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In this article, we provide a tutorial overview of some aspects of statistical learning
theory, which also goes by other names such as statistical pattern recognition,
nonparametric classification and estimation, and supervised learning. We focus on
the problem of two-class pattern classification for various reasons. This problem
is rich enough to capture many of the interesting aspects that are present in the
cases of more than two classes and in the problem of estimation, and many of the
results can be extended to these cases. Focusing on two-class pattern classification
simplifies our discussion, and yet it is directly applicable to a wide range of
practical settings. We begin with a description of the two-class pattern recognition
problem. We then discuss various classical and state-of-the-art approaches to this
problem, with a focus on fundamental formulations, algorithms, and theoretical
results. In particular, we describe nearest neighbor methods, kernel methods,
multilayer perceptrons, Vapnik–Chervonenkis theory, support vector machines,
and boosting.  2011 John Wiley & Sons, Inc. WIREs Comp Stat 2011 DOI: 10.1002/wics.179

INTRODUCTION

In this article, we focus on the problem of two-class
pattern classification—classifying an object into one

of the two categories based on several observations
or measurements of the object. More specifically,
we are interested in methods for learning rules of
classification.

Consider the problem of learning to recognize
handwritten characters or faces or other objects
from visual data. Or, think about the problem
of recognizing spoken words. While humans are
extremely good at these types of classification
problems in many natural settings, it is quite difficult
to design automated algorithms for these tasks with
anywhere near the performance and robustness of
humans. Even after more than a half century of effort
in fields such as electrical engineering, mathematics,
computer science, statistics, philosophy, and cognitive
science, humans can still far outperform the best
pattern classification algorithms that have been
developed. That said, enormous progress has been
made in learning theory, algorithms, and applications.
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Results in this area are deep and practical and are
relevant to a range of disciplines.

The aim of this article is to provide an accessible
introduction to this field, either as a first step for
those wishing to pursue the subject in more depth or
for those desiring a broad understanding of the basic
ideas. Our treatment is essentially a condensed version
of the book,1 which also provides an elementary
introduction to the topics discussed here, but in more
detail. Although many important aspects of learning
are not covered by the model we focus on here, we
hope this article provides a valuable entry point to
this area. For further reading, we include a number
of references at the end of this article. The references
included are all textbooks or introductory, tutorial,
or survey articles. These references cover the topics
discussed here as well as many other topics in varying
levels of detail and depth. Since this article is intended
as a brief, introductory tutorial, and because all the
material presented here is very standard, we refrain
from citing original sources, and instead refer the
reader to the references provided at the end of this
article and the additional pointers contained therein.

THE PATTERN RECOGNITION
PROBLEM

In the pattern classification problem, we observe an
object and wish to classify it into one of the two
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classes, which we might call 0 and 1 (or −1 and
1). To decide either 0 or 1, we assume we have
access to measurements of various properties of the
object. These measurements may come from sensors
that capture some physical variables of interest, or
features, of the object.

For simplicity, we represent each measured
feature by a single real number. Although in some
applications certain features may not be very naturally
represented by a number, this assumption allows
discussion of the most common learning techniques
that are useful in many applications. The set of
features can be put together to form a feature vector.
Suppose there are d features with the value of the
features given by x1, x2, . . . , xd. The feature vector
is x = (x1, x2, . . . , xd), which can be thought of as a
point or a vector in d-dimensional space Rd, which
we call feature space.

One concrete application is image classification.
The features in this case might be the intensities of
pixels in the image. For an N × N gray scale image
the total number of features would be d = N2. In the
case of a color image, each pixel can be considered
as providing three measurements, corresponding to
the intensities of each of the three color components.
In this case, there are d = 3N2 features. For even a
modest size image, the dimension of the feature space
can be quite large.

In most applications, the class to which an object
belongs is not uniquely and definitively determined
by its feature vector. There are some fundamental
reasons for this. First, although it would be nice if
the measured features capture all the properties of the
object that are important for classification, this usually
is not the case. Second, depending on the application
and the specific measurements, the feature values may
be noisy. For these reasons, a statistical formulation
for the pattern recognition problem is very useful.

We assume that there are prior probabilities
P(0) and P(1) of observing an object from each of
the two classes. The feature vector of the object is
related to the class to which the object belongs. This
is described through conditional probability densities
p(x|0) and p(x|1). Equivalently, let y ∈ {0, 1} be the
label associated with x (i.e., the actual class to which
the object belongs). Then, we can think of the pair
(x, y) as being drawn from a joint distribution P(x, y).

When we observe a feature vector x, our problem
is to decide either 0 or 1. So, a decision rule (or
classification rule) can be thought of as a mapping
c : Rd → {0, 1}, where c(x) indicates the decision
when feature vector x is observed. Equivalently, we
can think of a decision rule as a partition of Rd into
two sets �0 and �1 that correspond to those feature

vectors that get classified as 0 and 1, respectively. For
technical/mathematical reasons we do not consider the
set of all possible subsets of Rd as potential decision
rules, but rather restrict attention to decision rules
that are measurable.

Out of the enormous collection of all possible
decision rules, we would like to select one that
performs well. We make a correct decision if our
decision c(x) is equal to the label y. A natural
success criterion is the probability that we make
a correct decision. We would like a decision rule
that maximizes this probability, or equivalently, that
minimizes the probability of error. For a decision rule
c, the probability of error of c, denoted R(c), is given by

R(c) = E[(c(x) − y)2] = P(0)P(�1|0) + P(1)P(�0|1).

