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Abstract: Semantic Web technologies are being increasingly adopted by the geospatial community 8 
during last decade through the utilization of open standards for expressing and serving geospatial 9 
data. This was also dramatically assisted by an ever increasing access and usage of geographic 10 
mapping and location-based services via smart devices in people’s daily activities. In this paper we 11 
explore the developmental framework of a pure Javascript client-side GIS platform exclusively 12 
based on invocable geospatial Web services. We also extend Javascript utilization on the server side 13 
by deploying a node server acting as a bridge between open source WPS libraries and popular 14 
geoprocessing engines. The vehicle for such an exploration is a cross platform Web browser 15 
capable of interpreting Javascript commands to achieve interaction with geospatial providers. The 16 
tool is a generic Web interface providing capabilities of acquiring spatial datasets, composing 17 
layouts and applying geospatial processes. In an ideal form the end-user will have to identify those 18 
services, which satisfy a geo-related need and put them in the appropriate row. The final output 19 
may act as a potential collector of freely available geospatial web services. Its server-side 20 
components may exploit geospatial processing suppliers composing that way a light-weight fully 21 
transparent open Web GIS platform. 22 
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 25 

1. Introduction 26 
Geospatial functions range from a simple image map acquisition to a complex geoprocess over 27 

a Spatial Data Infrastructure (SDI). Nowadays, a wide range of users exploit geospatial functions in 28 
their routine activities. Such users are practitioners, scientists and researchers involved in 29 
geosciences and engineering disciplines, as well as individuals employing Geographic Information 30 
Systems (GIS) [1-2]. In addition, today we face an ever increasing access and usage of geographic 31 
mapping and location-based services via smart devices in people’s daily activities [3]. For this 32 
reason, emerging computing paradigms show high penetration rates in geospatial developments, 33 
with the latest and yet most significant one the Cloud computing [4-5]. As a result, existing systems 34 
are transformed from proprietary desktop GIS software applications of the early 80's to free and 35 
open source interoperable Cloud GIS solutions built upon geospatial Web services (GWS) [6]. 36 

GWSs and service-oriented architecture (SOA) are the key components to achieve 37 
interoperability in Web GIS applications. GWSs allow self-contained geospatial functions to operate 38 
over the Web while SOA facilitates interoperability between these GWSs by establishing 39 
communication and data exchange for requesters and providers in a uniform way [7-8]. The 40 
dominant GWS standards adopted by the geospatial community are those introduced by the Open 41 
Geospatial Consortium (OGC) including the Web map service (WMS) to visualize [9], the Web 42 
feature service (WFS) and the Web coverage service (WCS) to acquire [10-11], the catalog service for 43 
the Web (CSW) to discover [12], and also the emerging Web processing service (WPS) to process, 44 
spatial data [13]. 45 
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In this respect, numerous research projects and business solutions rely on the above standards 46 
to achieve geospatial data interoperability between custom applications and to satisfy 47 
project-specific needs [14-15]. Furthermore, in European Union (EU) level, project actions have to be 48 
aligned with regulation No 1312/2014 [16], implementing INSPIRE directive [17] as regards 49 
interoperability of spatial data services. According to this, all geospatial data have to be served 50 
under invocable spatial data services. As a result most applications are nowadays based on Web 51 
services, use data provided over the Web or generated by users [18], and are executed on 52 
cross-platform browser-based interfaces. In the geospatial community, GWSs and XML-based open 53 
geospatial data formats, such as Geography MarkUp Language (GML), have become basic 54 
components of desktop and Web GIS software solutions. For example the ESRI's ArcGIS commercial 55 
product supports WMS connections through its popular 'Add data' interface [19]. On the other side 56 
QGIS open solution also supports connection to GWSs through appropriate plug-ins [20]. For 57 
individual Web-based applications it is possible to develop a custom GIS capability through open 58 
Javascript libraries such as for example Openlayers (http://openlayers.org/) and GeoExt 59 
(https://geoext.github.io/geoext2), and have it executed on the client-side without the need of 60 
installing anything but an updated Web browser. 61 

