is small so that an opti-
mization problem that takes place over this feasible
set can be solved by enumerating over all feasible
decisions. In other words, because we consider only
one ambulance at a time for deployment, we can try
each base one by one to find out to which base an
ambulance should be redeployed. In contrast, if we

considered K ambulances simultaneously for rede-
ployment, then the number of possible redeployment
decisions would be |%[¥, which can get quite large
for moderate values of K and |%|. This is a simplifica-
tion that we make to avoid the combinatorial aspects
of the problem and focus more on its dynamic and
stochastic nature. Having said that, K =2 is within
our computational grasp if we restrict attention to
sensible relocations of short range, and that will be
the subject of future research.

Not considering the ambulances that are in transit
as available for redeployment may have some unde-
sirable effects. For example, we may decide to rede-
ploy an ambulance at the northeast corner of the city
to a base at the southwest corner. As soon as this
redeployment starts, an ambulance in the southwest
corner of the city may be available for deployment
and this ambulance may be redeployed to a base at
the northeast corner. It may be better to reroute the
first ambulance to the northeast base and redeploy the
second ambulance to the southwest base, although
some results of Zhang et al. (2008) suggest that this
is not universally true. The controls that we adopt
in this paper miss this kind of opportunity. Never-
theless, our computational experiments indicate that
significant improvements are possible even when we
ignore such opportunities, and one would expect that
dispatchers monitoring the EMS system would take
advantage of any obvious opportunities.

The set % may include additional locations, other
than ambulance bases, at which ambulance crews can
park and rest. As a result, our approach allows park-
ing and resting at arbitrary locations as long as the
list of possible locations is not too large. In our com-
putational experiments, we work with as many as
88 locations.

2.3. Fundamental Dynamics

Call arrivals are generated across the region R C R?
according to a Poisson point process with a known
arrival intensity {A(¢, x,y): £ >0, (x,y) € R}. As men-
tioned above, we have a fixed policy for serving calls,
but our general approach does not depend on the par-
ticular form of this policy. If there are no available
ambulances to serve a call, then the call is placed into
a waiting queue. An ambulance serving a call pro-
ceeds through a sequence of events, including arriv-
ing at the scene, treating the patient, transporting, and
handing over the patient at the hospital. We assume
that probability distributions for all of the activity
durations are known.

Besides these sources of randomness, the major
driver of dynamics is dispatching. As a result, the
complete trajectory of the system is given by {(s;, x;):
k=1,2,...}, where s, is the state of the system at the
time of the kth event and x; is the decision (if any)
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made by the dispatcher when the state of the system
is s;. We capture the dynamics of the system symbol-
ically by s,,1 = f(5;, X, (s, x;)), where w(s,, x;) is a
random element of an appropriate space encapsulat-
ing all the sources of randomness described above,
and f(-, -, -) is the transfer function. One way to visu-
alize w(sy, x;) is that there is a stochastic process cor-
responding to call arrivals and each ambulance. The
stochastic process corresponding to call arrivals keeps
track of when calls arrive, along with the location and
priority of each call. The stochastic processes corre-
sponding to ambulances that are in transit keep track
of the residual travel times. Similarly, the stochastic
processes corresponding to ambulances that are serv-
ing calls at call scenes or at a hospital keep track of
the residual service times. The state s, and action x;
contain all of the information necessary to deduce
the probability distributions for residual travel and
service times. Therefore, w(s;, x;) captures the time
and type of the first event in the superposition of all
stochastic processes.

2.4. Transition Costs

Along with a transition from state s; to s, ; through
decision x;, we incur a cost c(s;, X;, S;41). In our
implementation, letting A be a fixed threshold
response time that is on the order of eight minutes,
we use the transition cost function

C(Sk/ Xis Sk+l)

1 if the event e(s,,) is of the form
“ambulance i arrives at scene of call j,”
call j is urgent and the response time 1)
exceeds A;

0 otherwise.

This cost function counts the number of high-priority
calls whose response times exceed A. We are inter-
ested in the performance of the system over the finite
planning horizon [0, T], so let c(s, -, -) =0 whenever
7(s) > T. In our implementation, T corresponds to
two weeks. When the state of the system is s, and we
make the decision x;, the transition cost c(s;, x;, Sx41)
is still a random variable because its value depends
on s;,;. This does not create any difficulty because the
Markov decision process framework allows transition
costs that depend on the states before and after the
transition.

An appealing aspect of our transition cost func-
tion is its simplicity. Furthermore, most contracts and
performance benchmarks in the EMS industry are
formulated in terms of the percentage of calls that
are reached within a time standard, and our transi-
tion cost function is in alignment with this tradition.
However, this transition cost function does not dis-
tinguish between an urgent call whose response time

exceeds A by one second or by one hour. As a result,
it is conceivable that a call might be left unattended
for a long period of time. This is not a huge concern
in our approach since high-priority calls are served in
first-in-first-out order within a priority level, but there
may still be low-priority calls that are left unattended
for a long period of time. Recent research by Erkut
et al. (2008) incorporates medical outcomes into the
objective function, and although we do not take that
path here, our framework is general enough to do so.

2.5. Objective Function and Optimality Equation
A policy is a mapping from the state space to the
action space, prescribing which action to take for each
possible state of the system. Throughout the paper,
we use u(s) € ¥(s) to denote the action prescribed
by policy u when the state of the system is s. In
other words, w(s) is the action taken in state s given
that we use policy u. If we follow policy u, then the
state trajectory of the system {s;: k=1,2, ...} evolves
according to sp; = f(s, u(sy), w(sy, u(sy))), and the
discounted total expected cost incurred by starting
from initial state s is given by

o) =E| Dol ), ) 1 =5], @)
k=1

where a € [0, 1) is a fixed discount factor. The expec-
tation in the expression above involves the random
variables {s{: k=1,2,...}, and 7(s;) is the time at
which the system visits state s;. The policy u* that
minimizes the discounted total expected cost can be
found by computing the value function through the
optimality equation

J(s) = min {E[c(s, x, f(s, x, (s, x)))

2(s)

FaVE DTN (f(s,x, (s, 1)} @)

and letting u*(s) be the minimizer of the right side;
see Bertsekas and Shreve (1978). The difficulty with
the optimality equation above is that the number of
possible values for the state variable is uncountable.
Even if we are willing to discretize the state variable
to obtain a finite state space, the state variable is still
a high-dimensional vector and solving the optimality
Equation (3) through classical dynamic programming
approaches is computationally very difficult. In the
next two sections, we propose a method to construct
tractable approximations to the value function.