In the ideal (and unusual) case, where the
underlying probabilistic structure is known, the
solution to the classification problem is well known
and is a basic result from statistics. On the assumption
that the underlying probabilities P(0), P(1) and p(x|0),
p(x|1) are all known, we can compute the so-called
posterior probabilities P(0|x) and P(1|x) using Bayes
theorem. Specifically, the unconditional distribution
P(x) is given by

P(x) = P(0)P(x|0) + P(1)P(x|1) (1)

and probabilities P(0|x) and P(1|x) are then given by

P(0|x) = P(0) P(x|0)
P(x)

(2)

P(1|x) = P(1) P(x|1)
P(x)

. (3)

Once we have the posterior probabilities, the
best decision is simply to choose the class with
larger conditional probability—namely, decide 0 if
P(0|x) > P(1|x) and decide 1 if P(1|x) > P(0|x). If
P(0|x) = P(1|x), then it does not matter what we
decide. This classification rule is called Bayes decision
rule, or sometimes simply Bayes rule.

Bayes decision rule is optimal in the sense that
no other decision rule has a smaller probability of
error. The error rate of Bayes decision rule, denoted
by R∗, is given by

R∗ =
∫
Rd

min{P(0|x), P(1|x)}p(x) dx. (4)

Clearly, 0 ≤ R∗ ≤ 1/2 but we cannot say more
without additional assumptions.

Finding Bayes decision rule requires knowledge
of the underlying distributions, but typically in
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applications these distributions are not known. In
fact, in many applications, even the form of or
approximations to the distributions are unknown. In
this case, we try to overcome this lack of knowledge by
resorting to labeled examples. That is, we assume that
we have access to examples (x1, y1), . . . , (xn, yn) that
are independent and identically distributed according
to the unknown distribution P(x, y). Using these
examples, we want to come up with a decision rule to
classify a new feature vector x.

The term ‘supervised’ learning arises from the
fact that we assume we have access to the training
examples (x1, y1), . . . , (xn, yn) that are properly labeled
by a ‘supervisor’ or ‘teacher’. This contrasts with
‘unsupervised learning’ in which many examples of
objects are available, but the class to which each
object belongs is unknown. Other formulations such
as semi-supervised learning, reinforcement learning,
and related problems have also been widely studied,
but in this article we focus exclusively on the case of
supervised learning (and specifically the case of two-
class pattern classification). In the following sections,
we describe a number of approaches and results for
this learning problem.

NEAREST NEIGHBOR RULES

Perhaps the simplest decision rule one might come up
with is to find in the training data the feature vector
xi that is closest to x, and then decide that x belongs
to the same class as given by the label yi. This decision
rule is called the ‘nearest neighbor rule (or NN rule,
or 1-NN rule).

Associated with each xi is a region (called the
Voronoi region) consisting of all points that are closer
to xi than to any other xj. The NN rule simply
classifies a feature vector x according to the label
associated with the Voronoi region to which x belongs.
Figure 1 illustrates Voronoi regions in two dimension.
Of course, in general, the feature vectors xi are in a
high-dimensional space.

To measure the performance of the NN rule, we
consider the expected performance with respect to the

x5

x1 x3

x4

x2

FIGURE 1 | Voronoi regions.

new instance to be classified as well as the training
examples. Let Rn denote the expected error rate of the
NN rule after n training examples and let R∞ denote
the limit of Rn as n tends to infinity.

It can be shown that

R∗ ≤ R∞ ≤ 2R∗(1 − R∗). (5)

A simpler (but looser) bound is

R∗ ≤ R∞ ≤ 2R∗. (6)

In general we cannot say anything stronger than the
bounds given in the sense that there are underlying
probability distributions for which the performance of
the NN rule achieves either the upper or lower bound.

Using only random labeled examples but
knowing nothing about the underlying distributions,
we can (in the limit) achieve an error rate no
worse than twice the error rate that could be
achieved by knowing everything about the probability
distributions. Moreover, we can do this with an
extremely simple rule that bases its decision on just
the nearest neighbor to the feature vector we wish to
classify.

It is natural to ask whether we can do any better
by using more neighbors. For example, consider the
k-NN rule in which we use the k-nearest neighbors,
for some fixed number k, and take a majority vote of
the labels corresponding to these k-nearest neighbors.
Let Rk∞ be the error rate of the k-nearest neighbor rule
in the limit of infinite data. Under certain conditions,
the k-NN rule outperforms the 1-NN rule. However,
it can also be shown that there are some distributions
for which the 1-NN rule outperforms the k-NN rule
for any fixed k > 1.

A very useful idea is to let the number of
neighbors used grow with n (the amount of data
we have). That is, we can let k be a function of n
so that we use a kn-NN rule. We need kn → ∞ so
that we use more and more neighbors as the amount
of training data increases. But we should make sure
that kn/n → 0 so that asymptotically the number of
neighbors we use is a negligible fraction of the total
amount of data. This will ensure that we use neighbors
that get closer and closer to the observed feature vector
x. For example, we might let kn = √

n to satisfy both
conditions.

It turns out that with any such kn (such that
kn → ∞ and kn/n → 0 are satisfied), we get Rkn

n → R∗
as n → ∞. That is, in the limit as the amount of
training data grows, the performance of the kn-NN
rule approaches that of the optimal Bayes decision
rule.

 2011 John Wiley & Sons, Inc.



Overview www.wiley.com/wires/compstats

What is surprising about this result is that by
observing data but without knowing anything about
the underlying distributions, asymptotically we can
do as well as if we knew the underlying distributions
completely. And, this works without assuming that
the underlying distributions take on any particular
form or satisfy any stringent conditions. In this sense,
the kn-NN rule is called universally consistent, and
is an example of truly nonparametric learning in that
the underlying distributions can be arbitrary and we
need no knowledge of their form. It was not known
until the early 1970s whether universally consistent
rules existed, and it was quite surprising when the
kn-NN rule along with some others was shown to
be universally consistent. A number of such decision
rules are known today, as we will discuss further in
subsequent sections.