The development of research and commercial projects that utilize open or proprietary Web 62 
services and spatial application frameworks is rapidly growing. [21-28]. Several other Cloud GIS 63 
solutions are served as software, as platforms, as infrastructure under the popular service models, 64 
SaaS, PaaS and IaaS respectively [4]. However an exclusively service-based application composed of 65 
open interoperable Web services could be the ideal case. The developer would have to identify the 66 
appropriate GWSs and bind them between each-other in the correct order, same way as it happens 67 
in the well-known “ArcGIS model builder” [29]. The final outcome would be a transparent to the 68 
user Web interface consisting of an interconnected set of Web services. This case may be extended to 69 
a Web GIS platform that gathers available GWSs and acts as a platform for building GIS projects. 70 

In this paper we explore the developmental framework for exploiting invocable GWSs, that 71 
satisfy routine geospatial needs. A comprehensive and sophisticated implementation might include 72 
a Web interface allowing the end user to select between task descriptions composing a GIS project. 73 
We demonstrate (212.111.41.209/res/gws) such an implementation which is exclusively based on 74 
open standards and services, a light-weight client-side pure JavaScript platform that performs: a) 75 
data discovery from public data providers, b) layer-based data view, c) data selection by attributes, 76 
d) feature data acquisition and preview, and e) simple geoprocessing tasks. For the last ones, we also 77 
explore the applicability of JavaScript, for implementing geoprocesses. Prior to this, the paper 78 
explores the effects of semantic Web technologies on fundamental geospatial elements, and 79 
discusses critical architectural and development issues. 80 

2. The influence of geospatial Web semantics on GIS  81 
The major components and principal operations and characteristics of an interface 82 

implemented according to geospatial Web semantics technologies, are identified and reviewed 83 
throughout GIS timeline from desktop and proprietary Web applications to open service-based GIS 84 
systems in the Cloud. The historical point that generally represents the geospatial evolution is when 85 
Web semantics technology standards were adopted by the geospatial community. The three major 86 
areas briefly discussed in the following are a) Formats, b) Interoperability and c) Automations 87 

2.1. Geospatial Data Formats  88 

2.1.1. Vector Data 89 
Vector data are considered the dominant component of a GIS System, holding the critical 90 

properties of the spatial entities that they represent such as their shape and spatial representation 91 
and topology. Traditionally, vector data were handled by geographers and GIS experts as the 92 
valuable form of spatial data, beyond others, for two reasons: their independence from scale and the 93 
capability of associating on them, unlimited amount of descriptive information. In addition vector 94 
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data production is expensive and time consuming since they are obtained by digitizing map images 95 
or as a result of GPS field data collection.  96 

Various forms of vector data were adopted throughout GIS timeline from coverage and 97 
shapefile to proprietary and open geographic database formats. Today spatial coordinates of the 98 
vertices composing a vector graphic may be easily modeled through XML-based open formats 99 
(KML, GML, SVG) and transferred through OGC-WFS service requests. 100 

2.1.2. Raster Data 101 
Traditionally, raster data in the form of scanned maps (gif, jpeg, tiff etc.) were used as the base 102 

for producing vector data through digitization tasks. Therefore, the more detailed and of high 103 
resolution, a raster was the more analytical and precise was the digitization process. As a result, 104 
raster data were usually heavy-sized and their management in a desktop GIS environment required 105 
high efficiency computer hardware resources. Servicing maps and satellite images through static 106 
Web pages or through raster data repositories were also tasks dependent to hardware efficiency 107 
including internet infrastructures.  108 

When the first map servers appeared, raster data were being served over the Web as textures of 109 
the ground surface, mainly satisfying navigation experience in earth browsers. Today image 110 
compression and tiled rendering techniques along with extremely high wireless internet connections 111 
make it possible to employ high quality raster data as the background for location-based services 112 
provided to smart device users. Raster data used as cartographic background are transferred 113 
through OGC-WMS service requests. Other raster formats like GeoTIFF that are used for coverage 114 
purposes (e.g. elevation or results from geoprocessing) are served via OGC WCS standard. 115 