The discount factor in (3) implies that we minimize
the total expected discounted number of calls that are
not reached within the time threshold, although one
is more likely to be interested in the total expected
undiscounted number of calls. The discount factor is
an important computational device when we move
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to the ADP framework in the next section. In par-
ticular, our value function approximations invariably
have some error, and the role of the discount fac-
tor is to put less emphasis on the value of a future
state, as predicted by the value function approxima-
tion, when compared with the immediate transition
cost. It is quite common in the ADP literature to use
a discounted cost formulation when an undiscounted
cost formulation may reflect the objectives of the deci-
sion maker more accurately. For example, Farias and
Van Roy (2004, 2006) use ADP to construct strategies
for playing Tetris. The authors use a discounted cost
formulation, but the objective of the player is clearly
to maximize the undiscounted total expected score.
Crites and Barto (1996) use a continuous-time dis-
counted cost formulation in an application targeted
at minimizing elevator wait times, when the real per-
formance measure of interest is the average wait time
per person. Singh and Bertsekas (1996) develop an
ADP method for channel allocation in cellular tele-
phone systems. The objective of the decision maker
is to minimize the rate of blocked calls per unit time,
whereas the authors use a formulation that minimizes
the discounted number of blocked calls.

3. Approximate Dynamic

Programming

The ADP approach that we use to construct approxi-
mations to the value function is closely related to the
traditional policy iteration algorithm in the Markov
decision processes literature. We begin with a brief
description of the policy iteration algorithm. Through-
out the rest of the paper, the greedy policy induced
by an arbitrary function f(-) refers to the policy that
takes a decision in the set

argmin{E[c(s, x, f(s, X, o(s, X))

XeX(s)

+ aT(f(s,x,w(s,X)))—T(S)f(f(sl X, w(s, x)))]} (4)

whenever the state of the system is s. Finding the opti-
mal solution to the problem above requires comput-
ing potentially difficult expectations. We use Monte
Carlo simulation to compute such expectations and
we carefully elaborate on this issue at the end of this
section. If the state variable took finitely many values,
then the optimal policy could be obtained by using
the following policy iteration algorithm.

Policy Iteration

Step 1. Initialize the iteration counter n to 1 and ini-
tialize J'(-) arbitrarily.

Step 2. (Policy improvement) Let u" be the greedy
policy induced by J"(-).

Step 3. (Policy evaluation) Let J"1(:) = J*'(.),
where J*'(s) denotes the expected discounted cost
incurred when starting from state s and using policy
", as given in (2).

Step 4. Increase n by 1 and go to Step 2.

Even if we were willing to discretize the state vari-
able to obtain a finite state space, because the state
variable is a high-dimensional vector, the number of
possible values for the state variable would be far too
large to apply the policy iteration algorithm above
directly. We try to overcome this difficulty by using
value function approximations of the form

J(s,1)=2_1,8,(5). ®)
p=1

In the expression above, r = {rp: p=1,..., P} are tun-
able parameters and {¢,(): p=1,..., P} are fixed
basis functions. The challenge is to construct the basis
functions and tune the parameters so that J(-,r) is a
good approximation to the solution to the optimality
Equation (3). To achieve this, each basis function ¢,(-)
should capture some essential information about the
solution to the optimality equation. In §4, we describe
one set of basis functions that work well for our appli-
cation. Once a good set of basis functions is avail-
able, we can use the following approximate version of
the policy iteration algorithm to tune the parameters
{r,p=1,..., P}

Approximate Policy Iteration

Step 1. Initialize the iteration counter n to 1 and ini-
tialize r' ={r,: p=1,..., P} arbitrarily.

Step 2. (Policy improvement) Let u” be the greedy
policy induced by J(-, ").

Step 3. (Policy evaluation through simulation) Sim-
ulate the trajectory of policy u" over the planning
horizon [0, T] for Q replications. Let {s/(g): k =
1,...,K(q)} be the state trajectory of policy u"
in replication g and C/(7) be the discounted cost
incurred by starting from state s;'(g) and following
policy u" in replication 4.

Step 4. (Projection) Compute the tunable parame-
ters at the next iteration as

Q K(q)
et —argmin{ 33 1CE9) - 1610, M-

reRP g=1 k=1

Step 5. Increase n by 1 and go to Step 2.

In Step 3 of approximate policy iteration, we
use simulation to evaluate the expected discounted
cost incurred by policy w". Therefore, {C/!(q): k =
1,...,K(9),g=1,...,Q} are the sampled cost tra-
jectories of the system under policy u". In Step 4,
we tune the parameters r = {r,: p=1,..., P} so that
the value function approximation J(-,r) provides a
good fit to the sampled cost trajectories. We use the
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LAPACK linear algebra package in Netlib reposi-
tory to solve the least squares regression problem in
Step 4; see Netlib (2004). For our data sets, solving
the least-squares regression problem takes less than
three seconds.