However, universal consistency is not the end of
the story. A critical issue is that of convergence rates.
Many results are known on the convergence rates of
the nearest neighbor rule and other rules. A fairly
generic problem is that, except under rather stringent
conditions, the rate of convergence for most methods
is very slow in high dimensional spaces. This is a facet
of the so-called ‘curse of dimensionality’. In many real
applications the dimension can be extremely large,
which bodes ill for many methods. Furthermore, it
can be shown that there are no ‘universal’ rates of
convergence. That is, for any method, one can always
find distributions for which the convergence rate is
arbitrarily slow. This is related to the so-called ‘No
Free Lunch Theorems’ that formalize the statement
that there is no one method that can universally
beat out all other methods. These results make the
field continue to be exciting and make the design of
good learning algorithms and the understanding of
their performance an important science and art. In
the following sections, we will discuss some other
methods useful in practice.

KERNEL RULES

Rather than fixing the number of neighbors, we might
consider fixing a distance h and taking a majority vote
of the labels yi corresponding to all examples from
among x1, . . . , xn that fall within a distance h of x. If
none of the xi fall within distance h or if there is a tie
in the majority vote, we need some way to decide in
these cases. One way to do this is simply to break ties
randomly.

As with nearest neighbor rules, this rule classifies
a feature vector x ∈ Rd according to a majority vote
among the labels of the training points xi in the
vicinity of x. However, while the nearest neighbor rule

classifies x based on a specified number kn of training
examples that are closest to x, this rule considers all
xis that are within a fixed distance h of x. The rule we
have been discussing is the simplest example of a very
general class of rules call kernel rules.

One way to precisely describe this rule is using
a ‘kernel’ (or ‘window function’) defined as follows
(Figure 2):

K(x) =
{

1 if ‖x‖ ≤ 1
0 otherwise.

(7)

Define vote counts v0
n(x) and v1

n(x) as

v0
n(x) =

n∑
i=1

I{yi=0}K
(

x − xi

h

)

and

v1
n(x) =

n∑
i=1

I{yi=1}K
(

x − xi

h

)
.

The decision rule is then to decide class 0 if
v0

n(x) > v1
n(x), decide class 1 if v1

n(x) > v0
n(x), and

break ties randomly.
Writing the rule in this way naturally suggests

that we might pick a different kernel function K(·).
For example, it makes sense that training examples
very close to x should have more influence (or a
larger weight) in determining the classification of x
than those which are farther away. Such a function
is usually non-negative and is often monotonically
decreasing along rays starting from the origin. In
addition to the window kernel, some other popular
choices for kernel functions include the following
(Figures 3–6):

Triangular kernel: K(x) = (1 − ‖x‖)I{‖x‖≤1}

Gaussian kernel: K(x) = e−‖x‖2

Cauchy kernel: K(x) = 1/(1 + ‖x‖d+1)

Epanechnikov kernel: K(x) = (1 − ‖x‖2)I{‖x‖≤1}.

1−1

1

x

y

FIGURE 2 | Basic window kernel.
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FIGURE 3 | Triangular kernel.
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FIGURE 4 | Gaussian kernel.
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FIGURE 5 | Cauchy kernel.
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FIGURE 6 | Epanechnikov kernel.

The positive number h is called the smoothing
factor, or bandwidth, and is an important parameter
of a kernel rule. If h is small, the rule gives large
relative weight to points near x and the decision is
very ‘local’, while for a large h many more points
are considered with fairly large weight, but these

points can be farther from x. Hence, h determines the
amount of ‘smoothing’. In choosing a value for h, one
confronts a similar kind of trade-off as in choosing the
number of neighbors using a nearest neighbor rule.

As we might expect, to get universal consistency,
we need to let the smoothing factor depend on the
amount of data, so we let h = hn. To make sure we
get ‘locality’ (i.e., so that the training examples used
get closer to x), we need to have limn→∞ hn = 0. To
make sure that the number of training examples used
grows, we need to have limn→∞ nhd

n = ∞.
These two conditions (hn → 0 and nhd

n → ∞)
are analogous to the conditions imposed on kn to get
universal consistency. In addition to these two condi-
tions, to show universal consistency we need certain
fairly mild regularity conditions on the kernel function
K(·). In particular, we need K(·) to be non-negative,
and over a small neighborhood of the origin K(·) is
required to be larger than some fixed positive number
b > 0. The last requirement is more technical, but as
a special case it is enough if we require that K(·) be
non-increasing with distance from the origin and have
finite volume under the kernel function.

MULTILAYER PERCEPTRONS

Neural networks (or neural nets, artificial neural
networks) are collections of (usually simple)
processing units, each of which is connected to many
other units. With tens or hundreds of units and several
times that many connections, a network rapidly can
get complicated. Understanding the behavior of even
small networks can be difficult, especially if there can
be ‘feedback’ loops in the connectivity structure of
the network (i.e., the output of a neuron can serve as
inputs to others via which still others come back and
serve as inputs to the original neuron).

We will focus on a special class of networks
called multilayer perceptrons. The units are organized
in a multilayer feedforward network (Figure 7).

That is, the units are organized in layers, with
the output of neurons in one layer serving as the inputs

x1

x2

x3

x4

x5

xd

...

...

...

FIGURE 7 | Feed forward network.
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to the neurons in the next layer. Because there are no
feedback loops, the behavior of the network is simple
to compute.

The first layer receives external inputs, which
will be features of the objects we wish to classify.
The output of each unit in one layer is passed as an
input to the units in the next layer. The outputs of the
last layer (called the output layer) give the final result
computed by the network for the given input.