2.1.3. Descriptive Data 116 
A fundamental structural characteristic of a GIS is the capability of associating the spatial 117 

features with descriptive data related to them. That way it is possible to perform sophisticated 118 
cartographic representations for decision and policy makers as well as to execute complex processes 119 
over descriptive data and produce valuable geoinformation. Descriptive data were normally easy to 120 
manage throughout GIS timeline because of the simultaneous emergence of database technologies. 121 
The external data sources to be associated with spatial features included a wide range of alternatives 122 
from simple comma separated values and single database files to relational geographic databases 123 
installed in remote servers.  124 

Today the Web of Data and associated semantic technologies, support  interoperability and 125 
standard formats to model and transfer descriptive data. ISO 191xx series and RDF are XML 126 
encoded data standards employed in the geospatial web [30]. 127 

2.2. Geospatial Interoperability 128 
Geospatial interoperability became an issue, when the need for data communication and 129 

exchange between diverse geospatial stakeholders became a necessity. Till early ‘90s, GIS vendors 130 
used their own proprietary formats, however they agreed to common standards and formats and 131 
they established connections to commonly shared repositories. As the technologies that developed  132 
by World Wide Web Consortium (W3C) matured, OGC introduced appropriate spatial related 133 
technologies to achieve syntactical and semantic interoperability. 134 

2.2.1. Syntactical Interoperability 135 
Syntactic interoperability assures data transfer between connected systems through Web 136 

services. In the geospatial community it is currently achieved through OGC Web Services. For 137 
example WFS/GetFeatures request, provides the standard interface and message types for Web 138 
services transferring features through XML. In the past, syntactical interoperability could be 139 
considered as the result of applying SQL commands through ODBC connectivity. 140 
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2.2.2. Semantic Interoperability 141 
Semantic interoperability is the ideal situation where the exchanged content is machine 142 

understandable. To be such it has to be conceptualized formally and explicitly through appropriate 143 
specifications, such as GML, the standard for the exchange of service-based spatial data. 144 
Traditionally, semantic interoperability could be only achieved via pre-constructed data formats 145 
resulting from predefined domain specific data models (e.g. ArcFM [31], UML data models).  146 

2.3. Geospatial Automations 147 
A GIS project is usually a composition of single geospatial activities which normally begin with 148 

the acquisition of thematic layers, and other data involved and the application of geospatial 149 
processes, depending on the exact domain of the geoscientific field of expertise. Automating these 150 
activities under a workflow of sequentially executed processes may be achieved by creating 151 
specialized batch files, or scripts. Traditionally, geospatial automations are implemented through 152 
sophisticated modules of the popular desktop GIS environments offering tools to manage geospatial 153 
processes, like for example ModelBuilder [31], or Processing Modeler [32].  154 

Now that all types of geospatial activities may be served through geospatial Web services, 155 
automation is achieved by 'orchestrating' these Web services. Orchestration “describes collaboration of 156 
the Web services in predefined patterns based on local decision about their interactions with one another at the 157 
message/execution level” [33]. OGC WPS can be designed to call a sequence of web services [13]. 158 

Table 1 collects all related terminology in the above specified sections before and after 159 
Geospatial Web Semantics influence. 160 

 161 
Table 1. Impact of Web semantics on geospatial technologies 162 

 Past Today 
Geospatial Data Structures 

Vector data Binary files (Shapefiles, 
coverages etc.), proprietary 
database formats (e.g. ESRI 
geodatabase) 

Text files in XML-based formats 
(GML, SVG, KML) 

Raster data Image files (Raster) Image files (Raster) 
Descriptive data Text files, proprietary 

database formats 
Text files in XML-based formats 
(ISO 191xx, RDF etc.) 