There is still one computational difficulty in the
approximate policy iteration algorithm. When simu-
lating the trajectory of policy u" in Step 3, we need
to solve an optimization problem of the form (4) to
find the action taken by the greedy policy induced by
J(-, ™). This optimization problem involves an expec-
tation that is difficult to compute. As mentioned at the
beginning of this section, we use Monte Carlo simu-
lation to overcome this difficulty. In particular, if the
state of the system is s and we want to find the action
taken by the greedy policy induced by J(-, r") in this
state, then we enumerate over all decisions in the fea-
sible set #(s). Enumerating over all feasible decisions
in the set %(s) is possible because the cardinality of
this set is equal to the number of ambulance bases,
which is at most 88 in our experiments. Starting from
state s and taking decision x, we simulate the tra-
jectory of the system until the next event and this
provides a sample of f(s, x, w(s, x)). Because this sim-
ulation is only until the time of the next event, it is
very quick to run. In particular, sampling a realization
of w(s, x) involves sampling the residual interarrival
time for the next call, and at most N residual travel
times and N residual service times. In this case, we
obtain a sample of f(s, x, w(s, x)) by generating the
state of the system at the next event time. By simulat-
ing multiple samples, we estimate the expectation

E[c(s, x, (s, x, (s, x)))
+ aT(f(s'x'w(s'x)))iT(S)I(f(sr x, w(s, x)), rn)]

through a sample average. Once we estimate the
expectation above for all x € %(s), we choose the
decision that yields the smallest value and use it
as the decision taken by the greedy policy induced
by J(-, ") when the state of the system is s. This
approach is naturally subject to sampling error, but it
provides good performance in practice. In our com-
putational experiments, we use 10 to 25 replications
to estimate the expectation above. This is a small
number of replications, but we use common random
numbers when estimating the expectation for differ-
ent actions. This allows us to quickly identify whether
the expectation corresponding to a particular action is
smaller than the expectation corresponding to another
action.

Proposition 6.2 in Bertsekas and Tsitsiklis (1996)
provides a performance guarantee for the approxi-
mate policy iteration algorithm. Their result is for
finite state spaces, but it is easily extended to infinite
state spaces. This result provides theoretical support

for the approximate policy iteration algorithm, but its
conditions are difficult to verify in practice. In partic-
ular, the result assumes that we precisely know the
error induced by using regression to estimate the dis-
counted total expected cost of a policy, and it assumes
that expectations are computed exactly rather than via
sampling as in our case. For this reason, we do not
go into the details of this result and refer the reader
to Bertsekas and Tsitsiklis (1996) for further details.

4. Basis Functions

In this section, we describe the basis functions {¢,(-):
p=1,...,P} that we use in our value function
approximations. We use six basis functions, some of
which are based on the queueing insights developed
in Restrepo et al. (2009).

4.1. Baseline

The first basis function is ¢;(s) = 1. When multiplied
by r, in (5), this basis function shifts the value func-
tion approximation to any desired level.

4.2. Unreachable Calls

The second basis function computes the number of
calls in the call waiting queue for which an ambu-
lance assignment has been made, but the ambulance
will not reach the call within the threshold response
time. This quantity is easily computable when the
travel times are deterministic, which is the case in our
implementation. To see this, let 1(-) be the indicator
function and d(¢,, £,) be the travel time between loca-
tions ¢, and ¢,. Given that the state of the system is
s, we can count the number of ambulances that are
assigned to the jth call in the call waiting queue but
will not reach the call within the threshold response
time via

N
G;(s) = > _1(0; =“going to scene of call j”)

i=1

A +d(, dy) — 4= A).

The expression above first checks each ambulance to
see if there is one whose status is “going to scene of
call j.” If there is one such ambulance, then it checks
whether the time at which this ambulance arrives at
its destination exceeds the arrival time of the jth call
by more than A time units. The second basis function
can now be written as

M
b2(5) =2_G;(s)-
j=1
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4.3. Uncovered Call Rate

The third basis function captures the rate of call
arrivals that cannot be reached on time by any avail-
able ambulance. To define this basis function pre-
cisely, we need additional notation. Recall that calls
arrive across the region R C R? according to a Pois-
son point process with arrival intensity {A(t, x, y): t >
0, (x, y) € R}. Partition the region R into L subregions
and associate a representative point or center of mass
location p; with each subregion .

The coverage of subregion I is the number of avail-
able ambulances that can reach the center of mass
within the threshold time standard. We let s(s) be
the set of available ambulances when the state of the
system is s. This set includes the ambulances whose
status is either “idle at base” or “returning to base.”
Given that the system is in state s, we let é,»(s) be
the location of ambulance i at time 7(s). In this case,
the coverage of subregion I can be written as N;(s) =
Yica 1(d(€(s), p;) < A). Using A(t) to denote the
total rate of call arrivals in subregion / at time ¢, we
can compute the rate of call arrivals that are not cov-
ered by any available ambulance by

L
b3(s) =D Ay(7(s)1(N,(s5) =0).
1=1
The values {A;(t): t >0} are part of the problem data
and can be computed in advance.

4.4. Missed Call Rate

The previous two basis functions respectively capture
calls already received that we know we cannot reach
on time and the rate of arriving calls that cannot be
reached on time because they are too far from any
available ambulance. We could also fail to reach a call
on time because of queueing effects from ambulances
being busy with other calls. The fourth basis function
represents an attempt to capture this effect and is of
the form

b4(s) =3 Ay(7(5)Pi(s),
=1

where P,(s) is the probability that all ambulances that
could reach a call in subregion / on time are busy with
other calls. We estimate {P,(s): =1, ..., L} by treating
the call service processes in different subregions as
Erlang loss systems. In Erlang loss systems, calls arriv-
ing when all servers are busy are lost. In particular,
in an Erlang loss system with arrival rate A, service
rate i, and n servers, the steady-state probability of
losing a call is given by

w,n) = AW
T X/ k!

In our EMS system, a call that arrives when all ambu-
lances are busy is queued and served as ambulances

Z(A,

become free, but the time threshold is almost always
missed for such calls, so counting them as lost seems
reasonable. The issue that such calls impose some
load on the true system, but are discarded in an
Erlang loss system, creates a slight mismatch between
our EMS system and the Erlang loss system; however,
our computational experiments show that this basis
function is still highly effective.

