
Article 1

A Javascript GIS platform based on invocable 2

geospatial Web services 3

Konstantinos Evangelidis1,* and Theofilos Papadopoulos2 4
1 Technological Educational Institute of Central Macedonia; kevan@teicm.gr 5
2 Technological Educational Institute of Central Macedonia; priestont@gmail.com 6
* Correspondence: kevan70@gmail.com; Tel.: +30-694-727-8769 7

Abstract: Semantic Web technologies are being increasingly adopted by the geospatial community 8
during last decade through the utilization of open standards for expressing and serving geospatial 9
data. This was also dramatically assisted by an ever increasing access and usage of geographic 10
mapping and location-based services via smart devices in people’s daily activities. In this paper we 11
explore the developmental framework of a pure Javascript client-side GIS platform exclusively 12
based on invocable geospatial Web services. We also extend Javascript utilization on the server side 13
by deploying a node server acting as a bridge between open source WPS libraries and popular 14
geoprocessing engines. The vehicle for such an exploration is a cross platform Web browser 15
capable of interpreting Javascript commands to achieve interaction with geospatial providers. The 16
tool is a generic Web interface providing capabilities of acquiring spatial datasets, composing 17
layouts and applying geospatial processes. In an ideal form the end-user will have to identify those 18
services, which satisfy a geo-related need and put them in the appropriate row. The final output 19
may act as a potential collector of freely available geospatial web services. Its server-side 20
components may exploit geospatial processing suppliers composing that way a light-weight fully 21
transparent open Web GIS platform. 22

Keywords: Open GIS; geospatial Web services; geospatial Web semantics; Web GIS; Node.js; 23
Javascript 24

 25

1. Introduction 26
Geospatial functions range from a simple image map acquisition to a complex geoprocess over 27

a Spatial Data Infrastructure (SDI). Nowadays, a wide range of users exploit geospatial functions in 28
their routine activities. Such users are practitioners, scientists and researchers involved in 29
geosciences and engineering disciplines, as well as individuals employing Geographic Information 30
Systems (GIS) [1-2]. In addition, today we face an ever increasing access and usage of geographic 31
mapping and location-based services via smart devices in people’s daily activities [3]. For this 32
reason, emerging computing paradigms show high penetration rates in geospatial developments, 33
with the latest and yet most significant one the Cloud computing [4-5]. As a result, existing systems 34
are transformed from proprietary desktop GIS software applications of the early 80's to free and 35
open source interoperable Cloud GIS solutions built upon geospatial Web services (GWS) [6]. 36

GWSs and service-oriented architecture (SOA) are the key components to achieve 37
interoperability in Web GIS applications. GWSs allow self-contained geospatial functions to operate 38
over the Web while SOA facilitates interoperability between these GWSs by establishing 39
communication and data exchange for requesters and providers in a uniform way [7-8]. The 40
dominant GWS standards adopted by the geospatial community are those introduced by the Open 41
Geospatial Consortium (OGC) including the Web map service (WMS) to visualize [9], the Web 42
feature service (WFS) and the Web coverage service (WCS) to acquire [10-11], the catalog service for 43
the Web (CSW) to discover [12], and also the emerging Web processing service (WPS) to process, 44
spatial data [13]. 45

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2018 doi:10.20944/preprints201801.0268.v1

© 2018 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Geosciences 2018, 8, 139; doi:10.3390/geosciences8040139

http://dx.doi.org/10.20944/preprints201801.0268.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/geosciences8040139

 2 of 15

In this respect, numerous research projects and business solutions rely on the above standards 46
to achieve geospatial data interoperability between custom applications and to satisfy 47
project-specific needs [14-15]. Furthermore, in European Union (EU) level, project actions have to be 48
aligned with regulation No 1312/2014 [16], implementing INSPIRE directive [17] as regards 49
interoperability of spatial data services. According to this, all geospatial data have to be served 50
under invocable spatial data services. As a result most applications are nowadays based on Web 51
services, use data provided over the Web or generated by users [18], and are executed on 52
cross-platform browser-based interfaces. In the geospatial community, GWSs and XML-based open 53
geospatial data formats, such as Geography MarkUp Language (GML), have become basic 54
components of desktop and Web GIS software solutions. For example the ESRI's ArcGIS commercial 55
product supports WMS connections through its popular 'Add data' interface [19]. On the other side 56
QGIS open solution also supports connection to GWSs through appropriate plug-ins [20]. For 57
individual Web-based applications it is possible to develop a custom GIS capability through open 58
Javascript libraries such as for example Openlayers (http://openlayers.org/) and GeoExt 59
(https://geoext.github.io/geoext2), and have it executed on the client-side without the need of 60
installing anything but an updated Web browser. 61