The particular classification rule implemented by
a network is determined by the specifics of the network
architecture and the computation done by each
neuron. A crucial part of the network computation
is a set of parameters called weights. There is usually
a real-valued weight associated with each connection
between units. The weights are generally considered to
be adjustable, while the rest of the network is usually
thought of as fixed. Thus, we think of the classification
rule implemented by the network as being determined
by the weights, and this classification rule can be
altered if we change the weights.

To solve a given pattern recognition problem
with a neural net, we need a set of weights that
results in a good classification rule. As we discussed
previously, it is difficult to directly specify good
decision rules in most practical situations, and this
is made even more difficult by the complexity of
the computation performed by the neural net. So,
how should we go about selecting the weights of the
network?

This is where learning comes in. Suppose we
start with some initial set of weights. It is unlikely that
the weights we start with will result in a very good
classification rule. But, as before, we will assume we
have a set of labeled examples (training data). If we use
this data to ‘train’ the network to perform well on this
data, then perhaps the network will also ‘generalize’
and provide a decision rule that works well on new
data. The success of neural networks in many practical
problems is because of an efficient way to train a given
network to perform well on a set of training examples,
together with the fact that in many cases the resulting
decision rule does in fact generalize well.

In a multilayer perceptron, each single unit
is called a perceptron (depicted in Figure 8) that
operates as follows. The feature vector x1, x2, . . . , xd
is presented as the input so that input xi is connected
to the unit with an associated weight wi.

The output a of the perceptron is given by

a = sign(x1w1 + · · · + xdwd)

where

sign(u) =
{ −1 if u < 0

1 otherwise.

x1

x2

xd

...

...

...

w1

w2

wd

(1 or −1)

FIGURE 8 | Perceptron.

FIGURE 9 | Hyperplane decision rules. In R2 these are just straight
lines.

In general, a perceptron can have a non-zero threshold
but often for convenience a threshold of 0 is assumed,
as we will do here. This is not restrictive because a
non-zero threshold can be mimicked by a unit with a
zero threshold and an extra input.

A simple learning rule, called the perceptron
convergence procedure, can be used for perceptrons
to classify the well data as the perceptron can. The
problem is that a perceptron can represent only linear
decision rules (i.e., those with a hyperplane decision
boundary) (Figure 9).

Linear classifiers have been extremely well
studied, and in some applications, the best linear
decision rule may be good enough (or even optimal).
But, in other problems we may need more general
classifiers. There may be no reason to believe that the
optimal Bayes decision rule (or even just a reasonably
good rule) is linear.

Multilayer networks overcome the representa-
tion limitations of perceptrons. Perhaps surprisingly,
with just three layers and enough units in each layer,
a multilayer network can approximate any decision
rule. In fact, the third layer (the output layer) con-
sists of just a single output unit, so multiple units are
needed only in the first and second layers.

However, due to the complexity of the network
and the nonlinear relationships between the weights
and the network output, a learning method for finding
good weights is more difficult.

Because of this, it is very common in multilayer
perceptrons to replace the threshold output function
of the perceptron with a ‘smoothed’ version such
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FIGURE 10 | Threshold functions versus sigmoid functions.

as that shown on the right in Figure 10. It turns
out that having the smooth function vary between 0
and 1 instead of −1 and 1 simplifies things. So, for
convenience, we make this change as well. A function
with this general ‘S’ shape that is differentiable,
increasing, and tends to finite limits at −∞ and ∞ is
called a sigmoid function.

Thus, the output of a unit is now given by

a = σ (x1w1 + · · · + xdwd) (8)

where xi are the inputs to the unit, wi are the weights,
and σ (·) is a sigmoid function. One commonly used
sigmoid function is

σ (y) = 1
1 + e−y

. (9)

With a sigmoidal function small changes in one
of the weights or inputs to the unit will result in small
changes to the output. This eliminates the disconti-
nuity problem associated with the threshold function
and allows some basic but powerful machinery from
calculus and optimization to be used to deal with
the learning problem of adjusting the weights in the
network to perform well on the training data.

The most common learning rule for multilayer
perceptrons is called backpropagation. This is
essentially a gradient descent type of procedure that
sequentially cycles through the training examples and
incrementally adjusts the weights in a way as to try to
reduce the error between the training examples and
the network output. Due to limited space, we do not
provide a detailed explanation of backpropagation
here, but this can be found in a number of books
on statistical pattern recognition, learning theory, and
neural networks given in the bibliography. Like all
‘descent’ optimization algorithms, backpropagation
finds only local minima. Nevertheless, it has been
shown to give good results in practice, and
backpropagation or its variants are the most widely
used training algorithms for multilayer perceptrons.

VAPNIK–CHERVONENKIS THEORY

Neural nets are a special case of a more general
approach that fixes a collection of rules C and attempts

to find a good rule from this fixed collection. In
addition to the practical reasons for working with a
fixed collection of decision rules, this perspective also
leads to a fruitful conceptual framework. The results
obtained provide a characterization of the difficulty
of a learning problem in terms of a measure of the
‘richness’ of the class of decision rules.

Once the class of rules is fixed, we would like
some measure of the difficulty of learning in terms
of the collection C. Rather than saying something
about a particular method for selecting a rule from
the class, we would like to say something about the
inherent difficulty due to the richness of the class
itself. For example, for neural nets, we would like to
make statements about the fundamental limits of the
network—not just statements about the performance
of back-propagation in particular. We would also like
some measure of how much training data is required
for learning. Vapnik–Chervonenkis theory provides
results of this sort.

If there is only one possible decision rule in C,
then ‘learning’ is a non-issue. There is no choice but
to select this one decision rule, regardless of any data
observed. The issue of learning arises when C contains
many rules and we need to select a good rule from C
based on the training examples.