To characterize the Erlang loss system for subre-
gion I, given that the state of the system is s, we
need to specify the number of servers along with the
arrival and service rates. Let V,(s) be the set of avail-
able ambulances that can serve a call in subregion /
within the threshold response time so that J(s) =
{i € st(s): d(£,(s), p;) < A}. We use | N;(s)| as the number
of servers in the Erlang loss system for subregion /.
Let w,(t) be the service rate in the loss system. This is
the rate at which an ambulance can serve a call at time
t in subregion /. It is difficult to come up with a pre-
cise value for w,(t). It primarily depends on the time
spent at the scene of a call and any transfer time at the
hospital, because the travel times are usually small
relative to these quantities. In our implementation, we
use historical data to estimate the time spent at the
call scenes and the hospital, and add a small padding
factor to capture travel times. Finally, let A;(s) be the
rate of call arrivals that should be served by ambu-
lances in the set (s). Coming up with a value for
A;(s) is even more difficult than devising a value for
w(t). One option is to let A;(s) = A;(7(s)), which is the
rate of call arrivals at time 7(s) in subregion /. How-
ever, ambulances in the set /,(s) serve calls other than
those in subregion /. To attempt to capture this, let

L
ME) = Y Y AT LAE(S), p) <) (6)

ieNy(s) k=1

so that A,(s) reflects the total call arrival rate in sub-
regions that are close to any of the ambulances in
the set (s). We then use the approximation Pi(s) ~
L(N(s), wi(7(s)), [Vi(s)])-

There are several shortcomings in the approxima-
tion that we use for P(s). To begin with, there is dou-
ble counting in the estimate of A,(s). In particular, if
two ambulances i, i, € N;(s) can both reach subre-
gion I’ within the time threshold, then the summation
for A;(s) counts A, (7(s)) twice. In addition, A, (7(s))
could be counted in the demand rates for multiple
subregions. To be more precise, if there are three sub-
regions I}, I,, I' and two ambulances i; € N, (s), i, €
Ny, (s) such that both i; and i, can reach subregion /'
within the time threshold, then the summations for
A, (s) and A, (s) both count A;(7(s)). Therefore, we
typically have Y1, A;(s) > Y, A/(7(s)), and the call
arrival rates that we use in our approximation for



o~
&, 1
p—

o
23
=

5 E
© o
RSl
o c
=
©
2
=
@2
23
> 2
O +
o <
=
@ ©
nQ
i
b
58
O ®©
2
£y
32
=
.-QQ-
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T
1]
0 £
c .2
e

o
==
— O
£ 3

O O
= £
E -
c
[e]
8 e
S =
o O
<E
U,_
©
= C
e o
=
Q35
Z-c
=<

Maxwell et al.: Approximate Dynamic Programming for Ambulance Redeployment

274

INFORMS Journal on Computing 22(2), pp. 266-281, ©2010 INFORMS

P,(s) may not be accurate. In addition to this short-
coming, the number of servers that we use in the
Erlang loss system may also not be accurate. In par-
ticular, it is not realistic to expect that the ambulances
in the set V(s) exclusively serve the calls in subre-
gion /. Finally, as mentioned above, the service rate
w;(7(s)) may not be accurate since it is obtained by
adding a small padding factor to the time spent at the
call scenes and the hospital. To overcome these short-
comings, we scale the call arrival rates by a factor «.
In particular, we use the call arrival rate «A;(7(s))
in (6) instead of A;(7(s)). We find a good value
for k through preliminary experimentation. Noting
that there are potential inaccuracies in the estimates
of the call arrival rates, number of servers, and ser-
vice rates, the best choice of k can be smaller or larger
than one.

4.5. Future Uncovered Call Rate

We do not consider ambulances that are already in
transit as available for redeployment. Therefore, from
the perspective of covering future calls, the destina-
tions of moving ambulances are as important as their
current locations. This is the motivation underlying
the fifth and sixth basis functions.

Our fifth basis function parallels the third one, but
it replaces the current locations of ambulances by
their destinations. In other words, the definition of
this basis function is identical to that of ¢5(-); how-
ever, the configuration of the ambulances that we use
to compute N(s) is not the current one but an esti-
mated future configuration that is obtained by letting
all ambulances in transit reach their destinations and
all stationary ambulances remain at their current loca-
tions. Given that the system is in state s=(7, e, A, C)
with A= (ay,...,ay) and a;= (03, ¢;, d;, t;), we define
a new state 5(s) = (7 + 1/ 30, A7), e, A, C) with
A=(d,,...,ay) and a, = (3;,d;, d;, 7+ 1/ X, Ai(7)),
where g; is the status of ambulance i when it reaches
its destination d;. In this case, the fifth basis function is

bs(s) =3 A(7(5(5))LNi(5(s)) =0).
=1

In the expression above, the time 7(5(s)) = 7 + 1/
Zf‘zl Ay(1) is used as an approximation for the
expected time of the next call arrival. The next call
may arrive before or after the ambulances actually
reach their destinations, but we heuristically use the
time 7(5(s)) simply to look into the future. The idea is
that the estimated future configuration of the ambu-
lances A is more likely to hold at the future time
7(3(s)) than at the current time 7(s).

We plug J(-, r) into the right side of (4) to find
the action taken by the greedy policy induced by
J(-, r). Because (-, r) is computed at the future state

f(s,x, w(s, x)), we need to compute ¢5(-) at this future
state as well. To compute ¢s(-) at f(s, x, w(s, x)), we
need to compute the state 5(f(s, x, w(s, x))), and this
state peeks even further ahead of the future state

f(s,x, w(s, x)).