Geospatial Interoperability 
Syntactic Common data formats, 

ODBC connections to spatial 
databases 

OGC Web Services 

Semantic Common data models (e.g. 
UML data models) 

OWL, GML, RDF 

Geospatial Automations 
Workflows Batch files and scripts 

Special model builders and 
process modelers 

Web service orchestration (OGC 
WPS) 

 163 

3. Software Prototype Design & Development 164 

3.1. Functional Architecture 165 
The successful operation of an application based on GWSs prerequisites the existence of 166 

available open geospatial Web services for data acquisition and data processing purposes. The end 167 
user interface should support access to the services via a Web browser, without the need of installing 168 
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additional software. Figure 1 represents graphically the functional architecture of such an 169 
implementation, which includes: 170 
• Free WMS and WFS geospatial services provided either by open-source (e.g. Boundless) or 171 

commercial (e.g. ESRI) GIS product leaders, satisfy the need of obtaining features and images 172 
• Accessible processing platforms like 52o North initiative, or Javascript node servers developed 173 

to support custom WPS implementations. 174 
• an HTML browser-based interface developed in Javascript, undertakes to serve user needs over 175 

a functional GIS-based environment as described below 176 

 177 
Figure 1: Functional architecture of a system exploiting GWSs 178 

 179 

 180 

 181 

3.2. Development Issues 182 

3.2.1. Raster and Vector Layer Views 183 
To get raster and vector layers, WMS and WFS services, respectively, are employed. The user 184 

interacts with the following ways: 185 
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• Requesting for available maps in the form of raster or image views of vectors through a 186 
WMS/GetCapabilities request and receiving a list with the offered layers along with further 187 
metadata descriptions in XML format 188 

• Requesting for available features through a WFS/GetCapabilities request and receiving a list 189 
with the offered feature layers along with further metadata descriptions in XML format 190 

• Requesting for a specific raster (or image views of a vector) layer through a WMS/GetMap 191 
request and receiving an image file 192 

• Requesting for a specific vector layer through a WFS/GetFeatures request and receiving an XML 193 
file 194 
 195 
Figure 2, illustrates an example of a WMS/GetCapabilities request coded in Javascript along 196 

with the server XML response:  197 
• the client makes an AJAX (Asynchronous JavaScript and XML) request using the 198 

XMLHttpRequest, either WMS or WFS with a URI parameter ‘request=GetCapabilities’. 199 
• the server responds with XML data that will thereafter be parsed to JSON object and finally be 200 

viewed by the user as paged table data.  201 
Practically, the above interaction takes place, whenever the user declares a potential service 202 

provider and checks geospatial data provision. 203 

 204 
Figure 2: Requesting a WMS/GetCapabilities request and receiving the XML response 205 

3.2.2. Geospatial Processes 206 
Geospatial processes were implemented by employing the 52o North WPS HTML interface 207 

freely provided through the wps-js Javascript library. This way an HTML form was generated 208 
through which it is possible to encode and parse XML-based WPS requests (GetCapabilities, 209 
DescribeProcess, Execute) for the geospatial processes offered by 52o North initiative WPS interface 210 
implementation, as well as some other OGC WPS compatible geoprocessing servers (e.g. GeoViQua) 211 
[34]. 212 

To contribute over the above, a Node.js server was developed in the present work, in order to 213 
interface user generated WPS requests with GDAL/OGR  library functionalities. These OGC 214 
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compliant WPS requests are transmitted through 52o North WPS client interface where the Node.js 215 
server was also declared in it. 216 

Below is a step by step representation of how interaction between client (WPS Client) – 217 
server(Node.js) – Cloud servers (WPS Servers) is taking place to complete a WPS request with wps-js 218 
and Node.js server. 219 

 220 
Figure 3: Utilizing Node.js as a Proxy server to achieve cross-origin connections with OGC 221 
implementations 222 

3.2.3. Descriptive data management 223 
Descriptive data involved in OGC Web services are an essential part of the development 224 

process because they specify the parameters of any type of request. These parameters are 225 
composed/expressed/edited in many ways and four of them are mentioned below. (1) and (2) 226 
concern requests submitted to geospatial servers, while (3) and (4) concern handling of the requests 227 
on the client-side: 228 