Each rule c ∈ C has an associated error rate R(c).
A natural quantity to consider is

R∗
C = min

c∈C
R(c),

which is the best performance we can hope for if we
are restricted to using rules from C. Of course, we
always have R∗

C ≥ R∗. If C is rich, then R∗
C may be

close to the Bayes error rate R∗, but in other cases R∗
C

may be far from R∗.
Note that we cannot actually compute the error

rates for the rules in C, because we do not know the
necessary probability distributions. Instead, we have
to try to select a good rule from C based on the data.

With a finite amount of data, it may be
unreasonable to expect to always be able to find the
best rule from C. We will settle for a rule that is only
approximately optimal (or approximately correct).
That is, we would like to select a hypothesis h from C
such that the error rate R(h) of the hypothesis satisfies
R(h) ≤ R∗

C + ε, where ε is an accuracy parameter.
Moreover, as the training examples are random,

we will only require that we produce a good hypothesis
with high probability. In other words, we will require
that

P{R(h) ≤ R∗
C + ε} ≥ 1 − δ

for some confidence parameter δ. This is the probably
approximately correct (or PAC) criterion.
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Of course, we should expect that the number of
examples we need to learn will depend on the choice
of ε and δ. However, we require that the number of
training examples required by a learning algorithm
not depend on the underlying distributions.

Specifically, we say that a class of decision rules
C is PAC learnable if there is a mapping that produces
a hypotheses h ∈ C based on training examples such
that for every ε, δ > 0 there is a finite sample size
m(ε, δ) such that for any distributions we have

P{R(h) > R∗
C + ε} < δ

after seeing m(ε, δ) training examples.
There is an inherent trade-off involved in the

richness of this class C. If C is too rich, then it may be
easy to find a rule that fits the data, but we will not
have confidence that performance on the training data
will be predictive of performance on new data. On the
other other hand, if C is not very rich, then perhaps
no rule from C will have very good performance
(even if we can be confident of finding the best rule
from C). Simply counting the number of rules in C is
not the right measure of complexity (or richness) of C.
Instead a measure of richness should take into account
the ‘expressive power’ of rules in C, and this is what
the notion of ‘shattering’ and Vapnik–Chervonenkis
(VC) dimension capture.

Given a set of feature vectors x1, . . . , xn, we say
that x1, . . . , xn are shattered by a class of decision rules
C if all 2n labelings of the feature vectors x1, . . . , xn

can be generated using rules from C.
The VC dimension of a class of decision rules

C, denoted VCdim(C), is the largest integer V such
that some set of V feature vectors is shattered by
C. If arbitrarily large sets can be shattered, then
VCdim(C) = ∞.

Under certain mild measurability conditions, it
can be shown that C is PAC learnable iff the VC
dimension of C is finite. Moreover, if V = VCdim(C)
satisfies 1 ≤ V < ∞ then a sample size

64
ε2

(
2V log

(
12
ε

)
+ log

(
4
δ

))

is sufficient for ε, δ learning. What is more important
than the exact constants is the form of the bound and
the fact that such a precise statement can be made.
Lower bounds can also be obtained, which states that
ε, δ learning is not possible unless a certain number of
examples are used, and the lower bounds have similar
dependence on ε, δ, and V.

These results can be applied to neural networks
as follows. Recall that the set of decision rules that

can be represented by a single perceptron is the set
of halfspaces. If the threshold is 0 the halfspaces
pass through the origin, but for adjustable thresholds
we get all halfspaces. It can be shown that in 2
dimensions, the set of halfspaces has VC dimension
equal to 3. More generally, the set of all halfspaces in d
dimensions can be shown to have VC dimension equal
to d + 1. Thus, the learning results can be directly
applied to learning using perceptrons.

Results have also been obtained for multilayer
networks. Although it is quite difficult to compute
the VC dimension exactly, useful bounds have been
obtained. For networks with threshold units, one
bound is that

VCdim(C) ≤ 2(d + 1)(s) log(es),

where d is the dimension of the feature space, s is the
total number of perceptrons, and e is the base of the
natural logarithm (approximately 2.718).

Similar results have been obtained for the case of
sigmoidal units. In this case, the bound also involves
the maximum slope of the sigmoidal output function
and the maximum allowed magnitude for the weights.

The results involving finite VC dimension focus
on the estimation error, the problem of trying to
predict which rule from C will be the best based on
a set of random examples. If the class of rules is too
rich, then even with a large number of examples it can
be difficult to distinguish those rules from C that will
actually perform well on new data from those that
just happen to fit the data seen so far but have no
predictive value.

In addition to the estimation error, the
approximation error is also important in determining
the overall performance of a decision rule. The
approximation error sets a limit on how well we can
do, no matter how much data we receive. If we are
restricted to using rules from the class C, we can
certainly do no better than the best rule from C.
Once we fix a class with finite VC dimension, we
are stuck with whatever approximation error results
from the class and the underlying distributions.
Moreover, because the distributions are unknown,
the actual approximation error we must live with is
also unknown.

If we slightly modify the PAC criterion, we
can deal with certain classes that have infinite VC
dimension, and thereby address the issue of non-zero
approximation errors. Consider a sequence of classes
C1, C2, . . . that are nested so that C1 ⊂ C2 ⊂ · · ·. If
Vi = VCdim(Ci), then we require Vi < ∞ for all i, but
we allow Vi → ∞ as i → ∞.

Given such a sequence of classes, we can think
of VCdim(Ci) as a measure of the ‘complexity’ of the
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class of rules Ci. We can identify the complexity of
a rule with the smallest index of a class Ci to which
the rule belongs. The collection of all rules under
consideration is given by

C =
∞⋃

i=1

Ci.

If Vi → ∞ then the class C has infinite VC dimension
and so is not PAC learnable.

Nevertheless, it may turn out that we can still
find good rules from C as we get more and more
data. The key idea is to allow the number of examples
needed for ε, δ learning to depend on the underlying
probability distributions (as well as on ε and δ), which
is both an intuitive and reasonable idea. We should
expect that complicated or difficult problems will
require more data for learning, while simple problems
can be learned easily with minimal data.