The development of research and commercial projects that utilize open or proprietary Web 62
services and spatial application frameworks is rapidly growing. [21-28]. Several other Cloud GIS 63
solutions are served as software, as platforms, as infrastructure under the popular service models, 64
SaaS, PaaS and IaaS respectively [4]. However an exclusively service-based application composed of 65
open interoperable Web services could be the ideal case. The developer would have to identify the 66
appropriate GWSs and bind them between each-other in the correct order, same way as it happens 67
in the well-known “ArcGIS model builder” [29]. The final outcome would be a transparent to the 68
user Web interface consisting of an interconnected set of Web services. This case may be extended to 69
a Web GIS platform that gathers available GWSs and acts as a platform for building GIS projects. 70

In this paper we explore the developmental framework for exploiting invocable GWSs, that 71
satisfy routine geospatial needs. A comprehensive and sophisticated implementation might include 72
a Web interface allowing the end user to select between task descriptions composing a GIS project. 73
We demonstrate (212.111.41.209/res/gws) such an implementation which is exclusively based on 74
open standards and services, a light-weight client-side pure JavaScript platform that performs: a) 75
data discovery from public data providers, b) layer-based data view, c) data selection by attributes, 76
d) feature data acquisition and preview, and e) simple geoprocessing tasks. For the last ones, we also 77
explore the applicability of JavaScript, for implementing geoprocesses. Prior to this, the paper 78
explores the effects of semantic Web technologies on fundamental geospatial elements, and 79
discusses critical architectural and development issues. 80

2. The influence of geospatial Web semantics on GIS 81
The major components and principal operations and characteristics of an interface 82

implemented according to geospatial Web semantics technologies, are identified and reviewed 83
throughout GIS timeline from desktop and proprietary Web applications to open service-based GIS 84
systems in the Cloud. The historical point that generally represents the geospatial evolution is when 85
Web semantics technology standards were adopted by the geospatial community. The three major 86
areas briefly discussed in the following are a) Formats, b) Interoperability and c) Automations 87

2.1. Geospatial Data Formats 88

2.1.1. Vector Data 89
Vector data are considered the dominant component of a GIS System, holding the critical 90

properties of the spatial entities that they represent such as their shape and spatial representation 91
and topology. Traditionally, vector data were handled by geographers and GIS experts as the 92
valuable form of spatial data, beyond others, for two reasons: their independence from scale and the 93
capability of associating on them, unlimited amount of descriptive information. In addition vector 94

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2018 doi:10.20944/preprints201801.0268.v1

Peer-reviewed version available at Geosciences 2018, 8, 139; doi:10.3390/geosciences8040139

http://dx.doi.org/10.20944/preprints201801.0268.v1
http://dx.doi.org/10.3390/geosciences8040139

 3 of 15

data production is expensive and time consuming since they are obtained by digitizing map images 95
or as a result of GPS field data collection. 96

Various forms of vector data were adopted throughout GIS timeline from coverage and 97
shapefile to proprietary and open geographic database formats. Today spatial coordinates of the 98
vertices composing a vector graphic may be easily modeled through XML-based open formats 99
(KML, GML, SVG) and transferred through OGC-WFS service requests. 100

2.1.2. Raster Data 101
Traditionally, raster data in the form of scanned maps (gif, jpeg, tiff etc.) were used as the base 102

for producing vector data through digitization tasks. Therefore, the more detailed and of high 103
resolution, a raster was the more analytical and precise was the digitization process. As a result, 104
raster data were usually heavy-sized and their management in a desktop GIS environment required 105
high efficiency computer hardware resources. Servicing maps and satellite images through static 106
Web pages or through raster data repositories were also tasks dependent to hardware efficiency 107
including internet infrastructures. 108

When the first map servers appeared, raster data were being served over the Web as textures of 109
the ground surface, mainly satisfying navigation experience in earth browsers. Today image 110
compression and tiled rendering techniques along with extremely high wireless internet connections 111
make it possible to employ high quality raster data as the background for location-based services 112
provided to smart device users. Raster data used as cartographic background are transferred 113
through OGC-WMS service requests. Other raster formats like GeoTIFF that are used for coverage 114
purposes (e.g. elevation or results from geoprocessing) are served via OGC WCS standard. 115

2.1.3. Descriptive Data 116
A fundamental structural characteristic of a GIS is the capability of associating the spatial 117

features with descriptive data related to them. That way it is possible to perform sophisticated 118
cartographic representations for decision and policy makers as well as to execute complex processes 119
over descriptive data and produce valuable geoinformation. Descriptive data were normally easy to 120
manage throughout GIS timeline because of the simultaneous emergence of database technologies. 121
The external data sources to be associated with spatial features included a wide range of alternatives 122
from simple comma separated values and single database files to relational geographic databases 123
installed in remote servers. 124

Today the Web of Data and associated semantic technologies, support interoperability and 125
standard formats to model and transfer descriptive data. ISO 191xx series and RDF are XML 126
encoded data standards employed in the geospatial web [30]. 127