 229 
(1) HTTP GET Requests 230 
HTTP is the simplest way to submit a request to an OGC service implementation through the 231 

browser’s URL bar and may also be incorporated in a Javascript interface using AJAX requests. The 232 
URL expression below represents a WFS request for getting features from a geospatial server 233 

 234 
http://nsidc.org/cgi-bin/atlas_north? 235 
service=WFS& 236 
version=1.1.0& 237 
request=GetFeature& 238 
typename=greenland_elevation_contours 239 
 240 
(2) HTTP POST XML requests 241 
OGC Web services may support the “POST” method of the HTTP protocol and the request 242 

message is formulated as an XML document. XML tags, host the values of the parameters 243 
composing a request in a tree structure. In addition, they host the features and attributes of a vector 244 
layer. In any case, XML files establish OGC based interoperability acting as the medium for data and 245 
processes exchange between machines. The XML code represented below provides a WPS request  246 
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which returns to the requester the description of all the geospatial processes offered by a WPS 247 
server. 248 

 249 
<?xml version=”1.0” encoding=”UTF-8”?> 250 
<wps:DescribeProcess service=”WPS” version=”1.0.0” 251 

xmlns:wps=”http://www.opengis.net/wps/1.0.0” xmlns:ows=”http://www.opengis.net/ows/1.1” 252 
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” 253 
xsi:schemaLocation=”http://www.opengis.net/wps/1.0.0 254 

http://schemas.opengis.net/wps/1.0.0/wpsDescibeProcess_request.xsd”> 255 
<ows:Identifier>all</ows:Identifier> 256 

</wps:DescribeProcess> 257 
 258 
Another example has been presented in Figure 2. 259 
 260 
(3) GeoJSON 261 
XML files are transformed to GeoJSON using the new specification RFC 4976  in order to be 262 

expressed as native Javascript objects and handled appropriately, in terms of parsing and generating 263 
the parameters of OGC service requests. Being JSON objects they may be easily visualized as paged 264 
tables, may be modified by the end-user and may be reconstructed in XML code. An example of the 265 
bounding box property of a layer coded as properties of a JSON Javascript object is shown below: 266 

 267 
"type": "Feature", 268 
  "geometry": { 269 
    "type": "Point", 270 
    "coordinates": [125.6, 10.1] 271 
  }, 272 
  "properties": { 273 
 274 
(4) Paged Tables 275 
A paged table can contain inner tables in its rows and this way of representation is convenient 276 

when dealing with layers and their properties (e.g. bounding box, EPSG etc.). In addition it is 277 
possible to provide domain values for every attribute assisting further request manipulation to the 278 
end-user, as shown in the figure below: 279 

 280 
Figure 4: Setting WMS parameters through a paged table 281 

3.3. End-user interface 282 

3.3.1. User Interaction 283 
The end-user interface implements request and response interaction with the available OGC 284 

Web services (e.g. WMS, WFS, WPS). As already discussed the results of the above interaction may 285 
be XML-based files or images as shown in figure 5 (Papadopoulos & Evangelidis, 2016). 286 
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 287 
Figure 5: User interaction and data type results (Papadopoulos & Evangelidis, 2016) 288 

Specifically, user interaction results involve: 289 
• Tabular data with a) the available raster or vector layers formed by WMS/WFS GetCapabilities 290 

XML-based files and b) attributes of selected layers formed by WFS/GetFeatures XML-based 291 
files 292 

• Vector data coded in GML, the prevailing XML-based format 293 
• Raster data in image file formats representing maps 294 

 295 

3.3.2. Major Operational Areas 296 
A prototype service-based end-user interface has been proposed (Papadopoulos & Evangelidis, 297 

2016) and is adopted in the present work as the base for the presented implementation. In the 298 
presented work this is extended to include geospatial data processing functions. Aim of the final 299 
prototype design is to achieve a typical desktop GIS-based 'look and feel' interface, exclusively 300 
exploiting geospatial Web services for data retrieval and processing purposes and this is performed 301 
with a completely transparent to the simple user way. The following major operational areas for 302 
both advanced and simple operations are identified: 303 
• Data Management Area 304 