4.6. Future Missed Call Rate

The sixth basis function parallels ¢,(-) in that it cap-
tures the rate of calls that will likely be lost because
of queueing congestion. As with the fifth basis func-
tion, it uses an estimated future configuration of the
ambulances. It is defined as

L
bo(s) =2 Ai(7(5(5) P (5(5))-
1=1

Our basis functions are relatively complex and this
complexity, coupled with the expectation in prob-
lem (4), could make computing the greedy policy
induced by the value function approximation J(-, r)
quite difficult. Nevertheless, because the cardinality
of the feasible set %(s) is small, we can solve an opti-
mization problem that takes place over this feasible
set simply by enumerating over all possible decisions.
For very large feasible sets, this approach would not
be practical. We close this section with a brief note
on the complexity of computing our basis functions
at a particular state s. The effort required to compute
¢1(s) is clearly O(1). We can compute G;(s) in O(N)
time, which implies that the effort required to com-
pute ¢,(s) is O(MN). It is possible to compute N;(s)
in O(N) time so that we can compute ¢;(s) in O(NL)
time. We can compute V(s) in O(N) time. We always
have |/j(s)] < N, so we can compute A;(s) in O(NL)
time. Because the computation of the Erlang loss func-
tion with |,(s)| servers can be done in O(N) time, we
can compute P(s) in O(N +NL) = O(NL) time. There-
fore, the effort required to compute ¢,(s) is O(NL?).
The effort for computing the future state 5(s) is small
when compared to the basis functions. Therefore, we
can compute ¢s(s) and ¢¢(s) in essentially the same
time as ¢;(s) and ¢,(s). As a result, all of our basis
functions can be computed in O(MN + NL?) time.
We give specific timing results in our computational
results.

5. Computational Results

We now present computational results for two EMS
systems. The first EMS system belongs to the city of
Edmonton, Alberta in Canada and was also studied
in Ingolfsson et al. (2003). We are not able to disclose
the identity of the second EMS system because of con-
fidentiality agreements.

5.1. Experimental Setup
In this section, we give a description of the data sets
along with our assumptions.
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5.1.1. The City of Edmonton. The data we use
for the city of Edmonton correspond to the data set
used in the computational experiments in Ingolfsson
et al. (2003). The city has a population of 730,000 and
covers an area of around 40 x 30 km?. The EMS sys-
tem has 16 ambulances, 11 bases, and 5 hospitals. We
assume that all ambulances are of the same type and
operate all day. An ambulance, upon arriving at a
call scene, treats the patient for an exponentially dis-
tributed amount of time with a mean of 12 minutes.
After treating the patient at the call scene, the ambu-
lance transports the patient to a hospital with prob-
ability 0.75. The probability distribution for the hos-
pital chosen is inferred from historical data. The time
an ambulance spends at the hospital has a Weibull
distribution with a mean of 30 minutes and standard
deviation 13 minutes. The turnout time is assumed to
be 45 seconds so that if an ambulance crew is at a
base when notified of a call, then it takes 45 seconds
to get on the road. An ambulance crew already on the
road does not incur the turnout time. A call that is not
served within eight minutes is interpreted as missed.
The road network that we use models the actual road
network on the avenue level. There are 252 nodes and
934 arcs in the road network. Travel times are deter-
ministic and do not depend on the time of day.

The data we had access to were not sufficient to
develop a detailed model of call arrivals, so we pro-
ceed with a representative model that does not exactly
correspond to the actual distribution of calls over the
city of Edmonton. The model maintains a constant
overall arrival rate, but the distribution of the location
of calls changes in time. We divide the city into 20 x 17
subregions and assume that the rate of call arrivals
in subregion I at time t is given by A;(t) = Aly, +
B;sin(27t/24)], where t is measured in hours. In the
expression above, A, vy, and 3, are fixed parameters
that satisfy A >0, 5, > 8|, 272 v, =1, and 7] B; =0.
We have Y790y, + 2,312 B;sin(2mt/24) =1 so that we
can interpret A as the total call arrival rate into the
system and vy, + B;sin(27t/24) as the probability that
a call arriving at time ¢ falls in subregion /. If 8, > 0,
then the peak call arrival rate in subregion ! occurs
at hours {6, 30,54, ...}, whereas if B, <0, then the
peak call arrival rate in subregion I occurs at hours
{18,42, 66, ...}. The average call arrival rate over a
day in subregion [ is Ay,. We estimated A and v, using
historical data, and A came out to be about four calls
per hour. We chose appropriate values of 3, so that
we have higher call arrival rates in the business sub-
regions early in the day and higher call arrival rates
in the residential subregions later in the day.

5.1.2. The Second City. The population of the sec-
ond city is more than five times that of the city of
Edmonton, and its size is around 180 x 100 km?. The
EMS system includes up to 97 ambulances operating

during peak times, 838 bases, and 22 hospitals. The
turnout times, call scene times, and hospital trans-
fer times are comparable to those in Edmonton but
are chosen to be representative rather than realistic to
protect confidentiality. The destination hospital for a
call depends on the location of the call. Calls origi-
nating at a given location are transported to any of
a small set of hospitals, usually no more than two or
three out of the 22 hospitals in the system. The cor-
responding probabilities are inferred from historical
data. The road network that we use models the actual
network on the avenue level and there are 4,955 nodes
and 11,876 arcs.

Our call arrival model is quite realistic. The data
were collected from one year of operations of the
EMS system and consist of aggregated counts of calls
for each hour of the week and for each of 100 x 100
geographic zones in the city. Because of the irregu-
lar shape of the metropolitan area, roughly 80% of
these zones have zero total call counts and do not
intervene in the dynamics. From the remaining 20%,
a significant number of zones have very low hourly
counts of at most five calls. Therefore, it was neces-
sary to apply a smoothing procedure for the lowest
intensity zones so as to reduce the sampling noise.
We classified the zones into a few groups according
to their average intensity over the week. For the low-
est intensity groups, we computed a total intensity
for each hour and then distributed this total inten-
sity uniformly among the zones in this group. In this
way, we were able to obtain an intensity model that
combined a uniform low intensity background with
accurate counts on the highest intensity zones. In the
end, the average call arrival rate is 570 calls per day
and fluctuates on any day of the week from a low of
around 300 calls per day to a high of around 750 calls
per day. These figures represent a modest departure
from the true figures to protect confidentiality.