With this modified criterion, a hierarchy of
classes C = ∪∞

i=1Ci can be learned by trading off
the fit to the data against the complexity of the
hypothesis. This idea is at the heart of various
techniques that go by different names: Occam’s razor,
minimum description length principle, structural risk
minimization, Akaike’s information criterion, etc. Our
choice of hypothesis should reflect some trade-off
between misfit of the data (error) and complexity.
Given specific ways of measuring the error of a
decision rule on the data and the complexity of a
decision rule, we can select a hypothesis by

h = argminh∈C [error(h) + complexity(h)].

Making the first term small favors choosing
a hypothesis in some Ci with large i. However, if
unchecked this would result in ‘overfitting’ and would
not provide much predictive power. The second term
helps to control the ‘overfitting’ problem. By striking
a balance between these two terms, we control the
expressive power of the rules we will entertain and
also consider how well the rules take into account the
training data.

There are many choices for exactly how to
carry out the misfit versus complexity trade-off. One
concrete result is as follows. Suppose the hierarchy
of classes is chosen so that R∗

Ci
→ R∗ as i → ∞.

This means that we can find rules with performance
arbitrarily close to the optimal Bayes decision rule as
i gets sufficiently large. We select a sequence kn → ∞
such that

Vkn log(n)
n

→ 0 as n → ∞. (10)

After seeing n examples, we select a rule hn from
the class Ckn that fits the data the best. Then it can
be shown that this method is universally consistent.
That is, for any distributions, as n → ∞ we have
R(hn) → R∗. Hence, as we get more and more data,
the performance of the rule we select gets closer and
closer to the Bayes error rate.

However, in general we cannot obtain uniform
sample size bounds that will guarantee ε, δ
learning after some fixed number of examples. The
number of examples needed will depend on the
underlying distributions, and these are unknown.
The performance will also depend on the choice of
hierarchy of classes and the misfit/complexity trade-
off. These choices are often a matter of art, intuition,
and technical understanding of the problem domain.
The complexity hierarchy of the decision rules reflects
the learner’s inductive bias about which rules are
considered ‘simple’ and how well this reflects reality
has a strong effect on performance.

SUPPORT VECTOR MACHINES

Support vector machines (SVMs) provide a state-of-
the-art learning method that has been highly successful
in a variety of applications. SVMs are a special case
of generalized kernel methods, a special case of which
are described in Section Kernel Rules.

The origin of SVMs arises from two key ideas.
The first idea is to map the feature vectors in a
nonlinear way to a high (possibly infinite) dimensional
space and then utilize linear classifiers in this new
space. Specifically, let H denote the new feature space
and let � denote the mapping so that

� : Rd → H.

For an original feature vector x ∈ Rd, the transformed
feature vector is given by �(x). The label y remains
the same. Thus, the training example (xi, yi) becomes
(�(xi), yi).

Then, we seek a hyperplane in the transformed
space H that separates the transformed training
examples (�(x1), y1), . . . , (�(xn), yn). That is, we want
to find a hyperplane in the space H so that a
transformed feature vector �(xi) lies on one side of
the hyperplane if the label yi = −1, and �(xi) lies
on the other side of the hyperplane if yi = 1. As in
Section Multilayer Perceptrons, it is convenient here
to assume the class labels are −1 and 1 instead of 0
and 1.

This results in nonlinear classifiers in the
original space, which overcomes the representational
limitations of linear classifiers. However, the use of
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linear classifiers (in the transformed space) lends itself
to computational methods for finding a classifier
that performs well on the training data. These
computational benefits are retained while allowing
a rich class of nonlinear rules.

The second key idea is to try to find hyperplanes
that separate the data with a large margin, that is
a hyperplane separates the data as much as possible
from among the generally infinitely many hyperplanes
that may separate the data. While many separating
hyperplanes perform equally well on the training data
(in fact perfectly well if they separate the data), the
generalization performance on new data can vary
significantly.

Figure 11 shows a separable case in two
dimensions with a number of separating lines. All
these separating hyperplanes perform equally well on
the training data (in fact they perform perfectly), but
they might have different generalization performance.
It is natural to ask whether some of the separating
hyperplanes are better than others in terms of
their error rate on new examples. Without some
qualification, the answer is no. In a worst case sense,
all hyperplanes will result in similar performance.
However, it may be that the distributions giving rise
to the worst-case performance are unusual, and that
for most ‘typical’ distributions we might be able to do
better by exploiting some properties of the training
data.

It turns out that finding a hyperplane with
large margin helps to provide good generalization
performance. Intuitively, if the margin is large then
the separation of the training examples is robust to
small changes in the hyperplane, and we would expect
the classifier to have better predictive performance.

FIGURE 11 | Separating hyperlanes in two dimensions.

This is often the case, though not in a worst-
case sense. The fact that large margin classifiers
tend to have good generalization performance has
been both justified theoretically and observed in
practice.

Let d+ denote the smallest distance from
examples labeled 1 to the separating hyperplane
and let d− denote the smallest distance from
examples labeled −1 to the separating hyperplane.
The margin of the hyperplane is defined to be d+ + d−.
By choosing the right orientation of a separating
hyperplane, we can make d+ + d− as large as possible.
Any plane parallel to this will have the same value of
d+ + d−.

In Figure 12, we show this in two dimensions—
the hyperplane for which d+ = d− is shown, together
with parallel hyperplanes for which either d+ = 0 or
d− = 0. These last two hyperplanes will pass through
one or more examples from the training data. These
examples are called the support vectors and they
are the examples that define the maximum margin
hyperplane. If we move or remove the support vectors,
then the maximum margin hyperplane can change,
but if we move or remove any of the other training
examples, then the maximum margin hyperplane
remains unchanged.