At this area it is possible to declare the geospatial service providers. As soon as a server is 305 
declared WMS-WFS/GetCapabilities requests are submitted to it, resulting to the development of 306 
lists with the available raster and vector data. By selecting a layer from the above lists, either raster 307 
or vector it is possible to view and select its parameters, preparing that way the exact WMS/GetMap 308 
or WFS/GetFeatures respectively, request for submission. Alternatively, the user is capable of 309 
uploading layers to be included in the project.  310 

Since, the whole environment is a service-based environment the presented layers are 311 
dynamically requested by the servers offering them, whenever the user checks for their visibility. To 312 
permanently obtain desired layers, at this area it is possible to clarify which of the requested layers 313 
will be cloned to form the GIS project on a local environment. 314 
• Content Area 315 

As already stated, layers selected in the Data Management Area are requested on a real time 316 
basis directly from the service provider. Whenever the end-user performs additional requests 317 
according to a desired parameterization, the server responds accordingly and the result is 318 
temporarily rendered in the front-end. This area contains the spatial content that has been 319 
permanently selected to form the GIS project and is therefore stored locally. 320 
• Data Visualization Area 321 
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This area is charged with visualizing the desired spatial content. Visualization concerns either 322 
the results of the service requests individually, such as for example an image returned or an XML file 323 
itself, or various themes overlaid to form a GIS project. 324 
• Messages Area 325 

This area provides feedback to the end-user by presenting messages returned by server 326 
responses. 327 
• Data Processing Area 328 

This area provides the necessary capabilities for declaring a geoprocessing server compatible 329 
with OGC/WPS specification and parameterizing a data processing request. The WPS 330 
implementation of this area is dynamically formed according to the type and the complexity of the 331 
requested geoprocessing job. 332 

Figure 6 provides a visualization of the end-user interface operational areas: 333 

 334 
Figure 6: A Web interface implementing geospatial Web services 335 

4. Demo Presentation 336 
A demonstration case containing routine geospatial activities similar to those performed in a 337 

desktop GIS environment is presented, implementing the following scenario:  338 
'Create a simple layout of the world overlaid by the country boundaries and export a vector layer of the 339 

boundaries in a shapefile format' 340 
The scenario is further analyzed to the following geospatial activities: 341 

• Import a world map 342 
• Import country boundaries 343 
• Export the features of the buffer in shapefile format 344 

 345 
Each of the above mentioned geo-activities will be performed by employing respective 346 

geospatial services by different servers. In detail: 347 
(1) The ArcGIS online sample server (http://sampleserver1.arcgisonline.com/) will be 348 

employed to provide the world map through the appropriate WMS service 349 
(2) The Boundless demo Geoserver (http://demo.boundlessgeo.com/geoserver/web/) will offer 350 

features of the country borders through its WFS services 351 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 January 2018                   doi:10.20944/preprints201801.0268.v1

Peer-reviewed version available at Geosciences 2018, 8, 139; doi:10.3390/geosciences8040139

http://dx.doi.org/10.20944/preprints201801.0268.v1
http://dx.doi.org/10.3390/geosciences8040139


 11 of 15 

 

(3) A custom Node.js server was developed for the purposes of the present work and was 352 
registered in 52o North WPS HTML interface developed with wps-js Javascript library 353 
(https://github.com/52North/wps-js), with the aim to transform the GML file in to shapefile format, 354 
by exploiting GDAL/OGR libraries as described in paragraph 3.2.2 355 

Below are presented the end-user (U) actions and the subsequent server (S) reactions, both 356 
handled by the JS interface (I). 357 

Table 2: User actions, interface handling and server reactions 358 

Actor User Action – Interface – Server Reactions 
U Declares WMS and WFS servers 
I Submits WMS-WFS/GetCapabilities requests to the declared servers 
S Return XML files with the offered raster and vector layers 
I Transforms XML files to lists of available raster and vector data in the Data 