For both data sets, the simulation horizon is
14 days. We use a discount factor of & =0.8, but our
results are relatively insensitive to the choice of the
discount factor as long as it is not too close to one.
We initialize r! to zero in Step 1 of the approximate
policy iteration algorithm and use Q = 30 replications
in Step 3. A few setup runs indicated that setting
Q=30 provides a reasonable balance between com-
putational burden and stable performance. We also
tried using different values for « in the fourth and
sixth basis functions. We varied k over the interval
[0, 3] and setting k =0.1 gave the best results for the
city of Edmonton, whereas setting k = 1.6 gave the
best results for the second city. These setup runs also
indicated that tuning the value of k is quite impor-
tant for obtaining good performance from our ADP
approach.
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305 The second benchmark strategy that we use is the
% 3001 \ 1 static policy, which preassigns a base to each ambu-
3 595 Static policy lance and redeploys an ambulance back to its preas-
I signed base whenever it becomes free after serving
B 200 . . . . .
b a call. We find a good static policy by simulating
o 285f the performance of the system under a large num-
@ 280} ber of possible base assignments and choosing the
§ 275 base assignment that gives the best performance. The
3 horizontal line in Figure 1 shows the performance of
o 2701 . .
S the best static policy we found. The expected per-
5 265+ centage of calls missed by the best static policy is
< 2601 29.5% £ 0.1%.
255 - - s - The best policy obtained by our ADP approach
0 ° |t10 i 1b5 20 2 improves on the myopic and static policies, respec-
erafion humber tively, by 4.7% and 4.0%. These improvements are
Figure 1 Performance of Our ADP Approach on the City of Edmonton obtained without adding any extra resources and

5.2. Baseline Performance

The goal of our first set of computational experiments
is to give a feel for how our ADP approach com-
pares with several benchmark strategies. In Figure 1,
we begin by showing the performance of our ADP
approach on the city of Edmonton over 25 iterations.
The horizontal axis in Figure 1 gives the iteration
number in the approximate policy iteration algorithm,
whereas the vertical axis gives the expected percent-
age of calls not reached within the threshold response
time. In other words, each data point in Figure 1 gives
the expected percentage of calls missed by the greedy
policy induced by the value function approximation
at a particular iteration. We compute the expected
percentage of missed calls by using the undiscounted
numbers of calls. Because each iteration of the approx-
imate policy iteration algorithm requires simulating
the performance of the greedy policy for 30 replica-
tions, it is straightforward to estimate the expected
percentage of missed calls at each iteration by using
a sample average. From Figure 1, we observe that
the apparent best policy is obtained at the third itera-
tion, and this policy yields an expected percentage of
missed calls of about 25.6%. To test the performance
of this policy more carefully, we simulate its per-
formance for an independent set of 400 replications.
From these 400 replications, the expected percentage
of missed calls is estimated to be 25.5% +0.1%, where
+0.1% is a 95% confidence interval.

We use two benchmark strategies. The first bench-
mark strategy is the myopic policy, which is obtained
by letting r,=0 for all p=1,..., P in (5) and using
the greedy policy induced by this value function
approximation. Step 1 of the approximate policy iter-
ation algorithm initializes r' to zero, so the first data
point Figure 1 naturally gives the performance of
the myopic policy. The expected percentage of calls
missed by the myopic policy is about 30.2%.

EMS managers would be very interested in obtaining
these kinds of improvements by simply using their
existing resources more carefully. To put the improve-
ment figures in perspective, a quick investigation into
the data reveals that 18.6% of the overall call vol-
ume occurs in locations that are at least eight minutes
away from the ambulance bases. This implies that
18.6% of the calls would be missed even if there were
always at least one ambulance available at every base.
Naturally, this line of reasoning ignores the fact that
a call may be served by an ambulance that is already
on the road, but it provides a sense of a lower bound
on what is achievable. Our ADP approach makes a
significant step towards achieving this lower bound.

The CPU time for each iteration of our approxi-
mate policy iteration algorithm is 22 minutes. Such
runtimes are acceptable given that we run the approx-
imate policy iteration algorithm in an offline fashion
to search for a good value function approximation.
Once we have a good value function approximation,
it takes about 45 milliseconds to make one redeploy-
ment decision by solving an optimization problem of
the form (4). This CPU time includes enumerating
over all feasible decisions and estimating the expecta-
tions through Monte Carlo samples and is far faster
than necessary for real-time operation.

Figure 2 shows the empirical cumulative distribu-
tions of the response times for the static (solid line)
and ADP (dashed line) policies. Figure 2 indicates that
our ADP approach not only decreases the expected
percentage of missed calls, but it also shifts the entire
distribution of call response times to the left. It is
encouraging that the improvement in the expected
percentage of missed calls is not obtained by letting a
few calls wait for a very long time.

As mentioned at the end of §3, we use Monte Carlo
simulation to estimate the expectation on the right
side of (4). This requires simulating the trajectory
of the system starting from time 7(s) until the next
event to obtain a sample of f(s, x, (s, x)). For certain
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Figure 4 Performance of Our ADP Approach on the Second City

Figure 2 Empirical Cumulative Distribution of the Response Times for

the City of Edmonton

states s, the next event after time 7(s) is always very
close to time 7(s). For example, the residual travel
time of an ambulance may be so small that the next
event after time 7(s) is almost always the arrival of
the ambulance at its destination. In this case, it is
conceivable that f(s, x, w(s, x)) is not very sensitive
to the action we choose, and we lose our ability to
differentiate the effectiveness of different redeploy-
ment decisions. To test the significance of this poten-
tial shortcoming, we tried simulating the trajectory of
the system not until the next event, but until the time
of the next redeployment decision. Figure 3 shows the
performance of our ADP approach when we simulate
the trajectory of the system until the next event (thick
line) and until the time of the next redeployment deci-
sion (thin line). It appears that we do slightly bet-
ter when we simulate until the next redeployment
decision rather than until the next event. However,

30.5 T T T T

30.0 1
29.5 1
29.0 1
28.5 1
28.0 i
2751 i
2701 i
26.5 i

Average lost calls (% of total calls)

26.01 J

255 ; \ \
0 5 10 15 20 25

Iteration number

Figure 3 Performance of Our ADP Approach on the City of Edmonton
When We Simulate the Trajectory of the System Until the

Time of the Next Redeployment Decision

this also increases the CPU time by more than a fac-
tor of two. The performance gap between the two
approaches is small, so we choose to simulate only
until the next event.