2.2. Geospatial Interoperability 128
Geospatial interoperability became an issue, when the need for data communication and 129

exchange between diverse geospatial stakeholders became a necessity. Till early ‘90s, GIS vendors 130
used their own proprietary formats, however they agreed to common standards and formats and 131
they established connections to commonly shared repositories. As the technologies that developed 132
by World Wide Web Consortium (W3C) matured, OGC introduced appropriate spatial related 133
technologies to achieve syntactical and semantic interoperability. 134

2.2.1. Syntactical Interoperability 135
Syntactic interoperability assures data transfer between connected systems through Web 136

services. In the geospatial community it is currently achieved through OGC Web Services. For 137
example WFS/GetFeatures request, provides the standard interface and message types for Web 138
services transferring features through XML. In the past, syntactical interoperability could be 139
considered as the result of applying SQL commands through ODBC connectivity. 140

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2018 doi:10.20944/preprints201801.0268.v1

Peer-reviewed version available at Geosciences 2018, 8, 139; doi:10.3390/geosciences8040139

http://dx.doi.org/10.20944/preprints201801.0268.v1
http://dx.doi.org/10.3390/geosciences8040139

 4 of 15

2.2.2. Semantic Interoperability 141
Semantic interoperability is the ideal situation where the exchanged content is machine 142

understandable. To be such it has to be conceptualized formally and explicitly through appropriate 143
specifications, such as GML, the standard for the exchange of service-based spatial data. 144
Traditionally, semantic interoperability could be only achieved via pre-constructed data formats 145
resulting from predefined domain specific data models (e.g. ArcFM [31], UML data models). 146

2.3. Geospatial Automations 147
A GIS project is usually a composition of single geospatial activities which normally begin with 148

the acquisition of thematic layers, and other data involved and the application of geospatial 149
processes, depending on the exact domain of the geoscientific field of expertise. Automating these 150
activities under a workflow of sequentially executed processes may be achieved by creating 151
specialized batch files, or scripts. Traditionally, geospatial automations are implemented through 152
sophisticated modules of the popular desktop GIS environments offering tools to manage geospatial 153
processes, like for example ModelBuilder [31], or Processing Modeler [32]. 154

Now that all types of geospatial activities may be served through geospatial Web services, 155
automation is achieved by 'orchestrating' these Web services. Orchestration “describes collaboration of 156
the Web services in predefined patterns based on local decision about their interactions with one another at the 157
message/execution level” [33]. OGC WPS can be designed to call a sequence of web services [13]. 158

Table 1 collects all related terminology in the above specified sections before and after 159
Geospatial Web Semantics influence. 160

 161
Table 1. Impact of Web semantics on geospatial technologies 162

 Past Today
Geospatial Data Structures

Vector data Binary files (Shapefiles,
coverages etc.), proprietary
database formats (e.g. ESRI
geodatabase)

Text files in XML-based formats
(GML, SVG, KML)

Raster data Image files (Raster) Image files (Raster)
Descriptive data Text files, proprietary

database formats
Text files in XML-based formats
(ISO 191xx, RDF etc.)

Geospatial Interoperability
Syntactic Common data formats,

ODBC connections to spatial
databases

OGC Web Services

Semantic Common data models (e.g.
UML data models)

OWL, GML, RDF

Geospatial Automations
Workflows Batch files and scripts

Special model builders and
process modelers

Web service orchestration (OGC
WPS)

 163

3. Software Prototype Design & Development 164

3.1. Functional Architecture 165
The successful operation of an application based on GWSs prerequisites the existence of 166

available open geospatial Web services for data acquisition and data processing purposes. The end 167
user interface should support access to the services via a Web browser, without the need of installing 168

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2018 doi:10.20944/preprints201801.0268.v1

Peer-reviewed version available at Geosciences 2018, 8, 139; doi:10.3390/geosciences8040139

http://dx.doi.org/10.20944/preprints201801.0268.v1
http://dx.doi.org/10.3390/geosciences8040139

 5 of 15

additional software. Figure 1 represents graphically the functional architecture of such an 169
implementation, which includes: 170
• Free WMS and WFS geospatial services provided either by open-source (e.g. Boundless) or 171

commercial (e.g. ESRI) GIS product leaders, satisfy the need of obtaining features and images 172
• Accessible processing platforms like 52o North initiative, or Javascript node servers developed 173

to support custom WPS implementations. 174
• an HTML browser-based interface developed in Javascript, undertakes to serve user needs over 175

a functional GIS-based environment as described below 176

 177
Figure 1: Functional architecture of a system exploiting GWSs 178

 179

 180

 181

3.2. Development Issues 182

3.2.1. Raster and Vector Layer Views 183
To get raster and vector layers, WMS and WFS services, respectively, are employed. The user 184

interacts with the following ways: 185

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2018 doi:10.20944/preprints201801.0268.v1

Peer-reviewed version available at Geosciences 2018, 8, 139; doi:10.3390/geosciences8040139

http://dx.doi.org/10.20944/preprints201801.0268.v1
http://dx.doi.org/10.3390/geosciences8040139