Recall that the transformed training examples
are (�(x1), y1), . . . , (�(xn), yn) where �(xi) ∈ H and
yi ∈ {−1, 1}. The equation of a hyperplane in H can
be represented in terms of a vector w and a scalar b as

w · �(x) + b = 0.

It turns out that w is the normal to the hyperplane
and |b|/‖w‖ is the distance of the hyperplane from the
origin.

As there are finitely many training examples, if
a hyperplane separates the training data, then each
training example must be at least β away from

FIGURE 12 | Large margin separation.
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the hyperplane for some β > 0. We can then can
renormalize to require that a separating hyperplane
satisfies

�(xi) · w + b ≥ +1 if yi = +1

�(xi) · w + b ≤ −1 if yi = −1.

Equivalently, we can write these conditions as

yi(�(xi) · w + b) − 1 ≥ 0 for i = 1, . . . , n. (11)

In general, we may not be able to separate the
training data with a hyperplane. However, we can still
seek a hyperplane that separates the data ‘as much as
possible’ while also trying to maximize the margin,
with these objectives suitably defined. To carry this
out, we introduce ‘slack variables’ ξi with ξi ≥ 0 for
i = 1, . . . , n and try to satisfy

�(xi) · w + b ≥ +1 − ξi if yi = +1

�(xi) · w + b ≤ −1 + ξi if yi = −1.

Without a constraint on ξi, the conditions above can
be satisfied trivially. We can get a useful formulation
by adding a penalty term of the form C

∑
i ξi, where

C is some appropriate constant.
Also, as in Eq. (11), d+ = d− = 1/‖w‖ so that

margin = d+ + d− = 2
‖w‖ .

To maximize the margin we can minimize ‖w‖, or
equivalently minimize ‖w‖2.

Thus, we seek a hyperplane that solves the
following optimization problem:

minimize ‖w‖2 + C
∑

i

ξi

subject to yi(�(xi) · w + b) − 1 + ξi ≥ 0

for i = 1, . . . , n

ξi ≥ 0 for i = 1, . . . , n.

Using techniques from optimization (Lagrange
multipliers and considering the dual problem),
the maximum margin separating hyperplane can
be found by solving the following optimization
problem:

maximize
∑

i αi − 1
2

∑
i,j αiαj yiyj (�(xi) · �(xj))

subject to
∑

i αiyi = 0

αi ≥ 0 for i = 1, . . . , n.

This is a standard type of optimization problem
called a convex quadratic programming problem for
which there are well-known and efficient algorithms.
Through solving this optimization, the following
equations are satisfied, which provide the equation
for the hyperplane:

w =
n∑

i=1

αiyi�(xi) (12)

αi(yi(w · �(xi) + b) − 1) = 0 for i = 1, . . . , n (13)

yi(�(xi) · w + b) − 1 ≥ 0 for i = 1, . . . , n. (14)

The solution to the optimization problem returns
values for αi and ξi. From these, w can be obtained
directly from the expression above in Eq. (12). The
scalar b can be obtained by solving Eq. (13) for any i
in terms of b, though a better approach is to do this
for all i and take the average of the values obtained as
the choice for b.

Solving this optimization problem and obtaining
the hyperplane (namely w and b) is the process of
training. For classification, we need to only check on
which side of the hyperplane a feature vector x falls.
That is, x is classified as 1 if

w · �(x) + b =
n∑

i=1

αiyi (�(xi) · �(x)) + b > 0

and x is classified as −1 otherwise.
For some i, it turns out that αi = 0. For these

i, the corresponding example (�(xi), yi) does not
affect the maximum margin hyperplane. For other
i, we have αi > 0, and the examples corresponding
to these i do affect the maximum margin hyperplane.
These examples (corresponding to positive αi) are the
support vectors.

An important practical consideration is how
to implement the transformation �(·). The original
feature vector x is often high dimensional itself and
the transformed space is typically of even much
higher dimension, possibly even infinite dimensional.
Thus, computing �(xi) and �(x) can be very
difficult.

A useful result allows us to address this issue
and also provides a connection between SVMs and
kernel methods discussed in Section Kernel Rules.
Under certain conditions the dot product �(xi) · �(x)
can be replaced with a function K(xi, x) that is easy to
compute. This function K(·, ·) is just a kernel function,
and the resulting classifier becomes a form of a general
kernel classifier. Namely, a feature vector x is classified
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according to whether

w · �(x) + b =
n∑

i=1

αiyi (�(xi) · �(x)) + b

=
n∑

i=1

αiyi K(xi, x) + b

is greater than zero or less than zero.
The terms in the optimization problem used to

find the αi also contain dot products of the form
�(xi) · �(xj) which can be replaced with K(xi, xj).

In practice, one generally directly chooses the
kernel function K, while the mapping �(·) and the
transformed space H are induced by the choice of
K. In fact, once we specify a kernel, the training
and classification rule can be implemented directly
without the need for even knowing what are the
corresponding � and H. It turns out that for a given
choice of the kernel K, corresponding � and H exist if
and only if K satisfies a condition known as Mercer’s
condition—i.e., for all g(x) such that

∫
g(x)2 dx < ∞,

we have
∫

K(x, z)g(x)g(z) dx dz ≥ 0.
Some common choices of kernel functions are

those mentioned in Section Kernel Rules. As with
kernel methods in general, the choice of the kernel
function and associated parameters is an art and can
have a strong influence on classification performance.

BOOSTING

Boosting is an iterative procedure for improving the
performance of any learning algorithm. It is among
the most successful learning methods available.