Figure 4 shows the performance of our ADP
approach on the second city. The observations from
Figure 4 are very similar to those from Figure 1. The
best policy obtained by our ADP approach misses
26.9% £ 0.1% of the calls, whereas the myopic and
static policies, respectively, miss 29.3% and 28.8% =+
0.1% (as estimated through independent runs of
400 replications). The improvements are smaller for
the second city than for Edmonton. Nevertheless, our
ADP approach still improves on the static policy by
about 2%.

5.3. Contributions of Different Basis Functions
Computation time can potentially be reduced if we
can satisfactorily use a subset of the basis functions
rather than all six of them. Therefore, it is natu-
ral to ask whether all six of the basis functions are
really needed. We repeated the computational exper-
iments described in the previous subsection by using
only subsets of the basis functions. For the city of
Edmonton, we are able to drop all but the fifth and
sixth basis functions. By using only these two basis
functions, our ADP approach identifies a policy that
misses 25.4% £ 0.3% of the calls. Recall that the best
policy obtained by our ADP approach with all of the
six basis functions misses 25.5% 4 0.1% of the calls.
Therefore, the performance of our ADP approach
with only the fifth and sixth basis functions is pretty
close to the performance with all of the six basis func-
tions. Dropping either the fifth or sixth basis function
provides policies that perform substantially worse
than the myopic policy.

When we tried to carry out a similar set of experi-
ments on the second city, the results were somewhat
mixed. For example, when we dropped the first basis
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function, our ADP approach immediately settled on
a sequence of policies that miss about 30.1% of the
calls. Noting the computational complexity analysis
at the end of §4, the computational burden for the
fifth and sixth basis functions is at least as large as
the computational burden for the others. Given that
the fifth and sixth basis functions appear to be crucial
for the success of our ADP approach, we decided to
keep the other basis functions in our approximation
architecture as well.

To conserve space, the remainder of this section
reports on our computational results only for the
city of Edmonton. We carried out similar computa-
tional experiments on the second city as well and we
obtained very similar results.

5.4. Comparison with Random Search
For a fixed set of basis functions {¢,(-): p=1,..., P},
a set of values for the tunable parameters r = {r,: p=
1,..., P} characterize a value function approximation
J(-, r) and this value function approximation induces
a greedy policy. Therefore, a brute-force approach for
finding a good set of values for the tunable parame-
ters is to carry out a random search over an appro-
priate subset of R” and use simulation to test the
performance of the greedy policies induced by the
different sets of values for the tunable parameters.
To implement this idea, we first use our ADP
approach to obtain a good set of values for the tun-
able parameters. Letting {7,: p=1,..., P} be this set
of values, we sample r = {rp: p=1,..., P} uniformly
over the box [, — 37, f +37] x -+ X [Fp— 3 Fp, Fp+ 3 7p]
and use simulation to test the performance of the
greedy policy induced by the value function approxi-
mation J(-, ). We sampled 1,000 sets of values for the
tunable parameters and this, in turn, provides 1,000
value function approximations. Figure 5 gives a his-

45 T T T T T
Optimal ADP policy Static policy

40 1
351 1
30 1

251 i

Frequency

25 26 27 28 29 30 31 32 33
Average lost calls (% of total calls)

Figure 5 Performance of the 1,000 Greedy Policies Obtained Through

Random Search

togram for the expected percentage of calls missed by
the greedy policies induced by these 1,000 value func-
tion approximations. The vertical lines correspond to
the expected percentage of calls missed by the best
policy obtained by our ADP approach and the static
policy. Figure 5 indicates that only 1.2% of the sam-
pled sets of values for the tunable parameters provide
better performance than the best policy obtained by
our ADP approach. On the other hand, 42.3% of the
samples provide better performance than the static
policy.

The random search procedure we use is admit-
tedly rudimentary and one could use more sophis-
ticated techniques to focus on the more promising
areas of the search space. Nevertheless, our results
indicate that when one looks at a large number of
possible values for the tunable parameters, ADP is
quite effective in identifying good parameters. Fur-
thermore, our search effort is focused on a neighbor-
hood of the tuneable parameters that are identified
by ADP. Therefore, the random search procedure is
rather focused and it is remarkable that even an exten-
sive local search can find very few policies that out-
perform the one found by ADP. Finally, we note that
the computation time required by the random search
procedure is on the order of several days, whereas we
can carry out ADP in a few hours.

5.5. Additional Redeployments

The computational experiments up to this point allow
redeployments only when an ambulance becomes free
after serving a call. We now explore the possibility of
improving performance by allowing additional ambu-
lance redeployments. We define an extra event type
“consider redeployment” and schedule an event of
this type with a certain frequency that is detailed
below. Whenever an event of this type is triggered,
we consider redeploying any ambulance that is either
at a base or returning to a base, so that %(s) can con-
tain multiple ambulances at such times. The set %(s)
continues to be a singleton when e(s) corresponds to
an ambulance becoming free after serving a call, and
at all other events, %(s) = &.