 6 of 15

• Requesting for available maps in the form of raster or image views of vectors through a 186
WMS/GetCapabilities request and receiving a list with the offered layers along with further 187
metadata descriptions in XML format 188

• Requesting for available features through a WFS/GetCapabilities request and receiving a list 189
with the offered feature layers along with further metadata descriptions in XML format 190

• Requesting for a specific raster (or image views of a vector) layer through a WMS/GetMap 191
request and receiving an image file 192

• Requesting for a specific vector layer through a WFS/GetFeatures request and receiving an XML 193
file 194
 195
Figure 2, illustrates an example of a WMS/GetCapabilities request coded in Javascript along 196

with the server XML response: 197
• the client makes an AJAX (Asynchronous JavaScript and XML) request using the 198

XMLHttpRequest, either WMS or WFS with a URI parameter ‘request=GetCapabilities’. 199
• the server responds with XML data that will thereafter be parsed to JSON object and finally be 200

viewed by the user as paged table data. 201
Practically, the above interaction takes place, whenever the user declares a potential service 202

provider and checks geospatial data provision. 203

 204
Figure 2: Requesting a WMS/GetCapabilities request and receiving the XML response 205

3.2.2. Geospatial Processes 206
Geospatial processes were implemented by employing the 52o North WPS HTML interface 207

freely provided through the wps-js Javascript library. This way an HTML form was generated 208
through which it is possible to encode and parse XML-based WPS requests (GetCapabilities, 209
DescribeProcess, Execute) for the geospatial processes offered by 52o North initiative WPS interface 210
implementation, as well as some other OGC WPS compatible geoprocessing servers (e.g. GeoViQua) 211
[34]. 212

To contribute over the above, a Node.js server was developed in the present work, in order to 213
interface user generated WPS requests with GDAL/OGR library functionalities. These OGC 214

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2018 doi:10.20944/preprints201801.0268.v1

Peer-reviewed version available at Geosciences 2018, 8, 139; doi:10.3390/geosciences8040139

http://dx.doi.org/10.20944/preprints201801.0268.v1
http://dx.doi.org/10.3390/geosciences8040139

 7 of 15

compliant WPS requests are transmitted through 52o North WPS client interface where the Node.js 215
server was also declared in it. 216

Below is a step by step representation of how interaction between client (WPS Client) – 217
server(Node.js) – Cloud servers (WPS Servers) is taking place to complete a WPS request with wps-js 218
and Node.js server. 219

 220
Figure 3: Utilizing Node.js as a Proxy server to achieve cross-origin connections with OGC 221
implementations 222

3.2.3. Descriptive data management 223
Descriptive data involved in OGC Web services are an essential part of the development 224

process because they specify the parameters of any type of request. These parameters are 225
composed/expressed/edited in many ways and four of them are mentioned below. (1) and (2) 226
concern requests submitted to geospatial servers, while (3) and (4) concern handling of the requests 227
on the client-side: 228

 229
(1) HTTP GET Requests 230
HTTP is the simplest way to submit a request to an OGC service implementation through the 231

browser’s URL bar and may also be incorporated in a Javascript interface using AJAX requests. The 232
URL expression below represents a WFS request for getting features from a geospatial server 233

 234
http://nsidc.org/cgi-bin/atlas_north? 235
service=WFS& 236
version=1.1.0& 237
request=GetFeature& 238
typename=greenland_elevation_contours 239
 240
(2) HTTP POST XML requests 241
OGC Web services may support the “POST” method of the HTTP protocol and the request 242

message is formulated as an XML document. XML tags, host the values of the parameters 243
composing a request in a tree structure. In addition, they host the features and attributes of a vector 244
layer. In any case, XML files establish OGC based interoperability acting as the medium for data and 245
processes exchange between machines. The XML code represented below provides a WPS request 246

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2018 doi:10.20944/preprints201801.0268.v1

Peer-reviewed version available at Geosciences 2018, 8, 139; doi:10.3390/geosciences8040139

http://dx.doi.org/10.20944/preprints201801.0268.v1
http://dx.doi.org/10.3390/geosciences8040139

 8 of 15

which returns to the requester the description of all the geospatial processes offered by a WPS 247
server. 248

 249
<?xml version=”1.0” encoding=”UTF-8”?> 250
<wps:DescribeProcess service=”WPS” version=”1.0.0” 251

xmlns:wps=”http://www.opengis.net/wps/1.0.0” xmlns:ows=”http://www.opengis.net/ows/1.1” 252
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” 253
xsi:schemaLocation=”http://www.opengis.net/wps/1.0.0 254

http://schemas.opengis.net/wps/1.0.0/wpsDescibeProcess_request.xsd”> 255
<ows:Identifier>all</ows:Identifier> 256