Management area 
U Scans the lists with the available raster data and selects a layer of the world map 
I Submits WMS/GetMap request to the WMS Server offering the requested map 
S Returns the requested raster image map 
I Displays raster image map in the Data View area 
U Scans the lists with the available vector data and selects a layer of the world boundaries 
I Submits WFS/GetFeature request to the WFS Server offering the requested features 
S Returns GML file with the requested features 
I Displays raster image in the Data View area 
U Selects layers to form Layout 
I Permanently stores locally the selected layers which are overlaid in Content area  
U Selects Geospatial Processing Tools and declares WPS server 
I Submits WPS/GetCapabilities request to the declarred Server 
S Returns XML file with the offered processes 
U Selects the Convert file process 
I Submits a WPS/DescribeProcess request 
S Returns XML file with a description of the specifications of the requested process 
I Displays the specifications of the requested process and prompts for user action in 

filling out parameters and, if required, providing data 
U Fills the requested data/parameters and submits a request to execute the process 
I Submits a WPS/ExecuteProcess request 
S Returns the results of the requested process 
I Provides the results 

Figure 7 visualizes the above scenario workflow: 359 
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Figure 7: Scenario workflow diagram 361 
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5. Conclusions 364 
The presented work deals with invocable geospatial Web services and explores the potentiality 365 

of re-serving them under a fully transparent Web-based cross-platform interface in order to satisfy 366 
routine GIS functionalities. As such, the presented solution, is based on Javascript, relies on open 367 
standards, is independent of additional software components, add-ins or APIs, and all is needed is 368 
an updated Web browser. Even in the case of utilizing a server to implement a custom WPS service 369 
to satisfy a specific geo-process, the presented solution remains in Javascript. This way both server 370 
and client components are light enough to reside on the client side, making the whole venture highly 371 
efficient and unique.  372 

An interesting topic worth discussing in the present work is the development of the geospatial 373 
processing service provided by Node.js server which is invoked through 52oNorth wps-js interface. 374 
This task is subdivided into two discrete subtasks: 375 
• the creation of the appropriate XML content modeling the description and execution of an OGC 376 

WPS compatible process and, 377 
• the employment of a GIS engine performing this geospatial process.  378 

The first subtask is a matter of editing the exact parameters of the WPS requests inside the 379 
appropriate XML tags. The second subtask requires the existence of GIS engines inside the WPS 380 
server and thereafter the establishment of an interaction between the engines and the server. In this 381 
respect Node.js was proved to be a convenient solution due to the direct communication with 382 
GDAL/OGR libraries command line. Extending this to other GIS APIs is expected to be a quite 383 
efficient and easy to implement task due to the capability of calling functionalities in most free and 384 
open source projects like those supported by open source geospatial foundation, OSGeo  (e.g. 385 
GRASS GIS and QGIS). Even more, in the case of ArcGIS the Javascript API  may also be employed 386 
to facilitate the Node.js communication with its GIS engine. Therefore, building WPS geospatial 387 
processes through Node.js may be considered as a great opportunity for further developments and 388 
extensions of the presented work. 389 

Three of the most representative projects of the geospatial community, dealing exclusively with 390 
WPS standard are briefly cited: a) 52oNorth initiative serves a significant number of WPS 391 
implementations, and offers wps-js, a Javascript library that makes possible to register WPS 392 
implementations and provide Web access for requesting and executing geospatial processes, b) 393 
ZOO-Project , an OSGeo incubating project, offers an integrated WPS suite covering all the way from 394 
server to client including a server solution with a huge collection of implemented WPS services, a 395 
Javascript API for services creation and a Javascript library for Web interaction and c) PyWPS , also 396 
an OSGeo incubating project is a server side Python solution assisting the development and 397 
exposure of custom geospatial calculations. The presented work is in its very early stage, however it 398 
may potentially be enriched with stuff provided by all of the above mentioned. For the time being it 399 
adopts wps-js, registers in it a Node.js server and implements a demo WPS service. Thus, it provides 400 
a client interface together with a WPS server, that both of them employ Javascript libraries. In 401 
addition, the presented work does not focus only on WPS and extends its vision to satisfy a complete 402 
geospatial environment offering routine GIS functions. 403 
 404 
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