We use two methods to vary the redeployment
frequency. In the first method, we equally space
“consider redeployment” events to obtain frequencies
between 0 and 10 per hour. In the second method,
the frequency of “consider redeployment” events is
fixed at 30 per hour, but we make a redeployment
only when the estimated benefit from making the
redeployment exceeds the estimated benefit from not
making the redeployment by a significant margin.
More precisely, letting € € [0, 1) be a tolerance margin
and using 0(s) to denote the |%(s)| x |%| dimensional
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Figure 6  Performance of Our ADP Approach as a Function of the Figure 7 Performance of Our ADP Approach and the Static Policy for

Frequency of Additional Redeployments

matrix of zeros corresponding to the decision matrix
of not making a redeployment, if we have

argmin{E[c(s, x, f(s, x, (s, x)))

xeX(s)

+ af(f(s/x/w(s,u)))—T(S)](f(S, X, w(s, x)), r)]}
<(1—e)E[c(s, 0, f(s, x, w(s,0)))
+ af(f(s,ﬁ,w(s,f))))—r(s)](f(sl 6, (s, (_)))/ 1’)],

then we make the redeployment decision indicated
by the optimal solution to the problem on the left-
hand side. Otherwise, we do not make a redeploy-
ment. Larger values of € decrease the frequency of
redeployments. We vary € between 0.1 and 0.001.
Figure 6 shows the performance improvement
obtained by the additional redeployments. The hori-
zontal axis gives the frequency of the redeployments
measured as the number of redeployments per ambu-
lance per day. The vertical axis gives the percent-
age of missed calls. The solid (dashed) data series
corresponds to the first (second) method of vary-
ing the redeployment frequency. Recall from Figure 1
that we miss 25.5% of the calls without making any
additional redeployments. By making about six addi-
tional redeployments per ambulance per day, we can
decrease the percentage of missed calls to 22.3%.
Beyond this range, we reach a plateau and additional
redeployments do not provide much improvement.
Another important observation is that the second
method tends to provide significantly better perfor-
mance improvements with the same frequency of
additional redeployments. For example, the second
method reduces the percentage of missed calls to
23.3% with three additional redeployments per ambu-
lance per day, whereas the first method needs eight
additional redeployments to reach the same level.
Therefore, it appears that making redeployments only

Different Fleet Sizes

when the value function approximation signals a
significant benefit is helpful in avoiding pointless
redeployments.

5.6. Varying Fleet Sizes

In this section, we explore the effect of the fleet size
on the performance of our ADP approach. Figure 7
summarizes our results. The horizontal axis in this
figure gives the number of ambulances in the fleet,
whereas the vertical axis gives the expected percent-
age of missed calls. For each fleet size, we find the
best policy obtained by our ADP approach by rerun-
ning the approximate policy iteration algorithm, and
the best static policy by enumerating over a large
number of possible base assignments. In Figure 7, the
dashed data series correspond to our ADP approach,
whereas the solid data series correspond to the static
policy.

Our ADP approach performs consistently better
than the static policy. The performance gaps between
the two approaches diminish when there are too few
or too many ambulances. Intuitively speaking, if the
fleet size is small, then ambulances are always busy
and there is little opportunity for repositioning. In
this case, using a more intelligent repositioning strat-
egy does not make much difference. Similarly, if the
fleet size is large, then there is almost always an
available ambulance to respond to a call, and again,
using a more intelligent repositioning strategy does
not make much difference. Another observation from
Figure 7 is that if our goal is to keep the percentage of
missed calls below a given threshold—say, 30%—then
our ADP approach allows us to reach this goal with
one or two fewer ambulances than the static policy.
This translates into significant cost savings in an EMS
system.
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Figure 8 Performance of Our ADP Approach and the Static Policy for

Different Call Arrival Rates

5.7. Varying Call Arrival Rates

In this section, we explore the sensitivity of the poli-
cies obtained by our ADP approach to changes in the
call arrival rate. Recall that the original call arrival
rate we used in Edmonton is about four calls per
hour. Under this call arrival rate, we run the approx-
imate policy iteration algorithm to find the best pol-
icy obtained by our ADP approach. We then vary the
call arrival rate over the interval [3.2,4.8], but con-
tinue making the redeployment decisions by using the
policy that was obtained under the call arrival rate
of four per hour. Our goal is to show that the pol-
icy that was obtained under the call arrival rate of
four per hour continues to provide good performance
when we perturb the call arrival rates. As a bench-
mark strategy, we find the best static policy under the
call arrival rate of four per hour and use this static
policy as we vary the call arrival rate over the interval
[3.2,4.8].

The results are summarized in Figure 8. The hor-
izontal axis in this figure gives the call arrival rate,
whereas the vertical axis gives the expected percent-
age of missed calls. The results indicate that our ADP
approach performs consistently better than the bench-
mark policy. Also, the expected percentage of calls
missed by the static policy under the call arrival rate
of 3.2 per hour is still larger than the expected per-
centage of calls missed by our ADP approach under
the call arrival rate of 4.8 per hour.

5.8. Effect of Turnout Time

Recall that if the ambulance crew is stationed at a base
when it is notified of a call, then it takes 45 seconds to
get ready. This duration is referred to as the turnout
time. On the other hand, an ambulance crew that
is already on the road does not incur turnout time.
A potential argument against ambulance redeploy-
ment is that any gains are simply due to ambulance

crews being on the road more often and therefore
incurring less turnout delays.

To check the validity of this argument, we applied
our ADP approach under the assumption that turnout
time is zero. In this case, the expected percentage
of missed calls for our ADP approach turned out to
be 21.08% =+ 0.1%, whereas the expected percentage
of calls missed by the static policy turned out to be
23.93% £ 0.1%. As expected, both the ADP approach
and the static policy perform better when turnout
time is zero. However, our ADP approach contin-
ues to provide practically significant improvements
over the static policy. This indicates that the perfor-
mance improvement of our ADP approach comes not
only from incurring less turnout time delays, but also
from making more careful ambulance redeployment
decisions.

6. Conclusions
In this paper, we formulated the ambulance redeploy-
ment problem as a dynamic program and used an
approximate version of the policy iteration algorithm
to deal with the high-dimensional and uncountable
state space. Computational experiments on two real-
istic problem scenarios show that our ADP approach
can provide high-quality redeployment policies. The
basis functions that we construct open up the pos-
sibility of using other approaches, such as temporal-
difference learning and the linear programming
approach, to tune the parameters {r,: p=1,..., P}.
Other future research will incorporate additional
degrees of realism into our model. We plan to include
stochastic travel times, multiple call priorities, other
cost functions, and more realistic ambulance dynam-
ics that involve multiple ambulances serving certain
calls. Incorporating these complexities may require
constructing additional basis functions.
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