</wps:DescribeProcess> 257
 258
Another example has been presented in Figure 2. 259
 260
(3) GeoJSON 261
XML files are transformed to GeoJSON using the new specification RFC 4976 in order to be 262

expressed as native Javascript objects and handled appropriately, in terms of parsing and generating 263
the parameters of OGC service requests. Being JSON objects they may be easily visualized as paged 264
tables, may be modified by the end-user and may be reconstructed in XML code. An example of the 265
bounding box property of a layer coded as properties of a JSON Javascript object is shown below: 266

 267
"type": "Feature", 268
 "geometry": { 269
 "type": "Point", 270
 "coordinates": [125.6, 10.1] 271
 }, 272
 "properties": { 273
 274
(4) Paged Tables 275
A paged table can contain inner tables in its rows and this way of representation is convenient 276

when dealing with layers and their properties (e.g. bounding box, EPSG etc.). In addition it is 277
possible to provide domain values for every attribute assisting further request manipulation to the 278
end-user, as shown in the figure below: 279

 280
Figure 4: Setting WMS parameters through a paged table 281

3.3. End-user interface 282

3.3.1. User Interaction 283
The end-user interface implements request and response interaction with the available OGC 284

Web services (e.g. WMS, WFS, WPS). As already discussed the results of the above interaction may 285
be XML-based files or images as shown in figure 5 (Papadopoulos & Evangelidis, 2016). 286

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2018 doi:10.20944/preprints201801.0268.v1

Peer-reviewed version available at Geosciences 2018, 8, 139; doi:10.3390/geosciences8040139

http://dx.doi.org/10.20944/preprints201801.0268.v1
http://dx.doi.org/10.3390/geosciences8040139

 9 of 15

 287
Figure 5: User interaction and data type results (Papadopoulos & Evangelidis, 2016) 288

Specifically, user interaction results involve: 289
• Tabular data with a) the available raster or vector layers formed by WMS/WFS GetCapabilities 290

XML-based files and b) attributes of selected layers formed by WFS/GetFeatures XML-based 291
files 292

• Vector data coded in GML, the prevailing XML-based format 293
• Raster data in image file formats representing maps 294

 295

3.3.2. Major Operational Areas 296
A prototype service-based end-user interface has been proposed (Papadopoulos & Evangelidis, 297

2016) and is adopted in the present work as the base for the presented implementation. In the 298
presented work this is extended to include geospatial data processing functions. Aim of the final 299
prototype design is to achieve a typical desktop GIS-based 'look and feel' interface, exclusively 300
exploiting geospatial Web services for data retrieval and processing purposes and this is performed 301
with a completely transparent to the simple user way. The following major operational areas for 302
both advanced and simple operations are identified: 303
• Data Management Area 304

At this area it is possible to declare the geospatial service providers. As soon as a server is 305
declared WMS-WFS/GetCapabilities requests are submitted to it, resulting to the development of 306
lists with the available raster and vector data. By selecting a layer from the above lists, either raster 307
or vector it is possible to view and select its parameters, preparing that way the exact WMS/GetMap 308
or WFS/GetFeatures respectively, request for submission. Alternatively, the user is capable of 309
uploading layers to be included in the project. 310

Since, the whole environment is a service-based environment the presented layers are 311
dynamically requested by the servers offering them, whenever the user checks for their visibility. To 312
permanently obtain desired layers, at this area it is possible to clarify which of the requested layers 313
will be cloned to form the GIS project on a local environment. 314
• Content Area 315

As already stated, layers selected in the Data Management Area are requested on a real time 316
basis directly from the service provider. Whenever the end-user performs additional requests 317
according to a desired parameterization, the server responds accordingly and the result is 318
temporarily rendered in the front-end. This area contains the spatial content that has been 319
permanently selected to form the GIS project and is therefore stored locally. 320
• Data Visualization Area 321

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2018 doi:10.20944/preprints201801.0268.v1

Peer-reviewed version available at Geosciences 2018, 8, 139; doi:10.3390/geosciences8040139

http://dx.doi.org/10.20944/preprints201801.0268.v1
http://dx.doi.org/10.3390/geosciences8040139

 10 of 15

This area is charged with visualizing the desired spatial content. Visualization concerns either 322
the results of the service requests individually, such as for example an image returned or an XML file 323
itself, or various themes overlaid to form a GIS project. 324
• Messages Area 325

This area provides feedback to the end-user by presenting messages returned by server 326
responses. 327
• Data Processing Area 328

This area provides the necessary capabilities for declaring a geoprocessing server compatible 329
with OGC/WPS specification and parameterizing a data processing request. The WPS 330
implementation of this area is dynamically formed according to the type and the complexity of the 331
requested geoprocessing job. 332

Figure 6 provides a visualization of the end-user interface operational areas: 333

 334
Figure 6: A Web interface implementing geospatial Web services 335

4. Demo Presentation 336
A demonstration case containing routine geospatial activities similar to those performed in a 337

desktop GIS environment is presented, implementing the following scenario: 338
'Create a simple layout of the world overlaid by the country boundaries and export a vector layer of the 339

boundaries in a shapefile format' 340
The scenario is further analyzed to the following geospatial activities: 341