Boosting combines a set of ‘weak’ classification
rules to produce a ‘strong’ composite classifier. A weak
learning rule is one that performs strictly better than
random guessing. That is, a weak learning rule and
has an error rate ε = 1/2 − γ for some γ > 0. Because
of computational or other considerations, it might be
easy to produce a weak learning rule, even though
finding a good rule may be difficult. This is where
boosting comes into play. If we have an algorithm
that the given training data can find a weak classifier,
then boosting can be used to produce a new classifier
with much better performance.

Boosting proceeds in a series of rounds. In each
round, a weak rule is produced by running some basic
learning algorithm using a different weighting of the
training examples. Starting with equal weighting in
the first round, the weighting of the training examples
is updated after each round to place more weight on
those training examples that are misclassified by the

current weak hypothesis just produced and less weight
on those that are correctly classified. This forces the
weak learner to concentrate in the next round on these
hard-to-classify examples.

Specifically, let Dt(·) denote the distribution on
the training examples at round t so that Dt(i) is the
probability (or weight) that we assign to the i-th train-
ing example. At stage t, the goal of the weak learning
algorithm will be to produce a hypothesis ht(·) that
attempts to minimize the weighted error, εt defined by

εt =
n∑

i=1

Dt(i)I{ht(xi)�=yi} (15)

εt as the probability of error of the classifier ht(·),
where the probability is computed with respect to the
distribution Dt(·). To compute ht, ‘new’ examples can
be generated by drawing examples from the train-
ing data (xi, yi) according to these probabilities, and
then train the learning algorithm on this set of ‘new’
examples. Or, if possible, we can simply apply the
learning algorithm with the objective of minimizing
the weighted training error.

After a number of rounds, a final classifi-
cation rule is produced via a weighted sum of
the weak rules. Given a set of classification rules
h1(x), h2(x), . . . , hT(x), we can form a new classifi-
cation rule as a weighted combination of these as
follows. Define

H(x) = sign

(
T∑

t=1

αtht(x)

)

where sign(u) returns −1 if u < 0 and returns 1
otherwise. For a given x, the weights αt are used
to combine the decisions of the individual rules ht(x),
and H outputs either +1 or −1 depending on the sign
of this weighted sum.

There are a number of variants of the basic
boosting algorithm, one of the most popular of which
is the AdaBoost algorithm developed by Freund and
Schapire (1995). Adaboost has been found to be an
extremely effective algorithm and has been widely
studied. It works as follows.

• Input:

— Training data (x1, y1), . . . , (xn, yn).

— A weak learning algorithm.

• Initialization:

— Set t = 1.
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— Set D1(i) = 1/n.

• Main Procedure: For t = 1, . . . , T:

— Use the weak learning algorithm on
distribution Dt to get classifier ht(·).

— Let εt be the error rate of ht(·) with respect to
the distribution Dt. Set αt = 1

2 log
(

1−εt
εt

)
.

— Update the distribution as follows:

Dt+1(i) = Dt(i)e−αtyiht(xi)

Zt

where Zt is a normalization factor to ensure
that

T∑
t=1

Dt+1(i) = 1.

• Output: The final classifier H(·) output by the
boosting procedure is given by

H(x) = sign

(
T∑

t=1

αtht(x)

)
.

To discuss the performance of Adaboost, let
γt = 1/2 − εt. Since εt < 1/2, γt > 0 and is the amount
by which ht performs better than random guessing on
the training data (weighted according to Dt).

It can be shown that the training error of the
final classifier H produced by AdaBoost is bounded as
follows:

1
n

n∑
i=1

I{H(xi)�=yi} ≤ e−2
∑T

t=1 γ 2
t . (16)

The bound on the right hand side of Eq. (16) gets
smaller with every round, and if γt ≥ γ for some
γ > 0 then

e−2
∑T

t=1 γ 2
t ≤ e−2

∑T
t=1 γ 2 = e−2Tγ 2

so that the training error approaches zero exponen-
tially fast in the number of rounds T.

Boosting algorithms prior to AdaBoost satisfied
similar bounds on the training error but required
knowledge of γ , which can be hard to obtain. The
beauty of AdaBoost is that it adapts naturally to

the error rates of ht so that knowledge of γ is
not required (hence the name AdaBoost, short for
Adaptive Boosting).

While the performance on the training data is
reassuring, for a learning method to be valuable we
are interested in the generalization error as opposed
to the training error. The generalization performance
of H, denoted R(H), is given by

R(H) = P{H(x) �= y}

and is the probability that H misclassifies a new
randomly drawn example.

Using VC theory, it can be shown that with high
probability the error rate after T rounds of boosting
is bounded as follows:

R(H) ≤ 1
n

n∑
i=1

I{H(xi)�=yi} + O

(√
TV
n

)
. (17)

The problem with this bound is that it increases with
the number of rounds T, suggesting that boosting
will tend to overfit the training data as we run it for
more rounds. However, while sometimes overfitting
is observed, in many cases the generalization error
continues to decrease as the number of rounds
increases, and this can happen even after the error
on the training data is zero. Explanations for this have
been provided in terms of the margins of the classifier.

Here we use a slightly different way to measure
the margin than was used in Section Support Vector
Machines. Define the margin of the example (xi, yi) as

margin(xi, yi) = yi
∑T

t=1 αtht(xi)∑T
t=1 αt

. (18)

The margin of (xi, yi) is always between −1 and
+1 and is positive if and only if H classifies
(xi, yi) correctly. In a sense, the margin measures the
confidence in our classification of (xi, yi).

It can be shown that for any θ > 0, with high
probability we have

R(H) ≤ 1
n

n∑
i=1

I{margin (xi,yi)≤θ} + O

(√
V

nθ2

)
. (19)

An important feature of this bound is that it does
not depend on T. This helps explain the empirical
observation that running boosting for many rounds
often does not increase the generalization error.
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