• Import a world map 342
• Import country boundaries 343
• Export the features of the buffer in shapefile format 344

 345
Each of the above mentioned geo-activities will be performed by employing respective 346

geospatial services by different servers. In detail: 347
(1) The ArcGIS online sample server (http://sampleserver1.arcgisonline.com/) will be 348

employed to provide the world map through the appropriate WMS service 349
(2) The Boundless demo Geoserver (http://demo.boundlessgeo.com/geoserver/web/) will offer 350

features of the country borders through its WFS services 351

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2018 doi:10.20944/preprints201801.0268.v1

Peer-reviewed version available at Geosciences 2018, 8, 139; doi:10.3390/geosciences8040139

http://dx.doi.org/10.20944/preprints201801.0268.v1
http://dx.doi.org/10.3390/geosciences8040139

 11 of 15

(3) A custom Node.js server was developed for the purposes of the present work and was 352
registered in 52o North WPS HTML interface developed with wps-js Javascript library 353
(https://github.com/52North/wps-js), with the aim to transform the GML file in to shapefile format, 354
by exploiting GDAL/OGR libraries as described in paragraph 3.2.2 355

Below are presented the end-user (U) actions and the subsequent server (S) reactions, both 356
handled by the JS interface (I). 357

Table 2: User actions, interface handling and server reactions 358

Actor User Action – Interface – Server Reactions
U Declares WMS and WFS servers
I Submits WMS-WFS/GetCapabilities requests to the declared servers
S Return XML files with the offered raster and vector layers
I Transforms XML files to lists of available raster and vector data in the Data

Management area
U Scans the lists with the available raster data and selects a layer of the world map
I Submits WMS/GetMap request to the WMS Server offering the requested map
S Returns the requested raster image map
I Displays raster image map in the Data View area
U Scans the lists with the available vector data and selects a layer of the world boundaries
I Submits WFS/GetFeature request to the WFS Server offering the requested features
S Returns GML file with the requested features
I Displays raster image in the Data View area
U Selects layers to form Layout
I Permanently stores locally the selected layers which are overlaid in Content area
U Selects Geospatial Processing Tools and declares WPS server
I Submits WPS/GetCapabilities request to the declarred Server
S Returns XML file with the offered processes
U Selects the Convert file process
I Submits a WPS/DescribeProcess request
S Returns XML file with a description of the specifications of the requested process
I Displays the specifications of the requested process and prompts for user action in

filling out parameters and, if required, providing data
U Fills the requested data/parameters and submits a request to execute the process
I Submits a WPS/ExecuteProcess request
S Returns the results of the requested process
I Provides the results

Figure 7 visualizes the above scenario workflow: 359

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2018 doi:10.20944/preprints201801.0268.v1

Peer-reviewed version available at Geosciences 2018, 8, 139; doi:10.3390/geosciences8040139

http://dx.doi.org/10.20944/preprints201801.0268.v1
http://dx.doi.org/10.3390/geosciences8040139

 12 of 15

 360

Figure 7: Scenario workflow diagram 361

 362

 363

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2018 doi:10.20944/preprints201801.0268.v1

Peer-reviewed version available at Geosciences 2018, 8, 139; doi:10.3390/geosciences8040139

http://dx.doi.org/10.20944/preprints201801.0268.v1
http://dx.doi.org/10.3390/geosciences8040139

 13 of 15

5. Conclusions 364
The presented work deals with invocable geospatial Web services and explores the potentiality 365

of re-serving them under a fully transparent Web-based cross-platform interface in order to satisfy 366
routine GIS functionalities. As such, the presented solution, is based on Javascript, relies on open 367
standards, is independent of additional software components, add-ins or APIs, and all is needed is 368
an updated Web browser. Even in the case of utilizing a server to implement a custom WPS service 369
to satisfy a specific geo-process, the presented solution remains in Javascript. This way both server 370
and client components are light enough to reside on the client side, making the whole venture highly 371
efficient and unique. 372

An interesting topic worth discussing in the present work is the development of the geospatial 373
processing service provided by Node.js server which is invoked through 52oNorth wps-js interface. 374
This task is subdivided into two discrete subtasks: 375
• the creation of the appropriate XML content modeling the description and execution of an OGC 376

WPS compatible process and, 377
• the employment of a GIS engine performing this geospatial process. 378

The first subtask is a matter of editing the exact parameters of the WPS requests inside the 379
appropriate XML tags. The second subtask requires the existence of GIS engines inside the WPS 380
server and thereafter the establishment of an interaction between the engines and the server. In this 381
respect Node.js was proved to be a convenient solution due to the direct communication with 382
GDAL/OGR libraries command line. Extending this to other GIS APIs is expected to be a quite 383
efficient and easy to implement task due to the capability of calling functionalities in most free and 384
open source projects like those supported by open source geospatial foundation, OSGeo (e.g. 385
GRASS GIS and QGIS). Even more, in the case of ArcGIS the Javascript API may also be employed 386
to facilitate the Node.js communication with its GIS engine. Therefore, building WPS geospatial 387
processes through Node.js may be considered as a great opportunity for further developments and 388
extensions of the presented work. 389

Three of the most representative projects of the geospatial community, dealing exclusively with 390
WPS standard are briefly cited: a) 52oNorth initiative serves a significant number of WPS 391
implementations, and offers wps-js, a Javascript library that makes possible to register WPS 392
implementations and provide Web access for requesting and executing geospatial processes, b) 393
ZOO-Project , an OSGeo incubating project, offers an integrated WPS suite covering all the way from 394
server to client including a server solution with a huge collection of implemented WPS services, a 395
Javascript API for services creation and a Javascript library for Web interaction and c) PyWPS , also 396
an OSGeo incubating project is a server side Python solution assisting the development and 397
exposure of custom geospatial calculations. The presented work is in its very early stage, however it 398
may potentially be enriched with stuff provided by all of the above mentioned. For the time being it 399
adopts wps-js, registers in it a Node.js server and implements a demo WPS service. Thus, it provides 400
a client interface together with a WPS server, that both of them employ Javascript libraries. In 401
addition, the presented work does not focus only on WPS and extends its vision to satisfy a complete 402
geospatial environment offering routine GIS functions. 403
 404

Acknowledgments: The authors wish to acknowledge financial support provided by the Research Committee 405
of the Technological Educational Institute of Central Macedonia under grant SAT/GS/170915-169/14. 406
 407

 408

 409

 410

 411

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2018 doi:10.20944/preprints201801.0268.v1

Peer-reviewed version available at Geosciences 2018, 8, 139; doi:10.3390/geosciences8040139

http://dx.doi.org/10.20944/preprints201801.0268.v1
http://dx.doi.org/10.3390/geosciences8040139

 14 of 15

References 412
1. Dragicevic, S. (2004). The potential of Web-based GIS. Journal of Geographical Systems, 6(2), 79-81. 413
2. Chow, T. E. (2008). The potential of maps APIs for internet GIS applications. Transactions in GIS, 12(2), 414

179-191. 415
3. Oxera, 2013. What is the economic impact of Geoservices? Prepared for Google. Available from: 416

http://www.oxera.com/Latest-Thinking/Publications/Reports/2013/What-is-the-economic-impact-of-Geo-417
services.aspx [Accessed 5 December 2016] 418

4. McKee, L., Reed, C., & Ramage, S. (2011). OGC Standards and Cloud Computing. OGC White Paper. 419
5. Yang, C., Goodchild, M., Huang, Q., Nebert, D., Raskin, R., Xu, Y., Bambacus, M., & Fay, D. (2011). Spatial 420

cloud computing: how can the geospatial sciences use and help shape cloud computing?. International 421
Journal of Digital Earth, 4(4), 305-329. 422

6. Evangelidis, K., Ntouros, K., Makridis, S., & Papatheodorou, C. (2014). Geospatial services in the Cloud. 423
Computers & Geosciences, 63, 116-122. 424

7. Aktas, M. S., Aydin, G., Fox, G. C., Gadgil, H., Pierce, M., & Sayar, A. (2005, June). Information Services for 425
Grid/Web Service Oriented Architecture (SOA) Based Geospatial Applications. In Proceedings of 1st 426
International Conference Beijing China November (pp. 27-29). 427

8. Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and emerging IT 428
platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation computer 429
systems, 25(6), 599-616. 430

9. de la Beaujardiere, J., 2004. Web map service (WMS). Version 1.3. OGC 04-024. Open Geospatial 431
Consortium, Inc., 85pp. 432

10. Evans, J., 2003. Web coverage service (WCS). Version 1.0.0. OGC 03-065r6. Open Geospatial Consortium, 433
Inc., 67pp. 434

11. Vretanos, P., 2005. Web feature service (WFS) implementation specification. Version 1.1.0. OGC 04-094. 435
Open Geospatial Consortium, Inc., 131pp. 436

12. Martell, R., 2004. OGC™ catalogue services—ebRIM(ISO/TS 15000-3) profile of CSW. Version 0.9.1. OGC 437
04-017rl. Open Geospatial Consortium, Inc., 87pp. 438

13. WPS Concepts. Available online: http://geoprocessing.info/wpsdoc/Concepts#chaining (accessed on 26th 439
January 2018) 440

14. Percivall, G. (2010). The application of open standards to enhance the interoperability of geoscience 441
information. International Journal of Digital Earth, 3(S1), 14-30. 442

15. Papadopoulos, T., & Evangelidis, K. (2016). An HTML tool for exploiting geospatial web services. In 443
Geospatial World Forum, 23-26 May 2016, Rotterdam. Geospatial World Forum. 444

16. European Commission, 2014. Commission Regulation (EU) No 1312/2014 of 10 December 2014 amending 445
Regulation (EU) No 1089/2010 implementing Directive 2007/2/EC of the European Parliament and of the 446
Council as regards interoperability of spatial data services Available from: 447
http://data.europa.eu/eli/reg/2014/1312/oj [Accessed 5 December 2016] 448

17. European Commission, 2007. European Commission Directive 2007/2/EC of the European Parliament and 449
of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European 450
Community (INSPIRE). Off. J. Eur. Union, 50 (2007), pp. 1–14 451

18. Haklay, M., & Weber, P. (2008). Openstreetmap: User-generated street maps. Pervasive Computing, IEEE, 452
7(4), 12-18 453

19. Adding WMS services. Available online: 454
http://desktop.arcgis.com/en/arcmap/10.3/map/web-maps-and-services/adding-wms-services.htm 455
(accessed on 26th January 2018) 456

20. QGIS Python Plugins Repository. Available online: https://plugins.qgis.org/plugins/wfsclient/ (accessed 457
on 26th January 2018) 458

21. Granell, C., Díaz, L., & Gould, M. (2010). Service-oriented applications for environmental models: 459
Reusable geospatial services. Environmental Modelling & Software, 25(2), 182-198. 460

22. Stollberg, B. and Zipf, A., 2007, OGC Web Processing Service Interface for Web Service Orchestration – 461
Aggregating Geo-Processing Services in a Bomb Threat Scenario, pp. 239–251 (Cardiff, UK: Springer). 462

23. Lapierre, A., & Cote, P. (2007, October). Using Open Web Services for urban data management: A testbed 463
resulting from an OGC initiative for offering standard CAD/GIS/BIM services. In Urban and Regional 464
Data Management. Annual Symposium of the Urban Data Management Society (pp. 381-393). 465

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2018 doi:10.20944/preprints201801.0268.v1

Peer-reviewed version available at Geosciences 2018, 8, 139; doi:10.3390/geosciences8040139

http://dx.doi.org/10.20944/preprints201801.0268.v1
http://dx.doi.org/10.3390/geosciences8040139

 15 of 15

24. Meng, X., Xie, Y., & Bian, F. (2010). Distributed Geospatial Analysis through Web Processing Service: A 466
Case Study of Earthquake Disaster Assessment.Journal of Software, 5(6), 671-679. 467

25. Evangelidis, K., Ntouros, K., & Makridis, S. (2012). Geoprocessing Services over the Web. In Proceedings 468
of the 32nd EARSeL Symposium, Mykonos, Greece (pp. 344-349). 469

26. Tzotsos, A., Alexakis, M., Athanasiou, S., & Kouvaras, Y. Towards Open Big Geospatial Data for geodata. 470
gov. gr.(2015). Free and Open Source Software for Geospatial (FOSS4G) (pp. 247-258). 471

27. Sayar, A., Pierce, M., & Fox, G. (2005, November). Developing GIS visualization web services for 472
geophysical applications. In ISPRS 2005 spatial data mining workshop, Ankara, Turkey. 473

28. Sayar, A., Pierce, M., & Fox, G. (2006, February). Integrating AJAX approach into GIS visualization web 474
services. In Telecommunications, 2006. AICT-ICIW'06. International Conference on Internet and Web 475
Applications and Services/Advanced International Conference on (pp. 169-169). IEEE. 476

29. ModelBuilder tutorial. Available online: 477
http://pro.arcgis.com/en/pro-app/help/analysis/geoprocessing/modelbuilder/modelbuilder-tutorial.htm 478
(accessed on 26th January 2018) 479

30. Vockner, B., & Mittlböck, M. (2014). Geo-enrichment and semantic enhancement of metadata sets to 480
augment discovery in geoportals. ISPRS International Journal of Geo-Information, 3(1), 345-367. 481

31. Utility Market Embraces ArcFM GIS Solution. Available online: 482
http://www.esri.com/news/arcnews/spring99articles/05_utilitymkt.html (accessed on 26th January 2018) 483

32. Automating Complex Workflows using Processing Modeler. Available online: 484
http://www.qgistutorials.com/en/docs/processing_graphical_modeler.html (accessed on 26th January 485
2018) 486

33. Sun, J., Liu, Y., Dong, J. S., Pu, G., & Tan, T. H. (2010, November). Model-based methods for linking web 487
service choreography and orchestration. In 2010 Asia Pacific Software Engineering Conference (pp. 166-175). 488
IEEE. 489

34. GEO User Feedback System. Available online: http://geoviqua.stcorp.nl/home.html (accessed on 26th 490
January 2018) 491
 492

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2018 doi:10.20944/preprints201801.0268.v1

Peer-reviewed version available at Geosciences 2018, 8, 139; doi:10.3390/geosciences8040139

http://dx.doi.org/10.20944/preprints201801.0268.v1
http://dx.doi.org/10.3390/geosciences8040139

